
Streaming Monte Carlo Pose Estimation
for Autonomous Object Modeling

Christian Rink and Simon Kriegel
Institute of Robotics and Mechatronics, German Aerospace Center (DLR)

82234 Oberpfaffenhofen, Germany
Email: christian.rink@dlr.de, simon.kriegel@dlr.de

Abstract—This work contributes the optimization of a stream-
ing pose estimation particle filter and its integration into an
autonomous object modeling approach. The particle filter is
advanced by an additional pose optimization in the particle
weighting step. By integrating the method into the autonomous
object modeling approach, the repositioning of objects is enabled,
which is often necessary in order to acquire complete models.
Experiments show that the usage of iterative closest point is too
restrictive for general transformations. The used Monte Carlo
method enables a robust pose estimation without loss of time
and with high precision. Further, it is shown that the overall
modeling results are improved clearly.

Keywords-Pose estimation; Laser scanning; 3D modeling; Ac-
tive sensing;

I. INTRODUCTION

In robotics, 3D models are usually required in order to
recognize, locate, and manipulate real objects. Nowadays, if
no CAD data is given, 3D models of unknown objects are
typically generated manually. If robots are supposed to handle
unknown objects themselves in future, they need to be able to
acquire an object model fully autonomously. The autonomous
modeling approach presented in [1] is not able to generate a 3D
model of all objects parts. For instance, if the object is placed
on a table or other objects are in the proximity, the bottom
or occluded part cannot be modeled without repositioning the
object. Thus, pose estimation is needed to realign the data.

The development of pose estimation techniques has been
fortified by the evolution of low-cost 3D sensors. Thus,
many recent techniques are designed for Kinect-like sensors.
However, laser scanners yield higher robustness against shiny
or reflecting surfaces and significantly higher data accuracy
and density. Most pose estimation techniques can be applied
to all kinds of 3D point data. However, most methods work
locally or are not able to work streamingly with laser stripers.
Recently, a streaming Monte Carlo pose estimation method has
been developed to fill this gap [2]. It performs as good as other
state-of-the-art algorithms and estimates poses during data
acquisition, if a priori knowledge is available. The situation
in autonomous 3D modeling, where the object must be placed
within a predefined region with a more or less arbitrary
orientation, fits perfectly for this method. To the best of our
knowledge, this is the only feature based global streaming
pose estimation method in the literature, that is based on pure
geometrical information and working with laser stripers.

In this paper, we thus propose the usage of this method
in combination with the autonomous 3D modeling approach

Fig. 1. Streaming Monte Carlo Filter Registration for Autonomous Object
Modeling: Left: a robot with attached laser striper performs multiple scan for
autonomously modeling an initially unknown object. Right: After the object
is repositioned, features are incrementally calculated to estimate the object
pose using the current model and continue the autonomous modeling.

of Kriegel et al. [1] (see Fig. 1) as follows: initially a 3D
model of an unknown object is generated. Then, the object is
repositioned and the current model is directly used to estimate
the new pose of the object. Finally, the autonomous modeling
is continued until all parts have been covered.

Our contributions include the seamless integration of the
pose estimation into autonomous 3D-modeling and a pose
optimization in its weighting step. Additionally, we investigate
sampling particles according to Gaussian/Bingham distribu-
tions and analyze the influence of a priori knowledge with
respect to reliability and accuracy. Numerous experiments
with an industrial robot and laser striper are carried out
to show the enhanced method’s performance, compared to
the previous approach. Finally, we investigate the impact to
the modeling results: We show the improvements concerning
completeness of models and prove that the overall accuracy of
the obtained models is sustained. In contrast to [2] where data
was registered to a complete ground truth reference model,
here real scan data was used for the reference models.

II. RELATED WORK

In this section, we first summarize recent work on pose
estimation and then briefly on autonomous object modeling.

A. Pose Estimation

For details of strongly related mobile robotics topics such
as localization and SLAM, we refer to the comprehensive
overview given by Sturm et al. [3]. However, particle filters
based purely on depth images as used for mobile robot
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localization are not suitable for the stated problem, since depth
measurement simulation is too time consuming (even on a
GPU) in comparison to our method. Moreover, methods in the
realm of mobile robotics typically rely on local registration or
focus on 2D (3 DOF) self localization.

Concerning object pose estimation, Fischler et al. [4] in-
troduced the well-known random sampling consensus (RAN-
SAC), and successively Chen et al. [5] demonstrated its
application to registration. Variants typically calculate rigid
motions from subsets of points or point-normal pairs that are
sampled in the data sets. Winkelbach [6] uses point-normal
pairs and concentrates on an efficient sampling strategy. Drost
et al. [7] use a voting scheme similar to the Generalized
Hough Transform. Rusu et al. [8] use the Fast Point Feature
Histogram, a higher dimensional feature, to define correspon-
dences. Then, a RANSAC method is utilized for selecting
those correspondences with maximal 3D overlap. To evalu-
ate multiple high-dimensional features for object recognition,
Aldoma et al. [9] use a correspondence grouping method based
on geometric consistency. By using a “center-star” variant of
Rusu et al. [10], similarly-spaced point groups are matched.
However, in contrast to [10], the points are evenly sampled
instead of searching for salient points.

