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Brendan Hayes Nonlinear Dynamics of DC-DC Converters

Abstract

Power electronic converters are time-varying, nonlinear dynamical systems. They
exhibit a wide range of steady-state responses. The desired behaviour is a stable
periodic motion around a predefined value with a frequency that is equal to that
of the external clock. However, as parameters vary the operation can lose stability
and go from one regime to another. Such phenomena are termed bifurcations and
can degrade the output performance of the converter. Hence, it is of practical
importance to know the conditions that cause such bifurcations to occur and to
design the system so that it operates in the desired region.

In the past, engineers have typically analysed the stability of power electronic sys-
tems by linearising the model about a fixed point. This captures the low-frequency
properties while ignoring the detailed dynamics occurring at frequencies higher than
the external clock. However, the demand for better functionality, reliability and per-
formance means an in-depth analysis into the complex behaviour exhibited by dc-dc
converters is required.

Traditionally, dc-dc converters are employed with analog controllers whose function
is to regulate the circuit. With advances in technology, digital control has become a
potentially advantageous alternative to analog control. One of the main advantages
of digital control is the ability to design more sophisticated design strategies to enable
high performance dc-dc converters e.g. digital state-feedback control. Unfortunately,
little work exists in the area of the effect of noise on digital control. This is a field
that requires intensive study as to completely understand the nonlinear dynamics
so as to enable accurate and economic designs.

The aim of this thesis is to address these issues through the application of advanced
nonlinear mathematics. The stability of power electronic systems is assessed with a
view to developing design guidelines in order to ensure stable operation over a wide
operating region.

x



1 Introduction

1.1 Introduction

Power electronics is concerned with the processing and control of electrical power
using electronic devices. These devices convert voltages and currents from one form
to another form. The possibility for such high-efficiency devices comes through the
continuous development of high-power semiconductor devices. DC-DC converters
are one branch of power converters which steer energy around the circuit by employ-
ing switching components, such as transistors and diodes, and reactive components,
such as inductors and capacitors, which act as energy stores.

They exhibit a wide range of steady-state responses including subharmonics, bi-
furcations and chaos. The desired behaviour is a stable periodic motion around a
predefined value with a frequency equal to that of the external clock. The stability
of this periodic mode of operation may, however, be lost due to the variation of
parameters such as the input voltage or load resistance, resulting in undesired op-
eration. When a dc-dc converter operates in one regime, loses stability and moves
to another operating regime, such phenomena are termed bifurcations and can de-
grade the output performance of the converter. It is normal practice to specify
a range of external parameters within which the converter will operate reliably in
steady-state. Thus, even in well-designed converters, if some parameter is varied,
the system could fail to operate as expected. Due to the demand from commer-
cial sectors, better functionality, reliability and performance are required in power
electronics systems. It becomes imperative to identify when these bifurcations will
occur and thus, extend the range over which reliable operation can be expected.

With advances in technology, digital control has become a potentially advantageous
alternative to analog control. Some of the potential advantages include low power,
immunity to analog component variations, compatibility with digital systems and
a faster design process [1]. One of the main advantages of digital control is the
ability to design more sophisticated control strategies to enable high performance
dc-dc converters to be designed. Previous works on the topic of digital control
have assumed ideal operating conditions. In practical applications, this cannot be
guaranteed. The effect of spurious signals in dc-dc converters employed with digital
controllers requires investigation in order to derive design guidelines to ensure stable
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1.2 Overview of thesis

operation and reliable and economic design. One particular system of interest is
digital state-feedback controllers. Digital state-feedback controllers are frequently
used in dc-dc converters when high/optimal performance is required. However, little
work has been carried out into the analysis of the nonlinear behaviour exhibited by
such systems.

Since these power electronic systems are nonlinear dynamical systems, they are
difficult to study. One common technique used by power electronic engineers to
study these systems is to linearise the model about a fixed point. This method
enjoys mathematical simplicity and allows the application of familiar frequency-
domain techniques. However, this method retains the low-frequency properties while
ignoring the detailed dynamics within the switching period. Thus, new methods are
required in order to analyse these systems so that the entire range of dynamical
behaviour is captured. Only then can design guidelines be developed in order to
ensure stable operation.

The aim of this research is to address these issues, that is, to apply nonlinear ad-
vanced mathematical tools to capture the detailed dynamics exhibited by these sys-
tems, characterise the types of behaviour observed and to develop control techniques
to ensure that the systems operate with the desired period-1 orbit.

1.2 Overview of thesis

This thesis is organised as follows:

Chapter 2 presents a general introduction to the area of nonlinear dynamics. The
chapter discusses the different types of bifurcations and modes of operation that
are common in power electronic converters and the mathematical tools employed to
analyse them that are used later in the thesis. A detailed derivation of the Filippov
method is presented; a key approach for analysis performed in this research.

In Chapter 3, the area of dc-dc converters in power electronics is discussed. The
buck converter is introduced as it forms the basis for the majority of the work in
this thesis. Methods for controlling dc-dc converters are discussed as well as the
various modeling techniques used in previous works. A survey of previous works
concerned with nonlinear analysis of converters is presented, as well as techniques
for controlling the nonlinear behaviours which occur in these circuits.

In Chapter 4, a buck converter operating with a PID controller is considered. The
behaviour of the circuit is characterised and a model of the system is derived. The
types of steady-state behaviours exhibited by the converter as various parameters
are varied are observed. Using the Filippov method, analytical conditions that
determine when these bifurcations occur are derived which leads to the development
of an adaptive PID controller.

2



1.2 Overview of thesis

As discussed above, digital control has many potential advantages over analog con-
trol. One such system of particular interest is digital state-feedback control. Digital
state-feedback control is often used in systems where high performance is required.
However, little work exists on the nonlinear behaviour of such systems. While, the
work of Chapter 4 assumes ideal operating conditions and ideal sources, in prac-
tical applications, noise sources can affect the input voltage of a buck converter.
Chapter 5 investigates the steady-state behaviours observed when a digital state-
feedback controller is employed with a buck converter where the input voltage is
being perturbed by a sinusoidal noise signal. It is shown that the presence of noise,
whose frequency is comparable to the switching frequency of the converter or its
integer multiples, manifests itself through Hopf bifurcations in intermittent peri-
ods. However, for irrational frequency ratios, quasi-periodic operation is observed.
The Filippov method is then used to assess the stability of the system and to de-
rive conditions for the prediction of this intermittent operation. This enables the
development of an adaptive controller to avoid this undesirable behaviour.

In Chapter 6, a buck converter operating with a digital PID controller is considered.
Its behaviour is characterised and the types of steady-state operation exhibited are
observed. It is seen that quantization in the digital controller can lead to limit
cycles on the output. As a result, both a notch and a comb filter are considered as
a method to remove these unwanted limit cycles. The effectiveness of both filters
are compared.

In Chapter 7, a review of the work reported in the thesis and the major contributions
are presented. This chapter also presents the future work that can be carried out in
this field.

Each chapter includes a survey of relevant prior work.

3



2 Nonlinear Dynamics

2.1 Introduction

The dynamical behaviour of systems can be understood by studying their mathemat-
ical descriptions. The field of dynamics is concerned with describing these systems
and how they evolve over time. The theory of linear systems is a mature topic and
a powerful tool in describing dynamical systems. However, most real-world sys-
tems are nonlinear. Finding solutions to nonlinear systems can be mathematically
complex and in some cases, impossible. Instead of addressing the problem directly,
engineers typically linearise the mathematical model. This enables the application
of the theory of linear systems. Unfortunately, this method cannot capture all of
the behaviours. In order to describe these, a new approach is required. Hence, the
field of nonlinear dynamics was developed.

Nonlinear effects are known to occur across a wide variety of disciplines. One of
the first papers to characterise these nonlinear effects was by Lorenz in 1963 [2]. In
studying a highly simplified model of convecting fluids, Lorenz was able to study the
dynamics of a weather system. Using a deterministic model, one where the output
of the system can be determined if the initial conditions of the system are known,
Lorenz found that the system exhibited a sensitive dependence to initial conditions.
This rendered the long-term predictability of the system impossible. This work was
published in the Journal of Atmospheric Sciences, little read by mathematicians,
and remained unnoticed until the 1970’s. The next significant contribution was
from May in 1976 [3]. May considered a deterministic iterated map to describe
the growth of biological populations. The article describes the complex behaviour
exhibited. Specifically, he highlights the period-doubling route to chaos. Similar
phenomena have since been discovered in many areas of science and engineering [4].

This chapter is laid out as follows; firstly, the types of behaviour exhibited by linear
systems and the techniques used to analyse them are discussed. The work then
proceeds to investigate nonlinear systems and the types of attractors and forms of
instabilities found. The theory of chaos and the different possible routes to chaos
are presented. Finally, a full derivation of the Filippov method is performed. The
Filippov method is used to analyse the stability of systems that switch between two
or more topologies.

4



2.2 Dynamical systems

2.2 Dynamical systems

A dynamical system, in general terms, consists of a state vector, x, and a function
which relates the rate of change of the state vector to its current value and any
inputs to the system. The state vector contains a set of independent variables
which completely describe the system. The following form describes a dynamical
system:

x(k + 1) = f(x(k), u, k) (2.1)

where u is the input vector and k is an integer. An autonomous system is one where
n does not appear in f, while in a non-autonomous system k is present in f. While
most real-life systems are nonlinear, the theory of linear systems is often applied to
nonlinear systems by linearising the model about a fixed point. For this reason, a
brief overview of the theory of linear systems is presented before discussing nonlinear
system theory.

2.2.1 Linear systems

A linear system is one that satisfies the principle of superposition and is homoge-
neous of degree 1. For a function f operating with inputs x and y, the principle of
superposition states

f(x, y) = f(x) + f(y) (2.2)

The system is homogeneous of degree 1 if the following holds true:

f(αx) = αf(x) (2.3)

for α ε R. A linear system takes the form:

x(k + 1) = Ax(k) (2.4)

This is an autonomous system. This type of system forms the basis for the majority
of this thesis. The equilibrium point of (2.4) is found by setting x(k + 1) = x(k)
which gives the equilibrium point at x = 0. The equilibrium point can be stable,
unstable or marginally stable depending on the following [5]:

1. The system is said to be asymptotically stable if the natural response ap-
proaches zero as n approaches infinity.

5



2.2 Dynamical systems

2. The system is said to be unstable if the natural response grows without bound
as n approaches infinity.

3. The system is said to be marginally stable if the natural response neither grows
nor decays but remains constant or oscillates as n approaches infinity.

A more conceptual view is shown in Figure 2.1 which shows a state-space plot. A
state-space plot is one where each axis corresponds to one of the state variables. In
(a), a stable plot is shown as the trajectory (marked with arrows) moves towards
the fixed point. In (b), the plot is unstable as the trajectory moves away from the
fixed point.

The stability of an equilibrium point can be determined by assessing the eigenvalues
of the A matrix. These can be found by solving the equation (λI − A) = 0. If the
real part of l is less than 0, the system is stable i.e. if the eigenvalues lie in the left
half plane. If the real part is greater than 0, the equilibrium point is unstable.

(a) (b)

Figure 2.1: State-space plot for (a) stable system and (b) unstable system. The
arrows represent the direction of the trajectory of the system described in (2.4).

An affine autonomous system is one which is closely related to a linear autonomous
system but instead has an input vector. This type of system is described by:

ẋ = Ax+Bu (2.5)

Again, the equilibrium point is found by setting ẋ = 0, which yields Ax + Bu = 0.
Note that while the equilibrium point is no longer at x = 0, the inclusion of the Bu
term merely shifts the equilibrium point. The stability of this point is determined
in the same manner as (2.4), by evaluating the eigenvalues of the A matrix.
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2.2.2 Nonlinear dynamical systems

A nonlinear dynamical system is one where the function f in (2.1) does not satisfy
one or both of conditions (2.2) or (2.3).

x(k + 1) = f(x(k), u, k) (2.6)

If the function f is independent of k, then the system is autonomous. When the
mapping function, f, is nonlinear, then the system in (2.6) is a nonlinear discrete-
time dynamical system. If a continuous system has some regular forcing frequency
associated with it, then sampling the system at the forcing frequency can yield
an explicit map of the form (2.6). This is a useful tool in the analysis of nonlinear
systems. A map generated from sampling a system at a constant frequency is termed
a stroboscopic map. This is an example of a Poincaré mapping.

Poincaré mapping looks at how a given trajectory intersects a hyper-plane; a sub-
space of one dimension less than its ambient space. Each time the trajectory inter-
sects the plane (in a given direction), it corresponds to a point [4]. This has the
effect of reducing the order of the system, which can give insights into the system
and its behaviour as well as making the system easier to analyse. Figure 2.2 shows
a three dimensional state-space intersecting a two dimensional hyper-plane, termed
a Poincaré section. Describing how one point on the Poincaré section relates to the
next is termed a Poincaré map.

The Poincaré map can be used to qualitatively assess the type of attractor present
in the system. The next section discusses the different types of attractors typically
found in dc-dc converters.

Figure 2.2: Three dimensional state-space with a two-dimensional Poincaré section.
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2.3 Attractors

An attractor is a closed set A to which all neighbouring trajectories converge. A has
the following properties:

1. A is an invariant set; any trajectory that starts in A stays in A for all time.

2. A attracts an open set of initial conditions; there is an open set U containing
A such that if the initial condition x(0) is contained in U, the distance between
the trajectory x(t) and A tends to zero as t approaches infinity i.e. A attracts
all trajectories sufficiently close to it. The largest such U is termed the basin
of attractors.

3. A is minimal i.e. A contains no subset that satisfies conditions 1 and 2.

In general, attractors can be classified into the following categories:

1. Fixed point: the solution to the dynamical system is a single point in the
state space. This shows a single point on a Poincaré section as shown in
Figure 2.3 (a).

2. Limit cycle (periodic orbit): The trajectory moves along a closed path in
the state space. The motion is associated with a finite number of frequencies
that are related to one another by a rational multiple. The motion is periodic.
On a Poincaré section, this appears as a series of discrete points in a closed
loop as illustrated in Figure 2.3 (b).

3. Quasi-periodic orbit: The trajectory moves along the surface of a torus1.
The motion is associated with a finite number of frequencies that are related
to one another by irrational multiples. The motion appears to be “almost pe-
riodic”, but is not periodic. This appears as a closed loop where the trajectory
passes through every point on the Poincaré section as shown in Figure 2.3 (c).

4. Chaotic attractor: The trajectory appears to move randomly in the state
space. The motion is non-periodic and the trajectory is bounded. This is
discussed in more detail in section 2.5. The Poincaré section for a chaotic
trajectory is shown in Figure 2.3 (d). There appears to be no relationship
between one point and the next.

Since fixed points are the desired attractors for the application in this thesis, the
next section deals with determining their stability.

1A torus is similar to the surface of a doughnut-like object. A quasi-periodic orbit moves along
the surface of a doughnut similar to an inductor coil winding about a ferrite core. If a cross
section of the doughnut is taken, the trajectory is seen to go through every point along the
cross section.
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(a) (b)

(c) (d)

Figure 2.3: Poincaré section of different types of attractors (a) fixed point (b) limit
cycle (c) quasi-periodic orbit and (d) chaotic attractor.

2.3.1 Stability of a fixed point

The simplest type of orbit for the system presented in (2.6) is a fixed point. Assuming
an autonomous system and neglecting u so that the mapping function f is only a
function of x, a fixed point is any point, x∗,that satisfies the following condition

x∗ = f(x∗) (2.7)

A fixed point is an equilibrium point of a system. Any trajectory that starts at a
fixed point will stay there unless it is perturbed by some external force. A fixed point
can either be stable or unstable depending on whether trajectories close to it are
attracted or repelled. Fixed points that attract nearby trajectories are asymptoti-
cally stable. Fixed points that repel nearby trajectories are unstable. Cases where
the fixed point neither attracts nor repels nearby trajectories are termed marginally
stable.

