
The Quest for Precision: A Layered Approach

for Data Race Detection in Static Analysis

Jakob Mund1?, Ralf Huuck2, Ansgar Fehnker2,3, and Cyrille Artho4

1 Technische Universität München, Munich, Germany
mund@in.tum.de

2 NICTA, University of New South Wales, Sydney, Australia
ralf.huuck@nicta.com.au

3 University of the South Pacific, Suva, Fiji
ansgar.fehnker@usp.ac.fj

4 Research Institute for Secure Systems, AIST, Amagasaki, Japan
c.artho@aist.go.jp

Abstract. Low level data-races in multi-threaded software are hard to
detect, especially when requiring exhaustiveness, speed and precision. In
this work, we combine ideas from run-time verification, static analysis
and model checking to balance the above requirements. In particular, we
adopt a well-known dynamic race detection algorithm based on calculat-
ing lock sets to static program analysis for achieving exhaustiveness. The
resulting data race candidates are in a further step investigated by model
checking with respect to a formal threading model to achieve precision.
Moreover, we demonstrate the e↵ectiveness of the combined approach by
a case study on the open-source TFTP server OpenTFTP, which shows
the trade-o↵ between speed and precision in our two-stage analysis.

Keywords: Software verification, static analysis, concurrency, lock sets

1 Introduction

Multi-core architectures are the de facto industry standard for recent processors.
To make full use of the hardware, however, software for multi-core processors
often has to manage threads in the application code by itself. Such concurrency
carries the risk of introducing subtle but serious defects that might show up only
sporadically and are extremely hard to debug.

Concurrency issues have been studied extensively in the computer science
community. However, common embedded programming languages such as C pro-
vide only basic primitives for concurrency in terms of threading, requiring careful
thinking and experience from the developer while at the same time o↵ering only
limited tool support for debugging and bug prevention.

In this work we present a new way of detecting data races in embedded
source code. We combine ideas from run-time verification, static analysis and

? This work was carried out while visiting NICTA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the South Pacific Electronic Research Repository

https://core.ac.uk/display/77222787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

software model checking by balancing their strengths and weaknesses. Run-time
verification provides a good means to detect certain race conditions, but can
only reason over program executions that have actually been observed, limiting
coverage. Static analysis is strong in covering all potential execution paths, but
is prone to (over-)approximations leading to false positives. On the other hand,
software model checking o↵ers a precise analysis of the program semantics, but
with limitations regarding scalability to larger code bases.

We propose a layered approach: In a first step we develop a path-sensitive
static implementation of the well-known Eraser algorithm [16] typically used
in run-time verification. Our static version is able to detect data races in C
programs with a complete path coverage. While the algorithm is applicable to
large-scale software, it is also prone to false positives. Therefore, in a second step
we take those data races as candidates for a deeper model checking approach.
The model checking phase is confined to candidates, abstracts from non-essential
data and instructions, and takes the threading model into account.

In this way we avoid to apply traditional software model checking to the full
multi-threaded source code, but rather treat its application as a false-positive
elimination step on selected code parts only. As a result we obtain a solution
that can deal with real software systems, has a higher degree of coverage than
run-time verification, but is more precise than traditional static analysis.

The remainder of this paper is organized as follows: In Section 2 we give a
brief introduction to data races and the objectives of this work, together with
related work. We then present a semantics framework for multi-threading in
Section 3, which is the basis of our analysis. Our two-step analysis approach is
described in Section 4, covering the Eraser lock set analysis and its combination
with software model checking. An evaluation based on a number of benchmarks
including corner cases and open source software is presented in Section 5, fol-
lowed by our conclusions in Section 6.

2 Data Races in Multi-threaded Programs

Threads are concurrent streams of program execution that can be created,
merged and deleted at run-time. Threads might have access to shared resources.
A data race occurs if two or more threads can simultaneously and non-atomically
access a shared resource with at least one access being a write operation.

An example data race is given in Figure 1. A reader thread reads a shared
variable (lines 3 – 6); a writer thread writes to it (lines 8 – 11). If these ac-
cesses are not synchronized using locks or other coordination mechanisms, then
their e↵ects are not well-defined. The update of the writer thread may become
visible to other threads immediately or at any time after it has been issued,
due to memory caches and other optimizations in modern hardware. Reading
shared var may thus yield di↵erent results depending on thread scheduling and
hardware, which is why it is desirable to avoid data races in concurrent software.

Since threads can be created dynamically at run-time, there might be a large
number of threads at any given time. The e↵ect of data races may not be visible

Layered Approach for Data Race Detection 3

1 int shared var = 0; 7

2 8 void *writer() {
3 void *reader() { 9 for(;;) {
4 for(;;) { 10 shared var = compute();

5 t = shared var; 11 } }
6 } }

Fig. 1. Data Race Example

unless a particular interleaving of thread actions occurs at run-time; this makes
the detection of data races di�cult.