Barequet et al. [11] exploit the unique decomposability
of rigid motions into rotations and translations. The dis-
cretized space of rotations is searched iteratively by clustering
the corresponding translations and finding the most definite
cluster, defining the best rotation. Tombari et al. [12] have
proposed a similar approach that uses features yielding a
complete reference frame in contrast to a sole surface normal.
A correspondence pair defines a complete rigid motion, not
only a set of rotations as in [13]. Nevertheless, up to a constant
translation the voting table is the same. The correspondence
pairs contributing to the best translation are used for a least
squares estimation. In contrast, Barequet et al. use the found
transformations directly (ICP is applied to the complete data
set in a postprocessing step). Tombari et. al prove their method
to be more robust and reliable than other standard methods
based on pose space clustering or geometric consistency.

Rink et al. [14] reformulated Barequet’s approach as a
particle filter and showed that in applications with very noisy
data, relying on accurate surface normals or reproducible
reference frames (as in [12]) can fail. Thus, scalar feature
descriptors were used. Furthermore, a comparison to similar
strategies [11], [8], [12], [9] was given and the advantages
of explicit integration of prior knowledge about the searched
transformation were presented. In a subsequent paper Rink
et al. [2] advance the idea of particle filtering with scalar
features to streaming pose estimation, adapting the search
space to the space of rigid body transformations and giving
a theoretically sound weighting of particles. The streaming
feature calculation in that approach is based on a streaming
principal component analysis used for tangential plane esti-
mation in streaming mesh construction, proposed originally
by Bodenmüller [15].

B. Autonomous Object Modeling

Autonomous object modeling usually makes use of a robot-
sensor system and by iterative Next-Best-View (NBV) plan-
ning acquires a 3D model of an unknown object. The area of
NBV planning has been widely explored [16], [17]. However,
little research on real autonomous object modeling systems has
been carried out. Khalfaoui et al. [18] utilizes an industrial
robot, a turntable, and a very large and expensive fringe
projection system to plan NBVs using barely visible surfaces
as viewpoint candidates. However, several holes in the models
remain. Torabi et al. [19] use a smaller robot with 2D range
sensor but the focus lays more in the exploration and not in
the object modeling. In [20], autonomous 3D reconstruction of
unknown objects is performed with a mobile manipulator and
Kinect sensor. The approach samples NBVs in configuration
space and evaluates these in Cartesian space to avoid view-
points that would lead to collisions. Kriegel et al. [1] use an
industrial robot and consider the surface quality during Next-
Best-Scan (NBS) planning for high-quality model acquisition.
The planning is called NBS instead of NBV as the utilized
sensor, a laser striper, needs to be moved in order to acquire
2D depth images. All of these approaches are not able to obtain
the bottom part of the objects. In [21], the last approach [1]
has been applied to also scan initially occluded parts, e.g.
the bottom of an object for creating a pose estimation data
set. However, here the object had to be manually repositioned
about a defined axis quite perfectly (deviations in the manual
repositioning were not possible). In this work, we propose
to use the approach presented in [1] which focuses on the
modeling and plans NBSs for a laser striper.

III. SYSTEM OVERVIEW

This section gives an overview (see Fig. 2) of how the
autonomous modeling method as presented in [1] is combined
with Streaming Monte Carlo Registration (SMCR). Initially,
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Fig. 2. Overview of the integration of autonomous object modeling with
streaming Monte Carlo registration. Yellow boxes represent modules, purple
ovals robot-sensor system actions, and blue diamonds decisions.



an arbitrary laser scan of the unknown object is performed
utilizing a robot-sensor system. Here, robot-sensor system
refers to an industrial robot with a laser striper attached to the
robot’s flange (see Fig. 1). When data acquisition is started, a
depth image stream containing the robot’s pose information
is handled to three modules: Mesh Update, Probabilistic
Space Update, and Feature Calculation. The features are also
calculated in real-time here but will only be used later for
registration after the object has been repositioned. After the
updates, we check if the triangle mesh (surface model) has
reached the desired quality meaning if it is complete apart from
not scanable parts. Then Next-Best-Scan Planning, collision-
free Motion Planning, further laser scans, and real-time up-
dates are iteratively performed until the quality is reached. The
mesh is utilized for planning possible scan path candidates
and selecting a NBS with the goal to reach the desired
surface model quality. The probabilistic space represents a
volumetric model which considers sensor uncertainties and
gives a probability of occupancy for each voxel. It is used
for exploring the unknown environment by Next-Best-Scan
planning, and avoiding collisions during Motion Planning.

