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Abstract—Time series prediction relies on past data points
to make robust predictions. The span of past data points is
important for some applications since prediction will not be
possible unless the minimal timespan of the data points is
available. This is a problem for cyclone wind-intensity prediction,
where prediction needs to be made as a cyclone is identified. This
paper presents an empirical study on minimal timespan required
for robust prediction using Elman recurrent neural networks.
Two different training methods are evaluated for training Elman
recurrent network that includes cooperative coevolution and
backpropagation-though time. They are applied to the prediction
of the wind intensity in cyclones that took place in the South
Pacific over past few decades. The results show that a minimal
timespan is an important factor that leads to the measure of
robustness in prediction performance and strategies should be
taken in cases when the minimal timespan is needed.

I. INTRODUCTION

Computational intelligence methods have shown to be ro-
bust methods for time series problems [1]. Amongst popular
computational intelligence methods, evolutionary neural net-
works have shown good potential for time series prediction
[2], [3]. Recurrent neural networks (RNNs) due to their
architecture are well-suited for modeling temporal sequences
[4].

Tropical cyclones have aroused much attention due to their
destructive nature [5]. Statistical models have been previously
used to forecast the movement and intensity of the cyclones.
Climatology and Persistence (CLIPER) is one of the computer-
based forecast models which was able to give 5 days predic-
tion, i.e., 72 hours of cyclone intensity [6].

Statistical hurricane intensity prediction scheme (SHIPS)
has also been used for cyclone intensity forecasts although
restricted to storms over the ocean only [7]. There has been
a growing interest in computational intelligence techniques
for cyclone prediction systems [8], [9]. Cyclone path and
wind intensity prediction are seen as a time series problem.
In the past, cyclone wind-intensity [10] and track prediction
[11] have been tackled by cooperative neuro-evolution of

recurrent neural networks. Track prediction was tackled as a
two-dimensional time series problem where the latitude and
longitude of the cyclone tracks were involved [11]. The results
have been promising for cyclones in the South Pacific region.

The time span is a windowed snapshot of taken at regular
intervals the observation period for a time series data [12].
The minimal timespan is an important factor when it comes
to predicting the nature cyclones in terms of track and wind
intensity. Cyclone path and track prediction need to be made
as soon as possible when a cyclone is identified. It is important
to identify if a prediction model can work with the shortest
duration after which time series prediction can begin, i.e if the
cyclone data is recorded every 6 hours, an important issue is
the minimal timespan required to make a prediction. Robust
predictions can be vital in reducing the impact of the calamity
of cyclones through efficient planning and management.

This paper presents an empirical study on minimal timespan
required for robust prediction using Elman RNNs. We train a
prediction model and test it for robustness regarding minimal
timespan. We perform this by training it with different size of
timespan and using a different size for testing. For instance,
in the case of cyclone wind-intensity prediction, this could
be 36 hours ( 6 data points recorded every 6 hours) for
training and then testing it with 12 hours ( 2 data points
recorded every 6 hours). Therefore, in this case, there is a
need to evaluate the quality of prediction within 12 hours
when a cyclone is formed. We run several different types
of experiments to test the robustness of Elman RNNs using
two different training methods that include cooperative neuro-
evolution and backpropagation-though-time. the training set in
the test set set[13]. each of the

The rest of the paper is organized as follows. We give a
brief background on neural networks for cyclone modeling and
prediction in Section II, followed by a detailed presentation
of the methods used for identifying the minimal timespan
in Section III. Section IV presents the overview of minimal
timespan problem. We discuss our experimental results in
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Section V and conclude with directions for future research
in Section VI.

II. BACKGROUND AND RELATED WORK

A. Neural Networks for Cyclones

Neural network regression models have been used for the
prediction of the maximum potential intensity of cyclones
[8].The error back-propagation learning algorithm was used
in a feedforward neural network with two hidden layers with
binary triggers that dynamically triggered the neurons based
on the regressions of the inputs. The proposed model provided
satisfactory results on Western North Pacific tropical cyclones
[8]. A model inspired by the human visual system consisting of
a multi-layered neural network architecture with bi-directional
connections in the hidden layers was introduced by [14].
The prediction of the direction of movement from previously
unseen satellite images showed good performance.

