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Abstract 24 

The highly complex process-property-structure relationship poses a major challenge in the 25 

optimization of plasma sprayed hydroxyapatite coatings. In addition, contradictions in relation to 26 

the ideal coating properties exist; a dense, highly crystalline coating is required for long term 27 

coating stability, whereas coatings with lower crystallinity dissolve more rapidly but have an 28 

improved osteogenic response in vivo. In this study, response surface methodology (RSM) is 29 

utilized to investigate the influences and interaction effects of current, gas flow rate, powder feed 30 

rate, spray distance and carrier gas flow rate on the roughness, crystallinity, purity, porosity and 31 

thickness of plasma sprayed HA coatings. Roughness related to the particle velocity and particle 32 

melting, and was highest at low gas flow rates and, due to the quadratic effect of current, at the 33 

central current value. High crystallinity resulted at high current and low spray distance due to the 34 

presence of bulk crystalline material and recrystallization of amorphous material. Purity was 35 

highest at low carrier gas flow rate and high gas flow rate, where particle temperature was reduced. 36 

Porosity was dependent on the degree of particle melting and was highest at low gas flow rate and 37 

powder feed rate and at high current and spray distance. Coating thickness was determined by the 38 

number of particles and the degree of flattening on impact, and was highest at high current, low 39 

gas flow rate, high powder feed rate and low spray distance. From this in-depth analysis, predictive 40 

process equations were developed and optimized to produce two distinct coatings; a stable coating 41 

and a bioactive coating, designed to form the base and surface layers of a functionally graded 42 

coating respectively, to provide enhanced osteogenesis, while maintaining long-term stability. 43 

Culture of osteoblast-like cells on the coatings demonstrated an increased osteogenic response on 44 

the bioactive coating compared to the other groups. Overall, this study identifies parameter effects 45 

and interactions leading to the development of optimized coatings with the potential to enhance the 46 

functional life of HA coated implants in vivo.  47 
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1. Introduction 52 

Hydroxyapatite (HA), a calcium phosphate bioceramic, has been widely used in orthopaedic and 53 

dental applications as it has an almost identical chemical composition to that of the mineral 54 

component of bone and has proven osteoconductive properties [1,2]. One such application is as a 55 

coating for metallic hip implants, where it increases the rate of bone repair, provides enhanced 56 

fixation of the implant to human bone, and protects the body from any metal-ion release from the 57 

metallic implant [3,4]. Clinical results for HA coated implants demonstrate success in achieving 58 

earlier bone ingrowth and fixation [5]. Lazarinis et al. reported survival rates for HA coated 59 

implants of 98% at 10 years [6] and Sandiford et al. reported survival rates of 91.7% at 22.5 years 60 

[7]. Over time HA coatings are naturally resorbed by the body; however, delamination or rapid 61 

dissolution can result in implant failure [8-10]. Thus further improvements in HA coatings is 62 

necessary in order to achieve the goal of lifelong functionality. 63 

 64 

The stability of HA coatings is largely dependent on crystallinity and purity [11]. Within the body, 65 

HA is degraded by two mechanisms, osteoclastic resorption and physiochemical dissolution [12]. 66 

These degradation processes negatively impact on the coating integrity leading to a weakened 67 

coating with a reduced functional life. However, coating degradation has positive impacts on bone 68 

formation, as dissolution of the coating leads to the release of calcium and phosphate ions, in the 69 

form of Ca2+, H2PO4-, HPO4
2, PO4

3- and CaH2PO4+, into the fluid surrounding the joint [10]. 70 

Proteins and ions activate the surface of the HA coating encouraging the precipitation of calcium 71 

and phosphate as HA crystals [13,14]. Additionally, previous studies have shown that calcium and 72 

phosphate released as a result of the degradation of calcium phosphate coatings can stimulate 73 

osteoblast responses leading to more rapid mineralization [5,15]. Thus in determining the optimal 74 

properties for calcium phosphate coatings, it is necessary to consider long term coating stability as 75 
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well as the immediate osteogenic responses to the coating when implanted. This study proposes 76 

that a functionally graded coating containing two distinct layers, a stable base layer and a bioactive 77 

surface layer, provides the ideal solution in achieving a hydroxyapatite (HA) coating with enhanced 78 

bioactivity, while maintaining the long-term stability of the coated devices. Previous research into 79 

functionally graded HA coatings focused on achieving enhanced coating adhesion through the 80 

development of titanium/HA graded coatings [16,17]. This study presents a novel approach through 81 

the use of RSM to develop optimized stable and bioactive coatings that can be functionally graded 82 

to achieve an enhanced osteogenic response.  83 

 84 

HA coatings are commonly deposited using atmospheric plasma spraying, a thermal spray process 85 

in which powder particles are melted in a high temperature plasma jet and propelled towards a 86 

substrate material to form a coating. This technique offers advantages including high coating 87 

adhesion strength and a rapid coating deposition rate [8]. The process is affected by a large number 88 

of process parameters and parameter interactions that are not fully understood or accounted for, 89 

and as a result numerous contradictions in relation to the parameter effects on coating properties 90 

are reported in the literature [18-23]. Thus in order to tailor the properties of the coating to meet 91 

specific requirements, a detailed understanding of process-property-structure relationship is 92 

required. Response surface methodology (RSM) consists of a collection of mathematical and 93 

statistical tools used for designing experiments [24]. Representing a step forward from one-at-a-94 

time analyses, the method enables identification of optimal process parameters while deducing 95 

interactive effects between process parameters. RSM approaches have been used to investigate a 96 

range of plasma sprayed coatings including alumina, titanium dioxide, zirconia, and alumina-97 

titania [25-27] in addition to hydroxyapatite [21,22,28,29]. Our previous work examined the main 98 

effects of current, gas flow rate, powder feed rate, spray distance and carrier gas flow rate on the 99 

roughness, crystallinity and purity of plasma sprayed hydroxyapatite and identified parameter 100 
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effects and desirable parameter ranges for plasma spraying of HA coatings [30]. On a mechanistic 101 

