
Comparison of Back Propagation and Resilient Propagation Algorithm
for Spam Classification

Navneel Prasad, Rajeshni Singh
UXC Eclipse Ltd.,
Suva, Fiji Islands

e-mail: NPrasad@uxceclipse.com
RSingh-Prasad@uxceclipse.com

Sunil Pranit Lal
School of Computing, Information, and

Mathematical Sciences
University of the South Pacific

Suva, Fiji Islands
e-mail: lal.sunil@ieee.org

Abstract— In this paper we compare the performance of back
propagation and resilient propagation algorithms in training
neural networks for spam classification. Back propagation
algorithm is known to have issues such as slow convergence,
and stagnation of neural network weights around local optima.
Researchers have proposed resilient propagation as an
alternative. Resilient propagation and back propagation are
very much similar except for the weight update routine.
Resilient propagation does not take into account the value of
the partial derivative (error gradient), but rather considers
only the sign of the error gradient to indicate the direction of
the weight update. We show that resilient propagation yields
faster convergence and higher accuracy on the UCI Spambase
dataset.

Keywords- Neural Networks; Back Propagation; Resilient
Propagation; Spam Classification

I. INTRODUCTION
In a relatively short timeframe, Internet has become
irrevocably and deeply entrenched in our modern society
primarily due to the power of its communication substrate
linking people and organizations around the globe. Email
has become one of the most reliable and economical forms
of communication as the number of Internet users has
increased, and individuals and organizations rely more and
more on the emails to communicate and share information
and knowledge. The number of emails has been increasing
all the time; however, this explosive growth comes with a
variety of problems. The number of unsolicited commercial
emails or spam emails has been increasing dramatically over
the last few years.

To overcome this issue, spam filters are introduced. One
of the methods of filtering spam is using neural networks to
intelligently classify an email as a spam or a ham. In order
to use a Neural Network it has to be trained first to get the
optimal weights.

Previous researches have shown that neural network can
achieve very accurate results [1]. On the other hand, there
are disadvantages to the method also. The main
disadvantage of neural network is that it requires
considerable time for parameter selection and network

training. If a poor choice is made for the learning rate,
training momentum or delta values then training will not be
as successful.

A hybrid method that combines neural network and
genetic algorithms for feature selection is presented for
robust detection of spam [2]. Cui et al. proposed a model
based on the neural network to classify personal emails, and
the use of principal component analysis (PCA) as a pre-
processor of neural network to reduce the data in terms of
both dimensionality and size [3]. These studies show that
neural network can be successfully used for automated
email classification and spam filtering. Back propagation
(BP) neural network is the most popular among all the
neural network applications. It has the advantages of
yielding high classification accuracy. However, practical
applications are difficult to be satisfied because of the
problems of slow learning and the likelihood of being
trapped into a local minimum especially when the size of
the network is large. These problems are due to the fact that
the learning of BP neural network is mechanical and
elementary. Many researchers have worked to overcome
these problems, especially the local convergence [4].

Multilayer networks typically use sigmoid transfer
functions in the hidden layers. These functions are often
called "squashing" functions, because they compress an
infinite input range into a finite output range. Sigmoid
functions are characterized by the fact that their slopes
approach zero, as the input gets large. This causes a problem
when you use steepest descent (gradient decent/ back
propagation) to train a multilayer network with sigmoid
functions, because the gradient can have a very small
magnitude and, therefore, cause small changes in the
weights and biases, even though the weights and biases are
far from their optimal values.

In this paper we use resilient propagation to overcome the
drawbacks of back propagation learning. Back propagation
as mentioned previously is slow at converging due to the
gradients having a very small magnitude, which causes
small changes in weights. The purpose of the resilient
propagation (RPROP) training algorithm is to eliminate the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the South Pacific Electronic Research Repository

https://core.ac.uk/display/77223336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

harmful effects of these magnitudes of the partial
derivatives. Only the sign of the derivative can determine
the direction of the weight update; the magnitude of the
derivative has no effect on the weight update. Another most
difficult aspect of the back propagation learning was picking
the correct training parameters. Resilient propagation does
have training parameters, but it is extremely rare that they
need to be changed from their default values. This makes
resilient propagation a very easy way to use a training
algorithm. It also has the nice property that it requires only a
modest increase in memory requirements. Additionally,
resilient propagation is considerably more efficient than
back propagation.

II. RESILIENT PROPAGATION

A. Description
Resilient propagation, in short, RPROP is one of the

fastest training algorithms available. The RPROP algorithm
just refers to the direction of the gradient. It is a supervised
learning method. It works similarly to back propagation,
except that the weight updates is done in a different manner.

