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ABSTRACT: The trans—cis isomerization makes azobenzene (AB) a robust molecular
switch. Once adsorbed to a metal, however, the switching is inefficient or absent due to
rapid excited-state quenching or loss of the trans—cis bistability. We find that tris-[4-
(phenylazo)-phenyl]-amine is a rather efficient switch on Ag(111). Using scanning
tunneling and atomic force microscopy at submolecular resolution along with density
functional theory calculations, we show that the switching process is no trans—cis
isomerization but rather a reorientation of the N—N bond of an AB unit. It proceeds
through a twisting motion of the azo-bridge that leads to a lateral shift of a phenyl ring.
Thus, the role of the Ag substrate is ambivalent. While it suppresses the original bistability
of the azobenzene units, it creates a new one by inducing a barrier for the rotation of the

N—N bond.

he trans—cis isomerization of azobenzene (AB) and its

derivatives has been investigated in detail, partially
because AB may be modified with various substituents and
still exhibits robust light-driven switching."” Unfortunately, this
robustness does not extend to the adsorption on metal
substrates. Drastically reduced efficiencies of light-induced
switching of AB when adsorbed to Au have been reported and
attributed to rapid excited-state quenching.’™® Dispersion-
corrected density functional theory (DFT) calculations have
recently identified an additional factor that may be involved in
reducing efficiency.” Once adsorbed on Au(111) or Ag(111),
the barrier that prevents the cis isomer to return to the trans
ground state via a rotation is drastically reduced. This effect,
which may effectively eliminate trans—cis bistability, was
predicted to be particularly significant on Ag(111) and more
reactive substrates. An increase in the rate of thermal cis—trans
isomerization of azobenzene-containing molecules has been
reported from gold nanoparticles.'"'

Using a scanning tunneling microscope (STM), extreme
current densities may be achieved through a single
molecule.* ™3 Using this approach, electron-induced switching
of AB derivatives on Au remains possible, although efficiencies
scatter widely.*'"*° Despite expectations for azobenzene
(AB)-containing molecules on Ag(111),” we find that switching
of tris-[4-(phenylazo)-phenyl]-amine (TPAPA) on Ag(111) is
teasible.

TPAPA comprises three AB units connected via an amino
linker in a 3-fold symmetric fashion.”' ™ We demonstrate that
each of the AB subunits may be reversibly and selectively
switched between two states by injecting electrons. Switching
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may also be triggered by passing current through the central
amino nitrogen atom. From scanning tunneling spectroscopy
and atomic force microscopy (AFM) along with extensive
density functional theory (DFT) calculations, we find that the
switching is not due to a trans—cis isomerization. Rather, it
involves a reorientation of the N—N bond of AB, which we
suggest to proceed through a twisting motion of the azo-bridge
that leads to a shift of a phenyl ring. The AB subunit is
transformed between two chiral configurations that are distinct
and metastable on the Ag(111) surface.

Beyond double-bond isomerization a variety of electron-
induced reactions have been observed from adsorbed
molecules, which encompass ring closing/opening,”* charge
transfer,”>”° conformational isomerization,”” >’ changes of
spin-state,””>* and ligand transfer.”” Recent reviews may be
found in refs 34—36.

The Ag(111) substrate and etched W tips were cleaned by
Ar” sputtering and annealing. The tips were further coated with
silver by indenting them into the substrate. TPAPA molecules
in a Ta crucible were repeatedly degassed before sublimating
them at ~150 °C onto clean Ag(111) surfaces kept at ambient
temperature in ultra high vachum (UHV). The experiments
were then performed with a STM and an AFM/STM operated
in UHV at ~5 K. Differential conductance (dI/dV) spectra
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were measured with a lock-in amplifier by superimposing a
modulation (5—10 mV,,,,, 7 kHz) onto the sample voltage V.