Once the desired quality has been reached, the object is
repositioned meaning it is rotated onto one of its sides in
order to model previously occluded object parts. Therefore,
a laser scan is performed along the region of interest for
which again the Feature Calculation (see Sect. V) is carried
out on-the-fly. Here, features are also classified according to
the class borders of the template (feature points before the
object was repositioned). Synchronously, the Particle Filter
component iteratively performs a neighborhood sampling and
weighting of the particles with incoming feature points. The
estimated pose is instantly available after the Laser Scan for
Registration has finished. Then, the Monte Carlo registration
is fine adjusted by applying the ICP which results in a precise
transformation between the original object position and the
object position after it has been rotated onto one of its sides.
After the registration, the autonomous modeling is continued
until a complete model is generated. Thereby, the resulting
transformation from the registration is applied to the robot
pose of all further generated laser scans in order to be able
to model the object within the same coordinate system. For
more details on the autonomous modeling we refer to [1] and
concerning the particle filter registration to [2] and a summary
in the following section.

IV. MONTE CARLO REGISTRATION

The particles are sampled in the space of rigid body trans-
formations, denoted T . The unknown transformation between
two models P and Q of the same object at time step i is
denoted Ti ∈ T . Each particle consists of a transformation
T ∈ T and a weight w. The state transition Ai between
two time steps can be considered the identity in the case
of registration, and the observed model is assumed to be not
moving (Ai = id). The error εAi

is assumed to be distributed
uniformly in a neighborhood of the identity. Each particle
(T,w) in each time step i is weighted by the conditional

probability density function (pdf) f(Qi|T, P ) of observed data
Qi conditional on the state T and the template model P . In
short, the particle filter registration can be described by:

1) sample pose particles initially
2) weight particles by f(Qi|T, P )
3) resample particles according to their weights
4) optionally: Adapt some parameters
5) sample particles in neighborhood of existing particles,

return to step 2 if not converged
In this work, we adapt the number of particles, the sampling
radii and the radius for the score function from Sect. VI-B.
Each of these parameters has a maximum value and is reduced
by a factor of 0.8 in step 4, until a minimum value is reached.

V. FEATURES

In this section, we clarify how features originally introduced
in [14] are calculated streamingly.

A. Robust Scalar Features

Every feature point p = (cp, np, vp) ∈ R3 × S2 × R
consists of a coordinate cp, a surface normal np, (S2 being the
unit sphere) and a feature value vp. We shortly present slight
variants of scalar features proposed in [14], that proved to be
robust under noisy depth measurements.

1) Normal Cosines: Let in the following p be a point with
surface normal np and a neighborhood N(p) and define

c(p, q) := cos(np,
q − p
‖q − p‖

) (1)

for a neighbor q ∈ N(p). Then, the mean, maximum and
minimum of {c(p, q)|q ∈ N(p)} are called the mean normal
cosine (MNC), maximum normal cosine (MaNC) and mini-
mum normal cosine (MiNC) in p with neighborhood N(p),
respectively.

2) Point Clouds and Eigenvalues: If no stable normal
estimation is given, features can be calculated with the help
of the eigenvalues λ1 ≤ λ2 ≤ λ3 of a point neighborhood
covariance matrix: the scalar curvature feature defined by λ1

λ3
is

denoted eigenvalue quotient of eigenvalues 1 and 3 (EVQ13).
When no relevant curvature features can be exploited for
registration, e.g. with flat objects like a metal sheet, the feature
value λ2

λ3
can be used (EVQ23), indicating whether a point is

near the border of the object [14].

B. Streaming Feature Calculation and Classification

The processing pipeline for streaming feature calculation
consists of three stages: the density limitation, the normal es-
timation and the feature generation step. Depth points coming
from a real-time data stream are incrementally inserted into the
model if they pass a limitation test: each newly acquired point,
that is closer than a distance rr to any point already inserted to
the model, is rejected. Thus, the entire Euclidean point density
of the model is limited and the computational effort can be
controlled. For each point that passes the density limitation,
a surface normal is estimated using principal component
analysis for all points within a spherical neighborhood with



radius rn. Only points, for which the normal estimation is
considered robust (see [15] for details), are transferred to the
subsequent feature generation step.

1) Eigenvalues: At the end of the normal estimation stage,
the eigenvalues of the point neighborhood covariance matrix
are readily available from the principal component analysis.
Thus, the streaming feature calculation for EVQ13 and EVQ23
is straight forward: if a stable normal is ready, the corre-
sponding feature point is calculated from the eigenvalues and
inserted into the feature point stream.

