

American Institute of Aeronautics and Astronautics

1

Flight Simulator Model Integration for Supporting Pilot-in-

the-Loop Testing in Model-Based Rotorcraft Design

Umut Durak
1
, Torsten Gerlach

2

German Aerospace Center (DLR), Institute of Flight Systems, Braunschweig, 38108, Germany

and

Anil Öztürk
3
, Volkan Kargın

4
, Hakan Aydemir

5
 and Ugur Zengin

6

TAI - Turkish Aerospace Industries, Inc., Ankara, 06980, Turkey

Model-Based Design (MBD) enables iterative design practices and boosts the agility of

the air vehicle development programs. Flight simulators are extensively employed in these

programs for evaluating the handling qualities of the designed platforms. In order to keep

up with the agility provided by the MBD, integration of the air vehicle models in fairly

complex flight simulators needs to be addressed. The AVES Software Development Kit

(SDK), which is the simulation software suite of DLR Air Vehicle Simulator (AVES), enables

tackling the model integration starting from the modeler’s desktop. Additionally, 2Simulate,

which is the enabling real-time simulation infrastructure of AVES SDK, provides automated

model integration workflow for MATLAB/Simulink models using Simulink Coder code

generation facilities. This paper presents the successful employment of AVES SDK and the

2Simulate model integration workflow for addressing integration challenges for Pilot-in-the-

Loop Testing in AVES.

I. Introduction

LIGHT simulators have been used by the aeronautics research community for many decades in developing and

experimenting with advanced concepts and conducting human factor research. Some of the well-known early

examples are ATTAS Ground Based Simulator from German Aerospace Center (DLR),
1,2

 NASA Crew Vehicle

Systems Research Facility in Ames Research Center
3
 and Visual Motion Simulation and Cockpit Motion Facility

from Langley Research Center
4
. On the other hand, Air Vehicle Simulator (AVES) of German Aerospace Center

(DLR),
5
 HELIFLIGHT from the University of Liverpool,

6
 NASA Ames Vertical Motion Simulator

7
 and SIMONA

of Delft University of Technology
8
 can be pronounced as the well-known ones which are currently in operation.

It is already a well-employed practice to conduct flight simulator experiments to evaluate the handling qualities

of air vehicles.
9-13

 Besides quantitative analysis, qualitative ratings can also be collected from the pilots by

incorporating flight simulators in the air vehicle design process. Accordingly, Turkish Aerospace Industries, Inc.

(TAI) and DLR are collaborating on conducting flight simulator experiments on the DLR Air Vehicle Simulator

(AVES) which is a modern research simulator facility that has been operating at DLR Braunschweig.
5

1
 Research Scientist, Flight Dynamics and Simulation, Lilienthalplatz 7, 38108 Braunschweig, Germany,

umut.durak@dlr.de, AIAA Member.
2
 Team Leader, Flight Dynamics and Simulation, Lilienthalplatz 7, 38108 Braunschweig, Germany,

torsten.gerlach@dlr.de.
3
 Design Specialist, Flight Mechanics and Autopilot Systems, Helicopter Group, Kazan, 06980 Ankara, Turkey,

anil.ozturk@tai.com.tr.
4
 Technical Specialist, Flight Mechanics and Autopilot Systems, Helicopter Group, Kazan, 06980 Ankara, Turkey,

vkargin@tai.com.tr.
5
 Technical Specialist, Avionics and Electrical Systems, Helicopter Group, Kazan, 06980 Ankara, Turkey,

haydemir@tai.com.tr.
6
 Manager, Flight Mechanics and Autopilot Systems, Helicopter Group, Kazan, 06980 Ankara, Turkey,

ugur.zengin@tai.com.tr.

F

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/77229772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:haydemir@tai.com.tr

American Institute of Aeronautics and Astronautics

2

Figure 1. Model structure of TIRS.

