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The metamorphic rocks in the Neoproterozoic (Pan-African) Mozambique belt of southwestern Tanzania,
around the town of Songea, can be subdivided into one- and two pyroxene bearing charnockitic gneisses,
migmatitic granitoid gneisses and amphibolite-facies metapelites. Lower-grade amphibolite-facies rocks
are rare and can be classified as sillimanite- and/or garnet-bearingmetapelites. Most of the studied charnockitic
gneisses show excellent corona textureswith large orthopyroxene grains rimmed by clinopyroxene, followed by
quartz and well developed garnet rims due to the reaction Opx + Pl = Grt + Cpx + Qtz that formed during
isobaric cooling. These and other charnockitic gneisses show symplectites of orthopyroxene and An-rich plagio-
clase that resulted from the breakdown of garnet during isothermal decompression due to the reaction
Grt + Cpx + Qtz = Opx + Pl. Geothermobarometric calculations yield up to ~1050 °C and up to ~12 kbar
for peak metamorphic conditions. These are higher temperature and slightly lower pressure conditions than
reported for other granulite-facies terrains in theMozambique belt of Tanzania. Single zircon Pb–Pb evaporation
and U-Pb SHRIMP ages formagmatic zircons extracted from two charnockitic and two granitic gneisses cluster in
two groups, one at ~750 Ma and one at ~1150 Ma with the older reflecting the time of emplacement of the ig-
neous precursors, and the younger approximating the time of charnockitization. These protolith ages are similar
to those farther east in theMasasi area of southern Tanzania, aswell as in northernMozambique and in southern
Malawi, and suggest that the Mozambique belt consists of chronologically heterogeneous assemblages whose
pre-metamorphic tectonic setting remains obscure.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Neoproterozoic high-grade terrains of the Mozambique belt
(MB; Holmes, 1951) in East Africa and Madagascar, together with
the lower grade Arabian-Nubian Shield of NE Africa and Arabia, make
up the East AfricanOrogen (EAO; Johnson et al., 2011; Stern, 1994). Sev-
eral authors discussed the southern continuation of the EAO into East
Antarctica, and the southern extension through India into Antarctica
(Collins and Pisarevsky, 2005; Collins and Windley, 2002; Jacobs et al.,
1998; Pant et al., 2012).

Shackleton (1986) suggested that the MB is a complex assemblage
of Proterozoic belts of different ages and may thus be polyorogenic.
Emplacement ages for magmatic precursors of the granulites in the
MB range between ~800 and ~2900 Ma from northern, central and
southern Tanzania (Fig. 1A; Table 1; Supplement Table 1; De Waele
et al., 2006; Kröner et al., 2003; Maboko, 2000; Maboko and
Nakamura, 1996; Möller et al., 2000; Muhongo et al., 2001; Sommer
et al., 2003, 2005a,b, 2008; Spooner et al., 1970; Thomas et al.,

2013), whereas metamorphic zircons and monazite record a major
high-grade metamorphic event during the late Neoproterozoic at
620–650 Ma and a second metamorphic event at ~550 Ma (Supple-
ment Table 1, Sommer et al., 2003, 2005b). The granulite-facies
rocks of the MB in southwestern Tanzania have not previously
been investigated because of their complex metamorphic history
and remote location. To reconstruct the metamorphic history of the
study area, a combined approach of field mapping, petrology and
geochronology was used. We report P–T data and single zircon
ages for high-grade metamorphic rocks around the town of Songea
(Figs. 1A, B) and compare these data with those reported from sim-
ilar high-grade rocks elsewhere in Tanzania, Mozambique, Malawi,
and Madagascar.

2. Geological setting

The MB of Tanzania (Fig. 1A; Table 1) consists of a Neoproterozoic
crustal domain that is predominantly composed of granulite- and
amphibolite-facies rocks (Appel et al., 1998; Harpum, 1970; Muhongo,
1994, 1999; Pinna, 1995; Quennell et al., 1956; Sommer et al., 2003,
2008). To its west, medium- to high-grade rocks and undeformed
granitoids and volcanic rocks of Palaeoproterozoic age make up the
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Ubendian–Usagaran belt that borders the Archaean Tanzania Craton
along its southeastern margin (Fig. 1A; Table 1; Collins and Pisarevsky,
2005; Reddy et al., 2003, 2004; Sommer et al., 2005b). The formation
of Neoproterozoic high-temperature and high-pressure (HT/HP) rocks
in the MB of East Africa and Madagascar has been interpreted as
the result of Neoproterozoic terrane amalgamation and collision,
characterized by recumbent, isoclinal folds, thrusts, nappe struc-
tures, high-temperature ductile strike–slip shear zones and perva-
sive down-dip stretching lineations (Fritz et al., 2005, 2009; Hepworth,
1972; Muhongo, 1994; Shackleton, 1986, 1993, 1996 and references
therein). The age of regional granulite-facies metamorphism is well
constrained by zircon U–Pb SHRIMP and Pb–Pb evaporation ages as
well as U–Pb monazite ages of around 620–650 Ma (Kröner et al.,

2003; Möller et al., 2000; Muhongo et al., 2001; Sommer et al.,
2003, 2005a). A summary of previous geochronology on high-grade
rocks is given in Supplement Table 1. Granulite-facies rocks in the MB
of northern Mozambique, southern Malawi, and Madagascar yielded
metamorphic ages between 615 and 550 Ma (Bingen et al., 2009;
Kröner, 2001, 2000; Kröner et al., 2001; Thomas et al., 2010). Thus, it
is nowwell documented that two distinct metamorphic event occurred
within the MB, one at 620–650 Ma and a second at ~550 Ma. Conse-
quently, both granulite-facies metamorphic events in the MB have
been punctuated (Kröner, 2001; Muhongo et al., 2001; Sommer et al.,
2003, 2005a).

Much of the Songea area is covered by Karoo and Neogene sedi-
ments, which obscure many of the underlying Proterozoic high-grade
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Table 1
Detailed description of geological units shown in Fig. 1A.

Table 2
Mineral assemblages from the analyzed rocks of the Songea area. Four lithologies were found: metapelites (mp), gneisses (gn), granites (gr) and charnockites (chg).

SAMPLE Lith. Qtz Grt Opx Cpx Am Pl Kfs Bt Ms Sil Spl Ti-Hem Ilm Czo/Ep Dol Cal Other

HS74 mp x x x x x x x x x x x
HS75 mp x x x x x x x x x x x
HS76 mp x x x x x x x x x x x
HS77 gr x x x x x Apatite
HS78 gr x x x x x x Allanite, graphite
HS79 gr x x x x x
HS80 gr x x x x x x
HS81 gn x x x P x i x
HS81b gn x x x P x x x Melt textures
HS82 gn x x x x x i i x
HS83 chg x relic x + s x x x + s x x Scapolite
HS84 chg x c x + s x A + s x x x
HS86 chg x x x x x
HS87 gn x A P x
HS88 chg x x + c x x + c x A X x x x Apatite
HS89 chg x x + c x x x x x x
HS90 chg x x + c x c x x x
HS91 chg x x x x x x x
HS92 chg x c x + s x A + s rims x x x Apatite
HS93 gn x x x x x
HS94 gn x x x x x x Allanite
HS95 gn x x x x Rutile
HS96 gn x x x x x x Allanite
HS97 gr x x x
HS98 gr x x x x Apatite
HS99 gn x x x x x x Sphene
HS100 mp x x x x x (x) x x
HS101 mp x x x x (x) x x
HS102 mp x x x x x (x) x x

Lith. = lithology; x = equilibrium phase; c = corona; s = symplectite; A = anitperthite; P = perthite, i = inclusion; () retrograde.
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rocks and their internal relationships. These are granitic gneisses, gran-
ulites, hornblende-biotite gneisses andwidespreadmigmatitic gneisses
that occur as massive bodies. Locally, these rocks are interlayered with
amphibolites and aluminous amphibolite-facies metapelites. Thus, the
precursors of these high-grade rocks were predominantly of granitoid
and/or volcano-sedimentary origin with a predominance of igneous
rocks over sedimentary assemblages. Undeformed post-kinematic gran-
ites and syenites intruded into these high-grade rocks. Pegmatites with
well-developed large muscovite books are associated with these post-
orogenic granites.

Pyroxene granulites with well-developed melanocratic and leuco-
cratic layers and massive charnockites occur as small, solitary outcrops
in inselbergs. The granulites and charnockitic rocks look similar to those
found elsewhere in the MB of Tanzania (Figs. 1A,B; Table 1). Foliations
in the high-grade Songea rocks principally strike N–S to NNE–SSW
with shallow dips and a down-dip stretching lineation of ~100/10.
Small-scale isoclinal, recumbent folds with E–W trending axes are de-
veloped in some of these rocks. High-angle shear zones are frequent
and converted the granitoids into mylonites and schists.

Schenk et al. (2004) reported a monazite U–Pb age of 1950 ±
30 Ma for a UHT metapelitic assemblage from the region between
Songea and Mbamba Bay at Lake Malawi. These rocks belong to a
Palaeoproterozoic segment of the crust known as Ubendian belt and
are separated from the Pan-African assemblage discussed below by
a major shear zone that defines the margin of the Mozambique belt
in southwestern Tanzania.

3. Petrography and mineral chemistry

Rocks in the Songea area are only exposed along steep slopes, in
inselbergs or in quarries. Four main lithological units are recognized:
(1) metapelitic rocks, (2) migmatic gneisses, (3) charnockitic and
enderbitic gneisses, and (4) nearly undeformed granitic rocks. Exposed
rocks are usually fresh with only minor retrograde mineral phases. The
mineral assemblages of selected samples of all four lithological units are
summarized in Table 2, and chemical compositions of selectedminerals
are given in Tables 3–6 and Supplement Tables 2–5. Themicroprobe an-
alytical procedure is summarized in the Appendix. Mineral abbrevia-
tions are after Bucher and Grapes (2011).

