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Train localization is safety-critical and therefore the approach requires a continuous availability and a track-selective accuracy.
A probabilistic approach is followed up in order to cope with multiple sensors, measurement errors, imprecise information, and
hidden variables as the topological position within the track network.The nonlinear estimation of the train localization posterior is
addressed with a novel Rao-Blackwellized particle filter (RBPF) approach. There, embedded Kalman filters estimate certain linear
state variables while the particle distribution can cope with the nonlinear cases of parallel tracks and switch scenarios. The train
localization algorithm is further based on a trackmap andmeasurements from aGlobal Navigation Satellite System (GNSS) receiver
and an inertial measurement unit (IMU). The GNSS integration is loosely coupled and the IMU integration is achieved without
the common strapdown approach and suitable for low-cost IMUs.The implementation is evaluated with real measurements from a
regional train at regular passenger service over 230 km of tracks with 107 split switches and parallel track scenarios of 58.5 km.The
approach is analyzed with labeled data by means of ground truth of the traveled switch way. Track selectivity results reach 99.3%
over parallel track scenarios and 97.2% of correctly resolved switch ways.

1. Introduction

Train localization inside a railway network is necessary for
a collision-free operation and mainly addressed by central-
ized traffic control, signaling, and sensors in the railway
infrastructure. Onboard train localization in combination
with communications enables distributed and train centric
assistant systems such as collision avoidance, coupling, and
autonomous train operation. This localization system con-
cept focuses on exclusive onboard computation and sensors
without any additional railway infrastructure.

Future railway systems such as a train centric collision
avoidance system [1, 2] require a localization system with
continuous availability and a track-selective accuracy. Track
selectivity is the ability to identify the correct track, especially
in the critical, parallel track scenario after a ride on a divisive
switch way.The track selectivity is the technical challenge and
also the major requirement of train localization.

The goal of train localization is to determine the position
of the train in the track network by topological coordinates,
which are hidden variables and cannot be measured directly.

Single sensor systems, such as global navigation satellite
systems (GNSS), are very beneficial for localization, but
the measurement accuracy and lack of availability in parts
of the railway environment do not fulfill the safety-critical
requirements.

Research on train localization with onboard sensors
focuses on the following question: how is a train-borne,
safety-critical, and onboard localization system designed
and analyzed in terms of data processing with continuous
availability and a track-selective accuracy? The approach
should copewith hidden variables as the topological position,
imprecise information ofmeasurements frommultiple sensor
sources, outages, statistical noise, and systematic measure-
ment errors.

This paper presents a train localization approach by a
Rao-Blackwellized particle filter (RBPF). Figure 1 shows the
setup with onboard sensor data of an inertial measurement
unit (IMU) and a GNSS receiver. The RBPF estimates the
linear state variables of the one-dimensional train transition
with Kalman filters within each particle of a particle filter.
Furthermore, a novel empirical evaluation methodology
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Figure 1: Bayesian train localization setup with GNSS, IMU, and a track map.

is defined for track selectivity which is not specific to a
certain train localization approach. This paper is considered
as a follow-up of the theoretic probabilistic approach with
a particle filter [3–5] using satellite range measurements.
The novel parts are the extension of the particle filter for
train localization with a Rao-Blackwellization as well as an
evaluation framework for track selectivity. The RBPF and
a reference map-match approach are evaluated in terms of
track-selective accuracy with real train data of a regional
train.

The outline of this paper starts with a related work review,
a general information for a map-based train localization in
Section 3, and the description of the used sensors in Section 4.
Section 5 contains the derivation of the Rao-Blackwellization
and the RBPF implementation is given in Section 6. The
track-selective evaluation (Section 7) evaluates the RBPF
approach with data from train runs (Section 8). Sections 9
and 10 show the results and the discussions on results.

2. Related Work

There aremultiple approaches of train localization in the liter-
ature with onboard sensors and a map. A selection of studies
are chosen, which focus on track selectivity or specific sensor
studies, which can identify the switch way. The different
approaches vary in sensor types or combinations, processing
methods, and evaluation scope and will be presented in these
categories.

Inertial sensors are often used in combination with an
integrated navigation system for GNSS position aiding, for
example, in [6, 7]. The yaw turn rate can also be used for
the switch way identification that has been used in [8, 9]
and analyzed in [10, 11]. Approaches with GNSS and IMU
are found in [7–9] and extensions with eddy current sensor
in [6, 12, 13]. The eddy current sensor, in principle a metal
detector for characteristic railway features, can be used for
a switch way detection, as speed or displacement sensor.
Sensors such as cameras [14, 15] or LIDAR [16, 17] can directly
identify the different switch ways and contribute to the track-
selective result. A study of a tightly coupled localization with
raw GNSS data and a track map was shown in [5, 18]. A
tightly coupled approach considers pseudorange, Doppler,
and phase measurements and has the advantage to process
location information even with less than four satellites in
view. However, a tightly coupled approach is typically more
complex to implement than a loosely coupled approach and
a user clock offset needs to be estimated additionally. The
processingmethods of each study are different and dependent

on the used sensors, filtering method, and algorithmic inte-
gration of the map. Saab proposed a train localization using
a map-matching technique with a correlation of the curva-
ture signature [19]. For the track selectivity, there are two
classes with map integration and estimation of importance:
a multiple hypothesis filter handles and maintains multiple
estimates on several tracks in the vicinity and is commonly
used [6, 9, 13, 17]. The particle filter uses usually a large
set of particles, which are location hypotheses on a map,
and handles the different track hypotheses by particles. The
particle filter with onboard sensors and a map was proposed
in [20]. Fouque and Bonnifait [18] defined a marginalized
particle filter with raw GNSS data for the identification of the
carriageway and along position of a road vehicle. Hensel et
al. [12] showed a particle filter approach for railways based on
just an eddy current sensor and a map.

Only few approaches evaluate data sets with statistics
about track selectivity: Lauer and Stein [13] used GNSS
and a velocity sensor and showed a gain in track-selective
accuracy and confidence between a simple map-match and a
proposed estimation algorithm. Hensel et al. [12] showed no
direct figures on switch way resolution but improved switch
detection (98.23%) and classification (99.64%) with an eddy
current sensor of 861 switches.This study focused on switches
as position input and classifications on merging and splitting
switch runs. Böhringer [6] evaluated an integrated navigation
system (GNSS, IMU) in combination with an eddy current
sensor for switch way identification. Even with a moderate
switch detection rate of 70%, the results received 99.78% of
track-selective accuracy.These results are considered as most
suitable for a comparison and are based on real train runs of
120 km with 113 switches.

3. Map-Based Railway Navigation

3.1. Topological Coordinates. The goal of train localization
is to estimate the train position in the track network by
topological coordinates as well as the train speed V. A unique
and discrete track ID (𝑖𝑑) identifies the track and the track
length variable 𝑠 is the one-dimensional position on that
track. Each track has an origin and a direction 𝑑𝑖𝑟 indicates
if a train is oriented with or against the track definition. The
topological coordinates are

𝑇
topo

= {𝑖𝑑, 𝑠, 𝑑𝑖𝑟} . (1)

Tracks are connected by switches, crossings, or diamond
switch crossings. A track 𝑖𝑑 is defined between connec-
tions with a unique ID; that is, it contains no switch or
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Table 1: Train directions.

Train-track frame
direction
𝑑𝑖𝑟

Train velocity
direction

𝑚 = sign (V)

Train-track frame
motion direction

sign ( ̇𝑠)

+ Forward (+) +

− Forward (+) −

+ Backward (−) −

− Backward (−) +

+ Stop (0) 0

− Stop (0) 0

crossing. This definition ensures that a track 𝑖𝑑 is always
one-dimensional and limited by the two endings of track
beginning and track end.