level, each of these parameters we seen to ultimately influence two key aspects; the degree of 102 

particle melting within the plasma jet and the velocity at which particles impact the substrate 103 

surface. This study aims to bring about a clearer understanding of these complex relationships 104 

through further investigation of the process-property-structure relationships for plasma sprayed 105 

hydroxyapatite coatings and to develop process equations that will enable the development of 106 

optimized coatings that will form the stable base layer and bioactive surface layer of a functionally 107 

graded coating. The specific objectives of the study were to use RSM 1) to assess the effects of 108 

five process parameters: current (A), gas flow rate (B), powder feed rate (C), spray distance (D) 109 

and carrier gas flow rate (E), on the crystallinity, purity, roughness, porosity and thickness of 110 

plasma sprayed hydroxyapatite coatings; key properties that influence coating stability and cellular 111 

response upon implantation, 2) to develop predictive process equations that can identify the ideal 112 

process parameters required to produce a stable coating which will form the base layer of the 113 

functionally graded coating and a bioactive layer that will form the surface layer of the functionally 114 

graded coating and 3) to assess the osteogenic response to the developed coatings in vitro. 115 

 116 

2. Experimental Methods 117 

2.1. Experimental Design 118 

The parameters and levels investigated in this study were selected based on the findings of an initial 119 

screening study of the process carried out by the authors [30]. The screening study analysed the 120 

effects of five parameters, (A) current (amps), (B) gas flow rate (standard cubic feet per hour 121 

(scfh)), (C) powder feed rate (g/min), (D) spray distance (mm) and (E) carrier gas flow rate (scfh), 122 

and found all five to significantly affect the investigated responses. All five parameters were thus 123 

included in the RSM study. Two levels were selected for each parameter based on the findings of 124 
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the screening study. A Central Composite Design (CCD) consisting of a 5-1 Fractional Factorial 125 

Design (16 experiments), with the addition of ten star point experiments and five centre point 126 

experiment to provide a measure of process stability and curvature, was used to investigate the 127 

effects of the various process parameters on the properties of HA coatings. The study was designed 128 

using the statistical software Design-Expert 7.0 (Stat-Ease Inc., Minneapolis, USA). The total 129 

number of experimental runs for the design was 31, as described in Table 1. The experiments were 130 

carried out in random order to remove the effects of systematic errors. Five coating responses were 131 

examined: roughness, crystallinity, purity, porosity and thickness. The main effects on each 132 

response were identified using the backward selection method to elimate insignificant terms (P-133 

value ≤ 0.01). The analysis of variance (ANOVA) test was used to determine the statistical 134 

significance of the developed equations. Statistical measures, R2, adjusted R2, predicted R2 and 135 

adequate precision, were used to determine the adequacy of the resultant equations.  136 

 137 

2.2. Materials 138 

Titanium alloy (Ti, Ti6Al4V, grade 5, Impact Ireland, Dublin, Ireland) discs, 10 mm in diameter 139 

with a thickness of 2 mm, were used as the substrate material in this study. Prior to spraying, discs 140 

were grit-blasted at a pressure of 5 bar and an angle of incidence of 75°, using pure white Al2O3 141 

grit with a particle size of 500 µm (mesh 36). High pressure air was used to remove and surface 142 

alumina particles and samples were then placed in dilute acetone in an ultrasonic cleaner for 5 143 

minutes, rinsed in water and then dried. The average surface roughness (Ra) of the discs was 3.2 144 

µm, as measured using surface profilometry (Surftest 402, Mitutoyo, Michigan, US). 145 

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) powder with acrystallinity of 99.96 % and purity of 99% 146 

was used (Captal 60-1 Thermal Spraying HA powder, Plasma Biotal, UK) [30]. The HA powder 147 
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had an irregular morphology and the particle size fell within two separate clusters, between 0.1 and 148 

1.0 μm and between 10 and 100 μm, with a mean particle size of 38.3 µm [30]. 149 

 150 

2.3. Plasma Spraying 151 

Plasma spraying was carried out using the Sulzer Metco 9MB plasmatron, fitted with a 3M7-GH 152 

nozzle, as previously described [30]. High purity argon was used as both the plasma forming gas 153 

and the powder carrier gas and no secondary gas was used. A traverse speed of 38 mm/s and a 154 

spray time of 35 s were used for all coatings, resulting in 15 passes of the spray gun.  155 

 156 

2.4. Coating Characterisation 157 

Five parameters were investigated for each coating; roughness, crystallinity, purity, porosity and 158 

thickness. Surface roughness, Ra, was measured using the Surftest 402 surface profilometer 159 

(Mitutoyo, Michigan, US). Measurements were repeated four times with the sample orientation 160 

changed between each measurement. The surface morphology of each coating was also examined 161 

using scanning electron microscopy (SEM) (LEO 440 Stereo Scan, Leica, UK). The crystallinity 162 

and purity of HA coatings were determined using x-ray diffraction (D-8 Advance Diffractometer, 163 

Bruker, Coventry, UK) fitted with a copper anode. A locked-couple scan was carried out between 164 

20 and 60º 2θ and an increment of 0.02 and a scan speed of 5 sec/step were applied. The % 165 

crystallinity and % purity were calculated in accordance with ASTM F 2024-00 [31] using the 166 

Diffract Plus EVA software (Bruker AXS, UK) as previously described [30]. In order to calculate 167 

coating porosity and thickness, samples were sectioned longitudinally and mounted in resin 168 

(Beuhler Epoxide Resin and Epoxide Hardner, mixed at a resin to hardner ratio of 5:1). Samples 169 

were then ground and polished (Motopol 2000, Beuhler, Warwick, UK) and then cleaned in dilute 170 

acetone solution to remove any remaining polishing debris. Samples were imaged at a 171 
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magnification of 20x for each specimen using the Reichert “MeF2” Universal Camera Optical 172 

Microscope. Porosity measurements were carried out in accordance with the BSI standard 1071-5: 173 

1995 [32]. Porosity was calculated using the Omninet Enterprise image analysis software (Beuhler, 174 