To determine the stability of a system, small perturbations away from x∗are con-
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sidered and how they behave as the systems trajectory evolves is examined. If the
perturbation decays over time, the system is asymptotically stable. If the perturba-
tion grows over time, the system is unstable. This information may be gathered by
linearising about the fixed point. Given an initial point x(1), close to x∗, consider
how the distance between the fixed point at the next iteration x(2) changes:

x(2)− x∗ = f(x(1))− x∗ (2.8)

Using the Taylor-series expansion for f about x∗:

x(2)− x∗ = f(x∗) + f ′(x∗)(x(1)− x∗) + ...− x∗ (2.9)

Only considering the linear terms, the distance between the second point in the
trajectory and the fixed point is:

x(2)− x∗ = f ′(x∗)(x(1)− x∗) (2.10)

Letting ηk = x(k)− x∗, (2.10) can be rewritten as a linear map:

ηk+1 = f ′(x∗)(ηk) (2.11)

with eigenvalues λ = f
′(x∗). The solution to this map can be found by writing the

first few terms: η1 = λη0, η2 = λη1 = λ2η0. Thus, the general solution is:

ηk+1 = λk+1η0 (2.12)

It is clear from (2.12) that if all of the eigenvalues of f ′(x∗), which is termed the
Jacobian matrix J, lie inside the unit circle, then the distance between the trajectory
and the fixed point decreases with time and the system is asymptotically stable. If
one or more of the eigenvalues of J lie outside the unit circle, the system is unstable.
There are many different types of instability possible in systems. The next section
discusses the most commonly observed instabilities in dc-dc converters.

2.4 Types of instability

A sudden change in the qualitative behaviour of a system is termed a bifurcation.
Successive bifurcations lead to instability in power electronic converters. The type
of bifurcation is classed by the qualitative change that takes place when a param-
eter is varied. How far a system is from instability is termed the stability margin.
There are two metrics to consider; the phase margin and the gain margin. The
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phase margin is the amount of phase that must be added to the system to cause
it to be marginally stable. The gain margin is the amount of gain that must be
added to the system to cause it to be marginally stable. Bifurcations that occur in
power electronic converters are typically classed as standard (smooth) bifurcations
or non-standard (non-smooth) bifurcations. Smooth bifurcations do not involve any
structural change associated with the loss in stability. In continuous time systems,
they occur when the real part of one, or more, of the eigenvalues of the system is
greater than zero. In discrete-time systems, they occur when the magnitude of the
eigenvalue is greater than 1.

Typically, for power electronic converters, smooth bifurcations can be classified into
two categories; slow-scale bifurcations and fast-scale bifurcations which lead to slow-
scale instability and fast-scale instability. Typical types of bifurcations that occur in
power electronic converters are Hopf bifurcations and period-doubling bifurcations.

Non-smooth bifurcations do cause a structural change and are characterised by
a sudden jump of the operating point. They occur due to interactions between
system trajectories and state-space boundaries where the system switches from one
configuration to another. Border collision bifurcations and grazing bifurcations are
types exhibited by power electronic converters.

The following is a brief summary of some of the common types of bifurcations that
take place in power electronic converters and Figure 2.4 illustrates the instabilities
with solid lines representing stable points and dashed lines representing unstable
points.

1. Saddle-node bifurcation: corresponds to the creation and destruction of
fixed points. As a parameter varies, µ, two fixed points move towards each
other, collide and mutually annihilate. The normal form is given by

ẋ = µ+ x2

From Figure 2.4 (a), it is clear there is a bifurcation at µ = 0. The Jacobian
matrix, J , is given by 2x. For µ < 0 there are two fixed points at x =
±
√
−µ. The equilibrium point at x = −√−µ is stable i.e. solutions starting

close to it converge to −√−µ . While the equilibrium point at x = √−µ is
unstable. At µ = 0, there is a single fixed point and initial conditions that
are negative converge to 0 while positive initial conditions give solutions that
increase without bound. Finally, for µ > 0 there are no fixed points. Any
initial condition will increase without bound.

2. Transcritical bifurcation: the exchange of the stability status of two fixed
points of a system. The normal form is given by:

ẋ = µx+ x2
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In this case, there is either one (µ = 0) or two (µ 6= 0) fixed points. When
µ = 0, the only fixed point is at x = 0 which is marginally stable. Positive
initial conditions are stable, while negative initial conditions are unstable.
When µ 6= 0, there are two fixed points at x = 0 and x = µ. For µ < 0, the
nonzero fixed point is stable and the zero fixed point is unstable. However, as
µ crosses zero, the two fixed points exchange stability status i.e. the nonzero
fixed point is unstable and the stable fixed point became unstable and vice
versa. An example is illustrated in Figure 2.4 (b).

3. Pitchfork bifurcation: occur in systems where there is an overall parity
symmetry i.e. if we replace the state variable, x, with its negative,−x, it
yields the same set of equations. Pitchfork bifurcations can be classified into
two categories:

a) Supercritical: the normal form of a supercritical pitchfork bifurcation
is:

ẋ = µx− x3

Figure 2.4 (c) shows the resulting bifurcation diagram as µ is varied.
When µ < 0, the origin is the only fixed point in the system and it
is stable. When µ = 0, the origin remains stable but solutions no longer
decay exponentially. This slow-down in the rate of decay is termed a criti-
cal slowing down. When µ > 0, two new stable fixed points are created at
x = ±√µ and the fixed point at the origin remains but is now unstable.
Hence, a supercritical pitchfork bifurcation occurs when, as a parameter
varies, one stable fixed point expands to two stable fixed points and one
unstable fixed point.

b) Subcritical: the normal form of a subcritical pitchfork bifurcation is:

ẋ = µx+ x3

Note, the normal form is similar to the supercritical case but the cubic
term has a destabilising effect on the system. Figure 2.4 (d) shows the
bifurcation diagram which is the inverted version of the supercritical bi-
furcation diagram; the nonzero fixed points at x = ±√−µ are unstable
and exist before the bifurcation point i.e. µ < 0. The origin is stable
for µ < 0, as in the supercritical case, and unstable for µ > 0. However,
the instability for µ > 0 is no longer suppressed by the cubic term. This
effect leads to a blow-up; starting at any initial condition x0 6= 0, the
resulting trajectory x(t)→∞.

4. Hopf bifurcation: refers to the local birth or death of a periodic solution as
a parameter, µ, crosses a critical value i.e. the birth of a stable limit cycle.
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For a discrete system to be stable, all the eigenvalues must lie inside the unit
circle. For a Hopf bifurcation to occur, one or more of the eigenvalues must
leave the unit circle [4]. Hopf bifurcations can occur in phase-spaces of any
dimension n ≥ 2. A Hopf bifurcation can be modelled using the following
normal form equations:

ẋ = −y + x(µ− x2 − y2)
ẏ = x+ y(µ− x2 − y2)

(2.13)

Converting from Cartesian to polar coordinates is clearer. Thus, the normal
form is rewritten as:

ṙ = r(µ− r) (a)
Θ̇ = 1 (b)

(2.14)

where r =
√
x2 + y2 and tan Θ = y/x. The solution to (2.14) (b) is Θ(t) =

Θ+t, the angle continues to increase with time as the trajectory spirals around
the origin. Figure 2.4 (e) shows the bifurcation diagram for a Hopf bifurcation.
For µ < 0, there is a single fixed point at r = 0. Finding the derivative of
(2.14) (a) at r = 0 shows that the characteristic value is equal to µ. Thus, for
negative values of µ, the fixed point at r = 0 is stable. For µ > 0, the fixed
point is unstable. Trajectories starting close to it will move away. However,
there is a second fixed point at r = µ. This fixed point corresponds to a limit
cycle with a period of 2π in the time-domain. Looking at Figure 2.4 (d), at
µ = 0, a Hopf bifurcation takes place which gives birth to a limit cycle.

Similar to the pitchfork bifurcation, the Hopf bifurcation can be classified into
subcritical and supercritical. If the resulting limit cycle is unstable, a subcrit-
ical Hopf bifurcation has taken place. While for a supercritical bifurcation,
the critical point at the origin gives rise to a stable limit cycle.

5. Period-doubling bifurcation: a sudden doubling of a stable periodic or-
bit or limit cycle. Since the bifurcated orbit flips between two points, it is
sometimes referred to as a flip bifurcation. There are two points such that
applying the mapping function to the first point will yield the second point
and vice-versa. For a discrete system, quantitatively speaking, this type of
bifurcation is characterised by one of the eigenvalues passing through -1. An
example is illustrated in Figure 2.4 (f).

6. Border collision bifurcation: these occur when two or more structurally
different systems operate for different parameter ranges. When a parame-
ter is varied across a critical value, the system exhibits an abrupt change in
behaviour. The manner of the abrupt change is dependent on the system.

7. Grazing bifurcation: these occur when a system parameter or signal touches
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an operational boundary e.g. when the control voltage touches the ramp tan-
gentially. The system exhibits an abrupt change in behaviour.

2.5 Chaos

Chaos occurs in nonlinear systems and results in the seemingly random movement
of trajectories within a bounded state-space. A chaotic trajectory is unpredictable
in the long term; knowing the trajectory now does not guarantee knowing where
the trajectory will end up. This contradicts the definition of a deterministic system.
However, deterministic systems can exhibit chaotic behaviour. The key property of
chaos is the sensitivity of nonlinear systems to initial conditions. Even a small error
in specifying the initial conditions to a system can result in large differences in the
output as time evolves. Hence, the long term predictability of a chaotic system is
unpredictable in a practical sense. Consider the logistic map given by [3]:

xk+1 = rxk(1− xk) (2.15)

where xk is a number between 0 and 1 representing the ratio of the existing pop-
ulation to the maximum possible population and r is the growth rate. Figure 2.5
(a) illustrates the chaotic behaviour of the deterministic logistic map presented in
(2.15) with r = 3.8 and two nearby starting points at x0 = 0.01 and x̄0 = 0.010001
which is 0.01% away. Figure 2.5 (b) shows the distance between the two trajectories,
x0− x̄0, as k increases. The graph illustrates how the trajectories initially stay close
for the first 20 iterations. When k > 23 the trajectories quickly move apart. With
a 0.01% difference in the initial conditions, the trajectories still diverge along two
different paths. In other words, the trajectory is unpredictable in the long term
because there is a limit to the accuracy of the measurement of the initial conditions.

The characteristics of chaos are thus as follow [4]:

1. The output is bounded: this restriction is imposed for cases where the orbits
go to infinity. In this case, it is relatively simple for their distances to diverge
exponentially.

2. The output never repeats.

3. The output generates a fractal pattern on the Poincaré map.

4. The system exhibits a sensitivity to initial conditions. Two trajectories with
similar initial conditions diverge along two different paths.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: (a) Saddle-node bifurcation. (b) Transcritical bifurcation. (c) Super-
critical bifurcation. (d) Subcritical bifurcation. (e) Hopf bifurcation. (f) Period-
doubling bifurcation.
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(a) (b)

Figure 2.5: (a) Steady state behaviour of the logistic map with r = 3.8 with initial
conditions x0 = 0.01 (black) and x̄0 = 0.010001 (red) (b) Difference between
steady-state responses with differing initial conditions.

2.5.1 Routes to chaos

A nonlinear dynamical system can exhibit a wide variety of behaviours with chaos
being just one of these and these systems can undergo bifurcations whereby qualita-
tive changes in the system take place. The series of bifurcations that a non-chaotic
system goes through before developing into a chaotic system is termed the route to
chaos [6]. The following outlines some possible routes to chaos:

1. Period doubling route: As a certain parameter is varied in one direction, a
system may undergo a period-doubling bifurcation. As the parameter contin-
ues to vary, more period-doubling bifurcations may take place until the output
of the system is chaotic.

2. Quasi-periodic route: Some nonlinear systems can undergo a Hopf bifur-
cation giving rise to a limit cycle as a parameter is varied. As the parameter
continues to vary, another periodicity may develop which is not a rational
multiple of the limit cycle. This results in quasi-periodic behaviour. As the
parameter is further varied, the system may develop into a chaotic system.

3. Intermittency route: Some systems can be qualitatively described by dis-
tributed periods of irregular motion such as bursts of unstable/chaotic oper-
ation separated by long periods of stable operation. It occurs when a crucial
parameter is being modulated by some external driving force, where the fre-
quency of the driving force is different from the system’s frequency. As the
crucial parameter increases, the period of unstable/chaotic operation increases
until the system develops into a chaotic system.
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2.6 The Filippov Method

Figure 2.6: Orbit of interest.

The work of this thesis focuses on dc-dc converters which switch between two or more
topologies in one switching period thus, assessing the stability of said systems is more
complex compared to linear systems. The Filippov method is based on monitoring
the evolution of a perturbed orbit [7]. The stability of a general orbit, say x(t),
is assessed by placing a small perturbation at t = t0 and monitoring the evolution
of the perturbation ∆x(t). The evolution is related to the initial perturbation by
the fundamental solution matrix Φ(t, t0) and when the vector field that governs the
original orbit is linear time invariant, the fundamental solution matrix is given by
the exponential matrix:

∆x(t) = Φ(t, t0)∆x(t0) = eA(t−t0)∆x(t0) (2.16)

where Φ(t, t0) is termed the state transition matrix. If the orbit is periodic, then
the stability can be quantitatively determined by the eigenvalues of the fundamental
solution matrix evaluated at t = t0 + T , where T is the period of the orbit under
study. The fundamental solution matrix obtained at t = t0 + T is termed the
Monodromy matrix whose eigenvalues are called Floquet Multipliers. If the Floquet
Multipliers lie inside the unit circle, the orbit is stable.

DC-DC converters switch between two or more topologies. It is important to note
that the term topology in this work refers to the set of differential equations used
to describe each operating mode of a dc-dc converter e.g. when the switch is open
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or closed in the buck converter. It does not refer to the different types of dc-dc
converters e.g. buck, boost etc. Each topology is described by a linear vector field:

ẋ = Ajx+Bjxin (2.17)

where j denotes the different topologies of the dc-dc converter. Mathematically, this
switching action is described by a smooth scalar function h(x,t) called the switching
manifold, which splits the state space into two areas. When the switching manifold
crosses a border, the system changes between topologies. Due to the switching
action, the stability of (2.16) cannot be assessed directly.

Assume that the orbit whose stability is to be tested is x(t) and starts at t = t0 from
the point x0 in GA and then hits the border and goes into GB as in Figure 2.6. The
perturbed trajectory x̄(t) also starts in GA but from x̄0 and hence, the perturbations
are given by the following:

δx− = x̄(tΣ)− x(tΣ) xεGA (a)

δx+ = x̄(t̄Σ)− x(t̄Σ) xεGB (b)
(2.18)

where t̄Σ is the instant where the perturbed orbit hits the switching manifold. Using
a Taylor series expansion, it can be deduced that:

x(t̄Σ) = x(tΣ) + f+(x(tΣ), tΣ)δt (2.19)

x̄(t̄Σ) = x̄(tΣ) + f−(x̄(tΣ), tΣ)δt (2.20)

where δt = t̄Σ − tΣ and f−and f+ are the right hand side of (2.17) before and after
switching. Using (2.18) (b):

δx+ = x̄(tΣ)− x(tΣ) + (f−(x̄(tΣ), tΣ)− f+(x(tΣ), tΣ))δt

δx+ = δx− + (f−(x̄(tΣ), tΣ)− f+(x(tΣ), tΣ))δt (2.21)

From (2.18) (a) and (2.20), we have the following:

x̄(t̄Σ) = x(tΣ) + δx− + f−(x̄(tΣ), tΣ)δt

As t→ t̄Σ with tε [t0, tΣ], hA
(
x̄(t̄Σ)

)
= 0. Thus:

hA (x(tΣ) + δx− + f−(x̄(tΣ), tΣ)δt) = 0
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Expanding according to the Taylor Series:

hA(x(tΣ)) + nT (δx− + f−(x̄(tΣ), tΣ)δt) = 0 (2.22)

where n = ∇hA(xΣ, tΣ). However, hA(x(tΣ)) = 0. Hence, (2.22) can be written as
follows:

nT δx− + nTf−(x̄(tΣ), tΣ)δt = 0

δt = −nT δx−
nTf−(x̄(tΣ), tΣ) (2.23)

Recall (2.21):

δx+ = δx− + (f−(x̄(tΣ), tΣ)− f+(x(tΣ), tΣ))δt

δx+ = δx− + (f−(x̄(tΣ), tΣ)− f+(x(tΣ), tΣ)) −nT δx−
nTf−(x̄(tΣ), tΣ)

δx+ =
(
I + (f+(x(tΣ), tΣ)− f−(x̄(tΣ), tΣ))nT

nTf−(x̄(tΣ), tΣ)

)
δx−

S = I + (f+(x(tΣ), tΣ)− f−(x̄(tΣ), tΣ))nT
nTf−(x̄(tΣ), tΣ)

In the case where the switching manifold also depends on time, the previous expres-
sion can be modified to as follows

S = I + (f+(x(t), t)− f−(x̄(t), t))nT

nTf−(x̄(t), t) + ∂hA

∂t

∣∣∣∣∣∣ t = tΣ

x(t) = x(tΣ)

(2.24)

This is termed the Saltation matrix and links the events just before and after switch-
ing occurs [8]. For notation purposes, (2.24) is rewritten as:

S = I + (f+ − f−)nT

nTf− + ∂h
∂t

∣∣∣∣∣∣ t = tΣ

x(t) = x(tΣ)

(2.25)

Thus, the perturbation at time t1 related to that at time t0 is given as

∆x(t1) = ΦM∆x(t0) (2.26)

where

ΦM = Φ+(t1, tΣ+)SΦ−(tΣ−, t0) (2.27)
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which is termed the Monodromy matrix, Φ− and Φ+ are the state transition matrices
outlined in (2.16) before and after switching. This method can be extended to any
number of switching events. The state transition matrices are used for each topology
and the saltation matrix (2.25) is calculated for each switching event. The stability
of the system is then determined by assessing the eigenvalues of the Monodromy
matrix. If the eigenvalues lie inside the unit circle, the system is asymptotically
stable. Thus, the Monodromy matrix is similar to the Jacobian matrix presented
in Section 2.3 but takes into account the switching between topologies. The Mon-
odromy matrix is sometimes referred to as the Jacobian of the Poincaré map.