3.2. Coordinate Frames. The sensors measure in their specific
sensor frame. For further processing, these measurements
are converted in the train frame according to the mounting
parameters. The map and especially the geometry of the
tracks are expressed in the track frame. Any sample point of a
track contains a geographic position (WGS84) and the track
attitude angles are defined from a local frame in north, east,
and down (NED). Once angles or curvatures are used in the
map, there is an ambiguity about the direction at which the
track ending the origin is defined. Therefore, it is necessary
to define a start point and consequently a pointing direction
of the track. A train (train frame) can be placed in two
orientations on a track and can move forward or backwards.
Alternatively to V, the train speed can be expressed between
train and track frame by ̇𝑠. The absolute velocities of V and ̇𝑠

are the same. The sign of ̇𝑠 indicates either an increasing (+)
or decreasing (−) change of the position 𝑠 of the current track
and depends on the track definitions.

Throughout this approach, the map information of a
specific location is converted and processed in the train
frame. It should be noted that there is an alternative way to
convert all variables to the track frame. Table 1 shows the
conversions of the train direction variables: train-to-track
frame direction (𝑑𝑖𝑟), the motion direction of the train (𝑚),
and the direction of motion between train and track frame by
the sign of ̇𝑠. The motion direction 𝑚 depends on a forward
or backward velocity V regarding the train frame definition of
front and rear. It is possible to compute any of these directions
from the two others by Table 1. Direction 𝑑𝑖𝑟 keeps its value
during standstill. The motion direction 𝑚 remains the same
during a train run, while the sign of ̇𝑠 and 𝑑𝑖𝑟 can alternate
after a change of tracks during a train run.

3.3. Along Track and Cross Track. A suitable analysis for
topological localization performance is the approach by along
and cross track. Along track addresses the continuous 1D
localization on a track. Cross track focuses on discrete,
different tracks and track selectivity is the ability of a correct
cross track localization. Sensors can contribute to along and
cross localization with relative or absolute measurements
of displacement or track features. As shown in Figure 2,

Cross at switch
Absolute Absolute
along (s) cross (id)

Realtive
along (Δs)

(idleft, idright)

Figure 2: Along and cross track definitions.

measurements can contribute to train localization in four
different ways:

(i) relative along (Δ𝑠): odometry,

(ii) absolute along (𝑠): diverse along-track features,

(iii) cross at switch (𝑖𝑑): competing switch way track
features,

(iv) absolute cross (𝑖𝑑): diverse cross/parallel track fea-
tures.

Odometry is the processing of relative along measurements,
such as wheel turns, speed, and train acceleration. Depending
on track features, parallel tracks showoften very similar along
and cross track features. Measurements may contribute to
absolute along or cross in a local vicinity or even globally.

3.4. Railway Track Features. A suitable track feature is an
unchanging property of the track which can be measured
by a sensor. Over different locations, there are unique track
features as well as repeated, ambiguous features possible.
Here, the features are the track geometry by geographic
position (latitude 𝜑, longitude 𝜆), track attitude (i.e., heading
𝜓), and curvature. The heading 𝜓(𝑠) changes over the run
of the track, which is represented by the heading curvature
𝑐𝜓 = 𝑑𝜓(𝑠)/𝑑𝑠. Additional features can be extended, provided
that there is a reproducible signal over different locations and
sensors can measure these features.

3.5. Railway Switch. The switch way identification is a critical
process in railway navigation, especially if the tracks are
parallel after the train passes a splitting switch. As a special
property of a switch, the two tracks of the competing switch
ways differ in geometric characteristics of curvatures 𝑐

𝜓,
headings 𝜓, and geopositions (latitude 𝜑, longitude 𝜆). The
geopositions of left and right switch way are located apart by
the cross track distance 𝑑CT. The switch way track positions
and headings increase slowly from the switch start, while
the curvature is already present from the switch start. There
can be many more switch way features, as shown in other
approaches based on different sensors [12].

3.6. TrackMap. Therailwaymapworks as a coordinate trans-
formation between topological coordinates and track fea-
tures (e.g., geometric coordinates). The map model contains
and connects information on topology and track features.
These track features are parametrized by the 1D-position 𝑠

and stored in discrete points (track points). A continuous
representation of track features is achieved by interpolations
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between these points.The track features can be obtained from
themap by the topological pose and converted to train frame:

𝑓map (𝑖𝑑, 𝑠, 𝑑𝑖𝑟) =
{

{

{

𝜑, 𝜆⏟⏟⏟⏟⏟⏟⏟

geo position
, 𝜓̂⏟⏟⏟⏟⏟⏟⏟

attitude

, 𝑐̂
𝜓

⏟⏟⏟⏟⏟⏟⏟

curvature

}

}

}

train

. (2)

According to the train direction 𝑑𝑖𝑟, the sign of the curvature
𝑐
𝜓 changes, while 𝜓 changes by 180∘. This special map can be
constructed from train-side sensor data [7, 21] or extracted
from an existing geodatabase.

An open street map (OSM) [22] geodatabase is used as
data source for the track map. The main advantages of OSM
are the availability and the completeness of data points of
many tracks of the desired railway track network. For an
adequate map, there is some additional preparation by track
separation and topological connection (e.g., at switches) as
well as geometry processing being necessary. An OSM data
contains geodata points (𝜑, 𝜆) and the track geometry of
heading (𝜓) and heading curvature (𝑐𝜓) is derived from these
positions. The data is usually collected from various sources,
such as a GNSS hand-held or extracted from aerial or satellite
photo with different and undefined accuracy. Therefore, an
OSM data based map should not be considered as highly
accurate. An analysis of many train runs showed lateral
deviations up to 5m between an averaged GNSS trace and
the OSM track.

3.7. Train State Estimation. The estimation state of railway
localization is formulated with the following random vari-
ables:

(i) track ID: 𝑖𝑑 (discrete),
(ii) position: 𝑠 (continuous, only within a track),
(iii) train direction on track: 𝑑𝑖𝑟 (binary),
(iv) train speed: V (continuous),
(v) train acceleration: 𝑎 (continuous),
(vi) correlated sensor properties: biases: 𝑏 (continuous).

The estimation state vector or train state 𝑇
est
𝑘

for one discrete
time step 𝑘 is defined by

𝑇
est
𝑘

=
{

{

{

𝑖𝑑, 𝑠, 𝑑𝑖𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

topological pose
, V, 𝑎⏟⏟⏟⏟⏟⏟⏟

train motion

}

}

}𝑘

. (3)

The train-to-track frame speed ̇𝑠 can be computed by Table 1:

̇𝑠𝑘 =
{

{

{

V𝑘, if 𝑑𝑖𝑟 = +,

−V𝑘, if 𝑑𝑖𝑟 = −.

(4)

The bias vector 𝐵𝑘 contains correlated sensor errors. These
biases change over time due to a random drift, which cannot
be calibrated in advance. Additionally to the state variables,
an auxiliary variable𝑚 is used to represent the vehiclemotion
by 𝑚 ∈ {forward, stop, backward}. The goal for a train
localization algorithm is to estimate and resolve 𝑇

est
𝑘

and 𝐵𝑘.

The strong track-train constraint allows to predict the
train position, attitude, and inertial state from the known
track geometry of the map. These extended train states are
computed from the map by the actual topological position
estimate and contains the geometry in train frame (𝜓 and 𝑐

𝜓

transformation according to 𝑑𝑖𝑟):

𝑇
ext
𝑘

= {𝜑, 𝜆, 𝜓̂, 𝑐̂
𝜓
}
train
𝑘

. (5)

3.8. Train Control. The train control consists of cross track
control and the along-track control by the train driver:

𝑈 =

{{{

{{{

{

𝑈
sw

⏟⏟⏟⏟⏟⏟⏟

cross control,
control center

, 𝑈
acc

, 𝑈
𝑚

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

along control,
train driver

}}}

}}}

}

. (6)

The cross control influences the travel path of the train
by the selected switch way (𝑈

sw
: {lef t, right}). This is

usually controlled by a train control center or sometimes by
the train driver at shunting yards or industrial tracks. The
train driver controls the general train motion 𝑈

𝑚 and the
acceleration𝑈

acc by the traction and brake lever. The general
train motion is the travel direction selector as well as a train
stop (e.g., activated parking brakes). The control center has
also influence on the along-track control via signaling.