A hybrid neural network model that clusters input data using
self-organizing maps and feeds data from the different clusters
to separate networks for training and prediction was proposed
[15]. The method was used for forecasting actual typhoon-
rainfall in Taiwan’s Tanshui river basin. It showed improved
performance over the conventional prediction methods.

An investigation was done on the impact of varying the
number of layers and the number of neurons per layer for the
prediction of the direction and intensity of cyclones over the
North Indian Ocean [16]. The study found that an increase
in the number of hidden layers improved the accuracy of the
forecast while the number of nodes in the hidden layer had
no significant effect on performance. An approach combining
a multilayer perceptron with a neuro-fuzzy model for the
prediction of a cyclone’s track and surge height of cyclones for
the same cyclone data showed good prediction performance
[17]. Chandra et al. [11] proposed a method for cyclone
track prediction based coevolution of Elman RNNs for the
South Pacific where the latitude and longitude were treated
as separate dimensions. A similar approach was used for the
prediction of wind intensities [10].

III. PROBLEM DEFINITION AND METHODOLOGY

In this section, we identify the minimal timespan prediction
problem and give details of the model that will be used
to analyse the problem. We use Elman RNN as prediction
model and two distinct training algorithms that include back-
propagation through time and cooperative neuro-evolution.

A. Problem Definition: Minimal Timespan Prediction Problem

Weather prediction involves time series prediction for natu-
ral phenomenon such rainfall prediction, cyclones, tornadoes,
wave surges and droughts[18], [19]. One needs to check how
fast the prediction model can make a decision when the event
occurs. If the model is training over specific months for rainy
seasons for a decade, the system should be able to make a
robust prediction from the beginning of the rainy season. We
define the event length as the duration of an event which can

Fig. 1. Cyclone wind intensity time series showing relation between training
and testing timespan.

be number of hours of a cyclone or number of days of drought
or torrential rain.

In a conventional time series prediction problem, the large
time series data set needs to be broken down into smaller
sections or snapshots called windows, which is usually taken
at regular intervals [20]. The size of the window is defined as
the timespan. In the case of financial time series, there can be
an issue if a prediction is made according to the division of
stock market per month. When a month begins, one needs to
evaluate an effective prediction model to check the number of
days (data points) one needs in order for the model to make
an efficient prediction.

The same problem lies when it comes to cyclones, one
needs to measure how many hours after the cyclone is detected
the model begin prediction regarding the track, wind or
other characteristics of the cyclone. In the case of cyclones,
predictions need to be made as quickly as possible in order
to provide early warnings to the people so that they can get
prepared. For example, data about a tropical cyclone in the
South Pacific is recorded at six-hour intervals [13]. Therefore,
if the timespan used is 6 data points then, the first prediction
of any system used for predictions would come after 36 hours.
It would take 36 hours to make the first prediction about the
cyclone wind intensity. By that time, a lot of damage would
have been already caused which may have been avoided if
robust and accurate warnings been issued.

The problem with the existing models such as neural
networks used for cyclones and related problems is that we do
not know what would be the minimal time required to reach a



Fig. 2. Elman Recurrent neural network trained with timespan W and tested
with X,Y,Z for identifying the minimal timespan.

decision about the first prediction. We introduce the problem
of minimal timespan that defines the minimum duration needed
for a model to effectively reach a prediction for a given time-
series.

Figure 1 shows a portion of the wind intensity time series
of tropical cyclones in the South Pacific. The event length
is represented by the different color portion of the time series
and it gives the duration of single cyclones. The timespan is of
fixed length and moves through the time-series in a windowed
motion. The movement at some points causes the timespan to
overlap from one event to the other the at the point of transition
of the events (cyclones). The figure shows how we extract two
different timespan values from a single time-series.

Figure 2 shows the experimental method we used to iden-
tify the minimal timespan. The RNN was firstly trained to
predict cyclone wind intensity using a timespan or embedding
dimension W. Later we tested each of the fully trained network
(trained with the separate timespan values) with multiple
values of timespan (3,4,5,6,7,8). The predictions given by
each of the timespan trained and tested with was analyzed
to identify the overall minimal timespan.

