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Abstract. This paper elucidates the limiting Gaussian distribution of a class of
Cramér-von Mises statistics {fN} for two-sample problem pertaining to empirical
processes of the squared residuals from two independent samples of ARCH processes.
A distinctive feature is that, unlike the residuals of ARMA processes, the asymptotics
of {T\ v} depend on those of ARCH volatility estimators. Based on the asymptotics
of {fN}, we numerically assess the relative asymptotic efficiency and ARCH volatil-
ity effect for some ARCH residual distributions. Moreover, a measure of robustness
for {fN} is introduced and it is then illustrated numerically based on such residual
distributions. The same study of {j’\N} is also demonstrated using the daily stock
returns of AMOCO and IBM companies of New York Stock Exchange. In contrast
with the independent, identically distributed or ARMA settings, these studies illu-
minate some interesting features of ARCH residuals.
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1 Introduction

Analysis of financial data has received a considerable amount of attention in the literature
during the past two decades. Several models have been suggested to capture special fea-
tures of financial data and most of these models have the property that the conditional
variance depends on the past. One of the well known and most heavily used examples
is the class of ARCH(p) processes, introduced by Engle (1982). Since then, ARCH re-
lated processes have become perhaps the most popular and extensively studied financial
econometric models (Engle (1995), Tsay (2002), Francq and Zakoian (2004), Chandra and
Taniguchi (2005)). For a class of ARCH(oo) processes, which includes that of ARCH(p)
processes as a special case, established sufficient conditions for the existence of a stationary
solution and gave its explicit representation.

For time series data, residuals must be considered, and these residuals necessarily de-
pend on parameter estimates, and inference based on these residuals, especially model
goodness-of-fit tests, is a basic tool in the statistical analysis (see Brockwell and Davis
(1994)). For an ARCH(p) process, Horvéath et al. (2001) derived the limiting distribution
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of the empirical process based on the squared residuals. Then they showed that, unlike the
residuals of ARMA models, these residuals do not behave in this context like asymptotically
independent random variables, and the asymptotic distribution involves a term depending
on estimators of the volatility parameters of the process. Also Lee and Taniguchi (2005)
proved local asymptotic normality for ARCH(oco) processes, and discussed the residual
empirical process for an ARCH(p) process with stochastic mean.

In the i.i.d. settings, the two-sample problem is one of the important statistical prob-
lems. For this problem, the study of the asymptotic properties based on the celebrated
Cramér-von Mises statistics is fundamental and an essential part of nonparametric statis-
tics. Many researchers have contributed to their development, and numerous theorems
have been formulated in many testing problems. It is well known that these results are
widely used to study the asymptotic power and power efficiency of a class of two-sample
tests. Thus, this study motivates us to consider two independent samples from ARCH(p)
processes { X;}, a target process and {Y;}. The corresponding squared innovation processes
are, say, {¢7,} and {&,} with possibly non-Gaussian distributions ' and G. In order to
highlight the possible differences between these distributions, a nonparametric technique
is employed based on a class of Cramér-von Mises statistics. Such statistics serves as a
basis for the comparison in terms of tests of goodness-of-fit.

For a two-sample Cramér-von Mises statistic in the i.i.d. settings, Anderson (1962)
derived the exact distribution, compared it to the limiting distribution, and found it to
be a good approximation for moderate sample sizes. He also reported that the accuracy
of his approximation is better than that of the two-sample Kolmogrov-Smirnov statistics
studied by Hodges (1957). An excellent account of Cramér-von Mises tests is given in
Durbin (1973) and we refer the reader to this reference for details and further references.

The object of this paper is to elucidate the asymptotic theory of the two-sample Cramér-
von Mises statistics {Ty} for ARCH residual empirical processes based on the techniques of
Chernoff and Savage (1958) and Horvath et al. (2001). The same result is true for GARCH
processes as well using the result by Berkes and Horvath (2003). Since the asymptotics
of the residual empirical processes are different from those for the usual ARMA case, the
limiting distribution of {7} is greatly different from that of ARMA case (and of course the
i.i.d. case). More concretely, the paper is organized as follows. Section 2 gives the setting
of {fN} pertaining to empirical processes of the squared residuals from two independent
samples of ARCH(p) processes and establishes its asymptotic distribution. This result, in
Section 3, facilitates the study of asymptotic performance of {T\N}, such as the asymp-
totic relative efficiency and ARCH volatility effect for some ARCH residual distributions.
Moreover, we introduce a robustness measure for {7y} by means of the influence function
and it is then illustrated by simulations based on such residual distributions. The same
study of {Tx} is also demonstrated using the daily stock returns of AMOCO and IBM
companies of New York Stock Exchange. These studies help to highlight some important
features of ARCH residuals in comparison with the independent, identically distributed or
ARMA settings.



2 Two-sample Cramér-von mises statistics and main
result

In this section we study a class of Cramér-von Mises statistics (see e.g., Durbin (1974, p.44))
for two-sample problem pertaining to empirical processes based on the squared residuals

from two classes of ARCH processes.
A class of ARCH(p) processes is characterized by the equations

Px
o(0x)ey, 0(0,) =0+ > 0. X2 . t=1,...,m,

Xy = = (1)

0, t=—-pc+1,...,0.
where {g;} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant &},
0, = (02,0),....0P)" € ©, C R*"! is an unknown parameter vector satisfying 62 > 0,

0 >0,i=1,...,p, — 1, 07 > 0, and & is independent of X, s < t. Denote by F(z) the
distribution function of £? and we assume that f(z) = F’'(z) exists and is continuous on
(0, 00).

Another class of ARCH(p) processes, independent of {X;}, is defined similarly by the
equations

Y;: O—t(o}’)gta Ut( )_90 Zel t—1i» tzl:"'ana (2)
0, t=-p,+1,...,0,

where {} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant xJ,
0, = (62.0),....00")" € © C R»™', 60 > 0,0, >0,i=1,....,p, —1, 6 > 0, are
unknown parameters, and & is independent of Y;, s < t. The distribution function of &}
will be denoted by G(z) and we assume that g(z) = G’'(z) exists and is continuous on
(0,00). For (1) and (2), we assume that 6, +---+ 62 < 1 and ) +---+ 6} < 1 for
stationarity (see Milhgj (1985)).