3.9. Simple Map-Matching. In contrast to state estimation a
reference approach by simple map-matching is described.
The simple map-matching is a snapshot based, nearest neigh-
bor method, which uses no information about the prior
position. The nearest position on track is computed with the
map from a GNSS position measurement:

{𝑖𝑑, 𝑠}⏟⏟⏟⏟⏟⏟⏟⏟⏟

topo position
= 𝑓map-match ( 𝜑, 𝜆⏟⏟⏟⏟⏟⏟⏟

geo position
) . (7)

It should be noted that this approach would be sufficient if
the position measurement (e.g., ideal GNSS) is continuously
available with an accuracy always better than half of the
distance of parallel tracks. It will be shown in the results
that this approach has its problems with real GNSS position
measurements.

4. Train-Side Sensor Measurements

This paper focuses only on GNSS and IMU measurements,
but other train-born sensors can extend the proposed
approach.Theused sensors are considered as inexpensive and
their combination as complementary in terms of measure-
ment errors.

4.1. Global Navigation Satellite Systems. The approach uses
the standard GNSS receiver output by position-velocity-time
(PVT) and is considered as loosely coupled. That means
that the internal GNSS related computations can be kept
transparent, up-to-date with actual receiver technology and
out of the train localization approach. The used receiver was
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a u-blox 6 GPS receiver, but also other commercial off-the-
shelf receivers could be used.

A drawback of GNSS is the lack of availability and
degraded accuracy in parts of the railway environment. GNSS
data is not available in tunnels or below station roofs. The
accuracy is further affected by multipath, signal loss, and
poor geometry in urban environments, next to acoustic noise
barriers or in dense forests.

4.1.1. GNSS Speed. The GNSS speed measurement con-
tributes to the train odometry in terms of relative along-track
estimation and is part of the PVT data. A single antenna
mounting is invariant of a horizontal rotation; that is, the
speed and also headingmeasurements are independent of the
mounted yaw angle between antenna and train. In principle,
the GNSS speed is computed from the vector norm of the
antenna motion in north and east component. Therefore,
the GNSS speed is always positive and the train motion
(𝑚) must be considered in the use-case for train speed. The
measurement model contains the train speed ̇𝑠, additional
white noise 𝑛, and a conversion for the train motion:

𝑍
GNSS,V
𝑘

=
{

{

{

−V𝑘 + 𝑛
V
𝑘
, if 𝑚 = backwards,

V𝑘 + 𝑛
V
𝑘
, if 𝑚 = forwards.

(8)

4.1.2. GNSS Positions. GNSS positions are a favorable mea-
surement for absolute along and cross resolution of the train
location. The GNSS position model includes 2D positions of
latitude 𝜑 and longitude 𝜆 and additional white noise 𝑛

pos:

𝑍
GNSS,pos
𝑘

= (

𝜑

𝜆
)

𝑘

+ 𝑛
pos
𝑘

. (9)

4.1.3. GNSS Heading. The GNSS heading angle contributes
to the switch resolution which was described as cross at
switch contribution in Section 3.3. There are multiple ways
of the internal heading computation of the receiver: a simple
differentiation of two consecutive positions or by computa-
tion of a receiver motion vector from Doppler and/or phase
measurements of each satellite. The actual internal method
is unknown, but state-of-the-art methods use positions and
Doppler within a Kalman filter [23]. The used receiver
outputs an ECEF (earth centered, earth fixed) velocity vector,
and the GNSS heading measurement is the angle to north of
the horizontal part of this vector in east and north direction.
The receiver estimates further an accuracy of the velocity
vector (ECEF) better than 1.1 km/h in 95% of all runs and a
resulting heading accuracy of 1.7∘ in 95% of all runs above
10 km/h. The GNSS heading is worse at low speeds, so the
headingmeasurements are used above 10 km/h.TheGPS data
of the experiment and the results showed a good heading
repeatability with usually less than 1∘ of different runs over
the same positions. In comparison, a heading angle between
two consecutive positions showed much worse results.

The heading model contains the heading angle 𝜓 of the
train (train frame) which is derived from the estimate of the
topological pose and themap. AGNSS headingmeasurement

with single antenna is the heading of the antenna motion and
requires a conversion to train frame by the train motion 𝑚

(see also Table 1):

𝑍
GNSS,𝜓
𝑘

=
{

{

{

𝜓̂
𝑘
+ 𝜋 + 𝑛

𝜓

𝑘
, if V < 0 (𝑚 = backwards) ,

𝜓̂
𝑘
+ 𝑛
𝜓

𝑘
, if forwards.

(10)

It should be noted that there are no heading measurements
for very low speeds or stopped trains.

4.2. Inertial Sensor. The IMUmeasurements provide contin-
uous and interference-free data. Two measurements are of
particular interest: the longitudinal acceleration (𝑎𝑥) and the
yaw turn rate (𝜔𝑧). The measurements are aligned with the
train frame by prior calibration.

4.2.1. Longitudinal Acceleration. The longitudinal accelera-
tion (𝑎𝑥) measures the train acceleration measurement and
it contributes to the relative along localization (odometry).
The along acceleration measurement model considers train
acceleration 𝑎, the gravity 𝑔 portion by the slope angle 𝜃 of
the track, and accelerometer bias 𝑏𝑎𝑥:

𝑍
IMU,𝑎𝑥
𝑘

= 𝑎𝑘 + 𝑔 ⋅ sin 𝜃𝑘 + 𝑏
𝑎𝑥

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑏̃𝑘

+ 𝑛
𝑎𝑥

𝑘
. (11)

Inertial sensors are affected by a bias which is changing
over time, called drift. Any bias causes growing errors, as
the train acceleration is integrated over time to speed and
position. The presented approach does not contain a slope
estimation or slope profile in the map. The slope angles of
railway tracks are relatively small and the bias estimation in
the following handles the difference. A continuous estimation
of the combined offset 𝑏̃𝑘 is processed and contains bias and
gravity portion from slope. Extensions with slope estimation
by integration or a slope profile in the map are possible.

4.2.2. Yaw Turn Rate. Rails are a strong constraint between
track geometry and train trajectory. It is possible to measure
the geometric characteristics with a train-side IMU of a
moving train. A certain curvature 𝑐

𝜓 of a track causes yaw
turn rates depending on the train speed:

𝑐̂
𝜓

=
𝜓̇

V
. (12)

A complete model of train kinematics for turn rates and
centripetal accelerations is presented in [21]. Trains are
exposed to low pitch and roll angles in general and especially
at switches. As a consequence, the horizontal heading turn
rate 𝜓̇ can be approximated by the yaw rate of the train:

𝜓̇ ≈ 𝜔
𝑧
. (13)

The curvature as measurable track feature indicates absolute
along locations and resolves different switch ways (cross at
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switch). This approach is less sensitive to drift as it does
not rely on integration of the inertial measurements. This
property is advantageous for the use of low-cost MEMS
gyroscopes. The measurement model ℎ𝜔 of the yaw rate
measurement 𝜔𝑧 is defined by

𝑍
IMU,𝜔𝑧
𝑘

= 𝑐̂
𝜓

𝑘
⋅ V𝑘 + 𝑏

𝑔𝑧

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ𝜔𝑧(𝑇𝑘 ,𝐵𝑘)

+ 𝑛
𝜔𝑧

𝑘
. (14)

At this point, the frame and motion definitions are vital
(Table 1). The curvature is translated to train frame by train
direction 𝑑𝑖𝑟 and the speed contains the motion direction 𝑚

in its sign. The bias of the gyroscope (𝑏𝑔𝑧) is calibrated only
during stop phases of the train:

𝑏
𝑔𝑧

𝑘
≈ 𝜔
𝑧
, if 𝑚 = stop. (15)

The turn rates are assumed to be zero and the low earth turn
rate is neglected.The resulting small error is not integrated in
the following (e.g., as in strapdown approaches) and results
in a negligible error at the weighting process by a likelihood.

5. Probabilistic Train Localization

The following definitions can be used for a multihypothesis
filter, a particle filter or Rao-Blackwellized particle filter. The
posterior is already specified for GNSS and IMU sensors.