2.7 Conclusions

In this chapter, the basic concepts of linear system theory were introduced as well as
the types of steady state behaviours found in systems and the types of instabilities
that can occur. How these instabilities can lead to a chaotic output was discussed.
Finally, a detailed derivation of the Filippov method was presented. This method
is used in chapter 4 and chapter 5 to predict bifurcations and to design adaptive
control schemes.
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3 Power Electronics

3.1 Introduction

Power electronics is concerned with the processing and control of electrical power
using electronic devices. These convert voltage and current from one form to an-
other. They find applications in consumer electronics, the automobile industry and
many devices that require such power electronics so as to operate efficiently. The
efficiency of the power conversion is of paramount importance with commercial rea-
sons being the main driving force behind high efficiency [9]. Thus, for most practical
applications, switch-mode power supplies or “switching converters” are used as op-
posed to linear regulators. In switching converters, the input power is processed
as specified by a control law to give the conditioned output power. A key feature
of these converters is that they can achieve high efficiency in the range of 80-90%
or even higher [10]. One particular branch of these converters are dc-dc converters
in which a dc supply voltage is converted and conditioned to a higher or lower dc
voltage. This chapter provides the background theory for dc-dc converters as well
as the mathematical tools to model these systems and the analytical methods to
study their dynamics.

3.2 DC-DC converters

DC-DC converters convert voltage at one level to voltage at another level. They
employ both switching components such as transistors and diodes, to shape the
input signal, and reactive components such as inductors and capacitors, to filter the
output signal so that it is close to being a dc signal. When a converter is required to
produce a constant output, irrespective of load variations, it is termed a regulator.

The buck converter is an example of a step-down dc-dc converter whose circuit
diagram is illustrated in Figure 3.1 (a). The purpose of the buck converter is to step
down an input voltage, Vin, to an output voltage, v∗o , where v∗o = dVin and d is the
duty cycle of SW1. The output voltage should be close to the reference voltage, Vref .
This is achieved by opening and closing switches SW1 and SW2 in a complementary
manner i.e. when SW1 is open, SW2 is closed. The equivalent circuits for when SW1

is closed and when SW1 is open are shown in Figure 3.1 (b) and (c), respectively.
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(a)

(b) (c)

Figure 3.1: (a) Buck converter circuit. Topologies of the buck converter with SW1
closed (b) and SW1 open (c).

Figure 3.2: Voltage across SW2 which corresponds to the output of the PWM.

The switches are controlled using PWM. With this form of control, the switches turn
on and off periodically and the state of the switches is modulated by some control
signal. If the switches are reset every T , where T is the switching period, and SW1

starts closed, SW1 will remain closed for dT , where d exists between 0 and 1. SW1

will remain open for the remainder of the switching period i.e. (1− d)T . Figure 3.2
shows the voltage across SW2, which is given by:

vavg = VindT + 0(1− d)T
T

vavg = dVin (3.1)

Thus, the average value across switch 2 is the desired dc output value. The inductor
and capacitor act as a low-pass filter which smooth the voltage and current so that
it approximates that of a dc voltage and current. However, owing to the periodic
nature of the PWM and since it is impossible to build a perfect low-pass filter (one
that only allows the dc component to pass and completely removes the components
at the switching frequency and its harmonics) the output voltage and current will
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3.2 DC-DC converters

have some ripple as shown in Figure 3.3 (a) and (b). This type of operation is
the desired output voltage for practical applications and is termed vo. Thus, the
output voltage vo consists of the desired dc component v∗o plus a small undesired
ac component, at the switching frequency, due to the incomplete attenuation of the
switching harmonics by the low-pass filter. The magnitude of this ripple is much
smaller than that of the dc component in a well-designed converter [9]. Throughout
this research, ideal components are assumed unless specifically stated.

(a) (b)

Figure 3.3: Waveforms of (a) the output voltage and (b) the inductor current for a
buck converter with the following parameters: R = 22 Ω, C = 47µF , L = 20mH,
Vin = 25V , T = 400µs and d = 0.5.

In ideal circumstances, the output voltage is a function of the input voltage and the
duty cycle. However, in real circuits, due to the nonideal properties of components,
the output is also a function of the load current. The output of a dc-dc converter
is controlled by modulating the duty cycle ratio to compensate for circuit changes
or changes in the load conditions. These changes may be due to circuit parameters
varying, supply voltage changes and/or external disturbances. A feedback control
system for dc-dc converters compares the output voltage to a reference voltage and
converts the error to a duty cycle ratio. This method is termed Voltage-Mode Con-
trol (VMC) as the output voltage is the input to the control scheme. Another
form of control is Current-Mode Control (CMC). It consists of a current loop where
the inductor current is compared to a reference current. Traditionally, analog con-
trollers are employed to regulate these circuits [9]. However, in recent years, the use
of digital control has been proposed and researched [11]. Digital control has many
potential advantages which include their low power, immunity to analog component
variations, compatibility with digital systems and a faster design process [1].

Figure 3.4 (a) outlines the control loop typically used for a VMC buck converter.
The output voltage is measured against a reference voltage, Vref , which is at the
desired steady-state output. This gives the error voltage, ve. The error voltage is
then compared against a ramp signal which has a period of T and varies from a lower
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(a)

(b)

Figure 3.4: (a) Analog control loop for a VMC buck converter (b) Plot of the ramp
signal (black), control voltage (blue) and PWM (red).

value, VL, to an upper value, VU . When the control signal is greater than the ramp
signal, the output voltage is below the desired value. Thus, the PWM is high and
SW1 is closed. When the polarity of the error signal changes, i.e. when the control
signal is less than the ramp signal, the output voltage is above the desired value and
the PWM is low causing SW1 to open. SW1 remains open for the remainder of the
switching period. Figure 3.4 (b) illustrates how the control voltage, ramp voltage
and PWM interact.

3.3 Modeling of converters

The operation of dc-dc converters can be described as an orderly repetition of a fixed
sequence of circuit topologies [12]. Such toggling between topologies is achieved by
placing switches at suitable positions and turning them off and on in such a manner
that the desired sequence of topologies is achieved. Thus, the overall result is time-
varying and nonlinear. Recall the generalised state-space for dc-dc converters:
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3.3 Modeling of converters

ẋ = Ajx+Bjxin (3.2)

where x contains the state variables that fully describe the system at any point in
time and (3.2) describes how these variables change over time. The circuit topology
determines the matrices Aj and Bj, where the subscript j denotes which topology
the circuit is operating with. The modeling of (3.2) has evolved around two basic
approaches, namely; the averaging approach and the discrete-time approach.

3.3.1 Averaging approach

The averaging approach was developed by Middlebrook and Ćuk [13]. The main
objective of the averaging approach is to remove time-varying parameters from the
system equations. The averaged model ignores dynamics between switching events
and focuses on the envelope of dynamical motion. Thus, this method characterises
converters in the low-frequency domain.

Consider a dc-dc converter that switches between K topologies. In one switching
cycle, it spends a proportion of time on each topology. The proportion of time it
spends on the jth topology is dj, where d1 + d2 + ...+ dK = 1. The state equations
for the system are:

ẋ =



A1x+B1u if tk < t < tk + d1T

A2x+B2u if tk + d1T < t < tk + (d1 + d2)T

...

AKx+BKu if tk + (1− dK)T < t < tk+1

(3.3)

where Aj and Bj are the system matrices for the jth topology. Averaging out the
system matrices yields the following continuous-time averaged model [13]:

ẋ = Amx+Bmu (3.4)

where

Am =
K∑
j=1

djAj and Bm =
K∑
j=1

djBj (3.5)

The averaged model retains the low-frequency components while ignoring the dy-
namics within a switching cycle. The validity of the averaged model is restricted to
the low-frequency range up to an order of magnitude below the switching frequency
[12]. This is due to the Nyquist-Shannon sampling theorem. Thus, the averaged

25



3.3 Modeling of converters

model is suited to studying slow-scale instabilites but not suited to fast-scale insta-
bilities; dynamics occuring at frequencies higher than the switching frequency. For
this reason, the averaged model is not used in this thesis. Instead, the discrete-time
approach is used.

3.3.2 Discrete-time approach

A switching converter is modelled using a series of topologies that repeat themselves
periodically. One way to model such a kind of operation is to split a system into a
series of sub-systems. Each sub-system is responsible for describing the system in
one sub-interval of time. If the solution to the state equations at time t is required,
starting at time t0, each sub-system is solved iteratively until time t is reached.
Sub-system k is linked to sub-system k + 1 by a stitching process; the final values
of k are used as the input values for k + 1. Consider equation (3.2). Given x(t0) as
the initial condition for the state vector x at time t0, the solution to the equation
is given by [12]:

x(t) = eAjtx(t0)+
t�
t0

e(t−τ)AjBjudτ (3.6)

This solution is valid as long as the system stays within the jth topology. In
continuous-conduction mode (CCM), when theq inductor current is always greater
than 0, the buck converter switches between two topologies; j = 1 for dT and j = 2
for (1−d)T . The discrete-time mapping is found by stitching the solutions together
at the time instant that switching occurs. If t0 marks the start of a switching period,
then at the point of switching between topologies the state is given by:

x(t0 + dT ) = edTA1x(t0)+
t0+dT�
t0

e(t−τ)A1B1udτ (3.7)

and the state at the next switching instant is given by:

x(t0 + T ) = e(1−d)TA2x(t0 + dT )+
t0+T�

t0+dT

e(t−τ)A2B2udτ (3.8)

Using (3.7) and (3.8), values of the state vector at the end of one switching pe-
riod can be obtained as well as capturing the high-frequency dynamics. Since the
discrete-time model samples the system at time instants, the information contained
in the model is limited by the sampling rate. If the system is sampled at the switch-
ing frequency, the model is capable of capturing all dynamics up to half of the
switching frequency. For higher frequencies, the sampling rate must be increased.
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3.4 Nonlinear effects of analog-controlled power electronic converters

The discrete-time approach is capable of analysing both slow-scale and fast-scale
instabilities but the averaged model enjoys mathematical simplicity.

3.4 Nonlinear effects of analog-controlled power
electronic converters

In 1927, Van der Pol was studying the Van der Pol oscillator [14]; a relaxation os-
cillator comprising of a battery, a bulb, a capacitor and a resistor. The circuit was
driven by a 1 kHz sinusoidal signal and tuned to obtain subharmonics. However,
at certain drive frequencies, an irregular noise was heard. This is one of the first
examples of deterministic chaos in electronic circuits. However, there was little in-
terest in explaining the spurious oscillations for the next 50 years. In 1980, Baillieul,
Brockett and Washburn [15] suggested that chaos may occur in dc-dc converters and
other systems that are driven by a PWM. In 1981, Linsay published the first modern
day experimental report of chaos in an electronic system [16].

In 1984, Brockett and Wood presented a paper showing that a controlled buck
converter can exhibit bifurcations and chaos. A letter by Hamill and Jefferies in
1988 [17] was one of the first detailed analyses of chaos in a CMC buck converter.
The use of difference equations and zigzag return maps were used to qualitatively
study the system. Wood further described chaotic behaviour in 1989 [18] using an
experimental setup for a VMC controlled buck converter, termed a ripple regulator.
Setting the input voltage as the bifurcation parameter and plotting the bifurcation
diagram and associated phase portraits, the work demonstrates that the system
underwent the period-doubling route to chaos. In a 1990 paper [19], Deane and
Hamill identify several other possible routes to chaos exhibited by different power
electronic circuits. This work is then extended in [20, 21, 22] for a VMC buck
converter, a CMC buck converter and a CMC boost converter, respectively. Using
a combination of iterated maps and experimental results, these works mainly focus
on the prediction and experimental confirmation of chaos in dc-dc converters under
various control schemes.

The early work in the analysis of chaos in dc-dc converters typically used exact
differential equations which were integrated to find the trajectories [23]. This allows
qualitative analysis to be performed but it is difficult to perform any quantitative
analysis due to the complex mathematics involved. Other methods included de-
vising linear system models using methods like state-space averaging which, while
theoretically sound, are approximate and fail to predict fast-scale instabilities [24].
Hamill and Deane proposed nonlinear map-based modelling [25]. In this method,
one of the state variables is sampled at specific time-instants. The three possible
time-instants are:
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3.4 Nonlinear effects of analog-controlled power electronic converters

1. Stroboscopic sampling: Sample at the beginning of each switching period.
This method is used in this thesis.

2. S-switching or synchronous switching: Sampling at the clock instants when
switching occurs thus, multiple pulsings and skipped cycles are possible.

3. A-switching or asynchronous switching: Sampling at each switching event i.e.
when vcon = vramp.

Figure 3.5: Three possible time instants for discrete-time sampling. Ramp signal
(black) and control signal (blue).

This sparked research to move in two directions. Firstly, Banerjee and Chakrabarty
[26] added non-idealities to the system and demonstrated that a closed-form model
could still be obtained. It was shown by Deane and Hamill and Banerjee et al. that
the discrete-time model could be reduced to a one-dimensional piecewise-linear map
using switch-on sampling and stroboscopic sampling which can be used for quanti-
tative analysis of chaotic behaviour as the discrete-modeling procedure reduces the
problem of the stability of the trajectory in the state-space to that of a fixed point
of the sampled data model [21, 27].

An important study into the bifurcation behaviour in buck converters was pub-
lished by Chakrabarty and Banerjee [28]. Varying the input voltage, load capaci-
tance, inductance and load resistance, it was found that the system does not always
go through the usual period-doubling route to chaos. There are regions between
period-doubling zones where period-halving occurs and there are abrupt changes in
behaviour as parameters vary from one value to the next.

[29, 30] Fossas and Olivar presented further studies into the nonlinear dynamics of
the buck converter showing the topology of its chaotic attractor. The authors study
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3.4 Nonlinear effects of analog-controlled power electronic converters

the eigenvalues of the system by deriving the stroboscopic map and linearising about
a fixed point. This enables the analysis of period-1 and period-2 orbits.

Border-collision bifurcations were first explained by Banerjee et al. [27, 31] and have
been analysed by Banerjee [32, 33]. This is a common feature in dc-dc converters and
has been studied by many researchers [34, 35, 36]. Quasi-periodic routes to chaos,
where two system frequencies interact with one another, have also been observed
and studied [36, 37, 38, 39, 40].

The intermittency route to chaos was discovered by Manneville and Pomeau and
reported in [41]. Intermittent operation, heard as sizzle with a rather long period,
occurs in periodically driven nonlinear systems, where the frequency of the inter-
ference signal is not consistent with the system’s driving frequency. It was first
reported in [42]. Such intermittency has been observed in power supplies which are
not protected against the intrusion of spurious signals. [43] studies a CMC boost
converter with a sinusoidal signal injected directly into the compensation ramp. In-
termittent operation has been studied in a VMC buck converter which superimposes
the spurious perturbation directly onto the control voltage by [44]. However, in all
of these works, only sinusoidal interference signals were considered. [45] considers
perturbing the input voltage and control voltage with a noise signal that has a si-
nusoidal, saw-tooth and triangular waveform. In [42] and [45], discrete maps are
derived which enable the derivation of the Jacobian matrix, whose eigenvalues indi-
cate the stability of the system. However, the application of this method requires
that the frequency ratio and the type of bifurcation that occurs be taken into ac-
count. Thus, the discrete map method cannot be generalised for all frequency ratios
or noise shapes in order to derive conditions to avoid instability. The mapping func-
tion changes depending on the frequency ratio and type of bifurcation. Hence, this
method is algebraically complex and not suited to controller design.

