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ABSTRACT 
 
Gravity-assist maneuvers have the potential to be mission 
enablers, due to "free energy" they provide. The efficiency 
of low-thrust propulsion is further one means of improving 
mission payload mass. Combining both for a given mission 
possibly improves overall mission performance, which 
makes it desirable to investigate low-thrust gravity-assist 
missions.  For means of investigating a broad range of 
mission options, the System Analysis Space Segment 
department of DLR is working on methods of combining the 
optimization of low-thrust trajectories and gravity-assist 
sequences with the help of the Tisserand Criterion and 
shape-based trajectory models. The hurdles faced by 
violations of Tisserand Criterion premises are shortly 
discussed along with their repercussions on planning a 
gravity-assist sequence for a low-thrust mission. A 
methodology, based on benchmarking the results with non-
gravity-assist trajectories is presented in this paper, 
grounded on solution populations combining the 
optimization of the trajectory and the selection of the next 
gravity-assist partner. Furthermore it is shown how the 
solution space can be reduced with the help of constraints 
originating in the maximum possible Δv gain and the 
gravity-assist partner pool. 
 

Index Terms— Gravity-assist, Tisserand Graphs, Low-
thrust Optimization 
 

1. INTRODUCTION 
 
Exploration missions in our solar system are becoming more 
and more ambitious and therefore often rely on gravity-
assist maneuvers as source for “free energy” [1] and thus 
enabler of a given mission. Previous missions like Voyager, 
Cassini, Messenger and New Horizons all relied on gravity 
assists for accomplishing their missions [2] and the low-
thrust mission Dawn conducted a gravity-assist at Mars, 
although it was not mission critical [3].  
The potential for fuel mass savings of low-thrust propulsion 
due to its large specific impulse (typically some 1000 s) and 
the energy benefits of gravity-assist maneuvers makes 
combining low-thrust and gravity-assist to optimize mission 

trajectories one of the research topics in the System 
Analysis Space Segment (SARA) department of the German 
Aerospace Center (DLR). 
Usually for gravity-assist trajectories, the actual gravity-
assist partner sequence is set by a mission analyst and not 
part of the optimization of a low-thrust mission scenario. 
Various approximation methods are used for the actual 
trajectory calculations, whereas the sequence of the gravity-
assist partners is usually simply fed into the respective 
methodology [4 and 5].  
Sequencing of gravity-assist partners for impulsive missions 
is often obtained via so called Tisserand Graphs, a graphical 
method developed independently by different research 
groups [6, 7, 8] and based on Tisserand’s Criterion, an 
energy-based function of orbit parameters.  
Tisserand’s Criterion can be described as [8]: 
 

𝑅𝑅pl
𝑎𝑎

+ 2�
𝑎𝑎(1 − 𝑒𝑒2)

𝑅𝑅pl
cos 𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (1) 

where Rpl is the solar distance of the gravity-assist partner 
planet, a the semi-major axis of a comet’s heliocentric orbit, 
e its eccentricity and i its inclination (note: often the semi-
major axis is scaled with the planetary distance, therefore Rpl 
does not show up in some descriptions of the Tisserand 
Criterion). This equation remains approx. constant before 
and after an encounter with a planetary body. Initially 
developed by Tisserand to identify comets that have been 
subjected to an orbit change by Jupiter, it also provides a 
constraint on a possible outcome in terms of heliocentric 
orbit after a gravity-assist encounter of a spacecraft. 
Due to its simple and efficient approach, the Tisserand 
Criterion resp. Tisserand Graphs have been investigated by 
DLR as method for sequencing gravity-assists for low-thrust 
missions, which is presented in this paper. 
 

2. TISSERAND CRITERION AND GRAPHS 
 
An example for Tisserand Graphs is provided in Fig. 1. 
Tisserand Graphs, as graphical representations of the 
Tisserand Criterion, show which heliocentric orbits (given 
by the  orbital  period - a  function  of  the  semi-major axis - 
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Figure 1: Example of Tisserand Graphs for Earth (right, note the maximum possible heliocentric pericentre being approx. 1AU for the 
spacecraft) and Venus (left) for various hyperbolic excess velocities (planetcentric). Orbital period (proportional to the semi-major 
axis, just like the specific orbit energy) as function of the heliocentric pericentre of the spacecraft is given. 

 

Figure 2: Ratio (logarithmic) of gravity to thrust acceleration as function of solar distance of a sample spacecraft for three cases (av: 
average thrust of Dawn, 55 mN; max: maximum thrust of Dawn, 91 mN; min: minimum thrust of Dawn, 19 mN; real: realistic thrust 
drop-off due to power reduction, no cut-out considered). 