2.1 Scope and Contribution

This work considers detecting low-level data races by finding unprotected or in-
consistent locking of variables shared across threads. A classical run-time verifi-
cation approach to this problem is the Eraser algorithm. This algorithm monitors
the set of locks that protect a shared variable during reads and writes to that
variable. For every variable access, Eraser incrementally builds the intersection
of the set of locks protecting a variable. Once the intersection is empty, i. e.,
there is no single lock consistently protecting a variable, a warning is issued.

Static Eraser Implementation. In this work we introduce a path-sensitive static
implementation of Eraser. Unlike the monitored behavior in run-time verification
we consider all paths statically, possibly over-approximating the set of feasible
interleavings, but ensuring full coverage of inconsistencies. This approach finds
all data races but may issue spurious warnings.

Model-checking Thread-Interleaving. We also propose another analysis that is
more precise and can reduce false positives from the previous step. The sec-
ond analysis creates the thread-interleaving graph of the program (with limited
depth) that captures the call structure of the threads and their termination,
as well as the read and write accesses to shared variables. Since the interleav-
ing graph grows exponentially with the number of threads in the program, we
restrict it to the data-race candidates as identified in the static Eraser approach.

As a result we are able to model-check the thread-interleaving graph for
feasible data races. This approach is sound up to a bound on the number of
threads. By abstracting from non-essential information we are able to apply this
methods to some more realistic code sizes as shown in the evaluation in Section 5.

Formal Interleaving Semantics. As a basis for our approach we provide the
thread-interleaving semantics used in the subsequent analysis. This semantics
takes into account thread creation, join and cancelation as well as the acquisition
and releases of locks. Moreover, we include the advanced concepts of waiting
and signaling. These require a view of the global program state and are thus not
covered by Eraser or other thread-modular approaches.

4 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

2.2 Related Work

Eraser [16] is the classical lock-set based algorithm that can approximate po-
tential data races very well, while not having the overhead of more precise but
heavy-weight approaches based on the happens-before relation [17].

Goldilocks is a newer algorithm that can compute data races precisely [7]. To
be more accurate than Eraser, Goldilocks requires more elaborate data structures
to be maintained. Furthermore, the precision of Goldilocks depends on its ability
to recognize overlapping data of multiple software transactions. That data is
readily available and precise when using run-time verification, but is di�cult to
approximate precisely enough in static analysis.

It has been shown that other concurrency error types still exist even when no
data races (called low-level data races to compare them with similar concurrency
problems) exist. High-level data races [3] and atomicity violations [2, 9] are two
types of problems that remain even in the absence of low-level data races. High-
level data races cover non-atomic accesses to sets of dependent variables (mul-
tiple memory locations). Atomicity violations concern the scope during which a
lock is held, and thus the use of the data rather than its direct access. These
two types of problems have recently been subsumed by the notion of causality
in data flow, which can cover both accesses to data and its use [6].

Static analysis of such concurrency properties has been attempted in other
work, in a static analyzer where the rules are hard-coded in the program [1], and
in a framework that is specialized for concurrency properties [11]. In contrast to
that tool, we build on top of a general static analysis framework, Goanna [8],
that allows flexible rules to express a large range di↵erent properties.

The second part of our work is closely related to other software model check-
ers, e. g., Java PathFinder [19] for Java bytecode and inspect for C source
code [20]. The key di↵erence is that these software model checkers execute the
full software at run time and explore alternative interleavings by rolling back
the system to a previously stored state. This dynamic analysis is much more
expensive than our approach, which works on an abstract model of the program.

Software model checkers working on a higher level of abstraction exist as
well, such as SLAM, which analyzes device drivers against a given environ-
ment model [4], or SATABS, which can analyze programs using a subset of the
Pthreads library [5]. In comparison, our work is not limited to certain domains
(such as device drivers) and covers the full Pthreads library.

3 Semantics of Multi-Theaded Programs

As a basis for our data race analysis we first establish a formal semantics for
multi-threaded programs. The semantics are given in terms of structural opera-
tional semantics (SOS) and labeled transition systems (LTS). We formally define
basic concepts such as thread creation and locking, independently of a particular
threading framework. In the evaluation we map POSIX threads (Pthreads) to
this model.

Layered Approach for Data Race Detection 5

Threads ✓ 2 Tid

Locks m 2 Locks?

Signals c 2 Signals?

Variables v 2 Variables?