In back propagation the change in weight is calculated
with the magnitude of the partial derivative:

!wij (t) =! " xi (t)"" j (t) (1)

where α is the learning rate, xi(t) represents the inputs
propagating back to the ith neuron at time step t, and δ is the
corresponding error gradient.

Resilient propagation, on the other hand, calculates an
individual delta Δij, for each connection, which determines
the size of the weight update. The following learning rule is
applied to calculate delta:

+−

−

−
−−

−
−+

<<<

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

Δ

<
∂

∂
×

∂

∂
Δ×

>
∂

∂
×

∂

∂
Δ×

=Δ

ηη

η

η

10

,

0,

0,

)1(

)()1(
)1(

)()1(
)1(

)(

where

else

w
E

w
Eif

w
E

w
Eif

t
ji

ij

tt

ij

t
ji

ij

tt

ij

t
ji

t
ij

 (2)

The update-value Δij evolves during the learning process
based on the sign of the error gradient of the previous
iteration, and the error gradient of the current iteration,

 . Every time the partial derivative (error gradient) of
the corresponding weight wij changes its sign, which
indicates that the last update was too big and the algorithm
has jumped over a local minimum, the update-value Δij is
decreased by the factor η-, which is a constant usually with a
value of 0.5. If the derivative retains its sign, the update

value is slightly increased by the factor η+ in order to
accelerate convergence in shallow regions. η+, is a constant
usually with a value of 1.2. If the derivative is 0 then we do
not change the update-value.

Once the update-value is calculated for each weight, the
weight-update is then calculated. There are two rules to
follow to calculate the weight-update.

The first rule is that if the current derivative and the
previous derivative retain their signs then Equation 3 is used
to calculate the weight-update.

)()()1(

)(
)(

)(
)(

)(

,0

0,

0,

t
ij

t
ij

t
ij

ij

t
t

ji

ij

t
t

ji

t
ij

www

else
w
Eif

w
Eif

w

Δ+=

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<
∂

∂
Δ+

>
∂

∂
Δ−

=Δ

+

 (3)

If the current derivative is a positive value meaning the

previous value was also a positive value (increasing error),
then the weight is decreased by the update value. If the
current derivative is negative value meaning the previous
value was also a negative value (decreasing error) then the
weight is increased by the update value.

The second rule is that if the current derivative and the
previous derivative have changed their signs i.e. there was a
big step taken then chances are that a minimum was missed.
To avoid such big jumps, the weights need to be reverted to
the previous state.

0*,
)()1(

)1()(<
∂

∂

∂

∂
Δ−=Δ

−
−

t

ij

t

ij

t
ij

t
ij w

E
w
Eifww (4)

If the weight was reverted then the previous derivative

needs to also be changed, otherwise when the weight is
updated again then it will reapply the same changes,
repeating this scenario. Therefore, the previous derivative
 is set to 0.

B. Parameters
Resilient propagation uses the following parameters, Δ0,

Δmax, Δmin, η+ and η-.
Δ0 is the initial value of the delta update-value Δij. This

value is set to 0.1. Martin Riedmiller, has proved that the
choice of this parameter is not critical at all. Even for much
larger or smaller of this value, fast convergence is achieved.
Δmax, is the maximum value a delta update, Δij, can have.

This value is set to 50. Δmin, is the minimum value a delta

)1(−

∂

∂ t

ijw
E

)(t

ijw
E

∂

∂

)1(−

∂

∂ t

ijw
E

TABLE I

ATTRIBUTES OF SPAMBASE DATASET

Num of
Attributes Data type Range Description

48 Real [0,100] Word frequency expressed as a
percentage

6

Real

[0,100]

Char frequency expressed as a

percentage

1

Real

[1,…]

Average length of

uninterrupted sequences of
capital letters

1

Integer

[1,…]

Average length of

uninterrupted sequences of
capital letters

1

Integer

[1,…]

Total number of capital letters

in the e-mail

1

Nominal

{0,1}

Class attribute

{0=Ham, 1= Spam}
 58 Total Attributes

update, Δij, can have. This is set to a very low positive
value, 1e-6.

The η- was given a value of 0.5. η- value is used as a
reducing factor when the derivative has changed sign. This
is usually a big jump, probably missing the minimum. Since
it is not known by how much the minimum was missed, it is
a good guess to halve the update-value by using η- = 0.5. On
the other hand, η+ has to be large enough for fast growth.
However, if it is too large a value then learning process can
be disturbed. η+ was chosen as 1.2. It is stated in [5] that
experiments were done to alter this value to see performance
but changing the value did not make any difference to the
convergence time, therefore it is advised to keep these
constants with their default values.