Figure la shows the structure of TPAPA on Ag(111), as
predicted using dispersion-corrected DFT calculations (PBE

Figure 1. (a) Top view of the minimum energy structure of TPAPA
on Ag(111) from DFT calculations (substrate not shown, extended
models displayed in the Supporting Information). Light and dark blue
indicate the outer and inner phenyl rings, respectively. The shading of
the inner rings shows their ~30° anticlockwise out-of-plane twist. The
outer phenyl groups are located on the left-hand side of the plane
defined by the azobenzene (AB) molecular axis and the surface
normal. This handedness of the adsorbed AB subunits is denoted S.
Switching of an AB subunit leads to modified structure (gray). It
involves a lateral shift (arrow) of the outer phenyl ring and a twirling
motion of the N—N bond (curved arrow). (b) STM topograph (1.0'V,
100 pA) of an island of TPAPA molecules on Ag(111). Scaled models
are overlaid. Double-headed arrows indicate the compact directions of
the Ag(111) surface.

+vdWB7%% using the CASTEP® package). We denote the
phenyl groups connected via the amino nitrogen as inner (dark
blue in Figure 1a) and the other ones as outer groups (light
blue). Steric repulsion between the hydrogen atoms of the
inner phenyls induces a propeller-like twist of the AB ligands
from the molecular plane of ~40° in gas phase and ~30° on
Ag(lll).zz’23 Viewed from the center of an adsorbed molecule,
the twist may be clockwise or anticlockwise, leading to a
chirality of the molecule. The energetically most favorable

configuration is thereby an all-trans form, with the outer phenyl
rings lying flat on the surface to maximize dispersion interaction
(for more details, see the Supporting Information).

An STM topograph of a part of a TPAPA island on Ag(111)
is shown in Figure 1b. Each molecule exhibits three main
protrusions (~220 pm apparent height with respect to the Ag
substrate) near its center, which we attribute to the inner
phenyl rings. Models are overlaid over some molecules to show
their orientations, which are similar to TPAPA on Au(111).”
In the interior of the island it is a priori not clear which set of
protrusions belongs to a given molecule. The molecules at
island edges, however, provide a clear indication of the position
of the outer phenyl rings. The outer phenyls lead to three lower
protrusions of ~170 pm apparent height. The height at the
approximate positions of the azo groups between the phenyl
rings is lower by ~20 pm. This distinct depression at the
position of the N—N azo-bridge is in qualitative agreement with
previous STM data from AB on metal substrates.”*'”*%*"%
The average intermolecular distance extracted from STM
images is (1.7 + 0.2) nm, and the molecular lattice is rotated by
(8 + 2)° with respect to the compact directions of Ag(111).
We note in passing that most islands observed were almost
enantiopure.

Next, switching of TPAPA in islands was investigated.
Placing the tip over an azo bridge (dot in Figure 2a) and
increasing the sample voltage beyond ~1.1 V leads to a clear
change of the addressed AB subunit, as shown in Figure 2b.
Currents of ~1.1 nA were used to obtain a convenient rate of
switching events. By successively repeating this procedure all
three AB units were switched (Figure 2¢,d). To highlight the
changes in the topographs, Figure 2e—g displays difference
images. They reveal little change at the molecular center and
the inner phenyl rings but a drastic modification of the area of
the azo bridges. Subsequently, the changes were reversed
(Figure 2h—m).

Topographic changes of the outer phenyl rings are most
obvious at island edges. Figure 3 shows (ab) models of
molecules at an island edge (c,d) before and (ef) after