B. Methodology: Recurrent Networks for Prediction

RNNs are dynamical systems that use states from previous
time steps to compute current state; they are thus well-suited
for modeling temporal sequences [4]. Elman RNNs use a
context layer to compute the new state from the previous
state and current inputs. The basic components of an observed
dynamical system are represented in an Elman network using
the input, context and the output layer [21].

The change of the hidden state neurons’ activation in Elman
RNNs [4] is given by Equation (1).

yi(t) = f

 K∑
k=1

vik yk(t− 1) +

J∑
j=1

wij xj(t− 1)

 (1)

where yk(t) and xj(t) represent the output of the context state
neuron and input neurons respectively, vik and wij represent

their corresponding weights, and f(.) is a sigmoid transfer
function.

Figure 3 shows the Elman recurrent neural used for cyclone
wind intensity prediction where D represents the embedding
dimension. Input data is preprocessed and it is fed to the RNN
at single time-steps up till the size of the timespan being used
is reached after which the wind intensity is predicted.

The performance of the two methods is measured using the
root mean squared error (RMSE) and the mean absolute error
(MAE) as given in Equation 2 and 3, respectively.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2)

MAE =
1

N

N∑
i=1

|(yi − ŷi)| (3)

where yi and ŷi are the observed and predicted data, respec-
tively. N is the length of the observed data.

We employ two distinct algorithms for training the given
RNN. These include, 1) cooperative neuro-evolution and
2)back-propagation through time which are described in detail
in the sections to follow.

C. Training Algorithm: Cooperative Neuro-evolution

Cooperative coevolution (CC) is an evolutionary algorithm
[22] that has been used to train neural networks and also
known as cooperative neuro-evolution [3]. Cooperative neuro-
evolution employs problem decomposition methods that divide
a neural network into subcomponents and evolves them [23],
[24].

Cooperative neuro-evolution (CNE) has given promising
results for training recurrent neural networks for time series
problems [3]. We employ neuron level problem decomposition
[24] that has shown to be effective for time series problems
whereby each node in the hidden, context and output layer of
the recurrent neural network is regarded as a subcomponent
as shown in Figure 3 [3]. Each subcomponent is implemented
as a sub-population that in principle can employ any evolu-
tionary algorithm. During evolution, all the sub-populations
are evolved for a fixed number of generations in a round-
robin fashion. Cooperation takes place for fitness evaluation
when the best individual from the respective sub-populations
are concatenated and then mapped into the recurrent neural
network that provides the error (RMSE) which becomes the
fitness. This process is repeated until a fixed number of
evaluations is reached as given in Algorithm 1.

D. Training Algorithm: Backpropagation Through-Time

Backpropagation through time (BPTT) is a gradient descent
based algorithm that is most widely used for training RNNs
[25]. The algorithm unfolds a recurrent neural network in
time into a deep multilayer feedforward network and employs
the error back-propagation for weight update. When unfolded
in time, the network has the same behavior as a recurrent
neural network for a finite number of time steps. Algorithm 2



Fig. 3. Elman recurrent neural network used for tropical cyclone wind intensity prediction.

Algorithm 1: Cooperative Coevolutionary Training of
Elman Recurrent Networks

Step 1: Decompose the problem into k subcomponents
according to the number of Hidden, State, and Output
neurons
Step 2: Encode each subcomponent in a sub-population in
the following order:
i) Hidden layer sub-populations
ii) State (recurrent) neuron sub-populations
iii) Output layer sub-populations
Step 3: Initialize and cooperatively evaluate each
sub-population
for each cycle until termination do

for each Sub-population do
for n Generations do

i) Select and create new offspring
ii) Cooperatively evaluate the new offspring
iii) Add the new offspring to the sub-population

end for
end for

end for

shows the BPTT algorithm which was used to train the Elman
recurrent neural network. An epoch is referred to a complete
cycle through all the sets of input and output data.

IV. EXPERIMENTS AND RESULTS

In this section, we provide the details of the experimental
design and results where RNNs are training using cooper-
ative neuro-evolution (CNE) and back-propagation through-
time (BPTT) for the identified minimal span problem. We

Algorithm 2: Backpropagation Through-Time for Training
Elman RNNs

Step 1: Prepare Training and Testing dataset using Taken’s
theorem
Step 3: Initialize the RNN weights with small random numbers
in range [-0.5, 0.5]
for each Epoch until termination do

for each Sample do
for n Time-Steps do

Forward Propagate
end for
for n Time-Steps do

i) Backpropagate Errors using Gradient Descent
ii) Weight update

end for
end for

end for

focus on minimal timespan for tropical cyclone wind intensity
prediction as a case study.