In the following, we are concerned with the two-sample problem of testing
Hy: F(z) = G(z) for all x against Hu: F(x) # G(x) for some z. (3)

First consider the estimation of Oy and 6y. Write Zy;, = X7, Wy, = (1, Zysty - -+, Zxtpet1)
and .y = (62 — 1)@ W, ;_;. Then the autoregressive representation is given by

ZX,t = 0;1:WX,t—1 + Cx,ta 1 S t S m,
and analogously for (2),
Zy,t - oz:wy,t—l + Cy,ta 1 S t S n,

where Zy, = Y72, Wy, = (1, Zyy, ..., Zyy—p,+1)" and (g = (£ — 1)0; W, ;1. Note that
(xp and (y, are the martingale difference since E((oy|Fiy) = E((ilF;) = 0, where
Fr = o{Zxy, Zxy-1, ...} and F] = o{Z,4, Zy4-1,...}. Suppose that observed stretches
Zy1y s Zxm and Zyy, ..., Zy, from {Zy;} and {Z;,}, respectively, are available. Then
the corresponding conditional least squares estimators (see Tjgstheim (1986)) of 6, and




0, are given by 0, ,, = (02,,,...,0% )7 = argming, Q,,(0x) and @y, = (0°,,,...,05)T =
argming Q,(60y), where

m n

Qun(0:) = (Zey— 0L Wym1)? and  Qu(0y) = (Zyy — O Wy, 1)

t=1 t=1

Here, we assume that éxym and éyyn are asymptotically consistent and normal with rate
m~"/2 and n='/2, respectively, i.e.,

m2[0m — Ol = Op(1) and  n'/?(|8y, — 6]l = Oy(1), (4)

where || - || denotes the Euclidean norm. For the validity of (4), Tjgstheim (1986), pp.254-

256) gave a set of sufficient conditions. Conditions (4) are also satisfied by the pseudo-

maximum likelihood and conditional likelihood estimators (see e.g., Gouriéroux (1997)).
The corresponding empirical squared residuals are given by

E2=X2/02(0ym), 1<t<m and & =Y?/02(0y,), 1<t<n, (5)

where o7 (Oxn) = 00 + 305, 00 X7 and 07 (By,0) = 09, + 302, 0 Y2

i=1"y,n
For the testing problem (3), we begin by descnbmg our approach in line with Chernoff

and Savage (1958). Put N = m +n and Ay = m/N. For (5), the sizes m and n are
assumed to be such that 0 < A\g < Ay <1 — )y < 1 hold for some fixed \g < % Then the
combined distribution function is defined by

Hy(z) = A\WF(@) + (1 — Ay)G (),

where 0 < Hy < 1. In the same way, if F},(z) and G, (z) denote the empirical distribution
functions of {¢2} and {2}, the corresponding empirical distribution function is

Hy(z) = AnEn(2) + (1 — Ay)Ga(). (6)

Write B, (z) = m'/?(F,,(z) — F(z)) and B,(z) = n'/*(G,(z) — G(z)). Then

m n

Bu(x) = m 'Y (I <w) = F(z)) and Bu(e) =02 Y (1§ < 2) - G(2)),

t=1 t=1

where I(A) is the indicator function of the event A. Then from the result by Horvéth et
al. (2001) (see also Lee and Taniguchi (2005)), we observe that the quantity B,,(z) has
the following representation,

B(z) = m"?(F, () — F(z)) + Ayaf(x) + higher order terms, (7)
where
Z]I <z) and A, = Z ml/z(éi,m - Qi)Tx,i (8)
0<i<px

with 7x 0 = E(1/0?(0x)) and 7; = E(X?,;/0%(0x)), 1 < i < py. By analogy with (7), the
corresponding representation of Bn(x) is given by

By (z) = n'/*(G(z) — G(x)) + Ayzg(x) + higher order terms, 9)
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where
n

1 yi i
Gu(w) = — Y UG <z) and Ay = > 026, - 007y, (10)
=1 0<i<py
with 7y 9 = E(1/07(0y)) and 7,; = E(Y}2,/07(0y)), 1 < i < p,. Hence, from (7) and
(9), the expression (6) becomes

Hy(z) = Hy(z) +m PAyAcaf(z) +n Y2 (1 - An)Ayzg(x) + higher order terms, (11)

where Hy(z) = AnF(x) + (1 — Ay)Gy(x) with 0 < Hy < 1. The decomposition (11) is
basic and will be used repeatedly in the sequel.

For the testing problem (3), let us consider a class of Cramér-von Mises statistics of
the form

~

Ty = / (B () — Cin(2))2d ELy (). (12)

Note that (12) is constructed from the empirical residuals {£7} and {€2}. Likewise, if we
construct it replacing {¢?} and {7} by {£?} and {&?}, respectively, then it becomes the
usual Cramér-von Mises statistic (see e.g., Durbin (1974, p.47))

Sy = /(Fm(x) — Go(2))?dHy(2).

This statistic was essentially proposed by Lehmann (1951) and studied by many researchers
(e.g. Anderson (1962), Ahmad (1996)) who contributed to its development, and numerous
theorems have been formulated for different tests. Noting that under Hy : F' = G, the
quantity Hy for Sy converges to F' almost surely, and we may conclude under certain reg-
ularity conditions that (mn/N)Sy converges in law to fol Z%(t)dt, where {Z(t); 0 <t < 1}
is a Gaussian process with E(Z(t)) = 0 and F(Z(s)Z(t)) = min(s,t) —st, 0<s,t <1
(see e.g. Sen and Singer (1993), pp.341-349). Our case based on {7y} is somewhat differ-
ent.

The object of this section is to elucidate the asymptotics of (12). In what follows, K
will denote a generic constant which does not depend on F', G, m, n and N.

We impose the following regularity conditions.

Assumption 1.

(A1) xf(x), zg(z), zf'(z) and xg'(x) are uniformly bounded continuous, and integrable
functions on (0, co).

(A.2) There exists ¢ > 0 such that F(z) > c{zf(2)} and G(x) > c¢{zg(x)} for all x > 0.

Returning to the processes {X;} and {Y;}, we now impose a further condition on 6,
and Oy, and the moment of €; and &. For this purpose, write

Oey - ORle ORxe}
Ag=1| .
0 1 0



and

o8 - 0T G
A= T
0 1 0

s times

Introduce the notation Ay = A, ® - - - ® Ay (e.g., Hannan (1970, p.518)), and define
Yy, = E(AY]) and Xy, = E(.As,z’i), where ® denotes the tensor product.

Assumption 2.
(B.1) &7 and & are nondegenerate random variables.
(B.2) Elef® < 00, ||Exsll < 1 and E|&® < oo, [|Eys]l < 1,

where || - || is the spectral matrix norm. From (B.2) and the result by Chen and An (1998),
it follows that E(Z;,) < oo and F(Z;,) < oo. For the case when p, = 1, and {&,} is
Gaussian, we see that ||Sys < 1 implies 61 < 1573 ~ 0.4.