Recent advances in Model-Based Design (MBD) have brought the aeronautics community the concept of agile

model development workflows, where model development is integrated into product development by employing

mature code generation practices.
14

 MBD enables rapid iteration over aerodynamic configuration and flight control

design in the air vehicle design process. Stability and control characteristics of the air vehicle can be investigated in

the early stages. Constant quantitative evaluation of the current air vehicle design provides valuable opportunities

for the designers for further optimization and tuning. The new iterative design practices have brought agility to the

air vehicle development programs. In accordance with that, TAI has been developing their MBD environment,

called TAI Indigenous Rotorcraft Simulation (TIRS), and utilizing it in their ongoing rotorcraft development

programs.

There are some recommended practices from the aerospace industry for MBD. Estrada et al. introduce best

practices for developing DO-178 compliant software using MBD.
15

 Miller presents automatic flight code generation

practices in Northrop Grumman and introduces a use case from desktop simulation to Hardware-in-the-Loop

testing.
16

 BAE Systems has a model-based flight control systems development process.
17

 Fielding presents a process

starting from aerodynamic dataset generation to flight clearance of the aircraft. In this process, the use of

engineering simulators is mentioned for model-based flight control system design. Nixon states that in the F-35

project MBD forced them to re-interpret the traditional software development process for flight control systems, and

introduces Lockheed Martin Aeronautics’ practices of MBD.
18

However, it is still a challenge to keep up with the agility provided by MBD during simulator experimentation.

Flight simulators are complex systems with various heterogeneous data and computation intensive subsystems.
19

Considering that air vehicle models are updated with design iterations, their integration to fairly complex flight

simulators becomes repetitive, labor intensive and error prone. Such integration efforts may take weeks to months.

Therefore, it is necessary to address these problems by providing infrastructures and establishing a fast flight

simulator integration workflows for the air vehicle models.

This paper presents a follow up study for the recently proposed 2Simulate model integration workflow
20

 and

AVES Software Development Kit (SDK).
 21

 2Simulate model integration workflow proposes a MATLAB/Simulink

based solution that will enable fast integration of air vehicle models with the AVES Software Development Kit

(SDK). AVES SDK is the flexible and adaptable simulation software suite of DLR AVES. 2Simulate is the enabling

real-time simulation infrastructure of AVES SDK.
22

 The automated model integration capability is provided by

2Simulate for MATLAB/Simulink models using Simulink Coder code generation facilities. Further, AVES SDK

provides deployment options starting from the modeler’s desktop up until AVES. Hence, it also enables integration

challenges to be addressed as early as the modeler’s desktop without waiting until the final integration in AVES.

In this paper, we report how AVES SDK and the 2Simulate model integration workflow are employed to support

TAI’s model-based rotorcraft design process for Pilot-in-the-Loop testing in AVES. The next section will present

TIRS, its structure, its utilization for model-based rotorcraft design and its code generation process. Then AVES and

its software infrastructure, AVES SDK, will be introduced to the reader. Finally, the application of AVES SDK and

the 2Simulate model integration workflow for TIRS will be disclosed.

II. TAI Indigenous Rotorcraft Simulation

TAI Indigenous Rotorcraft Simulation (TIRS) is an in-house tool being developed by TAI to support rotorcraft

design activities including flight mechanics design and analysis, handling qualities analysis, automatic flight control

system design and real-time flight simulation. The approach to developing TIRS is based on physical modeling of

all the rotorcraft components individually in a

modular structure. Then, the contribution of

each component to the equations of motion is

calculated based on the detailed rotorcraft

characteristics. The complex interactions

among these components are either simplified

or omitted regarding the intended use of TIRS.

The complexity of modeling in TIRS enables

the designer to use it for detailed prediction in

the whole flight envelope during the design

phase. The model structure is shown in Figure

1 and the modules are explained in detail in

the next section.

American Institute of Aeronautics and Astronautics

3

A. TIRS Model Structure

TIRS model structure consists of the following modules:
23

 Equations of Motion module: The main objective of a flight dynamics simulation is to describe the

motion of the vehicle. This is governed by the well-known rigid body six degree of freedom equations

of motion in TIRS.

