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Abstract—In biology, identifying the tertiary structure of a 

protein helps determine its functions. A step towards tertiary 

structure identification is predicting a protein’s fold. 

Computational methods have been applied to determine a 

protein’s fold by assembling information from its structural, 

physicochemical and/or evolutionary properties. It has been 

shown that evolutionary data helps improve prediction accuracy. 

In this study, a scheme is proposed that uses the genetic 

algorithm (GA) to optimize a weighted voting system to improve 

protein fold recognition. This scheme incorporates k-separated 

bigram transition probabilities for feature extraction, which are 

based on the Position Specific Scoring Matrix (PSSM).  A set of 

SVM classifiers are used for initial classification, whereupon 

their predictions are consolidated using the optimized weighted 

voting system. This scheme has been demonstrated on the Ding 

and Dubchak (DD) benchmarked data set. 

Keywords—Protein fold recognition; SCOP; PSSM; Genetic 

Algorithm; Support Vector Machines; k-separated bigrams 

I.  INTRODUCTION 

In the field of biological science, protein fold recognition 
refers to assigning a protein to one of a finite number of folds. 
This is considered a crucial transitional step in identifying a 
protein’s tertiary structure [1]. Recognition of protein folds 
requires development of feature extraction and classification 
techniques. In literature, several feature extraction and 
classification techniques have been proposed. Dubchak et al. 
[2] have used structural and physicochemical based features for 
protein fold recognition. Taguchi and Gromiha [3] proposed 
structural features (occurrence) for protein fold recognition. 
Ghanty and Pal [3] have employed pairwise frequencies of 
amino acids, both for adjacent (PF2) and separated by one 
residue (PF1). Yang et al. 2011 [4] have used PF1 and PF2 in 
an augmented form in their study. Their features, subsequently, 
were of higher dimensions compared to Ghanty and Pal [3]. 
Nonetheless, high dimensionality can be controlled by utilizing 
either feature selection methods (eg. [5]–[10]) or 
dimensionality reduction methods (eg. [11]–[15]). 

Recently in protein fold recognition, the use of evolutionary 
features have been showing good performance [16], [17]. 

Evolutionary features are extracted from Position Specific 
Scoring Matrix (PSSM) and are basically a relative measure of 
amino acid occurrence at a particular position in the protein 
sequence. Several researchers have used PSSM for improving 
protein fold recognition and some of these include auto cross-
covariance [18], bi-gram [19], tri-gram [20], sequence 
alignment via dynamic time warping [21] and ensemble 
features [22], [23]. 

Furthermore, some of the classification techniques that 
have been explored include Linear Discriminant Analysis [24], 
K-Nearest Neighbors [25], Bayesian Classifiers [26]–[28], 
Support Vector Machines (SVM) [19]–[21], [28]–[30], 
Artificial Neural Networks (ANN) [31]–[33] and ensemble 
classifiers [34], [35]. Out of these mentioned classification 
techniques, SVM has showed promising results in protein fold 
recognition problem. However, it is shown in the literature that 
to further improve the protein folding accuracy, a good 
combination of features extraction technique as well as 
classification technique is needed [36], [37]. 

In this paper, a scheme is proposed where the Genetic 
Algorithm (GA) is utilized to determine the optimal weights 
for a weighted voting scheme. In this scheme, features are 
extracted using k-separated bigrams and classification is 
carried by utilizing multiple instances of SVM classifiers. The 
extracted information for each k-separated bigrams is used for 
classification by a separate SVM classifier whose individual 
predictions are combined using a weight voting system that has 
been optimized using the GA [38]. 

II. DATASET  

In this research, data has been used from the benchmarked 
Ding and Dubchak (DD) protein sequence dataset. The dataset 
consists of a training set for the creation of the model and an 
independent test set for testing queries against the model. The 
data set belong to 27 SCOP folds which further represent the 
four major structural classes – α, β, α+β, α/β. A brief listing of 
the DD dataset has been illustrated in Table 1. The training 
dataset consists of 311 protein sequences where any given pair 
of sequences do not have more than 35% sequence identity for 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the South Pacific Electronic Research Repository

https://core.ac.uk/display/77223087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aligned subsequences longer than 80 residues and the test set 
consists of 383 protein sequences where the sequence identity 
between any two given proteins is less than 40% [2]. 