In order to state the main result, we observe that the matrices

U, = E(Wx,tflwz,tq)a Uy = E(Wy, IWyt 1)
Re = (81 +2E(0}(0)Wi i Wy, ) and Ry = (5] + 2)E(0/(0,) Wy Wy, )

are positive definite. To justify R, as an illustration, first note that it is evidently
nonnegative definite, i.e., @’ Rya = (k] + 2)E(a’0?(0x)Wx, 1) > 0 for any a =
(g, ar,y -y )T € R Moreover, if we suppose that Ry is not positive definite, then
there exists a vector (ag,a1,...,aj,) with a;j, # 0 (jo < px) such that ag + a1 Zx 1 +

s+ jyZys—jo = 0 a.e. Here, note that 07(0y) > 0 a.e., because of #2 > 0. In this case,
we can write Zx,s—jo = —,80 — ,81ZX75_1 — e — ,Bjo_lzx,s_j0+1, where ﬁk = Oék/OéjO. Hence,
substituting this into the last term of ¢2(6y) in (1) with setting s — jo = ¢ — py reveals that
the dimension of our ARCH(py) is reduced to be less than py, leading to a contradiction.

Now recalling the definition of Q,,(0x) and Q,(8y), we observe that

99 99, LA , ,
392 - _22 B 1 Ut 891 = _22(6t - l)at (GX)ZX,t—ia 1< < DPx
09, 09, .

" _zz(gf_naf(oy), : ——22@ - Zyi-is 1<0<py,
06° - 20

Then, under certain regularity conditions, it is seen that the corresponding ith element of
me and 0xn admits the stochastic expansions,

O — 0 = Z 1)+o,(m™/), 0<i<p, and (13)

o= = LS V@D o), 0<i<y,
t=1



where V/, and V, are the ith elements of U, '07(6,)W,,—1 and U, '07(8, )Wy, ,_1. Write
Oxi = E(V;ft), 0 < i< py dy; = E(‘/'yi,t), 0 <i < py,and Ty = (70, Tepe). and
Ty = (Ty05- -+ Typ,)" (recall (8) and (10)). Then, under Hy : F # G, we have the follow-
ing result, whose proof is given in Section 4.

Theorem 1. Suppose that Assumptions 1 and 2 hold and that, in addition, éx,m and 9y,n
are the conditional least squares estimators of @ and 6 satisfying (4). Then

N'2(Ty — pn)/ox -5 ¥ (0,1) as N — oo,

where puy = [(F(z) — G(z))*dHy(x) and 0% = oiy + 05y + 035 + (v # 0 with

st = s [[ Awnac@iGe) + 0 - [f Blepar@ar)),

<y <y
ooy = wi UL RU wyw, agN:w;NUy_l’RyL{;lwy,N, and
CN — _8{)\]_\71 Z Tx,ifsx,i //d}x(x)pf(xay)dG(x)dG(y)
0<i<px
S1-x) Y mads [ b@nyfe @A),
0<i<py

where

Alz,y) = F(z)(F - G)(z)
B(z,y) = G(z)(F - G)()

weny = —2A57 / (zf(2))(F — G)(z)dG(z) x T+,

wyny = —2(1-— )\N)*l/2 29(2)(F — G)(2)dF(z) X Ty,

pi(r,y) = yf(y)(F —G)(x)(F - G)(y),
pg(z,2) = 29(2)(F — G)(2)(F — G)(2),

Ue(z) = / (w—1)f(u)du, Py(x)= /Ow(u — 1)g(u)du.

Remark 2.1. It may be noted that the above results can easily be reformulated to the
case of the one-sample as well as ¢(> 2)-sample problem.

A

Remark 2.2. Observe that o2y, o2y and (y depend on the volatility estimators 0y,

and 9y,n. Hence, the asymptotics of {T\N} are greatly different in comparison with the
independent, identically distributed or ARMA settings.

Remark 2.3. For {YA“N} to be practically feasible, it is necessary to replace 0% which
depends on several unknown parameters and functions by a consistent estimator %. Ob-
serve that Ox;, T, Oy, Ty 0 < i@ < px, 0 < i < py, and Y (x) and 1y (x) are expected
values and can be consistently estimated by the corresponding averages. Note also that
Uu, IRXL{; Land Ll; I’Ryu; Lare the asymptotic covariance matrices of \/T_n(éxm —0,) and
V1 (0y,, — 0y), respectively, and their estimation is discussed in Gouriéroux (1997).
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3 Asymptotic performance of {fN}

The limiting distribution of {T\N} given in the preceding section provides a useful guide to
the reliability of asymptotic relative efficiency and ARCH volatility effect. Thus we may
proceed to illustrate these aspects of {T\N} numerically for some ARCH residual distribu-
tions. Moreover, a measure of robustness for {fN} is introduced by means of Hampel’s
influence function and it is then illustrated by simulations. The same study of {7} is also
demonstrated using the daily stock returns of AMOCO and IBM companies of New York
Stock Exchange from February 2, 1984, to December 31, 1991.

3.1 Asymptotic relative efficiency

In this subsection, we consider the assessment of asymptotic relative efficiency of the statis-
tics Sy and Ty for some residual distributions in the i.i.d. and in our ARCH resAidual
settings, respectively. The results help to highlight some interesting features of Ty in
comparison with Sy.

For the sake of simplicity, let us consider the ARCH(1) model

Y - 01(0y)er, 07(0x) =02+ 0LX72, for t=1,...,m,
10 for ¢ <0,

where {£;} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant &},
0, = (0°,01)T with 0° > 0 and 0 < 0! < 1, and &; is independent of X, s < t.

X? X

Another ARCH(1) model, independent of {X;}, is given by

v — 01(0y)&, 07 (8y) =00+ 01Y72, for t=1,...,n,
10 for ¢t <0,

where {1} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant rJ,
0, = (07,6;)" with ) > 0 and 0 < 0} < 1, and & is independent of Y;, s < t.

Recall that F'(z) and G(z) are the distribution functions of £? and &, respectively. The
hypothesis of interest in the two-sample problem is that Hy : F'(z) = G(z) for all z > 0. If
one imposes conditions on the form of the common distribution together with the assump-
tion that a difference between the distributions exist, it is only between means or between
variances. The proposed test procedure may be sensitive to violations of those assumptions
which are inherent in the construction of the test. In practice, other assumptions are often
made about the form of the underlying distributions. One common assumption is called
the location model.