LockState ⇤ 2 LockState: Locks? ! (Tid? [{?})
(Abstract) Local States s, s

0 2 LocalState

(Global) ProgramCounter 2 ProgramCounter: Tid * LocalState

Procedure Names pn 2 ProcName?

Procedure Environment ⇧ 2 ProcEnv : ProcName? ! LocalState

Actions a 2 Action = {create(✓, pn), join(✓), exit,
cancel(✓), acq(m), acq?(m), rel(m), wait(c,m),
signal(c), signal!(c), write(v), read(v), ⌧}

Fig. 2. Semantic domains

3.1 Thread Actions, Configurations, and Transitions

Semantic Domains. A multi-threaded program consists of an (unbounded) num-
ber of concurrently running threads, each identified by a unique thread identifier
Tid, a finite number of locks Locks? (also called mutexes), signals (sometimes
also referred to as conditions) and shared variables Variables?.

Furthermore, a LockState characterizes the thread currently holding a spe-
cific lock. We use ? to denote that a lock is not held by any thread. An abstract

LocalState represents the thread-local control location of a thread; we use a
global program counter ProgramCounter as a partial function from a thread
to its local state in the interleaving. The ProgramCounter is defined only for
threads that have been created but not yet terminated. Each thread is consid-
ered a procedure with a name from ProcName?; ProcEnv maps each name to
its initial local state. Figure 2 summarizes the domains.

Actions. Actions describe thread activities. A thread can be created by create,
terminated regularly by exit, or canceled by cancel, which terminates a thread
in in its current state without further execution. Moreover, a thread can be
suspended until the completion of a di↵erent thread by join. Locks can be
acquired through either blocking (acq) or non-blocking actions (acq?) and can
be released by rel. The action wait suspends the invoking thread until it receives
a signal that has been sent to one thread by signal or to all threads by signal!.
Variables are accessed by read and write. Other actions not related to threading
are considered silent and denoted ⌧ .

Transitions. Local transitions describe the atomic actions or steps of a thread.
Global system progress is represented as choosing non-deterministically an action
from one of the active threads (see below). We assume a finite local transition
relation �!L✓ LocalState⇥Action⇥ (LocalState[{"}), where " represents
successful termination. We write (s, a, s0) 2�!L as s

a�!L s

0.

6 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

Global Configurations. A configuration describes the global control state of a
multi-threaded program. It is defined as the product of the local states given by
the program counter of the active (denoted ⇥ ✓ Tid) and waiting (denoted
� ✓ Tid) threads, and the currently held locks ⇤. Formally:

⌃ = h⇥,�,⇤i ✓ ProgramCounter⇥ ProgramCounter⇥ LockState

As a convention we will write (✓ : s)k (or simply ✓ : sk) to denote the
configuration where thread ✓ is in state s and all other threads are unchanged.

Global Transitions. The global transition relation �!G✓ ⌃⇥Tid⇥Action?⇥⌃

is parametric in a local transition relation and a procedure environment. It man-
ages threads and limits the steps of concurrent processes to respect synchroniza-
tion primitives, e. g., locks. The SOS rules are specified in terms of

�!L,⇧ ` h⇥,�,⇤i ✓,a��!G h0
⇥,

0
�,⇤

0i

These transitions from configuration � to �0 are executed by thread ✓ with action
a, given the local transition relation �!L and the procedure environment ⇧.

Interleaving Thread Semantics. The semantics are defined in terms of the labeled
transition system LTS = (⌃,⌃

0

,⌦,�!G) where

– ⌃ is the set of global configurations,
– ⌃

0

✓ ⌃ is the set of initial configurations,
– ⌦ = Tid ⇥Action is the alphabet consisting of pairs of thread identifiers

and actions, and
– �!G is the transition relation as it will be defined below.

3.2 Rules: Threads Creation and Thread Termination

The rules for multi-threading actions concerning thread management are formal-
ized in Figure 3. Starting a thread is formalized in (rule create). That action,
invoked by an active thread ✓, adds a new thread with identifier ✓0 to the set of
active threads. The initial local state of the procedure with name pn is deter-
mined by the procedure environment ⇧. Note, that if a thread with the same
identifier as ✓0 already exists in ⇥, the number of threads is not increased but
the thread is reset to its initial local state instead.

Thread termination can happen either explicitly by executing an exit action
(rule exit

1

) or implicitly by terminating successfully (rule exit
2

). In both cases
the executing thread is removed from the set of active threads; however, the
rules di↵er in the action exposed by !G. Thread joining (rule join) contains a
side condition ensuring that the join can only be performed when the thread
waited for (i. e., ✓0) has already terminated (or has never been created).