 Main Rotor module: The standard approach used for main rotor modeling is the blade element

formulation. Rigid flapping and lead-lag degrees of freedom are modeled and position limitations are

also applied. Elastic torsional deflection at the blade tip can be added through a semi-empirical

formulation. This deflection is distributed to the whole blade with first torsional mode shape.
24

 Solution

at Individual Blade Coordinates (IBC) or Multi Blade Coordinates (MBC) is a user selectable option to

enhance the flexibility of the module. A finite state inflow model
25

 with wake distortion and vortex ring

state is implemented. The 0
th
 and 1

st
 inflow harmonics are used for real-time simulations. The 0

th

harmonic creates the mean inflow and 1
st

harmonics generate a uniform inflow change at the radial axis

of blades.

 Tail Rotor module: The standard approach used for tail rotor modeling is also the blade element

formulation. However, the Bailey
24

 model is also implemented for real-time simulation purposes and

thus, flap and lead-lag motions are ignored for improvement in computation time.

 Fuselage module: Aerodynamics of fuselage is modeled by using aerodynamic coefficient tables

changing with respect to angle of attack, sideslip and position of landing gear. These tables can be

either derived from Computational Fluid Dynamics (CFD) analysis or from wind tunnel measurements.

 Empennage module: Horizontal and vertical tail is modeled independently from the fuselage for

flexibility in the design process. Thus, any other aerodynamic component can easily be added in the

model structure. A similar aerodynamic modeling approach as in the fuselage is implemented for

empennage, as well.

 Engine module: Since the helicopter response is highly coupled and influenced by the dynamic engine

and drive drain torque, engine dynamics and the behavior of the rpm governor is modeled as second

order engine dynamics with a Proportional Integral Derivative (PID) controller and a collective feed

forward term. Integrator wind up is prevented. Multiple engines can be simulated independent of each

other. Drive train dynamics are also modeled as a rigid body.

 Actuators module: There are three different types of servo mechanisms in helicopters. Primary servos,

which are modeled as a first order linear system with rate and position saturation, provide power

assisted flight control inputs to the main rotor swashplate mechanism. Flight control inputs are

converted into piston deflections and then saturation limits are applied in main and tail rotor piston

deflections and rates. Limited authority series actuators which provide short-term stabilization are

modeled as second order system with user defined authority percentage. Parallel actuators are modeled

as a first order system with dead zone which provides region of zero output. These types of actuators, in

conjunction with the series actuators, provide automatic control of the rotorcraft in all axes.

 Landing Gears module: Nonlinear strut and linear tire dynamics are integrated. The height of each

gear with respect to ground projection is calculated. If a tire is below ground, the landing gear force and

moment calculation is activated. The vertical force of the tires is transmitted to the body if loads are

below the preload of struts or the strut has reached its maximum limit. Otherwise, the strut forces are

transmitted. The ground plane dynamics of tires are modeled as a spring damper system. These forces

are limited by maximum available friction forces which are calculated simultaneously. The caster (free

tire turn to the velocity vector direction) or steering, left brake, right brake, or no brake are selectable

parameter options for each tire.

 Slung Load module: The 3DOF rigid body load model is available for preliminary analysis and low

computation time. The 6DOF model with flexible cables is also integrated for higher fidelity

simulations. The user can define spring damper systems at the vertical plane and friction properties at

the ground plane on the load. So, the interaction of the load with ground is modeled. The load can be

released by the pilot input.

 Floatation System module: Each floatation system is modeled similarly to the blade element approach,

such that each float is divided into user selected small elements. The forces and moments are generated

using the volume under the water and the sink rate of each compartment.

 Weight and Balance module: The effect of fuel change and extension/retraction of the landing gears

on weight and balance is modeled, to be observed during simulation.

American Institute of Aeronautics and Astronautics

4

 Environment module: A Von Karman turbulence
26

 model with different intensities is available. A

Sharp edge and “1-cos” gust models can be applied.

 Control System module: The modules described above are all utilized to model the open loop

dynamics of a rotorcraft. To be able to conduct closed loop simulations for a rotorcraft, a basic control

system module is also included in TIRS. Unlike the other modules, this module is modeled only by

using Simulink blocks. The control system module consists of the basic stabilization and attitude

control loops provided in pitch, roll and yaw axes. Any necessary upper control loops such as velocity

hold, altitude hold etc. can be easily added to the module. Further, this basic control system module can

always be replaced with an advanced Automatic Flight Control System (AFCS) module including all

the control loops and logic.

