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Abstract 

Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production 

from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the 

manufacture of bipolar plates (BPPs). Stainless steel can be used as an alternative, but it must be 

coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma 

spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by 

physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance 

(ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic 

force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). 

Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and 

they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally 

sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested 

in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 µV h-1. 

The results reported here demonstrate the possibility of using stainless steel as a base material for 

the stack of a PEM electrolyser. 
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1. Introduction 

Hydrogen can be used as an energy vector for renewable energies, such as solar or wind, by using 

water electrolysis systems [1]. Commercially, hydrogen can be electrochemically produced by 

alkaline and proton exchange membrane (PEM) electrolysis [2], but the investment cost of the latter 

is currently almost three times higher than that of the former [3]. However, PEM electrolysers boast 

the advantages of operating at much higher current densities than the alkaline systems [4]. They 

also offer a significant opportunity to reduce costs owing to their compact design, but the lifetime of 

PEM electrolysers at high performance is still unknown. The key components of PEM electrolysers 

that largely determine the cost of the stack are the BPPs [5]. Recently, an EU-funded study reported 

that 51% of the cost of the stack is attributed to the BPPs, followed by 10% corresponding to the 

membrane electrode assembly (MEA) manufacture, and only 8% to the precious metal group 

(PMG) catalysts [6]. Moreover, the stack itself constitutes 60% of the cost of the entire PEM 

electrolyser system. Therefore, there is an urgent need for low-cost bipolar plates to reduce the cost 

of PEM electrolysis technology. The high cost of the BPPs is ascribed to the following:  

i) The use of high-purity Ti as the base material for manufacturing the plates [7]. 

ii) The complicated and difficult machining process of the flow fields on Ti [8,9]. 

iii) The need for coatings on the Ti for reducing the anodisation process [10–13]. The oxide 

layer that is formed on Ti at high potentials decreases the through-plane electrical 

conductivity. This layer is detrimental to the performance of unitised regenerative fuel cells 

(URFCs) operating in electrolysis mode [11,14]. This layer is also expected to have a 

negative effect on the long-term durability of PEM electrolysers. 
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Stainless steel could be used as an alternative, but it must be protected with a highly conductive and 

corrosion-resistant coating. This metal is cheaper and easier to machine than titanium, but it 

corrodes when polarised at high overpotentials in an oxidative medium. Moreover, the ions released 

from the corrosion process poison the MEA of the electrolyser [15,16]. Consequently, a BPP made 

of stainless steel must be protected with a coating as part of the manufacturing process. This coating 

should meet the following requirements:  

i) Corrosion resistance at high voltages (> 2 V), in hot (T = 65 - 80 °C) and acidic 

environments (pH = 0) saturated with O2 

ii) High through-plane electrical conductivity and low ICR 

iii) Strong adherence to the substrate, good mechanical properties under compression and 

minimal differences in the coefficient of thermal expansion within the temperature range of 

the electrolyser 

iv) Low cost material, and facile and scalable deposition technique. The coating process must be 

amenable to stacks with large area (> 1000 cm2) bipolar plates for use in electrolysers in the 

megawatt range 

v) Resistance to H2 embrittlement if the cathode side will be coated as well. 

Requirements (ii), (iii) and (v) are similar to those for coatings for PEM fuel cell (PEMFC) stack 

stainless steel BPPs [17]. However, requirement (i) is much more difficult to overcome in PEM 

electrolysers than in fuel cells, as the later operates at lower voltages than the H2 generator. Figure 1 

shows a scheme of the anode for a PEM electrolyser. The dashed circle indicates the contact area of 

the coated BPP that is most vulnerable to corrosion in the hostile environment described in (i). 

Requirement (iv) is aimed at compact PEM electrolysers in the megawatt range, such as those 

commercialised by Siemens (Germany), ITM power (UK), Proton Onsite (USA) and Hydrogenics 

(Canada). A standard approach for protecting stainless steel BPPs for PEMFCs is to apply a coating 
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with high corrosion resistance and excellent electronic properties [18,19]. Conductive thin films, 

such as Au [20], TiN [21], TiN/C [22], TaN [23], and SnO2:F [24], have been widely evaluated to 

protect PEMFC BPPS from corrosion. However, all these coatings fail to provide the necessary 

protection against corrosion in a simulated PEMFC cathode environment, especially at high 

potentials. It is therefore expected that these coatings will have even less durability when used in 

PEM electrolysis.  

To the best of our knowledge, the use of thermally sprayed coatings for the stainless steel BPPs of a 

PEM electrolyser has not yet been explored. We report herein an electrically conductive and 

corrosion-resistant bi-layer coating for this application. It was deposited by successive VPS and 

PVD magnetron sputtering of Ti and Pt, respectively. The thermal spraying technique is very 

suitable for producing Ti coatings [25–27], although the resulting layers were presumably not dense 

enough and therefore oxidised during the thermal deposition process. Moreover, such coatings have 

never been evaluated under PEM electrolyser operation conditions. The coatings reported here were 

characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray 

diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the ICR was 

measured at various compaction forces. Lastly, an exhaustive electrochemical evaluation was 

carried out on the coatings in both simulated and real PEM electrolyser environments. 

2. Material and methods 

2.1. VPS/PVD of coatings 

The development of the thermally sprayed Ti coatings was reported elsewhere [28]. Briefly, 

titanium coatings were deposited via VPS on sandblasted Crofer® 22 H stainless steel plates of 47 x 

47 x 1 mm3 from ThyssenKrupp VDM (Werdohl, Germany). The substrate was pre-heated to 250 

°C in the vacuum chamber before the spraying procedure. Several parameters such as the type of 



  Page 7 of 41 

plasma torch nozzle, the powder feeding rate, and the plasma gas flow rates of Ar, N2 and H2 were 

carefully chosen to achieve a plasma enthalpy (h) of 21.3 MJ kg-1. A torch sweep rate of 500 mm s-1 

was used. Titanium powder (grade 1, grain size < 45 µm) from TLS Technik Spezialpulver 

(Bitterfeld-Wolfen, Germany) was sprayed in the VPS system at a chamber pressure of 50 mbar to 

avoid the oxidation of Ti. Several coatings with different numbers of Ti layers were thermally 

sprayed on the stainless steel substrates by varying the number of torch sweeps or coating runs. 

Lastly, a full densification of the Ti coating was carried out using a capillary sealing process.  

Pt thin films were deposited on the plasma-sprayed Ti coatings (8 wt% Pt/Ti) via PVD magnetron 

sputtering using a pilot instrument from Von Ardenne Anlagentechnik (Dresden, Germany). The 

surface of the Ti layer was finely sanded, cleaned and argon-etched prior to the deposition of the Pt 

coating to remove the passive layer of TiO2 that forms on Ti in air. The Ar+ etching step was carried 

out by applying 100 V for 5 min under a chamber pressure of 1 x 10-1 mbar. A nominal coating 

thickness of approximately 1.8 µm was aimed for by applying 270 W to the Pt-target for 10 min 

under a chamber pressure of 4 x 10-3 mbar. 