The cancellation rules express that one thread may cancel another thread
asynchronously, i. e., without allowing any further execution of the canceled
thread. In this case the thread is removed from the program counter, so that
other threads waiting to join the thread can continue. The need for two rules
arises from the fact that the canceled thread can be either active (rule cancel

1

)
or delayed (rule cancel

2

).

Layered Approach for Data Race Detection 7

(create)
✓ : s

create(✓0,pn)��������!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,create(✓0,pn)���������!G h✓0 : ⇧(pn)k✓ : s0k⇥,�,⇤i

(exit
1

)
✓ : s

exit��!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,exit����!G h⇥,�,⇤i
(exit

2

)
!L,⇧ ` h✓ : "k⇥,�,⇤i ✓,exit����!G h⇥,�,⇤i

(join)
✓ : s

join(✓0)�����!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,join(✓0)������!G h✓ : s0k⇥,�,⇤i
if ✓0 /2 ⇥ [�

(cancel
1

)
✓ : s

cancel(✓0)������!L s

0

!L,⇧ ` h✓ : sk✓0 : s00k⇥,�,⇤i ✓,cancel(✓0)�������!G h✓ : s0k⇥,�,⇤i

(cancel
2

)
✓ : s

cancel(✓0)������!L s

0

!L,⇧ ` h✓ : sk⇥, ✓
0 : s00k�,⇤i ✓,cancel(✓0)�������!G h✓ : s0k⇥,�,⇤i

Fig. 3. Thread rules

3.3 Rules: Locking and Synchronization

The rules concerning locking and synchronization are depicted in Figure 4. Ac-
quiring a lock (rule acq) uses a blocking action acq(m). Its side condition ensures
that a thread cannot proceed until the lock m is available.5 The non-blocking
action in (rule acq?

2

) allows the thread to proceed without acquiring the lock.
Releasing a lock (rule rel) relinquishes ownership of the lock if it is currently

held. However, it behaves di↵erently to the previous actions if the lock is not held
by any thread, i. e., if ⇤(m) = ?. Although explicitly unspecified in Pthreads [14],
we adapted the typical behavior to allow the thread to continue.

A thread can be suspended until it receives the appropriate signal c (rule
wait). If the next step of an active thread is a wait action, thread ✓ is marked
as delayed, added to the waiting threads � and removed it from ⇥. Note,
the program counter of the thread is not changed until the appropriate signal is
received.

There are two cases for sending a signal: If there are waiting threads for the
matching signal only one of them will receive the signal and be reactivated at
a time (rule signal

1

). This means if there is more than one thread waiting for
a signal, there will be a global transition for every one of them, but each only
signaling the one selected thread while all other waiting threads are unmodified.
On the other hand, if no suspended thread is waiting for signal c, that signal

5 Note the special case that the current thread itself holds the lock, and in this case,
cannot proceed either. This behavior is desired and works according to the POSIX
standard, though may be modified by using more advanced locks like recursive ones.

8 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

(acq)
✓ : s

acq(m)����!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,acq(m)�����!G h✓ : s0k⇥,�,⇤[m 7! ✓]i
if ⇤(m) = ?

(acq?)
✓ : s

acq?(m)�����!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,acq?(m)������!G h✓ : s0k⇥,�,⇤[m 7! ✓]i
if ⇤(m) = ?

(acq?
2

)
✓ : s

acq?(m)�����!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,acq?(m)������!G h✓ : s0k⇥,�,⇤i
if ⇤(m) 6= ?

(rel)
✓ : s

rel(m)����!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,rel(m)�����!G h✓ : s0k⇥,�,⇤[m 7! ?]i
if ⇤(m) 2 {✓,?}

(wait)
✓ : s

wait(c,m)������!L s

0

!L,⇧ ` h✓ : sk⇥,�,⇤i ✓,wait(c,m)�������!G h⇥, ✓ : s0k�,⇤i
if ⇤(m) = ?

(signal
1

)
✓

1

: s
1

signal(c)�����!L s

0
1

✓

2

: s
2

wait(c,m)������!L s

0
2

!L,⇧ ` h✓1 : s
1

k⇥, ✓2 : s
2

k�,⇤i ✓
1

,signal(c)�������!G h✓ : s0
1

k✓
2

: s0
2

k⇥,�,⇤i
if 9✓

2

2 �c

(signal
2

)
✓

1

: s
1

signal(c)�����!L s

0
1

!L,⇧ ` h✓1 : s
1

k⇥,�,⇤i ✓
1

,signal(c)�������!G h✓ : s0
1

k⇥,�,⇤i
if �c = ;

(signal!)
✓ : s

signal!(c)������!L s

0 (✓0 : s✓0,1
wait(c,m✓0)�������!L s✓0,2)✓02�c

!L,⇧ ` h✓ : s
1

k⇥, (✓
0 : s✓0,1)✓02�ck�,⇤i ✓

1

,signal!(c)��������!G

h✓ : s0k(✓0 : s✓0,2)✓02�ck⇥,�,⇤i

where �c = {✓0 2 dom(�) | ✓0 : s✓0,1
wait(c,m✓0)�������!L s✓0,2 for some lock m✓0}

Fig. 4. Rules for locking and synchronization

is lost (rule signal
2

). A broadcast of signal c a↵ects all threads waiting for that
signal (rule signal!). Central to this rule is the set �c ✓ �, i. e., the set of all
delayed threads waiting for a signal c. For every such thread ✓ 2 �c the signal
is received as in the signal rules.