2) Normal Cosines: The proposed angle features are cal-
culated from the point surface normal and the neighborhood
points in the model. Consequently, the original mesh genera-
tion stage is adapted to serve as a feature generation module
as follows. If a stable normal is ready and the new point
is inserted into the module the MNC, MaNC, or MiNC are
calculated in the neighborhood of radius rn (immediately
available from the normal estimation stage). Also, all the
points in the neighborhood are updated correspondingly.

C. Reduction

Besides defining correspondences, the features are used for
data reduction [14]. In this work, five feature classes are
defined on the template data set. The middle class which rep-
resents low curvature areas is removed. During the streaming
feature calculation, only features are inserted into the data that
are not in the middle class.

VI. SAMPLING POSE-PARTICLES

We follow the widely used approach to initially sample our
pose particles uniformly in a predefined region, as detailed in
[2]. Contrary to [2], the neighborhood sampling in the suc-
cessive iterations will be performed with truncated Normal or
truncated Bingham distribution for translations and rotations,
respectively.

A. Sampling Rigid Body Transformations in Neighborhoods

Sampling translations uniformly or normally in neighbor-
hoods is trivial. Sampling rotations uniformly is outlined in
[14]. If uniformly sampled rotations are available, importance
resampling can be used to allow rotations to be distributed
according to a truncated Normal or Bingham. This works
efficient as long as the Normal/Bingham distribution has a
standard deviation fitting the truncation. In this work, the
standard deviation is chosen to be half of the sampling radius.

B. Scoring Transformations

The weights of the particles are calculated according to a
Normal distribution of the feature point locations, conditional
on the pose. Let P,Q be the feature points of the template and
the incoming data feature points, correspondingly. Further we
assume the features to be classified (according to [14]), i.e. vp
is a discrete category for every p ∈ P (and correspondingly
for Q). Now consider a particle describing a transformation
T. Let q be the feature point in the data corresponding to
the feature point p of the template model. If the underlying

transformation T between data and template is known, it is
reasonable to assume cq to follow a Normal distribution with
expectation T (cp) and some covariance matrix Σ = σ2 · id.
Then, if the errors are identically and independently distributed
and we consider a set of feature points p = {p1, . . . , pn} and
a set of correspondences q = {q1, . . . , qn}, we end up at the
conditional pdf of all feature point locations to be:

f(q|T,p) ∝ exp

(
− 1

2σ2

n∑
i=1

(T (cpi)− cqi)2
)
. (2)

In practice, the corresponding pi are approximated by the
nearest feature point to qi with the same feature class:

pi = arg min
p∈P,vp=vqi

d(T (cp), cqi). (3)

If the feature class is erroneous for some q, no correct
corresponding p will be found in the template. The best we
can do is to assume that the feature location is distributed
uniformly, conditional on a wrong corresponding p. For some
distance threshold rmax we define

di := min {d(T (cpi)− cqi), rmax} (4)

and adapt Equation (2) to

f(q|T,p) ∝ exp

(
− 1

2σ2

n∑
i=1

d2i

)
(5)

which corresponds to (truncated) normally distributed errors
if the correspondences are found within a radius rmax and
uniformly distributed errors if not (with the density equal to
that of the truncated Normal at its boundary). Although this is
an improper pdf, it can be used for calculating the importance
weights in sampling importance resampling [22].

Therefore, each particle’s transformation T is scored with
incoming feature points Q as follows. Each point qi of Q
is classified according to the class borders of the template,
and transformed to T−1(cqi). Then, the template model is
searched for the nearest feature point pi of the same feature
class and the distance di is saved. If no such point is found
within the search radius rmax, the distance is set to that radius
(di = rmax). When all distances di are calculated for the n
feature points, we determine

w(T ) = exp

(
− 1

2σ2

n∑
i=1

d2i

)
. (6)

Scoring Variants: There are two scoring variants: either
only the newly inserted feature points are used for Qi, denoted
SPFR, or all previously acquired points are used (Qi :=⋃
j≤i

Qj), denoted SMCR, which has a better convergence

behavior [2].
Optimization: A found pi with di ≤ rmax, according

to Equation (3), can be used as correspondence for qi. In
each weighting step, we thus get a set of correspondences
for each particle. This can be used for an ICP-iteration in
order to correct the corresponding pose particle. If we use
such an optimization step, we denote the method SMCRO



Fig. 3. The test objects used for the experiments: bunny, Zeus bust, and
wooden chevron (from left to right).

in the remainder. Note that we use this optimization only in
every tenth update step of the particle filter in order to avoid
overfitting, especially for the first updates.

VII. EXPERIMENTS AND EVALUATION

In this section, experiments with real data are demonstrated.
First, hardware, experimental setup, and parameters are de-
scribed. Then, the influence of a priori knowledge for the pose
estimation is investigated, and the performance of different
streaming registration variants and ICP are compared. Finally,
the accuracy of autonomous modeling with integrated SMCR
and repositioning is compared with the previous method.