2.2. SEM, AFM, XRD, XPS analyses 

Cross-section images of the Pt/Ti coatings before and after corrosion measurements were taken with 

an SEM Zeiss ULTRA plus (secondary electron detection) with charge compensation. The 

accelerating voltage was 15 kV with a working distance of 8.4 mm. For the AFM investigations, a 

Bruker Multimode 8 AFM (Karlsruhe, Germany) equipped with a Nanoscope V controller and an x-

y closed loop scanner with an open loop z-axis (nPoint, USA) was used in a quantitative nano-

mechanical tapping mode (QNM™, Bruker Corp.). The measurements were performed using PtIr 

coated tips (PPP-NCHPT, 42 N m-1; Nanosensors). The samples were fixed to the sample holder 

with a silver epoxy adhesive. 
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The XPS measurements were performed using a Thermo Scientific ESCALAB 250 ultra-high 

vacuum facility with a base pressure of 1x10-9 mbar. The depth profiles were conducted with 

gradual argon-sputtering and subsequent XPS analysis. For the sputtering process, a Thermo EX05 

ion gun was used with the following settings: 2 x 10-8 mbar Ar partial pressure, 2 kV acceleration 

voltage and 10 mA emission current yielding to an Ar+ current of 4.4 μA in an area of 3 x 4 mm2 

(sputter current density: jAr = 0.37 μA/mm2). An Al-Kα X-ray source (Thermo XR4) and a small-

area lens mode (0.8 mm2) served to ensure that the measuring spot was entirely within the 

sputtering crater. The atomic concentrations of elements in the studied samples were quantified 

using the XPS sensitivity factors provided by Thermo Scientific. A Shirley function was used for 

peak background correction. The sputtering yields were not calibrated and hence, the depth profiles 

were plotted as a function of sputter time (or synonymously, etching time) only. All XPS 

experiments were performed at room temperature. 

The crystalline properties of the coatings were studied by measuring the XRD spectra from the top 

and cross-sections of the samples in reflection mode. A D8 Discover GADDS diffractometer with a 

VÅNTEC-2000 area detector was used for this purpose. The X-ray source consisted of a tuned 

monochromatic and parallel X-ray beam (Cu-Kα) with an accelerating voltage of 45 kV and a tube 

current of 0.650 mA. The tube collimator aperture was 1 mm in diameter. Each XRD pattern was 

measured in four frames with an exposure time of 180 s per frame and a step size of 2θ = 23° 

between frames (first frame θ1 = θ2 = 12°). Rietveld analysis of the spectra was performed with the 

software Topas (Bruker). 

2.3. ICR measurements 

The ICR of the coatings with an interconnecting element was determined following the method 

reported elsewhere [24]. In short, coated samples were placed between two pieces of Toray gas 

diffusion layer (GDL) paper. This sandwich-like arrangement was compressed between two Cu 

cylinders by a hydraulic press. The surface of the cylinders in contact with the Toray paper was 
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cleaned with diluted H2SO4 prior to each measurement. The positive and negative terminals of a 

power supply were connected to the Cu cylinders, and an electrical current of 5 A was applied. The 

voltage difference across the Cu terminals was measured at various compaction pressures. The ICR 

between the Toray paper and the coating was measured by fitting the recorded signal to a reported 

equivalent electrical circuit [29].   

2.3 Corrosion evaluation 

Electrochemical measurements were performed using an Autolab PGSTAT12 

potentiostat/galvanostat and a three-electrode cell containing approximately 1 l of 0.5 M H2SO4 

heated to 65 or 80 ºC, depending on the experiment to be performed. The electrolyte was saturated 

with high-purity O2 (Praxair) for 20 min to simulate the oxidative environment of the anode of a 

PEM electrolyser. A platinum foil and a reversible hydrogen electrode (RHE) from HydroFlex® 

served as the counter (CE) and reference electrode (RE), respectively. As the working electrode 

(WE), a sample holder was manufactured from polyether ether ketone (PEEK) and 18 x 18 mm2 

samples of the coated plates were tightly mounted with a cap and a silicone O-ring. This cap had a 1 

cm2 hole and another O-ring that exposed this area to the electrolyte while keeping the rest of the 

coating dry. Additionally, samples of uncoated Crofer® and a Ti foil (99.99+ Alfa Aesar) with the 

same surface finish as that of the Ti-coated samples were electrochemically evaluated. 

2.4. PEM electrolyser tests 

The anode electrode plate for a 25 cm2 PEM electrolyser cell with a serpentine mono-channel flow 

field design was manufactured from stainless steel 1.4301 and then coated with Pt/Ti. A cathode 

electrode plate with the same design was coated with Au via electro-deposition. A sintered porous 

Ti plate and carbon paper served as current collectors for the anode and cathode, respectively. A 

commercial MEA with a CSN115 membrane, an Ir-based anode and a Pt-based cathode was 

employed. The MEA was flooded overnight with deionised water (DI, 0.2 µS cm-1) to hydrate the 
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membrane. An in-house testing station was built for the PEM electrolyser measurements with O2 

and H2 gas separators, a power supply, a control unit, a computer and a thermostat. The water was 

supplied only to the anode side of by a diaphragm pump at a flow rate of 1.2 ml s-1
. PEM 

electrolysis measurements were carried out at 1 bar. 

3. Results and discussion 

3.1. Physical characterisation and electrical properties 

The Pt/Ti coatings were characterised by SEM and AFM. Figure 2a and 2b schematically show 

cross-sections of Pt/Ti/ss and Pt/ss samples, respectively, indicating the areas that were subjected to 

corrosion evaluation, labelled the corrosion zones in the scheme. Figure 2a and 2b highlight the 

only difference between the two samples, which is a relatively thick layer of Ti between the Pt and 

the Crofer® substrate. Figure 2b also schematises the phenomenon of pitting corrosion that occurred 

on Pt/ss but not on the Pt/Ti/ss sample. Photos of the Pt/Ti/ss and Pt/ss samples after the corrosion 

evaluation are presented in Figure 2c and 2d, respectively. No difference between the corroded (A) 

and non-corroded (B) areas of the Pt/Ti/ss sample can be observed with the naked eye. Conversely, 

it is quite clear that the central area (circle, A) of the Pt/ss sample has been severely damaged after 

the corrosion tests. Severe pitting corrosion led to the formation of small holes under the Pt layer. 

The rest of the surface of the samples (B) was effectively protected from corrosion thanks to the 

silicone O-ring sealing the sample holder. Thus, this area can be used to characterise the original 

coating before performing corrosion measurements. 