TABLE 1.  SUMMARY OF DD-DATASET 

Fold Number of 

training vectors 

Number of test 

vectors 

α   

Globin-like 13 6 

Cytochromec 7 9 

DNA-binding 3-helical-

bundle 

12 20 

4-Helical up-and-down 

bundle 

7 8 

4-Helical cytokines 9 9 

α EF-hand 6 9 

β   

Immunoglobulin-like  -

sandwich 

30 44 

Cupredoxins 9 12 

Viral coat and capsid 

proteins 

16 13 

ConA-like 

lectins/glucanases 

7 6 

SH3-like barrel 8 8 

OB-fold 13 19 

Trefoil 8 4 

Trypsin-like 

serineproteases 

9 4 

Lipocalins 9 7 

α/β   

(TIM)-barrel 29 48 

FAD (also NAD)-binding 

motif 

11 12 

Flavodoxin-like 11 13 

NAD(P)-binding 

Rossmann-fold 

13 27 

P-loop containing 

nucleotide 

10 12 

Thioredoxin-like 9 8 

Ribonuclease H-like motif 10 12 

Hydrolases 11 7 

Periplasmic binding 

protein-like 

11 4 

α+β   

β-Grasp 7 8 

Ferredoxin-like 13 27 

Small inhibitors, toxins, 

lectins 

13 27 

 

III. PROCEDURE 

A. Overview 

The scheme, initially, commences with the extraction of 
PSSM from protein sequences using PSI-BLAST. This is 
succeeded by the calculation the k-separated bigrams and the 

features are extracted for k=1,...,11. Finally, the SVM 
classifiers provide individual sets of predictions that are 
consolidated using a GA optimized weighted voting system. A 
flow-diagram of the classification procedure is illustrated in 
Figure 1.  

B. Feature Extraction 

The technique proposed in this study attempts to model 
relationships between amino acids that are non-adjacent in the 
protein sequence. To accomplish this, amino acid bigram 
probabilities are extracted from the sequential evolution 
probabilities in PSSM. In this study, we also explore k-
separated bigrams that are non-adjacent. i.e., they are separated 
by other amino acids in the sequence whereby k determines the 
positional distance between the bigrams under consideration. 
This technique can be summarized mathematically as shown in 
Equation 1. If we let N be the PSSM matrix representation for 
a given protein, N will have L rows, where L is the length of 
the primary sequence and 20 columns since there are only 20 
unique amino acids. The transition of the m

th
 amino acid to the 

n
th

 amino acid is: 

                                  (1) 

where 1 m  20, 1  n  20 and 1  k  K  
 

T(k) = [ T1,1(k), T1,2(k), …, T1,20(k), T2,1(k), …,  

T2,20(k), …, T20,1(k), …, T20,20(k) ]                                (2) 

The equation stated in (1) constructs a matrix T(k) or F(k) 
(for clarity) (2) which contains 400 elements representing 400 
amino acid transitions for just a single value of k. As stated 
previously, k represents the distance between the amino acid 
positions that are used to compute the transition probabilities. 
For k=1, the transition probabilities are computed between 
neighboring amino acids whereas, for k=2, the transition 
probabilities are computed between amino acids that are 
separated by 1 amino acid in between. Therefore, for k=11, the 
amino acids used to calculate the transition probabilities are 
separated by 10 amino acids. We consider k-separated bigrams 
only until k=1,2,...,11 due to the computational constraints and 
also due to classifier performance discussed in later sections. 
The k-separated bigrams have been visualized in Figure 2 for a 
sample protein ARTARA. 

FIGURE 2 - A SAMPLE PROTEIN SEQUENCE WITH 

ILLUSTRATION OF K-SEPARATED BIGRAMS 

 

We calculate k-separated bigrams only up to k=1,…,11 due 
to the fact that the classification accuracy gradually decreases 
as the k gets larger and the weights assigned by the genetic 
algorithm to each k (shown in Figure 4) become too small to 
provide any significant input to the classification. Additionally, 
the accuracy for each feature set F(k) gradually drops as the 
value of k increases (highlighted in Figure 3). 



 

FIGURE 1 – FLOW DIAGRAM OF THE PROPOSED CLASSIFICATION PROCEDURE 
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Upon extracting all features with k=1,2…,11, we get a 
feature set of 4400 features (400 * 11 features). Instead of 
considering all these features a single feature vector of length 
4400, we consider features extracted for a particular value of k 
as separate and independent feature vector. This is partly due to 
the high computational requirements of processing the 
concatenated feature vector and the increased difficulty in 
classification with a feature vector of high dimensionality. 
Moreover, this approach will also clearly highlight the 
contribution by individual k-separated bigrams. Therefore, for 
each value of k, we consider the extracted features to be 
representing the bigram transition probabilities with varying k-
separation between the amino acid pairs. Each of these 11 
different feature sets provides input for the set of SVM 
classifiers discussed in the later sections.   