 



over the pericentre) are possible at which planetcentric 
relative energy between spacecraft and planet (given by the  
hyperbolic excess velocity v_inf in Fig. 1). These graphs are 
a visual representation of the constraint stated by Eq. (1). 
With this Tisserand Graphs can be used for planning 
gravity-assist sequences by mapping all possible – from an 
energy point of view – orbit a spacecraft (or any other small 
body) can obtain after a close encounter with a planetary 
body. This mapping does not include phasing considerations 
and therefore presents no sufficient, but a necessary 
condition. Possible mission paths can be analyzed and 
evaluated a priori. A spacecraft in a given orbit around the 
Sun encountering a planet will have a change in its orbital 
parameters depending on the turning of the velocity vector 
during approach. This is represented by a shift along the 
respective graph (depending on the turning angle, which is 
constraint e.g. by the minimum distance to the planet). 
 
2.1. Premises and violations in application 
 
For the derivation of the Tisserand Criterion, the major 
premise is the restricted, circular three body system, which 
implies that only gravity is acting on the bodies of that 
system. Introducing thrust into the situation violates that 
premise [9].  
Application of the Tisserand Criterion however always 
includes violations of the premises of the restricted, circular 
three body system, primarily because the real solar system 
has eccentric planetary orbits and more than three bodies 
involved. To assess the significance of the diversion from a 
gravity-only situation, the effect of these previously 
mentioned violations on the outcome of the Tisserand 
Criterion were estimated in comparison to the error caused 
by the introduction of thrust.  
The results are only briefly summarized, a more thorough 
evaluation and explanation can be found in a previous 
paper[10]. 
 
2.1.1. Non-constant spacecraft mass 
The n-body problem assumes that the celestial body masses 
are all constant over time, which is not true for a thrusting 
spacecraft using fuel (it would be true for a sailing 
spacecraft). This eventually yields the equations of the 
forces to: 

where m denotes the spacecraft mass, v its velocity, t the 
time and F a force, t is the thrust acceleration and index g 
denoting gravity forces. For a constant mass, the second part 
of the centre term becomes zero and only gravity forces 
occur on the right side. The consequence of the mass flow is 
also the thrust of the space craft. It is noted that the total 

mass of the spacecraft for typical cases of low-thrust is 
usually very large compared to a fuel mass flow of some 
mg/s, therefore �̇⃗�𝑣 is still the dominating part of the equation.  
To determine the thrust’s impact in this equation, the ratio 
of (the Sun’s) gravity and the thrust force has been 
estimated for a realistic mission scenario. 
Based on Dawn [11] a minimum thrust case of 19 mN, 
maximum thrust of 91 mN and a numerical average of 
55 mN was assumed for this estimate. Furthermore a 
realistic case has been considered, where due to reduction of 
solar electric power with increasing solar distance, the thrust 
is realistically reduced as well. Since the larger solar 
distance also reduces the solar array temperature, the drop-
off was however modelled with a factor of 1/r1.8, with r as 
the solar distance, as proposed in [12]. No power-cut-out 
was assumed, when the power would drop below a 
minimum necessary power for the engine.  
The results are shown in Fig. 2 as ratio of the thrust (t) and 
gravity (g) acceleration over solar distance r. Even for the 
largest thrust (t_max), a ratio of 100 occurs for this worst 
case at a solar distance of 20 AU. For the realistic mission, a 
factor of 80,000 is the result. It is therefore plausible to state 
that the non-constant spacecraft mass and the resulting 
thrust force are no significant diversion from the three-body 
premises regarding the acting forces. Only libration points 
would result in different situations and since the naturally 
occurring forces cancel each other out at these points 
(although less clearly in non-circular orbits) eventually only 
the thrust acceleration would remain. While these portions 
of a trajectory are small compared to its overall length, a 
spacecraft might still pass through them. But as the 
Tisserand Criterion is an energy quantity as opposed to 
forces, this temporary dominance of the thrust force is not 
assumed as critical.  
 
2.1.2. Non-circular orbits 
One major aspect of the derivation of the Tisserand 
Criterion are the eccentric orbits, which violate the circular 
orbit premise. As can be seen in Eq. (1) by the presence of 
the solar distance of the planet (Rpl), a change in that 
position due to eccentric orbits would change the Tisserand 
Criterion’s value, either.  
To estimate these effects, simulations have been conducted 
in an ideal circular system and a correctly eccentric orbital 
system with identical “sample” spacecraft. The gravitational 
effect on their orbital parameters caused by a close 
encounter with the respective planet has been determined 
and the values of the respective Tisserand Parameters 
according to Eq. (1) have been compared.  
Evaluating the results of these simulations did not reveal a 
correlation of the difference of the Tisserand Parameter and 
the respective planet’s orbital eccentricity, but even though 
the number of simulations was relatively small (150 
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different sample spacecraft), deviations between both values 
of the Tisserand Parameter reached up to 25% (the 
difference of both values divided by the Tisserand Criterion 
value for the elliptical case in percent). Ratios above 10% 
have been reached several times. Due to the random 
sampling method applied, even larger values cannot be ruled 
out.  
 