5.1. Train Localization Posterior. The train localization pos-
terior represents the estimation problem. In previous works
[3, 4, 21], Bayesian methods are presented with a dynamic
Bayesian network definition for the train localization prob-
lem and the factorization of the posterior is shown in steps.
The posterior of all train states (𝑇0:𝑘) and sensor biases (𝐵0:𝑘)
over 𝑘 time steps are estimated given all measurements (𝑍0:𝑘),
train control inputs (𝑈0:𝑘), and themap (𝑀).Themap is actu-
ally known in advance and does not change over time for the
train localization problem. It is included in the conditional
part of the distributions to indicate where information of the
map is needed. The unknown train control is also included
to indicate where a train driver or train control can influence
the train states.The posterior is factorized in a recursive form
in order to compute the posterior practically with estimation
algorithms:

𝑝 (𝑇0:𝑘, 𝐵0:𝑘 | 𝑍1:𝑘, 𝑈0:𝑘𝑀)

∝ 𝑝(𝑍
GNSS
𝑘

| 𝑇𝑘) ⋅ 𝑝 (𝑍
IMU
𝑘

| 𝑇𝑘, 𝐵𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

measurements

⋅ 𝑝 (𝑇𝑘 | 𝑇𝑘−1, 𝑈𝑘,𝑀)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

train transition

⋅ 𝑝 (𝐵𝑘 | 𝐵𝑘−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

bias transition

⋅ 𝑝 (𝑇0:𝑘−1, 𝐵0:𝑘−1 | 𝑍1:𝑘−1, 𝑈1:𝑘−1,𝑀)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

recursion
.

(16)

The factorized posterior is proportional (∝) to the posterior,
because of amissing normalization factor.This normalization
can be computed separately, as all probabilities sumup to one.

There are different considerable filter approaches, which
are able to estimate the nonlinear train transition and the
different hypotheses of the topological pose.

5.2. Along Track. One extension to the previous particle
filter approaches [3, 4] is the separation of states, where
certain states are estimated differently. In combination with
particle filters, this process is called Rao-Blackwellization
[24]. In particular the linear states can be separated from
the nonlinear states of a particle hypotheses and estimated
by a more optimal filter, as the Kalman filter. The train state
contains linear and nonlinear parts: 𝑇𝑘 = {𝑇

𝑙

𝑘
, 𝑇
𝑛

𝑘
}. The train

transition of 16 is split in a linear and nonlinear part via chain
rule and conditional independencies that are removed:

𝑝 (𝑇𝑘 | 𝑇𝑘−1, 𝑈𝑘,𝑀) = 𝑝 (𝑇
𝑛

𝑘
, 𝑇
𝑙

𝑘
| 𝑇
𝑛

𝑘−1
, 𝑇
𝑙

𝑘−1
, 𝑈𝑘,𝑀)

= 𝑝 (𝑇
𝑛

𝑘
| 𝑇
𝑙

𝑘
, 𝑇
𝑛

𝑘−1
, 𝑈𝑘,𝑀)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

nonlinear train transition on tracks

⋅ 𝑝 (𝑇
𝑙

𝑘
| 𝑇
𝑙

𝑘−1
, 𝑈𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

linear train transition

.

(17)

5.2.1. Train Odometry Filter. The linear and one-dimensional
train transition is separated from the nonlinear transition on
the map and estimated with a Kalman filter. The estimation
of the linear state variables of acceleration 𝑎, speed V, and
displacement Δ𝑠 will be called odometry in the following.
The odometry combines also the along acceleration bias
estimation with updates from acceleration and speed mea-
surements:

𝑝 (𝑇
𝑙

𝑘
| 𝑇
𝑙

𝑘−1
, 𝑈𝑘) ⋅ 𝑝 (𝐵

ax
𝑘

| 𝐵
ax
𝑘−1

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

odometry prediction

⋅ 𝑝 (𝑍
GNSS,V
𝑘

| 𝑇
𝑙

𝑘
) ⋅ 𝑝 (𝑍

IMU,ax
𝑘

| 𝑇
𝑙

𝑘
, 𝐵

ax
𝑘
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

odometry update

.

(18)

The state transition of the odometry prediction step is defined
here as a 1D transition DWPA model (discrete white noise
constant acceleration) [25].The linear 1D train transition and
the acceleration bias are estimated by the discrete model:

(

Δ𝑠

V

𝑎

𝑏

)

𝑘

= (

(

0 Δ𝑡
Δ𝑡
2

2
0

0 1 Δ𝑡 0

0 0 1 0

0 0 0 1

)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

system matrix

(

Δ𝑠

V

𝑎

𝑏̂

)

𝑘−1

. (19)

Thismodel is propagated by state-of-the-artKalmanfilter and
updated withGNSS speed and longitudinal IMU acceleration
measurements.

5.2.2. Track Transition Model. The track transition ensures
that the estimates (hypotheses, particles) exist and stay
exclusively on tracks. The nonlinear train transition of (17)
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estimates a topological coordinate from the linear displace-
ment, the previous coordinate, an unknown switch way, and
the map:

𝑝 (𝑇
𝑛

𝑘
| 𝑇
𝑙

𝑘
, 𝑇
𝑛

𝑘−1
, 𝑈𝑘,𝑀)

= 𝑝 (𝑇
topo
𝑘

| 𝑇
topo
𝑘−1

, Δ𝑠𝑘, 𝑈
sw
𝑘

,𝑀) .

(20)

The function of the map for each hypothesis (particle) is

𝑇
topo
𝑘

= 𝑓map,trans. (𝑇
topo
𝑘−1

, Δ𝑠𝑘) . (21)

This model considers the discontinuity at a track change and
in case of a splitting switch scenario the next track is sampled
from a discrete uniformdistribution (left or right). According
to the motion state of standstill (𝑚 = STOP), this transition
can be suspended. The next step is a track map query by
the topological pose for each hypotheses or particle. The
extended train state 𝑇

ext
𝑘

contains the track geometry in train
frame:

𝑇
ext
𝑘

= 𝑓map,data (𝑇
topo
𝑘

) . (22)

5.3. Cross Track. The cross track estimation evaluates differ-
ent tracks at a switch or in scenarios with multiple tracks.
The evaluation or weighting process is based on a soft
comparison of measurements and expected measurements
from the map. A sensor likelihood function is defined for
each measurement type. First, the expected or estimated
measurement is computed from a measurement model and
the current state of train state and sensor correlation 𝑌𝑘 =

ℎ(𝑇𝑘, 𝐵𝑘). A generic likelihood function model is defined
here with a Gaussian distribution. The mean is the expected
measurement 𝑌𝑘, the argument is 𝑍𝑘, and the covariance of
the sensor noise is Σ:

𝑝 (𝑍𝑘 | 𝑇𝑘, 𝐵𝑘)

=̂ |2𝜋Σ|
−1/2 exp {−

1

2
(𝑍𝑘 − 𝑌𝑘) Σ

−1
(𝑍𝑘 − 𝑌𝑘)

𝑇
} .

(23)

6. Particle Filter Approach

A particle filter is chosen for the posterior (16) estimation.
The particle filter can handle different nonlinear estimates
(hypotheses) automatically by the particles, which is neces-
sary for a distribution of any possible position over different
tracks. As described in [26], a particle filter represents prob-
ability density functions by appropriate particle distributions
with appropriate weights of𝑁𝑝 particles.The posterior of (16)
is represented by the particles set:

𝑝 ({𝑇, 𝐵}0:𝑘 | 𝑍1:𝑘, 𝑈0:𝑘,𝑀) ≈ {𝑥
𝑖

0:𝑘
, 𝑤
𝑖
}
𝑁𝑝

𝑖=1
. (24)

𝑥
𝑖

0:𝑘
is the 𝑖th particle with its weight 𝑤𝑖 of 𝑁𝑝 particles and

represents one sample of the posterior of all time steps until
𝑘. Particles are generated from a function which is easy to
calculate [26], called the proposal function:

𝑥
𝑖

0:𝑘
∼ 𝑞 ({𝑇, 𝐵}0:𝑘 | 𝑍1:𝑘, 𝑈0:𝑘,𝑀) . (25)

Afterward these particles are weighted [26]. The weights are
proportional to the fraction posterior over proposal function:

𝑤𝑘 ∝
𝑝 ({𝑇, 𝐵}0:𝑘 | 𝑍1:𝑘, 𝑈0:𝑘,𝑀)

𝑞 ({𝑇, 𝐵}0:𝑘 | 𝑍1:𝑘, 𝑈0:𝑘,𝑀)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑤, unnormalized weights

. (26)

The weights of the particle filter sum up to one and the
normalization factor 𝜂 can be easily computed:

𝜂 =
1

∑
𝑁𝑝

𝑖=1
𝑤
𝑖

𝑘

. (27)

After several time steps, some particles may carry an extreme
high weight while the rest has a very low weight. These low
weighted particles are inefficient and this process is called
degeneration. In order to avoid this, a systematic resampling
[26] of the particle distribution can solve this problem.
A metric for particle depletion is the effective number of
particles 𝑁̂eff [25]. The particle distribution is resampled if
𝑁̂eff is below a threshold 𝑁th.