C. Algorithm
Putting together the concepts discussed in the previous

section, results in the following algorithm.

}
}

)()()1(

)()()(

{

0)()1(

}

0)(

)1()()1(

)),1(max()(
{

0)()1(

}

)()()1(

)()()(

)),1(min()(
{

0)()1(

{

min

max

twtwtw

tt
w
Esigntw

thent
w
Et

w
Eelseif

t
w
E

twtwtw

tt

thent
w
Et

w
Eelseif

twtwtw

tt
w
Esigntw

tt

thent
w
Et

w
Eif

biasesandweightsallfor

ijijij

ij
ij

ij

ijij

ij

ijijij

jiij

ijij

ijijij

ij
ij

ij

jiij

ijij

Δ+=+Δ

Δ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=Δ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∂
∂

×−
∂
∂

=
∂
∂

−Δ−=+Δ

Δ−Δ×=Δ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
<

∂
∂

×−
∂
∂

Δ+=+Δ

Δ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=Δ

Δ−Δ×=Δ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
>

∂
∂

×−
∂
∂

−

+

η

η

D. Discussion
Both back propagation and resilient propagation

technique work in similar manner. There are three distinct
steps:

1. Perform a regular feed forward pass
2. Process the levels backwards and determine the error
 gradients at each level
3. Apply the changes to the weights

First, a regular feed forward pass is performed. The

output from each level is kept so that the error for each level
can be evaluated independently. Second, the errors are
calculated at each level, and the derivatives of each of the
activation functions are used to calculate gradient descents.
These gradients will be used in the third step.

The third step is where the two algorithms vary. Back
propagation simply takes the gradient descents and scales
them by a learning rate. The scaled gradient descents are
then directly applied to the weights and thresholds. RPROP
keeps an individual delta value for every weight and only
uses the sign of the gradient descent to increase or decrease
the delta amounts. The delta amounts are then applied to the
weights.

III. RESULTS

A. Data Preparation
The dataset used in this experiment is from the UCI

Machine Learning Repository 1 and consists of 4601
instances. The class distribution comprised of 1813 Spam
messages (39.4%) and 2788 Ham messages (60.6%). The
attribute information of the dataset is provided in Table I.

1 http://archive.ics.uci.edu/ml/datasets/Spambase

The data was normalized in the range [0, 1]. Two dataset
were prepared from this single set, training set (80%) and
testing set (20%). Each of these sets had a distribution of
60% ham and 40% spam. From the training and testing set,
five sets were created by randomly selecting email data
from them for training and testing, maintaining the ratio of
hams to spams stated above.

B. Testing Methodology
For our study we implemented two learning procedures:

back propagation learning algorithm and the resilient
propagation algorithm.

The initial network structure contained 57 input neurons
at the input layer, 29 neurons in the hidden layer and 1
neuron in the output layer.

To allow a fair comparison between the two algorithms
they were tested for 5 different threshold values for a fixed
number of epochs (500). The threshold applied to the output
neuron, marks the boundary between spam and ham. The
accuracy and false positive were obtained for each of the
threshold values as an average of five runs per threshold on
five different training sets. These values were then
compared for the two algorithms.

Furthermore, the better of the two algorithms was chosen
and further tested by varying the hidden layers, and the
neuron count in the layers.

C. Accuracy and False Positive Comparison
Both, back propagation and resilient propagation

algorithm were tested on 5 different thresholds with 5 runs
for each threshold. Once this was done the average of the
accuracy and false positive was tabulated for comparison
(Table II).

As seen in Fig. 1, the resilient propagation was able to
converge faster towards better accuracy and false positive
rates.

Also from the results the threshold that produced an
accepted value for the accuracy and false positive was 0.4 in
both the cases. Since resilient propagation produced better
results it was chosen as our learning algorithm for the neural
network.

D. Convergence Comparison
The key design change in the weight update routine of the

resilient propagation algorithm has been attributed to better
convergence characteristics compared to back propagation
algorithm. In order to verify this, both the networks were
run multiple times for 500 epochs at the optimal threshold
(0.4). Fig. 2 shows the convergence rate of both the
propagation algorithms, and confirms that resilient
propagation converges much faster than the normal back
propagation algorithm.

E. Efficiency Comparison
As resilient propagation only considers the sign of the

partial derivative of the delta to update its weights, it is
therefore less computationally intensive, which significantly

TABLE II
ACCURACY AND FALSE POSITIVE FOR DIFFERENT THRESHOLDS

Threshold	
Back	 propagation	 Resilient	 propagation	

FP	 %	 Acc	 %	 FP	 %	 Acc	 %	

0.3	 40.65	 69.14	 24.62	 78.17	

0.4	 35.45	 71.56	 21.97	 77.76	

0.5	 41.29	 68.01	 26.49	 75.32	

0.6	 39.86	 69.73	 23.91	 75.87	

0.7	 42.87	 67.88	 22.87	 77.32	

Fig. 2. Sum square error plotted for for back propagation and resilient
propagation algorithm.