Figure 2. (a—d,h—j) Constant current topographs (1.0 V, 100 pA) from a TPAPA island. Dots indicates points of current injection for switching (V'
=13V, I=1.1nA). Arrows indicate switched AB subunits. (a) Initially the molecule at the center is in an all-trans state. (b) New state induced by
passing current through the azo bridge of the AB subunit on the lower left. (¢, d) New states obtained through current-induced of the remaining AB
subunits. (h—j) Stepwise reversal of the switching until the original state is reached. (e—g, k—m) Difference images obtained by subtracting image (a)
from (b—d) and (h—j). Scaled models of the molecule in panel a are overlaid. The largest changes in the images are localized to the positions of the

azo bridges.
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Figure 3. Switching of molecules at the edges of two islands with
different molecular chiralities. Viewed from the center of a molecule,
the inner phenyl rings are twisted by ~30° (a) clockwise and (b)
anticlockwise. (a,b) Models show trans-configurations of one AB unit.
Circles indicate the positions of protrusions observed in constant
current topographs. Dots mark the N center of molecules. (c,d)
Topographs (V = 1.0 V, I = 100 pA) of TPAPA at island edges
corresponding to the models in panels a and b. (e, f) Topographs
obtained after switching of the AB units at the island rim. (gh)
Difference images e—c and f—d.

switching. The corresponding changes are displayed in Figures
3gh. The data confirm the apparent height change at the azo
bridge and also reveal a lateral motion of the maximum due to
the outer phenyl ring by ~1.5 A. Within islands, the phenyl
rings are surrounded by the tallest features of neighboring
molecules. This renders a quantitative determination of the
lateral shift from constant-current images more difficult. At first
glance, the shift actually appears to be smaller; however, when
the superposition of the currents to the relevant phenyl ring
and the neighbor is taken into account, a consistent shift is
found (see the Supporting Information).

Switching may also be induced by passing current through
the center of a TPAPA molecule. Time series of the current
(Figure 4) reveal abrupt current fluctuations between four
levels, which (in a sequence of increasing currents) correspond

U T T T T T T T

Current (nA)

1 1
0.8 1.0

Time (s)

Figure 4. After placing the tip over the center of a TPAPA molecule,
the current feedback was disabled and time series of the current were
measured at selected sample voltages. Abrupt current fluctuations
occurred. The example shown was recorded at V = 1.5 V and reveals
four distinct current levels indicated by dashed lines. The lowest level
is observed on all-trans TPAPA. Increasing levels reflect 1, 2, and 3
switched azobenzene subunits.
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to the pristine molecule and the states with 1, 2, or 3 switched
AB units. The data demonstrate that the switching is reversible;
however, because current is injected at the center of the
TPAPA molecule, there is no preference for a specific AB
subunit. Selectivity for a specific AB subunit is achieved by
injection into a N—N bond, as demonstrated in Figure 2.

Switching occurs at both bias polarities with yields varying
from Y ~107" (at V= 0.8 and —1.8 V) to Y ~ 107! at elevated
currents and voltages (see SI for details). At positive sample
voltage, the switching rate approximately follows a power law &
%, which may indicate a two-electron process.

The most obvious switching process to consider for AB and
its derivatives is trans—cis isomerization; however, we exclude
this possibility in the present case for two reasons. First, trans—
cis isomerization significantly modifies the electronic states of
AB in the gas phase and also on surfaces.”®*”*>*' dI/dV
spectra of pristine and switched TPAPA measured at
characteristic positions (Figure S), however, reveal merely

® unswitched

12
1 x switched

inner ring

dI/dVv (nS)

azo bridge

outer ring
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Figure S. Differential conductance (dI/dV) spectra acquired above the
inner and outer phenyl rings and the azo bridge of an AB subunit of
TPAPA. Data were recorded from a pristine all-trans molecules and a
switched isomer. Current feedback was opened at V= —0.1 Vand I =
500 pA. The spectra are vertically offset by 0, 2, and 4 nS for clarity.
The data indicate positive and negative ion resonances that vary little
between the isomers.

minor differences between the switched and pristine states.
Second, our DFT calculations revealed a number of stable cis
states (three shown in the SI, Figure S6), all of which involve
significant geometrical and electronic changes compared with
the trans state. As detailed later, none of these changes are
consistent with our experimental data, which suggests a much
more subtle structural and electronic change upon switching.