Warwick, UK). Greyscale images were thresholded using an automated routine in order to 175 

determine the percentage porosity for each coating. The Omninet Enterprise image analysis 176 

software was also used to determine the coating thickness. Six measurements were taken for each 177 

coating and an average obtained. 178 

 179 

2.5. Assessment of model goodness of fit and optimization of process parameters 180 

Following the development of proess equations using the RMS, the model goodness of fit was 181 

assessed using point prediction tests. Three new coatings were sprayed using parameters selected 182 

randomly by the Design Expert software, detailed in Table 3, and the response values predicted by 183 

the process equations were compared to the actual measured response values. The % error 184 

betweeen the predicted and actual values was obtained. Optimization of process parameters was 185 

conducted using the Design Expert software by combining numerical simulation coupled with the 186 

desirability function. The constraints applied in order to produce a stable coating and bioactive 187 

coating and the identified optimal parameter settings for each are summarised in Table 4. These 188 

settings were identified based on the desired roughness, crystallinity, purity, porosity and thickness 189 

values from previous literature. The optimised coatings were then fabricated and characterised and 190 

the results were compared to the values predicted by the developed process equations. 191 

 192 

2.6. In vitro assessment 193 

In vitro analysis was carried out to determine the osteoblast response to the optimized stable and 194 

bioactive HA coatings in comparison to an uncoated Ti disc. MG-63 human osteoblast-like cells 195 
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(LGC Promochem, Middlesex, UK) were cultured in standard growth medium (Eagle’s minimum 196 

essential medium, supplemented with 10% fetal bovine serum, 1% non-essential amino acids, 1% 197 

glutamine, 1% sodium pyruvate and 1% pen-strep) at 37ºC and 5% CO2. The Ti and HA-coated 198 

discs were sterilized using dry heat at 160ºC for 3 hours and placed in 24-well plates, prior to 199 

seeding cells on the surface of the discs at a density of 10,000 cells per disc. Cell proliferation and 200 

cell viability were analyzed at 7, 14, 21 and 28 day timepoints and gene expression was analyzed 201 

at 7, 21 and 28 day timepoints. At each timepoint, cells were detached from the disc surface using 202 

trypsin and then counted using a haemacytometer and a phase contrast microscope following trypan 203 

blue exclusion.  204 

 205 

2.6.1 RNA Extraction and Quantifiation 206 

The expression of extracellular matrix (ECM) mineralization markers in MG-63 cells on the three 207 

surfaces was determined by RNA extraction and quantitative real time PCR. Cells were lysed and 208 

total RNA was isolated at each time point using the RNeasy Mini kit (Qiagen, UK). Total RNA 209 

concentrations were determined spectrophotometrically at a wavelength of 260 nm on a 210 

Nanodrop™. 211 

 212 

2.6.2 Quantitative Real-Time PCR 213 

The effect of the coating surfaces on the expression of alkaline phosphatase (ALP), type 1 collagen 214 

(COL1) and osteocalcin (OC) was evaluated at each time point (Taqman, Applied Biosystems, 215 

UK). Relative gene expression was carried out using the 7500 Fast Real-Time PCR System 216 

(Applied Biosystems, Thermofisher Scientific, UK). Detection was achieved using Sybr Green 217 

which is excited at 490 nm and emits at 520 nm. During the PCR reaction, samples were subjected 218 

to an initial denaturation phase at 95°C for 20 s followed by 40 cycles of denaturation at 95°C for 219 
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3 s and annealing and extension at 60°C for 30 s. Glyceraldehyde phosphate dehydrogenase 220 

(GAPDH) was used as the endogenous control.  221 

 222 

2.6.3 Statistical Analysis 223 

Statistical analysis for cell culture work was carried out using One-Way Anova to determine 224 

significance (SigmaStat 3.0, Systat Software Inc., California, US). A p-value of < 0.05 represented 225 

a significant difference.  226 

 227 

3. Results 228 

3.1. Measured Responses 229 

The measured responses for each experimental run (N1-N31) are presented in Table 1. The average 230 

roughness (Ra) ranged between 3.1 μm and 9.6 μm. SEM micrographs of cross-sections the 231 

coatings with the lowest roughness (N11) and highest roughness (N30) are shown in Fig. 1(a) and 232 

Fig. 1(b). The average crystallinity ranged between 71.2 % and 85% and the average purity ranged 233 

between 93.8 % (N13) and 99.3 % (N12) as shown in Table 1. Overall, all coatings met the > 45 234 

% crystallinity and > 95 % purity required by ISO 13779-2:2000 (Implants for surgery- 235 

Hydroxyapatite. Coatings of hydroxyapatite) [33]. The average coating porosity ranged between 236 

6.8 % (N8) and 59.1 % (N10). SEM micrographs of the surfaces of coatings N8 and N10 and shown 237 

in Fig. 1(c) and Fig. 1(d) and cross-sections of the coatings N8 and N10 are shown in Fig 1(e) and 238 

Fig. 1(f). The average coating thickness ranged from 17.2 μm to 543.5 μm. SEM micrographs of 239 

cross-sections of the coatings for the lowest (N3) and highest (N6) thickness coatings are shown in 240 

Fig 1(g) and Fig 1(h). The results were used to generate process equations, summarized in Table 241 

2. Statistical measures for each parameter, also summarised in Table 2, indicate that there is a good 242 
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fit between the data and the equation for each response. The overall parameter effects for 243 

roughness, crystallinity, purity, porosity and thickness are summarized in the perturbation plots in 244 

Fig. 2.  245 

 246 

3.2. Influence of process parameters on roughness 247 

Roughness was found to be significantly affected by two parameters, current (A) and gas flow rate 248 

(B), and one interation, between current and gas flow rate (A*B), as shown in Table 2 (P-value ≤ 249 