At present, fast-scale instabilities are mostly checked through experimentation or
simulation over large parameter ranges. This leads to over designed components
that eliminate subharmonics. However, with a push towards miniaturization, the
size of the regulator is constrained. Thus, a design method for predicting fast-scale
instabilities is required. Previous work [12, 23] have suggested that the Jacobian
of the Poincaré map or the Monodromy matrix can be used to predict fast-scale
instabilities. Other methods such as trajectory sensitivity analysis, linearising the
system around the nominal periodic orbit rather than the equilibrium points, and
auxiliary vector methods, determining the Jacobian matrix using small differences
of the state vectors compared to their steady-state values at the beginning and end
of sub-intervals, have been proposed [46, 47] but can be mathematically complicated
when used in controller design. Furthermore, apart from determining the stability
of the limit cycle, they offer little insight into why these instabilities occur.

The Filippov method achieves the same objective as the sampled-data model and it
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is preferred when more complicated converter topologies are employed. In [48], the
author applies Filippov’s Method to analyse the stability of a VMC buck converter.
The main benefit of the Filippov method is that it can consider each switching event
separately. This enables designers to consider the transition matrix with the cor-
responding Saltation matrix at each switching event and compose the Monodromy
matrix whose eigenvalues indicate the stability of the system. This work was then
extended in [49] by Bradley, where a buck converter under proportional control is
considered. The system undergoes the period-doubling route to chaos as the propor-
tional control term,KP , is varied. The value ofKP at which the first period-doubling
bifurcation is derived using the Filippov method.

3.4.1 Previous work on controlling nonlinear phenomena

In real-world applications, it is desirable to have mechanisms that allow nonlinear
phenomena that occur in nonlinear systems to be controlled. Since 1980, when the
paper first suggesting the possibility of chaotic behaviour in dc-dc converters was
published [15], many control methods have been proposed for controlling bifurcations
and chaos. These can typically be split into two general groups; feedback control
and non-feedback control.

Feedback control methods involve measuring the system variables, applying a control
law and varying some control parameter to achieve the desired control output. One
example of feedback control is variable ramp compensation. In this method, the
ramp characteristics are varied in order to avoid chaotic behaviour. In [50], the
authors use a feed-forward controller. The ramp is proportional to the input voltage
and is used to eliminate subharmonic oscillations when the duty cycle exceeds 50%.
In [51], analysis of a CMC buck converter without slope compensation is considered.
The time-delayed feedback controller is another method that has been proposed
[52, 53] to work in tandem with a P controller to increase the stability margin of
dc-dc converters. This method constructs a control signal based on the difference
between the present state of the system and its delayed value. However, this is more
suited to digital control.

Non-feedback control methods do not measure the system variables and no specific
periodic output is identified. Resonant parametric perturbation involves perturbing
some parameters at appropriate frequencies and amplitudes thereby, converting a
chaotic output into the desired output. [54] applies dynamic resonant perturbation
for the elimination of fast-scale instabilities. In contrast to traditional resonant
perturbation, the sinusoidal signal is derived from the output voltage. However,
extensive simulations are still required as rigorous bounds for the elimination of
period-doubling are not presented. [55] proposes exact and approximate sampled-
data models for power electronic converters under current-mode control. Boundary
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conditions for the occurrence of subharmonic instability are given which enable
dynamic behaviour prediction. However, the results of the models presented here
are strongly dependent on the initial switching instant chosen [56].

3.5 Conclusions

This chapter laid out the basic topology of dc-dc converters. The buck converter con-
figuration was discussed and mathematical models presented. Conventional methods
of modeling switching converters were studied. It was seen that while continuous
time-averaging techniques are easier to understand compared to the discrete-time
approach, the former method is only suitable for low-frequency analysis and discards
details between switching events. Thus, the later method is required to study the
system’s behaviour in its entirety.

An overview of literature on nonlinear effects in analog-controlled dc-dc converters
was discussed as well as previous work in controlling the nonlinear phenomena that
may occur.
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4 Analog PID Controller

4.1 Introduction

DC-DC converters are widely used in numerous applications because of their high
efficiency, small size, low cost and weight [57]. Most power electronic systems are not
equipped with redundancy. Any faults that occur to the components or subsystem
can damange the interconnecting devices or lead to a shutdown of the system. For
this reason, designing power electronic converters with a view to long term reliability
is a concern for industrial applications [58]. Therefore, a thorough investigation into
the nonlinear dynamics of dc-dc converters is required as well as a method to predict
and avoid the undesireable operation.

For the satisfactory operation of the converter and the systems that it interconnects,
it is imperative that the controller is suitably designed. The basic requirement is
a fast and stable response over a wide operating region. In order to achieve this,
the employed P or PI controller must be properly tuned [9]. From a stability point
of view, two types of instabilities can occur; slow-scale instabilities and fast-scale
instabilities. The use of traditional methods for the selection of the P and I terms
are based on standard control theory techniques, like Bode plots. These methods
use the linearised averaged model which acts like a low-pass filter and hence, cannot
describe fast-scale instabilities [12]. Therefore, frequency response methods used
in the tuning of PI controllers leave the controller vulnerable to various spurious
behaviours. Previous works [12, 23] have suggested that the Jacobian of the Poincaré
map or the Monodromy matrix can be used to predict these fast-scale instabilities.
Hence, it is possible to be used in the design of a controller.

It is well known that the usage of the D-term in a dc-dc converter can cause the
amplification of noise or inject significant noise into the closed-loop system. The
injection of noise is mainly due to the equivalent series resistance (ESR) and the
equivalent series inductance (ESL) of the capacitor. During large signal transients,
the parasitic elements drive an impulse response in the derivative term with large
overshoots and undershoots. During small signal transients, the ESR leads to dis-
crete jumps at switching points that alternate in polarity. This interaction can lead
to a reduction in the phase margin [59]. Traditionally, the D-term has been avoided.
On the other hand, due to the requirement for fast transient responses, the D term
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is required. However, little or no work exists on design procedures for PID con-
trollers that take into consideration fast-scale instabilities. An extra difficulty can
arise, the Saltation matrix required in [60] assumes a smooth scalar function for the
manifold that describes the switching action. A smooth function is one that has a
first derivative everywhere in its domain. The smoothness of the switching manifold
is required as the Filippov method uses its derivative to the state vector. When a
PID controller is employed, the resulting functions may be non-smooth. Therefore,
it is not straightforward to apply the method presented in [60] for such converters.

In this chapter, the research aims to address this issue, that is, to analyse fast-
scale instabilities of a PID controlled dc-dc converter and prove that the D-term,
apart from providing faster dynamics, also improves the stability of the nominal
operation. Initially, the main framework of how a PID controlled buck converter
can be designed to include the consideration of fast-scale instabilities is introduced.
Specifically, the theoretical framework for stable period-1 operation is presented
and enables designers to select control parameters that will ensure stable behaviour
without using high gains that can cause noise problems. An adaptive PID controller
is proposed, whereby the D-term is updated at the end of every switching cycle as
the load and other characteristics vary. Once this methodology has been clearly and
concisely presented, the main issue of the non-smoothness of the switching manifold
will be addressed by considering a VMC boost converter.

4.2 Buck Converter

4.2.1 Mathematical Model

A PID controlled synchronous buck converter is considered in Figure 4.1. It is im-
portant to note that the parameters used throughout this work do not reflect values
currently employed in industry. However, there exists a large body of research which
are based on these parameter values. Thus, they have been chosen to enable the
comparison of the results of the current work to previous approaches. Furthermore,
some of these studies have performed experimental setups of the systems described
throughout this dissertation. These works validate the accuracy of the theoretical
models and simulations [19, 60, 61, 42].

The buck converter is described by the equations:

ẋ =

 fon(x, t) = Aonx+Bonxin SW1 is on

foff (x, t) = Aoffx+Boffxin SW1 is off
(4.1)
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4.2 Buck Converter

Figure 4.1: Buck converter with analog PID controller. The parameters used in
this work, unless otherwise stated, are T = 400µs, L = 20mH, C = 47µF ,
R = 22 Ω, Vref = 11.3V , VL = 3.8V , VU = 8.2V , KD = 0.0001, KI = 10,
KP = 8.4 and Vin = 25V .

where:

A = Aon = Aoff =
 − 1

RC
1
C

− 1
L

0

 , x(t) =
 vo

iL



Bon =
 0

1
L

 , Boff =
 0

0

 , xin = Vin

To form a symmetrical system and to simplify the equations, a transformation to
the (vo, u) plane is applied. Let iL = αvo+βu where u = iL−αvo

β
. The state variables

can be rewritten as:

dvo
dt

= (A11 + A12α) vo + A12βu+B11Vin (4.2)
diL
dt

= α
dvo
dt

+ β
du

dt
(4.3)

Thus:

du

dt
= 1
β

(
diL
dt
− αdvo

dt

)

= 1
β

(A21vo + A22αvo + A22βu+B21Vin)− α

β
(A11vo + A12αvo + A12βu+B11Vin)

= 1
β

(
A21 + αA22 − αA11 − α2A12

)
vo + (A22 − αA12)u+ 1

β
(B21 − αB11)Vin
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The output must be in the form:

d

dt

 vo

u

 =
 −σ ω

−ω −σ

  vo

u

+ B̄Vin

where:

B̄ =
 B11

B21−αB11
β

 =
 aσ + bω

aσ − bω


Thus:

a = B̄11 + B̄21

2σ and b = B̄11 − B̄21

2ω
Therefore:

A11 + αA12 = −σ

α = −σ − A11

A12

and:
β = ω

A12

The transfer function for the system presented in (4.2) and (4.3) is:

R

LCRs2 + Ls+R

with roots at σ ± jω, thus σ = 1
2RC and ω =

√
1
LC
− σ2. Because a PID controller

is used in this work, the dimensions of the state space increase by 1 due to the
integral action. A new state variable vi is introduced and the buck converter circuit
illustrated in Figure 4.1 is modelled with:

A = Aon = Aoff =


−σ ω 0
−ω −σ 0
KI 0 0



Bon =


0
δin

−KI

 , Boff =


0
0
−KI



x(t) =


vo

u

vi

 , xin =


0
Vin

Vref

 , δin = ω2 + σ2

ω

A PID controller has 3 control variables; KP , KI and KD. The proportional compo-
nent depends only on the error signal. The proportional gain, KP , determines the
ratio of the output response to the error signal. The integral component sums the
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error term over time. The result is that even a small error will cause the integral
component to slowly increase. The integral component will continue to increase
until the steady-state error is zero. The derivative component causes the output
to decrease if the process variable is increasing rapidly. The derivative response is
proportional to the rate of change of the process variable. Increasing the derivative
component will increase the speed of the overall system. As discussed in Section 3.2,
the control signal is compared to a ramp signal to generate the duty cycle. The
switching manifold h(x, t) is given by:

h(x, t) = vcon − vramp

h(x, t) = KPve +KI

� t

0
vedτ +KD

d

dt
(ve)− (VL + (VU − VL) tmodT )

h(x, t) = KP (vo − Vref ) + vi +KD (−σvo + ωu)− VL − (VU − VL) tmodT (4.4)

4.2.2 Transient response and stability issues

(a) (b)

(c) (d)

Figure 4.2: (a) Transient response comparisons KD = 0 (black) and KD = 0.001
(red). (b) Bifurcation diagram - KD (c) Period-2 orbit with KD = 0 (d) Period-1
orbit with KD = 0.01.
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As has been mentioned, the usage of the D-term is usually avoided when a fast
response is not a major requirement as the D-term is sensitive to noise. On the
other hand, when it is employed it can greatly improve the transient behaviour and
stability margin of a system. In order to demonstrate its effects on the transient
behavior of a system, it is shown that a buck converter with the parameters given in
Figure 4.1, has a superior performance when the D-term is included. Figure 4.2 (a)
shows the transient performance of the buck converter when the D-term is included
(red) and when it is not included (black). It is clear that when the D-term is
included, the settling time and overshoot are greatly reduced. However, because of
the aforementioned problems, the inclusion of the D-term must be done with great
caution.

A common type of instability in power electronic converters is the period-doubling
bifurcation. This can greatly downgrade the efficiency and performance of the con-
verter as it almost doubles the current ripple. This instability cannot be detected by
conventional methodologies, like Bode plots, and therefore, another approach needs
to be taken. In order to fully understand the effect the D-term has on the stabil-
ity of the converter, all of the components of the control strategy that is employed
must carefully be examined. The main components of the PID controller are the
gains KP , KI and KD as well as the values from the ramp comparator VL and VU .
Figure 4.2 (b) shows the bifurcation diagram with the state variable u sampled once
per switching cycle as the KD term is varied. For low values of KD, the system oper-
ates with a period-2 orbit. This is clear from Figure 4.2 (c), where the steady-state
response of the system with KD = 0 is shown. The output voltage repeats every 2T .
However, at KD = 0.005 a bifurcation takes place. For values of KD > 0.005, the
system operates with a period-1 orbit as illustrated in Figure 4.2 (d), which shows
that the output voltage has the same period as the ramp signal with KD = 0.01.
Thus, it is clear that the inclusion of the D-term is beneficial as it increases the
stability margin of the system.

To further investigate the effect that the D-term has on the stability of the system,
Figure 4.3 shows the bifurcation diagrams with KP , VU and VL as the bifurcation
variables for both KD = 0 and KD 6= 0. For the KP bifurcation diagram, the ramp
characteristics are fixed at VL = 3.8V and VU = 8.2V and (a) KD = 0 and (b)
KD = 0.004. As expected in both cases, as the KP term is increased, the system
moves from a period-1 orbit to a period-2 orbit through a smooth period-doubling
bifurcation. It is clear from these figures that the system is more stable withKD > 0.
A similar picture is revealed when VU and VL are altered, the bifurcation diagrams
with KD = 0 (c) and (e) and KD = 0.006 (d) and (f) are shown, with VU and VL
as the parameters of interest, respectively. By increasing the difference VU − VL,
a similar behaviour as decreasing the value of KP is observed i.e. a high VU − VL
difference is similar to a smallKP value. Figure 4.3 (c) shows the bifurcation diagram
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Bifurcation diagrams for (a) KP with KD = 0 (b) KP with KD = 0.004
(c) VU with KD = 0 (d) VU with KD = 0.006 (e) VL with KD = 0 (f) VL with
KD = 0.006
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4.3 Stability analysis and controller tuning

with VU as the bifurcation parameter. For low values of VU , the system operates
with a period-2 orbit. The VU − VL difference is small and similar dynamics are
seen for high KP values. As VU increases, the VU − VL difference also increases and
the system moves through a smooth period-doubling bifurcation. Similar dynamics
are seen as the KP value decreases. Figure 4.3 (e) and (f) shows the bifurcation
diagrams of VL when KD is and is not included, respectively. Comparable results
are seen but for VL decreasing. In all three cases, the stability margin increases
when KD is included.

The aim when tuning a PID controller used in dc-dc converters is typically to achieve:

1. Zero steady-state error

2. Fast-transient behaviour

3. Low overshoot

4. Low current ripple

5. Keep the D-term as low as possible

The converter has 0 poles at the origin and is termed a type-0 system. Thus, the
zero steady-state error is achieved with any value of the integral term KI . The KP

and KD term can be set using frequency-response methods, but it is important to
ensure that the current ripple is as low as possible. To achieve this, either the KP

is decreased and the settling time is increased or KD is increased which amplifies
any noise problems. Therefore, KD must be set to the minimum value that will not
cause any serious noise problems while at the same time will force the system to
operate in a stable region away from period-doubling bifurcations. This is the focus
of this section of the thesis; to perform stability analysis that is required to capture
the onset of a period-doubling bifurcation and through that analysis to identify the
most suitable KD value.