In the testing stage, we pre-process the test dataset using
different values of the timespan. In this way, we evaluate the
effectiveness of the trained RNN for generalization perfor-
mance on different values of timespan from which only value
has been used during training.

A. Data Preprocessing and Reconstruction

We use Taken’s theorem [26] to reconstruct the time se-
ries data into a state space vector. Given an observed time
series x(t), an embedded phase space Y (t) = [(x(t), x(t −
T ), ..., x(t(D − 1)T )] can be generated, where, T is the time
delay, D is the embedding dimension, t = 0, 1, 2, ..., N −
DT − 1 and N is the length of the original time series. The



RNN unfolds k steps in time which is equal to the embedding
dimension or timespan D [3], [27], [28].

We use tropical cyclone intensity data from the Southern
Pacific region [13]. The time series data contained 6000 points
in the training set (tropical cyclones from 1985 - 2005). There
were 2000 points in the test set (tropical cyclones from 2006
- 2013) taken from the data set. All the cyclones in both the
training and testing dataset were all concatenated into a single
data stream to form the complete time series. Cyclones were
placed consecutively in the data set based on their date of
identification in ascending order.

B. Experimental Design

The sub-populations in cooperative neuro-evolution employ
the generalized generation gap with parent-centric crossover
(G3-PCX) evolutionary algorithm [29]. We use the population
size of 200 with 2 parents and 2 offspring that has shown good
results in previous work [3]. In the case of BPTT, we employ a
learning rate of 0.2. In the case of cooperative neuro-evolution,
we provide results for 3 hidden neurons as this showed optimal
results in previous work [10]. We train with different numbers
of hidden neurons in the case of BPTT and then present the
case that gives best results to test different minimal timespan.

The original dataset comprised of cyclones from the past
decades where each data-point was recorded at regular six-
hour intervals. We reconstructed the data in order to test
the effectiveness of the model for prediction within 18 hours
(timespan of 3) and up to 48 hours (timespan of 8). Figure 2
gives more details of the experimental set up used. The neural
network was trained with timespan W and tested with timespan
X,Y,Z.

The implementation of both the designated training algo-
rithms and the cyclone dataset are given Smart Bilo: An Open
Source Computational Intelligence Framework [30].

C. Results

Figure 4 shows the performance CNE and BPTT on the
testing data sets for the varying timespan values from the
cyclone data. Each point in the bar-graph (CNE and BPTT)
gives the performance of the RNN that had been tested with
timespan ranging from 3 up to 8 with increments of 1. The
95% confidence interval reported by RMSE of 30 independent
experimental runs is given by an error bar.

The sub-figure 4(a), 4(b) , 4(c), 4(d) and 4(e) are used to test
the robustness of the CNE and BPTT training algorithms for
evaluating the minimal timespan. We compare the performance
of training algorithms with respect to the varied timespans (
TS ∈ {4, 5, 6, 7, 8}) used in training. Figure 4 (b) has achieved
the best performance which is given by the minimum error.
The timespan of 5 has shown the best performance in testing
dataset given the RNN was trained with timespan of 5. The
best performance was given when the minimum timespan for
testing dataset was the same for the training dataset. Similar
trends were seen with all the other cases of the timespan that
were used in training; except for TS4 as shown in Figure 4(a).
We highlight the case for TS4, where there was only 0.006
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(a) RNN trained with Timespan = 4
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(b) RNN trained with Timespan = 5
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(c) RNN trained with Timespan = 6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

3 4 5 6 7 8

R
M

S
E

Timespan

   

CC
BPTT

(d) RNN trained with Timespan = 7
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(e) RNN trained with Timespan = 8

Fig. 4. Performance of CNE and BPTT in wind intensity prediction in the
testing data set (2006 -2013) for tropical cyclones in the South Pacific.



