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Abstract— This paper presents the hierarchical EXIN CCA, 
which represents a novel and reliable approach to complex 
pattern recognition problems. The methodology is based on the 
EXIN CCA, which is an extension of the Curvilinear Component 
Analysis, for data reduction, and neural networks for data 
classification. The effectiveness of this condition monitoring 
scheme is verified in a demanding bearing fault diagnostic 
scenario. 
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I.  INTRODUCTION 

Classical data reduction approaches, based on linear 
techniques, such as Principal Component Analysis (PCA), 
have been discussed by many authors emphasizing its 
limitation about large data sets, because it look for a global 
structure of data. Concerning with this problem, non-linear 
techniques have being used. In this sense, manifold-based 
learning methods have been recently applied. Among them, 
Self-Organizing Feature Map is the most used. This paper 
introduces a novel approach: the hierarchical EXIN curvilinear 
component analysis (h-EXIN CCA), which is suitable for 
complex pattern recognition problems. The basic block is the 
EXIN CCA Neural Network [1]-[4]. EXIN CCA is a variant 
of the Curvilinear Component Analysis (CCA, [5]-[7]), which 
preserves as much as possible the original feature space 
distances without previous data knowledge. CCA is a neural 
network (NN) which uses a data training set for estimating the 
nonlinear projection from the data space to a lower 
dimensional space, its output, here called latent space. In the 
recall phase, by means of the same training algorithm, it 
outputs the projection of a data input. CCA is a better version 
of Sammon mapping [5], because the CCA error (stress) 
function uses weights depending on distances in latent space. 
This paper, which is focused on pattern recognition, considers 
the CCA algorithm weighted by a decreasing exponential. The 
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corresponding error function is the right Bregman divergence 
[8]. Indeed, this function penalizes inconsistent long distances 
and its asymmetry allows a better unfolding of data. 

CCA is only constrained by the preservation of distance 
topology and has two sources of randomness, namely the 
initial conditions and the index sequence of the fixed points in 
the stochastic gradient algorithm. As a consequence, if the 
training is repeated, a different projection is found, which 
results critical in case of classification. In [6] constraints are 
added to let the axis of maximum variance be horizontal: 
however, it is only a partial solution to the invariance problem. 
The EXIN variant of CCA extends the dimensionality 
reduction to the case of changing environment, avoids the 
variability of the projection (CCA only depends on the relative 
positions of points in data and latent space) and allows its 
extension to changing multidimensional data distributions. 
The h-EXIN CCA is a hierarchy of these networks, which 
matches the complexity of certain pattern recognition 
problems, which are hierarchical in nature. Nevertheless, 
unlike most common techniques, the pattern recognition 
problem is not solved by using simply a supervised projection 
technique, but exploits a classification hierarchy of multilayer 
perceptrons (MLP) to output class probability. As a 
consequence, the non-linear projection is non-constrained by 
levels (unsupervised), which allows a more realistic insight on 
data distribution [9]. 

Resuming, the classification is not uniquely based on 
projection, but is a specialized and supervised technique which 
is based on the power of the classification (MLP) step. This 
approach is tested on the classification of bearing faults, which 
is the most common failure problem in rotating machinery 
[10]-[11].  

The continuous supervision of the bearing useful life 
represents an important issue for cost and maintenance savings 
in the industrial sector. A reliable condition monitoring 
scheme applied to rolling elements will allow not only the 
reduction of unscheduled stops, but a safer electrical drive 
operation. Bearing defects under normal operational 
conditions often occur because of material fatigue. The 
bearing faults start from small single point defects that grow 
during the bearing operation and finally become a generalized 
roughness failure [12]. Hence, the reliable detection of the 
earliest bearing fault stage represents a demanding problem. 
Single point defects are classified by the fault specific location 
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in: inner race, outer race and ball faults. Although different 
physical magnitudes such as stator currents or acoustic 
emissions have been considered to develop bearing fault 
diagnosis methodologies, the vibration analysis is the most 
popular in practice [13]. 