6.1. Particle Filter with GNSS and IMUMeasurements

6.1.1. Proposal Function. The proposal function is designed
by the transitions of train and correlated sensor properties
as well as suitable measurements. The proposal contains the
train odometry estimation of Section 5.2.1 and a gyroscope
bias estimation. In this implementation, the gyroscope bias is
only updated if the train is not moving. The displacement of
the 𝑖th particle is sampled from the odometry Kalman filter
output:

Δ𝑠
𝑖

𝑘
∼ N (Δ𝑠

𝑖

KF, 𝜎
2

Δ𝑠
) . (28)

In contrast to previous approaches [3, 4], the samples were
directly generated from an acceleration distribution and
a motion model. The use of the odometry Kalman filter
inside of a particle filter is the Rao-Blackwellization part.
The nonlinear map transition of (21) and map query (22) is
processed for each particle as a function of the map.

6.1.2. Weight Function. The weight function is the combina-
tion of IMU and GPS likelihoods and computed as shown in
(23) with the appropriate measurement models (9), (10), and
(14). The weight function for the 𝑖th particle with the IMU
and GNSS likelihoods is

𝑤
𝑖

𝑘
= 𝜂 ⋅ 𝑤

𝑖

𝑘−1
⋅ 𝑝 (𝑍

GNSS,pos
𝑘

| 𝑇
𝑖

𝑘
) ⋅ 𝑝 (𝑍

GNSS,𝜓
𝑘

| 𝑇
𝑖

𝑘
)

⋅ 𝑝 (𝑍
IMU,𝜔𝑧
𝑘

| 𝑇
𝑖

𝑘
, 𝐵
𝑖

𝑘
) .

(29)

6.1.3. Initialization. The initial particle distribution is gener-
ated from the first GNSS position measurement. Therefore,
the 2D geoposition is sampled 𝑁𝑝 times with a large covari-
ance Σ (e.g., 100m) from a Gaussian distribution:

p̃os𝑖 ∼ N (posGNSS
𝑘=1

, Σ) . (30)

The positions are map-matched by (7) to topological posi-
tions and assigned to each particle 𝑖.The train frame direction
𝑑𝑖𝑟 is sampled randomly from a uniform distribution.
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6.2. Output Estimate. A particle distribution is a less useful
output for applications like automated train control or colli-
sion avoidance. There, a single mode or most likely output
is desired. Internally, the particle filter keeps its particle
distribution for the next update. The output is computed by
four steps: first, the track paths are identified and, second, the
most likely track path with particles is chosen (ML path). A
mean square estimate is computed fromparticles on that path
and the result is translated back to topological coordinates.

6.2.1. Track Path Identification. At first, all path hypotheses
𝑖𝑑𝑝 with at least one particle are identified:

𝑖𝑑
0:𝑗

𝑝
= 𝑓findPaths ({𝑖𝑑

𝑖
}
𝑁𝑝

𝑖=1
) . (31)

A track path contains one or more sequential tracks (𝑖𝑑) on
a 1D path, where a train is able to run over in a sequence.
For further computations, a track path has a continuous 1D
coordinate frame compared to discontinuities at the joints
of tracks. A topological pose can be translated into path
coordinates as well as translated from path coordinates. As
an example, in case of a split switch scenario, particles can
be distributed before the switch, on the left and right switch
way. This would result in two possible track paths: 𝑖𝑑

1

𝑝
=

{𝑖𝑑before, 𝑖𝑑left} and 𝑖𝑑
2

𝑝
= {𝑖𝑑before, 𝑖𝑑right}.

6.2.2. ML Path. As a next step, the sum of weights are
calculated for each path 𝑗:

𝑤̂
𝑗
=

𝑁𝑝

∑

𝑖=1

𝑤
𝑖
⋅ 𝛿 (𝑖𝑑

𝑖
= 𝑖𝑑 ∈ 𝑖𝑑

𝑗

𝑝
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

selects weight of 𝑖th particle
from the 𝑗th path 𝑖𝑑𝑝

.
(32)

The delta function 𝛿(𝑖𝑑
𝑖

= 𝑖𝑑 ∈ 𝑖𝑑
𝑗

𝑝
) equals one if the 𝑖th

particle (respective its track ID 𝑖𝑑) is on the 𝑗th track path
and is zero otherwise. The most likely path 𝑖𝑑

ML
𝑝

is the path
index 𝐽 with the highest cumulative weight 𝑤̂ML:

𝐽 = 𝑓argmax 𝑗 (𝑤̂
𝑗
) . (33)

6.2.3.Mean Square Estimate on Path. In the following, a delta
function selects the 𝑖th particle which is on the most likely
path:

𝛿
𝑖
= 𝛿 (𝑖𝑑

𝑖
= 𝑖𝑑 ∈ 𝑖𝑑

ML
𝑝

) . (34)

The topological coordinates of the selected particles are
translated to the most likely path:

𝑇̃
topo,𝑖

: {𝑖𝑑, 𝑠̃, 𝑑𝑖𝑟} = 𝑓topo2path (𝑇
topo,𝑖

, 𝑖𝑑𝑝) . (35)

The 1D position is calculated by a weighted mean of the
selected particles, which belong to the ML path:

𝑠̂ =
1

𝑤̂
ML

𝑁𝑝

∑

𝑖=1

(𝑠̃
𝑖
⋅ 𝑤
𝑖
⋅ 𝛿
𝑖
) . (36)

The 1D position deviation (along-track precision) is calcu-
lated by the weighted sample variance of particles from 𝑖𝑑

ML
𝑝

:

𝜎̂𝑠 =
√

1

𝑤̂
ML

𝑁𝑝

∑

𝑖=1

((𝑠̃
𝑖
− 𝑠̂)
2

⋅ 𝑤𝑖 ⋅ 𝛿𝑖). (37)

The train direction on track 𝑑𝑖𝑟 is computed by the highest
weight, where 𝑙 is either positive or negative track frame
direction of the path:

𝑤̂
ML,+

=
1

𝑤̂
ML

𝑁𝑝

∑

𝑖=1

(𝛿 (𝑑𝑖𝑟
𝑖

= +) ⋅ 𝑤
𝑖
⋅ 𝛿
𝑖
) ,

𝑤̂
ML,−

=
1

𝑤̂
ML

𝑁𝑝

∑

𝑖=1

(𝛿 (𝑑𝑖𝑟
𝑖

= −) ⋅ 𝑤
𝑖
⋅ 𝛿
𝑖
) .

(38)

The most likely direction is the one with the higher weight.
The procedure for train motion direction 𝑚 is analog.