4 A Layered Approach for Static Race Detection

In this section we describe a layered approach for detecting data races. Our
approach first applies static analysis to obtain data race candidates (based on

Layered Approach for Data Race Detection 9

the Eraser algorithm [16]) and then applies model checking on parts of the
program involving those candidates (based on the LTS as defined in Section 3).

4.1 Static Data Race Analysis

A common way to prevent data races is to impose a locking discipline that
requires any shared (write) variable to be protected by at least one distinct lock
among all threads. Since each lock can only be held by one thread, data races
are e↵ectively prevented.

The Eraser approach is to monitor the dynamic execution paths of each
tread and record for each shared variable the set of locks that are held. If the
intersection of those sets of locks across threads for the same variable is empty, we
assume a potential data race, i. e., an unprotected variable. An advantage of this
approach is that it is thread-modular, i. e., each tread can be analyzed separately
and only the intersection of the information needs to be globally tracked.

To achieve the same statically, we propose to check all program paths for
each thread and then build the same intersection over all threats. Obviously, the
static approach is an over-approximation as not all paths might be executable.
We use the definition of a lock set [16, 15] as the mapping of shared variables
to its potential set of locks,i.e., Lockset : Variables? ! }(Locks?). In the
following, we show how to compute and check for emptiness of the Lockset.

Path-Sensitive Lock Set Computation. A thread (procedure) ⇡ is defined as a
procedure with name pn that occurs in an action create(✓, pn). Nodes in the
control flow graph of ⇡ are denoted by Nodes⇡. For a given thread ⇡ we define
a function is locked : Nodes⇡ ⇥ Locks? ! B that returns for each node n in
⇡ and each lock l, whether l is held along all paths leading to n by

is locked(n, l) =

8
<

:

tt if n = Lock l,
↵ if n = Unlock l,
8m 2 pred(n)

V
is locked(m, l) otherwise.

Here pred denotes the predecessors of a node; the conjunction ensures cover-
age of all potential paths. This notion captures a standard path-sensitive static
program analysis to compute the must-hold locks for each node in a thread.6

Based on the information about the held locks, the thread-local lock set for each
shared variable v 2 Variables? and thread ⇡i 2 Threads? is computed by

LocalLockset(v,⇡i) =

⇢T
n2Nv

{l0 | is locked(n, l0)} if Nv 6= ; in ⇡i,

Locks? otherwise.

where Nv denotes the set {n 2 Nodes⇡ | n = Writev _ n = Readv}, i. e.,
the Write and Read nodes of thread ⇡i which access variable v. The second case

6 Modern programming languages like Java support synchronized blocks which ac-
quire (resp. release) a lock when entering (resp. exiting) the critical section, enabling
path-insensitive approaches [13].

10 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

Algorithm 1: Static implementation of the lock set algorithm.

begin

Lockset(v) Locks?;
isReadOnlyv tt ;
foreach ⇡i 2 Threads? do

lockstate � MFP(Nodes⇡i , is locked);
foreach n 2 Nodes⇡i do

if n accesses v then

LocalLockset⇡i(v) LocalLockset⇡i(v) \ lockstate(n) ;
isReadOnlyv isReadOnlyv _ (v is modified in n);

Lockset(v) Lockset(v) \ LocalLockset⇡i(v);

accounts for variables which are not accessed in ⇡i, mapping them to the set of
all locks. Finally, the lock set for a program is the intersection of the lock sets
for each thread occurring in a given program, i. e.,

Lockset(v) :=
\

⇡i2Threads?

LocalLockset(v,⇡i)

The fact that a program is free of data races can be then be stated as

racefree () 8v 2 Variables? . Lockset(v) 6= ;.
Our algorithm [12] uses the maximal-fix-point worklist algorithm MFP [10]

(see Algorithm 1). However, similar fix-point solutions popular in static program
analysis are also applicable.