In order to illustrate this feature extraction technique, let us 
consider a fictional protein sequence ARTARA of length L=5, 
and also assume that there are only 3 amino acids for the 
purpose of illustration. Therefore, the length of the feature 
vector for each value of k will be 9 (since 3*3). Assuming that 
the PSSM matrix for this sequence is given as shown in Table 
2, the technique described in this paper will be utilized to 
extract features for k=1 and k=2. If we apply the proposed 
feature extraction technique with k=1, we can compute the 
bigram transition probabilities as shown in Table 3. Similarly, 
the bigram transition probabilities for k=2 can be shown in 
Table 4. As described previously, each of these feature sets are 
considered as independent and they provide input to specific 
classifier in the ensemble classification procedure. 

TABLE 2 - PSSM OF PROTEIN ARTARA 

Amino Acid A R T 

A 0.10 0.60 0.30 

R 0.45 0.35 0.20 

T 0.20 0.56 0.24 

A 0.31 0.42 0.27 

R 0.66 0.17 0.17 

A 0.13 0.71 0.16 

 

TABLE 3 - BIGRAM TRANSITION PROBABILITIES FOR PROTEIN 

ARTARA WITH K=1 

Amino Acid A R T 

A 0.4874 0.8923 0.3403 

R 0.8129 0.8333 0.4538 

T 0.4497 0.4844 0.2459 

 

TABLE 4 - BIGRAM TRANSITION PROBABILITIES FOR PROTEIN 

ARTARA WITH K=2 

Amino Acid A R T 

A 0.3318 0.4991 0.2291 

R 0.6527 0.8764 0.4009 

T 0.3155 0.4845 0.2100 

 

C. Classification on Individual Features 

SVM was used for classifying each of the feature sets 
represented by F(k). SVM is a supervised learning model 
linked to machine learning algorithms that is used for pattern 
recognition. It is widely used in classification and regression 
analysis. In its simplest form, SVM accepts a set of inputs and 
then predicts for each input which of the two possible classes it 
falls under. For multi-class problems, SVM can still be used by 
reducing the problem into multiple binary classification 
problems. SVM aims to construct a hyper-plane in infinite-
dimensional space such that a good level of separation is 
achieved between the classes thus lowering the generalization 
error of the classifier. 

A different instance of SVM was used to build the 
classification model for every different F(k). Therefore, in this 
scheme we have 11 different instances of SVM each of which 
is trained with a particular feature set, F(k). As stated earlier, 
this is done so to mitigate the problem of high dimensionality 



with the concatenated feature set. The parameters for each of 
the SVM classifiers were tuned such that the classifiers yielded 
the highest training accuracies. 

D. Fusion on Classifier Outputs 

Since the classification model consisted of several instances 
of SVM classifiers, all of which provided their own sets of 
predictions, it was important to formulate a scheme to 
assimilate the predictions from the classifiers efficiently to 
produce one consolidated set of predictions. Considerable 
experimentation was carried out to determine the optimal 
scheme, which included simple majority voting, selection of 
best performing feature sets from F(k) and genetic algorithm 
optimized weighted voting. 

Initially, a simple majority voting system was used for 
determining the final prediction using all 11 SVM models. The 
classification accuracy of this scheme had a slight 
improvement over the highest individual performance of the 
SVM classifier. However, it was determined that not all 
classifiers were required equally for improving classification 
accuracy. Therefore, a new scheme was created whereby a 
subset of 5 best performing classifiers were selected based on 
their training accuracies and then simple majority voting was 
used to determine the final set of predictions, which resulted in 
further improvement in the classification accuracy. 

However, this approach of selecting a subset of classifiers 
had its shortcomings. It was difficult to determine the optimal 
number of classifiers that need to be selected to yield the best 
results. Additionally, by removing certain classifiers from the 
final prediction calculation, we were effectively removing the 
input from the entire feature set F(k) for that particular value of 
k. Therefore, we pursued a more holistic approach whereby an 
evolutionary machine learning technique, Genetic Algorithm, 
was used to assist in consolidating the predictions. 

The evolutionary approach to machine learning is based on 
computational models which includes natural selection and 
genetics. This is known as evolutionary computation which 
simulates evolution on a computer and encompasses genetic 
algorithms, evolutionary strategies and genetic programming. 
The latter techniques simulate evolution using selection, 
mutation and reproduction processes. Genetic Algorithm (GA) 
is basically an optimization algorithm which iteratively 
improves the quality of a solution until is optimal using a 
stochastic approach. 