2.1.3. Large distance between spacecraft and planet 
One further assumption during the derivation of the 
Tisserand Criterion is that the distance between the 
spacecraft (or comet) and the planet is large. This is 
assumed to rid the equation leading to Eq. (1) of a term that 
includes the distance of the spacecraft to the planet. 
Depending on the exact trajectory this assumption can be 
violated (resp. during a close encounter leading to a gravity-
assist the Tisserand Criterion’s value will change due to 
that). To determine when the term containing the distance 
between planet and spacecraft is of the same order of 
magnitude (i.e. significance) as the term containing the solar 
distance, sample calculations have been conducted.  
For this, the distance between spacecraft and planet was 
assumed to be the radius of the planet’s Sphere of Influence. 
In the calculations the eccentricity of the spacecraft and its 
semi-major axis have been varied to determine what effect 
the term containing the distance between spacecraft and 
planet would have on the result of the Tisserand Criterion. 
The largest difference between the two cases (1.5%) 
occurred for Jupiter and an eccentricity of 0.99 at a semi-
major axes of 1.5 times of Jupiter’s solar distance. For all 
other planets, due to their significantly smaller masses, the 
errors were below 1%. Therefore the violation of this 
premise for the derivation of the Tisserand Criterion does 
not result in a very noticeable error.  
 
2.2. Effect of low-thrust and correction term 
 
As described before the effect of the thrust acceleration on 
the forces equation is not significant. However as the 
Tisserand Criterion is an energy property, it has to be 
investigated what the energy effect of the thrusting means 
for the scenario of a low-thrust mission. 
Assuming for a given moment the spacecraft is on a 
trajectory that can be described by a Keplerian orbit (with 
altering properties for each time step, caused by the changes 
due to thrust), the orbital energy of this time specific orbit 
is: 

𝜉𝜉(𝑐𝑐) = −
𝜇𝜇

2 𝑎𝑎(𝑐𝑐)
, (4) 

which is the orbital energy of an elliptical orbit [1], but with 
an added dependency on time. 

For instance, a mission from Earth’s solar distance to 
Jupiter’s, i.e. from 1 AU to ca. 5 AU, would need a specific 
energy change of: 
 

|𝜉𝜉2 − 𝜉𝜉1| = | −
𝜇𝜇

2 ∙ 5 AU
+

𝜇𝜇
2 ∙ 1 AU

| (5) 

 |𝜉𝜉2 − 𝜉𝜉1| = �1
5
𝜉𝜉1 − 𝜉𝜉1� = | − 4

5
𝜉𝜉1|  

This change has to be achieved by the thrusting of the 
spacecraft and of course depends on the exact mission. In 
this example 80% of the specific energy needs to be created 
by the thrusting of the spacecraft to complete the mission. 
This exceeds the errors previously explored and is not 
negligible.  
While missions with less demanding energy changes are 
possible and thinkable, energy changes of only 10% to 20% 
(i.e. within the error magnitude of the non-circular planetary 
orbits, as described above) are likely not large enough to 
warrant low-thrust propulsion with gravity-assists in the first 
place. The reason to use low-thrust propulsion is to enable 
highly challenging missions (and combine them with gravity 
assists). Therefore these demanding missions should be 
selected as benchmark.  
As the low-thrust’s contribution to orbital energy is 
significant it cannot be argued that the Tisserand Criterion 
can be used without modification for gravity-assist 
sequencing of low-thrust missions.  
 
To derive a correction term for missions that deviate from 
the “gravity only” premise, i.e. involve thrusting, the thrust 
acceleration has to be introduced in the equations of motion. 
Transforming the equations similarly as without the thrust 
acceleration eventually yields a modified Jacobi Integral:  
 

𝐶𝐶𝑗𝑗∗ = 𝐶𝐶𝑗𝑗 + 2�𝑉𝑉�⃗ ∙ 𝑇𝑇�⃗ 𝑑𝑑𝑐𝑐. (6) 

Finishing the reformulation finally leads to Eq. (7): 
 

1
2 𝑎𝑎2
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=
1

2 𝑎𝑎1
+ �𝑎𝑎1 (1 − 𝑒𝑒12) cos 𝑖𝑖1               

+ 2� 𝑉𝑉�⃗ ∙ 𝑇𝑇�⃗
𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑐𝑐 

(7) 

This equation accounts for the orbital energy introduced by 
the thrust (note: no assumption has been made for the 



magnitude of the thrust). In this case condition (2) is equal 
to condition (1) plus the energy of the thrusting between the 
two instances. Simplifications based on assumptions can be 
made, but in any case the thrust energy part of this term is 
no state quantity. Therefore for applying the correction term 
the exact trajectory, including the velocity history, has to be 
known. More details on this subject can be found in [10]. 
 