SEM analysis on cross-sections of the coated samples was carried out to study the morphology and 

observe the negative effects of corrosion in the simulated PEM electrolyser environment. Figure 3a 

and 3b show the Pt/Ti coating on the Crofer® substrates before and after electrochemical testing. In 

the images, the coating is dense, and all the Ti particles from the feedstock powder that was used in 

the VPS process have been melted. The thickness of the Ti coating (16 coating runs) is 

approximately 120 µm both before and after the corrosion test. Energy-dispersive X-ray 
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spectroscopy (EDX) analysis of the surface of the coating (shown in Figure S1 of the supporting 

information) was performed on the surface of the coating, which revealed that the Ti coating was 

composed of ca. 97 wt% Ti. The remaining 3% corresponds to impurities from the SiC and Al2O3 

suspensions used during the sanding and polishing process, respectively.  

The thin bright line on top of the Ti coating shown in Figure 3a and 3b corresponds to the Pt film 

that was deposited by PVD magnetron sputtering. Magnified images of the Pt layer before and after 

the electrochemical measurements are presented in Figure 3c and 3d, respectively. By measuring 

the thickness of the Pt layer at different locations, the average Pt coating thickness was found to be 

ca. 1.14 µm thick before and 1.07 µm after the corrosion tests. This slight decrease cannot be 

attributed to dissolution of PtO2, and it is much more likely due to experimental error in measuring 

the thickness. No sign of degradation, such as peeling, pitting corrosion or pinhole formation, can 

be observed in the SEM images. 

In contrast, the sample without the thermally sprayed Ti coating, namely Pt/ss, experienced severe 

degradation, which can be observed in the cross-sectional SEM image presented in Figure 3f and 

the corresponding close up in Figure 3h. An image of a sample before corrosion measurements is 

presented in Figure 3e and a cutaway view in Figure 3g. A substantial amount of the Crofer® under 

the Pt coating was removed due to acute pitting corrosion. Thereafter, Fe2+ and Cr3+ were released 

into the aqueous electrolyte that was used for the corrosion measurements. In a real PEM 

electrolyser environment, these ions would poison the MEA, thereby causing a gradual and 

irreversible increase in the cell voltage [15,16]. Furthermore, the surface area below the almost free-

standing Pt layer was enlarged because of the pitting corrosion. This effect was also reflected in the 

electrochemical measurements, which will be discussed in the next section. 

AFM measurements provide topography information on a smaller length scale. Figure 4a and 4b 

show AFM images of Pt/ss before corrosion for the topography and the peak force, indicating sharp 

height differences and therefore enhancement of surface structures. The Pt layer is mostly smooth 
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except for scratches in two directions on the order of 20 - 100 nm in depth caused by polishing the 

stainless steel. The image also shows some undefined grains which may be impurities. For the case 

of Pt/Ti/ss before corrosion in Figure 4c and 4d, these scratches are still apparent with depths of 15 

– 20 nm, but these surface structures are diminished by the Ti layer. The surface of this sample 

shows larger heterogeneities with crevices (350 nm) and elongated holes of approximately 100 nm. 

These characteristics are most likely a consequence of the splat structure of the thermally sprayed 

Ti coating with structure relaxations due to mechanical stresses induced by fast cooling.  

The AFM analysis on Pt/Ti/ss after the corrosion tests is shown in Figure 4e, 4f and 4g for 

topography, peak force and current, respectively. The oxidation of Ti beneath the Pt, with the 

corresponding volume extension, further diminished the substrate scratches, which are now hardly 

visible in the images. The high potentials are an indication of the heterogeneous oxide growth that 

is exhibited by grain accumulation on the investigated surfaces. These areas show a lower electronic 

conductivity, as shown in the current image (Figure 4g) of the same region. However, large 

conductive areas remain, which may be sufficient for effective electrical contact with the current 

collector of the PEM electrolyser. The AFM investigations on Pt/ss after corrosion show a 

deformed but homogeneous surface with many small grains (see Figure S2 of the supporting 

information). Indeed, clear evidence of acute pitting corrosion in the stainless steel substrate can be 

observed in the AFM topography images of the corroded Pt/ss sample. 

The structural properties of the as-prepared Pt and Ti coatings were analysed by XRD. Figure 5a 

shows the XRD spectra measured in reflection mode from the coated surface of Pt/Ti/ss and Ti/ss. 

In both spectra, the stainless steel substrate is unobservable due to the high density and thickness of 

the layers. The spectra fit the pattern of face centred cubic Pt (Powder diffraction file, PDF: 01-087-

0636, S.G. Fm-3m) and hexagonal Ti (PDF: 00-044-1294, S.G. P63/mmc). The lattice parameters 

and mean crystallite size of Pt and Ti layers are summarised in Table 1. The high relative intensity 

of the (111) reflex demonstrates that the Pt nano-crystallites are preferably orientated in this specific 
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direction. The fitted spectra and further information on the spectra refinement can be found in the 

supporting information. 

The XPS spectra of the Ti2p and O1s binding energy regions of as-prepared Pt/Ti/ss are shown in 

Figure 5b and 5c, respectively. The spectra of an anodised sample of Ti/ss are presented as dashed 

lines for comparison purposes. The anodisation enhances the crystallisation of TiO2, which 

significantly reduces the thickness of the mixed TiO2/Ti phase (see Figure S5a of the supporting 

information). For Pt/Ti/ss, the peaks from Ti start emerging after sputtering times of approximately 

150 minutes as a result of the removal of the Pt layer during the ion etching process (compare with 

Figure S5b in the supporting information). The oxygen to titanium ratio of Pt/Ti/ss (after removal of 

Pt) was found to be 28 times lower than the corresponding ratio of a non-anodised Ti/ss sample, 

suggesting the absence of amorphous TiO2 between the Pt and Ti layer. Furthermore, the Ti2p peak 

positions of Pt/Ti/ss (Ti2p3/2 at 454 eV and Ti2p1/2 at 460 eV) and anodised Ti/ss (Ti2p3/2 at 459 

eV and Ti2p1/2 at 465 eV) in Figure 5b unambiguously indicate pure Ti and TiO2, respectively 

[30]. The positions of these peaks further demonstrate that there is no measurable TiO2 between the 

Pt and Ti layers, thereby confirming that the TiO2 was entirely removed in the course of the PVD 

process described in the experimental section. In the case of O1s (Figure 5c), the peak shift between 

these two samples is much smaller; however, the O1s peak of the Pt/Ti/ss sample is located at a 

binding energy approximately 1 eV higher than the corresponding signal of the Ti/ss. Neither the 

XRD nor XPS spectra of Pt/Ti/ss showed any trace of TiO2 after corrosion measurements, 

indicating that the oxide layer under the Pt grew only on small areas and did not crystallise.   

In general, the ICR of coatings for PEMFC bipolar plates is measured using a carbon GDL [20,29]. 