Most of the bearing monitoring schemes are based on the 
detection of some characteristic fault harmonic components 
[14]. However, this approach is not a simplistic matter since 
most of the developed diagnosis schemes leads to a delayed 
diagnosis until the characteristic fault frequencies have enough 
presence in the spectra to be clearly localized. Advanced signal 
processing techniques, such as probabilistic models [15], high-
resolution frequency analysis [16] or enhanced wavelete 
decompositions [17]-[18], applied to the measured physical 
magnitude have been also used to obtain reliable fault 
indicators. However, most of these approaches do not deal with 
an earlier single bearing fault identification. 

II. CURVILINEAR COMPONENT ANALYSIS 

One of the most recent and powerful strategies for nonlinear 
feature reduction is based on distance preservation algorithms. 
The curvilinear component analysis is a self-organizing neural 
network which performs the quantization of a data training set 
for estimating the corresponding nonlinear projection from the 
data space to a lower dimensional space (latent space). For 
every pair of different features vectors in the original feature 
space (data space), a between-point distance Dij, is computed, 
Dij =||xi-xj||. The objective is to preserve these distances 
between the same points in the reduced feature space (latent 
space), Lij =||yi-yj||, formed by a reduced set of features. In order 
to face this problem the CCA technique defines a distance 
function threshold, , in order to determine short and long 
distances between feature vectors, Dij. By this way, the CCA 
prioritizes the short distances, which means local distance 
preservation. The basic procedure of the CCA is shown 
schematically in Fig. 1. 

The EXIN CCA right Bregman divergence [8] is given by: 
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being pj the j-th sample to project. The stochastic gradient 
algorithm for minimizing (1) is then: 
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where  (learning rate) and  are scalars. The learning rate 
uses to be fixed at 0.5 to allow a substantial initial step size, 
while , which determines the radius of influence, used to be 
defined as three times the standard deviation of the data set. 
Indeed, this function penalizes long distances and its 
asymmetry allows a better unfolding of data. Although the 
projected topology in the latent space will exhibit the same 
performance, the global position of the projected map in the 
latent space changes at each new CCA execution, as it is 
represented in Fig. 2. That is, the CCA projection is not 
invariant. Indeed, it changes because it is only constrained by 

the distance preservation. There are two sources of 
randomness: the projection of the first sample in the latent 
space, from which the rest of data will be projected, and the 
index sequence of the fixed samples. In the recall phase, by 
means of the same training algorithm, it outputs the projection 
of a data input. 

 
Fig. 1. CCA operation scheme sequence. (a) Seven feature vectors for each 
of the two classes (circles and squares) represented in a three-dimensional data 
space. (b) CCA projection of the first feature vector of one operating condition 
(circle) in the latent space. (c) CCA projection of the second feature vector of 
the same operating condition (circle) in the latent space. Two iterations are 
represented until reach L1-2 ~ D1-2. (d) Resultant CCA projection of the feature 
vectors corresponding to one operating condition (circle). 

 
Fig. 2. Representation of two CCA executions over a same original set of 
feature vectors. The resulting two-dimensional projections are identical, but 
the global latent space position changes. 

III. DIAGNOSIS METHODOLOGY 

The proposed diagnosis methodology is composed of four 
steps: 

1) Feature estimation from the vibration signal. 
2) Feature selection (only the most significant features are 

selected during the training process). 
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Fig. 3. Proposed diagnosis methodology scheme including feature estimation (FE), feature selection (LDA), feature reduction (CCA) and classification (NN). 

 

3) Feature reduction by projecting to the intrinsic data 
dimension. 

4) Classification based on a neural approach (fault diagnosis). 

The complete methodology is represented in Fig. 3. The 
training set is used to select the most significant features during 
the feature estimation stage, and train the hierarchical CCA and 
MLP. Then, the test set is evaluated. In this work four bearing 
conditions have been considered, namely: healthy (h), inner 
race fault (i), outer race fault (o) and ball fault (b). Moreover, 
three different severity levels (sub-classes) have been 
considered for each fault ranging from small (i7, o7 and b7) to 
medium (i14, o14 and b14) and to big single-point defect (i21, o21 
and b21).  