3.1. Metapelite

Amphibolite-facies metapelites are rare and found mainly in the
north and south of the study area (Fig. 1B). Those in the north, near
the town of Songea (Fig. 1B), are fine-grained, dark gray, foliated rocks
showing recrystallized fabrics in thin section with poikilitic garnet (Grt
III), biotite and hornblende (Fig. 2A). The mineral assemblage in samples
HS 74-76 (Fig. 1B) consists of garnet (Grt) – biotite (Bt) – plagioclase (Pl)
- K-feldspar (Kfs) – quartz (Qtz) – amphibole (Am) – ilmenite (Ilm) –
clinozoisite/epidote (Czo/Ep) – dolomite (Dol) – calcite (Cal) (Table 2).
Garnet (Grt III) is 0.5 to 1.5 mm in size and nearly homogeneous in
composition (XAlm = 0.64–0.58, XPrp = 0.10–0.12, XGrs = 0.15–0.19,
and XSps = 0.12–0.11) with only a slight decrease, from core to rim, in

Table 5
Representative EPMA analyses of clinopyroxene.

Ideal cations 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Ideal oxygens 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Sample HS83 HS83 HS83 HS83 HS83 HS86 HS86 HS88 HS88 HS88 HS88 HS88 HS88 HS90 HS90 HS92 HS92

cpx12 cpx13 cpx17 cpx18 cpx29 cpx9 cpx14 cpx10 cpx13 cpx17 cpx25 cpx31 cpx38 cpx12 cpx19 cpx1 cpxi21

rim core core rim / core / rim / / / / / / / / incl.

wt %
SiO2 50.89 50.08 50.23 51.14 49.41 49.04 50.94 53.28 53.17 53.59 52.65 53.00 51.80 52.72 51.82 50.20 52.19
TiO2 0.36 0.46 0.41 0.30 0.38 0.22 0.38 0.15 0.03 0.07 0.14 0.09 0.09 0.05 0.06 0.45 0.16
Al2O3 3.64 5.28 4.36 3.59 4.81 2.66 1.97 1.04 1.27 1.30 0.99 0.99 0.79 0.74 0.98 3.40 1.23
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00
BaO 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 8.03 9.45 8.24 8.02 9.59 9.81 8.57 8.57 8.27 8.41 8.97 9.80 9.18 7.45 7.48 8.14 7.80
MnO 0.37 0.52 0.30 0.23 0.34 0.50 0.34 0.10 0.08 0.05 0.09 0.11 0.07 0.18 0.16 0.36 0.20
MgO 13.41 12.65 12.98 13.54 12.84 13.36 13.62 14.00 13.99 14.05 13.40 12.22 13.33 15.14 14.81 13.61 14.61
CaO 22.49 21.93 22.22 22.63 21.43 21.88 22.71 22.14 21.57 22.01 21.63 21.32 21.73 21.35 21.71 21.18 21.60
Na2O 0.62 0.63 0.68 0.69 0.59 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.44 0.63 0.53
K2O 0.45 0.55 0.65 0.00 0.80 0.01 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00
ZrO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.65 0.71 0.47 0.53 0.54 0.00 0.00 0.00 0.00
Total 97.69 97.84 96.44 95.19 96.32 98.13 99.03 99.72 99.03 100.19 98.35 98.10 97.53 98.06 97.46 98.05 98.32

Ferric form HS83 HS83 HS83 HS83 HS83 HS86 HS86 HS88 HS88 HS88 HS88 HS88 HS88 HS90 HS90 HS92 HS92
Si 1.88 1.83 1.86 1.89 1.83 1.86 1.91 2.00 2.00 2.00 2.00 2.00 1.99 1.98 1.96 1.90 1.96
Al 0.16 0.23 0.19 0.16 0.21 0.12 0.09 0.05 0.06 0.06 0.04 0.04 0.04 0.03 0.04 0.15 0.05
Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe3 0.13 0.15 0.15 0.10 0.19 0.19 0.10 0.00 0.01 0.00 0.01 0.04 0.00 0.03 0.06 0.08 0.05
Mg 0.74 0.69 0.72 0.75 0.71 0.76 0.76 0.78 0.79 0.78 0.76 0.70 0.76 0.85 0.84 0.77 0.82
Fe 0.12 0.14 0.10 0.15 0.11 0.13 0.17 0.27 0.26 0.26 0.29 0.32 0.30 0.21 0.18 0.18 0.19
Mn 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
Ca 0.89 0.86 0.88 0.90 0.85 0.89 0.91 0.89 0.87 0.88 0.88 0.88 0.90 0.86 0.88 0.86 0.87
Na 0.04 0.04 0.05 0.05 0.04 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.05 0.04
K 0.02 0.03 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Zr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
Sum 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

XMg 0.74 0.69 0.73 0.75 0.70 0.70 0.73 0.74 0.74 0.75 0.72 0.66 0.72 0.78 0.78 0.74 0.76

incl. = Inclusion.
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Fe and an increase in Ca and Mg (Table 3). Biotite varies in XMg between
0.51 and 0.55 and forms 1–4 mm long poikilitic flakes with minor con-
centrations in TiO2 (up to 2.27 wt. %), (Supplement Table 2). Amphibole
is locally intergrown with biotite (Fig. 2A) and is classified as
tschermakite (Leake et al., 1997) (Supplement Table 3). Plagioclase is
sodium-rich with an albite component ranging between 0.64 and 0.78
(Table 6). Textural observations and chemical compositions of the de-
scribedminerals above indicate, that thesemetapelites have been formed

at medium pressure and temperature under amphibolite facies
conditions.

Metapelite samples collected in the south of the study area (HS
100–103) exhibit a different mineral assemblage consisting of biotite
(Bt) – plagioclase (Pl) – quartz (Qtz) – sillimanite (Sil) – ilmenite
(Ilm) ± garnet (Grt) ± K-feldspar (Kfs) ± muscovite (Ms) (Fig. 2B).
These rocks are well foliated due to abundant sillimanite and biotite.
Garnet is 0.5–1.5 mm in size and is typically zoned, consistent with
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Fig. 2. (A) Back-scattered electron (BSE) image of a Grt–Bt–Am–Pl–Qtz–Dol–Cc metapelite from the northern part of the working area (HS75). Grt, Bt, and Am show poikilitic tex-
tures. (B) Photomicrograph of a Grt–Sil–Bt–Pl–Qtz metapelite (HS100) from the southern part of the study area. Sillimanite forms coarse-grained prismatic crystals within an
equigranular matrix of quartz (Qtz) and plagioclase (Pl). (C) BSE image of garnet with inclusions of spinel (Spl), sillimanite (Sil), biotite (Bt), plagioclase (Pl), quartz (Qtz), and
Fe–Ti-oxides in sample HS82. (D) BSE image of granulite-facies charnockitic mineral assemblage Opx (II and III) – Grt II – Fe–Ti-oxides – Cpx – Pl – Qtz (HS92). Two generations
of Opx can be seen: (1) large, rounded grains (Opx II) and (2) pseudomorphs of small “worm-like” Opx crystals intergrown with An-rich plagioclase after Grt (Opx III). New Grt II
coronas grows around Fe–Ti-oxides. (E) Photomicrograph of the same sample as shown in Fig. 2d. Matrix Opx II and large pseudomorphs of Opx III and An-rich Pl after Grt are seen.
Pl shows antiperthitic textures. (F) BSE image of sample HS88. Grt II growth around Grt I. Orthopyroxene exhibits a small rim of Cpx, followed by coronas of Qtz and Grt II. A second
type of Grt II coronas is developed around Fe–Ti-oxides. (G) BSE image of sample HS84. Grt II coronas are seen around Opx and Fe–Ti-oxides. (H) BSE image showing reaction tex-
ture between Opx + Pl + Kfs + H2O forming Grt + Bt + Cpx + Qtz (sample HS90).
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retrograde overprinting. XSps is increasing from core towards the rim
and varies between 0.20 (core) and 0.26 (rim), XAlm (0.66 core – 0.62
rim) and XPyp (0.12 core–0.06 rim) are decreasing from the core
towards to the rim, and XGrs ratio is about 0.04 and thus almost constant
(Table 3, Fig. 3A). Due to the mineral chemistry, we also classified the
garnets from these metapelitic samples as late-formed Grt III. Silliman-
ite occurs as idiomorphic, large prismatic grains. Biotite forms
0.5–1 mm grains, is homogenous in mineral chemical composition
with an XMg ratio of about 0.65; the TiO2-content is up to 3.4 wt. %
and the F-content is 0.14–0.23 wt. % (Supplementary Table 2). Plagio-
clase in the matrix varies in XAb between 0.71–0.73 (Table 7), whereas
plagioclase inclusions in garnet are rich in sodium and show an XAb of
0.86 (Table 7). Chemical compositions of the investigated minerals
show that thesemetapeliteswere formed atmediumpressure and tem-
perature under amphibolite-facies conditions in the sillimanite stability
field.