However, in-state-of-the-art PEM electrolysers, a sintered Ti disc is used as the anode current 

collector [31], which is not as compressible as the carbon GDL. Thus far there is no generally 

accepted method in the field of PEM electrolysis for measuring the ICR of a coated BPP. 

Nevertheless, the ICR parameter was used to characterise the electrical properties of the coatings 

presented in this work.  
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The ICR under various compaction pressures on the as-prepared Ti/ss, Pt/ss and Pt/Ti/ss samples is 

presented in Figure 5d. The ICR of the Ti/ss sample gradually decreases as the compaction pressure 

increases. The high ICR at low pressures is a clear indication of the passivation of the coating due 

to the well-known dielectric properties of the semiconducting oxide layer on Ti [32]. Secondly, the 

ICR of Pt/ss and Pt/Ti/ss, measured at a compaction pressure of at 181 N cm-2, is approximately 96 

and 100 mΩ cm-2, respectively. The applied force on the current collector corresponds to a bolt 

torque of slightly more than 10-15 N m depending on the gasket material of the electrolyser [33]. At 

higher compaction forces, the ICR remained virtually the same. This result indicates that a 120 µm 

thick Ti coating does not contribute significantly to the through-plane electrical resistivity of the 

bilayer coating. It also shows that the Ti particles did not oxidise during the VPS deposition, in spite 

of the high temperature of the plasma. In addition, the ion etching procedure prior to the PVD of Pt 

removed the TiO2 on the Ti, as already demonstrated by XPS. Thus, the thin layer of precious metal 

prevented any subsequent passivation of the Ti layer when in contact with atmospheric air. 

3.2. Half-cell electrochemical measurements 

3.2.1. Ti-coated stainless steel 

The thermally sprayed Ti coatings without Pt on the surface were evaluated in a simulated PEM 

electrolyser environment (E ≤ 2 V, pH = 0, T = 65 - 80 °C). Figure 6a shows the first and second 

linear voltammetry scans performed on Ti/ss at 1 mV s-1 in O2-saturated 0.5 M H2SO4 at 65 °C. 

This sample was coated by 16 coating runs which led to a Ti layer thickness of 120 µm. Similarly, a 

high-purity Ti foil and an uncoated plate of stainless steel were measured for comparison purposes. 

The potentiodynamic curve of the Ti/ss sample shows the typical oxidation behaviour from Ti to 

amorphous TiO2 at ca. 0.1 V vs. RHE, followed by a steady passivation of the coating up to 2 V vs. 

RHE, before the dielectric breakdown [34]. At the end of the first scan, a compact amorphous oxide 

layer covered the Ti coating as a result of the anodisation phenomenon in diluted sulphuric acid 

[35]. During the second scan, the current density increased somewhat in the cathodic region. In 



  Page 15 of 41 

addition, the corrosion current (jcorr) decreased almost one order of magnitude, and the corrosion 

potential (Ecorr) was positively shifted by approximately 0.13 V.  

The high-purity Ti foil, which was tested under the same experimental conditions, showed very 

similar potentiodynamic curves as the Ti/ss sample. This result is in good agreement with the EDX 

analysis in the supporting information, which shows that the thermally sprayed Ti coating is 

comparable to the bulk material. The uncoated Crofer® sample presents its well-known potential 

windows corresponding to the active, passive, and transpassive corrosion zones of stainless steel in 

sulphuric acid [36]. If stainless steel is the base material for a PEM electrolyser stack, then the 

transpassive region is of special importance. A large anodic wave appears at ca. 1 V vs. RHE, which 

corresponds to the oxidation of Fe2+ to Fe3+. Beyond this potential, the oxygen evolution reaction 

(OER) occurs, and the applied current density reaches a plateau at 1.4 V vs. RHE. In contrast, the 

current density at 2 V vs. RHE for Ti/ss is ca. 10,000 times lower, indicating that the thermal 

spraying coating fully protected the substrate from corrosion. 

 Chronoamperometric measurements at Econst = 2 V vs. RHE were performed to further evaluate the 

corrosion resistance of the thermally sprayed Ti coating on stainless steel. Figure 6b presents the 

potentiodynamic characteristics of Ti/ss (32 coating runs) before and after a 24 h 

chronoamperometric test. The current-time transient is shown in the inset of Figure 6b. Both 

experiments were carried out in O2-saturated 0.5 M H2SO4 at 80 °C. Similar to Figure 6a, the 

cathodic current of Ti/ss increased substantially after the chronoamperometric test, resulting in a 

high production of H2 bubbles. The shape of the chronoamperometric curve, in the inset of Figure 

6b is characteristic of the anodisation process of Ti [37]. Note that there is no indication of 

corrosion of the stainless steel substrate in Figure 6b, even after exposure to 2 V vs. RHE for 24 h. 

This testing period is much longer that what is normally reported in the literature on coatings for 

bipolar plates of PEMFC [21,23,24]. As shown in the inset of Figure 6b, the current transient does 

not decrease any further with time, indicating that the TiO2 layer does not grow further on the Ti.   
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In another experiment, polished samples of bulk Ti (i.e., foil) and Ti/ss (8 coating runs) were 

anodised for 14.5 h at a constant potential of 2 V vs. RHE in O2-saturated 0.5 M H2SO4 at 80 °C. 

Subsequent chronoamperometric measurements were performed on both samples under the same 

conditions as described above. The current-time transient in Figure 6c showed virtually no 

difference in the electrochemical responses of bulk Ti and Ti/ss. The inset of Figure 6c presents a 

cross-sectional SEM image of the coated sample used for the measurements, and in this case the Ti 

coating is ca. 60 µm thick. The most relevant conclusion from the previous chronoamperometric 

test is that the massive high-purity Ti can feasibly be replaced by a 60 µm thick thermally sprayed 

Ti coating. It possesses at least the same properties and electrochemical characteristics as bulk Ti. 

Therefore, the amount of this metal in the PEM electrolyser stack can be largely diminished. 

Moreover, the costly process of producing a flow field on a BPP can be minimised as machining 

stainless steel is easier than machining Ti.  

3.2.2. Pt/Ti-coated stainless steel   

The corrosion resistance of a thermally sprayed Ti coating on stainless steel was discussed in the 

previous sub-section. While the cost of a Ti-coated BPP is lower than the cost of a BPP completely 

made of Ti, the electrolyser would experience degradation due to the formation of TiO2 on the areas 

of the coating in contact with the current collector. An electro-deposited micro-layer of Pt on the 

BPPs of a URFC can reduce the formation of TiO2, thus improving the performance of the 

electrochemical device [11]. However, a thin layer of TiO2 is formed between Pt and Ti when using 

electrodeposition technique. As shown below, stable and dense Pt layers can be effectively achieved 

by PVD magnetron sputtering without significant TiO2 growth between the Pt and the sprayed Ti 

coating. 