Four different steady state operating conditions have been 
considered. For each combination of bearing scenario, 
operating condition, and severity level a set of vibration 
measurements have been acquired. 

A. Feature estimation 

From each acquired vibration signal measurement, a set of 
statistical-time features is computed. This kind of features 
allows the characterization of the acquired measurements. A 
total of 15 features from time-domain are proposed: mean, 
maximum value, root mean square (rms), square root mean 
(srm), standard deviation, variance, root mean square shape 
factor, square root mean shape factor, crest factor, latitude 
factor, impulse factor, skewness, kurtosis, normalized 5-th and 
6-th moments. These features exhibit most of the characteristic 
statistical-time information contained in the measurements 
[19]. 

B. Feature selection 

The proposed features contain a large portion of the 
information contained in the vibration signal; however only 
some of them are really significant. These ones, in turn, 
depend on the considered bearing defects, the appearance of 
additional sources of vibration, and the bearing location. In 
this sense, the most significant features may be different 
depending on the scenario. 

Different techniques can be applied to analyze the feature 

relevance with regard to the considered diagnosis scenario. 
Linear Discriminant Analysis (LDA) [20] is one of the 
classical techniques for feature selection. LDA quantitatively 
evaluates the discriminant capabilities of the proposed features 
with regard to classes. This analysis shows how each feature 
contributes to a proper representation of the measurements in 
the data space by estimating how well classes are delimited 
and separated. Every two and three combinations of the 
estimated features, as well as their individual capabilities have 
been evaluated. In the end an ordered list with the most 
significance features is obtained. 

However, although some features exhibit better 
discrimination capabilities between classes than others, 
specific features sets are proposed in this study depending on 
the analyzed set of measurements. In this sense, four sets of 
features are proposed in order to do a hierarchical 
discrimination: first classification between h, i, b and o, 
second classification between i7, i14 and i21, third classification 
between b7, b14 and b21 and finally, a fourth between o7, o14 
and o21. 

The most significant features to discriminate the considered 
classes/severities are shown in Table I. 

TABLE I SETS OF THE MOST SIGNIFICANT FEATURES DEPENDING ON THE 
CLASSIFICATION SCENARIO. 

 
Classification scenario Most significant features 

Healthy (h) / Inner race fault (i) / 
Outer race fault (o) / Ball fault (b)

feature set 1 
     rms                         shape factor  
     srm                         standard deviation 

Inner race fault (i) severities: i7, 
i14 and i21 

feature set 2 
     rms                          maxim value 
     srm                          variance 

Outer race fault (o) severities: o7, 
o14 and o21 

feature set 3 
    rms                           srm 
    standard deviation    variance  

Ball fault (b) severities: 
b7, b14 and b21 

feature set 4 
    crest factor               impulse factor        
    rms                           shape factor 
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C. Feature reduction 

The first level of classification is more difficult to achieve 
than the second one because of the bigger complexity of the 
data set distribution. 

Hence, the whole data set has been divided in several 
subsets in order to improve the CCA data reduction. 

The hierarchical nature of the classification (classes and 
subclasses) can be exploited by using a corresponding 
hierarchy of CCA’s : the data reduction problem is so 
simplified because only one CCA is needed for classifying the 
fault and other three CCA’s are needed for estimating the 
corresponding severity level. 

During the recall phase, the first four-dimensional feature 
vector (feature set 1) is fed to CCA1. After this step (bearing 
fault classification), if a fault bearing is detected, the 
corresponding feature vector (feature set 2, feature set 3 or 
feature set 4) is fed to the corresponding CCA (CCA2, CCA3 or 
CCA4), to assess the associated neural network. 