6.2.4. Translation to Topological Pose. Finally, the most likely
path 𝑖𝑑

ML
𝑝

, the weighted mean position 𝑠̂ on path, and
the train to path frame direction 𝑑𝑖𝑟ML are translated into
topological coordinate frame:

𝑇
topo

: {𝑖𝑑, 𝑠, 𝑑𝑖𝑟} = 𝑓path2topo (𝑖𝑑
ML
𝑝

, 𝑠̂, 𝑑𝑖𝑟
ML

) . (39)

6.3. Algorithm Summary. The algorithm of the sequential
Bayesian filter with a Rao-Blackwellized filter realization
(RBPF) is shown in Algorithm 1 and summarized in words:
every new measurement (IMU or GNSS) triggers the filter
to compute a next time step. Particles (hypotheses) estimate
a topological position on railway tracks and these particles
exist only on tracks. Each particle is shifted along the track
by a displacement output from the odometry filter (Kalman
filter), which is updated with GNSS speed and longitudinal
acceleration data (IMU). A special function of the map
processes this shift for topological coordinates. A railway
switch is handled by a random assignment of the particles
to each way. From the map, each particle is assigned with
proposed geometric values in train frame of a geoposition,
heading angle, and an instantaneous turn rate from curvature
and speed. The likelihoods weigh the particles with a proba-
bility according to the difference of the proposed geometric
values and themeasurements (train frame) of GNSS position,
GNSS motion vector heading, and IMU yaw rate. An output
estimate extracts one train location with variances from the
particles and resampling removes unlikely particle estimates.

The design parameters are sensor (co)variances, process
noise of train acceleration, and combined bias as well as
number of particles, resample threshold, and variance of
displacement sampling.

6.4. Particle Filter Challenges. The challenges of this map-
based localization approach by a particle filter are the follow-
ing.
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Algorithm: Train Localization (RBPF)
Input: GNSS and IMU sensor data
Output: topological coord. (𝑖𝑑, 𝑠, 𝑑𝑖𝑟) and train speed
(1) load map
(2) initialize odometry Kalman filters with zero vector
(3) initialize all 𝑁𝑝 particles by first GNSS position (30)
(4) loop
(5) if new measurement(s) available then
(6) time step: 𝑘 = 𝑘 + 1, Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1

(7) for all 𝑁𝑝 particles do
(8) predict odometry KF (19)
(9) update KF with speed (8)/acceleration (11)
(10) if train is moving then
(11) sample displacement from odometry (28)
(12) compute map transition (21)
(13) get geometry from map (train frame) (22)
(14) compute likelihoods (9)/(10)/(14)
(15) multiply particle weight by likelihoods (29)
(16) else (train is stopped)
(17) observe and filter gyroscope bias
(18) end if
(19) end for
(20) normalize weights (27)
(21) compute most likely output estimate (31)–(39)
(22) if resampling necessary by 𝑁eff then
(23) perform resampling
(24) end if
(25) end if
(26) end loop

Algorithm 1: Algorithm of the map-based train localization with GNSS, IMU, and Rao-Blackwellized particle filter.

6.4.1. Divergence in Along Track. The problem is an unstable
filter, as the estimate (particles) is away from the truth and
cannot recover. This can be approached by a good model
design (i.e., proposal function), a continued resampling, and
the insertion of sampling noise. In case it fails, a filter
monitoring can detect a severe along divergence (e.g., by
GNSS measurements) and restart the filter.

6.4.2. Divergence in Cross Track. The problem here is a failed
track selectivity, as all particles are on the wrong track, in
particular a parallel track, and cannot recover.The resolution
of the switch way is very important. This requires a sufficient
map model as well as sensors, which are able to measure the
competing switch way properties. Another approach is the
use of extrinsic sensors which directly measure the switch
way (cross at switch) or observe a neighboring track (absolute
cross).

6.4.3. Initialization. In the start-up phase of the estimation
filter, some hidden and discrete states remain unresolved if
they are not directly observable by measurements. In the
proposed approach, this happens for the train frame direction
𝑑𝑖𝑟 and the track 𝑖𝑑 in parallel track scenarios. There, the
filter requires motion or motion over a switch to resolve
these states. An alternative way is the use of extrinsic sensors

in order to observe or resolve the hidden variables from
standstill.

6.4.4. Overconfidence. This happens especially if the mea-
surement noise is too small and correlations are disregarded
in the sensor model. The filter converges very quickly to the
measurements and results in a too small particle distribution
after resampling.This can lead to the described divergence in
along and cross track.

6.4.5. Degeneracy. Degeneracy of the particle distribution is
the effect where nearly all weight is accumulated on one or
a few particles. The state-of-the-art approach is systematic
resampling [26].

6.4.6. Dimensionality and Computational Complexity. High
dimensional state vectors can be problematic for particle fil-
ters, as the number of particles and computational complexity
grows [27]. This approach uses a state vector (3) with the
nonlinear random variables of discrete track IDs 𝑖𝑑, which
is limited to a few tracks in the vicinity, a noncontinuous 1D
position 𝑠, and a binary direction 𝑑𝑖𝑟. Once, the direction
is resolved after initialization, the direction is processed
in a deterministic manner and not estimated anymore. In
other words, the particle filter estimates actually two states.
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Clearance pointSwitch start
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True run
Fixed tolerance threshold or distance

False track

to clearance point

Figure 3: Cross track analysis at a switch with tolerance and error
areas for a true right (straight) run.

The train acceleration, speed, and certain biases are processed
by a linear filter in order to achieve more optimal estimation
and to reduce the number of particles.

7. Track-Selective Evaluation Framework

The empirical proof of track selectivity is achieved by the
comparison of localization output and a reference route.This
reference must be known in advance and is the true sequence
of traveled track IDs. Of special interest is the switch scenario
with a splitting switch way run, as shown in Figure 3. Railway
switches have a region where the clearance of two vehicles
overlap, and only one train can occupy these tracks. There,
a false track estimate is tolerated and not a real problem
as only one train can occupy the tracks. The length of this
tolerance region can either be fixed or individual for every
switch, stored within the map. For simplicity reasons, a fixed
tolerance of 50m after a switch start is chosen. The track-
selective accuracy is evaluated with the known route (ground
truth) and a false track estimate within the tolerance region
is marked in orange, a correct estimate is green, and a false
one is red. Track precision is defined here as the discrete
probability of the track estimate from the filter output. A
high precision estimate can be evaluated with an incorrect
accuracy, when the true track is different.

The track-selective accuracy can be analyzed over time
(per second) or over traveled distance (per meter). Train
statistics are often related to distance (e.g., millions of train
kilometers), so the results are presented in relation to the
traveled distance. The method of Algorithm 2 evaluates the
train localization estimate of each time step.

A cumulative evaluation shows the performance of the
localization approach in terms of track selectivity for larger
data sets. Each evaluation result is shown relative to the total
distance:

𝐸
cum
error =

∑ 𝑒
error
𝑘

∑Δ𝑠𝑘

⋅ 100%,

𝐸
cum
switch =

∑ 𝑒
switch
𝑘

∑Δ𝑠𝑘

⋅ 100%,

𝐸
cum
OK = 100% − 𝐸switch − 𝐸error.

(40)

Thismethod is based ondistanceswhich automatically rejects
the evaluation of stopped and parked trains. Track-selective
errors occur in the presence of parallel tracks. A train run
on a route with more single track scenarios will distort an

Algorithm: Track Selective Evaluation
Input: Train state 𝑇0:𝑘, true track IDs 𝐴, map
Output: Evaluation: cumulative 𝐸

cum, 𝐸cum,𝑝

(1) 𝐵: all track IDs of wrong switch ways from 𝐴, map
(2) 𝑃: switch positions from 𝐴, map
(3) 𝑙clear.: clearance length of each switch
(4) for all train states 𝑇0:𝑘 do
(5) 𝑒

switch
𝑘

= 𝑒
error
𝑘

= Δ𝑝𝑘 = 0

(6) if track 𝑖𝑑 is not in 𝐴 (true track ID list) then
(7) if 𝑖𝑑 is in 𝐵 & distance to switch < 𝑙clear. then
(8) 𝑒

switch
𝑘

= Δ𝑠𝑘

(9) else
(10) 𝑒

error
𝑘

= Δ𝑠𝑘

(11) end if
(12) end if
(13) if other track in the vicinity of 𝑖𝑑𝑘, 𝑠𝑘 (20m) then
(14) Δ𝑝𝑘 = Δ𝑠𝑘

(15) end if
(16) end for
(17) compute cumulative evaluation 𝐸

cum (40)
(18) compute cum. eval. of parallel tracks 𝐸cum,𝑝 (41)
(19) return 𝐸

cum, 𝐸cum,𝑝

Algorithm 2: Track-selective evaluation over distances.

evaluation in favor of a better track-selective evaluation.
An increase of comparability of the evaluation result is
considered with a ratio to distances with parallel tracks in
vicinity:

𝐸
cum,𝑝
error =

∑ 𝑒
error
𝑘

∑Δ𝑝𝑘

⋅ 100%,

𝐸
cum,𝑝
switch =

∑ 𝑒
switch
𝑘

∑Δ𝑝𝑘

⋅ 100%,

𝐸
cum,𝑝
OK = 100% − 𝐸

𝑝

switch − 𝐸
𝑝

error.