In the proposed scheme, GA was used to optimize weights 
for voting assigned to each classifier that ranged from 0 to 1, 
with 0 indicating no input for the final prediction and 1 
indicating maximum input towards the final prediction. The 
final prediction was simply based on selecting the output 
variable with the highest weight. This has been summarized in 
Algorithm 1 shown below. 

ALGORITHM 1 - WEIGHTED VOTING SYSTEM 

Loop through each class 

 Sum the weighted votes by each classifier for that class 

End Loop 

Predicted Class := Class with greatest votes 

To determine the optimal weights for each classifier, real 
value genetic algorithm was used. The Optimization Toolbox 
from MATLAB provided such an implementation of the genetic 
algorithm for minimization problems. Since the aim was to 
maximize the classification accuracy, the fitness function had 
to be modified accordingly to represent the problem as a 
minimization function. The fitness function (Equation 3) and 
the genetic algorithm parameters are provided in Table 5. The 
genetic algorithm was allowed to terminate after the fitness 
values remained constant for 100 generations. On an average, 
the genetic algorithm ran for 150 generations. 

TABLE 5 - GENETIC ALGORITHM PARAMETERS AND VALUES 

Parameter Value 

Number of Generations 1000 

Stall Limit 100 

Population Size 100 

Crossover Rate 0.8 

Crossover Function Two Point Crossover 

Mutation Function Adaptive Feasible 

Initial Population Template [1 1 1 1 1 1 1 1 1 1 1] 

 

IV. RESULTS AND DISCUSSION 

The experimentation was performed on the benchmarked 
DD dataset to evaluate the performance of the classification 
scheme described previously. As previously stated, the DD 
dataset, which been widely adopted by many researchers, has 
divided the samples into two sets, training and testing datasets. 
The classification model described in this study was evaluated 
using independent testing using the test dataset and k-fold 
cross-validation testing. This strategy of performance 
evaluation is widely employed by researchers in literature. 
However, the jackknife test was not performed due to high 
computational demands. 

The performance of SVM on each of the individual feature 
sets F(k) with k=1,2,…,11 was encouraging. The results, 
shown in Table 6, clearly indicate that there is discriminatory 
information present in k-separated bigrams even when the 
bigrams are separated by 10 amino acids in between. In order 
to consolidate the individual classifier predictions, we explored 
simple majority voting, subset selection with majority voting 
and weighted voting approaches, the results of which are 
reported in Table 7. As shown by the results, each of these 
scheme lead to an improvement on the highest individual 
performance by SVM, however, GA optimized weighted 
voting scheme leads to the highest improvement in 
performance. The optimized weights, shown in Figure 4, 
yielded 72.7% training accuracy. It should be noted that all 
evaluations up till this stage were carried out by using the 
training dataset only unless otherwise stated and these results 
were analyzed to determine the various parameters. Upon 
finalizing optimal parameters and weights, the model was now 
ready for evaluations using the standardized test dataset. 

The experiment consisted of two parts; in the first part, the 
parameters for the model were optimized using the training set 
and the separate test set was employed to determine the 
classification accuracy of the model. In the second part, the 



training and testing datasets were combined and n-fold cross 
validation was used to evaluate the performance of the model. 
For this method of performance evaluation, the parameter 
values determined previously in the independent dataset test 
were used. 

FIGURE 3 – GRAPH OF TRAINING ACCURACY OF F(K) FOR 

K=1,2,…,11 

 

 

TABLE 6 - CLASSIFICATION ACCURACIES FOR K-SEPARATED 

BIGRAMS FOR F(K) 

F(k) Training Acc. Testing Acc. 

1 65.1 68.9 

2 62.1 68.9 

3 66.3 68.9 

4 63.2 65.0 

5 64.0 66.1 

6 63.7 67.4 

7 61.9 65.5 

8 62.4 65.3 

9 62.9 65.5 

10 61.9 66.3 

11 60.8 65.0 

 

FIGURE 4 - SUMMARY OF OPTIMIZED WEIGHTS 

 

TABLE 7 - SUMMARY OF MODEL PERFORMANCE 

Method Training Accuracy (%) 

All 11 classifiers, equal weights 68.8 

5 top classifiers, equal weights 70.4 

All 11 classifiers, GA optimized 

weights 

72.7 

 

For the first part (using the training set and the independent 
test set), the performance of the proposed technique showed 
improvement compared to previous works in literature. It was 
noted that the highest accuracy achieved was 71.5% (this 
paper) which showed a 2% improvement compared to existing 
feature extraction techniques. The results are summarized in 
Table 8. 