0.01). Gas flow rate (B) has the greatest influence, this was a linear relationship with increasing 250 

gas flow rate leading to a reduction in roughness. Current (A) was also seen to influence the coating 251 

roughness, a quadratic relationship was observed with higher currents leading to higher roughness 252 

values as can be seen in Fig. 3. The curvature of the current and roughness relationship indicates 253 

the roughness increases with increasing current up to a current of about 650 A, after which the 254 

roughness decreases again. The relative influence of these parameters on coating roughness is 255 

summarised in the perturbation plot in Fig. 2(a). The resultant regression equation for roughness is 256 

presented in Table 2 using actual parameters and coded parameters (where -1 and 1 represent the 257 

low and high levels).  258 

 259 

3.3. Influence of process parameters on crystallinity 260 

Crystallinity was found to be affected by current (A), gas flow rate (B), spray distance (D) and 261 

carrier gas flow rate (E). In addition, three interactions have an effect; current and gas flow rate (A 262 

* B), current and spray distance (A * D), and gas flow rate and carrier gas flow rate (B * E). 263 

Crystallinity was highest when the current was high, and gas flow rate, spray distance and carrier 264 

gas flow rate were all low as shown in Fig. 3. The relative influence of these parameters on coating 265 
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crystallinity is summarised in the perturbation plot in Fig. 2(b). The resultant regression equation 266 

for crystallinity is presented in Table 2 using actual parameters and coded parameters. 267 

 268 

3.4. Influence of process parameters on purity 269 

The purity of the coating was found to be influenced by current (A), gas flow rate (B), powder feed 270 

rate (C), spray distance (D) and carrier gas flow rate (E). Gas flow rate, carrier gas flow rate and 271 

spray distance had the greatest effects with higher purity resulting when gas flow rate was high and 272 

carrier gas flow rate and spray distance were low as shown in Fig. 4. The relative influence of these 273 

parameters on coating purity is summarised in the perturbation plot in Fig. 2(c). The resultant 274 

regression equation for purity is presented in Table 2 using actual parameters and coded 275 

parameters. 276 

 277 

3.5. Influence of process parameters on porosity 278 

Coating porosity is influenced by current, gas flow rate, powder feed rate and spray distance. Gas 279 

flow rate and powder feed rate had the greatest effect with higher levels of porosity resulting at low 280 

gas flow rate and low powder feed rate as shown in Fig. 5. The relative influence of these 281 

parameters on coating porosity is summarised in the perturbation plot in Fig. 2(d). The resultant 282 

regression equation for porosity is presented in Table 2 using actual parameters and coded 283 

parameters. 284 

 285 

3.6. Influence of process parameters on thickness 286 

Coating thickness was influenced by all parameters, with current and gas flow rate having the 287 

greatest effect. Thicker coatings resulted at high current, high powder feed rate, high carrier gas 288 
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flow rate and low gas flow rate and spray distance as shown in Fig. 6. The relative influence of 289 

these parameters on coating thickness is summarised in the perturbation plot in Fig. 2(e). The 290 

resultant regression equation for thickness is presented in Table 2 using actual parameters and 291 

coded parameters. 292 

  293 

3.7. Point prediction tests and process optimization 294 

The point prediction tests  demonstrate that the developed equations for each response accurately 295 

predict the actual measured response values (Table 3). The percentage error between the predicted 296 

and actual responses is very low (< 5 %) for crystallinity, purity and roughness. The average 297 

percentage error for the porosity and thickness equations was found to be higher (< 11.5 %) than 298 

for the other three responses. This is expected as the model statistics indicated that these equations 299 

have lower predictive power than the other equations developed as a result of the inherant 300 

variability identified within these responses in the centre point experimental runs. The percentage 301 

error found is still low enough to conclude that the model can predict the response value achieved. 302 

By applying the constraints identified in Table 4, the plasma spray process was optimized to 303 

produce two distinct coating with different properties depending on the optimization criteria used. 304 

The spray parameters used for each coating, the predicted and actual values for each response and 305 

percentage error are presented  in Table 4Table 5.  306 

 307 

3.8. In vitro assessment 308 

3.8.1 Cell proliferation and viability 309 

Biocompatibility was assessed by quantifying cell number and cell viability on the uncoated Ti, 310 

the stable coating and the bioactive coating. MG-63 osteoblast-like cells were seen to readily 311 
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proliferate on all surfaces with cell numbers seen to increase over the 28 day time period, thus 312 

indicating the biocompatibility of the surfaces under investigation. There was a trend towards 313 

higher cell numbers in the uncoated Ti group than the stable coating and bioactive coating groups 314 

at each timepoint although this was not significant (Fig.7(a)). High levels of cell viability were 315 

observed on all surfaces across all time points as shown in Fig.7(b), with no significant differences 316 

in viability observed between the groups.  317 

 318 

3.8.2 Gene Expression Analysis 319 

The expression of extracellular matrix mineralization markers type 1 collagen (COL1), alkaline 320 

phosphatase (ALP) and osteocalcin (OC) were determined using quantitative RT-PCR analysis. 321 

COL1, an early marker of mineralization which is expressed during cellular proliferation, was 322 

expressed by the MG-63 cells on each surface as shown in Fig. 8(a). At day 7, the highest level of 323 

COL1 expression is observed on the titanium surface. Expression of COL1 peaked at day 21, 324 

approximately a 2 fold increase was observed in all groups, with expression levels highest in the 325 

stable coating group. ALP, expressed during the osteoblast maturation stage, was highest in all 326 

groups at day 7, with higher levels observed in the HA coated groups compared to the uncoated Ti 327 

group. The expression of ALP for each surface at each time point is shown in Fig. 8(b). At day 28 328 

no expression of ALP was observed on the stable coating or uncoated Ti groups; however, low 329 

levels of ALP expression were observed in the bioactive coating group. OC, expressed during the 330 

mineralization stage, was seen to be higher on the bioactive coating compared to the stable coating 331 

or uncoated Ti, with a 3.5 fold increase observed in this group at day 7. This demonstrates that the 332 

bioactive coating led to much earlier mineralization than the other groups. By day 21, OC 333 

expression was seen to be similar in all groups with expression levels remaining higher in the 334 

bioactive coating than in the other groups at the 28 day timepoint. The level of expression of 335 
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osteocalcin on each surface is shown in Fig. 8(c). This indicates that higher levels of mineralization 336 

occurred in the bioactive coating group than in the other groups. 337 

 338 

4. Discussion 339 

A major challenge exists in the design of optimized hydroxyapatite coated implants for dental and 340 

orthopaedic applications. On one hand, for long term coating stability, a dense highly pure, highly 341 

crystalline coating is required [34]; on the other hand, dissolution of the coating surface has been 342 

shown to lead to an improved in vivo response, resulting in an increase in the rate of bone formation 343 