A. System Setup

Here, a 6 DOF industrial robot, the Kuka KR16-2, with
mounted laser striper is utilized (see Fig. 1). For the KR16-
2, the absolute positioning error is in millimeter range. The
SMCR and autonomous modeling are run on an external
computer with Quad Xeon W3520 2.67 GHz CPUs and 6 GB
RAM as the Kuka Robot Control 4 (KRC4) is not designed
for additional modules. The communication between KRC4
and the external PC is performed at 250 Hz using the Kuka
Robot Sensor Interface. The laser striper is a Micro-Epsilon
ScanControl 2700-100 which obtains a stripe of 640 depth
points in a range of 0.3 m to 0.6 m at 50 Hz with a maximum
measuring error of approx. 0.5 mm. During laser scans, the
robot pose and range data are synchronized.

The experiments were performed for three objects: a bunny,
a Zeus bust, and a wooden chevron (see Fig. 3). These
represent the application domains household, manufacturing
and cultural heritage. The approximate height of the bunny
and chevron is 18 cm, and of the bust 22 cm. The objects are
placed onto a pedestal as can be seen in Fig. 1.

B. Parameters and Evaluation Criteria

As stated in Sect. IV, some parameters are adapted (by a
factor of 0.8) in the iterative process. If not stated otherwise,
we use a maximum number of 200 and a minimum number
of 20 particles. The maximum scoring radius rmax starts with
40 mm and is bounded from below by 4 mm. Neighborhood-
sampling of translations starts with a radius of 10 mm and is
bounded by 1 mm.

TABLE I
SR, mt, AND mR FOR DIFFERENT INITIAL A PRIORI KNOWLEDGE. FIFTH

ROW: ONLY ROTATIONS ABOUT THE Z-AXIS ARE SAMPLED.
V(t) rρ sr mt/mR

0.48 dm3 10◦ 69 % 3.8/4.6
0.48 dm3 20◦ 71 % 3.9/4.0
0.48 dm3 45◦ 68 % 4.0/4.2
0.48 dm3 90◦ 74 % 3.2/4.0
0.48 dm3 90◦ (z) 93 % 0.7/1.0
1.22 dm3 10◦ 69 % 4.1/4.4
1.22 dm3 20◦ 64 % 4.3/5.9
1.20 dm3 45◦ 63 % 4.0/5.5
1.22 dm3 90◦ 71 % 3.5/4.1
4.00 dm3 45◦ 48 % 7.2/8.1

The evaluations are done with respect to the median of
rotational and translational error, denoted mt and mR, respec-
tively, and a success rate. A success is defined, if the final
error in translation and rotation is below 8 mm and 8◦. The
ratio between successful runs and total runs is called success
rate and denoted sr. The given bounds proved necessary for
the ICP to converge [2].

C. Influence of a priori Knowledge

The a priori knowledge about the searched transformation
is explained in terms of a cuboid for the translational part. In
the following, the volume of that cuboid is denoted V (t). The
rotational part is expressed by a mean rotation and a maximum
rotational difference from it. In some cases the rotation axis
can be assumed to be fixed, for example if it is known, that the
object has been turned about the z-axis. The maximal deviation
from the mean rotations is denoted rρ.

In order to investigate the influence of the a priori knowl-
edge, represented by V (t) and rρ, one scan of the bunny
has been registered to a known ground truth surface model,
acquired with a commercial scanning system. The results
are depicted in Tab. I. The initial sampling radius for the
rotation seems to have little effect on the success rate and on
mt/mR. Apparently, the volume of the cuboid for the initial
translation has more influence. This confirms the suitability
in autonomous 3D modeling, as it often yields good a priori
knowledge about the position of the object, whereas the
rotation cannot be estimated beforehand.

D. ICP vs. SMCR with partially overlapping submodels

In these experiments, we tried to register two partially
overlapping scans of the Zeus bust to each other, which
poses a higher challenge than registering a submodel to a
complete ground truth model with few noise. For this pur-
pose, we recorded 20 different pairs of overlapping scans
(see Fig. 4 for an example). To one of the scans in each
pair we applied 10 different random transformations with
translational and rotational variations. The translation vectors
had a maximal norm of 20 mm and the rotations a maximum
rotation angle of 45◦, 90◦, 120◦ or 180◦ around the z-axis.
The a priori knowledge in SMCR was set accordingly, denoted
with Z45X,Z90X,Z120X,Z180X respectively in Tab. II. Z
stands for the object Zeus and X presents the different sam-
pling methods described below. After the SMCR, we applied



Fig. 4. Typical scans of Zeus bust (aligned on the right)