Soundness and Completeness Given the semantics of Section 3 and the
assumption that shared variables (as well as locks and signals) are not aliases,
the static lock set algorithm for low-level data race detection presented here is
sound, hence false negatives (i. e., missed races) are not possible. The argument
here is that a non-empty lock set means that there exists at least one distinct
lock that has to be held by every thread accessing a shared variable. Since a
lock can only be held by one thread at a time, a simultaneous access from two
or more threads to a variable is not permitted according to the semantics.

However, our analysis is incomplete as false positives (i. e., spurious warn-
ings) are possible, because the analysis does not consider the temporal (also
called happens-before) relation among events in di↵erent threads. Furthermore,
warnings may be spurious if data races are avoided by other synchronization
primitives like signals, or other more fine-grained accesses of variables[18].

4.2 Model-Checking of the Threading Semantics

While the approach presented in the previous section uses a fast thread-modular
analysis it is also prone to potential false-positives. An alternative precise ap-

Layered Approach for Data Race Detection 11

Fig. 5. A labeled transition system generated by applying the threading model. Colored
vertices designate states with an imminent data race.

proach is to use the operational semantics from Section 3 and model-check if a
low-level data race is possible.

In our interleaving semantics a data race will happen if in a state � there are
two threads ✓

1

, ✓
2

and at least one of the threads is write enabled on a shared
variable v, while the other one can read or write to v, i. e.:

datarace(✓) = enabled(writev, ✓1,�)^(enabled(writev, ✓2,�)_enabled(readv, ✓2,�))

Using this predicate low-level data races can be detected by checking (on-
the-fly) whether there is a path such that a data race can be reached, which
translates to the CTL formula

EF datarace(v)

An example of such a transition system is shown in Figure 5. Global config-
urations are numbered nodes; the transition system considers program actions
relating to shared variable myglobal , to which there are read and write accesses.
We use TERM for the successful termination action "; the number in a label

represents the global transition relation s

✓,action�����! s

0. Global states 8 and 9 rep-
resent locations at which data races happen, because the two preceding actions
in both states are unsynchronized write accesses.

There are a few caveats, though: Constructing the labeled transition system
potentially results in an exponential blow-up both in the numbers of threads
created and the number of thread operations. Moreover, there is a possibly un-
bounded number of threads, if thread creation happens in an (unbounded) loop.

12 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

Algorithm 2: On-the-fly reachability checking using BFS.

begin

⌃worklist {h{✓main 7! ⇧(main)},;,�l.?i};
⌃visited ;;
while ⌃worklist 6= ; do

�current dequeue(⌃worklist);
if �current ✏ � then

WARN(�current);
return true

foreach �

0 2 {�0 | �current
✓,a��!G �

0 ^ �

0
/2 ⌃visited} do

enqueue(�0
,⌃worklist);

enqueue(�current,⌃visited);

return false

In practice, any model-checking would use a k-bound for the maximum numbers
of threads that a single thread can create per local state.

Finally, our interleaving semantics is a faithful abstraction of the real pro-
gram by only considering thread-specific concepts and read/writes to shared
variables. Mapping a threaded program to this abstraction is a non-trivial task
when considering function calls and some subtleties of the POSIX standard. In
Section 5 we point out some of the issues involved when analyzing real code.

Implementation Algorithm 2 outlines the implementation used to check whether
a configuration satisfying a given predicate � : ⌃ ! B is reachable, and warns
if an appropriate configuration satisfying � is found (denoted by � ✏ �).

A noteworthy characteristic of the algorithm is that the reachable states of
the model are not generated a priori but during the analysis itself, i. e., on the
fly. This happens at the foreach-loop where solely the immediate successors of
�current are explored.

The use of a breadth-first-search was motivated by the observation how the
interleaved semantics influences the model. Di↵erent interleavings for termina-
tion of concurrently executing threads constitute a large part of the model. A
depth-first search would explore all these interleavings, which are not interesting
concerning data race detection.

Furthermore, the implementation is able to augment warnings with precise
witness-information in contrast to the lockset algorithm. The WARN procedure is
able to issue warnings with line numbers that can precisely locate the problem,
hence substantially facilitating tracking down defects.

Soundness and Completeness Under the same assumptions as in section 4.1,
the model-checking approach presented here is sound and complete up to the
fixed thread bound k, i. e., if each program instruction that instantiates a thread

Layered Approach for Data Race Detection 13

is successfully executed at most k times. Hence, imprecision is introduced when-
ever thread instantiation is nested within loops that exceed the thread bound
during execution. In those cases the analysis is neither sound nor complete. For-
tunately, such bugs manifest rarely in practice.

4.3 Combining Both Analyses: The Layered Approach

The lock set algorithm we introduced is designed for performance, at the cost of
possible spurious warnings. Since it is sound, each variable for which the analysis
yields a non-empty set of distinct locks protecting it, is regarded as safe.