The Pt/Ti coatings were evaluated for corrosion resistance under the simulated operation conditions 

of a PEM electrolyser. For an exact comparison of Pt/Ti/ss and Pt/ss, the characteristics of the 

samples were strictly controlled, namely (i) the same sputtering time and deposition parameters for 
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Pt on uncoated and Ti-coated stainless steel; (ii) the same thickness of the thermally sprayed Ti 

coating, i.e., ca. 120 µm (16 coating runs); and (iii) the same surface finishing prior to Pt deposition. 

No polishing suspensions were used for these samples to avoid abrasive impurities that could 

remain at the Pt and Ti interface. 

The chronoamperometric characteristics of the Pt/ss, Ti/ss and Pt/Ti/ss samples measured under 

Econst = 2 V vs. RHE in O2-saturated 0.5 M H2SO4 at 65 °C is shown in Figure 7a. This temperature 

was selected to match the experimental conditions of the PEM electrolyser test as closely possible, 

which is discussed in the next section. The resulting current-time transients are quite different from 

each other. The high current densities observed for the Pt-coated samples are attributed to the 

generation of molecular oxygen on the surface of the electrodes. In contrast, for Ti/ss, no generation 

of O2 bubbles was observed at all. In the case of Pt/ss, the measured current density increased 

linearly at a rate of ca. 1.7 mA h-1. This slope is a clear indication of pitting corrosion, similar to 

how it occurs on samples coated with TiN [21] and SnO2:F [24] when evaluated in the simulated 

environment of a PEMFC cathode. The [Fe2+] was found to be approximately 27.7 ppm using a 

photometer at the end of the chronoamperometric test.  

In the case of Pt/Ti/ss, the current increased during the first two hours, reaching a maximum value 

after ca. 2.8 h, and it decreased steadily afterwards. This increase in the current density might be 

associated with an electrochemical cleaning of the Pt surface and an erosion of the layer by small 

O2 bubbles. Thereafter, monolayers of PtOx begin to nucleate as a result of the anodisation of the 

precious metal at high potentials [38]. In contrast, the generated current density of Ti/ss is much 

lower than that of Pt/Ti/ss, indicating that the uncoated Ti was passivated. The inset of Figure 7a 

shows a cutaway view of the chronoamperometric characteristic of Ti/ss. After 6 h, the Pt/ss sample 

already showed changes in colour and roughness, as shown in Figure 2d, which indicates serious 

damage to the Pt coating. The same experiment was also carried out on uncoated stainless steel, but 

at 1.5 V vs. RHE, but the experiment was stopped after only 2 h, as the electrolyte was already 

contaminated with ca. 100.8 ppm of Fe2+. The results are presented in the supporting information. 



  Page 18 of 41 

Figure 7b shows the potentiodynamic curves of the Pt-coated samples before and after the 

chronoamperometric test in Figure 7a. For the sake of clarity, only the Ti/ss sample after the 

anodisation was included in the plot. Table 2 summarises some electrochemical parameters 

calculated from the potentiodynamic curves in Figure 7b. The polarisation resistance (Rp) was 

determined using the following equation [39]: 

                                   (1) 

where ßa and ßc are the anodic and cathodic Tafel slopes, respectively, and jcorr is the corrosion 

current density. From 0.3 V up to 1.2 V vs. RHE, the characteristics of the Pt/ss and Pt/Ti/ss are 

very similar, having an Ecorr of 0.92 V vs. RHE and a ßc of ca. 20 mV dec-1. The potential window 

between 0.3 V and 0.9 V vs. RHE is dominated by the oxygen reduction reaction (ORR) on Pt, and 

the formation of PtOx begins above this range. However, the jcorr and ßa of Pt/ss are almost twice 

those of Pt/Ti/ss, indicating that stainless steel is being corroded in the Pt/ss sample. Moreover, at 

1.2 V vs. RHE, a low anodic current begins to emerge gradually for Pt/ss but not for Pt/Ti/ss. 

Subsequent anodic scans on Pt/ss clearly show how the electrochemical surface area (ECSA) of the 

stainless steel beneath the Pt increases gradually. For the sake of clarity, only the first (s1) and fifth 

(s5) scans are shown in Figure 7b; the remaining data are available in Figure S6b of the supporting 

information. These results suggest that a thermally sprayed Ti coating is not necessary below 1.2 V, 

as the Pt layer is sufficient to protect the stainless steel substrate from corrosion up to a certain 

degree. However, above this potential, Fe2+ and Cr3+ begin to dissolve out of the Crofer® substrate, 

thus contaminating the electrolyte. Hence, the unequivocal protection offered by the Pt/Ti coating 

against corrosion, even at higher potentials, makes it superior to the Pt layer deposited on stainless 

steel. Note that PVD coatings have been established as the preferred method for coating the BPPs of 

a PEMFC [19]. However, the results obtained with the Pt/ss sample explain the lack of previous 

reports on PVD coatings for stainless steel BPPs for PEM electrolysers. 
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After performing the chronoamperometric test shown in Figure 7a, the Pt/ss sample exhibited very 

similar electrochemical characteristics to those of uncoated stainless steel above 1.4 V vs. RHE (see 

Figure 6a). Therefore, the OER is now taking place on the corroded voids of the stainless steel 

below the Pt layer. The corroded zones are shown in the cross-section SEM image in Figure 3d. In 

contrast, the current-potential curves of the Pt/Ti/ss were virtually the same before and after the 

chronoamperometric test, thus demonstrating that the bilayer coating fully protected the Crofer® 

substrate over an extended period of time. Furthermore, the Rp of Pt/Ti/ss remained almost the 

same, while for the uncoated and Ti/ss samples, Rp increased considerably as a result of the growth 

of the oxide layer. These results indicate that the Pt/Ti coating preserves its high conductivity even 

after being polarised at 2 V vs. RHE for 6 h. No traces of Fe2+ were detected in the electrolyte at the 

end of the electrochemical experiment for either Ti/ss or Pt/Ti/ss. 

All electrochemical tests were carried out on flat surfaces. However, completely protecting the 

complex geometry of the flow fields of a BPP is still an area of concern. Cross-sections (not shown) 

of proprietary BPPs with the Pt/Ti coating revealed that the protective layer covers all regions of the 

manifolds, the exposed 3D areas of the flow field, the inlet/outlet holes, edges, corners, and even 

some regions of the backside of the BPP. 