[14]. This study used response surface methodology (RSM) to investigate the influences and 344 

interaction effects of current, gas flow rate, powder feed rate, spray distance and carrier gas flow 345 

rate on the roughness, crystallinity, purity, porosity and thickness of plasma sprayed HA coatings 346 

and demonstrated that all process parameters investigated significantly effect the properties of the 347 

resultant HA coatings. Process equations with high predictive power were developed in order to 348 

identify the ideal process parameters required to produce a stable coating and a bioactive coating, 349 

designed to be applied sequentially to form the base layer and surface layer respectively of a 350 

functionally graded coating.  351 

 352 

The roughness of the fabricated HA coatings ranged from 3.1 μm and 9.5 μm and was influenced 353 

by current and gas flow rate with an interaction effect between current and gas flow rate. The results 354 

show that a lower gas flow rate increases particle melting due to an increased residence time within 355 

the plasma jet and thus particles undergo a greater degree of flattening on impact with the substrate 356 

leading to a lower coating roughness. The quadratic nature of the roughness response to current is 357 

clearly identified here bringing new clarity to previous conflicting findings [22,23,30,35]. The 358 

particle size distribution within the HA powder also likely has an important influence in this study, 359 
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with particle sizes falling within two separate clusters, between 0.1 and 1.0 μm and between 10 and 360 

100 μm [30]. Thus at low current and high gas flow rate, the plasma jet is cooler and only smaller 361 

particles are melted thus the coating roughness is lower. At low gas flow rate, and a current of up 362 

to 650 A the number of larger particles being melted increases and thus the roughness increases. 363 

After 650 A the degree of melting of the particles being deposited increases and the particles are 364 

more molten and thus undergo a greater degree of flattening on impact. As can be observed from 365 

the micrographs in Fig. 1, the high roughness coating is much thicker than the low roughness 366 

coating, thus verifying that under the high roughness condition much greater numbers of particles 367 

are deposited.  Previous studies have shown that osteoblast attachment and differentiation was 368 

greater on rougher HA coating [36,37]. In the development of optimized coatings, a stable coating 369 

and a bioactive coating, high roughness values of 8.3 µm and 9.1 µm were achieved. Thus the 370 

stable coating is designed to provide a greater surface area for attachment of the bioactive coating, 371 

while for the bioactive coating is designed to increase the surface area for cell attachment and 372 

coating dissolution and thus enable an enhanced osteogenic response as previously reported.  373 

 374 

Coating crystallinity varied between 71.8 % and 85.2 %, and was highest at high current, low gas 375 

flow rate, low spray distance and low carrier gas flow rate. Importantly, coating crystallinity in all 376 

cases was > 45 % which is the requirement for biomedical applications [38]. The crystalline 377 

fraction of a HA coating consists of bulk crystalline material from the unmelted central cores of 378 

the HA particles and HA that has recrystallised following spraying [39]. Thus coating crystallinity 379 

is dependant on the degree of particle melting and the particle cooling rate. It can be seen from the 380 

interaction effects that high coating crystallinity results at high current, low gas flow rate and low 381 

spray distance. These conditions cause an increase in particle melting and an increase in substrate 382 

temperature, leading to a low particle cooling rate. The quantity of larger particles deposited is 383 

greater, leading to the presence of a greater amount of bulk crystalline material within the coating, 384 
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resulting in a high % crystallinity. The low spray distance causes particle melting to be low due to 385 

reduced residence time in the plasma jet. At low spray distance the substrate temperature is high 386 

as it is closer to the plasma jet and thus cooling rate is low. The carrier gas flow rate determines 387 

the entry positions of particles into the jet. At a low carrier gas feed rate particles do not enter the 388 

center of the plasma jet, and as a result undergo less melting. In optimising coatings, crystallinity 389 

was succcessfully maximised in the stable layer and minimised in the bioactive layer as coating 390 

dissolution rates have been shown to be dependant on coating crystallinity [11]. 391 

  392 

The purity of the resultant coatings coating purity was found to vary between 96.1% and 99.7% 393 

and thus all coatings had purities of > 95 % as required for medical devices [38]. From the 394 

interaction plots it is clear that coating purity is dependent on the residence time of particles within 395 

the plasma jet. As a result, purity is higher when the gas flow rate is high and the spray distance is 396 

low and thus the particles spend less time in the plasma jet and remain at a lower temperature. 397 

Cizek and Khor [22] previously investigated the relationship between HA particle in-flight 398 

temperature and velocity and the loss of the HA phase in the resultant coatings and were not able 399 

to identify any correlations. The findings in this study verify the relationship between phase 400 

changes and particle melting proposed by Sun et al. [23]. The position of the particles within the 401 

plasma jet also impacts on the coating purity, thus at low carrier gas flow rate fewer HA powder 402 

particles enter the hotter centre region of the plasma jet and thus particle temperature remains 403 

lower. In coating optimization, the resultant stable coating had a purity of 98.1% whereas the 404 

bioactive coating had a purity of 96.1%. Coatings with higher purity have previously been shown 405 

to have lower dissolution rates [11].  406 

  407 

Porosity was found to vary between 6.8 % and 59.1 %. The porosity of a coating is dependent on 408 

the degree of particle melting within the plasma jet and the amount of spreading on impact with 409 
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the substrate. Partially melted particles do not flatten completely, leaving gaps between them, 410 

resulting in a more porous coating. A highly molten particle that impacts the substrate at high speed 411 

spreads to a greater degree on the substrate thus reducing porosity [41]. Thus while a number of 412 