4.3 Stability analysis and controller tuning

In order to select the D-term to avoid period-doubling bifurcations, the value of KD

at which they occur must be predicted. This value is termed the critical KD value
or KDCRIT

. It must be noted that PID controllers in power electronics are digi-
tally implemented in order to use specifically designed filters. Therefore, the effect
of the analog to digital conversion (A/D) conversion must be taken into account.
Having said that, when a suitably chosen high clock frequency is employed, when
compared with the system’s bandwidth, the influence of the digital implementation
is negligible. The analogue model can be used instead, for example [62].
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4.3 Stability analysis and controller tuning

4.3.1 Application of Filippov’s method

The Filippov method relates events before and after switching thus, enabling dy-
namical analysis of systems with a set of discontinuous state space equations. The
Saltation matrix, S, is given by [60]:

S = I + (f+ − f−)nT

nTf− + ∂h
∂t

∣∣∣∣∣∣ t = tΣ

x(t) = x(tΣ)

(4.5)

with f− and f+ being the right hand side of (4.1) before and after switching, h(x, t)
is the switching surface defined in (4.4) and n is the normal to the switching surface
h. The vector fields that govern the buck converter are:

f+ =


−σvΣ + ωuΣ

−ωvΣ − σuΣ + δinVin

KI (vΣ − Vref )

 , f− =


−σvΣ + ωuΣ

−ωvΣ − σuΣ

KI (vΣ − Vref )


Using (4.4), the expression of the function h, it is possible to determine the normal
vector to the manifold as well as its partial derivative with respect to time at t = d̄T ,
where d̄ = (1− d):

n =


∂h
∂vo

∂h
∂u
∂h
∂vi

 =


KP − σKD

ωKD

1

 ,
∂h

∂t
= − 1

T
(VU − VL)

This gives the following:

(f+ − f−)nT =


0

δinVin

0

 [ KP − σKD ωKD 1
]

=


0 0 0

δinVin (KP − σKD) δinVinωKD δinVin

0 0 0



nTf− + ∂h

∂t
=
[
KP − σKD ωKD 1

] 
−σvΣ + ωuΣ

−ωvΣ − σuΣ

KI (vΣ − Vref )

− 1
T

(VU − VL)

=KP (−σvΣ + ωuΣ) +KI (vΣ − Vref )

+KD

[(
σ2 − ω2

)
vΣ − 2σωuΣ

]
− 1
T

(VU − VL)
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4.3 Stability analysis and controller tuning

For brevity, let xC = KP (−σvΣ + ωuΣ)+KI (vΣ − Vref )+KD [(σ2 − ω2) vΣ − 2σωuΣ]−
1
T

(VU − VL). Thus, the Saltation matrix at d̄T , is:

S1 =


1 0 0
S21 1 + S22 S23

0 0 1

 (4.6)

where
S21 = δinVin (KP − σKD)

xC
, S22 = δinVinωKD

xC
, S23 = δinVin

xC
(4.7)

The second switching point occurs at the falling edge of the ramp signal, thus ∂h/∂t
approaches∞. Hence, S2 is the identity matrix with the same dimension as S1. The
overall Monodromy matrix is:

ΦM(T, 0) = eA(1−d̄)TS1e
Ad̄T (4.8)

where the exponential matrix is given by:

eAT = e−σT


cos (ωT ) sin (ωT ) 0
− sin (ωT ) cos (ωT ) 0
KIYI KIY2 eσT


with

Y1 = σeσT − σ cos (ωT ) + ω sin (ωT )
σ2 + ω2 , Y2 = ωeσT − σ sin (ωT )− ω cos (ωT )

σ2 + ω2

Obviously, for the calculation of the Monodromy matrix, the duty cycle and the
value of the state vector at t = d̄T are required. The analytical expression of the
solution of a linear ODE ẋ(t) = Ax(t) +Bu is as follows:

x(t) = eA(t−t0)x(t0) +
t�

t0

eA(t−τ)Budτ (4.9)

Using (4.9), the state vector at time t = d̄T and t = T can be found:

x
(
d̄T
)

= Φoff

(
d̄T, 0

)
x (0) + Ioff

(
d̄T
)

(4.10)

x(T ) = Φon

(
T, d̄T

)
x
(
d̄T
)

+ Ion (T ) (4.11)

where:

Ioff
(
d̄T
)

=
d̄T�

0

eA(d̄T−τ)Boffxindτ
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4.3 Stability analysis and controller tuning

Ion (T ) =
T�

d̄T

eA(T−τ)Bonxindτ

Φoff

(
d̄T, 0

)
= eAd̄T and Φon

(
T, d̄T

)
= eA(1−d̄)T

Using the Newton-Raphson method, the duty cycle and switching points can be
found [63].

4.3.2 Proposed design strategy

The characteristic equation of the Monodromy matrix (denoted by ΦM instead of
ΦM (T, 0) for brevity) is given by [64]:

− λ3 + tr (ΦM)λ2 − 0.5
(
tr (ΦM)2 − tr

(
ΦM

2
))
λ+ det (ΦM) (4.12)

where tr and det are the trace and determinant of the matrix, respectively, which
are:

det (ΦM) = e−2σT + e−2σTS22 (4.13)

tr (ΦM) = e−σT (2 cos (ωT ) + S21 sin (ωT ) + S22 cos (ωT ) + S23KIY2) + 1 (4.14)

Thus, the coefficient of the λ term in (4.12) is:

e−σT
(

2 cos (ωT ) + e−σT + S21 sin (ωT ) + S22
(
e−σT + cos (ωT )

)
+ S23

(
e−σTKIY2 cos (ωT )− e−σTKIY1 sin (ωT )

))

4.3.2.1 Saddle-node bifurcation

Even though the main focus of this work is to tune a PID controller to avoid fast-scale
instabilities, it is important to ensure that other types of instabilities do not occur.
Saddle-node bifurcations effectively change the operating point of the converter.
This can be catastrophic in many applications and therefore, must be avoided at all
costs. The system undergoes a saddle-node bifurcation when one of the eigenvalues
is equal to +1. Setting λ = +1, (4.12) becomes:

− 1 + tr (ΦM)− 0.5
(
tr (ΦM)2 − tr

(
ΦM

2
))

+ det (ΦM) = 0 (4.15)

42



4.3 Stability analysis and controller tuning

Evaluating(4.15), yields:

e−σTKIS23
(
e−σTY1 sin (ωT ) + Y2

(
1− e−σT cos (ωT )

))
= 0

e−σTY1 sin (ωT ) + Y2
(
1− e−σT cos (ωT )

)
= 0 (4.16)

Since (4.16) contains no terms that depend on the controller parameters, i.e. KP ,KI

and KD, the controller has no effect on the occurrence of saddle-node bifurcations.

4.3.2.2 Period-doubling bifurcation

The system undergoes a period-doubling bifurcation when one of the eigenvalues is
equal to −1. Setting λ = −1 in (4.12) yields:

1 + tr (ΦM) + 0.5
(
tr (ΦM)2 − tr

(
ΦM

2
))

+ det (ΦM) = 0 (4.17)

Evaluating (4.17):

c1 + e−σT
[
2 sin (ωT )S21+(

2e−σT + 2 cos (ωT )
)
S22+((

1 + e−σT
)
KIY2 cos (ωT )− e−σTKIY1 sin (ωT )

)
S23

]
= 0

where c1 = 2 + e−σT
(
4 cos (ωT ) + 2e−σT

)
. Using (4.7):

xCc1 + e−σT
[
2 sin (ωT ) δinVin (KP − σKD) +(

2e−σT + 2 cos (ωT )
)
δinVinωKD+((

1 + e−σT
)
KIY2 cos (ωT )− e−σTKIY1 sin (ωT )

)
δinVin

]
= 0

Grouping the terms dependent on KP , KI , KD, VU and VL:

PKP +DKD + IKI + C(VU − VL) = 0 (4.18)

where

P = 2δinVine−σT sin (ωT ) + (−σvΣ + ωuΣ) c1

D = δinVine
−σT

(
2ωe−σT + 2ω cos (ωT )− 2σ sin (ωT )

)
+
((
σ2 − ω2

)
vΣ − 2σωuΣ

)
c1

I = δinVine
−σT

(
Y2 + e−σTY2 cos (ωT )− e−σTY1 sin (ωT )

)
+ (vΣ − Vref ) c1

C = − 1
T
c1
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4.3 Stability analysis and controller tuning

Using (4.18), the specific closed form analytical expressions that describe the sta-
bility boundaries (assuming all other parameters are kept constant) are as follows:

VUCRIT
= −KPP −KII −KDD + CVL

C
(4.19)

VLCRIT
= KPP +KII +KDD + CVU

C
(4.20)

KDCRIT
= −KPP −KII − C (VU − VL)

D
(4.21)

From Figure 4.2 (b), a period-doubling bifurcation is seen at KD w 0.0050 and, from
(4.21), the predicted bifurcation point is at KD = 0.0053. Thus, the simulated and
predicted results are in very good agreement. Similar results can be shown for other
controller parameters.

4.3.2.3 Numerical example

Using the circuit parameters outlined in Figure 4.1, consider the case when KD =
0.000235. From Figure 4.2 (b), it is clear that the system is unstable and is operating
with a period-2 orbit. The switching points are given by:

vΣ

uΣ

viΣ

 =


11.2389
4.4793
6.6455


and d̄ = 0.4577. Thus, the Saltation matrix is found using (4.6) and gives:

S1 =


1 0 0

−9.7246 0.7487 −1.1736
0 0 1


The Monodromy matrix is found using (4.8):

ΦM =


−0.7754 −0.0076 −0.2075
−8.0112 −0.7349 −1.0361

0.0018 0.0003 0.9998


and gives eigenvalues at:

λ =


−1.0027
−0.5074

0.9995


Since one of the eigenvalues is outside the unit circle, λ1 = −1.0027, the system
is unstable. Hence, the output is period-2. It is important to note that while
λ3 = 0.995, this is very close to +1 and is the contributed by the integrator in
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the controller. This term is dominated by the integral term and it should not be
considered when estimating the stability margin [60].

Now consider the case where KD = 0.01. From Figure 4.2 (b), the system operates
with a period-1 orbit and is stable. Following the same procedure as above, the
switching points are: 

vΣ

uΣ

viΣ

 =


11.2874
4.5533

19.4161


and d̄ = 0.4577. Thus, the Saltation matrix is found using (4.6) and gives:

S1 =


1 0 0

−0.8040 −1.0551 −0.2256
0 0 1


The Monodromy matrix is found using (4.8):

ΦM =


0.7185 0 −0.0339
−0.6034 −0.9972 −0.2039

0.0035 0.0004 1


and gives eigenvalues at:

λ =


−0.9972
−0.7190

0.9995


Since all of the eigenvalues lie inside the unit circle, the system is stable.

The duty cycle and state vector were calculated using the Newton-Raphson method
with the tolerance set to 13 decimal places. The critical KD term was calculated to
6 decimal places. Using Matlab R© R2013a [65] with a 1.5 (GHz) Intel R© i3 processor,
the script took 16 (s) to determine the critical KD value and the eigenvalues when
KD = 0.000235 and KD = 0.01. At present fast-scale instabilities are checked by
extensive simulations or experimentation over a large parameter range [60]. The
proposed method allows for an accurate prediction of when fast-scale instabilities
will occur in a more efficient manner. Similar methods are used in the proceeding
work.

4.3.2.4 Controller design

(4.21) can be used in controller design to avoid fast-scale instabilities. The steps to
tune the controller are as follows:

1. Tune the value of KP and KI using standard linear control theory e.g. Bode
plots.
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2. Check if the converter requires a better transient performance or if the cur-
rent/voltage ripple is higher than expected.

a) If the answer is no, the D-term is not required.

b) If the answer is yes, the D-term is required and the designer should pro-
ceed to step 3.

3. A faster transient response or a less oscillatory response is required. Thus, the
D-term should now be included and be tuned using (4.21) or using a figure
similar to Figure 4.4. Selecting a value higher than that given by (4.21) will
lead to a stable system with the desired response.

Figure 4.4: Values of KD at which period-doubling bifurcations occur as R varies.

Figure 4.4 shows the critical KD value as the load resistance varies. When KD is in
the shaded region, the system is unstable. This can be used by a designer in order
to properly tune the PID controller. For example, using the parameters given in
Figure 4.1, the nominal output load is 22 Ω. Thus, in order to guarantee stability,
the D-term must be set so KD > 0.0053. On the other hand, if the load resistance
is varying between 16 Ω to 22 Ω, then in order to ensure stability, KD > 0.0053 even
if the system only spends a fraction of time at 22 Ω and the majority of its time
at 16 Ω. In this scenario, the KD value is unnecessarily high for large portions of
time and puts the system at risk to amplification of noise. Ideally, a method of
changing the D-term as the load varies in such a way as to retain the benefits of
PID control and at the same time guaranteeing a stable response is required. In
the next section an adaptive PID controller that constantly monitors the changes
in the supply voltage and output load and updates the KD term appropriately is
proposed.

46



4.4 Adaptive PID controller

4.4 Adaptive PID controller

Figure 4.5: Adaptive PID control scheme

In the previous section, the Monodromy matrix was calculated and Floquet multi-
pliers were derived as a function of the controller parameters (4.19)-(4.21). These
results allow the proper tuning of the PID controller to avoid fast-scale instabilities.
In cases where the parameters are fixed, (4.21) or Figure 4.4 can be used to tune
the controller in order to have satisfactory operation. In cases where the parameters
are not fixed, e.g. varying load resistance, supply voltage, one option is to tune for
the worst-case scenario. For example, if the output load varies between 14− 22 Ω, a
KD term can be selected that will give a stable period-1 response for all resistance
values. In this case, 22 Ω has the highest KDCRIT

value at 0.0053 (as explained in
the previous section). This will ensure stability across the entire operating range.
However, if the system only spends a fraction of time at 22 Ω, it is a lot better if the
D-term can be varied according to the value of the load resistance as this retains the
benefits of using the KD term while minimizing the amplification of noise. Thus,
using (4.21) the adaptive PID controller can be tuned.

Figure 4.5 illustrates the proposed control scheme where the input voltage and load
resistance are monitored using estimators [66, 67, 68] and then the KD term is
adjusted accordingly. The function of the supervising controller is to update the
KD term and ensures reliable period-1 orbits while maintaining the advantages of
the D-term. For practical applications, it may be desirable to perform off-board
calculations using (4.21) to develop a look-up table for the supervising controller.
Table 4.11 shows a sample look-up table for a buck converter, with parameters out-

1In order to guarantee robustness, (4.21) was multiplied by 1.25.
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4.5 Application to discontinuous switching manifold

lined in Figure 4.1, where R and Vin may vary. The values of R and Vin were selected
to demonstrate that as R and Vin increase, the criticalKD value also increases. Since
a 1 (Ω) range for R is given in the table, the D-term is tuned for the worst-case sce-
nario e.g. in the 13 − 14 (Ω) range, the D-term is tuned to ensure stability when
R = 14 (Ω).

Vin (V )/R (Ω) 13 − 14 15 − 16 17 − 18 19 − 20 21 − 22
24.6 0 0 0.00010 0.00036 0.00077
24.7 0 0.00002 0.00020 0.00005 0.00108
24.8 0 0.00013 0.00045 0.00097 0.00217
24.9 0 0.00027 0.00068 0.00147 0.00383
25.0 0.00009 0.00042 0.00097 0.00220 0.00830

Table 4.1: Sample look-up table for the supervising controller

Consider a buck converter system where the output load varies with time causing
the system to slip in and out of stability. Figure 4.6 (b) shows a stable period-1 orbit
for R = 16 Ω with KD set to 0.00042 and Vin = 25 (V). The system is operating as
desired. However, R increases to 17 Ω. If the D-term is not updated, this causes the
system to lose stability through a period-doubling bifurcation as shown in Figure 4.6
(c) where the output is a period-2 orbit. However, if a supervising controller which
updates the D-term to take this change into account is present, the period-1 orbit can
be re-established. Figure 4.6 (d) shows the output when the supervising controller
is active and updates KD to 0.00097. It is clear that the inclusion of the supervising
controller using (4.21) can be used to ensure stability over a wide operating region.

Figure 4.6 (a) shows the transient response as R and KD vary. Notice that even for
small variations of the load resistance, 1 Ω, the voltage ripple of the system increases
when KD is not updated. It then returns to its previous value when KD is updated.
A similar response is seen when the supply voltage is varied thus demonstrating the
effectiveness of the controller.

4.5 Application to discontinuous switching manifold

In the previous sections, the proper tuning of a PID controller for a VMC buck
converter was thoroughly presented. This was achieved by considering the Saltation
matrix. The switching condition was described by the smooth function h(x, t).
The smoothness of h is required as the Filippov method (4.5) uses its derivative
with respect to the state vector, ∂h/∂x. However, the smoothness of h cannot be
guaranteed when other converter topologies are used. For example, when a PID
controller is applied to a CMC buck converter, the inclusion of the ∂i/∂t term

48



4.5 Application to discontinuous switching manifold

(a) (b)

(c) (d)

Figure 4.6: Application of adaptive PID control with step change in the load
resistance (a) Transient response (b) Period-1 orbit with R = 16 Ω, KD = 0.00042
(c) Period-2 orbit with R = 17 Ω, KD = 0.00042 (d) Period-1 orbit with R = 17 Ω,
KD = 0.00097.

creates a discontinuous function. Another case where this can be observed is the
VMC boost converter when a PID controller is used. This causes an added difficulty
for the method proposed for the proper tuning of a PID controller. Thus, the issue of
non-smoothness and the application of the proposed control strategy are investigated
in this section.