3.2. Migmatitic gneiss

Migmatitic gneisses are generally fresh and were sampled in several
quarries. Samples HS81–HS82 were collected in a forest about 10 km
to the west of Songea town, sample HS87 was taken from Lipokela
Quarry along the main road west of Songea, samples HS93–HS96
where collected in the large Mpitimbi Quarry about 15 km south of
Songea, and sample HS99 was taken in the south of the study area
(Fig. 1B). The observed mineral assemblage in thin section is K-feldspar

(Kfs) – plagioclase (Pl) – quartz (Qtz) – biotite (Bt) ± garnet (Grt) ±
amphibole (Am) ± ilmenite/Ti-hematite (Ilm/Ti-Hem) ± rutile (Rt) ±
clinozoisite/epidote/allanite (Cz/Ep/Aln) ± muscovite (Ms) ± silli-
manite (Sil) (Table 2). Some enclaves (HS81, HS81b, HS82) with
large 10–30 mm garnets were found within the migmatic rocks,
and the mineral assemblage comprises garnet (Grt) — biotite (Bt) —
plagioclase (Pl) — K—feldspar (Kfs) — ilmenite (Ilm).

Garnet in sample HS81 can be subdivided into two generations
due to their chemical composition from core to rim (Grt I and Grt
II). Both generations show high pyrope and almandine ratios, and
the first generation (Grt I) is characterized by an increase in XPyp

from core (0.47) to the rim (0.49) and a decrease in XAlm from core
(0.49) to the rim (0.47) (Table 3). The opposite zonation is seen in
the second generation (Grt II) of sample HS81. XPyp decreases from
core (0.48) to rim (0.44) and XAlm increases from core (0.46) to rim
(0.51) (Fig. 3B). XGrs varies between 0.03 and 0.05 in both generations
(Fig. 3B; Table 3). In contrast, garnets in sample HS81b show a dis-
tinct zonation and represent both generations (Grt I and Grt II) in
one profile (Fig. 3C). XGrs first decreases from core (0.13) to rim
(0.05), then increases (0.11), and finally decreases again towards the
outermost rim (0.05) (Fig. 3C). XPyp shows the opposite pattern in
first increasing from core (0.35) to rim (0.42), then decreasing (0.37)
and finally increasing again close to the garnet rim (0.41). Another,
garnet (Grt II) from this particular sample shows an even higher XGrs

ratio of up to 0.21, a XPyp ratio of 0.26 and XAlm of 0.53 (Table 3). The
two garnet generations in sample HS81 and the distinct garnet zonation
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in sample HS81b may reflect a two — phase growth, one prograde and
one retrograde. Garnet (Grt II) of sample HS82 shows minor zonation ef-
fects. XPyp decreases fromcore (0.42) to rim (0.36),whereas XAlm andXGrs

show the opposite zonation and increase from core (0.54) to rim (0.56)
and (0.04) to (0.08), respectively (Table 3). The XMg (Mg/(Mg + Fe)
value is 0.4 — 0.5 in all analyzed migmatitic gneiss samples (Table 3).

Garnets occasionally contain small inclusions of spinel and sillimanite
(Fig. 2C) in addition to biotite, quartz, plagioclase, and ilmenite. Silliman-
ite inclusions occur as fine needles and former matrix sillimanite proba-
bly reacted away due to the formation of anorthite — rich plagioclase.

Plagioclase inclusions in garnet (Grt II) were analyzed in sample
HS82. Plagioclase inclusions close to garnet cores show an XAn ratio of
up to 0.57, decreasing to values of about 0.41 towards to the rim and fur-
ther decreasing to 0.35 close to the garnet rims (Table 6). Matrix plagio-
clase in sample HS82 has nearly the same composition as plagioclase
inclusions close to garnet rims (Table 6).

Matrix plagioclase of samples HS81 and HS81b exhibits exsolution
of K—feldspar (antiperthite) and XAn in plagioclase varies between
0.27 and 0.5 (Table 6). K — feldspar shows exsolution lamellae of
albite (perthite), and the XKfs varies between 0.86 and 0.93 (Table 7).

The chemical composition of biotite is characterized by an XMg

ranging from 0.69 to 0.81 and high TiO2 — and F-contents of
3.61–5.38 wt.% and 0.69–1.96 wt.%, respectively (Supplement Table 2).
Muscovite only occurs as small flakes. Muscovite and clinozoisite/epi-
dote/allanite represent retrograde minerals formed during upper
greenschist– to lower amphibolite-facies conditions. Spinel inclusions
are mainly found in garnet cores together with Fe-Ti-oxides and have
an XMg ranging between 0.5 and 0.6 (Supplement Table 4). In summary,
textural observations in thin section together with mineral chemical
composition and zonation in garnets show that thesemigmatitic gneisses
define a prograde metamorphic P–T path up to granulite-facies con-
ditions and then became retrogressed to upper greenschist- to lower
amphibolite-facies conditions.

3.3. Charnockitic gneiss

Charnockitic gneiss samples HS83 and 84 were sampled in a forest
about 10 km west of Songea, from the Lipokela Quarry along the main
road west of Songea (samples HS86; HS88-HS90), and close to Litetema,
about 30 km to thewest of Songea (samplesHS91 andHS92). All samples
are fresh, well foliated and consist of garnet (Grt) – orthopyroxene (Opx)
– pigeonite (Pgt) – clinopyroxene (Cpx) – amphibole (Am) – biotite (Bt)
– K-feldspar (Kfs) – plagioclase (Pl) – quartz (Qtz) – ilmenite/
Ti-hematite (Ilm/Ti-Hem) ± scapolite (Scp). Selected mineral analyses
are presented in Tables 3–7 and Supplement Tables 2–4.

Garnet usually occurs as 10 to 250 μm-wide rims around
orthopyroxene or ilmenite/Ti-hematite (Figs. 2D, F, G, H). Pseudo-
morphs of anorthite-rich plagioclase and orthopyroxene (Opx III)
after garnet indicate that the rocks originally contained individual gar-
net grains (Grt I). In fact, some large garnet relics were identified in
two samples (HS88 and HS83) and are interpreted to have formed dur-
ing prograde metamorphism. In sample HS88, a new garnet rim (Grt II)
grew around the older core (Grt I; Fig. 2F), showing nearly the same
chemical composition as the garnet coronas around orthopyroxene
(Table 3). The XPyp of both garnet generations is similar, whereas XGrs

increases from 0.15 (Grt I) to 0.23 (Grt II) and XAlm decreases from
0.63 (Grt I) to 0.57 (Grt II) at the outermost part of the measured
profile through a large garnet grain with a newly grown rim
(Fig. 3D; Table 3). Two different textural types with garnet coronas
were observed: (a) garnet coronas around orthopyroxene (Figs. 2F, G)
and (b) garnet coronas around Fe-Ti-oxides (Figs. 2D, F, G). Where gar-
net grows around orthopyroxene, a narrow rim of clinopyroxene and a
quartz-corona around orthopyroxene is developed (Fig. 2F). In con-
trast, coronas around ilmenite/Ti-hematite do not show quartz and
clinopyroxene rims; instead, garnets are usually full of small ilmen-
ite/Ti-hematite/hematite and some clinopyroxene inclusions.

Orthopyroxene is abundant in most samples and usually forms
subidiomorphic grains, 0.1-3 mm in size, which can be subdivided into
three different generations (Table 4; Figs. 2D, E). The first generation
(Opx I) ranges in XMg between, 0.42 and 0.43 and the second generation
(Opx II) between 0.54 and 0.63 (Table 4). A third generation
(Opx III) was observed in a few samples where it forms symplectites
with anorthite-rich plagioclase, due to the breakdown of garnet.
Orthopyroxene- and plagioclase-bearing symplectites are indicative
reaction textures for UHT metamorphic conditions (Figs. 2D, E; Kelsey,
2008). The chemical composition of orthopyroxene (Opx III) in the
symplectite is similar (Table 4) in XMg ratio to orthopyroxene of the sec-
ond generation (Opx II). The Al2O3-content varies from 0.39 to 2.45 wt.
% (Table 4).

Pigeonite could only identified in sample HS88. This is a very rare
mineral in granulites but has also been described in granulites from
other localities (Bucher and Frost, 2006). It forms subidiomorphic
grains of the same size as orthopyroxene of the second generation
(Opx II). The XMg ratio is about 0.53, the Al2O3 content is lower than
in orthopyroxene of the second generation and is up to 0.28 wt. %. In
contrast to orthopyroxene, pigeonite in this sample shows an up to
five times higher concentration in CaO, which is 2.52 wt. % (Table 4).

Clinopyroxene was occasionally found in the charnockitic gneisses.
It either forms subidiomorph grains, or occurs as rims around
orthopyroxene (Opx II) (Figs 2F, H), or appears as inclusions in garnet co-
ronas. XMg varies from 0.66 to 0.78, the Al2O3-content is 0.7–5.3 wt.%,
and the Na2O-content is up to 0.7 wt.% (Table 5).

Plagioclase and K-feldspar show typical antiperthitic (K-feldspar
lamellae in plagioclase) and perthitic (plagioclase lamellae in K-feldspar)
textures. XKfs in K-feldspar ranges between 0.9 and 0.97. The XAn in pla-
gioclase ranges between 0.46 and 0.49 for plagioclase occur as equilibri-
um phase (Tables 6, 7). A second group of plagioclase is intergrownwith
orthopyroxene in symplectites, and is enriched in XAn, ranging between
0.50 and 0.59; it is only it is up to 0.79 in sample HS92 (Tables 6, 7).

Biotite was only found in small amounts. XMg is varies between 0.58
and 0.82, the TiO2-content is 3.29 - 5.55wt. %, and the F-content is up to
1.88 wt.% (Supplement Table 2).