TABLE I
BEST PERFORMANCE OF COOPERATIVE COEVOLUTION

TS(training) TS (testing) RMSE (Test) MAE (Test)
4 6 0.1312± 0.0378 25.64± 7.749
5 5 0.0314 ± 0.0005 4.962 ± 0.082
6 6 0.0798± 0.0290 15.06± 6.153
7 7 0.0637± 0.0307 11.27± 6.088
8 8 0.0704± 0.0389 11.68± 6.739

difference between timespan 4 and 6. Therefore, we could
still generalize that the same timespan used for training and
testing provide the best performance.

The performance of CNE was able to beat BPTT for higher
Timespans (TS [7 and 8]). CNE also showed good prediction
accuracy for Figure 4.(b) and 4.(c) when the training timespan
was same as the timespan tested that is 7 and 8 respectively.
In lower timespans (TS [4, 5, 6]), BPTT had shown better
performance.

Figure 6 gives the performance for a single run of the
CNE together with the error in prediction. The initial 100 data
points are shown for clear visualizations. The timespan of 5
is compared with timespan 6 and 7. We only used timespan
5, 6 and 7 for visualization purposes as timespan 5 showed
most promising performance as seen in Figure 4(b).

Table I summarizes the best performance of CNE. As shown
by the RMSE and MAE, the best possible value for both
training and testing timespan is 5 as it has the least error.

D. Discussion

We defined minimal timespan as the least possible number
of data points or the smallest window size necessary for time-
series prediction. The results, in general, reveal that the mini-
mal timespan is an important feature to test the robustness of
the prediction model and the training algorithm. Cyclone wind-
intensity prediction was used as it needs robust prediction
model, however, other applications can also be explored to
identify the minimal timespan problem.

In terms of the training algorithm, CNE was able to out-
perform BPTT for the higher timespan. CNE works towards
dividing a larger problem into smaller components and solving
them. The neural network gets larger in size with large
timespan as the RNN unfolds longer in time to cater for the
increased number of inputs. Figure 5 shows the comparison
of the size of unfolded RNN. Timespan TS(4) and TS(7)
are shown where it is evident that larger timespan unfolds
into a larger network in time. Therefore, training the larger
neural network is well suited for CNE as it is an evolutionary
algorithm and the weight updates are done according to fitness
of the entire network and not through gradients as in the
case of BPTT. The results demonstrated that for TS(7) and
TS(8), CNE outperformed BPTT. This is due to the difficulty
of BPTT in back-propagating errors as the size of the network
that unfolds in time gets larger. As shown in the results, in

the cases of smaller timespan, (TS4, TS5, and TS6), BPTT
performs better than CNE.

We found that training and testing timespan need to be same
for best prediction performance. This shows that the RNN’s
we trained were unable to generalize well for the different
timespan tested which implies that our training methodologies
were not robust enough. This reaffirms that the choice of
timespan as a good measure of robustness for the training
algorithms and the prediction model. The challenge in future
research is to develop a strategy that is able to give good
prediction performance regardless of the size of the timespan
in the testing dataset.

The results showed that the minimal timespan TS(5) gave
the best performance. This implies that prediction of the model
can take place within 30 hours from the identification of the
cyclone. Since readings are taken every 6 hours, timespan of
5 is same as 30 hours from the beginning of the cyclone.

V. CONCLUSION

In this paper, we identified the minimal timespan problem
for robust time series prediction with application to cyclone
wind intensity. The minimal timespan has been defined as
the least possible window size necessary to begin time-series
prediction. Back-propagation through time and cooperative
neuro-evolution algorithm were used to train Elman RNNs to
find out the effect of minimal timespan.

According to the results, the minimal timespan is an im-
portant characteristic for robust time series prediction. The
minimal timespan would be useful in training a RNN models
that would be able to enhance predictions in future cases of
cyclones.

According to the cyclone data, the data points were collected
at six-hour intervals, we could predict cyclone wind intensity
quite accurately after 30 hours from the start of the cyclone.
This can enable better preparation for the cyclone, therefore,
reducing the damages caused. The minimal timespan is of
paramount importance when it comes to problems that require
faster prediction as seen with cyclones. The problem of
minimum timespan exists in a wide range of applications,
especially in engineering problems that rely on intelligent
decision making based on minimal data readings by sensors.

In future work, multi-objective and multi-tasking methods
could be used for the minimal timespan problem. Further
applications in other problems such as rainfall and those that
require fast seasonal prediction at beginning of event such as
earthquakes can be explored.
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