4.5.1 Boost converter model

The circuit diagram for the boost converter is shown in Figure 4.7 (a). The boost
converter is a step-up dc-dc converter used to convert an input voltage, Vin, to a
higher output voltage, vo. The switch, SW, is closed at the start of the switching
period for a time dT and then opens and remains open for the remainder of the
switching period (1 − d)T . The boost converter with a PID controller is described
by the equations:
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(a)

(b)

Figure 4.7: (a) VMC boost converter with a PID controller circuit diagram (b)
Bifurcation diagram with KD as the bifurcation variable with circuit parameters
Vin = 16V , L = 208µH, C = 222µF , R = 12.5 Ω, Vref = 25V , VL = 0, VU = 1,
KP = 0.075, KI = 0.01 and T = 333µs.
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4.5 Application to discontinuous switching manifold

ẋ =


fon(x, t) = Aonx+Bonxin SW1 is on and i > 0

foff (x, t) = Aoffx +Boffxin SW1 is off and i > 0

fdcm(x, t) = Adcmx+Bdcmxin SW1 is off and i = 0

(4.22)

where

Aon


− 1
RC

0 0
0 0 0
−KI 0 0

 , Aoff =


− 1
RC

1
C

0
− 1
L

0 0
−KI 0 0

 , Adcm =


− 1
RC

0 0
0 0 0
−KI 0 0



Bon = Boff =


0
1
L

KI

 , Bdcm =


0
0
KI


x(t) =

[
vo i vi

]T
, xin =

[
0 Vin Vref

]T
.

The circuit spends donT operating in the ON-topology, doffT operating in the OFF-
topology and ddcmT operating in the DCM-topology, where don + doff + ddcm = 1.
The opening and closing of SW is determined by comparing the control signal to
the ramp signal. When the control signal is greater than the ramp signal, SW is
closed and the circuit is modelled with the ON-topology. When the control signal
is less than the ramp signal, SW is open and the circuit is modelled with either the
OFF-topology or the Discontinuous Conduction Mode (DCM) topology depending
on whether i > 0. The control signal is given as

vco =KPve +KI

� t

0
vedτ +KD

d

dt
(ve)

vco_on = vco_dcm =KP (Vref − vo) + vi +KD

( 1
RC

vo

)
vco_off =KP (Vref − vo) + vi +KD

( 1
RC

vo −
1
C
i
)

The control signal is non-smooth as the derivative at the switching instant is unde-
fined.

4.5.2 Application of the Filippov method

In order to investigate the effect of the non-smoothness of h, a boost converter
with a PID controller is considered. Unlike the VMC buck converter, the switching
manifold is given by a piece-wise function:

h(x, t) =

hA(x, t), x εGA

hB(x, t), x εGB
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4.5 Application to discontinuous switching manifold

where h(x, t) is smooth in the GA and GB region but is discontinuous when switch-
ing between the two regions at the border. As before, switching from A→ B occurs
when hA(x, t) = 0 where tΣ is the time instant when switching takes place. However,
in this case hA(x, t) 6= hB(x, t). Thus, when switching occurs hB(x, tΣ) 6= 0. Recall
that in the derivation of the Filippov method in Section 2.6 and in (2.22), the Taylor
series is used and the function hA(x, t) is expanded with respect to both time and
state vectors at t = tΣ and x = x(tΣ). This is equated to zero because as the trajec-
tory approaches the switching manifold in the state space h(x, tΣ) = hA(x, tΣ) = 0.
The Saltation matrix has the form:

S = I + (f+(x(t), t)− f−(x̄(t), t))nT

nTf−(x̄(t), t) + ∂hA

∂t

∣∣∣∣∣∣ t = tΣ

x(t) = x(tΣ)

(4.23)

n = ∂hA(x, t)
∂x

∣∣∣∣∣∣ t = tΣ

x(t) = x(tΣ)

For the boost converter with circuit parameters as in Figure 4.7, the topology order is
as follows: ON→OFF→DCM. Thus, there are two switching conditions to consider
occurring at tΣ1, xΣ1 and tΣ2, xΣ2. The switching condition from ON→OFF is given
as

h1(x, t) = KP (Vref − vo) + vi +KD

( 1
RC

vo

)
− vramp

In order the have DCM operation i = 0 and the switching manifold is given by:

h2(x, t) = x2 = i

The derivation of S1 is:

f+ =


RiΣ1−vΣ1

RC
Vin−vΣ1

L

KI (Vref − vΣ1)

 , f− =


−vΣ1
RC
Vin

L

KI (Vref − vΣ1)


n1 =

[
−KP +KD

(
1
RC

)
0 1

]
,
∂h1

∂t
= − 1

T
(VU − VL)

Using (4.6), S1 is:

S1 =


1 + iΣ1(−KP +KD( 1

RC ))
CxB1

0 iΣ1
CxB1

− vΣ1
LxB1

(
−KP +KD

(
1
RC

))
1 − vΣ1

LxB1

0 0 1

 (4.24)
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4.5 Application to discontinuous switching manifold

where xB1 = KI (Vref − vΣ1) − vΣ1
RC

(
−KP +KD

(
1
RC

))
− VU−VL

T
. At the second

switching instant, i.e. OFF→DCM:

f+ =


−vΣ2
RC

0
KI (Vref − vΣ2)

 , f− =


RiΣ2−vΣ2

RC
Vin−vΣ2

L

KI (Vref − vΣ2)



n2 =
[

0 1 0
]
,
∂h2

∂t
= 0

The second Saltation matrix is:

S2 =


1 L

C
iΣ

Vin−vΣ2
0

0 0 0
0 0 1


However, switching occurs when i = 0 thus, iΣ = 0 and S2 is

1 0 0
0 0 0
0 0 1

 (4.25)

The third switching point occurs at the falling edge of the ramp signal, thus ∂h3/∂t =
∞. Hence, S3 is the identity matrix with the same dimension as S1 and S2. The
overall Monodromy matrix is:

ΦM = S3ΦdcmS2ΦoffS1Φon (4.26)

where

Φdcm = eAdcmddcmT , Φoff = eAoffdoffT , ΦAondonT

The bifurcation diagram of the PID controlled boost converter is illustrated in
Figure 4.7 (b). It is clear from this, that a period doubling bifurcation takes place
at KD = 0.000003938. In Table 4.2, the fixed point x(0) and the corresponding
Floquet multipliers which were calculated using (4.26) are shown. It is clear that as
the value of KD decreases, one of the Floquet multipliers moves closer to −1. Be-
tween KD = 0.0000039375 and 0.0000038750, the eigenvalue crosses the unit circle
at −1 and a period-doubling bifurcation takes place. Therefore, (4.23) is the correct
expression for calculating the Saltation matrix when the switching manifold is given
by a discontinuous function.

It is important to note, that the eigenvalue in Table 4.2 that is closest to +1 is as
a result of the integrator in the controller and does not contribute to the system’s
stability [60]. Furthermore, the eigenvalue at 0 is owing to the fact that the system
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4.6 Conclusions

KDx10−6 x(0) Eigenvalues
4.0625 [24.9264− 0.00000.1910]T [ −0.9979 0 0.9999 ]
4.0000 [24.9266− 0.00000.1916]T [ −0.9985 0 0.9999 ]
3.9375 [24.9269− 0.00000.1921]T [ −0.9991 0 0.9999 ]
3.8750 [24.9224− 0.00000.1927]T [ −1.0026 0 0.9999 ]
3.8125 [24.8779− 0.00000.1933]T [ −1.0300 0 0.9999 ]
3.7500 [24.8379− 0.00000.1938]T [ −1.0545 0 0.9999 ]

Table 4.2: Floquet multipliers of fixed point

is operating in DCM. Having established a method for the formation of the Saltation
matrix, equation (4.26) can be used to find the eigenvalues of the system and thus,
tune the KD term of the controller. This can be used off-line when the parameters
are fixed or in an adaptive controller, similar to Section 4.4, in the case when the
parameters are not fixed.

4.6 Conclusions

This chapter examined the tuning of a PID controller used in dc-dc converters
in order to guarantee a fast and stable response. The advantage and drawbacks of
including the derivative term were clearly and thoroughly highlighted and studied. It
was shown that the inclusion of the D-term not only improves the transient response
but also increases the stability margin of the system. However, its inclusion increases
the noise levels in systems and must be used with caution. Thus, design guidelines
were developed to find its minimum value to retain the benefits of the D-term while
minimising the amplification of noise. An adaptive controller was presented, which
is used when the parameters of the converter are not fixed, that guarantees a fast
and stable response.

The inclusion of the D-term in the mathematical analysis of converters where the
function that describes the switching conditions is non-smooth required a modifica-
tion of the formation of the Saltation matrix. This chapter presented a technique
for this modification and verified is validity. This work detailed how the Filippov
method can be used to derive the Saltation matrix with a non-smooth switching
manifold.
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5 Intermittent instability in power
electronic converters

5.1 Introduction

Traditionally, analog controllers are employed to regulate circuits [9]. However, with
advances in technology, digital control has become a viable alternative with many
potential advantages which include their low power, immunity to analog component
variations, compatibility with digital systems, faster design process and the pos-
sibility for more advanced control schemes [1]. Advanced control schemes enable
converters to operate with higher efficiencies. Hence, digital state-feedback con-
trollers are frequently used in dc-dc converters when high/optimal performance is
required [69]. However, little work exists on the nonlinear dynamics of such con-
verters. [69] and [70] both detail some of the possible nonlinear dynamics exhibited
by such systems. However, this research assumes ideal operating conditions, which
cannot be guaranteed in practical applications.

Intermittent operation can qualitatively be described as distributed periods of ir-
regular motion such as bursts of unstable or chaotic operation separated by long
periods of stable operation. It can arise in periodically driven nonlinear systems,
where the frequency of the coupled signal is not consistent with the system’s driving
frequency. It occurs when a crucial parameter is being modulated by the coupling
signal. Such intermittency has been observed in switch-mode power supplies which
are not protected against spurious signals or where parasitic capacitances or induc-
tances are present causing unwanted oscillations of the control signals [45]. The noise
can also take the form of coupling along radiated paths on the same circuit board.
These unwanted oscillations affect the efficiency of the system and thus, a better
analysis of the nonlinear dynamics is required to provide design guidelines in order
to eliminate this type of operation. Previous works have developed discrete maps
to derive the Jacobian matrix for noise perturbed dc-dc converters [42, 45], these
methods are algebraically complex and not suitable for tuning controller parameters
in order to eliminate intermittency.

The aim of this research is to study the effect of noise on a buck converter with
a digital state-feedback controller. Once the nonlinear behaviour exhibited by the
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5.2 Survey of previous works

circuit has been characterised, the theoretical framework for stable period-1 oper-
ation is presented which enables designers to select control parameters in order to
eliminate such unstable behaviour.

5.2 Survey of previous works

The intermittency route to chaos was first discovered by Manneville and Pomeau
[41]. By considering the Lorenz model, presented in [2], the authors observed the
system lose stability and give birth to a limit cycle for a short period of time. As one
of the variables of the system was varied, the duration the limit cycle existed varied.
Intermittent operation was first observed in dc-dc converters in [44] by considering a
VMC buck converter with the ramp signal being perturbed by a disturbance signal.
By considering a disturbance signal of both sinusoidal and rectangular waveforms,
the output voltage was seen to go through distributed periods of irregular motion.
As the strength of the interference signal increased, the duration of the unstable
operation also increased. If the strength of the interference signal was sufficiently
high, the output was chaotic. While no quantitative analysis of this work was
performed, the author details at what signal strength intermittent operation is first
observed and when the output is chaotic. From this, the author concludes that
for high feedback gains or large input voltage, the system is more likely to exhibit
intermittent operation.

Similar work was carried out in [43] for a CMC boost converter. Through the use of
time-bifurcation diagrams, period-doubling bifurcations are observed as time varies.
For sufficiently high intruding signal strengths, the system exhibits subharmonic
and chaotic operation. Using discrete-maps, the author derives the eigenvalues
of the system and the critical spurious signal strength at which period-doubling
bifurcations first occur.

In [42], the author considers perturbing the control signal of a VMC buck converter
with a sinusoidal disturbance signal. Three cases are considered that relates the
frequency of the disturbance signal to the frequency of the external clock; rational
ratios, irrational ratios and rational ratios close to the rational multiples. Quasi-
periodic orbits are observed for irrational ratios. When the interference signal is
a rational multiple of the external clock frequency, the system operates with an
orbit equal to the denominator of the rational multiple. Intermittent operation is
observed for the third case. In order to apply conventional bifurcation analysis tech-
niques, the authors apply a transformation that relates changes in time to changes
in another variable. This enables the derivation of an iterative discrete-time map
and allows the examination of the movement of the eigenvalues of the system as the
variable changes. Similar works are carried out in [45] where sinusoidal, triangu-
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5.3 System model

lar and sawtooth disturbance signals perturbing the input voltage, control voltage
and reference voltage are considered. The authors also investigate the effect of two
interference signals perturbing input voltage and reference voltage simultaneously.

Little work has been carried out in the way of control of intermittent operation. [71]
applies resonant parametric perturbation, where a control parameter is perturbed
in order to ensure stability, to a parallel-buck converter with the input voltage being
perturbed by a noise signal as a method for the avoidance of intermittent operation.
However, little or no work exists on design procedures for controllers in order to
avoid intermittent operation.

5.3 System model

Figure 5.1: Buck converter with digital state-feedback controller.

Recall the equations used to model the buck converter in Section 4.2

ẋ =

 fon(x, t) = Aonx+Bonxin SW1 is on

foff (x, t) = Aoffx+Boffxin SW1 is off
(5.1)

where

A = Aon = Aoff =
 −σ ω

−ω −σ



Bon =
 0
δin

 , Boff =
 0

0



x(t) =
 vo

u

 , xin = Vin , δin = ω2 + σ2

ω

Note: no integrator is present in the controller and the state-space is given by a 2x2
matrix. A buck converter with a digital state-feedback controller is considered in
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5.3 System model

Figure 5.1. As a digital controller is employed, the state vector is sampled at the
switching frequency, using a zero-order hold (ZOH), and compared to the demanded
value xref =

[
Vref Uref

]T
+
[

∆vo

2
1

2ωC∆iL − σ
2ω∆vo

]T
, where ∆vo and ∆iL are

the estimated voltage and current ripple given by [72]:

∆iL = Vin − vref
L

dT

∆vo = ∆iLT
8C

By knowing the circuit parameters and estimating the current and voltage ripples,
the proper selection of the xref terms means the control scheme has an indirect
integral action. The state-feedback control law is formed by adding the two state
error terms together and multiplying by the gain

[
kv ku

]
, as well as adding a

constant affine term equal to the desired steady-state value of the system dss =
Vref/Vin. The control signal is given by:

d (kT ) =
[
kv ku

]
(x(kT )− xref ) + dss (5.2)

At this point, it is important to note that digital implementation requires A/D and
digital to analog (D/A) conversion. This means that the sampled values must be
quantized; quantization is the mapping of values in a continuous set to a discrete set.
However, quantization can cause limit cycling to occur [1]. The aim of this work is
to study the effect of noise on the occurrence of intermittent operation. In order to
distinguish between the effects of noise and the effects of quantization, the resolution
of the quantizers is assumed to be infinitely small. The effect of quantization on the
nonlinear dynamics of the converter is investigated in chapter 6.

(a) (b)

Figure 5.2: (a) Steady-state output voltage and (b) Poincaré section with the fol-
lowing circuit parameters L = 20 (mH), C = 47 (µF ), R = 22 (Ω), T = 400 (µs),
Vref = 12.4381 (V ), Uref = 11.677 (V ), kv = −0.1334 and ku = 0.0092.

Figure 5.2 shows (a) the steady-state output voltage and (b) the Poincaré section of
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5.4 Influence of sinusoidal interference signal at the input voltage

the buck converter operating under ideal conditions. The Poincaré section samples
both of the state variables once per switching cycle and plots them against each
other. If the systems trajectory intersects the Poincaré plane n times, then n points
are seen on the section. In this case, a single point is shown illustrating that the
system is operating with the desired period-1 orbit. The effect of perturbing the
input voltage with an undesirable noise signal is now considered.