TABLE 8 - SUMMARY OF REPORTED TEST ACCURACIES 

Feature set Accuracy (%) 

ACC+HXPZV (Ding and Dubchak, 2001) 56.0 

Shamim et al., (2007) 60.5 

Ghanty and Pal (2009) 59.2 

Chmielnicki and Stapor (2012) 62.8 

AHVPZ (Yang et al., 2011) 44.7 

AX (Yang et al., 2011) 40.3 

AHXPZV (Yang et al., 2011) 49.4 

PF (Yang et al., 2011) 60.8 

AHVPZ+PF (Yang et al., 2011) 51.2 

AHXPZV+PF (Yang et al., 2011) 52.7 

Monogram (Sharma et al., 2013) 62.1 

Bigram (Sharma et al., 2013) 69.5 

This paper 71.5 

 

For the second part, n-fold cross validation procedure was 
performed on the merged training and test dataset for n=5, 6, 
…, 10. The same experimental procedure as the first part was 
adopted in this part which included the ensemble of classifiers 
with optimal parameters as illustrated in Table 9.  

The proposed scheme was compared against various other 
schemes that use information structural and evolutionary 
information for fold recognition. These techniques included 
PF1 and PF2 [3], PF [39], Occurrence (O) [40], AAC and 
AAC+HXPZV [2], which compute feature sets from the 
original protein sequences. In addition, ACC [18], Bi-gram 
[19], Tri-gram [20] and Alignment [21] are also included since 
they compute features directly from the evolutionary 
information present in PSSM. Moreover, features have been 
computed from the consensus sequences for PF1, PF2, O, AAC 
and AAC+HXPZV to obtain additional feature sets for 
comparison. A prefix of PSSM+ indicates that the features 
have been computed on the consensus sequence. 

The optimal weights that were achieved using GA in the 
first part were used to combine the classification outputs. The 
accuracies were compared to past literature works and it was 
seen that there was an improvement of 2.0%. The highest 
classification accuracy recorded was 76.7% (this paper). 



TABLE 9 - SUMMARY OF N-FOLD CROSS VALIDATION 

PROCEDURE 

Feature sets n=5 n=6 n=7 n=8 n=9 n=10 

PF1 48.6 49.1 49.5 50.1 50.5 50.6 

PF2 46.3 47 47.5 47.7 47.9 48.2 

PF 51.2 52.2 52.6 52.9 53.4 53.4 

O 49.7 50.4 50.8 50.8 51.1 51.0 

AAC 43.6 43.9 44.2 44.8 44.6 45.1 

AAC+HXPZV 45.1 46.2 46.5 46.8 46.9 47.2 

PSSM+PF1 62.5 63.2 63.7 64.2 64.5 64.6 

PSSM+PF2 62.7 63.3 64.1 64.2 64.6 64.7 

PSSM+PF 65.5 66.2 66.5 66.9 67.1 67.5 

PSSM+O 62.5 62.1 62.5 62.9 63.4 63.5 

PSSM+AAC 57.5 58.1 58.4 58.7 59.1 59.2 

PSSM+AAC+ 

HXPZV 

55.9 56.9 57.1 57.7 58.0 58.2 

Bigram 72.6 73.1 73.7 73.7 74.1 74.1 

Trigram 72.1 72.6 73.0 73.2 73.7 73.8 

Alignment 72.6 73.5 73.8 74.2 74.7 74.7 

This paper 73.5 75.4 74.5 76.2 76.7 75.7 

V. CONCLUSION 

In this study, a feature extraction technique has been 
employed, which is based on sequential evolution probabilities. 
This technique uses varying distances of amino acid transitions 
within the sequence to compute the features. A variety of 
classifiers were used on each transition distance and the 
predictions of the classifiers were fused using a weighted voted 
scheme. Genetic Algorithm was further used to optimize the 
weights so that the best weight distribution can be determined 
which would give the optimal classification accuracy. 

The proposed technique gave promising results, and the 
accuracy noted was 76.7% via n-fold cross validation. Since 
user-friendly and publicly accessible web-servers represent the 
future direction for developing practically more useful models, 
simulated methods, or predictors we shall make efforts in our 
future work to provide a web-server for the method presented 
in this study. 
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