TABLE II
mt , mR AND t FOR SMCR WITH (G)AUSSIAN/(U )NIFORM SAMPLING

AND WITH (O)PTIMIZATION STEP AND ICP FOR 200 TESTS OF PARTIALLY
OVERLAPPING SCANS OF THE ZEUS BUST AND 45◦ , 90◦ , 120◦ AND 180◦

ROTATIONS.
SMCR SMCR-ICP ICP

data mt/mR sr mt/mR sr t mt/mR sr t
Z45G 4.8 / 8.3 0.47 1.6 / 2.6 0.69 1.8
Z45U 5.1 / 6.4 0.5 1.8 / 2.9 0.66 1.8 2.0 / 2.7 0.64 6.7
Z45O 3.5 / 6.3 0.51 1.3 / 3.1 0.71 1.8
Z90G 5.8 / 7.0 0.48 1.8 / 3.1 0.64 3.1
Z90U 5.3 / 6.8 0.49 1.8 / 2.9 0.65 2.9 9.2 / 31.2 0.32 6.7
Z90O 3.7 / 7.1 0.49 1.3 / 2.9 0.71 2.9
Z120G 5.9 / 9.3 0.41 1.8 / 3.1 0.65 2.0
Z120U 5.4 / 8.0 0.45 1.8 / 2.9 0.64 2.0 12.4 / 50.9 0.27 5.1
Z120O 3.9 / 9.7 0.48 1.5 / 3.1 0.65 2.1
Z180G 7.3 / 11.9 0.37 2.5 / 3.4 0.60 2.1
Z180U 6.7 / 11.9 0.40 2.6 / 3.4 0.6 2.1 15.7 / 87.8 0.13 3.9
Z180O 5.9 / 12.2 0.42 2.2 / 3.4 0.61 2.1

units mm / deg % mm / deg % s mm / deg % s

an ICP with a small search radius (20 mm) and few iterations
for fine fitting, denoted SMCR-ICP. We compared the results
to a pure ICP with a bigger search radius (50 mm), simply
denoted ICP. For each rotation-range we tested the original
(U )niform neighborhood sampling, the proposed (G)aussian
sampling and the Gaussian sampling with (O)ptimization step,
denoted by a capital U , G or O in the data names, respectively.
For instance, Z90N denotes the case of uniformly sampled
rotations with a maximal rotation angle of 90◦ for the Zeus
bust. In the described tests, Gaussian sampling increases both
accuracy and reliability. The optimization increases accuracy
in translation and the success rate. The rotational accuracy
is not increased. The effects appear in all rotation ranges.
Concerning the performance of pure ICP, it becomes clear,
that with increasing rotation range, results get too bad, both
in accuracy and reliability. SMCR-ICP outperforms pure ICP
clearly, both in reliability and accuracy.

Success rates of pure SMCR appear to be pretty small for
two reasons: On the one hand, we did not tune the parameters
for the data sets. On the other hand, the partially overlapping
scans are not as easy to register as it seems at first glance.
Very similar features are spread over the object and the most
descriptive features are not easy to scan. As the scan paths
are chosen arbitrarily, they appear randomly in the data sets.
Preceding papers [14], [2] showed that other state-of-the-art
methods performed even worse for this kind of data, even
with a registration to a complete high precision ground truth