Amphibole typically forms small, greenish, crystals (0.5-1 mm),
but in rare cases also occurs as small rims (b0.1 mm) on the margin
of clinopyroxene. The chemical composition varies significantly from
sample to sample with XMg ranging from 0.35 to 0.66; the TiO2 con-
centration varies between 0.22 and 2.35 wt.%, the F-content is up to
0.79 wt.%, and Cl is up to 1.09 wt.% (Supplement Table 3). According
to Leake et al. (1997) these amphiboles are classified as tschermakite to
(ferro-) pargasite.
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Fe-Ti-oxide phases are common in all rock types. Typically, three
different mineral phases can be distinguished, namely pure hematite
and ilmenite and a Ti-rich hematite with approx. 10-20 wt.% TiO2

(Supplement Table 4). Exsolution of hematite and ilmenite in il-
menite and Ti-rich hematite, respectively, has been observed. The
Mn-content in ilmenite is up to 0.82 wt.%, whereas Mg is between
0.88 and 2.18 wt.% (Supplement Table 4). The investigated scapolites
are mizzonites with high Ca and CO2 concentrations and show high
birefringence.

3.4. Undeformed granitoid rocks

Large outcrops of unfoliated or slightly foliated granitoid rocks
occur N and SE of Songea. The mineral assemblage comprises Qtz -

Kfs - Pl - Bt ± Am ± Czo/Aln ± Ms ± Fe-Ti oxides. Large perthitic
feldspar is common in these rocks (Table 2). These granites are in-
truded into amphibolite-facies metapelites.

4. Zircon geochronology

Zircon separation procedures, CL imaging and analytical tech-
niques are summarized in the Appendix. Sample Tz 00/15 is a mas-
sive, dark gray charnockite, interlayered with garnet-pyroxene gneisses
and was collected in a forest west of Songea (Fig. 1B). It contains the
mineral assemblage orthopyroxene (Opx) - biotite (Bt) - plagioclase
(Pl) - K-feldspar (Kfs) – quartz (Qtz). Zircons are clear to gray-olive,
long-prismatic and slightly rounded at their terminations, typical of ig-
neous grains subjected to metamorphic “corrosion” during high-grade
metamorphism (Hoskin and Black, 2000; Kröner et al., 1994; Silver,
1969). Cathodoluminescence (CL) images revealed no visible zonation
and no inherited cores. Six grains were analyzed on the Perth SHRIMP
II and produced one concordant and five variably discordant data points
(Supplement Table 5, Fig. 4) that are well aligned in the Concordia dia-
gram and define a mean 207Pb/206Pb age of 1030 ± 3 Ma. Recent
Pb-loss is indicated, and a regression line through all six analyses and
the origin (MSWD = 0.27) yielded an upper concordia intercept age
of 1027 ± 13 Ma (Fig. 4). Five additional grains were evaporated indi-
vidually of which four have identical 207Pb/206Pb ratios with amean age
of 1031.6 ± 0.7 Ma (Supplement Table 6, Fig. 4, inset). This is identical
to, butmore precise than, the SHRIMP age, andwe interpret this tomost
closely approximate the time of emplacement of the charnockite pre-
cursor. Two of the evaporated grains produced anomalously high
207Pb/206Pb ratios corresponding to mean ages of 1370.0 ± 1.3 and
1600.4 ± 0.8 Ma respectively (Supplement Table 6, not shown in
Fig. 4) that we consider to reflect zircon xenocrysts inherited from
the source terrain of the original intrusion.

Sample Tz 00/18 is dark, massive, fine-grained charnockitic gneiss
collected from Lipokela Quarry along the main road west of Songea
(Fig. 1B). The rock-forming minerals are orthopyroxene (Opx), pla-
gioclase (Pl), K-feldspar (Kfs), amphibole (Am) and quartz (Qtz). In
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the vicinity of the outcrop numerous NE-SW striking quartz veins
within minor shear zones occur in the quarry. The zircons are pink,
long-prismatic and rounded at their terminations, and CL imagery
shows well-defined medium to light gray rims around dark gray
cores. These rims occasionally have tail-like forms and represent
overgrowths. Fifteen spots were analyzed on the Stanford SHRIMP
RG and yielded variable results. The core data define one concordant
analysis at 1148 ± 15 Ma, whereas the remaining results are variably
discordant (Supplement Table 5) but can be fitted to a discordia line
(MSWD = 0.43) whose upper concordia intercept is anchored at
the 1148 Ma point, whereas the lower intercept is anchored at a con-
cordant rim analysis of 770 ± 30 Ma (Fig. 5). The resulting upper in-
tercept age is 1158 ± 32 Ma. The remaining rim analyses are slightly
discordant but are aligned along a second discordia (MSWD = 0.20)
indicating recent Pb-loss and intersecting concordia at 770 ±
27 Ma (Fig. 5). We interpret this pattern in the following way:
the discordant analyses defining the upper discordia line in Fig. 5
probably reflect Pb-loss at ~770 Ma and/or a mixture of ~1150
and ~770 Ma material. The overgrowth material formed at ~770 Ma
and either reflects zircon growth during a metamorphic or magmatic
event. The fact that the overgrowth material has relatively high Th/U
ratios and does not exhibit typical CL-features of metamorphic grains
argues for the overgrowth to have been produced by a magmatic pro-
cess, the more so since no high-grade metamorphic event around
~770 Ma is known from this part of East Africa. We are therefore in-
clined to attribute the ~770 Ma material to a magmatic event during
which zircon growth occurred. This makes it likely that the older
~1150 Ma zircon cores represent xenocrysts from a chronologically ho-
mogeneous source from which the charnockite precursor was derived
by melting at about ~770 Ma. The high-grade event producing the
charnockitic mineral assemblage remains undated.

Sample Tz 00/14 is a coarse-grained, reddish, vertically foliated bi-
otite granite-gneiss from a small quarry southeast of Songea. The rock

contains streaky, drawn-out melt patches, suggesting that ductile
deformation outlasted the peak of metamorphism, but these melt
patches have been avoided during sampling. The rock-forming min-
erals are quartz (Qtz), plagioclase (Pl), K-feldspar (Kfs), biotite (Bt)
as well as accessory muscovite (Ms). The zircons are yellow-brown,
stubby to long-prismatic and have well rounded terminations. Five
grains were evaporated individually and produced a precise mean
207Pb/206Pb age of 730 ± 0.9 Ma (Supplement Table 6, Fig. 6A), consid-
ered to reflect the time of emplacement of the gneiss protolith.

Sample Tz 00/20 is a gray, fine-grained, layered granite-gneiss col-
lected in the large Mpitimbi Quarry south of Songea. As in the previous
case, the rock contains numerous melt patches, and our sample reflects
themost homogeneous part of the rock unit. It contains themineral as-
semblage quartz (Qtz) - plagioclase (Pl) - K-feldspar (Kfs) - biotite
(Bt) and minor titanite (Ttn) and ilmenite (Ilm). Rare metamorphic
clinopyroxene (Cpx) was also found. The zircons are long-prismatic
to stubby, clear to light yellow-brown and have rounded termina-
tions. Six grains were evaporated individually and yielded a surpris-
ingly old mean 207Pb/206Pb age of 1192 ± 0.6 Ma (Supplement
Table 6, Fig. 6B) that we interpret to reflect the time of igneous em-
placement of the gneiss protolith.

5. Geothermobarometry

Classical geothermobarometry and P–T pseudosections have been
used to determine the metamorphic history of the metapelites,
charnockites and gneisses of the Songea area. In order to estimate
peak metamorphic conditions, mineral core- and rim compositions
of selected mineral pairs have been used. To calculate fO2 conditions
during metamorphism, Ti-Fe oxides were used. XH2O (a mixture of
H2O and CO2) was calculated using the P–T values obtained from gar-
net biotite speedometry. These P–T values were used to produce a
tally with the H2O-bearing biotite in/out reaction curve in P–T space
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in the computed pseudosections. Similar P–T values for both reaction
curves could be obtained using an XH2O of 0.7 for the biotite in/out reac-
tion curve in the calculated P–T diagrams (Figs. 8A, 10a, 12a, 14a). Four
P–T pseudosection were calculated to estimate the P–T stabilty fields of
the different stable mineral assemblages in P–T space and to estimate
the change in mineral chemical- and volumetric composition in P–T
space.

5.1. QUILF calculations

The most useful rock type to calculate peak metamorphic tempera-
tures were the charnockites, collected from Lipokela Quarry and close
to Litetema, about 30 km to thewest of Songea (Fig. 1B). These samples
contain orthopyroxene, pigeonite and clinopyroxene. Several thermom-
eters exist for this coexisting mineral assemblage (Frost and Lindsley,
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1992; Lindsley and Frost, 1992; Saxena et al., 1968). To test whether the
analyzed orthopyroxene, pigeonite and clinopyroxene are in equilibri-
um, the XMg ratios of these minerals were plotted against each other
and were checked whether they match the KD line of 0.54 for meta-
morphic rocks (Saxena et al., 1968; Fig. 7A). To calculate the peak

metamorphic temperature at which orthopyroxene, pigeonite and
clinopyroxene have been in equilibrium, we used the QUILF program
(Andersen et al., 1993) and the following thermometers; (1) enstatite
component in clinopyroxene and orthopyroxene (EnCpxOpx),
(2) enstatite component in clinopyroxene and pigeonite (EnCpxPig),
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and (3) enstatite component in pigeonite and orthopyroxene
(EnPigOpx). All three thermometers must yield the same or nearly the
same temperature range for the studied rock samples using the QUILF
program (Andersen et al., 1993). The calculated peakmetamorphic tem-
peratures and pressures for sample HS88 range between ~1046 °C,
~11.7 kbar (EnCpxOpx; Fig. 7c) and ~1009 °C, ~11.7 kbar (EnCpxPig
and EnPigOpx; Fig. 7c). The variation in the computed peak metamor-
phic temperature is probably due to variations in Fe-Mg ion exchange

during cooling (Bucher and Frost, 2006). Sample HS92 yielded peak
metamorphic temperatures and pressures of ~1024 °C and ~11.9 kbar
(EnCpxOpx; Fig. 7d). Due to the occurrence of Fe-Ti oxides in sample
HS92, the magnetite-hematite and Fe-Ti thermometers were also used
and yielded temperatures of 1029 °C and 829 °C, respectively. The calcu-
lated fO2 varies between -11.5 and -11.7. Sample HS90 yielded peak
metamorphic temperatures of up to 1020 °C at ~11.5 kbar (EnCpxOpx),
and fO2 is -11.4 (Fig. 7d).
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5.2. TWQ calculations

To estimate pressure conditions at peakmetamorphic temperatures
between ~1000 and ~1050 °C,we used the garnet-sillimanite-plagioclase-
quartz geobarometer. The database of Berman and Arranowich (1996)
was used for the computation using TWQ 2.0.2.