(41)

The switch tolerance evaluation suits mainly for detailed
evaluation on small changes and tuning.

A compact figure of the evaluation (𝐸) in terms of track
selectivity over parallel tracks distances (TS, 𝑃) is the error-
free case of multiple track scenarios:

𝐸TS,𝑃 = 100% − 𝐸
cum,𝑝
error . (42)

This figure explains how good a certain train localization
approach performs on a specific track network. This cumu-
lative evaluation is one way to measure the track selectivity
performance and contains to some extent the track layout of
parallel tracks and switch densities.

Another evaluation measure is the error events, which
counts and evaluates the transition to the wrong track.
One faulty switch resolution results in a cumulative error
dependent on the specific track length. A parallel track
scenario merges very often by a switch after a station and a
wrong output can be on the correct track again. The error
eventmethod counts transitions to the error case and respects
more the error cause, which is a fault switch way. It differs
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Table 2: Train routes.

Run From station To station Forward, backward Split switches Time km
1 ABG FDB B 8 10min 8
2 FDB ABG F 7 10min 8
3 ABG ING B 22 1 h 66
4 ING ABG F 20 1 h 66
5 ABG FDB B 8 10min 8
6 FDB ABG F 7 10min 8
7 ABG AIC B 11 30min 25
8 AIC ABG F 9 30min 25
9 ABG FDB B 8 10min 8
10 FDB ABG F 7 10min 8

5 × F, 5 × B 107 4 h 230

also in late switchway resolution, if the output is correct again
within the correct track which connects to the switch. From
these error events, the correct switch way evaluation (𝐸SW)
statistics can be computed of the total split switches𝑁total, the
late resolved switch ways after the switch tolerance 𝑁late and
the wrong resolved switch ways 𝑁failed:

𝐸SW =
𝑁total − 𝑁late − 𝑁failed

𝑁total
⋅ 100%. (43)

The track-selective evaluation in multiple tracks scenarios
𝐸TS and the switchway resolution evaluation𝐸SWwill be used
as compact results.

8. Experiment

8.1. Recorded Data Set. The data set was recorded on the
regional train “Alstom Coradia Lint 41” under regular pas-
senger service conditions.This train can travel up to 120 km/h
and has two drivers’ cabs for two-side operation. Table 2
shows the train runs over 230 km with 107 splitting switches.
The train runs on 58.5 km of tracks with other tracks near or
in parallel, which are 25.4% of all tracks.

The data set contains GNSS PVT data (position, velocity,
time) of GPS (Global Positioning System) from a u-blox
LEA 6T receiver. The IMU data (Xsens MTi) was recorded
with a sample rate of 200Hz and time stamped from a GPS
synchronous clock. For the proposed algorithm, this IMU
data was low-pass filtered and downsampled to 4Hz. The
IMUwas placed on the front bogie, the GNSS antenna below
a fiberglass roof above the bogie position. A special cam-
era (dash-cam) with GPS timestamped video was installed
behind the front windshield for the switch way evaluation.

8.2. Labeled Reference Route. Thereference for the cross track
analysis is a recorded video from the train run. In that video,
the motion state can be seen, the switch way and direction
of travel. For every run, a reference travel path (i.e., labeled
data) can be computed from a start position (GNSS), train
direction, the map, and a series of true splitting switch ways.
These switch ways are either “left” or “right” and obtained
manually from the video.
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Figure 4: Run 1 over time fromAugsburg main station to Friedberg
station with known switch ways.

8.3. Implementation. The localization algorithm approaches
were implemented within a self-written JAVA framework.
This includes the map processing, the sensor data reader,
and the evaluation. The sensor data was processed in a
causal way; that is, the localization approach processed each
measurement in the chronological order and the output
was evaluated. No simulated (i.e., generated) data was used.
Particle filters are generally computationally expensive by
nature. Nevertheless, the temporal performance for (𝑁𝑝 =

100) particles with visualization was processed 19.0 times
faster than real time on a laptop (Intel i7M CPU, 2.9GHz,
Windows 7). Hence, a real time operation is possible.

9. Results

9.1. Track Selectivity over Time. Two different evaluations
of the reference approach and the proposed algorithm are
shown of Run 1 over time. Therefore, the train speed and
true switch ways of Run 1 are shown over time in Figure 4. It
visualizes the occurrence of splitting switch ways, since their
resolution is the challenge for a train localization filter.

Figure 5 shows the results of the simple map-matched
GNSS positions for Run 1 over time. The correct track is
marked with OK in green, an error in the tolerance area in
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Table 3: Detailed cumulative results.

Localization
OK Switch Error

Error events, switch way resolutions% total distance: 𝐸cum

(% parallel tracks: 𝐸cum,𝑝)
(1) Map match GNSS position 93.7 (75.2) 0.73 (2.86) 5.57 (21.9) 108 errors
(2) RBPF, GNSS position 94.9 (79.8) 1.06 (4.19) 4.06 (16.0) 33 errors
(3) Method 2 and GNSS heading 97.3 (89.1) 0.26 (1.03) 2.49 (9.84) 4 switches (1 late, 3 fail)
(4) Method 2 and IMU yaw rate 99.7 (98.9) 0.10 (0.41) 0.17 (0.67) 3 switches (2 late, 1 fail)
(5) Method 2 and heading, yaw rate 99.7 (98.8) 0.09 (0.36) 0.21 (0.84) 4 switches (3 late, 1 fail)
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Figure 5: Track-selective accuracy of simplemap-matching (nearest
neighbor).

0 100 200 300 400 500 600
OK

Switch
tolerance

Error

0 100 200 300 400 500 600 700
0

0.2
0.4
0.6
0.8

1

Tr
ac

k 
pr

ec
isi

on

0 100 200 300 400 500 600 700
0
5

10
15

Time (s)

Time (s)

Time (s)

A
lo

ng
 p

re
ci

sio
n 

(m
)

Figure 6: Track-selective accuracy and estimation precision of the
Bayesian filter approach: RBPF with GNSS position, heading, and
IMU yaw rate.

the vicinity of the switch is yellow, and a wrong track is red.
There is no track precision shown, as this approach considers
no uncertainty but only the nearest track.

Figure 6 shows the accuracy and precision results over
time of the realized Bayesian filter with IMU and GNSS of
Run 1. At one splitting switch, the filter was estimating an

Table 4: Compact track selective results.

Localization method
Track selectivity
(parallel tracks)
𝐸TS,𝑃 (58.5 km)

Switch way res.
(107 split switches)

𝐸SW

(1) Map match, GNSS pos. 78.1% —
(2) RBPF, GNSS pos. 84.0% 69.2%
(3) (M. 2) + GNSS head 90.2% 96.3%
(4) (M. 2) + IMU yaw rate 99.3% 97.2%
(5) (M. 2) + head + yaw rate 99.2% 96.3%

incorrect track within the tolerance region. The track preci-
sion (middle plot) is shortly reduced with the occurrence of
split switches as seen in Figure 4.The along precision (bottom
plot) is initially coarse but quickly drops after train departure
to an average of 1.4m. This along precision is the weighed
empirical deviation of the particle distribution of (37).

9.2. Cumulative Track Selectivity. A detailed cumulative eval-
uation is presented in Table 3. Five localization methods are
evaluated, in particular the simple map-matching and four
different Rao-Blackwellized particle filter implementations
(RBPF). The number of particles is 𝑁𝑝 = 100 in all RBPF
evaluations. Each accuracy category is shown in percentage
of the total distance of 230 km. As all methods solve the single
track scenarios, the track accuracy is shown additionally
relative to the total distance of multiple track scenarios
(58.5 km) in parenthesis. The evaluation results of a standing
train periods are disregarded in this table. The error events
in Table 3 indicate how often a transition to wrong tracks
happened. Depending on themethod, this can be traced back
to faulty switch resolution. A late switch error represents a
resolved switch way after the evaluation threshold, whereas a
failed switch relates to a wrong resolved switch way.