competing effects can be observed in the interaction plots, the overall effects in the perturbation 413 

plot show that porosity was highest at low gas flow rate, as this would result in lower particle 414 

impact velocity, and low powder feed rate, where less particles are deposited with each pass and 415 

thus a greater number of gaps exist between particles. Higher porosity also results at high current 416 

and high spray distance as a greater number of the larger particles are melted within the plasma jet 417 

under these conditions. These findings confirm the findings of Kweh et al. [20], who observed an 418 

increase in HA coating porosity at increased spray distances. Cizek and Khor [22] further 419 

investigated the relationship between porosity and in-flight velocity and temperature, however no 420 

significant trend was observed. A low porosity of 8.9% was successfully achieved in the stable 421 

coating with the aim of improving the mechanical stability of the coating [20]. Increased porosity 422 

of 47.3% was achieved in the bioactive coating, designed to allow a greater surface area for cell 423 

attachment and coating dissolution and to an enhanced osteogenic response following implantation 424 

as previously reported [34,42,43]. 425 

 426 

Coating thickness was found to range between 17.2 μm and 543.5 μm with thicker coating resulting 427 

at high current, low gas flow rate, high powder feed rate, low spray distance and high carrier gas 428 

flow rate. Coating thickness is known to be related to the number of particles that are deposited on 429 

the substrate surface and also the degree of flattening of the particles on impact, thus coating 430 

thickness also provides a measure deposition efficiency. The number of particles that are deposited 431 

on the substrate relates to the amount of particles that are fed into the plasma jet, the number of 432 

particles that are sufficiently melted within the jet to adhere to the substrate on impact and the 433 

number of particles that maintain sufficient velocity to remain in the plasma jet until the point of 434 
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impact. As expected, thicker coatings resulted at higher powder feed rates. Thicker coating also 435 

resulted at high current and low spray distance under these conditions more particles are melted 436 

within the plasma jet and the deposition efficiency is higher. Thicker coatings also result at low 437 

gas flow rate and high powder feed rate and carrier gas feed rate. Under these conditions greater 438 

numbers of particles enter the plasma jet leading to an increase in the number of particles deposited 439 

on the substrate. A similar relationship between coating thickness and particle melting has been 440 

reported by Sun et al. [23]. In the optimization process, coating thickness was successfully 441 

maximized for both coatings resulting in a thickness of 391.4 µm for the stable coating and 232.5 442 

µm for the bioactive coating. 443 

 444 

The assessment of the cellular response to the optimized stable and bioactive coatings using MG-445 

63 osteoblast-like cells demonstrated an enhanced osteogenic response in the bioactive coating 446 

group compared to the stable coating and uncoated Ti control groups. Cells were seen to readily 447 

proliferate on all surfaces, indicating that all surfaces were biocompatible. Although not significant, 448 

there is a trend towards higher levels of proliferation on the Ti surface to the 28 day timepoint while 449 

on the HA coatings, lower levels of proliferation are observed, thus indicating that the cells in the 450 

HA coating groups may enhance the matrix maturation or matrix mineralization phases of 451 

osteoblast differentiation. There is no significant difference in the expression of earlier markers of 452 

osteogenesis, collagen (COL1) and alkaline phosphatase (ALP), between the three groups. 453 

Previous studies have shown that ALP expression was not affected by roughness [42], or HA purity 454 

or calcium to phosphate (Ca/P) ratio [44]. A significant difference in osteocalcin (OC) expression 455 

was observed at day 7 and day 28 with highest levels observed on the bioactive coating. Osteocalcin 456 

is a marker of the mineralization phase of osteoblast differentiation and thus this indicates that the 457 

bioactive coating promotes mineralization earlier than the titanium surface or stable coating. It is 458 

noted that OC expression is higher in the Ti group than the stable coating group. This may be due 459 
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to the surface roughness of the Ti disc; enhanced osteogenesis on roughened Ti alloys has 460 

previously been reported [45]. It is recognized that rapid osseointegration is crucial in order for an 461 

implant to be successful in vivo, thus these results indicate that the bioactive coating provides the 462 

most favorable conditions for bone formation. While this study indicates that the osteogenic 463 

properties of the bioactive coating are enhanced compared to the uncoated Ti and the stable HA 464 

coating, further in vitro analysis would be beneficial in order to fully elucidate the mechanisms 465 

involved. These novel coatings also hold potential for the local delivery of advanced therapeutics 466 

including drugs and biomolecules, designed to enhance osteoinduction, or antibiotics agents, 467 

designed to prevent infection post implantation. Taken together these results demonstrate that 468 

through process optimization the compositional and microstructural properties of plasma sprayed 469 

hydroxyapatite coatings can be tailored to achieve coatings with increased stability, designed for 470 

long term functionality, or with enhanced osteogenic properties and an ability to biologically 471 

instruct and stimulate the regeneration of bone tissue at the implant site.  472 

5. Conclusions 473 

This study successfully used response surface methodology to identify the effects of current gas 474 

flow rate, powder feed rate, spray distance, and carrier gas flow rate, on the crystallinity, purity, 475 

roughness, porosity and thickness of plasma sprayed hydroxyapatite coatings; key properties that 476 

influence coating stability and cellular response upon implantation. Consistent and competing 477 

influences are identified enabling predictive process equations to be developed and optimized to 478 

produce two distinct coatings, a stable coating and bioactive coating, designed to form the base and 479 

surface layers respectively of a functionally graded coating. Through in vivo analysis enhanced 480 

osteogenic response to the bioactive coating was demonstrated. The optimized coatings have the 481 

potential to stimulate osteogenesis at the implant site and to enhance the functional life of HA 482 

coated implants in vivo   483 
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Tables 

Table 1: Response surface methodology design showing levels of the variables under investigation and the average values of the measured responses. 