3.3. Evaluation of the Pt/Ti coating in a PEM electrolyser 

The Pt/Ti coating was tested in a 25 cm2 PEM electrolyser operating at nominal conditions of 

temperature, pressure and applied loading. The Pt/Ti coating was deposited on the stainless steel 

anode EH. Figure 8 shows the cell voltage vs. current density characteristics at 67 and 76 °C, 

promptly measured after the overnight activation procedure of the MEA described in the 

experimental section. The left inset of Figure 8 is a photo of the coated EH with a serpentine mono-

channel flow field. A cell potential of 1.75 V was measured at 1 A cm-2
, which corresponds to the 

standard performance of state-of-the-art PEM electrolysers [7,40]. At current densities higher than 

1.2 A cm-2, the forward scan differs from the backward scan, which indicates that the cell exhibits 
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mass transport issues. However, this phenomenon is related to the characteristics of the current 

collectors or the flow field design rather than the O2-bubble/water management functionality of the 

Pt/Ti coating.   

The PEM electrolyser was constantly loaded at 1.2 A cm-2 for almost 200 h. The right inset of 

Figure 8 presents the cell voltage and temperature as a function of the operating time. The initial 

cell voltage was approximately 2 V but increased sharply up to 2.12 V after only 5 h of testing. This 

rapid degradation apparently contradicts the results discussed in the previous section. However, this 

negative effect can be easily reversed simply by changing the DI water in the gas separators of the 

system. The degradation in the MEA caused by Fe2+ cannot be reversed without an acid treatment, 

as reported elsewhere [16]. Therefore, the momentary increase in the cell potential vs. time is not an 

indication of the failure of the Pt/Ti coating deposited on the stainless steel EH. The average 

degradation rate of the PEM electrolyser cell was 26.5 µV h-1, which is ca. 10 µV h-1 lower the 

previously reported degradation rate for a 9-cell stack with titanium BPPs operating constantly at 

0.5 A cm-2 [15]. The results of a much longer test and post-mortem analysis will be reported in a 

separate study.  

3.4. Cost reduction and further improvement 

An estimation of the cost of coating a large volume of stainless steel BPPs with Ti was calculated, 

taking into consideration expenses from equipment consumables, feedstock powder and working 

hours. The details of the cost calculation are given in the supporting information. Briefly, coating a 

stainless steel BPP of ca. 1000 cm2 (dimensions: 30 x 30 x 0.3 cm3) with Ti would cost 3.13 USD 

per plate or 30.80 USD m-2 (March 2014). It is possible to fabricate a 1 MW PEM electrolyser stack 

with 25 of these plates. However, the cost of the VPS process greatly depends on the area to be 

coated and the production volume. Currently, coating a single 1 m2 BPP is significantly more 

expensive than coating 10 plates with an area of 1000 cm2 each because handling problems in the 

production process worsen with the increasing sample size, and the investment capital is much 
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higher for a large area coating facility. The cost of the substrates and surface processing with Pt or 

other precious metals is not included in the estimation. 

The use of expensive coating metals and two separate deposition techniques in the manufacturing 

process ostensibly does not represent a significant reduction in cost. However, the Pt/Ti coating 

contains only approximately 8 wt% of Pt, and both deposition techniques are widely implemented 

in the industry. Because the Pt layer did not experience significant degradation, the amount of this 

precious metal can be decreased to a few monolayers deposited on the thermally sprayed Ti coating. 

Moreover, the surface of the Ti coating can be modified with less expensive coatings such as Au 

[14], boron-doped diamond (BDD) [41] or Ir-Ta [10]. Finally, it is important to consider the 

following: (i) No corrosion of the stainless steel substrate was observed using the Ti coating 

reported herein, and (ii) the BPP of PEM electrolysers have no weight or thickness limitations such 

as those for fuel cells. Therefore, it is quite possible to use less noble but cheaper and more 

conductive metals such as ss314, Cu or Al as base materials for the PEM electrolyser stack. Table 3 

summarises the cost and conductivities of these metals in comparison with high-purity Ti. By 

replacing Ti with ss314, Cu or Al as the BPP base material, the manufacturing cost would be 

reduced by 56%, 61%, and 74%, respectively. Another potential cost advantage of these materials 

comes from machining or chemically etching the flow field onto these metals.  

4. Conclusions 

We have reported a conductive and corrosion-resistant coating for stainless steel bipolar plates for a 

PEM electrolyser. This work showed that a 60 µm thick, dense and robust Ti coating produced by 

VPS is sufficient to provide the necessary protection in the anodic environment of a PEM 

electrolyser. A highly conductive and dense Pt thin film subsequently coated via PVD magnetron 

sputtering, which resulted in a 50-fold lower thickness, can prevent the passivation of the Ti 

coating. Thus, a comprehensive solution to the issue of producing corrosion-resistant stainless steel 

bipolar plates has been demonstrated, and the cost of the stack can be reduced. However, the VPS 
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coating thickness should be decreased even further (e.g., 30 µm) to further minimise the production 

costs of a large volume of bipolar plates. Reducing the thickness, eliminating precious metals, and 

substituting cheaper metals for the stainless steel are all subjects of our on-going research.      

Lastly, the coating strategy presented in this work can also be used to protect low-cost bipolar plates 

for PEMFCs and redox flow batteries, in which corrosion under high potentials is a critical issue. 

Producing coatings that meet the requirements of a PEM electrolyser in only one step is still a 

challenge, whether performed by VPS, PVD magnetron sputtering or other techniques.   
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Tables 

Table 1. Structural parameters of Pt and Ti in the Pt/Ti and Ti coatings, respectively, calculated 

using a Rietveld analysis. 

Metal Pt (in Pt/Ti/ss) Ti (in Ti/ss) 

Phase Platinum Titanium 

Space group Fm-3m P63/mmc 

Lattice parameters   

a (Å)                                   3.94146  (10) 2.95359 (19) 

c (Å)                                   - 4.69264(26) 

Cell volume (Å3)                          61.23112 (18) 35.4526 (20) 

Crystallite size (nm) 117.7 (36)  30.37(25) 

Crystal density (g cm-3) 21.1615 (17) 13.45576 (75) 

 

Table 2. Electrochemical parameters including the corrosion potential (Ecorr), corrosion current 

density (jcorr), anode (βa) and cathode (βc) Tafel slopes and polarisation resistance (Rp). The iron 

concentrations ([Fe2+]), which were measured at the end of the chronoamperometric test in Figure 

7a and Figure S6a (supporting information), are listed in the last column.  

 Ecorr/V vs. RHE jcorr/µA cm-2 βa/mV dec-1 βc/mV dec-1 Rp/x 103 Ω [Fe2+]/ppm 

Sample Before After Before After Before After Before After Before After After 

Stainless 
steel (ss) 

0.36 0.54 1.7 0.6 50 56 20 34 3.7 15.3 100.8 

Ti/ss 0.22 0.46 0.71 0.44 99 102 92 73 29.2 42.0 01 
Pt/ss 0.91 0.94 1.22 0.66 53 17 19 21 5.0 6.2 27.7 
Pt/Ti/ss 0.93 0.92 0.73 0.56 29 13 22 15 7.5 5.4 01 
1Below the detection limit of the photometer. 

