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Recent developments on the open-source Molecular Dynamics Code IMD from the Institute of Functional Materials and Quantum

Technologies at Stuttgart University are reported. WhereasIMD supports laser ablation comprising the Two-Temperature Model by

default, reliable simulation data mainly can be found for the femtosecond regime, since laser-matter interaction is implemented by the

Lambert-Beer law solely.

For laser-matter interaction in the picosecond regime, IMD algorithms were modified in order to enable the dynamic recalculation

of the dielectric permittivity of each FD cell for every timestep following the corresponding implementation in the open-source

hydrodynamic code Polly-2T from the Joint Institute of High Temperatures at the Russian Academy of Sciences, Moscow. Thus,

optical changes in material and jet due the temporal evolutionof temperature, density and mean charge are taken into account.

Moreover, as implemented in Polly-2T as well, a dynamic model forthe thermal conductivity of the electron gas is introduced in

IMD to consider effects for a wide range of temperatures.

Thus, hydrodynamic (HD) and Molecular Dynamics (MD) simulations are compared extracting the residual effects of the different

model approaches which persist in a particle-based method (IMD) using an Embedded-Atom potential (EAM) and a finite cell based

approach (Polly-2T) employing the semi-empirical equations of state (EOS) including ionization.

Simulation results are compared with experimental results andliterature data.
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Nomenclature

A : empirical parameter
c : specific heat capacity
e : electron charge
ej : specific energy
F : EAM embedding function
I : intensity
K : empirical function
kB : Boltzmann’s constant
lα : optical penetration depth
m : mass
n : number density; refractive index
P : pressure
R : surface reflectivity
~r : position
S : energy density
T : temperature
t : time
V : potential
v : velocity
Z : mean ionization state
α : optical absorption coefficient
γei : electron-phonon coupling coefficient
ǫ : permittivity
κ : heat conductivity
λ : laser wavelength
ǫ : dielectric permittivity

Λ : Coulomb logarithm
ν : frequency
ξ : FD-MD coupling parameter
̺ : density
τe : electron relaxation time
τi : electron-phonon coupling time
τ : laser pulse length
Φ : laser fluence at the target surface
Φ0 : threshold fluence for laser ablation
φ : EAM core-to-core interaction potential
ω : frequency

Subscripts
abs : absorbed
bb : band-to-band
cr : critical
e : electron

eff : effective
F : Fermi
he : heat conduction in the electron subsystem
i : ion
in : onset of laser pulse
L : laser

met : metal
opt : optical
pl : plasma

sim : simulation
T : thermal



1. Introduction

Polly-2T and IMD are very different codes for the simulation
of ultrashort-pulse laser ablation which can partially attributed
to their strongly varying numerical approaches, namely Hydro-
dynamics and Molecular Dynamics. A first comparison of both
programs was given at the previous HPLA conference1) reveal-
ing similar results for a restricted parameter range as wellas
large discrepancies beyond this range.

Some differences between both codes, however, stem from
the unequal implementation of the physics of laser-matter inter-
action in both programs. Numerical work with IMD was mainly
focusing on so-called cold laser ablation with fs laser pulses
where material changes during laser irradiation are less rele-
vant than with long pulses. With increasing pulse length, how-
ever, the interaction of matter and laser beam becomes more
and more apparent, since optical permittivity, electron thermal
conductivity as well as thermal coupling from the electron gas
to the ion lattice depend both on density and temperature. Since
large gradients of̺, Te andTi might occur during a laser pulse,
absorption of laser energy is subject to significant changesdue
to the laser-induced temporal and spatial fluctuations of temper-
ature and density.

Models that cover a wide parameter range of̺, Te and Ti

are implemented in Polly-2T take into account for these effects.
Their implementation into IMD is the scope of this paper in
order to enable a better comparison of simulation results from
both codes.

2. Theoretical Background

2.1. Two-Temperature Model
Energy deposition by an ultrafast laser pulse into a metal tar-

get can be described by the Two-Temperature Model (TTM)2)

by

ce (Te)
∂Te

∂t
= ∇ [κe (Te)∇Te] − γei (Te − Ti)+S

(

~r , t
)

(1)

ci (Ti)
∂Ti

∂t
= ∇ [κi (Ti)∇Ti ] + γei (Te − Ti) . (2)

where the indices e and i denote the electron and ionic subsys-
tem, resp.,c is the specific heat capacity,T the temperature,
κ represents the thermal conductivity, andγei is the electron-
phonon coupling parameter. For ultrashort laser pulses,κi can
be neglected3) as it is done in Polly-2T and IMD.
2.2. Wide-range Models