3. APPLICATION ON LOW-THRUST MISSIONS 
 
It has been shown that a correction term exists that includes 
the energy effects of thrusting and therefore eliminates the 
problem of violating the Tisserand’s Criterion’s gravity-only 
premise.  
This correction term also changes the shape of the graphs as 
depicted in Fig. 1, depending hugely on the actual integral 
part of the velocity and thrust acceleration. In difference to 
the original graphs, which are the result of state variables, 
the modified graphs could not be used universally, but 
would be trajectory specific for a given mission or flight 
path.  
So while theoretically the modified Tisserand Criterion can 
be used for low-thrust missions, practically the lack of a 
priori information of a mission scenario reduces the 
usefulness of it. 
However the thrust and the resulting “open” result of the 
trajectory allows a mission to be designed between orbital 

states that would not be connected via Tisserand Graphs 
originally. That means the thrusting parts of a trajectory 
allow a transition of one state to another apart from 
following the graphs. This is illustrated in Fig. 3 in a sketch 
(no actual numerical values have been used), where the red, 
dotted line connects two states of different Tisserand Graphs 
(grey), which would otherwise not be connected. 
 
3.1. Optimization variables and constraints 
 
Depending on the nature of the trajectory model various 
variables exist that are used for optimization. Unknowns are 
for example Launch Date, Flight Time, the hyperbolic 
excess velocity vector, and the pericentre distance to the 
gravity-assist partner (or e.g. the turn angle of the velocity 
vector). Similarly the thrust history describing the thrust 
direction (in two angles for a 3D case) and the thrust 
magnitude are relevant.  
The exact variables depend on the trajectory model used for 
the optimization, e.g. a propagation method applying an 
integration of the equations of motions will use the thrust 
history as variables and receive a result for the Flight Time. 
Other methods, e.g. shape-based methods (which work for 
low-thrust missions analogously to a Lambert’s problem 
solution for impulsive missions), apply Flight Time, the 
number of revolutions around the system centre and the 

 
Figure 3: Example graphs (grey) for orbital period as function of heliocentric pericenter and a possible transfer between the 
respective energy conditions (as represented by the graphs) via a thrusting scheme (red, dotted line). 

 



Launch Date as variables and receive values for the thrust 
and position history [13]. 
For a gravity-assist mission that is to be optimized regarding 
the sequence of gravity-assist partners also the gravity-assist 
partner becomes a variable.  
These variables are subject to constraints, depending on the 
mission but also physical restrictions. E.g. a flyby’s 
pericentre distance cannot be arbitrarily set but must observe 
the planet’s radius (or other limits like radiation belts of 
Jupiter). The hyperbolic excess velocity might be 
constrained by a maximum allowable velocity depending on 
scientific observations.  
Furthermore the number of variables as listed before is 
depending on each other. For example in case of shape-
based methods, the number of revolutions and flight time 
cannot arbitrarily set. A too large number of revolutions 
requires a large velocity change as a long distance has to be 
covered in a given time. A pairing exists which is optimal 
and the change in the discrete value of numbers for 
revolution can have a profound effect on the suitability of 
the flight time. The same is true for e.g. the variable of a 
gravity-assist partner. This variable creates a strong 
sensibility for a trajectory regarding its usefulness. A limited 
amount of compatible variable values are created by this. 
For example a flight time suitable for a gravity-assist at 
Mars would likely be very unsuitable for a gravity-assist at 
Jupiter. So a change of the gravity-assist partner can have a 
profound effect on the quality of a solution candidate, i.e. 
the solution’s fitness will be highly sensitive to this variable. 
Furthermore the number of gravity-assist partners changes 
the number of variables involved in the optimization as 
certain variables are only needed for a gravity-assist, e.g. the 
hyperbolic excess velocity or the turning angle. If the 
overall trajectory is divided into legs between the individual 
gravity-assist partners, this effect is even enhanced because 
in that case for each leg new flight times and so on need to 
be set.   
 
3.2. Repercussions on optimization algorithms 
 
Theoretically two types of searches for a solution space are 
possible. One which is directed, meaning a forward 
progressing by systematically varying the variables involved 
in the problem and thus creating branches of a search tree. 
For example: Setting up the launch conditions of the 
mission, from there vary the possible partner according to a 
pool of partners. For each partner an interval of hyperbolic 
excess velocities (in Tisserand Graphs this would equal the 
individual graphs) is investigated. For each of these again a 
set of turning angles is investigated, creating more and more 
branches. In between each partner has the potential to be the 
target body and thus end the branch with the arrival of the 
spacecraft. This creates two challenges: 
 

1) Large amount of solutions, i.e. large 
computation demand, and 

2) unknown amount of variables for one solution 
until end of the branch is reached. 