 

Table 3. Cost and electrical conductivities of potential base materials for BPPs for PEM electrolyser 

stacks. 
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Metal Cost (30 x 30 x 0.3 cm3) in USD 
[42]  

Electrical resistivity (10-8 Ω m) at 273 K [43,44] 

Titanium (≥ 99.6%) 614 39 

Fe/Cr18/Ni10 (ss 304) 268 69.6 

Copper (99.9%) 242 1.54 

Aluminium (99%) 161 2.42 
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Figure captions 

Fig. 1. Cross-sectional scheme of a PEM electrolyser anode. The dashed circle indicates the area of 

contact between the BPP and the current collector (e.g., thin mesh) and the oxygen evolution 

reaction (OER) catalyst layer. This region is the most prone to degradation due to the acidity of the 

environment under high potentials. 

Fig. 2. Scheme of (a) Pt/Ti and (b) Pt coatings deposited on stainless steel (ss), indicating the zone 

of the sample that was submitted to corrosion tests, while the rest was protected by a silicone O-

ring. Photos of Pt/Ti/ss and Pt/ss after the corrosion tests are shown in (c) and (d), respectively. The 

corroded and non-corroded areas used for physical analysis are indicated as A and B, respectively.   

Fig. 3. Cross-sectional SEM images of the Pt/Ti coatings on stainless steel (a) before and (b) after 

corrosion measurements; corresponding magnified views of the interface between the Ti and Pt are 

shown in (c) and (d), respectively. Samples without the Ti layer between the Pt and stainless steel 

(e) before and (f) after the corrosion test; the corresponding cutaways are presented in (g) and (h), 

respectively. 

Fig. 4. AFM images of Pt/ss before the corrosion tests showing (a) topography and (b) peak force; 

Pt/Ti/ss before the corrosion test with (c) topography, (d) peak force; and Pt/Ti/ss after the corrosion 

test showing (e) topography, (f) peak force, and (g) current. 

Fig. 5. (a) XRD patterns measured from the top of the Pt/Ti/ss and Ti/ss surfaces. The inset shows a 

cutaway view of the Pt/Ti/ss spectrum, in which empty and filled symbols correspond to Pt and Ti, 

respectively. XPS (b) Ti2p and (c) O1s spectra of ion etched Pt/Ti/ss. The spectra of an anodised 

Ti/ss sample are shown for comparison purposes. (d) Measurements of interfacial contact resistance 

(ICR) vs. compaction force on the Pt/Ti/ss, Ti/ss and Pt/ss samples as prepared. 
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Fig. 6. (a) Potentiodynamic characteristics of the Ti/ss sample (16 coating runs), Ti foil and 

uncoated stainless steel (ss) samples in O2-saturated 0.5 M H2SO4 at 65 °C. A second scan for the 

Ti/ss sample is also included. (b) Potentiodynamic characteristics of Ti/ss (32 coating runs) before 

and after the anodisation process carried out at Econst = 2 V vs. RHE. The scan rate was 1 mV s-1
. 

The inset shows the corresponding current transient vs. time. (b) Chronoamperometric 

characteristics at Econst = 2 V vs. RHE of anodised Ti/ss (8 coating runs) and bulk Ti. The inset 

shows a cross-section SEM image of the Ti/ss sample used in this experiment. Measurements were 

carried out at in O2-saturated 0.5 M H2SO4 at 80 °C.  

Fig. 7. (a) Chronoamperometric tests on Pt/Ti/ss, Pt/ss and Ti/ss samples. The Pt-based samples and 

Ti/ss were polarised to Econst = 2 V vs. RHE for 6 h and 16 h, respectively. The inset shows a 

cutaway view of the current transient of Ti/ss sample. (b) Potentiodynamic characteristics of the 

Pt/Ti/ss, Pt/ss and Ti/ss samples before and after the corrosion test in (a), carried out at a sweep rate 

of 1 mV s-1. For the sake of clarity only the curves of Ti/ss after the anodisation experiment are 

shown. The first (s1, dotted line) and fifth (s5, dashed line) linear voltammetric scans of Pt/ss are 

indicated as well. The rest of the scans are presented in Figure S6b of the supporting information. 

Measurements were carried at in O2-saturated 0.5 M H2SO4 at 80 °C. 

Fig. 8. Cell voltage vs. current density characteristics of a PEM electrolyser cell with an anode 

electrode holder (EH) made of stainless steel and coated with Pt/Ti. Forward and backward scans 

were performed at 67 and 76 °C, respectively. The left inset shows a photo of the coated EH before 

assembling the cell. The right inset shows the cell voltage and temperature with respect to time 

under a constant loading (Iconst) of 1.2 A cm-2. All the measurements were carried out at 1 bar. 
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A. S. Gago1,*, S. A. Ansar1, B. Saruhan2, U. Schulz2, P. Lettenmeier1, N. A. Cañas1, P. Gazdzicki1, 
T. Morawietz3, R. Hiesgen3, J. Arnold1, K. A. Friedrich1,4 

1Institute of Engineering Thermodynamics, German Aerospace Centre, Pfaffenwaldring 38-40, 
70569 Stuttgart, Germany 

2Institute of Materials Research, German Aerospace Centre, Linder Hoehe, 51147, Cologne, 
Germany 

3 University of Applied Sciences Esslingen, Dept. of Basic Science, Kanalstrasse 33, 73728, 
Esslingen, Germany 

4Institute for Energy Storage, University of Stuttgart, Keplerstraße 7, 70550 Stuttgart, Germany 

*e-mail address: aldo.gago@dlr.de (A. S. Gago) 

 

1. EDX analysis 

Elemental or energy dispersive X-ray analysis (EDX) was carried out on the surface of flat samples 
of Ti/ss to determine the purity of the coatings. Figure S1a and S1b show an SEM image of the 
surface of a Ti coating and the corresponding EDX spectrum, respectively. Only the elements Ti 
(97.04%), C (2.38%), Si (0.52%) and Al (0.07%) were detected. SEM images at higher 
magnifications (not shown) revealed that small particles of SiC from the sandpaper were encrusted 
in the protuberances of the Ti coating. However, these particles do not pose an issue as SiC is 
resistant to corrosion in an acidic environment [1].  

Fig. S1. (a) Topographic SEM image of a Ti/ss coating. (b) EDX spectrum of the area delimited by 
the green square. 

2. AFM analysis of the Pt/ss samples 

Figure S2a and S2b show the topography and peak force images, respectively, on a Pt/ss sample 
after corrosion measurements. The corrosion of the stainless steel substrate is evident from the high 
surface roughness shown in both images. Interestingly, the overall surface is quite homogeneous 
and the corrosion features have similar sizes. A characteristic region illustrating clearly the acute 
pitting corrosion is shown in another topographic image, Figure S2c. Figure S2d presents the 
corresponding adhesion image. Relatively large height differences with areas of high and low 

Ti/ss  Ti/ss  
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roughness can be observed. Especially illustrative of the two distinctive materials is the mapping of 
adhesion in Figure S2d. The area of high roughness corresponds to the formerly underlying steel 
substrate, whereas the smooth areas are associated with the remaining Pt layer. 