Grossularþ 2 Sillimaniteþ Quartz ¼ 3Anorthite GASPð Þ

SampleHS81bwas used for barometry because the analyzed garnets
(Grt I) grew during progrademetamorphism due to the increase of XPyp

from core to rim and the high XPyp ratios that are indicative of granu-
lite–faciesmetamorphism (Table 3). The calculated pressures for gneiss
sample HS81 at the above temperatures are up to ~12 kbar at ~1050 °C
(Fig. 7B).

5.3. PerPleX calculations

Four P–T pseudosections were calculated using the PerPleX tool-
box (Connolly, 1990), employing the PerPleX JS 6.6.6 Macintosh ver-
sion and datafile HP02ver.dat (Connolly, 2005). In order to obtain
the physiochemical information in the P–T range of interest, we
modified and simplified the solution model files provided by the
PerPleX toolbox. This means that non-existing endmembers, or
endmembers which occur only in minor volumes, were removed
from the solution and from the projection space. The modified solu-
tion files for orthopyroxene and clinopyroxene were then treated as
ideal solutions because idealmixing of orthopyroxene and clinoyroxene
can be expected at temperatures of ~1000 °C. Themodified solution file
for garnet is a simplified solutionmodel, because only the pyrope, gros-
sular and almandine endmembers are of interest under granulite-facies
conditions. The ternary feldsparmodel of Fuhrman and Lindsley (1988)
was used for the charnockitic gneisses, and a binary plagioclase solution
model was used to calculate the pseudosection for the gneiss (Newton
et al., 1981). We used the models of Andersen and Lindsley (1988) to
compute the Fe–Ti oxide phases in P–T space. One ortho- and one
clino-amphibole model was used for the computation (Dale et al., 2000;
Holland and Powell, 1998). The solution models for biotite, chlorite, cor-
dierite and dolomite were also simplified and were taken from the data-
base of Holland and Powell (1998).

5.4. Pseudosection HS88

Sample HS88 is a charnockitic gneiss that contains some older
garnet relicts (Grt I) that formed during prograde metamorphism
and younger garnet rims/coronas (Grt II; Fig. 2F) that formed during
retrograde metamorphism, respectively. Orthopyroxene (Opx II)
and clinopyroxene occur as equilibrium phases. The P–T pseudosection
was computed in the KNCMFATSHCO system and contains 54 phase
fields (Fig. 8A). The following 12 solution models and phases were
used for the computation: orthopyroxene (Opx), clinopyroxene
(Cpx), garnet (Grt), feldspar (Fsp), biotite (Bt), anthophylite (Oam),
clinoamphibole (Cam), chlorite (Chl), dolomite (Dol), spinel (Spl),
ilmenite-hematite (Ilm), magnetite-ulvöspinel (Mag), rutile (Rt) and
quartz (Qtz). The solution models have been simplified as described
above. The bulk composition is: Na2O = 2.306; MgO = 4.013;
Al2O3 = 16.601; SiO2 = 50.425; K2O = 1.318; CaO = 6.209; TiO2 =
2.216; FeO:=12.548; O2 = 0.559 and XH2O = 0.7. The peakmetamor-
phic mineral assemblage is orthopyroxene, clinopyroxene, garnet, feld-
spar, ilmenite and quartz (Fig. 8A). The resulting peak metamorphic
conditions from our computation is ~1040 °C and ~11.7 kbar, using
the XMg ratios of ~0.58 in orthopyroxene (Fig. 8B; Table 4) and ~0.70
in clinopyroxene, respectively (Fig. 9A; Table 5). The peakmetamorphic
conditions calculated from PerPleX excellently agree with the results of
the QUILF calculations (Figs. 7C; Tables 4, 5). According to our computa-
tions, orthopyroxene grew during peakmetamorphism and throughout

post-peak decompression and afterwards became consumed during
compression and cooling during the following garnet corona growth
phase along the retrograde P–T path (Fig. 8C). Clinopyroxene was con-
sumed during the peakmetamorphic phase and breakdown finally dur-
ing isothermal decompression (Fig. 9B). Afterwards, clinopyroxene
grew due to increasing pressure and was later consumed due to de-
creasing temperatures (Fig. 9B). The anorthite component in plagio-
clase was ~0.45 at peak metamorphic conditions (Fig. 9C; Table 6),
and plagioclase formed during peak metamorphism and subsequent
decompression and was later consumed during retrogression (Fig. 9D).
According to our PerPleX computation, the analyzed garnet in sample
HS88 was not in equilibrium with orthopyroxene and clinopyroxene
during peakmetamorphism. These garnetswere stable at lower P–T con-
ditions of ~600 °C and ~10.9 kbar, which reflects the formation of garnet
coronas due to isobaric cooling (Figs. 9E, F & Supplement Fig. 1a, b;
Table 3). The observed prograde garnet (Grt I) and orthopyroxene
(Opx I) in the charnockite could not be projected into the calculated P–
T space because the whole-rock composition used for the pseudosection
represents the bulk rock chemistry of the last snapshot of metamor-
phism in an allochemical system and is therefore not representative of
prograde metamorphism that occurred during an earlier phase.

5.5. Pseudosection HS92

Sample HS92 is a charnockitic gneiss containing garnet only as a co-
rona phase (Grt II). Orthopyroxene (Opx II) occurs as an equilibrium
phase and in orthopyroxene (Opx III) – plagioclase-bearing symplectites
that formed due to the consumption of a former no longer existing gar-
net (Grt I). Clinopyroxene also occurs as an equilibrium phase. The
P–T pseudosection was calculated in the KNCMFATSHCO system
and contains 53 phase fields (Fig. 10A). We used the following 12 so-
lution models and phases for the PerPleX computation: Orthopyroxene
(Opx), clinopyroxene (Cpx), garnet (Grt), feldspar (Fsp), biotite (Bt),
anthophylite (Oam), clinoamphibole (Cam), chlorite (Chl), dolomite
(Dol), spinel (Spl), ilmenite-hematite (Ilm), magnetite-ulvöspinel
(Mag), rutile (Rt) and quartz (Qtz). The used bulk composition
is: Na2O = 2.633; MgO = 3.269; Al2O3 = 16.903; SiO2 = 50.348;
K2O = 0.509; CaO = 7.165; TiO2 = 0.815; FeO = 7.860; O2 = 0.350
and XH2O = 0.7. According to our PerPleX computation, the peakmeta-
morphic mineral assemblage is orthopyroxene, clinopyroxene, garnet,
plagioclase, ilmenite and quartz (Fig. 10A). The calculated peak meta-
morphic temperature from our PerPleX computation is ~1020 °C, and
the corresponding pressure is ~11.9 kbar. This peak metamorphic con-
ditions has been determined usingXMg ratios in orthopyroxene of ~0.63
(Fig. 10B; Table 4) and in clinopyroxene of ~0.74, respectively (Fig. 10C;
Table 5). The XMg values during peak metamorphism from our PerPleX
computation are the same as the calculated ratios from the EPMA anal-
yses that were used for the P–T estimations with QUILF (Fig. 7D;
Tables 4, 5). Our calculations show that orthopyroxene formed during
peakmetamorphism and the following symplectite phase andwas con-
sumed due to compression along the retrograde P–T path and finally
during subsequent isobaric cooling during the garnet corona growth
phase (Supplement Fig. 1c). In contrast, clinopyroxene was consumed
during peak metamorphism and the following symplectite phase. It
grew later again due to compression and was subsequently consumed
during decreasing temperature (Supplement Fig. 1d). The anorthite
component in plagioclase was ~0.5 at peak metamorphic conditions
(Fig. 11A; Table 7) and formed during the symplectite stage and con-
sumed along the retrograde P–T slope (Fig. 11B). The occurrence of pla-
gioclasewith a XAn ratio of up to 0.79 in the symplectite is anunresolved
problem and requires further study. According to our PerPleX computa-
tion, the analyzed garnet in sample HS92 is not in equilibrium during
peak metamorphism with orthopyroxene and clinopyroxene. It was
stable at lower P–T conditions at about 680 °C and 10.6 kbar, which is
indicative for the formation of garnet coronas (Figs. 11 C-E; Supplement
Fig. 1e; Table 3).
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5.6. Pseudosection HS83:

Sample HS83 is a charnockitic gneiss that also contains garnet
relics (Grt I); orthopyroxene (Opx II) occurs as an equilibrium
phase and in orthopyroxene (Opx III) – plagioclase - bearing
symplectites. Clinopyroxene occurs as an equilibrium phase. The