In the wide-range models treated in this paper it is assumed
that the transition of the material from the metal phase intothe
plasma phase occurs in the vicinity of the Fermi temperature
TF . Under this assumption, material transport properties canbe
written as an interpolation between the behavior in the metal
phase and the behavior in the plasma phase as sketched in the
following subsections.4)5)

2.2.1. Optical Transport Properties
The electric permittivity of the target material is described by

a temperature-dependent interpolation ofǫmet in the metal phase
andǫpl in the plasma phase

ǫ = ǫpl +
(

ǫmet− ǫpl

)

· e−Aopt·Te/TF (3)

whereAopt is an empirical parameter adjusted to match exper-
imental values.ǫmet is composed of the band-to-band contri-
bution ǫbb which is taken from tabulated data and an intraband
term

ǫmet (ωL, ̺,Ti ,Te) = ǫbb + 1− ne

ncr

(

1+ i νeff,opt/ωL

) (4)

whereωL is the frequency of the laser,̺ is the density of the
material,ncr is the critical concentration of electrons and the ef-
fective collision frequencyνeff,opt as derived in detail in Ref. 4).

In the plasma phase, for temperatures far aboveTF , ǫpl can
be calculated as

ǫpl (ωL, ̺,Te) = 1− ne

ncr
K

(

νpl

ωL

)

(5)

whereK
(

νpl

ωL

)

is an empirical function.
2.2.2. Heat Transport Properties

Similar to Eq. 3, the thermal conductivityκe of the electron
gas can be written as an interpolation from the metal phase to
the plasma phase according to

κe = κpl +
(

κmet− κpl

)

· e−Ahe·Te/TF (6)

whereAhe is an empirical parameter adjusted to match experi-
mental values. In the metal phaseκmet can be calculated accord-
ing to the Drude formalism as

κmet (̺,Ti ,Te) =
π2k2

Bne

3 meνeff,he(Ti ,Te)
Te (7)

wherene is the electron concentration,me the electron mass and
νeff,he the effective collision frequency as shown in Ref. 5).

For the plasma phaseκpl can be calculated as

κpl =
16
√

2 kB (kBTe)
5/2

π3/2Z e4√meΛ
(8)

whereZ is the mean charge of the ions,e is the elementary
charge andΛ is the Coulomb logarithm.

Accordingly, thermal coupling from the electron gas to the
ion lattice can be described in a wide-range approach by

γei (̺,Ti ,Te) =
3 kB me

mi
neνeff,ei (Ti ,Te) (9)

whereνeff,ei represents the corresponding collision frequency.

3. Numerical Codes

3.1. Hydrodynamic Simulations with Polly-2T
3.1.1. Target Material

The thermodynamic material properties are treated in Polly-
2T using semi-empirical two-temperature multiphase equations
of state (EOS) comprising the Thomas-Fermi description of
thermal effects of the electron gas. The EOS provide for tab-
ulated functions forPe (̺,Te), ee (̺,Te), Pi (̺,Ti), andei (̺,Ti)
which allow for the solution of the TTM equations. From the
EOS, the equilibrium mean charge of ions〈Z〉 can be derived as
well.

The phase diagram of aluminum corresponding to the EOS is
shown in Fig. 1.
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Fig. 1. Phase diagram of aluminum according to the EOS used in

Polly-2T, taken from Ref. 6). Abbreviations: sp: spinodal;bn: bin-

odal; g: stable gas; l: stable liquid; s: stable solid; l+ s: stable melt-

ing; l + g: liquid-gas mixture; g+ s: sublimation zone; (g): metastable

gas; (l): metastable liquid; (l+ s): metastable melting; (s): metastable

solid; CP: critical point. Dash-dot lines: isobars; 1: 0 GPa; 2: -1 GPa;

3: -3 GPa; 4: -5 GPa.