 
Especially the latter means that solutions cannot be put in 
populations of similar solutions beforehand.  
Typical search algorithms for low-thrust are evolutionary 
algorithms (of various kinds) or e.g. simple algorithms like 
multi-start [14].  
Evolutionary algorithms are depending on the possibility to 
recombine (and mutate) properties of two or more solution 
candidates [15], i.e. on similarly structured solutions. 
Solutions with different amounts of optimization variables 
are unsuitable, because e.g. a value of one solution’s 
variable cannot be used to modify another solution if it does 
not contain that variable, due to a smaller number of 
gravity-assists. Only solution candidates with the same 
structure can be successfully recombined. Therefore it is 
advisable to create populations of similarly structured 
solutions (i.e. with the same amount of gravity-assists).  
 
This leads to a second type of search, where populations 
with a set value of the number of gravity-assists, are created 
and for each encounter randomly a gravity-assist partner is 
selected (in difference to a forwardly progressing search).  
Another aspect hinders the optimization via evolutionary 
algorithms (resp. algorithms which reuse previous solutions’ 
information in general): The in parts large sensitivity of the 
solution to certain variables of the optimization as variables 
are interlinked as described in the previous section.  
This means that for a recombination and mutation of the 
optimization variables it is likely that good combinations of 
variables are actually separated and lead to less suitable 
results. While even for non-gravity-assist trajectories 
interdependencies exist between variables, the introduction 
of the gravity-assist partners as variable creates one discrete 
variable, which adds a strong sensitivity to the overall 
solution.  
 
Furthermore the interdependency restricts also the 
recombination of variables. The encounters divide the 
trajectory into segments, but these segments need to be 
matched. Arrival dates need to match departure dates resp. 
flight times for example. Thus the search cannot be 
randomly organized.  
 
This has repercussions on the suitability of a search 
algorithm. As evolutionary algorithms depend on using 
information of other solution candidates for new ones and 
thus sorting out “good” properties from “bad” ones, the fact 
that a reasonable exchange, recombination or modification 
of variables is restricted reduces the convergence properties 
of evolutionary algorithms.  



 
3.3. Constraining solutions via Δv gain 
 
To increase the convergence speed of a solution space 
search, it is possible to reduce the solution space size. This 
can be done by e.g. excluding solutions which are obviously 
outside a reasonable mission scenario, e.g. by restricting the 
flight time of a mission to Jupiter to an interval with a lower 
bound, which is assumed as possible. Or by accepting 
solutions only with a certain “quality” of gravity-assists. 
 
Starting from the geometry of the velocity vectors involved 
in a gravity-assist planetcentric description, one can set a 
formula for the Δv gain as [1]: 
 
    Δ𝑣𝑣 = 2 𝑣𝑣∞ sin �𝛿𝛿

2
�, (8) 

 
where v∞ denotes the hyperbolic excess velocity and δ the 
turning angle between incoming and outgoing velocity 
vector. This can be rewritten as [1]: 
 

   Δ𝑣𝑣
𝑣𝑣𝑠𝑠

= 2 𝑣𝑣∞

𝑣𝑣𝑠𝑠 �1+�𝑣𝑣∞𝑣𝑣𝑠𝑠
�
2
�
𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟
𝑟𝑟𝑠𝑠

��
 , (9) 

 
where vs is the circular orbit speed at the gravity-assist 
partner’s surface, rs the partner’s radius and rper the 
pericenter distance of the fly-by hyperbola. The definition of 
the circular orbital speed is: 
 
   𝑣𝑣𝑠𝑠 = �

𝜇𝜇𝑝𝑝𝑝𝑝
𝑟𝑟𝑠𝑠

 , (10) 

 
where μpl is the gravity-assist partner’s (planet’s) gravity 
parameter. Combining Eq. (10) and Eq. (9), the latter can be 
rewritten as:  
 
   Δ𝑣𝑣 = 2 𝑣𝑣∞

1+𝑣𝑣∞2 ∙ 
𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟
𝜇𝜇𝑝𝑝𝑝𝑝

 . (11) 

 
Eq. (11) is important, because it directly links the boundary 
condition between the heliocentric and planetcentric 
coordinate systems, i.e. v∞, with the planetcentric trajectory 

 
Figure 4: The Δv gain of a gravity-assist maneuver as function of hyperbolic pericenter distance rper  and hyperbolic excess velocity v∞ 
for the example of an Earth fly-by (μpl = 3.98 · 1014 m³/s²). 