5.4 Influence of sinusoidal interference signal at the
input voltage

The unperturbed buck converter operates with a stable period-1 orbit. This assumes
ideal operating conditions and ideal sources. In practical applications, noise sources
can affect the input voltage of a buck converter. Noise signals may arise because of
finite input capacitances, ESR of the input capacitor or stray inductance and stray
capacitance in the circuit [73]. Consider an interference signal, vs, which is injected
directly into the input voltage. This coupling can be modelled as an additive process
which superposes the disturbance directly on the input voltage. The perturbed input
voltage V ∗in is now given by:

V ∗in = Vin + vs (5.3)

If the interference signal is periodic, the simplest case to consider is a sinusoidal
disturbance signal with an amplitude v̂s. Then the perturbed signal is:

V ∗in = Vin + v̂s sin (2πfnt) = Vin (1 + αv sin (2πfnt)) (5.4)

where αv is the strength of the interference which is defined as the ratio of v̂s to
Vin i.e. αv = v̂s/Vin and fn is the frequency of the noise where fn = αff and αfεR
which is the ratio of the noise frequency to the switching frequency. Since αf can
be any value, there are three cases to consider:

1. αf is an irrational number.

2. αf is a rational number.

3. αf is a rational number and the noise frequency is close to the switching
frequency or one of its integer multiples.

5.4.1 Multiples of the switching frequency

For rational frequency ratios, αfεQ and can be expressed in the form Nnum/Nden,
where Nnum and Nden are positive integers. In this case, the buck converter op-
erates with a periodicity equal to the denominator of αf i.e. a period-Nden orbit.
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5.4 Influence of sinusoidal interference signal at the input voltage

(a) (b)

(c) (d)

Figure 5.3: Poincaré section with sinusoidal disturbance signal and αv = 0.5 for
different frequency ratios (a) αf = 1, 2 and 3 (dot, square and x, respectively) (b)
αf = 1/2, 1/3 and 3/4 (dots, squares and xs, respectively) (c) αf = Golden ratio
and (d) αf = Silver ratio.

For example, Figure 5.3 (a) shows the Poincaré section for integer multiples of αf .
Specifically, αf = 1, 2 and 3. In this case, Nden = 1 and the system operates with
a period-1 orbit which is characterised by a single point on the Poincaré section.
In contrast to this, (b) shows the Poincaré section for fractional multiples of αf i.e.
when Nden 6= 1. Specifically, αf = 1/2, 1/3 and 3/4 which corresponds to period-2,
period-3 and period-4 operation, respectively. This is characterised by 2,3 and 4
intersections on the Poincaré section. It is clear that the buck converter operates
with a period-Nden orbit.

In Figure 5.3 (c) and (d), irrational values of αf are considered. Specifically, the
effect of the Golden ratio αf =

(
1 +
√

5
)
/2 and the Silver ratio αf = 1 +

√
2. Since

fn and f are not commensurate, a low oscillating frequency modulating the other
frequency is expected and the steady state is quasi-periodic. This is confirmed on
the Poincaré section which shows the trajectory intersecting the Poincaré plane an
infinite number of times. This type of behaviour is termed a torus (as explained in
chapter 2).
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5.4 Influence of sinusoidal interference signal at the input voltage

In the next section, the case where the frequency of the noise signal is close to the
switching frequency or its integer multiples is considered.

5.4.2 Interference frequency approaching the switching
frequency or its integer multiples

Since the interference signal is coupled unintentionally, it is possible that the fre-
quency of the noise will be close to the switching frequency or its integer multiples.
In this instance, fn = pf + f̂ where p is an integer and f̂ is a number which is
less than half the switching frequency. This kind of interference signal leads to
intermittent operation. The perturbed input voltage can be rewritten as

V ∗in = Vin
(
1 + αv sin

(
2π
(
pf + f̂

)
t
))

(5.5)

Taking f̂ = 1 and p = 1 and 2, the interference frequencies considered are 2501 (Hz)
and 5001 (Hz). In order to reveal the periodicity of the output and the intermit-
tent behaviour, the output voltage is sampled once per switching cycle and plotted
against the sampling instant. From the resulting plot, it is possible to determine how
the system trajectory evolves over time. In order to distinguish this from the con-
ventional parameter-bifurcation diagram, these plots are termed time-bifurcation di-
agrams. Figure 5.4 and Figure 5.5 show the time-bifurcation diagrams for 2501 (Hz)
and 5001 (Hz), respectively. From these figures, the following observations can be
made:

• For low signal strengths, αv = 0.16, the converter maintains its expected
period-1 orbit, though the operating point fluctuates due to the oscillating
input voltage. The effect of the disturbance signal is not significant at this
stage and the system does not exhibit intermittent operation. Figure 5.4 (a)
and Figure 5.5 (a) show the corresponding time-bifurcation diagrams.

• As the strength of the interference signal increases, the system cannot maintain
the expected period-1 orbit. Instead, the system operates with a period-1
orbit for the majority of the time with small bursts of unstable operation. The
system loses stability for a short period of time through a Hopf bifurcation and
operates with a limit-cycle present on the output. However, the system does
regain stability after a short period of time. Intermittent operation is observed
as αv increases. Figure 5.4 (b) and Figure 5.5 (b) show the corresponding time-
bifurcation plots.

• Further increases to the interference signal strength cause the amplitude of the
limit cycle to increase and the period of instability to increase. Figure 5.4 (c)
and (d) and Figure 5.5 (c) and (d) show the corresponding time-bifurcation
plots.
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5.5 Stability analysis

• The intermittent period, Tint, is represented by

Tint = 1
Ndenf̂

where f̂ = pf−fn. Thus, if the interference frequency is close to the switching
frequency, the period of intermittency is very long.

5.5 Stability analysis

As there is no steady-state fixed point in the system which can be used to per-
form bifurcation analysis of the time-bifurcation plots above, a transformation must
take place. The transformation must convert changes in time to change in another
variable. This enables parameter-bifurcation analysis to be performed. The new pa-
rameter, φ, is considered as a conceptual phase shift to model the equivalent drift of
the system from the switching frequency, or its integer multiples, and the perturbed
input voltage in (5.4) is now rewritten as:

V ∗in = Vin (1 + αv sin (2πpft+ φ)) (5.6)

where φ = 2πf̂t. Using the above perturbed control voltage, a parameter-bifurcation
diagram can be constructed by selecting φ as the bifurcation parameter. Figure 5.8
and Figure 5.9 show the resulting plots which are equivalent to those presented in
Figure 5.4 and Figure 5.5. When the time-bifurcation and the parameter-bifurcation
diagrams are compared, the results are in very close agreement. This transfor-
mation enables standard bifurcation analysis to be performed and the results can
be transformed from the parameter-domain to the time-domain. Essentially, the
parameter-bifurcation diagram over the interval of 0 ≤ φ ≤ 2π is the same as the
time-bifurcation diagram over the intermittent period, Tint, shown in Figure 5.4 and
Figure 5.5. The Filippov method is now used to derive the Monodromy matrix for
the system which enables its stability to be assessed.

As demonstrated in chapter 4, the Filippov method is a technique that is used to
analyse the stability of systems with a discontinuous state-space. By relating events
before and after switching, its stability can be assessed. Recall the formula for the
saltation matrix:

S = I + (f+ − f−)nT

nTf− + ∂h
∂t

∣∣∣∣∣∣ t = tΣ

x(t) = x(tΣ)

(5.7)
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(a)

(b)

(c)

(d)

Figure 5.4: Time-bifurcation diagram with a sinusoidal interference signal with a
frequency of fn = 2501 for (a) αv = 0.16 (b) αv = 0.38 (c) αv = 0.5 and (d)
αv = 1.
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(a)

(b)

(c)

(d)

Figure 5.5: Time-bifurcation diagram with a sinusoidal interference signal with a
frequency of fn = 5001 for (a) αv = 0.16 (b) αv = 0.57 (c) αv = 0.7 and (d)
αv = 1.
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(a)

(b)

(c)

(d)

Figure 5.6: Parameter-bifurcation diagram with a sinusoidal interference signal
with p = 1 for (a) αv = 0.16 (b) αv = 0.38 (c) αv = 0.5 and (d) αv = 1.
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(a)

(b)

(c)

(d)

Figure 5.7: Parameter-bifurcation diagram with a sinusoidal interference signal
with p = 2 for (a) αv = 0.16 (b) αv = 0.57 (c) αv = 0.7 and (d) αv = 1.
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5.5 Stability analysis

f− and f+ are the right hand side of (5.1) before and after switching, respectively.

f− =
 −σvΣ + ωuΣ

−ωvΣ − σuΣ + δinVin

 , f+ =
 −σvΣ + ωuΣ

−ωvΣ − σuΣ


The switching manifold for the system is:

h(x, t) = dss +
[
kv ku

]
(x(kT )− xref )− tmodT (5.8)

The switching manifold in (5.8) depends on the value of the state vector at the start
of the switching period. However, both n and ∂h/∂t are evaluated at the switching
instant i.e. t = (k + d)T . Thus, (5.8) must be rewritten to reflect this. SW1 is
closed at the start of the switching period and remains closed for dT . Thus, the
switch is closed from kT → (k + d)T . Therefore, the solution to (5.1) is given by:

(k+d)T�

kT

d

dt

(
e−Atx

)
dt =

(k+d)T�

kT

e−AtBV ∗indt

However, V ∗in = Vin (1 + αv sin (2πfnt)):

x ((k + d)T ) = eAdTx(kT )− A−1
(
I − eAdT

)
BVin+

αve
A(k+d)T

(k+d)T�

kT

e−At sin (2πfnt) dtBVin (5.9)

Let NdT = eA(k+d)T � (k+d)T
kT

e−At sin (2πfnt) dt. Using integration by parts, NdT can
be derived to be:

NdT = eA(k+d)T
(
A2 + (2πfn)2

)−1

(
−Ae−At sin (2πfnt)− 2πfne−At cos (2πfnt)

) ∣∣∣∣∣∣
t=(k+d)T

t=kT

Inserting the limits yields:

NdT =
(
A2 + (2πfn)2

)−1
AeAdT sin (2πfnkT ) + 2πfneAdT cos (2πfnkT )

− A sin (2πfn(k + d)T )− 2πfn cos (2πfn(k + d)T )


Evaluating (5.9), the state variable at the start of the switching period can be related
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to the state variable at the switching instant:

x ((k + d)T ) = eAdTx(kT )− A−1
(
I − eAdT

)
BVin + αvNdTBVin (5.10)

Rearranging (5.10) so that the value of the state vector at the start of the switching
period is expressed in terms of its value at the switching instants gives:

x(kT ) = e−AdTx ((k + d)T ) + A−1
(
e−AdT − I

)
BVin + αvNTBVin (5.11)

where

NT =
(
A2 + (2πfn)2

)−1
− AI sin (2πfnkT )

− 2πfnI cos (2πfnkT )

+ Ae−AdT sin (2πfn(k + d)T )

+ 2πfne−AdT cos (2πfn(k + d)T )


Using (5.11), n and ∂h/∂t are:

n =
 ∂h

∂vo

∂h
∂u

 ∣∣∣∣∣∣
t=(k+d)T

= eσdT

 kv cos (ωdT ) + ku sin (ωdT )
−kv sin (ωdT ) + ku cos (ωdT )

 (5.12)

∂h

∂t

∣∣∣∣∣∣ = − 1
T

+ eσdT

 (kv sin (ωdT )− ku cos (ωdT )) δinV ∗in

+ (( σkv + ωku) cos (ωdT ) + (σku − ωkv) sin (ωdT )) vΣ

+ ((−σkv − ωku) sin (ωdT ) + (σku − ωkv) cos (ωdT ))uΣ

 (5.13)

The Saltation matrix defined in (5.7) is given by:

S1 =
 1 0
S21 1 + S22

 (5.14)

with

S21 =TeσdT δinV ∗in (kv cos (ωdT ) + ku sin (ωdT ))

S22 =TeσdT δinV ∗in (−kv sin (ωdT ) + ku cos (ωdT ))

The second switching point occurs at the falling edge of the ramp signal. Hence,
∂h/∂t = ∞ and S2 is the identity matrix of the same dimension as S1. The Mon-
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odromy matrix is:
ΦM = eA(1−d)TS1e

AdT (5.15)

where the exponential matrix is given by:

eAt = e−σt

 cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)



Figure 5.8 and Figure 5.9 show the parameter-bifurcation plots with φ as the bifur-
cation parameter for varying signal strengths and for p = 1 and p = 2, respectively.
Consider the case where p = 1 and αv = 0.5, the corresponding bifurcation diagram
is shown in Figure 5.8 (c). This diagram can be broken into three key regions:

1. 0 ≤ φ ≤ 1.885: In this region, the system is stable and operates with a period-1
orbit.

2. 1.885 ≤ φ ≤ 4.964: The system is unstable and undergoes a bifurcation at
φ = 1.885. This is confirmed by assessing the eigenvalues presented in Table 5.1
which were calculated using (5.15). Since the |λ| > 1 and λ has a non-zero
imaginary part, it is determined that a Hopf bifurcation takes place.

3. 4.964 ≤ φ ≤ 6.28: The system is stable and operating with a period-1 orbit.

Similar dynamics occur in Figure 5.8 (b)-(d) and Figure 5.9 (b)-(d), where the system
moves from a stable orbit to an unstable orbit through a Hopf bifurcation. Table 5.1
and Table 5.2 present the eigenvalues at the bifurcation points for p = 1 and p = 2,
respectively.

5.5.1 Hopf bifurcation

It was shown above that the system undergoes a Hopf bifurcation as φ varies. This
type of operation can be catastrophic in many applications, and therefore, it must be
avoided. Given that the Monodromy matrix, ΦM , is a 2x2 matrix, the characteristic
equation is given by:

λ2 − tr (ΦM)λ+ det (ΦM) (5.16)

The following matrix properties are useful

tr (XY ) = tr (Y X) (5.17)

det (XY ) =det (X) det (Y ) (5.18)
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(a) (b)

(c) (d)

Figure 5.8: Parameter-bifurcation diagram with sinusoidal interference signal with
p = 1 for (a) αv = 0.16 (b) αv = 0.38 (c) αv = 0.5 and (d) αv = 1.

αv φ λ1,2 |λ1,2|

0.38

1.8221 0.7549± 0.6558i 0.9999
1.8850 0.7535± 0.6588i 1.0009
4.9637 0.7167± 0.6973i 1.0000
5.0265 0.7169± 0.6930i 0.9971

0.50

1.8221 0.7549± 0.6558i 0.9999
1.8850 0.7535± 0.6588i 1.0009
4.9637 0.7167± 0.6973i 1.0000
5.0265 0.7169± 0.6930i 0.9971

1.00

1.4451 0.7611± 0.6248i 0.9847
1.5080 0.7613± 0.6486i 1.0001
5.7805 0.6725± 0.7403i 1.0002
5.8434 0.6716± 0.7366i 0.9967

Table 5.1: Eigenvalues of the system with p = 1 at the bifurcation point for varying
signal strengths.
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(a) (b)

(c) (d)

Figure 5.9: Parameter-bifurcation diagram with sinusoidal interference signal with
p = 2 for (a) αv = 0.16 (b) αv = 0.57 (c) αv = 0.7 and (d) αv = 1.

αv φ λ1,2 |λ1,2|

0.57

1.0681 0.7246± 0.6894i 1.0002
1.1310 0.7259± 0.6821i 0.9961
3.5814 0.7521± 0.6514i 0.9950
3.6642 0.7515± 0.6599i 1.0001

0.70

1.2566 0.7220± 0.6919i 1.0000
1.3195 0.7256± 0.6762i 0.9918
3.3301 0.7560± 0.6565i 1.0013
3.3929 0.7551± 0.6589i 1.0021

1.00

1.4451 0.7201± 0.6949i 1.0007
1.5080 0.7216± 0.6846i 0.9947
2.8274 0.7628± 0.6338i 0.9918
2.8903 0.7624± 0.6489i 1.0012

Table 5.2: Eigenvalues of the system with p = 2 at the bifurcation point for varying
signal strengths.
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Using (5.17), the trace of the Monodromy matrix is:

tr (ΦM) = 2e−σT cos (ωT )︸ ︷︷ ︸
M

+

Te−σ(1−d)T δin (kv sin (ω(1− d)T ) + ku cos (ω(1− d)T ))︸ ︷︷ ︸
P

V ∗in (5.19)

and using (5.18) the determinant is:

det (ΦM) = e−2σT + Te−σ(2−d)T δinV
∗
in (−kv sin (ωdT ) + ku cos (ωdT )) (5.20)

From (5.16), it is clear that the eigenvalues are given by

λ1,2 =
tr (ΦM)±

√
tr (ΦM)2 − 4det (ΦM)

2 (5.21)

The discriminant of (5.21) is
 4e−2σT

(
cos2 (ωT )− 1

)
︸ ︷︷ ︸

R

+

[
e−σ(1−d)T δinT (kv sin (ω (1− d)T ) + ku cos (ω (1− d)T ))

]2
︸ ︷︷ ︸

P 2

V ∗2in +

4e−σ(2−d)T δinT (kv sin (ωT ) cos (ω (1− d)T )− ku sin (ωT ) sin (ω (1− d)T ))︸ ︷︷ ︸
Q

V ∗in



The magnitude of(5.21) is given by:

|λ1,2| =
√(

M + PV ∗in
2

)2
+ − (P 2V 2

in +QVin +R)
4 (5.22)

Setting |λ1,2| = 1 yields:

(2MP −Q)V ∗in +
(
M2 −R− 4

)
= 0

4e−σ(2−d)T δuT (−kv sin (ωdT ) + ku cos (ωdT ))V ∗in + 4e−2σT − 4 = 0 (5.23)

Rearranging (5.23), the value of ku at which a Hopf bifurcation takes place can be
determined. This value is termed ku_crit or the critical ku value and is calculated by
evaluating:

ku_crit = 1− e−2σT

e−σ(2−d)T δuTV ∗in cos(ωdT ) + kv tan(ωdT ) (5.24)

Table 5.3 shows the critical ku value for both (a) fn = 2501 and (b) fn = 5001 for the
αv values the same as those in Figure 5.4 and Figure 5.5, respectively. These can be
used to tune the state-feedback controller in order to avoid intermittent operation.