TABLE III
mt , mR AND t FOR SMCR WITH (G)AUSSIAN/(U )NIFORM SAMPLING

AND WITH (O)PTIMIZATION STEP AND ICP FOR THE (Z)EUS BUST, THE
(B)UNNY AND THE (C)HEVRON AND 45◦ , 90◦ , 120◦ AND 180◦

ROTATIONS.
SMCR SMCR-ICP ICP

data mt/mR sr mt/mR sr t mt/mR sr t
Z45G 7.9 / 4.5 0.5 0.4 / 0.4 0.9 1.8
Z45U 3.1 / 2.0 0.6 0.4 / 0.4 0.9 1.6 0.6 / 0.8 0.8 12.5
Z45O 4.0 / 3.0 0.6 0.4 / 0.5 0.9 1.8
Z90G 15.0 / 15.2 0.3 0.7 / 0.5 0.8 2.0
Z90U 12.3 / 9.1 0.4 0.4 / 0.4 0.8 1.8 4.7 / 38.3 0.3 9.7
Z90O 7.0 / 5.3 0.6 0.4 / 0.4 0.8 1.6
Z120G 21.6 / 21.1 0.2 0.7 / 0.6 0.7 2.3
Z120U 19.2 / 19.0 0.3 0.9 / 0.6 0.7 2.0 6.5 / 25.2 0.4 10.6
Z120O 16.2 / 12.7 0.4 0.9 / 0.6 0.7 2.0
Z180G 23.9 / 28.1 0.2 0.8 / 0.6 0.7 2.0
Z180U 18.6 / 19.1 0.4 0.5 / 0.5 0.7 1.9 16.8 / 51.8 0.3 10.3
Z180O 12.2 / 13.9 0.4 0.9 / 0.6 0.6 1.7
B45G 7.8 / 8.0 0.4 0.7 / 0.2 1.0 0.9
B45U 6.5 / 7.8 0.4 0.7 / 0.2 0.9 0.9 0.6 / 0.2 1.0 2.6
B45O 4.7 / 5.8 0.6 0.7 / 0.2 0.9 0.9
B90G 7.4 / 8.9 0.3 0.7 / 0.2 0.9 1.0
B90U 6.7 / 8.5 0.4 0.7 / 0.3 0.9 0.9 0.7 / 0.3 0.9 2.9
B90O 4.9 / 6.2 0.6 0.7 / 0.2 0.9 0.9
B120G 9.1 / 13.1 0.2 0.7 / 0.2 0.9 1.0
B120U 7.2 / 8.5 0.4 0.7 / 0.3 0.9 1.0 0.7 / 0.4 0.7 3.0
B120O 5.7 / 6.3 0.5 0.7 / 0.2 0.9 1.0
B180G 8.9 / 10.4 0.2 0.7 / 0.2 0.9 1.0
B180U 7.4 / 9.1 0.3 0.7 / 0.2 0.9 1.0 11.1 / 60.7 0.4 3.1
B180O 7.3 / 7.6 0.4 0.7 / 0.2 0.9 0.9
C45G 13.0 / 0.8 0.3 6.0 / 1.0 0.6 2.8
C45U 12.3 / 0.7 0.4 6.1 / 1.0 0.6 2.5 4.9 / 0.7 0.9 11.3
C45O 13.3 / 1.3 0.4 6.2 / 0.9 0.6 2.7
C90G 18.7 / 0.8 0.3 11.1 / 1.3 0.5 2.6
C90U 12.6 / 0.8 0.3 6.4 / 1.1 0.6 2.6 5.0 / 0.9 0.9 12.7
C90O 15.8 / 1.3 0.3 9.5 / 1.2 0.5 2.5
C120G 14.4 / 1.3 0.3 6.3 / 1.1 0.6 2.6
C120U 15.2 / 1.1 0.3 6.6 / 1.2 0.6 2.4 4.8 / 0.8 0.8 11.1
C120O 18.0 / 2.2 0.3 11.1 / 1.3 0.5 2.3
C180G 19.9 / 2.5 0.2 11.9 / 1.5 0.5 2.6
C180U 17.5 / 3.1 0.2 11.4 / 1.4 0.5 2.3 14.1 / 26.9 0.5 11.2
C180O 19.0 / 2.3 0.2 16.7 / 2.0 0.4 2.3

units mm / deg % mm / deg % s mm / deg % s

surface model.

E. ICP vs. SMCR in Autonomous Modeling

In this section, we show experiments concerning the later
use in autonomous 3D modeling. Therefore, we first au-
tonomously acquired a more or less complete model of the
objects (without bottom part). Then, we repositioned them on
the scanning pedestal and acquired 10 different single scans
manually. Each of these manual scans was transformed by
ten different random transformations. In total, resulting in 100
different test scans for each object which were registered to
the corresponding previously acquired complete model.

Each ground truth estimation was calculated by utilizing
the global method from [14], followed by an ICP working on
all acquired raw points of the ten subscans. Correctness was
assured by visual inspection of a human operator.

1) Goodness of Fit and Success Rates: Tab. III shows the
results of the experiments concerning rotational and trans-
lational error as well as the success rate. In contrast to
the experiments in the previous section, the registration was
performed based on the 3D model and additionally for the
bunny (denoted by a capital B) and the chevron (C) objects.
The results of the bunny and the Zeus bust clearly show
that the proposed optimization step yield a higher accuracy
and success rate. SMCR itself performs good, but accuracy
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Fig. 5. Exemplary error convergence of SPFR (red), SMCR (green) and
SMCRO (blue) for 100 runs on a bunny (top) and a Zeus (bottom) scan.
Left: translational error in mm. Right: rotational error in degree. X-axis: step
number. The black horizontal line represents the success threshold of 8 degrees
or 8 mm.

is not comparable to the ICP (if both are successful). In
contrast, the proposed Gaussian sampling does not lead to
higher accuracy or success rates. Moreover, the results partly
confirm the experiments on the influence of a priori knowledge
(see Sect. VII-C) in some cases. The accuracy as well as the
success rate is not much influenced in the example of the
bunny. The opposite is true for the Zeus bust.

The pure ICP is working surprisingly good, especially with
the bunny, though it gets unusable for rotation angles over 45◦

for the bust. SMCR-ICP works extremely good, even in cases
when SMCR yields problematic results.