. 



via the planetcentric pericenter distance (of the hyperbolic 
trajectory) rper and the heliocentric energy gain Δv.  
It is also clear that for a given gravity-assist partner (and 
thus a constant μpl) the former two are the only influences 
that can change the Δv. Both are basically random and 
depend on the trajectory leading to the gravity-assist partner, 
i.e. when and where the spacecraft and planet meet. The 
function of Eq. (11) is depicted in Fig. 4 for Earth as a 
flyby-body and it can already be seen that there are extreme 
values present. It is visible that for a decrease in the 
pericenter distance, the Δv gain increases, with the 
maximum for a distance of 0, which is unrealistic, because 
this would place the pericentre within the partner of the 
gravity-assist. 
For the hyperbolic excess velocity the maximum is 
different. Taking a look at the limit values for a varying v∞ 
and a given rper, reveals that for v∞ approaching zero and one 
approaching infinity, the Δv magnitude becomes zero: 

lim
𝑣𝑣∞→0

∆𝑣𝑣 =  
2 𝑣𝑣∞

1 +
𝑣𝑣∞2 ∙ 𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟

𝜇𝜇𝑝𝑝𝑝𝑝

= 0 (12) 

lim
𝑣𝑣∞→∞

∆𝑣𝑣 =  
2 𝑣𝑣∞

1 +
𝑣𝑣∞2 ∙ 𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟

𝜇𝜇𝑝𝑝𝑝𝑝

= 0 (13) 

Eq. (11) is a rational function and continuous (as it is a 
combination of two continuous functions, where the 
denominator cannot become 0 for 𝑣𝑣∞  ≥ 0) in [0,∞) and 
differentiable on the same interval. Therefore it follows that 
according to Rolle’s Theorem [16] there has to be an 
extreme value present, which is also clearly visible in Fig. 4.  
Creating the derivative of Eq. (11) for v∞ via the product 
rule, provides: 

𝜕𝜕∆𝑣𝑣𝐺𝐺𝐺𝐺
𝜕𝜕𝑣𝑣∞

=  
2 

1 + 𝑣𝑣∞2 ∙ 𝑘𝑘
−

4𝑣𝑣∞2 ∙ 𝑘𝑘
(1 + 𝑣𝑣∞2 ∙ 𝑘𝑘)2, 

(14) 

where k is a constant, consisting of the term 𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟
𝜇𝜇𝑝𝑝𝑝𝑝

. To find the 

position of the extreme, v∞,ex, the first derivate has to be 

equal 0: 

     
2 

1 + 𝑣𝑣∞2 ∙ 𝑘𝑘
−

4𝑣𝑣∞2 ∙ 𝑘𝑘
(1 + 𝑣𝑣∞2 ∙ 𝑘𝑘)2 = 0 

⇔
2 

1 + 𝑣𝑣∞2 ∙ 𝑘𝑘
(1 −

2𝑣𝑣∞2 ∙ 𝑘𝑘
1 + 𝑣𝑣∞2 ∙ 𝑘𝑘

) = 0 

⇔𝑣𝑣∞,𝑝𝑝𝑒𝑒 = �1
𝑘𝑘

= �
𝜇𝜇𝑝𝑝𝑝𝑝
𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟

. 

(15) 

To determine whether or not this really is an extreme value 
and of which kind, the second of Δv derivate has to be 
investigated. The second derivative over 𝜕𝜕𝑣𝑣∞ can be written 
as: 
 

𝜕𝜕²∆𝑣𝑣𝐺𝐺𝐺𝐺
𝜕𝜕𝑣𝑣∞²

=  
4𝑣𝑣∞ ∙ 𝑘𝑘

(1 + 𝑣𝑣∞2 ∙ 𝑘𝑘)3
(𝑣𝑣∞2 ∙ 𝑘𝑘 − 3), 

(16) 

Inserting v∞,ex, yields: 
𝜕𝜕2∆𝑣𝑣𝐺𝐺𝐺𝐺
𝜕𝜕𝑣𝑣∞2

(𝑣𝑣∞,𝑝𝑝𝑒𝑒 = �1/𝑘𝑘) =  −√𝑘𝑘 < 0, 
(17) 

This shows that v∞,ex is a maximum, which matches the 
graph in Fig. 2. 
Inserting the result of Eq. (15) into Eq. (11) reveals the 
maximum possible Δv for a given rper to be: 

Δ𝑣𝑣𝑚𝑚𝑚𝑚𝑒𝑒 =
1
√𝑘𝑘

= �
𝜇𝜇𝑝𝑝𝑝𝑝
𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟

. 
(18) 

This is equals the circular orbit velocity for the pericenter 
distance of the hyperbola and also equals v∞,ex. It also means 
that knowledge of just rper leads to knowledge of the 
possible Δv gain. 
The influence on Δv due to a change of the pericenter 
distance rper is expected. The closer the spacecraft is to the 
gravity-assist partner during the hyperbolic pericenter 
passage, the stronger its influence and therefore effect on the 
turning angle δ resp. the Δv-gain. However the pericenter 
distance is restricted by physical properties (e.g. the gravity-
assist partner’s body radius) and also system properties of 
the spacecraft. Radiation or atmosphere effects need to be 
regarded when designing the fly-by trajectory. Therefore the 
possible maximum is influenced by the system and physical 
constraints. 
The influence on Δv due to a change of the velocity at 
infinity v∞ is less straightforward. 
The case of Δv = v∞ can only occur for an equilateral 
triangle, i.e. when the turn angle δ is 60°. The same result 
occurs, when Eq. (8) is transformed and for v∞ the value 
v∞,ex = Δvmax is inserted. In this case Eq. (8) becomes: 

 
which is true for a turn angle δ of 60°. Another expression 
for the turn-angle δ is [17]: 
 