All TIRS blocks are being developed in MATLAB script files (*.m) and integrated into Simulink by employing

an automated process.
27

B. Model-Based Rotorcraft Design and Analysis using TIRS

TIRS has been utilized in the whole flight envelope during the design phase. Design problems can be

investigated through trim, linearization and simulation:

 Trim: The trim condition of a helicopter is the combination of states and control inputs that brings the

helicopter into an equilibrium point by means of forces and moments at a given flight condition. Thus,

any instant of a stationary flight can be frozen by trim analysis. The trim procedure used in TIRS is

based on the Newton-Raphson optimization algorithm
28

 with proper constraints and unknowns defined.

Controllability, static stability and performance requirements of a model have been investigated by trim

analysis. Further, simulations that require integration of multiple components, such as slope landing and

autorotation, can be simplified and solved in a very time efficient way via trim analysis. In addition to

these analysis, cross-coupling effects of the model can also be investigated.

 Linearization: The helicopter model can be linearized around the trim conditions and a nonlinear

mathematical model can be represented in a state-space form. The relation between inputs and outputs

to small disturbances can be investigated. For small perturbations around the equilibrium, a linearized

model can adequately represent nonlinear dynamics. However, for large deviations from the

equilibrium point, linear model prediction fails. Both Multiple Input Multiple Output (MIMO) and

Single Input and Single Output (SISO) analysis can be performed. Preliminary evaluation of dynamic

stability requirements of a model can be done using eigenvalues and eigenvectors of the state matrix.

Efficiency of controls and cross-coupling terms can be identified through the control matrix and transfer

functions. In addition, linear control designs are based on the linearized models.

 Dynamic Simulation: Both trim and linearization are not valid when the system drifts away from the

initial condition. Also, discontinuities such as backlash, position saturation, rate saturation cannot be

observed without simulation. Highly nonlinear cases such as engine failure, high control inputs, and

autorotation flare are analyzed with simulation. In addition, simulation is regarded as the only way to

integrate pilots into the design loop. The Pilot-in-the-Loop testing with TIRS is carried out in AVES.

III. AVES and its Software Infrastructure

A. AVES

Since 2013, AVES has been the primary tool of DLR Institute of Flight Systems for flight test preparation and

research in flight system, pilot training and simulation technologies. It has two interchangeable cockpits: one for

rotorcraft (EC135 ACT/FHS
29

) and the other for airplanes (A320 ATRA
30

). Both can be operated on motion and

fixed-base platforms according to the particular needs.
5

The motion simulator consists of a high fidelity 6DOF

motion platform and a large 15 channel front projection system with 240 degrees horizontal and up to 95 degrees

vertical field of view. To provide the same environment, the fixed-based installation also uses a 15 channel

projection system with the same specifications. Both simulation cockpits are equipped with replicas of the real

cockpit devices. Controls are simulated using active control loading systems, which can be tuned according to any

aircraft specification or research requirements. The real cockpit environment is supported by large operator cabins to

control the simulation, observe the simulator trial or develop software right in the place.

American Institute of Aeronautics and Astronautics

5

Figure 2. DLR Air Vehicle Simulator (AVES) architecture for rotorcraft simulation.

Figure 2 presents the top level architecture of AVES for rotorcraft simulation. It is composed of the AVES

EC135 ACT/FHS Cockpit which possesses a control loading system from Wittenstein AG.
31

 It can be located on a

motion platform from Moog.
32

 The OpenSceneGraph based AVESImageGenerator (IG) drives a 15 channel

projection system.
5
 High Level Arhitecture (HLA) based distributed simulation capabilities allow the rotorcraft

simulation to interact with external systems such as other flight simulators, a tower simulator or the Traffic Server.
33

The FHS Experimental System provides hardware-in-the-loop capabilities for flight test preparation for the EC135

ACT/FHS.
34

 The Instructor Operator Station (IOS) provides the IOS Application to manage the simulator

experiment and a Third Person View. The Interface Computer (IC) is the data management node on the QNX Real-

time Operating System (RTOS) that enables the real-time simulation with various software and hardware

components. Real-time simulation refers to the Air Vehicle Model that runs either hard real-time on QNX RTOS or

soft real-time on Microsoft Windows.