 

Fig. S2. (a), (c) Topography, (b) peak force and (d) adhesion AFM images of a Pt/ss sample after 
the electrochemical measurements. 

3. Rietveld analysis 

Figure S3 and Figure S4 show the measured and fitted spectra of the Pt/Ti and Ti coating. Only the 
fitted spectra of the main phase can be observed. The Rietveld analysis was performed using Topas 
4.2 software (Bruker) [2]. The instrumental function was determined using Al2O3 as a reference. 
Lattice parameters, scale factors, preferred crystallographic orientations, and microstructural 
parameters were refined. In particular, Pt/Ti/ss shows a preferential orientation of the crystallites, 
which can be observed from the high relative intensity of the (111) peak at approximately 40°. For 
this reason, it was possible to achieve a satisfactory refinement by selecting only two preferred 
orientations: (111) and (311), in which the fraction for the direction (111) was 0.65 higher than for 
(311). The weighted-pattern residuals (Rwp) of the refinements were 16.38 and 5.18 for the Pt/Ti 
and Ti coatings, respectively.  

Pt/ss  Pt/ss  

Pt/ss  Pt/ss  
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Fig. S3. Rietveld analysis of the Pt/Ti coating. XRD spectrum was fitted with the crystalline phases 
of Pt (Fm-3m) and Ti (P63/mmc). 

 

Fig. S4. Rietveld analysis of the Ti coating. XRD spectrum was fitted with the crystalline structure 
of Ti (P63/mmc). 

4. XPS deep profiles 

Figure S5a and S5b shows the XPS sputtering deep profiles of Ti/ss and Pt/Ti/ss samples, 
respectively. Both samples were exposed to air before the sputtering process. Figure S5a shows that 
the Ti surface is passivated by a mixed phase of TiO2/Ti or rather an amorphous TiO2 phase. 
Removing the oxide layer takes approximately 250 seconds of sputtering with Ar-ions on the 
thermally sprayed Ti coating. In the case of the Pt/Ti/ss coating shown in panel (b), removing the Pt 
layer by sputtering took more than 8000 s. After removing the Pt, the mixed TiO2/Ti phase could 
not be detected on the Pt/Ti interface. The absence of TiO2 between the Pt and Ti coatings is critical 
for improving the adherence of Pt to the Ti and for reducing the ICR. 

Pt  
Fitted spectra 
Difference between fitted and measured 
spectra 

Pt/Ti/ss 

Ti  
Fitted spectra 
Difference between fitted and measured 
spectra 

Ti/ss  
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Fig. S5. XPS sputtering deep profiles of (a) Ti/ss and (b) Pt/Ti/ss samples. 

5. Corrosion measurements 

Figure S6a shows the chronoamperometric characteristics of an uncoated sample, carried out at 
Econst = 1.5 V vs. RHE in O2-saturated H2SO4 at 65 °C. The experiment could not be performed at 
Econst = 2 V vs. RHE like the rest of the electrochemical measurements as the measured current was 
already over the reading limit of the potentiostat. The experiment was stopped after 1 h and 
reinitiated again afterwards. After two hours, the electrolyte was heavily polluted with Fe2+ and 
Cr3+, giving it a yellowish colour (see photo in Figure S6a). Therefore, further testing of uncoated 
stainless steel was out of the scope of this work.  

Figure S6b is an enlarged cutaway view section of Figure 7b in the main text between 1 V and 1.9 
V vs. RHE, including the five linear voltammetric scans that were performed on the Pt/ss sample 
prior to the chronoamperometric test. This figure shows how the electrolyte was gradually accessing 
the stainless steel substrate, which resulted in pitting corrosion during each scan. The threshold 
potential is ca. 1.15 V vs. RHE, at which Fe2+ starts oxidising to Fe3+. At the end of the 
chronoamperometric test, a sharp increase in the current density was measured, which also occurred 
case for an uncoated sample. In contrast, the Pt/Ti/ss sample did not show any increase in the 
current density before 1.4 V vs. RHE, either before or after the chronoamperometric measurements.   

Fig. S6. (a) Chronoamperometric test on uncoated stainless steel (ss) substrate, carried out at Econst = 
1.5 V vs. RHE in O2-saturated H2SO4 at 65 °C. A photo of the electrode holder immersed in the 
electrolyte is shown in the inset. (b) Potentiodynamic characteristics of the Pt/Ti/ss and Pt/ss before 
and after a chronoamperometric test at Econst = 2 V vs. RHE, performed in O2-saturated H2SO4 at 65 
°C at a sweep rate of 1 mV s-1. Scans 1 (s1) to 5 (s5) of Pt/ss before the chronoamperometry are 
also indicated. 

6. Cost of Ti coating for industrial scale 

The vacuum chamber of the thermal spraying facility at the DLR is fitted with a hexagonal turn 
table that is capable of holding 6 2500 cm2 plates and performing 4 runs per day. Therefore, an area 
of 60,000 cm2 can be sprayed with Ti in 8 hours by a batch-process vacuum plasma spraying (VPS). 
In low-volume batch production, some of the major expenses arise from idle time during which no 
spraying is performed, including substrate heating cooling in chamber, vacuuming and de-
vacuuming the large vessel. In large volume production, coating costs can be reduced significantly 
by depositing the part to be coated in continuous-processing equipment consisting of a substrate 
exchanger, heater and a vacuum plasma coating chamber. A stack of stainless steel substrates would 
be introduced into the equipment and heated up prior to the coating of each substrate. Using a 
defined set of process parameters and double powder injection, it would take ca. 64 seconds to 
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produce a 120 µm thick Ti coating on a 1000 cm² area, leading to a throughput of 56 substrates per 
hour using equipment with one plasma gun. Considering a production unit with three automated 
spray guns and support robots for handling the substrates in one chamber, overseen by one trained 
technician, the cost of vacuum coating stainless steel bipolar plates with Ti can be estimated as 
follows: 

Total throughput per hour: 168 pieces 

Labour cost per hour: 66 € 

Equipment cost per hour: 96 € (working in 2 8-hour shifts per day, 5 days per week) 

Ti powder per piece: 1.44 € (powder price 40,000 € per MT) 

Other consumables (gases, electricity, etc.) per piece: 0.31 € 

Net cost per 1000 cm2 bipolar plate = 2.91 € per piece = 3.13 USD or 30.8 USD per square metre of 
bipolar plate (March 2014) 

Labour and equipment costs per hour were taken from the current salary of a technician and the 
actual market price which DLR offers for the use of its plasma spraying facility. 
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