P–T pseudosection was computed in the KNCMFATSHCO system
and contains 47 phase fields (Fig. 13A). The following 12 solution
models and phases were used for the calculation: Orthopyroxene
(Opx), clinopyroxene (Cpx), garnet (Grt), feldspar (Fsp), biotite
(Bt), anthophylite (Oam), clinoamphibole (Cam), chlorite (Chl), do-
lomite (Dol), spinel (Spl), ilmenite-hematite (Ilm),magnetite-ulvöspinel
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(mag), rutile (Rt) and quartz (Qtz). The used bulk composition
is Na2O = 1.239; MgO = 6.947; Al2O3 = 12.037; SiO2 = 42.933;
K2O = 0.294; CaO = 11.689; TiO2 = 2.979; FeO = 15.902; O2 =
0.699 and XH2O = 0.7. According to our PerPleX calculation, the peak
metamorphic mineral assemblage is orthopyroxene, clinopyroxene, gar-
net, plagioclase, ilmenite and quartz (Fig. 12A). At peak metamorphic
conditions at about 1020 °C and about 12 kbar, theXMg in orthopyroxene
is ~ 0.65 (Fig. 12B) and ~0.74 in clinopyroxene (Fig. 12C). The computed

XMg values with PerPleX are in good agreement with the measured and
calculated ratios from the EPMA analyses that were used for the QUILF
calculations (Tables 4, 5). According to our computations, orthopyroxene
grew during peakmetamorphism and the subsequent symplectite phase
andwas consumed due to compressionwithin the orthopyroxene stabil-
ity field (Supplement Fig. 1f), whereas clinopyroxene was consumed
during isothermal decompression and formed during compression and
was subsequently consumed during decreasing temperature due to
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isobaric cooling (Supplement Fig. 2a). The anorthite component in pla-
gioclase was about 0.55 at peakmetamorphic conditions (Fig. 13A) and
plagioclase grew during the symplectite phase and was consumed
during retrograde metamorphism (Fig. 13B). Due to our PerPleX

computation, the analyzed garnet in sample HS83 is not in equilib-
rium with orthopyroxene and clinopyroxene during peak metamor-
phism. The analyzed garnet relics in sample HS83 were stable at lower
P–T conditions at about 740 °C and 10.7 kbar and are interpreted as a
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relic from garnet (Grt I) that has grown during prograde metamorphism
and was later consumed during retrogression (Figs. 13C-E; Supplement
Fig. 2b; Table 3).

5.7. Pseudosection HS82

Sample HS82 is an orthogneiss that contains garnet as an equilibrium
phase. The P–T pseudosection was computed in the KNCMFATSHCO
system and includes 37 phase fields (Fig. 14A). The following

13 solution models and phases were used for the computation:
orthopyroxene (Opx), cordierite (Crd), garnet (Grt), plagioclase
(Pl), K–feldspar (Kfs), biotite (Bt), kyanite (Ky), sillimanite (Sil), dolo-
mite (Dol), ilmenite-hematite (Ilm), magnetite-ulvöspinel (Mag), rutile
(Rt) and quartz (Qtz). The solution models were modified as described
above. The used bulk composition is: Na2O = 2.110; MgO = 2.627;
Al2O3 = 17.674; SiO2 = 58.508; K2O = 6.415; CaO = 1.580; TiO2 =
0.777; FeO = 6.293; O2 = 0.280 and XH2O = 0.7. The peak metamor-
phic mineral assemblage is garnet, plagioclase, K-feldspar, ilmenite,

Pl Kfs Ilm 
Grt Sil

Pl Kfs Ilm 
Grt Ky Rt

Pl Kfs Ilm 
Grt Bt Ky

Pl Kfs Ilm 
Grt Bt Sil

Crd Pl 
Kfs Ilm 
Grt Sil

Pl Kfs Ilm Mag 
Grt Bt Sil

Crd Pl Kfs Ilm 
Grt Bt Sil

Crd Pl Kfs 
Ilm Grt

Opx Crd Pl 
Kfs Ilm Mag

Opx Crd Pl Kfs 
   Ilm Mag Bt

Opx Crd 
Pl Kfs Ilm 
Mag Grt Bt

Opx Crd Pl Kfs 
  Ilm Mag Grt

Opx Crd Pl 
Kfs Ilm Grt

Pl Kfs Ilm Mag 
  Grt Bt Ky

Pl Kfs Dol Ilm 
Grt Bt Ky Rt

Pl Kfs Ilm 
Grt Bt Ky Rt

Pl Kfs Ilm 
Mag Bt Ky

Pl Kfs Mag 
Bt Sil Rt

Pl Kfs Ilm 
Mag Bt ky Rt

Pl Kfs Ilm 
Bt Ky Rt

Pl Kfs Mag 
Bt Ky Rt

Pl Kfs Ilm 
Mag Bt Sil

Crd Pl Kfs 
Ilm Grt Bt

Kfs Dol Ilm 
Bt Ky Ab Rt

Pl Kfs Dol 
Ilm Bt Ky 
Ab Rt

Pl Kfs Ilm 
Bt Ky Pl Kfs Dol 

Ilm Bt 
Ky Rt

Pl Kfs Ilm 
Grt Ky 
Bt Rt

Crd Pl Kfs Ilm 
Mag Grt Bt

Crd Pl Kfs 
Ilm Mag Bt

Opx Crd Pl 
Kfs Ilm Grt Bt

Crd Pl Kfs Ilm 
Mag Grt Bt Sil

Crd Pl Kfs Ilm 
Mag Bt Sil

Crd Pl Kfs Ilm 
Mag Bt Sil Rt

   Crd Pl Kfs 
Ilm Mag Bt Rt

HS_82

4000

6200

8400

10600

12800

15000

P
(b

ar
)  

620 740 860 980 1100
T °C

500

Grt_82_XPyp

4000

6200

8400

10600

12800

15000

P
(b

ar
)  

620 740 860 980 1100
T °C

500

Grt_82_XGrs

51
.0 2.0

0.
25

0. 3

0.
35

0.4

4.0

0.45

54.0

5.
0

0.5

0.5

0.
55

0.55

0.55

0.
04

5

0.045

0.
05

0.05

0.
05

5

0.055

0.
06

0.06
0.065

0.
07

0.07

0.
07

5

0.075

0.
08

5

0.08

0.
09

0.085
0.09

0.095

0.
1 0.

06
5

0.
08

A

B C

0.04

KNCMFATSHCO system with quartz, H2O + CO2 in excess

4000

6200

8400

10600

12800

15000

P
(b

ar
)

620 740 860 980 1100
T °C

500

Garnet core
composition

Garnet rim
composition

Garnet core
composition

Garnet rim
composition

Fig. 14. (A) Computed P–T pseudosection for sample HS82 in the KNCMFATSHCO system. The high-grade granulite-facies mineral assemblage is Pl, Kfs, Grt, Ilm and Qtz. (B–C) Di-
agrams show variations in XPyp and XGrs ratios and therefore core rim relationships. Blue cross with green dots marks P–T conditions for garnet cores, and red cross with green dots
shows P–T conditions for garnet rims along the computed P–T path. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

137H. Sommer, A. Kröner / Lithos 170-171 (2013) 117–143



sillimanite and quartz (Fig. 14A). In this sample the garnet rim compo-
sition together with the plagioclase composition at the rim yielded
higher P and lower T conditions than garnet core compositionswith pla-
gioclase compositions from inclusions located in the garnet core. Using
the XPyp/Alm/Grs ratios at the garnet core and rim (Table 3) and compar-
ing itwith our PerPleX computation shows how the temperature condi-
tions decreased from the core to the rim in garnet of sample HS82
(Figs. 14B, C, Supplement Fig. 2c). The same feature can be seen in the
decrease of the anorthite component in plagioclase inclusions located
from core to rim in garnet. The XAn ratios in plagioclase inclusions
located at the core of the garnet are 0.57, for plagioclase inclusion lo-
cated towards the rim of the garnet the XAn is 0.41 and, finally, pla-
gioclase inclusion located at the rim of garnet the XAn is 0.35. Linking
the XPyp/Alm/Grs and XAn ratios to P–T conditions shows how garnet
and plagioclase in sample HS82 grew during retrograde metamor-
phism (Figs. 14B, C; 15A-C; Supplement Fig. 2c; Tables 3, 6).

6. Metamorphic textures and P–T loop

Classical geothermobarometry, computed pseudosections, mineral
compositions measured with EPMA, calculated mineral compositions,
volumetric calculations, and reaction textures observed in thin section
have all been used to construct the P–T-loop for the granulite-facies

rocks of the Songea area. Peak metamorphic conditions with tempera-
tures of up to ~1050 °C and pressures up to ~12 kbar were obtained.

6.1. Reaction textures constraining different sections on the prograde and
retrograde parts of the calculated P–T loop

Prograde P–T path: Mineral relicts of the prograde P–T path of the
mafic to intermediate charnockites were found in a few samples. In
sample HS88 hypersthene (Opx I) with an XMg ratio of ~0.43 was
identified that probably formed at lower P–T conditions during pro-
grade metamorphism (Table 4). Garnet relics (Grt I) could be identi-
fied in samples HS88 and HS83 (Figs. 2F, 3D; Table 3). We interpret
the existence of these garnet relics as remnants of former garnet
(Grt I) that grew during prograde metamorphism and was partly con-
sumed during isothermal decompression (Fig. 2F). The garnets (Grt I)
in samples HS81 and HS81b also provide a record of the prograde P–T
path. XPyp is increasing in both samples (Grt I) from core to rim, and
this is undoubtedly indicative of prograde metamorphism (Fig. 3C;
Table 3).