3.1.2. TTM
A sound description of the specific simulation assumptions

in Polly-2T is given in Ref. 4). Laser-matter interaction isde-
scribed here by the TTM in a single-fluid 1D Lagrangian form
yielding a modification of Eqns. 1 and 2 by

∂ee

∂t
+Pe

∂v

∂m
=
∂

∂m

[

̺κe
∂Te

∂m

]

−γei (Te − Ti) /̺+S (x, t) /̺

(10)

∂ei

∂t
+ Pi

∂v

∂m
= +γei (Te − Ti) /̺ (11)

whereee andei denote the specific energy of the electrons and
ions, resp.,P is the pressure,mmass,̺ density, and, in contrast
to Ref. 4), radiation transport phenomena are neglected here.
Conservation of mass and energy are granted using

∂ (1/̺)
∂t

−
∂v

∂m
= 0, (12)

∂v

∂t
+
∂ (Pi + Pe)
∂m

= 0. (13)

3.1.3. Transport Properties
In the present version of Polly-2T, which is accessible on-

line 7) for web-based simulations as well, the wide-range mod-
els for ǫ, κe, andγei are implemented. With respect to ther-
mal transport properties, this means that the dependencies
κe (̺,Ti ,Te) andγei (̺,Ti ,Te), cf. Eq. 6 and 9 are considered
in the solver for Eqns. 10 to 13.

With respect to the permittivityǫ, the Helmholtz equation
is solved for the source termS (x, t) in Eq. 10 considering the
spatial and temporal fluctuations of the permittivity due tothe
dependencies given byǫ (ωL, ̺,Ti ,Te), cf. Eq. 3.

3.2. Molecular Dynamics Simulation with IMD
3.2.1. Target Material

Particle interactions in IMD were represented using the em-
bedded atom model (EAM) from Ercolessi and Adams.8) The
potential takes into account the interactions between an atom
and its closest neighbors while introducing a cut-off distance
for longer ranges, thus creating a multi-body problem that can
only be solved numerically. For any given atom inside such a
system the potential can be described as

Vi =
1
2

∑

i, j,i, j

φ
(

r i j

)

+ F

















∑

j

̺e

(

r i j

)

















(14)

whereφ contains the interaction between the cores of atoms i
and j andF describes the interaction of the electron hull of atom
i with all its neighbors while influenced by the local electron
density̺e

(

r i j

)

.
The phase diagram of aluminum corresponding to the EAM

potential is shown in Fig. 2.
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Fig. 2. Phase diagram of aluminum according to the EAM potential

data from Ercolessi,8) and Mishin,9) resp.

3.2.2. TTM
Whereas heat transport in the ion lattice can be described

by the multi-particle interactions using the EAM potential, a
supplementary system had to be added to the MD simulations
to take into account energy absorption and propagation inside
the electron gas. Hence, solving Eq. 1 with a Finite-Difference
(FD) scheme, hybrid simulations are carried out in IMD, where
electron-phonon coupling from the electronic FD subsystem
into the MD core is realized by a dynamic coupling parameter
ξ following

mi
∂2~r i

∂t2
= −~∇Vi + ξ ·mi~vT,i (15)

with

ξ =

1
n

∑n
k=1 γeiVN

(

Te,k − T
)

∑

j mj

(

vT, j
)2

(16)

wherevT,i = vi − vCMS denotes the thermal velocity of thei-th
atom taking into account for the velocity of the center of mass
(CMS) of the corresponding FD cell.
3.2.3. Transport Properties

Since applications of IMD have mainly been focused on cold
ablation, i.e., laser pulses in the femtosecond regime, in the
open-source version of IMD dynamic material parameters were



only implemented partially, in contrast to Polly-2T. The elec-
tron heat capacity is modeled usingce = Te·135 J/(m3K2) which
is rather good comparable to Polly-2T wherePe (̺,Te) and
ee (̺,Te), given by the EOS data, yieldce ≈ Te · 100 J/(m3K2).
Electronic heat conductivity and coupling coefficient, however,
are treated as constants in IMD usingκe = 235 J/(s·m·K) and
γei = 5.69·1017 J/(s·m3·K), resp., for aluminum.

In the original version of IMD, absorption of laser energy
is described by the Beer-Lambert law requiring the amount of
absorbedenergy as input for the MD simulation.

4. Numerical Work

4.1. Code developments
The focus of our work on IMD was the stepwise implementa-

tion of the wide-range models forǫ (ωL, ̺,Ti ,Te), κe (̺,Ti ,Te)
andγei (̺,Ti ,Te) described in section2.2. For a better compari-
son of MD and HD results, wide-range models of Polly-2T were
switched off if not active in IMD, i.e., the upgrades of IMD were
accompanied by corresponding downgrades of Polly-2T.