Figure 6a shows a constant-current STM image of molecules
with varying numbers of switched AB subunits. Because
constant-current STM images may be affected by electronic
effects, we performed additional measurements combining
STM and noncontact AFM at submolecular resolution. Figure
6b,c displays AFM frequency shift data and a current map
measured at constant tip height above the substrate. In the
stable cis conformations identified via DFT (see SI), the outer
phenyl rings are either strongly laterally displaced or switched
to a tilted or almost vertical arrangement on the surface. These
geometries are incompatible with the low contrast of the outer
phenyl rings in the AFM data of Figure 6b. Rather, these data
indicate that the inner rings protrude farthest from the surface,
whereas the outer ones appear to lie rather flat. On the basis of
the current map of Figure 6¢, where the outer rings, the inner
rings, and the central amino linker form a straight line, this
scenario can be excluded.
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Figure 6. (a) Constant—current topograph (1 V, 100 pA). Molecules
labeled 0 to III exhibit zero, one, two, and three switched AB subunits.
(b) AFM frequency shift data from the same area measured at
constant tip height. (Amplitude of cantilever oscillation 1 A.) The
positions of the outer rings are marked with dashed circles. While a
significant frequency shift is found above inner phenyl rings the outer
rings and the azo bridge cause hardly any contrast. (c) Current map
recorded at constant tip height from the same area.

Another possible switching mechanism is a lateral shift of an
outer phenyl ring. The outer phenyl rings can be situated either
to the left or to the right of the plane defined by the
azobenzene molecular axis and the surface normal. This reflects
a handedness (denoted S and R, respectively) of the adsorbed
AB subunits. DFT calculations yield metastable surface
geometries for R and S conformers of an AB subunit of
TPAPA. When the inner phenyl rings are twisted anticlockwise,
the S configuration is minimally more stable. This higher
stability is associated with a change in height of almost 0.6 A of
the N atom in the azo-bridge, which is bound to the inner
phenyl ring. The corresponding isomerization reaction requires
a torsional motion of the nitrogen atoms in the azo-bridge. We
propose that this rearrangement involves a twisting motion of
the central nitrogen atoms around each other coupled to a
lateral shift of the outer phenyl ring rather than a rotation that
lifts the outer phenyl ring out of the surface plane. The
calculated energy barrier height for this process is 0.47 eV. This
value is consistent with the experiments where significant
switching rates were observed at bias voltages of 0.8 V and
above.

An out-of-plane rotation of a single phenyl ring has been
reported from 3,3’-dicyanobenzene (dimeta-cyanobenzene,
DMC) on Au(111).”” We do not favor this mechanism in
the present case of TPAPA on Ag(111). According to our DFT
+vdW™* calculations it exhibits a significantly higher barrier
due to the additional energy penalty of losing the dispersion
interactions between phenyl ring and surface.

The localized change in apparent height and tunneling
conductance as observed in the STM can therefore be
understood as a conformational switching from an S to an R
state and a corresponding uplifting of the central azo-bridge at
almost minimal lateral displacement of the phenyl groups.
Much in accordance with the measured dI/dV curves, this
conformational switching occurs with minimal modification of
the energetic position of the molecular orbitals with respect to
the Fermi level.

In summary, the three azobenzene units of the compound
TPAPA on Ag(111) may each reversibly be switched between
two distinct states. Switching is triggered by passing current
through the center of a molecule or, to achieve selectivity,
through the azo bridges. The efficiency of the process is
comparable to molecular switching of AB derivatives that were
decoupled from a Au substrate by spacer groups;”'**’ however,
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the switching does not involve the trans and cis isomers of AB
that were predicted to lack of bistability on Ag(111). It rather
involves a lateral motion of a phenyl ring and a twisting motion
of the azo bridges. Thus, the role of the Ag substrate is
ambivalent. While it suppresses the original bistability of
azobenzene it creates a new switching function that is based on
surface-induced chirality.
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