D. Classification 

Due to the different number of considered operating 
conditions (four), and the number of considered bearing fault 
scenarios (three and healthy) and severity levels (three for 
each fault scenario), a two-level hierarchical neural network is 
applied. The building block of this architecture is the 
multilayer perceptron, MLP [20]. The choice of this neural 
network has been dictated both from the simplicity and 
flexibility, and, above all, for the possibility of outputting the 
class conditional probabilities thanks to the use of the soft max 
activation function (this is not possible with other neural 
networks) and the cross-entropy error function [20]. Each 
MLP has two layers and the hidden activation function is the 
hyperbolic tangent. Its training uses the backpropagation rule 
for the gradient estimation and the scaled conjugate gradient 
as minimization technique. All MLP’s have 45 neurons. These 
blocks are hierarchically organized (h-MLP). This structure 
allows the classification in two steps: a first neural network 
classifies a two-dimensional feature vector (resulting from the 
CCA1 projection) between four predefined classes (in this 
application: h, i, o and b). If the classification result is 
different from healthy, specific degradation assessment 
classifiers (three) are placed in a second level, one for each 
fault scenario. Then, once the input has been classified in the 
first neural network, the corresponding second neural network 
is recalled, and the bearing status and its severity level are 
obtained. The neural network does not only output the class 
membership but also its probability, as cited previously. This 
additional information is fundamental both for assessing the 
level of confidence of the classification and if risk analysis is 
required. At our knowledge, this feature, which justifies the 
use of MLP, has never been exploited for bearing fault 
diagnostics.  

The posterior probability for each class is given by the 
product of the four-class neural network output with the 
corresponding three-class neural network output. 
For instance, define as i the event inner race fault and define 
the new feature vector to be classified as ynew. 

)|(),|()|( 77 newnewnew yiPyiiPyiP                                    (3) 

where )|( newyiP  is the probability of obtaining the event i as 

output of the first four-class classifier, and ),|( 7 newyiiP  is the 

probability of obtaining event i7 as output of the corresponding 
three-i-class classifier. 

IV. EXPERIMENTAL RESULTS 

The experimental data come from the bearing data center 
[21], which provides access to bearing test data for normal and 
faulty conditions. Experiments were conducted using a 2 
horsepower Reliance Electric motor. The accelerometer was 
mounted on the drive end of the motor housing near to the 
motor bearings. Motor bearings were seeded with faults using 
electro-discharge machining. Faults ranging from 0.007 inches 
in diameter to 0.021 inches in diameter were introduced 
separately at the inner raceway, rolling element and outer 
raceway. Faulted bearings were reinstalled into the test motor 
and vibration data were recorded for motor loads of 0 to 3 hp 
(motor speeds of 1797 to 1720 rpm, respectively). Data used in 
this study correspond to the case of normal bearings and single-
point drive end defects. Data were collected at 12,000 
samples/second for all the experiments. The bearing fault 
conditions of data and the parameters of the bearings under test 
are shown in Table II and III, respectively. 

TABLE II 

CLASSICAL BEARING FAULT INDICATORS 
ANALYZED UNDER RATED CONDITIONS 

Bearing condition Fault specifications 
Diameter [inches] Depth [inches] 

Healthy (h) - - 

Inner race fault (i) 
i7 0.007 0.0011 
i14 0.014 0.0011 
i21 0.021 0.0011 

Outer race fault (o) 
o7 0.007 0.0011 
o14 0.014 0.0011 
o21 0.021 0.0011 

Ball fault (b) 
b7 0.007 0.0011 
b14 0.014 0.0011 
b21 0.021 0.0011 

 

TABLE III  

BEARING PARAMETERS 

Type 
Outside 
diameter  

Inside 
diameter 

Nb Bd Pd cos 

SKF6205 2.04 in 0.098 in 9 7.95 in 1.53 in 0.9 

Thirty measurements are performed for each kind of fault, 
severity level and operating condition, twenty-five 
measurements are used for training and five for test purposes. 