In the first step, denoted asCold Reflectivity, we as-
sumed fixed material constants and described the optical prop-
erties of aluminum by an optical absorption coefficient of
α = 1.267·108cm−1 corresponding to an optical penetration
depth of lα = α−1 = 7.89 nm and a surface reflectivity of
R = 0.94331. Hence, in our simulations with this version of
IMD, Φabs= R·Φwas taken as input parameter for the absorbed
laser fluence andα was used for energy allocation following
Lambert-Beer. For convenience, an interface was implemented
in IMD for the direct input ofΦ calculatingRandΦabsdepend-
ing on incidence angle and polarization of the laser beam. Ac-
cordingly, the corresponding Polly-2T downgrade simulations
employed a complex refractive index ofn = 1.74+ 10.72 · i
as input parameter. Moreover, in those runs electron thermal
conductivity and electron-phonon coupling coefficient were set
fixed toκe = 235 W/Km andγei = 5.69·1017W/(K ·m3), resp.

In the second step, the wide-range model forǫ was im-
plemented in IMD and re-activated in Polly-2T. Whereas in
Polly-2T absorption of laser energy is implemented using the
Helmholtz equation,α was calculated for each FD cell in IMD
for every time step allowing for a dynamic allocation of ab-
sorbed energy following Lambert-Beer.

Finally, the wide-range model forκe has been implemented in
IMD and re-activated in Polly-2T in addition to the wide-range
model forǫ. The implementation of the wide-range model for
γei in IMD, however, has not been finished successfully yet at
present.
4.2. Simulation Setup

For the incident laser pulse, the temporal course is given by

I (t) = I0 · exp
[

−0.5 · (t/σt)
2
]

(17)

with

I0 = Φ/ (2.507· σt · cosϑ) (18)

whereΦ is the incident laser fluence andϑ is the incidence an-
gle. In the following, we denote the pulse length the full width
half maximum (FWHM) withτ = τFWHM = 2

√
2 ln 2·σt. Simu-

lations were started approximately at the point in timetin before
the laser pulse whereI (tin) = 0.1 W/cm2. With respect to our

related work on laser micropropulsion,10) λ = 1064 nm as laser
wavelength and, for the sake of simplicity, an incidence angle
of ϑ = 0◦ with linear polarized light was chosen. Pulse lengths
of τ ≈ 50 fs, 500 ps, and 5 ps, resp., were chosen in combina-
tion with fluences ofΦ ≈ 0.19, 0.37, 0.74, 1.49, and 2.49 J/cm2,
resp.

Since the dimension of the simulation cells in Polly-2T is
in the nanometer range and therefore rather large, it is not dis-
advantageous with respect to the computational effort to cre-
ate bulk material with a certain thickness, which was chosenas
1 mm here. The shock wave stemming from the ablation event
is supposed to travel with the corresponding speed of sound and
will have no impact on the rear side of the target within the sim-
ulation timetsim.

In contrast to HD simulations, computational time scales lin-
early with the number of particles in IMD. Therefore, samples
with a thickness of 650 nm have been created which is sufficient
for a time span of≈ 100 ps after the laser pulses for shock wave
to travel to the rear side of the sample.1) 20 nm have been cho-
sen as lateral extension of the sample using periodic boundary
conditions.11)

5. Results

5.1. Energy Conservation
Simulations results with the original version of IMD are

shown in Fig. 3. The laser pulse energy is absorbed by the elec-
tron gas and is coupled into the ion lattice.
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Fig. 3. Temporal and spatial evolution of the electron temperature

Te and lattice temperatureTi , results from IMD with constantǫ, κe.

Target material: aluminum,τ = 50 fs,Φ = 0.74 J/cm2.

A comparison of the additional system energy with the ab-
sorbed laser fluence, however, shows, that in several cases the
target appears to acquire more energy than delivered from the
laser pulse, cf. Fig. 4. Even long after the laser pulse, the en-
ergy in the electron subsystem still increases. This unphysical
behavior was already observed in Ref. 1) and can be ascribed
to numerical errors in the FD computation describing the elec-
tron system in IMD since this phenomenon is especially pro-
nounced for large laser fluences in conjunction with very short
laser pulses. Code upgrades have been implemented at the FMQ
yielding a significant improvement for low fluences, cf. Fig.4.
For greater fluences, however, the system energy is still diver-
gent, albeit at a lower level, whereas for very high fluences,i.e.,
Φin = 2.97 J/cm2 in the most cases, simulations were aborted
after computation errors.
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Analysis of the system energy comprising the wide-range
models forǫ andκe reveals that an absorbed fluence of roughly
Φabs ≈ 0.1 J/cm2 seems to be the upper limit for reasonable
system behavior in IMD simulations, cf. Fig. 5. Correspond-
ingly, simulations withΦabs ≥ 0.1 J/cm2 are discarded in the
following. In any case, the course of the system energy shows
an overshoot after the laser pulse, followed by a minimum and
a slow drift upwards. This drift is rather pronounced for high
fluences.