1
𝑒𝑒

= sin �
𝛿𝛿
2
�. (20) 

 

  

   2 arcsin �
1
2
� = 𝛿𝛿,    (19) 



This means the maximum Δv occurs exactly and always for 
an eccentricity of 2.  
Taking a look at Eq. (8), it becomes clear that for small 
values of δ, the Δv-gain is also small, because of the sinus-
part of the term. Subsequently, a larger δ, in the area of 180° 
would be preferable from this point of view, to gain the 
most from this part (for δ = 180°, the sinus becomes 1 as 
only δ/2 occurs in the term). From a theoretical point of 
view, this is to be expected, although realistically it is not 
possible as the radius of the gravity-assist partner is larger 
than 0.   
Figure 5 illustrates that for δ to increase, v∞ has to decrease 
for keeping the same Δv. The change of direction, due to the 
influence of the planet’s gravity, increases the more time is 
spent in its vicinity. Therefore a small approach velocity is 
beneficial for the turn angle δ.  
However, it is evident from Eq. (8) that regarding the Δv, a 
decreasing v∞ directly affects the linear part of the term. 
Both effects balance each other at an angle of 60°, which is 
why there a maximum is found.  
The movement of the spacecraft and the planet are not 
coupled until the spacecraft enters the sphere of influence of 
the gravity-assist partner – the v∞’s direction and magnitude 
are basically random, depending on the location and time 
spacecraft and gravity-assist partner meet (and if the 
trajectory is not timed correctly, these two do not meet at 
all). But the v∞ is the boundary condition that hands over the 
properties of the spacecraft’s trajectory between the 
heliocentric and planetcentric coordinate systems and vice 
versa in case of the outgoing velocity.  
While Eq. (8) shows that a large v∞ benefits the gain from 
the gravity-assist – in the linear part of the equation – it is 
also clear that a small turn angle δ reduces this effect. The 
explanation for this relation is analogue to the effect on the 
turn angle δ: a large v∞ means only a relatively short amount 
of time (relative to a smaller value of v∞) in the planet’s 
vicnity, i.e. less time close to the gravity-assist body and 
therefore subject to its gravitational influence. Consequently 
the amount of turning (i.e. the value for δ) is limited and 
only the turning of the v∞-vector results in the occurrence of 
a Δv gain [1].  
Generally speaking a large magnitude of v∞ is not desirable 
because it: 

• usually needs effort – in terms of energy – to be 
achieved, and 

• the Δv gain decreases after passing v∞,ex. 
 

This relation can and should be exploited when searching 
for optimal gravity-assist sequences for a given mission. 
The selection of to be investigated trajectories could be 
reduced. If the described effect is used for gravity-assist 
sequence optimization, the benefit is its independence of the 
spacecraft’s system properties. The effect depends only on 

the trajectory itself and occurs for low-thrust and impulsive 
missions alike. 
 
If the transfer trajectory and the point of encounter are 
known, this provides a value for v∞ and the planetcentric 
pericenter distance of the spacecraft. This in turn provides 
the theoretically possible maximum Δv resp. v∞,ex, the 
velocity, where the maximum Δv occurs, based on Eq. (15) 
and (18). Any trajectory which has a v∞ that is too far 
distanced from v∞,ex could be discarded, especially if it is too 
large, because in this case more effort than necessary has 
been made to achieve this trajectory, even though it does not 
provide an optimal Δv.  
Basically the diagram in Fig. 4 can be used to “advise” an 
optimization process on which trajectories are worthwhile to 
be investigated and which are not. Trajectories resulting in a 
v∞ outside a certain interval around v∞,ex could be excluded 
from further evaluation, with little effort, simply by 
determining the v∞ related to this trajectory. 
Assuming that a large Δv-gain by gravity-assists reduces the 
propellant mass necessary for a mission and by trying to 
achieve this Δv-gain with as little gravity-assist partners as 
possible (by targeting the area around the maximum Δv-gain 
for each of them) a shorter flight time should be achieved. 
Therefore using the Δv-v∞ relation could improve the 
results, especially if propellant mass is to be optimized (with 
a limit in flight time), which relates directly to the 
achievable Δv-gain. 
 
3.4. Constraining solutions via partner pool 
 
During the optimization of the sequence, possible next 
partners have to be selected. Theoretically every planet (or 
e.g. moon) can be selected, but practically it is unlikely that 
jumping inwards and outwards within the system is leading 
to usable solutions. For example going from Earth to Saturn 
by selecting Mars and Jupiter as partners and then go back 
and select e.g. Venus would likely mean large flight times 
and unnecessary Δv increases for the mission. Therefore it is 
reasonable to restrict the list of possible “next” partners 

 
Figure 5:  Change of the turn angle δ for decreasing 
values of v∞. 