Regarding the proposed methodology, as it has been 
mentioned, four CCAs are executed, one for each 
classification scenario. Following the proposed methodology, 
by means of a distributed CCA operation, the projection 
performance is respected. However, the use of different four-
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dimensional feature sets, depending on the classification 
scenario, allows an increase of the discrimination capabilities. 
In this context, this CCA-based methodology allows the data 
visualization and an enhanced interpretation of the underlying 
physical phenomenon. 

It can be seen in Fig. 4(a) the resulting CCA1 projection for 
the feature vectors drawn for the whole data base. The 
corresponding dy-dx diagram, Fig. 4(b), relates the distances 
of the samples in the data space (dx) with the distances in the 
latent space (dy). It can be seen that most points lie on the 
bisector. This analysis reveals that the selected and 
compressed features represent the considered bearing faults as 
a set of disconnected manifolds, which are well detected and 
represented because all points remain very close to the 
bisector. The use of common reduction techniques as Principal 
Component Analysis [20], which is the most used linear 
approach, are not be capable to characterize the considered 
faults. Indeed, the resulting CCA1 projection can be compared 
with the analysis of the same data by PCA shown in Fig. 5. 
The classical PCA projection, although maintaining most of 
the data variance, exhibits (see Fig. 5(a)) a lower projection 
performance, as it is evident in the highly i/o/b overlapped 
region. Also, Fig. 5(b) shows a big number of large distances 
(the cluster around the central and right part of the bisector), 
which correspond to the inter-cluster distances. It reveals the 
presence of bad allocations of clusters because of this 
projection: more compact groupings imply more intra-cluster 
and less inter-cluster distances. Indeed, this is what is shown 
in Fig. 5(b). 

The resulting rated CCA1 projection map, used for the first 
classification level, is shown in Fig. 6(a). The four classes are 
well separated, although there is an overlapping between case 
o/b (case o and case b). This figure shows the real bearing 
conditions behavior and how the working conditions and 
severities degrees influence them. The same procedure has 
been carried out with the CCA’s projections and MLP 
classifiers in the second layer. 

 
a)   b) 

Fig. 4. CCA1 projection of feature vectors corresponding to the whole data 
base characterized by the feature set 1, =0.5, =1, 50 iterations. (a) CCA1 
projection. (b) dy-dx diagram. 

  

a)   b) 
Fig. 5. PCA projection of feature vectors corresponding to the whole data 
base. (a) PCA projection. (b) dy-dx diagram. 

 
a)    b) 

Fig. 6. Decision regions for the first MLP’s of the hierarchical MLP. (a) h, 
i, o and b classification regions. (b) Probability curves related with each 
region. 

 

For checking the generalization properties of the proposed 
methodology, a test set for the recall phase has been 
considered. The test data base is formed by five vectors of 
features for each of the four considered bearing scenarios, 
severity levels and operation conditions. 

TABLE IV 

CONFUSION MATRIX RESULTING FROM THE  
EVALUATION OF THE h-MLP 

 h i7 i14 i21 o7 o14 o21 b7 b14 b21 
h 60 0 0 0 0 0 0 0 0 0 
i7 0 19 0 0 1 0 0 0 0 0 
i14 0 0 20 0 0 0 0 0 0 0 
i21 0 0 0 20 0 0 0 0 0 0 
o7 0 0 0 0 18 0 0 2 0 0 
o14 0 0 0 2 0 18 0 0 0 0 
o21 0 0 0 0 0 0 20 0 0 0 
b7 0 0 0 0 2 0 0 18 0 0 
b14 0 0 0 0 0 0 0 0 20 0 
b21 0 0 0 0 0 0 0 0 0 20 

 
The classification ratio for the test set is 97% 

approximately. The h-MLP decision regions are shown in Fig. 
7. It can be seen that all points corresponding to the healthy 
machine are correctly classified, and only some samples 
between clusters o/b (case o and case b) are misclassified. 