B. AVES Software Development Kit

AVES SDK is the software infrastructure of AVES. It consists of a set of source code, project files, libraries,

executables and scripts. It proposes an organization structure and development rules. The main motivation of AVES

SDK is to reduce integration time to AVES by involving the AVES users in the development and integration

activities. AVES SDK can be used in all Software-in-the-Loop, Simulator-in-the-Loop and Simulator modes. The

Software-in-the-Loop (SIL) mode is used for integrating and testing these air vehicle models or flight systems in a

desktop environment and in a real-time Software Test Device (SWTD) environment in a systems integration

laboratory setting that also provides device I/O capabilities. The Simulator-in-the-Loop (SimIL) model enables

integration and testing in AVES utilizing the developer station in the simulator control room rather than the final

target environment, thus it provides local debugging opportunities. These modes provide AVES users with the

capabilities to start mitigating the integration risks of their air vehicle models and flight systems early, from the

desktop simulation step. The simulator mode is the normal operation mode. The unified set of simulator software

assets enables integration and testing to be started from desktop (Figure 3Figure 3) and, using other modes as

required, the real integration in AVES is facilitated as fast as possible.

The AVES SDK infrastructure is constructed such that it distinguishes between runtime and development. The

Runtime Environment (RTE) is a complete set of ready to use simulator software products that are managed by a

suite of deployment scripts. The Software Development Environment (SDE) is tightly connected to the RTE and

supports air vehicle model or flight systems development with ready to use development projects managed by a set

of source control scripts.

American Institute of Aeronautics and Astronautics

6

(a) Components

2SimCC

2SimMC

2SimRT

Target

Common Database

«signal»
Input Signal

«signal»
Output Signal

«signal»
Control Signal

Control Center
Model

Task

SimpleTask UDPTask

IPCTask

Modeltask

TCPTask IOTask

(b) Task Hierarchy

UDPTask Modeltask

TCPTask IOTask

WclsTask SimulinkTask CppModelTask

ARINCTask CANTaskConTask

Figure 4. 2Simulate components and task hierarchy.

Figure 3. AVES SDK integration and test facilities.

C. 2Simulate and Model Integration

2Simulate is an overall simulation framework to facilitate the integration of models and simulation components

such as external devices, data recorders or image generators.
22

 It is a C++ real-time distributed simulation

framework which is composed of three components, namely 2Simulate Real-Time Framework (2SimRT), 2Simulate

Model Control (2SimMC) and 2Simulate Control Center (2SimCC) (Figure 4 (a)).

The core simulation framework of 2Simulate is 2SimRT which provides deterministic scheduling and controlling

of real-time tasks. Some example top level tasks are generic SimpleTask, UDPTask for Unified Datagram Protocol,

TCPTask for Transport Control Protocol or ModelTask for system models. 2Simulate offers various tasks that

extend the top level tasks (Figure 4 (b)). For instance, SimulinkTask extends ModelTask for the real-time simulation

of Simulink models. Tasks can be programmed using their pre- and post-initialization and pre- and post-process

callbacks. 2SimRT also provides a common database to manage the data.

2SimCC is the graphical user interface that is configured to a control center for specific needs. It is an Microsoft

Windows executable which can be customized via configuration files, named the 2SimCC project files. The control

center can run, pause or stop various targets. In addition, it accesses the target data dictionaries which can be defined

Desktop

 Source Code
 Project Files
 Libraries
 Executables
 Scripts

SIL SimIL Simulator

 Local simulation setup
 Early integration
 Early Testing

Software Test Device (SWTD)

 QNX Targets
 Device I/O (CAN, Arinc)
 More than one graphics

channels
 Real-time integration and

test environment

AVES SDK

Developer Station

 Simulator software in the
loop

 Simulator hardware in
the loop

 Local debug and testing

AVES

Simulator operation mode

American Institute of Aeronautics and Astronautics

7

as the data access mechanisms and enables presenting or editing target data at runtime. It can also enable user

management to define and enforce user access rights.