Key 

Exp 

Name 

Variables Responses (Average Values) 

A B C D E Roughness Crystallinity Purity Porosity Thickness 

A slpm/scfh g/min mm slpm/scfh μm % % % μm 

Fractional 

Factorial 

Experiment 

Runs 

N1 550 42/90 10 70 9.4/20 8.1 73.3 96.4 19.2 94 

N2 750 42/90 10 70 4.7/10 8.7 82.7 99 24 375.4 

N3 550 71/150 10 70 4.7/10 4 72.5 99.1 - 17.2 

N4 750 71/150 10 70 9.4/20 7.6 81 98.5 16.3 265.4 

N5 550 42/90 20 70 4.7/10 8.8 80.4 97.6 12.7 286.1 

N6 750 42/90 20 70 9.4/20 8.8 79.7 97.8 6.9 543.5 

N7 550 71/150 20 70 9.4/20 5.7 72.4 98.3 29.5 85.4 

N8 750 71/150 20 70 4.7/10 7.7 85 98.6 6.8 182.8 

N9 550 42/90 10 100 9.4/20 8.1 82.3 96.8 34.4 122.4 

N10 750 42/90 10 100 9.4/20 8 73.8 95.4 59.1 153.5 

N11 550 71/150 10 100 9.4/20 3.1 74.2 97.1 - 30.2 

N12 750 71/150 10 100 4.7/10 5.5 71.2 99.3 6.8 48 

N13 550 42/90 20 100 9.4/20 8.4 76.5 93.8 16.7 137.3 

N14 750 42/90 20 100 4.7/10 8.5 80.1 97.1 36.2 346.2 

N15 550 71/150 20 100 4.7/10 4.2 73.2 98.8 - 17.4 

N16 750 71/150 20 100 9.4/20 8.1 79.6 97.3 11.2 211.7 

Star Point 

Runs 

N17 550 57/120 15 85 7.1/15 6.8 78.3 97.8 11.6 42.6 

N18 750 57/120 15 85 7.1/15 7.9 80.3 98.9 12.3 320.2 

N19 650 42/90 15 85 7.1/15 7.5 80.4 97.1 30.2 276.2 

N20 650 71/150 15 85 7.1/15 8.5 79.4 97.9 15.7 52.5 

N21 650 57/120 10 85 7.1/15 7.3 81.1 97.9 23.5 193.4 

N22 650 57/120 20 85 7.1/15 5.8 81.8 97 9.7 271.5 

N23 650 57/120 15 70 7.1/15 8.8 76.9 98.3 29.7 300.8 

N24 650 57/120 15 100 7.1/15 8.9 77.4 97.3 11.3 104.2 
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N25 650 57/120 15 85 4.7/10 7.6 74.1 98.4 8 114.8 

N26 650 57/120 15 85 9.4/20 9.5 76.7 98.3 36.7 246.2 

Centre 

Point 

Experiment 

Runs 

N27 650 57/120 15 85 7.1/15 7.6 76.5 97.8 29.2 213.6 

N28 650 57/120 15 85 7.1/15 8.1 78.9 97.5 12.8 194 

N29 650 57/120 15 85 7.1/15 6.8 74.7 97.4 15.2 211.7 

N30 650 57/120 15 85 7.1/15 9.6 80 97.8 10.9 309.7 

N31 650 57/120 15 85 7.1/15 7.2 76.2 97.8 24.2 193.2 

 

Table 2: Coded and actual experimental equations for roughness, crystallinity, purity, porosity and thickness. In the coded factor equations -1 and 1 represent 

the low and high levels. 

 

Response Coded and Actual Regression Equations Eqn. No. 

Statistical Measures 

R2 
Adjusted 

R2 

Predicted 

R2 

Adequate 

Precision 

F-

Value 
p-value 

Roughness 

Roughness = + 7.95 + 0.86 * A – 1.27 * B + 0.71 * A*B -0.84 * A2 Eqn. 1 
 

0.74 
  

 

0.7 

  

 

0.63 

  

 

14.12 

  

18.28 <0.0001 

Roughness = - 9.73718 + 0.089639  * current –  0.19524 * gas flow 

rate + 2.35417E-004  * current * gas flow rate - 8.40598E-005 * 

current2   

Eqn. 2   

Crystallinity 

Crystallinity = + 77.69 + 1.10 * A – 1.57 * B – 1.56 * D -1.21 *E + 

1.21 *A*B - 2.19 *A*D + 1.50 *B*E       
Eqn. 3 

 

0.75 
  

 

0.67 

 

0.54 
  

 

12.65 
  

9.64 <0.0001 

Crystallinity = 58.23267 +0.086458 * current - 0.46512 * gas flow 

rate + 0.84421 * spray distance - 1.44222 * carrier gas flow rate + 

0.000404167 * current * gas flow rate - 1.45833E-003 * current * 

spray distance + 0.01 * gas flow rate * carrier gas flow rate 

Eqn. 4 

  



 28 

Purity 

Purity = +98.37 + 0.12 * A + 0.52 * B - 0.081 * C - 0.37 * D -0.55 

* E - 0.12 * A*D -0.13 * B*C + 0.35 * B*D -0.17 * D*E 
Eqn. 5 

 

0.91 
  

 

0.87 
  

 

0.77 
  

 

22.42 
  

25.72 <0.0001 

Purity = 97.68237 + 6.00833-3 * Current - 0.014327 * gas flow rate 

- 0.021512 * spray distance + 0.029722 * carrier gas flow rate - 

0.0000603125 * Current * spray distance - 0.000760714 * gas flow 

rate * powder feed rate + 0.00050625 *gas flow rate * spray 

distance - 1.74375E-003 * spray distance * carrier gas flow rate 

Eqn. 6   

Porosity 

Porosity = +19.20 + 1.18 *A - 6.58*B - 5.81 *C - 0.76 * D - 4.12 

*A*B + 7.12 * A*D - 10.17 *B*D 
Eqn. 7 

 

0.68 
  

 

0.57 

 

0.42 
  

 