Peak metamorphism: Peak metamorphic conditions were calcu-
lated using orthopyroxene and clinopyroxene pairs for thermometry
and using the GASP reaction for barometry. Peak metamorphic
conditions are up to ~1050 °C and ~12 kbar (Fig. 15d). The results
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from PerPleX computations show similar peak metamorphic conditions.
Our calculated temperatures are characteristic of UHT metamorphism.

6.2. Retrograde metamorphism:

The retrograde P–T path is characterized by the formation of
orthopyroxene – plagioclase - bearing symplectites due to the break-
down of garnet (Figs. 2D, E). Orthopyroxene- and plagioclase-bearing
symplectites are reaction textures indicative of UHT metamorphism,
which is confirmed by the geothermobarometric calculations (Kelsey,
2008).

Garnet and clinopyroxene were consumed and orthopyroxene
and plagioclase grew (Figs. 8C, 9B, D, 11B, E, 13B, E, 15A, C; Supple-
ment Figs. 1b-d, 1f; 2a) due to the reaction

Grtþ Cpxþ Qtz ¼ Opxþ Pl: ð1Þ

Following the symplectitic phase, cooling and compression occurred
(Fig. 15D). This part of the retrograde P–T path was constructed using
garnet (Grt II) (sample HS82) with plagioclase inclusions that occurred
as an equilibrium phase during high-grade metamorphism. The garnet
of sample HS82 contains plagioclase inclusions located from core to
rim and thus record an increase in P and a decrease in T conditions
from core to rim during growth of garnet along the retrograde P–T
path (Figs. 14B, C; 15A-C; Supplement Fig. 2c). Garnet of sample HS82
also has inclusions of sillimanite that were inherited during compres-
sion on the retrograde P–T path (Fig. 14A).

At a later stage isobaric cooling occurred and led to formation of gar-
net (Grt II) corona textures due to the breakdown of orthopyroxene and
plagioclase according to the reaction

Opxþ Pl ¼ Grtþ Cpxþ Qtz: ð2Þ

Two types of textures with garnet coronas are shown in Figs. 2D, F,
G, namely (a) garnet coronas around orthopyroxene (Figs. 2F, G) and
(b) garnet coronas around Fe-Ti-oxides (Figs. 2D, F, G). Wherever gar-
net grew around orthopyroxene, a small rim of clinopyroxene and a
quartz corona around orthopyroxene developed (Fig. 2F). In contrast,
coronas around ilmenite/Ti-hematite, do not show quartz and
clinopyroxene rims. Instead, garnets are usually full of small Fe- and
Fe-Ti-oxide and some clinopyroxene inclusions (Fig. 2D). The relevant
reactions producing garnet coronas around orthopyroxene are similar
to those that produced the vermicular intergrowth of orthopyroxene
and plagioclase (reactions 1 to 2). The vermicular intergrowth of
orthopyroxene and plagioclase is explained by destabilized garnet due
to isothermal decompression. Garnet coronas were produced by the
breakdown of orthopyroxene and plagioclase during retrogression.
The formation of garnet coronas is typical of fluid-absent metamor-
phism, leading to diffusion-controlled reaction structures such as
coronas. The computed volumetric calculation supports this assump-
tion. Garnet grewwith decreasing temperature, compression and, final-
ly, isobaric cooling (Figs. 11E; 13E; 15A), whereas orthopyroxene and
plagioclase became consumed during compression and subsequent
isobaric cooling (Figs. 8C; 9D; 11B; 13B; Supplement Figs. 1c, f;
2a). A small amount of clinopyroxene was also produced during ret-
rogression (Figs. 9B) and occurs as clinopyroxene rims around
orthopyroxene (Fig. 2F; Supplement Fig. 1d; 2a). These observations
are confirmed by the garnet profiles of sample HS81 (Grt II) and the out-
ermost profiles of Grt II through the outermost rims of samples HS81b
and HS88 (Figs. 3C, D) where the same XPyp/Alm/Grs ratios in garnet can
be found, as expected, in the garnet corona formation phase (Table 3).

Finally, strong decompression during amphibolite-facies conditions
is characterized by the breakdown of clinopyroxene (Fig. 15 D) and
the formation of amphibole due to hydration. Because of decreasing
pressure, the XMg ratio in amphibole also decreases, and the formation
of poikilitic garnet and albite-rich plagioclase in metapelites occurred

at lower amphibolite- and higher greenschist-facies conditions
(Fig. 2A; Tables 3, 6, 7; Supplement Table 3).

6.3. Summary of the P–T loop

The constructed P–T loop (Fig. 15D) for the Songea rocks can be
subdivided into 5 segments: Segment (i) represents the prograde P–T
path, document by relics of orthopyroxene, garnet and/or garnet pro-
files of prograde garnet due to crustal thickening (Grt I; Figs. 2F; 3C,
D). Segment (ii) reflects peak UHT granulite-facies metamorphism at T
~1050 °C and P up to ~12 kbar (Figs. 8B, 9A; 10B, C). Segment (iii) is
characterized by strong decompression as seen in the formation of
orthopyroxene and plagioclase symplectites, characteristic of UHT
metamorphism (Figs. 2D, E). Segment (iv) is considered to reflect forma-
tion of garnet coronas and represents the transition from granulite- to
amphibolite-facies metamorphism (Figs. 2D, F, G). Segment (v) signifies
strong decompression during amphibolite-facies conditions, seen in the
formation of poikilitic garnet and large amphiboles (Fig. 2A).

6.4. Comparison with other granulite-facies areas in the Mozambique
belt

Limited exposure of basement rocks within the Mozambique belt of
East Africa and Madagascar, with large areas being covered by younger
rocks, makes it difficult to compare and correlate different areas with
the aim to reconstruct the evolutionary history of the entire region.
Geochronological, isotopic and petrological studies were undertaken
in various parts of the MB (see summaries and references in Bingen
et al., 2009; Collins, 2006; Giese et al., 2011; Jöns and Schenk, 2011;
Kröner et al., 1997, 2000, 2001, 2003; Sommer et al., 2003, 2005a,b,
2008; Thomas et al., 2009; Tucker et al., 2011). The following section
compares these data with the petrological, geothermobarometric and
geochronological data of this study (for names of localities see Fig. 1).

The eastern part of Tanzania (Pare/Usambara/Uluguru/Mahenge
Mountains) and SE Kenya (Taita/Sagala Hills, Kasigau) are character-
ized by granulite-facies metamorphism showing peak metamorphic
temperatures and pressures in the range of ~800 °C and 11–13 kbar
(Appel et al., 1998; Coolen et al., 1982; Sommer et al., 2003, 2008).
This suggests that a large crustal section now exposed was once bur-
ied to 35–40 km depth. Most petrological data from eastern Tanzania
are compatible with a clockwise P–T path for both prograde and ret-
rograde sections. Garnet zonation patterns as well as mineral ages
using various isotopic systems with different closure temperatures
indicate a slow cooling and exhumation history (Möller et al., 2000).

The rocks of the Songea area do not seem to fit into this uniform pat-
tern of granulites in Tanzania. First, the recorded P–T path for Songea
rocks provides evidence for isothermal decompression and isobaric
cooling in the same samples, a feature that has so far not been found in
other granulite-facies terrains of Tanzania. The peak metamorphic tem-
perature at ~1050 °C is higher than elsewhere in Tanzanian granulites,
but temperatures up to ~1050 °C are not uncommon, andUHT conditions
were described from numerous localities worldwide (Kelsey, 2008) as,
for example, Enderby in Antarctica (Harley, 1989), the Namaqua Meta-
morphic Province in South Africa (Waters, 1989), the Limpopo belt in
South Africa (Tsunogae and van Reenen, 2006), the Eastern Ghats belt
of India (Sengupta et al., 1999), the North China Craton (Santosh et al.,
2007; Zhang et al., 2012), and Pan-African terranes of Brazil and West
Africa (Brown, 2006). However, lower P–T estimates as exemplified
from samples in the vicinity of Songea were also observed in south-
ern Malawi and northern Mozambique. Andreoli (1984) and Kröner
et al. (2001) described granulite-facies charnockitic gneisses, biotite-
hornblende granulites and migmatic gneisses in southern Malawi
where metamorphic conditions were found to be 800–900 °C and
~9.5 kbar. Some granulites were described to have equilibrated at
higher P–T conditions of ~900 °C and 12 to 15 kbar in southernmost
Malawi (Andreoli and Hart, 1990).
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The Precambrian basement of northern Mozambique mainly con-
sists of high-grade gneisses, granulites and migmatites, and new data
on the geological evolution, geochemistry, and geochronology were
reported by Bingen et al. (2009), Boyd et al. (2010), Macey et al.
(2010), Thomas et al. (2010), and Ueda et al. (2012).

There are a several smaller continental blocks that were involved in
the Neoproterozoic to early Cambrian accretion and collision history of
the Mozambique belt. All these led to specific tectono-metamorphic
events that occurred at various places and at different times, finally lead-
ing to formation of Gondwana (Collins, 2006; Collins and Pisarevsky,
2005; Collins and Windley, 2002).

Geochronological data for almost all the above areas document two
age ranges for the peak of high-grade metamorphism: (a) 549–571 Ma
in southern Malawi, Madagascar and Sri Lanka, probably correlating
with the collision of India with East Africa, and (b) 615–650 Ma in east-
ern Tanzania (Pare/Usambara/Uluguru/Mahenge Mts.), southern Tan-
zania, northern Mozambique and western Madagascar (see Table 2).
Protolith zircon ages define four groups: (a) Archaean ages of 2.5
to 2.9 Ga in Tanzania and central Madagascar (Collins et al., 2012;
Sommer et al., 2003, 2005a,b) (b) Palaeoproterozoic ages of 1.7 to
2.0 Ga in east-central Tanzania (Collins et al., 2004; Muhongo et al.,
2001; Reddy et al., 2003; Sommer et al., 2003, 2005a,b; Vogt et al.,
2006), (c) Mesoproterozoic ages of 1.0 to 1.3 Ga in southern Tanzania
(Kröner et al., 2003), southern Malawi (Kröner et al., 1997), northern
Mozambique (Kröner et al., 1997) and central Madagascar (Tucker
et al., 2011), and (d) Neoproterozoic ages of ~720–820 in all terranes
(Kröner, 2001; Bingen et al., 2009) (Supplement Table 1).