On the other hand, model-checking o↵ers precise results. However, the state-
explosion problem often renders (detailed) models of concurrent programs too
large for model-checking purposes.

A natural consequence is to use a combined layered approach:

1. The lock set algorithm yields a (global) lock set for each shared variable.
Variable with a non-empty lock set are safe.

2. Apply model-checking to the remaining shared variables in isolation. If a
data race is reachable, report that data race.

The usage of our two-stage approach for data races can essentially be thought
of as a false-positive elimination for the static lock set-algorithm. It is impor-
tant to note that the lock-set analysis does not worsen the precision of model-
checking. It can be formally shown that if a non-empty lock set is found, a data
race cannot be detected using the model-checking approach [12].

5 Experiments

The core ideas of our layered approach have been implemented on top of the
industrial-strength analysis tool Goanna [8]. Goanna analyzes C/C++ code us-
ing static analysis and model checking to detect bugs in large scale code. For
our purposes we made use of the fact that the tool can readily produce con-
trol flow graphs, allows model generation with custom labels based on syntactic
abstraction, and supports a summary-based interprocedural analysis.

However, a number of simplifications were made: The maximum thread cre-
ation bound was set to 2, a pre-processing heuristics was used to detect the
shared variables, and potential aliases as well as dynamic memory allocations
were ignored. Moreover, for handling the threading semantics we inlined function
calls, which is clearly not scalable, but su�cient for experiments.

All experiments were executed on a Mobile Core2Duo Processor with a clock
frequency of 1.83 Ghz and 4 GB of memory running on Ubuntu Linux 9.10. We
measured both the complete tool runtime including some internal computation
done by Goanna (denoted T

total

) as well as the wall clocktimes of the multi-
threading analyses presented in this paper (denoted T

MTA

).

14 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

Table 1. Evaluation results on benchmark examples.

Test Case
Lock set Combined

Correct T
MTA

T

total

Correct T
MTA

T

total

low race.c y 0.01 s 0.19 s y 0.02 s 0.21 s
low corrected.c y 0.01 s 0.18 s y 0.01 s 0.18 s
low extended.c n 0.01 s 0.20 s y 0.06 s 0.25 s
low readwrite.c n 0.01 s 0.15 s y 0.27 s 0.41 s

Table 2. Evaluation results on OpenTFTP.

Analysis # Races Correct/Incorrect T

MTA

T

total

T
MTA

T
total

T
MTA

#V ars
T
MTA

kLOC

Lock set 15 4/11 (27%) 7.58 s 38.63 s 19.6% 0.47 s 3.03 s
Combined 0 n.a. 131.49 s 153.86 s 85.4% 8.21 s 51.94 s
Combined* 4 4/0 (100%) 2176.85 s 2194.36 s 99.2% 136.05 s 869.69 s

Benchmark Examples Several classical examples were chosen to investigate
the the e↵ectiveness of the solution7. These include a simple low-level data race
on a shared variable (low race.c), its corrected version (low corrected.c), as
well as some more advanced examples: low extended.c is free of races on two
out of four shared variables, and (the absence of) races depends on the happens-
before relation. The program low readwrite.c features two locks, where at least
one of them is required to read a shared variable, but both must be acquired when
writing the shared variable. This is a typical implementation of a read/write lock
where multiple readers are allowed, but only one writer.

We used both the lock set-approach and the layered approach. Table 1 shows
the overall results. While runtime is negligible, it is important to note that the
simple examples are handled correctly by the lock set algorithm, while the more
advanced cases require the model checking step for false-positive elimination as
shown in the Combined column.

Case Study OpenTFTP The TFTP server software OpenTFTP was used as
a real-world software example. The size of the program is about 2.5 KLOC, and
it features high functional complexity coupled with a lot of multi-threading and
synchronization-related constructs. Worker threads are generated for incoming
requests, and shared resources like sockets and locks are protected using mutexes.
Furthermore, structured data types (structs) are used, whose impact on the
precision can be evaluated. Obviously the analyses had to be considered in an
interprocedural setting to obtain meaningful results.

Out of 23 globally defined variables, 16 were identified as potentially shared
and written to by at least on concurrent thread. Two distinct threads were
identified, one being the main thread while the other is the processRequest

worker-thread which is started for each incoming request; hence, thread creation

7

http://www4.in.tum.de/

~

mund/races.tar.bz

Layered Approach for Data Race Detection 15

is nested inside a loop. The initial run reported a multi-threaded control-flow
graph with 2,339 distinct control-states and 3,766 transitions, and data races
on 15 out of 16 shared variables.8 Inspection revealed that the software was not
programmed with respect to the POSIX standard, but with respect to some
hidden assumptions on Linux, exploiting the fact that concurrently executing
threads can release any lock held by any thread. We adjusted our model for this;
the modified approach is denoted Combined*, yielding precise results. Table 2
shows the results for the data race analysis using the lock set algorithm, the
combined approach based on the POSIX standard, and the modified model based
on the specific implementation on Linux exploited by the software.