With Polly-2T which has much more coarse spatial resolu-
tion such large energy drifts have not been observed in the given
laser parameter range but at fluences being one order of magni-
tude higher and beyond.
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Fig. 5. Temporal course of the system energy during and after laser

absorption. For higher fluences, a significantly large increase is found

with IMD simulations. Results from hydrodynamic simulations with

Polly-2T are given for comparison (dashed lines).

5.2. Permittivity
For very short laser pulses with moderate intensities, absorp-

tion of laser energy in the cold reflectivity case is comparable
to the findings with implementation of the wide-range model
for the permittivityǫ, cf. Fig. 6. This might be associated with
cold ablationand deduced to the thermal confinement of the
system due to the relaxation timeτe of the electron gas which
prevents a significant change of the target properties during the
laser pulse.
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The picture turns, however, for higher fluences and/or pulse
lengths which can be found most clearly in the results from HD
simulations with Polly-2T, cf. Fig. 7. In this case, a deeperand
faster heat dissipation in the electron gas can be detected com-
paring Fig. 3 with Fig. 8. This can be attributed to the temper-
ature dependency ofǫ that is apparent in the strong changes
of the refractive index which yield a higher optical penetration
depth in the heat affected zone, cf. Fig. 9.
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Te, results from IMD withǫ = ǫ (̺,Te,Ti ) according to the wide range

model. Target material: aluminum,τ = 50 fs,Φ = 0.74 J/cm2.

At the transition from target to vacuum, withlα ≈ 36 nm a
rather high value for the penetration depth is found. This can
be ascribed to the relatively large size of the FD-cells. They
comprise 4 MD-cells containing both vacuum and the surface
layers of the solid target. Hence, a rather low density is cal-
culated for the FD-cell leading to a low absorption coefficient



50

40

30

20

10

0

-10

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
Time t [ps]

P
os

iti
on

 x
 [n

m
]

7 8 9 10 11 12 13

Optical penetration depth l  [nm]

Fig. 9. Temporal and spatial evolution of the absorption length lα,

results from IMD withǫ = ǫ (̺,Te,Ti ) according to the wide range

model. Target material: aluminum,τ = 50 fs,Φ = 0.74 J/cm2.

in the respective cell following the wide-range model for the
permittivity. On the whole, however, this can be regarded asa
residual error with negligible impact on the simulation results
which applies as well for the calculations with the wide-range
model on the electron thermal conductivity, cf. Fig. 10.
5.3. Electron Thermal Conductivity

When the electron gas is heated during laser pulse, the elec-
tron thermal conductivity raises according to the wide-range
model. For the chosen example, an increase by the order of
one magnitude is found at the surface layer of the target, cf.
Fig. 10.

Due to the greater thermal conductivityκe the laser energy is
dissipated into deeper layers of the material, cf. Fig. 11 incom-
parison with Fig. 8. Therefore, heating of the material surface as
well as material expansion are less pronounced than under the
assumption of constantκe. In turn, changes in the permittivity
are rather low compared to the previous case where the wide-
range model was only implemented forǫ. Hence, the overall
absorbed energy is significantly reduced as can be seen from
Fig. 6.

Whereas this decrease of absorbed energy due to the dy-
namic behavior ofκe is very pronounced in IMD simulations,
this trend is much weaker for the results from HD simulations
with Polly-2T, cf. Fig. 7. The reason for this large discrepancy
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Fig. 11. Temporal and spatial evolution of the electron temperature

Te, results from IMD withǫ = ǫ (̺,Te,Ti ) andκ = κ (̺,Te,Ti ) accord-

ing to the wide range model. Target material: aluminum,τ = 50 fs,

Φ = 0.74 J/cm2.

is not quite clear. Sinceκe directly affects the FD scheme for
the electron gas, the above-mentioned problems with the un-
physical increase of energy in the electron subsystem for high
fluences might have a deeper reason that is mirrored here as
well.
5.4. Ablation

It is evident that large deviations in absorbed energy, as
shown in Fig. 6 and Fig. 7, yield a different behavior of the
target material. Therefore, it is meaningful to have a look at the
laser-induced processes with respect to theabsorbedfluence,
irrespective of theincidentfluence, cf. Fig. 12. Whereas it is
straightforward to determineΦabs for the Polly-2T simulations,
for IMD Φabs has to be assessed from its temporal course, cf.
Fig. 5. As an approximation, the point in time where the min-
imum of ∆Φ occurs has been taken in order to minimize the
impact of overshoot and drift. For the 5 ps pulses, however,
drift is apparently present already during the laser pulse,hence,
−tin has been chosen instead.