Let us consider the location model in the case of G(z) = F(x+J) for some parameter ¢.
Henceforth, it is assumed that F' is arbitrary and has finite variance o%. The two-sample
testing problem for location can be described as follows;

Hy:0=0 against Hy:6 > 0.

In light of Theorem 1, we can readily see under Hy : § = 0 that the distributions F'(z) and
G(z) coincide for all z > 0. Thus, it is instructive to apply this theorem under H4 : 6 > 0
since F'(x) < G(z) for all x > 0. Note that under the shift assumption, the distributions



have the same shape and variance. In such a case, we may take, for example, H, : 6 = 1.
Assuming that m = n = N/2, the mean becomes

pr(d) = % /(F(x) — F(z +6))%d[F(x) + F(z +0)]

and the variance under Hy : 6 = 1 is 0% = 0(F) 4+ 02(F) + 02(F) + v(F'), where

ol(F) = 16/ A*(z,y)dxdy + 16 //B*(x,y)dxdy,

) = 8O [@r@) @+ DIF@) - Flo+1))ds)
o3(F) = 80y</zf(z)f(z+1)[F(z)—F(z+1)]dz)2,

v(F) = —16k1///0 (u—1)f du]pf(x y)ddy
+16k2///0 (u—1)f )du] “(z, 2)dxdz

A(z,y) = floe+1)f(y+1)F(x)
x[F(z) = F(z + 11 = F(y)I[F(y) — F(y + 1)],
B(z,y) = fl@)f(y)F(z+1)
X[F(z) = F(z + D[l = F(y + 1][F(y) — F(y +1)],
Cy = TIURU' Ty, Cy=7IU ' RUS Ty,
ki = Teo0x0 + Tx,10x,1, ko = Ty 00y.0 + Ty,10y,1,
pp(z,y) = fle+[F(z) - Flr+Dlyf(y)fly+ D[F(y) — Fy+1)],
pi(z,2) = f@)[F(z) - F(z+1)]zf(2)f(z + )[F(2) — F(z + 1)].

with

where 7 = (70, 7x1)" and 7y = (750, 7y,1)" -

To begin with, let us state a set of Pitman regularity conditions which makes the
computation of efficiency for two test sequences quite easy in the case of finite sample
sizes. Suppose that Tl is a test statistic based on the first N observations for testing
Hy : § = 0 against Hy : § > 0y with critical region Ty > Ay o. Further, suppose

(i) limy_ o0 Py, (YA“N > An,a) = @, where 0 < o < 1 is a given level;

(ii) there exist functions 1y (8) and oy (8) such that NV2(Ty — pun (8))/on (8) % A0, 1)
uniformly in ¢ € [y, dp + €], € > 0;

(i) sy (do) > 05
(iv) for a sequence {0y = & + N~'/2k, k > 0},

Aim [y (0n) /g (80)] = 1, lim [on () /ow (60)] = 15



(v) limy—so0[ptly (90)/on (00)] = ¢ > 0.

For a € (0,1), write A, = ® (1 — @), where ®(z) = [;'(27)1/2¢"""/2dt. Then the asymp-
totic power is given by 1 — ®(\, — dc). The quantlty c deﬁned by (v) is called the efficacy
of T\N. It is known that the asymptotic power, in addition to providing a measure of per-
formance, also serves as a ba81s for the comparison of different tests.

Let 7() {T } and T {T } be test sequences W1th efficacies ¢; and ¢y, respec-
tively. Then the asymptotic relatlve efficiency (ARE) of T relative to T® is given by
e(TM, T®) = ¢2/c3.

In order to evaluate the ARE of Sy = Sy(F) and Ty = T (F), it is necessary to
specify F. For this purpose, let us suppose that {¢;} is a sequence of i.i.d.(0,1) random
variables with continuous symmetric distribution F* and density f*. Then

F(x):P(sf<x):{ gf’*(ﬁ)—l, i;g 14

We shall now compute (14) in the following particular choices of F™*.

(i) F* (Normal):

Fi(x) = / (27) e 24t fi(zx) = (20) Ve, zeR

—o0

In this case, Fiy(v) = 2F3(v/7) — 1, fu(z) = (V2rz) te /2, 2 > 0.
(ii) F* (Double exponential):

1 1 1
Fip(x) = / §e_|t‘dt =1- 56_’", foe(2) = 56"‘”', reR

In this case, Fpp () =1 —e V%, fop(z) = (2y/x) e V2, x> 0.
(iii) F* (Logistic):
Frz)=01+e®)™, fifla)=e2((1+e®)H™, zeR
In this case, Fi(z) = (1 — e VZ/(1 + e V%), fu(x) = e™Vo/ /(1 + e V)2 2 > 0.

Recalling the definition of pg(8), 0% and o7 (F), and assuming that ;r () is continuously
differentiable with respect to 0 at 6 = 1 under the integral sign, we have

1
ie1) = 5 [(Fle) = Fla+ 1P o+ o
/fx—i— )+ fx+1)(F(z) — F(x +1))dz
so that the ARE of Sy and T\N between distributions F} and F3 is

e(Fo, Fy) = &/, (15)

where c¢p = (1) /o(F) with o(F) = 01(F) and op.
In an attempt to evaluate (15), we need to approximate values of 03 = 0% (Cy, Cy, ki1, k)
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for various m = n = N/2 and parameters based on F' = Fy, Fpr and Fp. Set 0 = 0° = 93
and ' = 0y = 6;. Then, for §° = 1, #' = 0.1,0.3, and m = n = N/2 = 100,500, we
generated realizations of X; and Y;. Note that the above choice of the parameter values
satisfies necessary conditions. On the basis of the conditional least squares estimators 62,
and 01 of #° and 0", respectively, the quantities Cy, Cy, k1 and ko are estimated by the
corresponding averages. In the actual computation of (1), 0?(F) and %, we evaluate the
integrals by a rectangular numerical integration with n terms. All the estimation results
in the tables below are based on 100 replications. Table 1 provides these results.