6 Conclusion and Future Work

We propose a static implementation of the Eraser lock-set algorithm to detect
possible data races in software. This analysis is sound but may result in false
warnings. We add a second analysis step that model checks if potential data races
detected by the lock-set analysis, can ever occur during program execution. Our
two-step analysis takes into account the semantics of the Pthreads library, and
is precise at the cost of a higher analysis overhead.

In future work, the performance of the second step could be improved further:
As we consider only reachability properties, we could apply a strong partial-order
reduction by abstracting from all concrete sequences of actions and considering
only all possible global states. Moreover, instead of inlining procedure some
enriched summary information should be su�cient.

Other future work includes the analysis of other concurrency properties, such
as deadlocks or high-level data races. Finally, the layered approach presented in
this work may be applicable to other types of analysis. For properties where fast
over-approximations exist, it may be possible to balance speed and precision in
a similar way.

Acknowledgments. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council through the ICT Centre of Excellence
program

References

1. C. Artho and A. Biere. Applying static analysis to large-scale, multithreaded Java
programs. In Proc. 13th ASWEC, pages 68–75, Canberra, Australia, 2001. IEEE
Computer Society Press.

8 A multi-threaded control-flow graph embeds subgraphs of child threads into calls
to pthread create. The states and transitions thus correspond to local states; the
number of global states is exponential in the number of local states and threads.

16 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

2. C. Artho, A. Biere, and K. Havelund. Using block-local atomicity to detect stale-
value concurrency errors. In Proc. 2nd Int. Symposium on Automated Technology
for Verification and Analysis (ATVA 2004), volume 3299 of LNCS, pages 150–164,
Taipei, Taiwan, 2004. Springer.

3. C. Artho, K. Havelund, and A. Biere. High-level data races. Journal on Software
Testing, Verification & Reliability (STVR), 13(4):220–227, 2003.

4. Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Auto-
matic predicate abstraction of C programs. SIGPLAN Not., 36(5):203–213, May
2001.

5. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predi-
cate abstraction for ANSI-C. In Proc. TACAS 2005, volume 3440 of LNCS, pages
570–574. Springer, 2005.

6. Ricardo Dias, V. Pessanha, and J. M. S. Loureno. Precise detection of atomic-
ity violations. In Proc. Haifa Verification Conf. (HVC 2012), Lecture Notes in
Computer Science. Springer-Verlag, 11 2012.

7. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and
transaction-aware Java runtime. SIGPLAN Not., 42(6):245–255, June 2007.

8. A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and F. Rauch. Model checking
software at compile time. In Proc. TASE 2007. IEEE Computer Society, 2007.

9. Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types
for atomicity: Static checking and inference for java. ACM Trans. Program. Lang.
Syst., 30(4):20:1–20:53, August 2008.

10. J. Knoop, B. Ste↵en, and J. Vollmer. Parallelism for free: E�cient and optimal
bitvector analyses for parallel programs. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 18(3):299, 1996.

11. J. M. S. Loureno, D. Sousa, B. C. Teixeira, and Ricardo Dias. Detecting con-
currency anomalies in transactional memory programs. Computer Science and
Information Systems, 8(2), 04 2011.

12. Jakob Mund. Finding Common Defects in Multi-Threaded Programs at Compile
Time. PhD thesis, University of Augsburg, 2010.

13. M. Naik, A. Aiken, and J. Whaley. E↵ective static race detection for Java. In
Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 308–319. ACM, 2006.

14. B. Nichols, D. Buttlar, and J. Farrell. Pthreads Programming. O’Reilly, 1996.
15. P. Pratikakis, J.S. Foster, and M. Hicks. LOCKSMITH: context-sensitive correla-

tion analysis for race detection. ACM SIGPLAN Notices, 41(6):320–331, 2006.
16. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

17. Edith Schonberg. On-the-fly detection of access anomalies. In In Proc. SIGPLAN
1989 Conf. on Programming Language Design and Implementation (PLDI 1989),
PLDI ’89, pages 285–297, New York, NY, USA, 1989. ACM.

18. H. Seidl and V. Vojdani. Region analysis for race detection. Static Analysis, pages
171–187, 2010.

19. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2):203–232, 2003.

20. C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan. Dynamic model checking
with property driven pruning to detect race conditions. In Proc. ATVA 2008,
volume 5311 of LNCS, pages 126–140. Springer, 2008.