2SimMC is the enabler of model integration in AVES. It is composed of 2Simulate Model Control Source

(2SimMC-Source), which abstracts model interfaces for 2SimRT, and 2Simulate Model Control Scripts (2SimMC-

Scripts), which include Simulink Coder Target Language Compiler files (TLC files) to specify the 2Simulate target,

and m-files to conduct the code generation and build process. There are two types of scripts in 2SimMC-Scripts:

1) The MATLAB build automation scripts that make use of MATLAB command line utilities to control

Model Advisor, Simulink Coder and to call some external executables for source control and cross-

compilation.

2) TLC files that are used to specify the 2Simulate target.

The model-based methodologies, while providing graphical means to ease the model development, they regard

the models as core artifacts and propose an implementation strategy with transforming models to other models using

Model-to-Model (M2M) transformations and eventually to code using Model-to-Text (M2T) transfromations.
35, 36

The Simulink Coder is the M2T transformation toolset provided by Mathworks for MBD using

MATLAB/Simulink.
37

 The code generation starts with a compilation process which ends up with an intermediate

representation of the model (model.rtw).

It is then transformed into C or C++ code. Code generation is controlled by

TLC scripts. TLC script is introduced as an interpreted programming language that converts a model description into

code. The TLC scripts that specify how to generate code from the model are executed by the TLC. This can be

categorized as a template based M2T transformation approach. TLC scripts, as the M2T transformation language,

utilize meta-markers. During code generation, TLC queries the dynamic content that is specified by metamarkers

from model.rtw and replaces the markers with values from the model.

Figure 5. 2Simulate model integration.

TLC scripts provide capabilities to specify targets through customizing the code generation to produce platform

or application specific code. For 2Simulate, a target specification called grt_2Simulate is implemented by 2SimMC-

Scripts TLC files. These files extend a generic real-time target provided by Simulink Coder. During code generation,

the top level entry point is the grt_2Simulate.grt. It first calls codegenentry.tlc to generate model code and then calls

all eight 2Simulate TLC files to generate 2SimMC-Component code, whose main static structure is give in Figure 5.

The contribution of such an approach lies in the capability it provides to generate the simulator integration code

from the air vehicle model. Code generation specified by the TLC scripts in grt_2Simulate target leads to

implementation of classes that extend the base classes of the real-time simulation infrastructure 2SimRT. Thence,

the model is accessable to the 2Simulate programmers as a schedulable real-time task.

American Institute of Aeronautics and Astronautics

8

Figure 6. TIRS desktop integration and test environment.

Figure 7. TIRS build automation script.

IV. TIRS AVES Integration

The integration of TIRS in AVES is carried out in two steps. In the first step, AVES SDK is used to configure a

desktop integration and test environment (Figure 6). The model integration infrastructure is employed and the

generated TIRS real-time simulation executable is tested in this desktop environment. Upon successful integration in

the desktop setting, as the second step, the executable is deployed in the simulator target and tested with the overall

software and hardware components of AVES.

The MATLAB build automation

script conducts the automated build

(Figure 7). It first checks out the

Model Integration Framework,

which includes third party

dependencies, model application

source code and Microsoft Visual

Studio Development Environment

project. The Model Integration

Framework can be introduced as a

wrapper for the generated model

code. It creates a 2SimRT target

using the generated model code.

This wrapper code is refactored

automatically for model specific

parameters. As an example, the

solver step size of the model is set as

the frequency of the model task in

the Model Integration Framework

code. After refactoring, the model

application code is ready for

compilation. Then the code is

generation is executed for the model

using the target specification.. The

next step is to compile the project

using the Microsoft command line

tool msbuild. Finally, the built real-

time TIRS executable is copied to

the deployment folder.

American Institute of Aeronautics and Astronautics

9

V. Conclusion

With advances in model-based design, the aeronautics community is practicing agile and iterative design

processes utilizing the air vehicle models as the core asset. The flight simulator experimentation is an indispensable

activity in air vehicle development efforts. Pilot-in-the-loop testing can be regarded as a part of the x-in-the-loop

family. However the flight simulators are complex sytems with various subsystems that posses complicated

interdependencies. The integration of air vehicle models to flight simulators are usually labor intensive and error

prone.