The compact results according to (42) and (43) are
presented in Table 4. There are no switch way resolution
results for Method 1 as the simple map-match considers only
the nearest track and does not resolve a switch way.

10. Discussion

10.1. Discussion on Results. One major goal of train local-
ization is a track-selective estimation result. As seen from
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Table 3, Method 1 (reference approach of simple map-
matching) has severe problems to determine the correct
track at 21.9% of parallel tracks. The proposed algorithm
RBPF uses also GNSS positions (Method 2) but shows some
improvement with 16.0% of wrong tracks on multiple track
scenarios for 33 times.Thefilteredmethods, especially the last
three, converge to one track in a parallel track scenario.There,
the switch resolution is essential and a failed switch forces the
estimate to stay on the wrong track until a merging switch
to the true track corrects the estimate again. For example,
Method 3 shows an improvement in error events but stays
three times on a wrong, parallel track.

The best results are achieved with Method 4 (RBPF with
yaw rate) on 99.3% of parallel tracks which relates to an error
of 6.7⋅10−3 and stands for a false localization on 394m (24.8 s)
in total. With two late and one failed resolved switch way,
Method 4 achieves 97.2% in switch way resolution, respective
of an error of 2.8 ⋅ 10

−2.
Thedefinition or adjustment on the switchway evaluation

threshold has direct impact on the results and was 50m. In
case this threshold tends to 0m, the track-selective results
over distance can be extracted from the “OK” column of
Table 3 and are slightly worse. However, the switch way
resolution results of (43) will severely decrease with a zero
tolerance area by many late resolved switches.

The results are quite sensitive to the parameters such
as measurement noise, the noise ratio of different measure-
ments, resampling occurrence, process, and sampling noise
as well as the map quality. Better or even perfect results
may be expected by exhaustive optimization of the map and
filter parameters. As an unwanted consequence, map and
parameters may match this limited data set and the results
loose generality. Nevertheless, the following tendencies can
be seen from the results: the additional use of the GNSS
heading (Method 3) shows only little improvements with
9.8% in terms of errors compared to Method 2 (GNSS
position only). Further, the combination of all likelihoods
of Method 5 (GNSS position and heading, IMU yaw rate)
does not show an improvement. The most likely explanation
of this effect might be the map with its coarse heading and
curvature geometry. These values are derived from positions
and are consequently dependent. Slightly wrong positions
cause an error in both values. Because of this dependency
the combination of the measurements has no further gain in
accuracy.

For the realized implementation of the sequential
Bayesian filter, the particle filter approach was chosen, as the
particles can sample the different hypotheses and any nonlin-
ear distribution. The Rao-Blackwellization marginalizes the
linear state variables and estimates themwith a Kalman filter.
As a consequence, the particle filter samples only the cross
track hypotheses (𝑖𝑑) and the along positions (𝑠).The number
of particles are relatively low (𝑁𝑝 = 100) as the particles are
limited and constraint on the tracks. Additionally, the linear
state variables are estimated by nested Kalman filters (Rao-
Blackwellization). A particle filter approximates distributions
and induces two times additional noise as a tradeoff for
convergence reasons: the sampling adds noise, which is

needed tomaintain particle diversity as well as the resampling
in order to avoid particle depletion and divergence.

10.2. Comparison. Lauer and Stein [13] (GNSS, velocity
sensor) showed a gain in confidence about the track decision
between a simple map-match and the proposed estimation
algorithm. A similar gain can be seen between simple map-
match (Method 1) and RBPF with GNSS positions only
(Method 2). Böhringer [6] received slightly better track-
selective results (99.78%) compared to Method 4 (99.33%)
with a different data set and an algorithm with additional
eddy current sensor as switch way detector. Hensel et al. [12]
do not consider explicit figures on switch way resolution.
From switch detection and classification rates over 99%,
a switch way resolution may be deduced with a similar
performance. In comparison, Method 4 reaches 97.2% of
correct switch way resolution even without an eddy current
sensor and a coarse geometric map from OSM data.

However, a direct comparison between other approaches
is not obvious as different data sets and different evaluation
metrics are in use.Therefore, comparative results can be seen
as quite similar as the differences are marginal for different
data sets and metrics. Finally, from the literature and the
present results, it can be reasoned that most of the gain in
accuracy can be achieved by using an estimation filter as well
as using sensors which can measure the competing switch
ways. As this is quite expectable, further investigations are
necessary to identify the smaller gains and differences of
varied filters or sensor fusion approaches on the same data
set.

11. Proposed Enhancements

Several directions of performance improvements of train
localization are identified.

11.1. Advances of the RBPF. Theparticle filter can be improved
with advanced procedures for better particle diversity on
along track. Secondly, an enhanced resampling timing may
be investigated, which suspends resampling near switches for
an undisturbed switch way resolution.

11.2. Improved Odometry. The along-track odometry can
be extended with slope estimation from IMU pitch rate
integration, map information about slope, or gravity vector
estimation from acceleration measurements. A slope con-
sideration would increase the accuracy of relative along-
track estimation and also increase the range to propagate
localization in GNSS denied areas.

11.3. Additional Sensors. A further increase in track-selective
accuracy, outage robustness, and redundancy can be con-
sidered with the use of extrinsic sensors, such as magnetic
sensors, cameras, LIDAR, or aperture radarwith direct switch
way measurements.

11.4. More AccurateMap. An accurate curvature and heading
information in the map is a crucial factor for a correct switch
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way resolution with GNSS and IMU.The major advantage of
generating a map from an OSM data base is to obtain a track
map of a certain railway network sizewith a sufficient number
of tracks. A map generation approach from onboard sensor
data is presented in [7, 21].

Furthermore, a direct comparison of alternative methods
and sensors may be evaluated with same data sets and
evaluation metrics. Studies could investigate the accuracy
of different algorithms (e.g., multihypothesis filter versus
particle filter), or the accuracy gain of different sensor
data integration schemes (e.g., loosely coupled GNSS versus
tightly coupled).

12. Summary

This paper presents a probabilistic train localization approach
with a track-selective evaluation. In contrast to other
approaches, this train localization comprises a Rao-Blackwel-
lized particle filter (RBPF), a map of the railway tracks and
sensor data of a GNSS receiver (Global Navigation Satellite
System), and an IMU (inertial measurement unit). A novel
RBPF implementation is presented which estimates the train
localization posterior recursively. The Rao-Blackwellization
marginalizes the linear state variables and estimates them
with a Kalman filter. As a consequence, the particle filter
samples only the cross track hypotheses (𝑖𝑑) and the along
positions (𝑠). The RBPF estimates directly the topological
track coordinates; that is, the particles stay on the tracks.
Further, a particle distribution can handle different track
hypotheses and other nonlinear distributions. The map con-
tains prior knowledge for the measurement models such as
the track geometry data. The RBPF is able to resolve the
unknown train-to-track orientation at initialization and can
handle forward and backward runs of the train.

A novel evaluation method for track selectivity evalu-
ates the localization results with real data recorded from a
regional train. This generic evaluation method can be used
to generate more comparable results of different approaches
with different sensors andmeasurement data. Train runswere
analyzed over 230 km of tracks with 107 split switches and
parallel track scenarios of 58.5 km. Further improvements
for a safety-of-life train localization of the special realization
are discussed towards higher reliability of track selectiv-
ity.

The best combination of RBPF filter with GNSS positions
and IMU yaw rates showed a track-selective performance of
99.3% on tracks with multiple tracks in the vicinity and 97.2%
of successfully resolved switch ways within the tolerance.
The realized RBPF approach with GNSS, IMU, and a track
map showed promising results towards a track-selective and
continuous train localization even with low-cost sensors and
runs in real time.
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“Probabilistic localization method for trains,” in Proceedings of
the Intelligent Vehicles Symposium (IV ’12), pp. 482–487, IEEE,
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