Table 1. Approximate values of e(-,-) for Sy = Sy(F') and
Ty = Tn(F) based on F = F,

Ty(F)
ARE Sy(F) m=n=100,0"=1  m=n=500,60 =1
6! = 0.1 6' =0.3 6' = 0.1 6' = 0.3
e(Fy, Fpg) 1.3331 1.3067 1.3048 1.3062 1.3049
e(Fy, F,)  0.7105 0.7237 0.7248 0.7240 0.7248
e(For, F1,)  0.5330 0.5538 0.5555 0.5543 0.5554

A closer examination of the ARE values in Table 1 reveals somes distinctive character-
istics. It is fairly clear that the values in Table 1 are stable with respect to the choice of
parameters and distributions, and m = n. We also observe that the corresponding values
for Sy (F) differ from those for Ty (F). These differences are due to the effect of the ARCH
volatility estimators é?n and 6,,. In addition, it is seen that the case of F = F, is more
efficient than the other cases for all chosen values of m = n and the parameters. However,
the efficiency for F' = Iy, decreases as ' or m = n increases. We also observe that T for
F = Fpg is a strong competitor to that for F' = Fj, when 6! becomes small. Another point
worth noting is that Sy(F) and Ty (F) for F' = Fpg outperform that for F' = Fy in all
cases. A striking feature of this study agrees that this testing principle is best in the case
of heavy-tailed ARCH residual distributions.

3.2 ARCH volatility effect

In this subsection, we study a distinction of Ty = T (F) and Sy = Sy(F) in terms of
their levels of test for the two-sample location problem under H, : § = 1 based on F' = Fy,
F]D)E and F]L.

Suppose that NY2(Sy — pup(8))/o1(F) % .4(0,1) holds. Then the test
NY2(Sy — pr(8)) /o1 (F) > A

has nominal asymptotic level & as N — co. We assume « to be less than 0.5 so that
Ao > 0. For this A\, let

dy = P{N"*(Ty — pp(0))/or > Xa}.

Then & = limy_, @y exists and is given by @ = 1 — ®(\,dp), where op = o1(F)/op.
Since op > o1(F), we have & > a.
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To distinguish how much the actual & varies from the nominal «, we use the level
a = 0.05 for which \g g5 = 1.645. Using the same values of o and oy (F) for F' = Fy, Ipg
and Ff, in the preceding subsection, we provide the results in Table 2.

Table 2. Actual @ =1 — ®(\,0r), 6p = 01(F)/op, F = F,
when nominal level o« = 0.05 for which X\ o5 = 1.645

m=n=100,60°=1 m =n =500, 0° =1

Distribution =071 — 3 fl=01 6 =03
. 0.9804  0.9790 0.9799  0.9790
i, 0.0534  0.0536 0.0535  0.0537
. 0.9902  0.9896 0.9900  0.9896
O pys 0.0517  0.0518 0.0517  0.0518
Sr 09714  0.9694 0.9694  0.0554
i, 0.0550  0.0554 0.0554  0.0554

Table 2 shows that the values of a, are differ from the nominal o = 0.05 with respect to
the choice of parameters and distributions, and m = n. It is also seen that these values tend
to increase slightly as ' or m = n increases. Such an increase is due to the asymptotics
of the ARCH volatility estimators #% and 6! . In addition, it shows the effect of skewness
on the level. As is typically the case when F' = F, is skewed to the right, &, > « for the
lower-tail rejection region. It should be pointed out that, in general, the closeness of a,
to a depends not only on the parameters but also on other aspects of F' = F,. We can
therefore say that the asymptotic level of Ty is fairly different from that of Sy because of
the ARCH specification effect.

3.3 Robustness measures

Hampel’s influence function IFH is a heuristic tool which provides rich quantitative ro-
bustness information. It measures the sensitivity of a statistic 7" to infinitesimal deviations
from an underlying distribution F. In the following, we introduce some measures which
indicate a robustness of Ty given by (12).

It was shown in the proof of Theorem 1 (see (16)) that

Ty — pin = Un(Fn, Gr) 4+ Vin (Oxn; F, G) + Van (0y.0; F, G) + 0,(N~V/?),
where
Us(FnsGo) =2{ [ s()d(G~ G)a) = [ 5" @)d(F ~ P)a)}.
Vi (B Fy G) = —277 (B, — 0) / (ef (@))(F — G)(x)dG(z)
and
Vv (B0 F.G) = =271 By~ 0,) [ (eg(0)(F - G)(o)dF ().

Let us first study a robustness of Uy (F,,,G,). To simplify the presentation, assume
that m = n = N/2. Then

Un (P, Gor) = 2] / $(@)d(Gry — G () — / & (@)d(Fy — F)(x) 1
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where
xr

s(z) = / NP~ G)F(y) and 5 (x) = / (F — G)(y))dG(y)

xo Zo
with 2o > 0 determined somewhat arbitrarily. As a measure of its robustness, we can
introduce the following influence function:

IFH(F,G) = lim Un{(1 — h)F + hés, (1 — h)G + hdp}
) ANO h )

where h € (0,1) and J; is the probability distribution with pointmass one at ¢. Thus, we
obtain

IFH(F,G) =2{s(b) — s*(a) +/s*(x)dF(x) — /s(x)dG(x)},

Next, we discuss a robust property of V1N(9x,m; F,G). Let us now consider 9X,m. Write
Swt = (X7,..., X7, )" and Wy, , = (1,8],)", and let S}Elt) be the first component of

~ ~—1
Sy, Then we can write @g,_,, =Ug 7 _, where
1 & 1 &
A~ Z (1) 7 Z T
")/Sx = — Sx,t WSx,t—l and ngx = — ng,t_IWSX,tfl.
mi= mi=

Since 74_and u s, are the sample versions of
Vs = E(S)((,lt)WSx,t—l) and Us, = E(styt—lng,t—1)7

respectively, the corresponding functional of éSx,m is Tg, = ngxl’ysx. Let us now consider
the following contaminated process

SZ,t = (1 - h)sx,t + th,t = Sx,t + th,t-

For S" = {S",}, we can introduce an influence function

"_h\,O h

Noting the differential formula for matrix dZ! = —Z~1(dZ)Z~', we obtain

d, - _ _ 0
%US),; heo _usxl(AX + Az)usxl’ Ax=E [ <Lx t1> Wg’wt—l] )
Also,
d (1) w( 0
- = B(LY)Ws , 1)+ E [s ]E -
dh'YS,’g h—0 ( X,t Sx,t 1) + x,t LX,t_l ’YSX
where L)((lz is the first component of Ly ;. Hence,

T, =Us, (Vs, — (Ax+ A7) Ts,)

~

and similarly for Von (0y ; F, G),

T, = U, (s, — (Ay + A])Ts,).

13



The quantities IF'H(F,G), Ty and ngy will facilitate the fundamental description of

sensitiveness or insensitiveness of fN.