This paper presents an approach to tackle this integration challenge by utilizing a flexible and adaptable

simulation infrastructure and an automated model build process, for agile pilot-in-the-loop simulation

experimentation. This approach is applied for integration of Turkish Aerospace Industries (TAI) Indigenous

Rotorcraft Simulation (TIRS) in German Aerospace Center (DLR) Air Vehicle Simulator (AVES) for supporting

rotorcraft development activities with simulator experimentation. The initial model integration effort for the air

vehicle model is reduced to a couple of days and the workload of successive integrations is reduced to just hours.

With this study, it is demonstrated that extending the code generation practices of model-based design to application

specific targets is an effective approach to disseminate the flexibility and agility provided by model-based design.

Further, with a flexible and adaptable simulation infrastructure that can be scaled from desktop to real flight

simulator, integration risks can be mitigated early in modeler’s desktop.

The future work includes extending such an approach to other x-in-the-loop steps, such as software-in-the-loop

and hardware-in-the-loop testing, and enable extensive utilization of flight simulator not only for systems level

evaluation, such as handling qualities but also subsystem level validation activities, like testing of automated flight

control systems.

References
1Saager, P., “Real-Time Hardware-in-the-Loop Simulation for 'ATTAS' and 'ATTHeS' Advanced Technology Flight Test

Vehicles,” AGARD Guidance and Control Panel, 50th Symposium, Izmir, Turkey, 1990.
2Klaes, S., “ATTAS Ground Based System Simulator -An Update-,” AIAA Modeling and Simulation Technologies

Conference and Exhibit, Denver, CO, 2000.
3Sullivan, B. and Soukup, P., “The NASA 747-400 Flight Simulator: A National Resource for Aviation Safety Research,”

AIAA Flight Simulation Technologies Conference, San Diego, CA, 1996.
4Smith, R., “A Description of the Cockpit Motion Facility and the Research Flight Deck Simulator,” AIAA Modeling and

Simulation Technologies Conference and Exhibit, Denver, CO, 2000.
5Duda, H., Gerlach, T., Advani, S. and Potter, M., “Design of the DLR AVES Research Flight Simulator,” AIAA Modeling

and Simulation Technologies (MST) Conference, Boston, MA, 2013.
6White, M. and Padfield, G., “The Use of Flight Simulation for Research and Teaching in Academia,” AIAA Atmospheric

Flight Mechanics Conference and Exhibit, Keystone, CO, 2006.
7Advani, S., Giovannetti, D. and Blum, M., “Design of a Hexapod Motion Cueing System for NASA Ames Vertical Motion

Simulator,” AIAA Modeling and Simulation Technologies Conference and Exhibit, Monterey, CA, 2002.
8Stroosma, O., van Paassen, R. and Mulder, M., “Using the Simona Research Simulator for Human-Machine Interaction

Research,” AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin, TX, 2003.
9Muckler, F., and Obermayer, R., “Performance Measurement in Flight Simulation Studies,” AIAA Heterogeneous

Combustion Conference, Palm Beach, FL, 1963.
10van Gool, M., and Weingarten, N. “Comparison of Low-Speed Handling Qualities in Ground-Based and in-Flight

Simulator Tests,” AIAA 1st Flight Test Conference. Flight Test Conference, Las Vegas, NV, 1981.
11Kiefer, D., and Calvert, J., “Developmental Evaluation of a Centrifuge Flight Simulator as an Enhanced Maneuverability

Flying Qualities Tool,” AIAA Flight Simulation Technologies Conference, New Orleans, LA, 1992.
12Anderson, F. and Biezad, D., “A Low-Cost Flight Simulation for Rapid Handling Qualities Evaluations during Design,”

AIAA Modeling and Simulation Technologies Conference and Exhibit, Boston, MA, 1998.
13Landry, L., “Application of Modeling, Simulation and Labs to the F-35 Program,” AIAA Modeling and Simulation

Technologies Conference and Exhibit, Honolulu, HI, 2008.
14Ruff, R., Stephans, C. and Mahapatra, S., “Applying Model-Based Design to Large-Scale Systems Development: Modeling,

Simulation, Test, & Deployment of a Multirotor Vehicle,” AIAA Modeling and Simulation Technologies Conference.