Fig. 1. Distribution of accuracy and false positive for different threshold
values {0.3, 0.4, 0.5, 0.6, 0.7}

Resilient
propagation

Back propagation

reduces the convergence time. Fig. 3 shows the comparison
of the time it takes to train a neural network for 500 epochs
using the two algorithms with the threshold value set to 0.4.

F. Effect of Increasing Hidden Layers on Resilient
Propagation Network

We selected resilient propagation algorithm for further
investigation as it yielded better results compared back
propagation algorithm. To investigate the effect of the
number of hidden layers, the network was tested with 1, 2,
3, and 4 hidden layers. Each hidden layer contained half of
the neurons in the previous layer. The network was run for
500 epochs for all the thresholds to obtain the threshold,
which provided the highest accuracy and the lowest false
positives. The results in Table III, show that still the
threshold of 0.4 provided the best results with one hidden
layer. A network with more than two hidden layers can start
generating arbitrary complex regions in the state space [6]
and end up over fitting the parameters.

G. Effect of Changing Neuron Count
The hidden layer initially consisted of 29 neurons. To

find out the effect of the neuron count on the network, the
number of neurons was altered in the hidden layer. The
neuron counts tested were 15, 20, 25, 30, 35, 40 and 45. The
threshold value of 0.4 was used on a three-layer network, as
a single hidden layer gave better results.

Fig 4 and 5 show the effect of changing the neuron count
at the hidden layer. From the results it is evident that 40
neurons at the hidden layer yielded the best solution.

IV. CONCLUSION
In certain online learning environments, it is sometimes

preferably to get good results in a short period of time than
to wait a long duration for the best result. Resilient
propagation algorithm is similar to back propagation
algorithm for neural networks, except for a key difference,
which relates to how the weights are updated depending on
the sign of the error gradient. Through empirical means, we

Fig. 4. Accuracy rate against the number of neurons at the hidden layer for
a network with single hidden layer trained with resilient propagation.

Fig. 3. Time taken to complete training with 500 epochs

TABLE III
EFFECT OF CHANGING HIDDEN LAYERS

T
h
r
e
s

of Hidden Layers

1 2 3 4
FP
%

Acc
%

FP
%

Acc
%

FP
%

Acc
%

FP
%

Acc
%

0.4 20.9 77.8 26.8 75.8 27.3 74.9 23.8 78.7

0.5 25.1 75.3 25.8 75.6 23.2 78.4 24.4 78.1

0.6 22.7 75.9 27.7 74.5 26.7 75.0 23.4 78.8

0.7 21.7 77.3 26.0 75.8 26.5 74.8 23.2 78.9

Fig. 5. False positive rate against the number of neurons at the hidden layer
for a network with single hidden layer trained with resilient propagation

have evaluated the effectiveness of this key difference in
producing faster convergence and higher accuracy on the
Spambase dataset. This makes resilient propagation a
promising choice for training neural networks for time-
sensitive machine learning applications.

REFERENCES
[1] J. Clark, I. Koprinska, and J. Poon, “A neural network based

approach to automated email classification,” In Proceedings of
IEEE/WIC international conference on web intelligence, Halifax,
Canada, 2003, pp. 702–705.

[2] D. Gavrilis, I. G. Tsoulos, and E. Dermatas, “Neural recognition and
genetic features selection for robust detection of e-mail spam,” In
Proceedings of the 4th Helenic conference on AI, Heraklion, Crete,
Greece. Lecture notes in computer science, 2006, Vol. 3955, pp. 498–
501.

[3] B. Cui, A. Mondal, J. Shen, G. Cong, and K. L. Tan, “On effective e-
mail classification via neural networks,” In Proceedings of the 16th
international conference on database and expert systems applications
(DEXA05), Copenhagen, Denmark, 2005, pp. 85–94.

[4] S. Ma, and C. Y. Ji, A unified approach on fast training of
feedforward and recurrent networks using EM algorithm. IEEE
Transaction on Signal Processing, 1998, Vol. 46(8), pp. 2270–2274.

[5] M. Riedmiller, and H. Braun. “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” IEEE
International Conference on Neural Networks, 1993, pp. 586-591.

[6] S. Haykin, Neural networks: A comprehensive foundation, 2nd
edn. 1998, Prentice Hall, New York