Returning to the setup of Subsection 3.1, we describe the quantitative information for
Un(Fm, Gm), VlN(éxym; F,G) and VQN(éy,m; F, G) by computing the quantities [FH(F,G) =
I(F), Vin(Ty,, F)) and Van (T , F), respectively. Using the same realizations of X; and
Y, for m =n = N/2 = 100,500 and (6°,6') = (1,0.1), (1, 0.3), Tables 3 and 4 provide the
results for Makro 5

Table 3. Approximate values of I(F), Vin (T, F) and Von (T , F)
for Ty = Ty (F) based on various F = F, and m = n = 100, §° = 1

Distribution  I(F) Vin(Ts,. F) Von (T, F)
=01 9 =03 6 =01 ¢ =03
Fy 0.0350  0.0647 0.0193  0.0187  0.0096
Fos 0.0224  0.0364 0.0108 00105  0.0054
I 0.0249  0.0517 00154  0.0149  0.0077

Table 4. Approximate values of I(F), Vin(Ty , F) and Von (T, F)
for Ty = T\N(F) based on various F' = F, and m = n = 500, ° = 1

Distribution  I(F) Vin(Ts,. F) Van (T, F)
i=01 0 =03 6 =01 0 =03
Fy 0.0350  0.0390 0.0173  0.0263  0.0151
Fos 0.0224  0.0219  0.0098  0.0148  0.0085
A 0.0249  0.0311 00138  0.0210  0.0121

An examination of the values in Tables 3 and 4 shows some interesting features about
the sensitivity of TN = TN(F ) for F' = Fy, Fpg and Fy,. First it is apparent that the values
are stable with respect to the choice of parameters, distributions and m = n = N/2. Tt
is also interesting to note that the values of Viy(:,+) and Von(+,) tend to zero when 6!
increases for each m = n . This behavior depends not only on the choice of parameters
but also on other aspects of F' = F,. We summarize by saying that T is robust in terms
of goodness-of-fit for such heavy-tail ARCH residual distributions.

3.4 Real Data Analysis

To assess the usefulness of the asymptotic result obtained in Section 2, the proposed two-
sample testing problem for location is applied to real data sets. The data sets of interest
are the daily stock return data points (m = n = 2000) of AMOCO and IBM companies of
New York Stock Exchange from February 2, 1984, to December 31, 1991.

For the ARCH residual distributions F' = Fy, Fpg and Fp, the asymptotic relative
efficiency, the ARCH volatility effect and the measure of robustness of TN = TN(F ) are
demonstrated numerically in Tables 5 — 7, respectively. Note that the values in the tables
are stable with respect to the choice of the distributions. These results provide enough
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evidence in support of the simulation results. We summarize by saying that the two-
sample testing problem for location works well in the case of heavy-tailed ARCH residual
distributions.

Table 5. Estimated values of e(-, -)
based on various F' = F,.

e(Fy, For)  e(Fy, F1)  e(Fog, F1)
1.2320 0.7646 0.6206

Table 6. Actual @ =1 — ®(\,0p), 6p = 01(F)/op, F = F,
when nominal level o = 0.05 for which A\ o5 = 1.645

Distribution  dp, ap,
Fy 0.9306 0.0629
For 0.9680 0.0557
FL 0.8970 0.0700

Table 7. Estimated values of Viy (1% , F)
and Von (T3 , F') based on various F' = F..

Distribution Vin(Th,F) Van (T4, F)

Fy -0.0025 0.0023
For -0.0014 0.0013
I, -0.0020 0.0018

4 Proof

In this section we give the proof of Theorem 1. Write F},, = (ﬁ’m—F)—l—F, G, = (Gn—G)—i-G
and dHy = d(Hy—Hy)+dHy. Then the statistics (12) after a little simplification becomes

T\N = pun + Biy + Boy + Ciy + Con + Csn,

where
iy = / (F — G)2dHy(x),
Bix = / (F — G)%d(Hy — Hy)(x),

Box = 2 /(F — ) (E — F) — (G — G))dH (),
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Cin = n G))ZdHN(x),

—
3’11 N
|
3
|
A

A ~

Cov = [((F=F) = (G~ )Pl ~ Hy)(a),

@N::Q/W—Gwﬁh—m—u%—GWM%—Hmwy

To establish the proof of this theorem, we proceed to show that:
(i) the term gy is finite,
(ii) By + By has a limiting Gaussian distribution, and
(iii) the C\ terms are uniformly of higher order.

Let us first show the statement (i). For § > 0, we can find K > 0 such that |(F —
G)(z)| < K[Hy(x)(1 — Hy(x))]"/*7° (see e.g., Puri and Sen (1991, p.43)). Thus,

|7~ Gpam|< & [ a0 - )P < K <

Next we show the statement (ii). From (11) and integrating B,y by parts, we observe
that

Bix :-a/w—Gm%—HmaF—mw)
:-JQN/M—GW%—ﬂﬂF—Q@)
+u—N@/w—Gm%—@aF+®@)
+m1/2>\NAx/($f($))(F— G)(2)d(F - G)(z)

+n 2 (1~ AN)Ay/(fcg(fc))(F — G)(x)d(F — G)(x)}
+ higher order terms.

Then, from (7), (9) and (11), we obtain
NBiy + Bax) = 2N [ s@)ilGo - 6 @) — [ @ - F) o)
2 [[f @)(F - G)(@)iG)
4, [ E - G )

+ higher order terms
ay + by + ¢y + dy + higher order terms, (16)

where
xr

5@ = [ F-Guary) i s@ = [ (F-Guc)

o o
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with o > 0 determined somewhat arbitrarily.

To compute the variance of (16), we shall first find a bound on the (2 + ¢')th moments
of s(z) and s*(z), where 0 < ¢’ < 1. Choose 8’ > 0 such that (2 4+ ¢")(3 — 0) > —1. Then
using |(F — G)(z)| < K[Hy(2)(1 — Hy(2))]"/27° and the fact that dHy > \odF, we see
that

1
E{Js())** < K/ (Hy (1 — Hx) 2D iy () < K < oo,
0
and similarly, we can establish that E{|s*(z)|}**? < co.

We shall now find the variance of (16). Noting that ay and by are mutually independent
random variables, and using the result by Chernoff and Savage (1958, p.976), we obtain

oy = Var(ay + by). (17)

Similarly, we can compute the same for ¢y and dy by first observing the result of Tjgstheim
(1986) that

Var(m'?(0x,m — 05) = U7 R UL and  Var(n'/*(8y, — 0y)) = U 'RUS".
Thus, recalling (8), (10) and (11), we get
o5y = Var(ey) and o3y = Var(dy). (18)

We next compute the covariance terms. Since {X;} and {Y;} are independent, we have
only to evaluate
KIN = 2E(bNCN) and KQN = 2E(aNdN).