Minneapolis, MN, 2012.
15Estrada, R.G., Sasaki, G. and Dillaber, E., “Best practices for developing DO-178 compliant software using Model-Based

Design,” AIAA Infotech@Aerospace (I@A) Conference, Boston, MA, 2013.
16Miller, R., “Automatic Code Generation at Nortrop Grumman,” Mathworks Aerospace and Defence Conference, Manhattan

Beach, CA, 2007.
17Fielding, C., “Model-Based Design og Flight Control Systems,” Mathworks Model-Based Design Conference, Daventry,

UK, 2010.

American Institute of Aeronautics and Astronautics

10

18Nixon, D.W., “Flight Control Law Development for the F-35 Joint Strike Fighter,” The Mathworks International Aerospace

and Defence Conference, Newton, MA, 2004.
19Allerton, D., Principles of Flight Simulation, John Wiley & Sons, Chichester, 2009.
20Gerlach, T., Durak, U., and Gotschlich, J., “Model Integration Workflow for Keeping Models up to Date in a Research

Simulator,” Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and

Applications, SCITEPRESS, Wien, Austria, 2014, pp. 125-132.
21Gerlach, T, and Durak, U., “AVES SDK: Bridging the Gap between Simulator and Flight Systems Designer,” AIAA

Modeling and Simulation Technologies Conference, Dallas, TX, 2015.
22Gotschlich, J., Gerlach, T. and Durak, U., “2Simulate: A Distributed Real-Time Simulation Framework,” ASIM STS/GMMS

Workshop 2014, Reutlingen, Germany, 2014.
23Sansal, K., Kargin, V., and Zengin, U., “A Generic Ground Dynamics Model for Slope Landing Analysis,” AHS 72nd

Annual Forum, West Palm Beach, FL, 2016.
24Howlett, J., “UH-60A Black Hawk Engineering Simulation Program. Volume I. Mathematical Model,” NASA Contractor

Report 66306, 1981.
25Peters, D., He, C. “Correlation of Measured Induced Velocities with a Finite State Wake Model,” Journal of AHS, Vol.36,

No.3, 1991.
26“Military Specification, Flying Qualities of Piloted Airplanes,” MIL-F-8785C, 1980.
27Durak, U., Öztürk, A. and Katircioglu, M., “Simulation Deployment Blockset for MATLAB/Simulink,” SpringSim-

TMS/DEVS, Pasedina, CA, 2016.
28Greenberg, M.D., Advanced Engineering Mathematics, Prentice Hall, Inc., New Jersey,1998.
29Ockier, C., and Butter, U., “ACT/FHS–an airborne rotorcraft simulator for technology development and research,” AIAA

Modeling and Simulation Technologies Conference, Denver, CO, 2000.
30Schneckenburger, N., Klein, C., and Schnell, M., “OFDM based data link for the DLR research aircraft ATRA,” IEEE

Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, 2011.
31Wüstenberg, H., Gotschlich, J. and Durak, U., “Anbindung eines aktiven Steuerkraftsystems an eine Echtzeitsimulation,”

ASIM STS/GMMS Workshop 2016, Lippstadt, Germany, 2016.
32Seehof, C., Durak, U. and Duda, H., “Objective Motion Cueing Test–Experiences of a New User,” AIAA Modeling and

Simulation Technologies Conference, Atlanta, GA, 2014.
33Gerlach, T, Knüppel, A., Durak, U., and Rambau, T., “Running HLA in Real-Time for Flight Simulator Integration,” AIAA

Modeling and Simulation Technologies Conference, Washington, DC, 2016.
34Klaes, S., “ATTAS & ACT/FHS System Simulation for Pre-Flight Software and Hardware Testing,” AIAA Modeling and

Simulation Technologies Conference and Exhibit, Monterey, CA, 2002.
35Brambilla, M., Cabot, J., and Wimmer, M., Model-driven software engineering in practice. Morgan & Claypool Publishers.

2012.

36Topcu, O., Durak, U., Oguztuzun, H., and Yilmaz, L., Distributed Simulation – A Model Driven Engineering Approach.

Springer, Cham, 2016, Chaps. 2, 9.

37The Mathworks, Inc., “Simulink® Coder™ User’s Guide,” Natick, MA, 2015.