 



when selecting the sequence, depending on the exact 
mission, e.g. by limiting a “back propagation”.  
 
3.5. Optimization methodology 
 
In the previous sections the variables involved with the 
optimization of a gravity-assist trajectory for low-thrust 
missions and their structure has been explained along with 
their repercussions regarding algorithms and search 
strategies. While initially a strategy which would have 
progressed forward in steps and investigate the suitability of 
one further gravity-assist (by benchmarking it with a no-
gravity-assist trajectory), was favored by the author, this 
approach has been dropped. As the number of variables 
varies with the number of gravity-assist encounters, it was 
decided to create populations with similar numbers of 
gravity-assist to be able to recombine certain aspects of the 
solution with each other for finding new solutions.  
Furthermore it has been discussed how in difference to 
impulsive propulsion missions, the Tisserand Criterion is 
not usable to obtain a priori knowledge about a complete 
low-thrust mission as the thrust arcs cannot be described 
with state variables (see Eq. (6), resp. (7)) and thus depend 
on the actual trajectory flown. This means that “mapping” of 
the complete mission is not possible with Tisserand Graphs. 
Also two major ways of restricting the search space have 
been pointed out. 
For the optimization it is assumed that the mission is 
determined by all encounters (including the launch and 
arrival bodies) and consists of trajectories in between these 
encounters. There are variables globally describing the 
mission, e.g. the planet of an encounter, the overall flight 
time, the launch date, and there are variables describing 
locally one encounter, e.g. the hyperbolic excess velocity, 
the turning angle and the time of flight for this segment. 
Global variables also affect local ones. E.g. a change in the 
overall flight time affects the segments’ flight times as their 
sum cannot exceed the overall flight time.  
The following steps are proposed as method for finding a 
low-thrust gravity assist-sequence, assuming the mission 
constraints are known (e.g. target body or launch window): 
 

i) optimize a no-gravity-assist trajectory as 
benchmark for the mission 

ii) create a population of solution candidates for 
each value of the number of gravity-assists 
from 1 to maximum allowed number, which 
then have the same amount of variables within 
a population with random sequences (random 
start all variables) 

iii) optimize the trajectory segments between each 
encounter 

iv) model the gravity-assist effect under 
application of the Tisserand Criterion and 
using e.g. the turning angle as (local, see 
above) optimization variable (possibly 
constrained by e.g. the allowable minimum 
distance to the encountered body, minimum 
being the planet’s radius; otherwise the 
minimum distance can be used as variable 
resulting in a turning angle) and the hyperbolic 
excess velocity 

v) optimize the solution candidates within a 
population via a search algorithm, 
recombination of mission global variables (e.g. 
Launch Date, gravity-assist partners) is 
possible, mission local variables need to be 
defined in dependence to global variables (e.g. 
the launch date of the second trajectory 
segment depends on the arrival date of the first 
one) 

--- repeat until stopping criterion is reached -- 
vi) compare solution with non-gravity-assist 

benchmark for determining final solution 

Step ii) resp. v) can be constrained by the suitability of the 
gravity-assist partner pool, as described in Section 3.4 and 
step iv) can be constrained by the Δv-gain as described in 
Section 3.3. 
The exact variables depend on the model used for the 
trajectory. Currently the author plans to apply shape-based 
methods as mentioned before due to their fast computation 
and thus the inherent ability of evaluating a large amount of 
solutions quickly (as opposed to solving equations of motion 
for each solution candidate).  
For modelling the gravity-assist the Tisserand Criterion can 
be used. First of all it is reasonable to assume that for the 
relatively small part of the trajectory where the encounter is 
placed in, a no-thrust assumption is tolerable. Furthermore 
even if thrust is assumed for this duration, the short amount 
of time in comparison to the overall mission would render 
the integral in Eq. (7) small as well. Thus the gravity-assist 
is modeled by shifting along the graph line as described 
before.  
 

4. OUTLOOK AND CONCLUSION 
 
This paper thoroughly discussed the Tisserand Criterion’s 
application on low-thrust mission design and showed that 
the thrust deviation from the gravity-only situation leads to a 
correction term for the Tisserand Criterion. This term is not 
consisting of state variables and therefore an a priori 



evaluation of a mission sequence is not possible – as 
opposed to impulsive missions.  
Therefore a search strategy addressing this has been 
proposed along with further constraints on the search space 
to speed up the search.  
Currently this methodology is implemented into software 
code (using C++) and will then be tested on its usefulness. 
Furthermore it is to be investigated whether or not 
evolutionary algorithms can be used for this search or if 
only multi-start search (i.e. randomly changing the 
variables) is applicable. Also the suitability of the before 
mentioned constraints will be tested.   
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