It can be seen that in the most cases more material is ablated
in the hydrodynamic simulations than in the MD case. Corre-
spondingly, the ablation threshold in Polly-2T is lower than in
IMD, as can be seen as well from the data in Tab. 1. Neverthe-
less, all simulation data are roughly in the range of experimental
results.
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Table 1. Threshold for laser ablation of aluminum, results from hy-

drodynamic simulations with Polly-2T as well as IMD Moleculardy-

namics simulations in comparison with own experimental results15)

and literature data. Indices refer to the level of implementation of the

wide-range models (c: cold reflectivity).

τ λ Φ0 Reference
ps nm J/cm2

0.05 1064 0.3c, < 0.2ǫ , 0.3ǫ,κe, 0.6ǫ,κe,γei Polly-2T
0.05 1064 0.2c, 0.3ǫ , 0.7ǫ,κe IMD
0.1 1240 0.7 12)
0.13 800 0.034 13)
0.5 1064 0.3c, < 0.2ǫ , 0.3ǫ,κe, 0.4ǫ,κe,γei Polly-2T
0.5 1064 0.2c, 0.2ǫ , 0.7ǫ,κe IMD
0.5 1054 ≈ 0.05 14)
5 1064 0.3c, < 0.2ǫ , 0.3ǫ,κe, 0.2ǫ,κe,γei Polly-2T
5 1064 0.3c, 0.2ǫ , 0.3ǫ,κe IMD
10 1064 0.4 15)

When the amount of ablated mass in HD and MD simulations
is compared, the different models for materials have to be taken
into account. Apart from issues related to the wide-range model
of ǫ, κe andγei, underlying EOS in Polly-2T and EAM potential
in IMD, resp., imply different spall strengths for the target ma-
terial which is 2 GPa for Polly-2T and 8.7 GPa for IMD, where
the latter value is taken from the EAM potential of Mishin9)

being rather similar the one of Ercolessi and Adams8) used in
the present MD simulations. The higher spall strength in IMD
is presumably the reason for the typically lower mass removal
and the higher ablation threshold in IMD compared with results
from hydrodynamic simulations.

Ionization is taken into account in Polly-2T in the calculation
of the cell’s specific energy, but neglected in the EAM poten-
tial of IMD. This is supposed to have no significant impact on
the ablated mass but rather on the velocity of the ablation jet
where kinetic energy might be overestimated in IMD.1) In the
calculation of permittivity according to the wide-range model,
however, ionization is implicitly taken into account for both
IMD and Polly-2T being calculated from electron density via
the electron temperature.

6. Conclusion and Outlook

Simulations of laser-matter interaction during an ultrashort
laser pulse have been performed evaluating the usage of wide-
range models for permittivityǫ and electron thermal conductiv-
ity κe as strongly temperature-dependent material parameters.

Since theabsorbedfluence mainly rules the laser-induced
processes in the investigated cases forτ = 50 fs and 500 fs,
substitution of the wide-range models by the input of the effec-
tively absorbed energy, as shown recently,1) can be a suitable
workaround. Forτ = 5 ps, i.e., longer pulse lengths in the range
of the electron-phonon coupling timeτi , however, the dynamic
issue of laser-matter-interaction comes into play and this ap-
proach does not hold any more.

Future work with IMD comprising the wide-range models
requires parallelization of the upgraded code. This is the main
restriction up to now, whereas the standard version is already
parallelized by default.

Taking into account for dynamic material properties for
a wide range of temperatures and density in laser-matter-
interaction, both codes a principally well-suited for the current
work of our group on laser-ablative micropropulsion.10)

3D simulations of surface roughness under multiple spot ab-
lation are needed there for the assessment of corresponding
thrust noise. Such simulations are basically feasible in IMD,
albeit at a much lower spatial scale, as well as with Polly-2T
with a quasi-2D approach neglecting lateral side-effects.16)

However, the mentioned problems in IMD with higher flu-
ences limit its practical use in this field of application since the
anticipated working point for the future microthruster is in the
range of at least 3 to 6 times of the ablation threshold.17)

For future work, implementation of laser-induced ablation
comprising wide-range models presented here into a commer-
cial FEM software is planned.
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