Concerning the chevron, the rotation is estimated pretty
good by all methods and the translation very bad. An ex-
planation could be that on the one hand the chevron has big
flat surface areas which allow a robust estimation of rotations.
On the other hand this seems to allow the translation to slide
along these areas, especially vertically along the triangular
part. Additionally, there are a lot of spurious measurements,
including the pedestal the object was placed on. Consequently,
we excluded the Chevron from the modeling experiments in
Sect. VII-F, as the scan data errors were too large to robustly
acquire complete and accurate models.

2) Convergence Behavior: In this section, we show the
convergence behavior of the proposed SMCRO, in comparison
to SMCR and SPFR. Therefore, we repeated estimations for
one scan path of the bunny and the Zeus bust 100 times
and calculated the median translational and rotational errors
in each update step, as depicted in Fig. 5. Clearly, SMCRO
yields a faster convergence than SMCR and SPFR. Note
that the optimization step is only performed in every tenth
update, i.e. in update step 9 and 19. At these update steps, the
error medians visibly drop down. However, the optimization
needs to be carried out with caution as for too early or too
many optimization steps the method may tend to converge to
the wrong transformation, especially for objects with many
symmetries.

TABLE IV
COMPARISON OF MODELING RESULTS WITHOUT AND WITH

REPOSITIONING USING SMCR (AVERAGE OF 10 RUNS).
Object Bunny Zeus

Repositioning No Yes No Yes
Completeness 91.7 % 99.7 % 88.0 % 97.3 %

CRMS 1.56mm 1.37mm 1.56mm 1.46mm

Fig. 6. 3D models of bunny and Zeus object acquired during the autonomous
object modeling.

F. Autonomous Modeling with SMCR

Here, we compare the autonomous modeling results without
repositioning the object as in [1] with the integration of the
SMCR and repositioning of the object as presented in Fig. 2.
Therefore, the complete object modeling is performed 10 times
for the bunny and Zeus object.

After the desired quality for the visible object parts has
been reached, the object is manually placed onto its side. For
the 10 runs, different arbitrary initial scans and variations in
the repositioning object orientation are chosen. The average
model completeness and coordinate root mean square (CRMS)
error when comparing with ground truth models are given in
Tab. IV. The completeness is evaluated by comparing a ground
truth model with the generated triangle mesh. The CRMS gives
a measure for the model error which is influenced by the
fact that details in the object are not modeled perfectly as
can be seen in Fig. 6. The error is mainly a result of sensor
noise, sensor calibration and robot accuracy which for the
Kuka KR16-2 is in millimeter range. The completeness after
repositioning is larger as the bottom parts have been filled.
Fig. 7 shows exemplary for the Zeus bust how the bottom part
is filled accurately with no major deviations due to the different
object positions. The completeness still does not reach 100 %
which is due to the NBS planning which aborts based on a
coverage estimation utilizing the current surface model which
sometimes is noisy. However, these are just small holes which
can easily be filled by a postprocessing technique. For the
bunny, 100 % was reached for some runs whereas for the Zeus
bust a small part in the chin area below the beard could never
be filled due to sensor restrictions as this area is very narrow.
The CRMS shows that due to object repositioning and SMCR,
the model error does not increase. The CRMS is even slightly



Fig. 7. 3D model of Zeus bust from bottom view without (left) and with
repositioning the object and performing SMCR (right).

lower when the object is repositioned. One reason for this
is probably due to the fact that along borders in the mesh
larger errors occur due to incorrect matching (see Fig. 7 left).
Further, the objects do not have many details on the bottom
and thus the error is lower which influences the average error
positively.

The modeling results show that by using SMCR almost
complete 3D models including object parts which are not
visible in the initial pose can be created. Further, the average
model error when comparing to ground truth is not increased
by the object repositioning and SMCR which shows that the
pose estimation was performed accurately for all runs.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a streaming pose estimation method has been
optimized and successfully integrated into an autonomous
3D modeling approach. The influence of a priori knowledge
for pose estimation has been examined and the registration
performance has been compared to the previous method and
to ICP. We proved our concept of autonomous 3D modeling to
work robustly and obtained complete high quality 3D surface
models with real data experiments. The results show that the
streaming pose estimation method can be successfully applied
to fully model unknown objects autonomously.

Future work will focus on autonomous feedback of con-
vergence or failure, in order to enable scan interruption or
rescanning. If convergence is reported, the processing pipeline
could also immediately pass incoming data to the streaming
modeling modules, such that the scan does not need be
interrupted, but can directly be used for modeling. Further,
we want to apply the method during modeling of scenes
containing several objects as presented in [23] where objects
are occluded by others resulting in template models with less
data. Moreover, we want to apply the method in mobile robot
localization and modeling of larger indoor areas of buildings.
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