From (14), we obtain

Kiy = —8\3 / / Blm"2(Fp — F)(2) Adps (2, y)dG () dG(y),

for which, it is necessary to find E{-}. Using the result by Horvath et al. (2001), it follows
from (8) and (13) that

E[m'?(F, — F)(2)A] = () Y Tidsi,
0<i<px
where () is defined in Theorem 1. Thus,
Kiy = =8\ Z Tx,i0x,i //wx(:r)pf(x,y)dG(af)dG(y)
0<i<px
and similarly
Koy =8(1 = Ay)7! Z Ty7i5y,i/ Yy(x)ps(, 2)dF (x)dF (x).
0<i<py

Adding Ky and Ksy produces (y defined in Theorem 1.
Hence, using the term (y, (17), (18), and the central limit theorems given by Horvath
et al. (2001) and Tjpstheim (1986), we may conclude that

N1/2(BlN+BQN)/O'Ni></V(0,1) as N — oo.

We finally show the statement (iii). For this, we need the following elementary results
(see Chernoff and Savage (1958, p.986)).
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dHy > AndF > \dF'.
dHy > (1 — Ay )dG > M\dG.
1—-F<(1-Hy)/Av < (1= Hy)/o.
1-G<(1—-Hyx)/(1=Ay) <(1—=Hn)/ .
F(1—-F) < Hy(1—-Hy)/ 4 < Hy(1 — Hy) /A2
G(1—G) < Hy(1—Hy)/N2.

Let (an, fx) be the interval Sy, where

Sy. = {z: Hy(1 — Hy) > n AN '} (19)

Then 7, can be chosen independently of F', GG, and Ay so that
Ple2e Sy, t=1,....m, &€cSy,t=1,....,n]>1—c

Let us first evaluate Cyy. From (7) and (9), we obtain
Civ = [((Fn=F) = (G~ G)PdHx(2)
s A [ @f ) (Bn - F)a)dHy (o)
—2m 4, [ (£ (@)(Go ~ 6)(@)dHy(x)
~on 24 [ (g(a)) (P~ P)a)dH s (2)
+2724, [ (29(@) (G - G) )M (2)
s A2 [ (27 0 (a)
a2 [ (@) (o)

—2m” 2T AA, / (¢ f(x))((zg(x))dH N (2)

+ higher order terms
8

Z Ch;n + higher order terms.

=1

We first deal with C' . In what follows, we mean that all mathematical relations, e.g., <,
= etc. hold with probability 1 — e. Since {X;} and {Y;} are independent, it follows from
(E.5), (E.6) and (19) that

E(|Cun|) = % S [%F(l—F)Jr -Gl - &) dHy(z)
K
<5/ Hy(1 — Hy)dHy ()
= %0[(HN(5N)(1 — Hy(fr)))?] = o(N 7). (20)
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Therefore, by the Dominated Convergence Theorem, we have Cy;y = 0,(N~1/2). Next we
turn to Ciay. Let

In(6*) = sup m'/?|Fy (2) — F(2)| < C*[F(x)(L = F(2))]Y/?"7, 6* >0, C* >0, (21)
so that P(Iy(0*)) > 1 — € (see Puri and Sen (1993, p. 401)). Notice that from (A.1) and

(A.2), we can find K > 0 such that |z f(x)| < KHy(1 — Hy). Thus, using (E.5), (19) and
the fact m™'|Ay| = O,(m™"), we obtain

[Cran| < m |4 s [of (@)[|m"/*(Fu(x) = F(x))|dHy(2)

< Oyfm ™) [ 11— mI T ary ()

= Op(m " )Ol(Hy (Bx)(L = Hy(Bx)) D] = 0,(N7). (22)

Hence, Cioy = 0,(N~'/2). The proof for Ci3y = Ciun = Cisy = 0,(N~/2) is analogous to
(22). Now we consider Cigy. Following the arguments of (22), it is seen that

Cunl < m AP [ fof@)PdH(o
< Oym ™) [ (1= Hy)Pd ) = 0, (V). (23)

hence, we have Cigy = op(N_l/z). To complete the assertion for Cy, we can similarly
show Ci7x = Cigy = 0,(N/2). Consequently, we have

Ciy = 0,(N~'/?).
Next we deal with Csy. Recalling (12), we obtain
Cox = [ =)~ (G )0 — H) (@)
s 2y (= ) = G = 6)Pef ()

407124, [ (B = F) = (G = G)Pdlag(a)
+ higher order terms
= Oy n + Cyn + Cozny + higher order terms,

where (Hy — Hy)(z) = An(F — F)(2) + (1 = AN)(G,, — G)(z). Let us first evaluate Co y.
By analogy with the first C' term, we have

Coy = /((Fm -F)- (G, - G))2d(”HN — Hy)(z)
Fom 124, / (£ (@) (F — F)(@)d(Hy — Hy)(z)
—am 24, / (2 (2)) (G — G) (2)d(Ho — Hy)(x)
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2024, [(ag(@)) (P~ F)@)d(Hoy ~ Ho) ()
w2024, [ (agl0)) G = G) @l — H)(a)
b A2 [ (@) d(oy ~ Hy)(@)

A2 / (22%(x) )M — Hy)(z)

—2m™ 0T 2 A A, / (2 f(2))(zg(x))d(Hy — Hy)()

+ higher order terms
8

Z Cs1;v + higher order terms.

=1

Let us first consider Cy;py. Since {X;} and {Y;} are independent, we have only to evaluate

E(|Conn|) = E{)\N/ (F, — F)2d(F,, — F)(x)

+(1 = Aw) /S (G~ GPd(G, ~ )},

From the result by Chernoff and Savage (1958, p.990) and (20), it follows that

E(|Connl) = %[%/S (1 F)(1 - 2F)dF ()
+1—1AN/5 (1— G)(1 - 2G)dG(x)
< % [y

which implies Cy11x = 0,(N71/2). Next we consider Cyjpy, which on integrating by parts
gives
Coray = m_l/QAx{_ANC;mN + 2(1 - AN)(C;TZN + C;f;N)}a

where

Coony = /S (Fn — F)Qd(a:f(a:)),

Citow = / 2 (2)(Fp — F)(2)d(Gy — G)(a),

ity = / () (F — F)(2)d(Gy — G)(2).