Late Mesoproterozoic to earliest Neoproterozoic granitoid emplace-
ment ages in the Songea area (1027 ± 13, 1158 ± 32, 1192 ± 0.6 Ma)
are documented from three of our samples and are similar to isolated
granite ages recognized in the Masasi area some 450 km farther E
(Kröner et al., 2003). Similar emplacement ageswere found in southern
Malawi (Kröner et al., 2001) and are common in northernMozambique
and in central Madagascar (Cox et al., 2004; Kröner et al., 2001; Macey
et al., 2010; Thomas et al., 2010; Tucker et al., 2011). The significance of
these ages is uncertain, but maybe they reflect a connection with the
Irumide belt of Zambia (De Waele et al., 2003), but this inference is
purely speculative. One Songea granite is significantly younger at
730 ± 0.9 Ma and belongs to the Neoproterozoic age group as also
reported elsewhere in the MB of Tanzania, southern Malawi, northern
Mozambique and southwest Madagascar (Collins et al., 2012). This
magmatic activity may reflect the beginning of subduction of the Mo-
zambique ocean and the development of an Andean-type magmatic
arc during convergence between East and West Gondwana (Kröner
et al., 2000). However, the existence of East andWest Gondwana as sep-
arated blocks was superseded and replaced by a Neoproterozoic world,
consisting of a number of smaller continents (Collins and Pisarevsky,
2005).

We have not found metamorphic zircons in the Songea samples.
Therefore, the peak of granulite-facies metamorphism in this area re-
mains undated. Similar rocks in the Masasi area (Fig. 1A) show meta-
morphic ages of ~640 Ma (Kröner et al., 2003; Sommer et al., 2003,
2005a). Since no P–T estimates for the Masasi rocks are available, it
is difficult to directly apply these ages to the Songea area. However,
since other granulite-facies areas in Tanzania show similar metamor-
phic ages and are characterized by slightly higher pressures but lower
temperatures (~800 °C, 10–13 kbar), it is likely that the Masasi area
also underwent these metamorphic conditions. We therefore con-
clude that the time of metamorphism in the Songea area was in the
same age range as in other areas of Tanzania.

7. Conclusions

Petrological data constrain a precise prograde and retrograde P–T
loop by means of thermomerty, barometry, P–T pseudosections, com-
puted mineral chemical compositions compared with EPMA analyses,

volumetric mineral calculations as well as observed reaction textures
in granulite-facies rocks and their retrograded equivalents in the
Songea area of SW Tanzania. Peak temperatures of up to ~1050 °C
and peak pressures of up to ~12 kbar were attained along a five-
segment P–T path. First, increasing P–T conditions are documented
by garnet growth (Grt I) due to continent–continent collision and
crustal thickening. After reaching peak metamorphic conditions at
~1050 °C and ~12 kbar, isothermal decompression and the formation
of orthopyroxene–plagioclase-bearing symplectites occurred due to
the consumption of garnet caused by orogenic collapse (Fig. 15D).
After the symplectite phase at ~860 °C and ~6.5 kbar, a strong in-
crease in pressure and the formation of garnet (Grt II) is observed,
followed by isobaric cooling (Figs. 15A, D). Near-isobaric cooling led
to new growth of garnet as coronas around orthopyroxene and Fe–
Ti-oxides. The observed texture of an orthopyroxene core and a small
clinopyroxene rim, followed by pronounced quartz and garnet coronas,
can be explained by volumetric and stoechiometric balancing of the rel-
evant reactions. The formation of garnet coronas probably occurred due
to the injection of hot asthenospheric material, which is typical of mag-
matic underplating. Finally, strong isothermal decompression during
amphibolte-facies conditions is seen in the formation of poikilitic garnet
and albite-rich plagioclase in the investigated metapelites (Fig. 15D).

Differences in P–T conditions and the uncertain age of metamor-
phism in the Songea rocks preclude a direct comparison and interpre-
tation of the Songea P–T-path with those of other terrains in the
Mozambique belt. Appel et al. (1998) presented an anticlockwise P–
T-path for the Usambara/Pare/Uluguru Mts. and interpreted this as
evidence for magmatic underplating/overloading. In contrast, the P–
T paths of Sommer et al. (2003) and this study indicate clockwise pro-
grade metamorphism, followed by strong isothermal decompression
and near-isobaric cooling and ending by isothermal decompression
under amphibolite-facies conditions. This path is compatible with
continental collision, followed by orogenic collapse and associated
rifting and the emplacement of post-tectonic granites and pegmatites.
On the other hand, one could also argue for two episodes of continental
collision, one at granulite-facies and the other at amphibolite-facies
conditions. Evidence for an amphibolite-facies collision event is still in-
sufficient and should be the aim of future investigations.

Emplacement ages of ~1027, ~1032 and ~1158 Ma for themagmatic
precursor rocks in the Songea area are similar to those in southern
Tanzania, southern Malawi and northern Mozambique, but their tec-
tonic setting is uncertain. Although broadly time-equivalent with
the Irumide event in Zambia (De Waele et al., 2003) a direct connec-
tion with this orogene is speculative. The age of ~770 Ma may reflect
the time of UHT metamorphism caused by orogenic collapse and
subsequent emplacement of hot asthenospheric material at the base
of the continental crust. UHT metamorphic conditions are reported
here for the first time from granulites in southern Tanzania. The
age of ~730 Ma is likely to reflect the beginning of convergence be-
tween Tanzania and SW Madagscar and may be indicative of arc for-
mation at the margin of the Mozambique ocean, eventually leading
to ocean closure and collision of East and West Gondwana.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.lithos.2013.02.014.
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Appendix A. Analytical methods

Thirty-five thin sections of metapelite, granitic gneiss, migmatite as
well as charnockitic gneiss were investigated by transmitted light mi-
croscopy and electronmicroprobe (EMP)/ scanning electronmicroscope
(SEM). Sample locations are shown in Fig. 1B.Mineral analyseswere car-
ried out using a JEOL 8900 Superprobe (Mainz) and a JEOL 6310 SEM
equipped with a LINK ISIS energy dispersive system and a MICROSPEC
wavelength dispersive system (Graz). Standard analytical conditions
for silicates were set to an accelerating voltage of 15 kV and 12 nA
(JEOL Superprobe) and 5 nA (JEOL SEM) sample current. Matrix correc-
tions for silicates were made using the ZAF procedure. Natural mineral
standardswere used for calibration. The detection limits in these routine
analyses varied from 0.05 to 0.1 wt. % for the Mainz JEOL Superprobe.
Geothermobarometric calculations were made with the software pack-
age PERPLEX (Connolly, 1990).

Approximately 5 kg of each sample were crushed inMainz for zircon
geochronology, using a jaw crusher and steel rollermill. The crushedma-
terial was sieved and fed over a Wilfley table, and a zircon-rich heavy
mineral fraction was produced using a Frantz magnetic separator and
heavy liquids. Zircons for evaporation and SHRIMP analysis were then
handpicked under a binocular microscope. Representative zircons of
each sample were mounted in epoxy resin and sectioned approximately
in half for cathodoluminescence (CL) imaging to recognize inherited
cores and overgrowth patterns (e.g., Hanchar and Miller, 1993; Vavra,
1990). Reconnaissance CL imaging was undertaken on a JEOL 6400
scanning electron microscope (SEM) in the Center for Microscopy and
Microanalyis at the University of Western Australia, Perth, operating
at 15 kV accelerating voltage and 5 nA beam current.

Single grains were handpicked after optical inspection and ana-
lyzed by the evaporation method (Kober, 1986, 1987) using a tech-
nique described by Kröner and Hegner (1998). During the course
of this study we repeatedly analyzed homogeneous zircon frag-
ments from the Phalaborwa Complex, South Africa, our internal stan-
dard. Conventional U–Pb analysis of six separate grain fragments
yielded a 207Pb/206Pb age of 2052.2 ± 0.8 Ma (2σ) (W. Todt, unpubl.
data), whereas themean207Pb/206Pb ratio for 19 fragments, evaporat-
ed individually over a period of 12 months, is 0.126634 ± 0.000026
(2σ error of the population), corresponding to an age of 2051.8 ±
0.4 Ma (error 0.2%), identical to the U–Pb age.

Single zircons of sample Tz 00/15 were handpicked and mounted
in epoxy resin for SHRIMP II analysis, together with chips of the Perth
Consortium zircon standard CZ3. The handling procedure is described
in Kröner et al. (1999). Isotopic analyses were performed on the Perth
Consortium SHRIMP II ion microprobe, using 7 mass-scans per analy-
sis. Single zircons of sample Tz 00/18 were analyzed on the USGS/
Stanford University SHRIMP RG together with standard RG6, calibrat-
ed against Canberra standard SL13, and using 6 mass-scans per anal-
ysis The analytical procedures for both SHRIMP instruments are
described in Compston et al. (1992), Claoué-Long et al. (1995), and
Nelson (1997). SHRIMP data reduction was performed using the
Canberra and Perth in-house software programs Prawn 5, Plonk 4.2
and WALLEAD 2.6.
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