 

a) 
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b) 

c) 

d) 
Fig. 7. Decision regions for the four MLP’s of the hierarchical MLP and 
the corresponding test sets. (a) Decision regions between healthy, inner, outer 
and ball cases (case h/i/o/b). (b) Decision regions between the three inner fault 
severity levels (case i7/i14/i21). (c) Decision regions between outer fault 
severity levels (case o7/o14/o21). (d) Decision regions between ball fault 
severity levels (case b7/b14/b21). 

V. GENERAL DISCUSSION 

In the proposed work, the bearing diagnosis is approached as a 
pattern recognition problem. A signal processing based 
methodology is proposed to, firstly, identification of the most 
significant statistical-time features with regard to the diagnosis 
problem, as an adaptive procedure to the application; secondly, 
the data visualization and an enhanced interpretation of the 
underlying physical phenomenon in a 2-dimensional space; 
thirdly, the class membership and its probability, fundamental 
both for assessing the level of confidence of the classification and 
if risk analysis. 

Moreover, the potential of the selection and reduction stages 
has the processing capability to extract the information coming 

from the defects in the bearings themselves that from other 
machine vibration sources. Hence, the proposed methodology 
includes the filtering of external perturbations such as mechanical 
or electrical noise. 

The analysis of the regular characteristic fault frequencies is 
not a simplistic matter, and basic diagnosis schemes may lead to a 
delayed diagnosis. The bearing defects could be detected after a 
severe level of bearing degradation, in which the characteristic 
fault frequencies have enough presence to be clearly localized. 
The absence of clear characteristic fault frequencies should not be 
interpreted as a completely healthy condition of the bearing. The 
characteristic bearing fault spectral indicators are usually masked 
between them due to additional vibration modes produced by the 
rest of the mechanical interactions. 

In order to exploit completely the proposed methodology, a set 
of representative bearing conditions is needed to obtain a useful 
data base of measurements. However, once the competency of the 
method has been demonstrated in the manuscript, the 
methodology can be adapted to any kind of diagnosis 
requirements. In industrial applications it could be difficult to 
perform training process taking into account all the failure modes. 
Nevertheless, in a real application, it could be always possible to 
perform the calibration process considering two different states: 
healthy and not healthy. The vibration sensors are mounted near 
the bearing under test and the most significant features selected in 
the manuscript are calculated. Since this moment, the healthy 
region can be defined. As it has been observed during the 
experimental validation in the manuscript, if a measurement 
corresponds to a point in the reduced feature space outside the 
healthy region, some kind of fault is taking place. 

The training procedure, as in most of the pattern recognition 
based methods is carried out off-line. That is, a representative 
data base is obtained from the system under test, and the different 
stages are configured. The time needed for this first stage is 
totally dependent of the data base characteristics and the user 
expertise. The second stage, once the methodology is already 
calibrated, takes into account: the acquisition of the physical 
magnitudes, directly the calculation of the selected features, the 
direct curvilinear component analysis projection and, finally, the 
hierarchical neural network application. This process can be 
executed in a few seconds by regular digital processors. The 
motor diagnosis processes must be available to be executed 
during a normal system operation. However, the diagnosis does 
not require generally to be executed in real time mode. Most of 
the mechanical faults are based on a low degradation time 
constant. This fact implies that once the signal is acquired, the 
diagnosis algorithms execution can be carried out during the next 
minutes. 

VI. CONCLUSION 

A novel architecture, tailored on a difficult diagnosis problem, 
as the bearing fault recognition, has been presented. It comprises 
a hierarchy of curvilinear component projections (h-CCA) and a 
hierarchy of multilayer perceptrons (h-MLP). The output is given 
by the class membership probability, which is suitable for further 
analysis (e.g. risk). Unlike neural and non-neural techniques in 
the literature, the task is shared by two different hierarchies. This 
is the peculiarity and the power of the proposed method, which 
allow its application to other complex pattern recognition 
problems. Future work will deal both with novel applications (e.g. 
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use of stator current for machine diagnostics) and with a deeper 
analysis of the hierarchies and their possible improvements. 
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