Let us first deal with C5;,5. From (A.1), (A.2) and (20), it follows that

B(Cin) < o= [ FL= P)F(
< % Hy(1 — Hy)dHy(z) = o(N-1). (24)
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With probability greater than 1 — e, there are no observations Sy. and

Coian| < K | (Hy(1— Hy))*dHy(x) = o(N ).

Sne

Next we turn to C55y. Since {X,;} and {Y;} are independent, we have

E(C3isn) = BIE(CosNIEL, - &)1 =0, E[(C5x)°I&t, - -, &l = Caisn,

Ciitk = o [ @I @IWF@ - PG, - 6)a)(Ga = G0,

PCsD < o [[ lenf@rwIF@0 - Fu)caci)
K
< / 20 (2) () Hv(2) (1~ Hs())dHy (@) ()
< ] Pa-owa- 2y < G 29
O<zr<y<1

Thus, using the Dominated Convergence Theorem, m~'/2|A | = O,(m~1/2), (24) and (25),
we have Coiony = 0,(N7'). The proof for Coizy = Copuny = Coisy = 0,(N™') can be
handled similar to Cy25. Now we turn to evaluate

Coten = milAi{)‘NC;wN + (1= An)Csn ) (26)

where
Chon = / (ef (x))2d(Fp — F)(2),
Citow = / (of (2))2d(G — G)(@).

It suffices to show Cj 4y = 0,(1). From (A.1), (A.2) and (19), we see that C3 4y is
dominated by

Coin| < /S O{[Hn(1 = Hy)"}d(Fn — F)(2)]

= m~/? / O{N~*}d[m'/*(F,, — F)()]|
Sn.
= 0,(1) (eg., Theorem 2.11.6 of Puri and Sen (1993)),

which, together with (m|A.|*) = O,(m '), implies Cj4n = 0,(N ). Similarly, we can
prove C;TGN = Op(Nil), and 0217]\7 = CZISN = Op(Nil). Hence, we have Cy 1y = Op(N71/2).
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Next we consider Cypy. In the same way as for Cyy, we obtain
Caow = m Aty [(Fo = F) = (G~ §)d(wf (@)

s Al [ @f @) - F)a)d(af @)
~2m AL [ (850G~ G)@d(af (@)
~2m o Py A [ (ag(@) (F — P)(a)d(ef (@)
s P A A, [ (09(2))(Go - G)a)d(af @)
sl [ oo (o)
LV A A2 / 22%(2)d(x f(2))

—am A2 [ (o (@) ag(a)da @)
+ higher order terms

8
Z Co9in + higher order terms.
i=1

Let us first consider Caoyy = m ™2 Ay A Ciy, n, Where

Cinn = [ (B = F) = (G = G)Pilaf (2)).

Recalling (A.1), (A.2) and (20), we obtain

. 1 FOA-F) G1-G
B < oy [ [P+ S ik
K €
S - HN(l—HN)dHN(a?):O(Nil)
N S,

Therefore, by the Dominated Convergence Theorem and (m~Y/2|A,|) = O,(m~/2), we have
Cooin = 0,(N71). Next we evaluate Cozon. From (A.1), (A.2) and using the arguments of
(22), it follows that

|C222N| < Op(m_l)/ [HN(l_HN)](3/2)_6’dF(1')
SN,

< Op(m H)O[(Hy(Bx)(1 = Hy (B3))) 27" = 0,(N71), (27)

hence, we have Cogy = 0,(N~1/2). Similarly we can prove Cypy = Copy = Copsy =
0,(N~1/2). Next, we consider Cyysy. In view of (A.1), (A.2) and (23), we observe that

oo | < Op(m=12) / (Hy(1 — Hy))2dF(z).

SN,
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Thus, Cyn = 0p(N1). Similarly, we can prove Cory = Cagy = 0,(N ). Hence, we
have Coyn = 0,(N~2). The proof of Cysy = 0,(N~1/2) follows precisely on the same lines
as that of Cyy. Consequently, we have

OZN = OP(N71/2).

Finally we evaluate Cyy. By analogy with the second C' term, we obtain
Coy = 2 / (F = G)(Fyy — F)d(Hy — Hy)(x)
~2 [(F -GG, - Gty — )
w24, [(af@)(F - G) )y~ H)(a)
~20 24, [(ag@)(F = G)w)d(Hy ~ Hy) (o)
s A, [[(F = G)(Fo — P)i(af (@)
“2m A [(F = 6)(Go - G)d(af (@)
Lon=12(1 = Ay)A, / (F - G)(Fy — F)d(zg(x))
o V(1 Ay)A, / (F — G)(Gy — Q)d(zg(z))
s 2 [ (@f@)(F - 6)@)d(af ()
—2 (1 M) [ (gl (F - 6)(@)dlag ()
~2m o AN AA, [(ag(@)(F = G)w)dlaf (@)

+2m (1~ AN)AxAy/(fvf(fv))(l" — G)(z)d(xg(z))

+ higher order terms
12

Z Csin + higher order terms.

=1

Let us first consider C5;x, which on integrating by parts yields
Caiv = An (G — C5iy) + 2(1 — An)Csiy,

where

v = / (Fy — F)dG(z),
Ciiv = [ (Fn—FYaF(@),
iy = / (F = G)(Fyy — F)d(G — G)(x).
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Recalling |(F — G)(z)| < K[Hy(x)(1 — Hy(x))]"/?7% and the arguments of Cyox, we can
easily show C31x = 0,(N 1), and analogously Csay = 0,(N1). Next we turn to evaluate

Cssn = 2m_1/2Ax{)\NC§3N + (I = An)C33n }

where
Cipv = / (2 (@)(F - G)(@)d(Fy — F)(z),
Cpy = / (2 (@))(F - G)(@)d(Gy — G)(x).

Using (A.1), (A.2) and (26), we can show Cj;y = Ciiy = 0,(1), which, combined with
(m~12|A]) = Op(m~Y?), implies Cs3x = 0,(N~Y2). The proof for Cssn = 0,( N~/2) can
be handled similarly. Now we turn to Cssy. In view of (A.1), (A.2), (E.1) and (22), we can
show that Cssy = 0,(N~1/2). Similarly, we can show Cssy = Csry = Cagy = 0,(N~Y2).
Now consider Csgy. From (A.1)-(A.4) and (23), we obtain

Caon| < Op(m™Y) / (Hy (1 — Hy))®/D 3dF (z) = 0,(N),

and hence, Csgn = 0,(N~Y/2). Similarly we can show Cox = Cs11x = Ca1on = 0,(N71/2).
Consequently, we have
CgN = Op(N_1/2).

This completes the proof of the theorem.
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