12.47 
  

6.08 0.0007 

Porosity = -15.52858 -0.22733 * current + 2.59389 * gas flow rate - 

1.16269 * powder feed rate - 0.42552 * spray distance - 1.37202E-

003 * current * spray distance - 0.022605 * gas flow rate * spray 

distance 

Eqn. 8   

Thickness 

Thickness = +190.19 + 89.67 * A - 79.11 * B + 43.46 * C - 50.81 * 

D + 14.26 * E - 27.02 * A*D -26.95 *B*C + 33.07 *B*E 
Eqn. 9 

 

0.87 
  

 

0.82 
  

 

0.71 
  

 

19.13 
  

18.66 <0.0001 

Thickness = -888.26428 + 2.42781 * current -3.24889 * gas flow 

rate + 30.25178 * powder feed rate + 8.32107 * spray distance - 

23.60044 * carrier gas flow rate - 0..18013 * current * spray 

distance - 0.17966 * gas flow rate * powder feed rate + 0.22044 * 

gas flow rate * carrier gas flow rate 

Eqn. 10 
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Table 3: Parameter settings for prediction point tests and model goodness of fit results 

  

Coating 

Current 

(A) 

Gas Flow 

Rate (B) 

Powder 

Feed 

Rate 

(C) 

Spray 

Distance 

(D) 

Carrier 

Gas flow 

rate (E) 

 
A SCFH g/min mm SCFH 

1 600 120 10 80 17 

2 700 100 15 90 12 

3 600 110 20 85 15 

  Coating Roughness Crystallinity Purity Porosity Thickness 

(μm) (%) (%) (%) (mm) 

Predicted 

Value 
1 

8 77.3 97.9 

26.4 124.3 

Actual 

Value 
 

7.6 77.4 98.5 

24.1 105.9 

Error %   5 0.13 0.61 8.64 14.8 

Predicted 

Value 
2 

9.1 79.5 97.9 

34.9 293.3 

Actual 

Value 
 

9.4 78.3 98.5 

29.9 281.6 

Error %   3.19 1.5 0.61 14.33 3.99 

Predicted 

Value 
3 

8.5 78.6 97.8 

16.8 255.3 

Actual 

Value 
 

8.5 78.8 98.4 

15.2 215.2 

Error %   0 0.25 0.61 9.52 15.7 

Average Error % 2.73 0.63 0.61 10.85 11.5 
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Table 4: Process optimisation goal and importance settings for the stable coating and bioactive coating. The optimisation criteria for the stable coating aim to 

produce a long lasting coating that will remain stable for long periods in the body, whereas the optimisation criteria for the bioactive coating aim to enhance the 

osteogenic response in vivo. 

 

  Stable Coating Bioactive Coating 

  Goal Importance Goal Importance 

Roughness (μm) Maximize +++ Maximize +++ 

Crystallinity (%) Maximize +++++ Minimize +++++ 

Purity (%) Maximize ++++ Minimize +++++ 

Porosity (%) Minimize ++++ Maximize +++++ 

Thickness (μm) Maximize + Maximize + 

 

Table 5: Parameter levels and measured responses for the optimised stable coating and bioactive coating. The optimal parameter levels identified for each coating 

are presented with the predicted and actual values for each response and percentage error. 

Stable Coating 

Parameter   Response Predicted Actual % Error 

Current (A) 750 Roughness (µm) 8.6 8.3 3.5 

Gas Flow Rate (slpm/scfh) 49.9/104.8 Crystallinity (%) 84.7 84.4 0.3 

Powder Feed Rate (g/min) 20 Purity (%) 98.5 98.1 0.4 

Spray Distance (mm) 70 Porosity (%) 6.3 8.9 29.1 

Carrier Gas flow rate (slpm/scfh) 4.7/10 Thickness (μm) 414 391.4 5.4 

Bioactive Coating 

Parameter   Response Predicted  Actual % Error 

Current (A) 750 Roughness (µm) 8.9 9.1 2.4 

Gas Flow Rate (slpm/scfh) 42.5/90 Crystallinity (%) 72.7 74.6 2.5 

Powder Feed Rate (g/min) 10.2 Purity (%) 95.7 96.1 0.4 

Spray Distance (mm) 100 Porosity (%) 53 47.3 10.8 

Carrier Gas flow rate (slpm/scfh) 9.4/20 Thickness (μm) 266.4 232.5 12.7 
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Figure captions 

 

Figure 1: SEM micrographs showing the cross-sectional images of the coatings with the a) the 

lowest roughness (N 11) and b) the highest roughness (N30), c) the lowest porosity (N8) and d) the 

highest porosity (N10) e) the lowest thickness (N3) and f) the highest thickness (N6) and SEM 

micrographs of the surface of the coatings with the g) lowest porosity (N8) and h) highest porosity 

(N10). Scale bars for (a) to (f) represent 100 µm and for (g) and (h) represent 30 µm 
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Figure 2: Perturbation plots showing the main effects of Current (A), Gas Flow Rate (B), Powder 

Feed Rate (C), Spray Distance (D) and Carrier Gas Flow Rate (E) on a) roughness, b) crystallinity, 

c) purity, d) porosity and e) thickness 
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Figure 3: Interaction effect of a) current * gas flow rate on roughness b) current * gas flow rate on 

crystallinity c) current * spray distance on crystallinity  and d) gas flow rate * carrier gas flow rate 

on crystallinity 
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Figure 4: Interaction effect of a) gas flow rate * spray distance b) spray distance * carrier gas flow 

rate c) gas flow rate * powder feed rate and d) current * spray distance on purity  
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Figure 5: Interaction effect of a) gas flow rate * spray distance b) current * gas flow rate and c) 

current * spray distance on porosity 
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Figure 6: Interaction effect of a) current * spray distance b) gas flow rate * carrier gas flow rate 

and c) gas flow rate * powder feed rate  on thickness 

 

 

Figure 7: Cell proliferation and cell viability on the titanium control, stable coating and bioactive 

coating at day 7, 14, 21 and 28 (* indicates p < 0.1) 
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Figure 8: Gene expression profiles for a) collagen 1 (COL1), b) alkaline phosphatase (ALP) and c) 

osteocalcin (OC) on the titanium control, stable coating and bioactive coating at day 7, 21 and 28 

(* indicates p < 0.05) 

 