72



5.6 Adaptive controller

(a)

fn αv ku_crit

2501

0.16 0.0110
0.38 0.0010
0.50 -0.0027
1.00 -0.0151

(b)

fn αv ku_crit

5001

0.16 0.0121
0.57 0.0002
0.70 -0.0045
1.00 -0.0098

Table 5.3: Values of ku_crit in order to avoid intermittent operation for varying
signal strengths for (a) fn = 2501 (Hz) and (b) fn = 5001 (Hz).

5.6 Adaptive controller

Figure 5.10: state-feedback controlled buck converter with supervising controller
and perturbations at the input voltage.

In the previous section the Monodromy matrix was calculated and the Floquet
Multipliers were derived as a function of the controller parameters. A formula
for calculating the value of ku which leads to a Hopf bifurcation was developed
(5.24) and sample values were given in Table 5.3. This enables the development
of an adaptive state-feedback controller. By modifying (5.2) and using (5.24), the
proposed adaptive control scheme is illustrated in Figure 5.10. In the suggested
scheme, estimators are used to monitor the input voltage [66, 67, 68] and determine
the amplitude and frequency of any noise source present at the input. The function
of the supervising controller is to update the ku term in order to avoid intermittent
operation. This can ensure stable period-1 orbits. The controller operates as follows:

1. The supervising controller monitors the input voltage for any input distur-
bances to the system. If no disturbances are present, the ku term is not
updated.

2. When a disturbance is present, the controller identifies the amplitude and
frequency of the noise.
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3. Using (5.15), the controller checks if the system is stable over the range 0 ≤
φ ≤ 2π.

a) If the system is stable: ku remains the same.

b) If the system is unstable: (5.24) is evaluated and the ku term is adjusted
accordingly.

Using this method, the time-bifurcation plots are illustrated in Figure 5.11 and
Figure 5.12 with fn = 2501 and fn = 5001, respectively. By determining ku_crit,
the system can avoid intermittency and operate with a stable period-1 orbit. While,
in both cases, the fixed point of the system oscillates due to the periodic nature
of the input, the intermittent operation seen in Figure 5.4 and Figure 5.5, when the
standard control law is used, has been eliminated.

5.7 Conclusion

In this work, detailed analytical and numerical work has been carried out to inves-
tigate how the loss of stability of a digital state-feedback controlled buck converter
can lead to intermittent operation due to the presence of an undesirable noise sig-
nal at the input voltage. Three cases for the ratio of the frequency of the noise
to the switching frequency were considered; rational, irrational and values close to
integer multiples of the switching frequency. For rational multiples, the converter
was shown to operate with a period-Nden orbit. For irrational multiples, the system
operated with a quasi-periodic orbit. Intermittent operation was observed where
the frequency of the noise signal was close to the switching frequency of the system
or its integer multiples. The intermittent operation was characterised by a loss in
stability as time varied. However, conventional stability analysis is not applicable
to time-bifurcation plots and thus, a transformation was required. The transforma-
tion converted changes in time to changes in another variable, φ, which was used
to model the equivalent drift from the switching frequency. This enabled the appli-
cation of the Filippov method to derive the eigenvalues of the system and stability
criterion as a function of the controller parameters. Based on this, an adaptive digi-
tal state-feedback controller was tuned using the derived formulae which eliminated
the intermittent behaviour.
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(a)

(b)

(c)

(d)

Figure 5.11: Time-bifurcation diagrams with ku adjusted using the values from
Table 5.3 (a) for (a) αv = 0.16 (b) αv = 0.38 (c) αv = 0.5 and (d) αv = 1 for
fn = 2501.
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(a)

(b)

(c)

(d)

Figure 5.12: Time-bifurcation diagrams with ku adjusted using the values from
Table 5.3 (b) for (a) αv = 0.16 (b) αv = 0.57 (c) αv = 0.7 and (d) αv = 1 for
fn = 5001.
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6 Filters in Digital Control

6.1 Introduction

In chapter 5, a buck converter operating with a digital controller was considered.
However, the effects of quantization was removed in order to distinguish between
the effects of noise and the digital controller. Quantization can cause limit cycling
to occur [1]. A limit-cycle is a periodic orbit on the output with a frequency much
smaller than that of the switching frequency. They can reduce the efficiency of the
system. At present, high-resolution Digital Pulse Width Modulators (DPWMs) are
used in order to reduce the effect of limit-cycle oscillations. However, the imple-
mentation of these high-resolution DPWM’s is highly challenging [74]. Therefore,
methods for the elimination of limit-cycles may have benefits in not only allowing for
better performance but also in reducing the demand for high resolution DPWM’s.

This research aims to address the issue of quantization-induced limit-cycles in a
digitally controlled buck converter. Initially, how limit-cycles manifest themselves
in digital systems is presented before considering filtering as a method to effect their
elimination.

6.2 Previous approaches for limit-cycle control

A brief overview of previous approaches to limit-cycle control is presented.

Dithering is a method that can artificially increase the effective resolution of the
DPWM . However, it can result in a decrease in the responsiveness of the system [11]
and increase the output ripple [1]. Sigma-delta modulation is another method that
can artificially increase the resolution of the DPWM. [75] investigates the use of a
sigma-delta modulator by pre-processing the duty-cycle command and the authors
state that no limit-cycles are observed. However, no rigorous analysis is done to
ensure that limit-cycles do not exist. Furthermore, first-order modulators can cause
unwanted tones to occur in the system. Therefore, higher-order modulators are
required which are more expensive and difficult to implement. A similar approach
is taken in [76].
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The use of a non-uniform A/D quantizer is investigated in [77] in order to improve
the dynamic response of the system and reduce the effect of limit-cycles. The de-
scribing method approach is used to analyse non-linearities and the circle criterion
(a generalised approach of the Nyquist stability criterion [4]) to assess the stabil-
ity of the proposed approach. However, the describing function assumes sinusoidal
limit-cycles which may not always be the case. Furthermore, the author assumes
that the DPWM resolution is high enough so that its influence on the non-linear
dynamics can be ignored. Neither of these assumptions are always true. Another
approach which considers altering the quantization process is presented in [78] by
removing the zero-error bin from the system and replacing it with two error bins of
finite amplitude. The author notes that this method does not remove limit-cycle os-
cillations but does reduce their amplitude, while not affecting the dynamic response
of the system.

In [79], the authors suggest altering the reference voltage in order to minimise the
amplitude of the oscillations. However, modifying the reference voltage may not
be desirable or even possible in practical applications. [80] proposes applying the
mean value of the duty-cycle to remove steady-state oscillations. However, the
results show an increased settling time and oscillatory behaviour. A method for
decreasing the effects of quantization is also presented in [81], by using geometrical
considerations in order to synthesise a higher resolution A/D converter from a low
resolution converter. While this method is effective at reducing the amplitude of
the oscillations, it does not guarantee their complete removal.

[82] presents a mathematical model of the buck converter with digital integral con-
trol. Non-linear techniques are used to establish conditions for the existence of
limit-cycles. In [83], Bradley then extends this work to a PI controller and includes
the capacitor ESR. Rigorous conditions for the prediction of limit-cycles are estab-
lished. In this chapter, the work of Bradley in [83] is extended from PI-control to
PID-control as well as including the inductor ESR.

6.3 Behaviour of circuit

The buck converter with a digital PID controller is investigated in this chapter.
Recall that the purpose of the buck converter is to step down an input voltage, Vin,
to a lower output voltage, vo, where vo = dVin and d is the duty-cycle of switch SW1

which is limited to the range 0 ≤ d ≤ 1.

The buck converter is generally employed with a feedback mechanism. Without
feedback, the system would be unable to take noise and load variations into account
and consequently, the output voltage would not be guaranteed to be at the desired
level. Figure 6.1 (a) shows the digital control loop used in this work. In this case,
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(a)

(b) (c)

Figure 6.1: (a) Digital control loop. Steady-state response of the system with initial
conditions (b) vo = 0 (V ) and u = 0 (V ) and (c) vo = 2.47 (V ) and u = 0.015 (V ).

the output voltage is compared to the reference voltage, Vref , which is at the desired
voltage. This generates the error signal, ve. The error signal is then sampled and
quantized by the A/D converter to generate the quantized error voltage, vq. This
control signal takes the form lqA/D where qA/D is the quantization step, or resolution,
of the A/D converter and l ∈ Z. The digital compensator then adjusts the duty-
cycle command, dc, which is sent to the DPWM. In this work, a PID control law is
considered. The DPWM acts as a D/A converter taking dc as an input and produces
the duty-cycle which is used to open and close the switches. The digital to analog
conversion involves some quantization. The duty-cycle command is quantized to
values of the form jqDPWM , where j ∈ N and qDPWM is the quantization step of the
DPWM.

The function of the control loop is to change the duty-cycle in order to move the
output voltage closer to Vref . However, owing to the effects of quantization, the
duty-cycle can only take on a finite number of values and it may occur that the
duty-cycle moves between two or more duty-cycle levels of the form jqDPWM . This
movement can cause limit-cycle oscillations on the output. In Figure 6.1 (b) and (c),
some examples of the steady-state behaviour observed in the system are shown. In
(b), the desired output of the system with zero initial conditions is illustrated. While
there is some small ripple, which has the same frequency as the switching frequency,
the output is close to the desired voltage level. However, in (c), with non-zero
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initial conditions, the output voltage is seen to oscillate with a large amplitude of
low frequency, compared to the ripple voltage, with the ripple voltage superimposed
on this. This is a limit-cycle. It is important to note, that two different steady-state
behaviours are possible with the same parameter values and thus, the steady-state
behaviour is dependent on the initial conditions.

6.4 System Model

Figure 6.2: Buck converter inclusive of capacitor and inductor ESR with the follow-
ing parameters: Vin = 5, Vref = 2.51V , KI = 0.0008, KP = 0.005, KD = 0.00008,
qA/D = 0.101V , qDPWM = 0.004V , R = 10 Ω, C = 13.52µF , L = 7.62µH,
rc = 0.02 Ω and rl = 0.01 Ω.

The buck converter inclusive of the capacitor and inductor ESR is shown in Figure 6.2.
Recall the equations describing the buck converter from chapter 4

ẋ =

 fon(x, t) = Aonx+Bonxin SW1 is on

foff (x, t) = Aoffx+Boffxin SW1 is off
(6.1)

The state variable x is the transformed state variable as in Chapter 4 which is
employed to simplify the equations and form a symmetrical system. Thus, x =[
vo u

]
and

u(t) =
(
LR− rCrLRC

LCRNω

)
i(t) +

(
RrL −RrC + rCrL

2LRNω
− 1

2CRNω

)
vo(t)

where RN = R + rC . The state matrices are given by:

A = Aon = Aoff =
 −σ ω

−ω −σ



Bon =
 rCR

LRN

LR−rCrLRC
L2CRNω

+ RrC(LCRNσ−L−RCrC)
L2R2

NCω

 , Boff =
 0

0


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x(t) =
 vo

u

 , xin = Vin

with σ = RrL+RrC+rCrL

2LRN
+ 1

2CRN
and ω =

√
R+rL

LCRN
− σ2. If the system operates with

SW1 closed for dT and open for (1−d)T , then mapping of the state variable x from
the start of the switching period at t0 to the end of the switching period at t0 + T

is given by

x (t0 + T ) = eATx (t0) +
(
eA(1−d)T − eAT

) (
−A−1Bon

)
Vin (6.2)

The compensator in this work is a PID controller. Its control law is

KPve +KI

�
vedτ +KD

d

dt
(ve)

Stroboscopic sampling is used thus, the start of the switching period coincides with
the start of the sampling period. Assuming that any quantization in the compen-
sator can be neglected and employing the Backward Euler method, the discrete-time
control law can be written as:

dc(k + 1) = dc(k)−KP (vq(k + 1)− vq(k))−KIvq(k + 1)
−KD (vq(k + 1)− 2vq(k) + vq(k − 1))

(6.3)

The A/D converter is modelled using the equation:

vq(k) = QA/D {ve(k)} (6.4)

where the quantizer is modelled using:

QA/D {ve(k)} =
⌊
ve(k) + qA/D

2
qA/D

⌋
qA/D

where the floor function, bc, rounds the input down to the closest integer value.
This rounds the value of ve(k) to a value of the form lqA/D. If vq(k) = lqA/D, the
voltage is said to be in the lth error bin. The duty-cycle command is also quantized
to give the duty-cycle:

d(k) = QDPWM {dc(k)} (6.5)

where the QDPWM is defined by:

QDPWM {dc(k)} =
⌊
dc(k) + qDP W M

2
qDPWM

⌋
qDPWM

A discrete-time map relating events at the end of the switching period to those at
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the start of the switching period is given as:

x(k + 1) = eATx(k) +
(
eA(1−d)T − eAT

) (
−A−1Bon

)
Vin (6.6)

dc(k + 1) = dc(k)−KP (vq(k + 1)− vq(k))−KIvq(k + 1)
−KD (vq(k + 1)− 2vq(k) + vq(k − 1))

(6.7)

with the quantized values vq(k) and d(k) given by (6.4) and (6.5), respectively.
Whenever dc lies in the set

[(
j − 1

2

)
qDPWM ,

(
j + 1

2

)
qDPWM

]
, the value of d is equal

to dj = jqDPWM subject to the constraint 0 ≤ d ≤ 1. If x(k+1) = x(k), then this is a
fixed point in the system. (6.6) can be rewritten as x(k+1)−x∗j = eAT

(
x(k)− x∗j

)
,

where:
x∗j =

(
I − eAT

)−1 (
eA(1−dj)T − eAT

) (
−A−1Bon

)
Vin

For each value of d = dj = jqDPWM , trajectories in x are logarithmic spirals winding
towards the corresponding fixed point, x∗j . Every trajectory consists of successive
logarithmic spirals winding towards different fixed points as dc passes from one
quantization level to another. The change in dc is determined by the quantization
level occupied by vo:

• When the output is in the lth error bin, vq(k + 1) = lqA/D. There is a step in
the control law due to the integral term of ∆dc(k + 1) = dc(k + 1) − dc(k) =
−KIvq(k + 1).

• When the output moves between two error bins, there is a step in the control
law due to the proportional term of −KP (vq(k + 1)− vq(k)) and the deriva-
tive term of −KD (vq(k + 1)− 2vq(k) + vq(k − 1)) and the integral term of
−KIvq(k + 1).

• When the output voltage stays in the same error bin for three or more iterations
then vq(k + 1) = vq(k) = vq(k − 1), the proportional term and the derivative
term have no effect. Any change in dc is due to the integral component.

• When the output voltage is in the zero error bin for three or more iterations,
there is no change in dc due to vq(k + 1) = vq(k) = vq(k − 1) = 0 i.e. the
duty-cycle command is fixed.

6.5 Occurrence of limit-cycles

In order to establish the effect that quantization has on the nonlinear dynamics of
the buck converter, the system is first modelled without quantization and compared
to the case with quantization. With quantization removed, ve(k) = vq(k) and d(k) =
dc(k), subject to the constraint 0 ≤ d ≤ 1.

The sampled steady-state response of the system without and with quantization
is illustrated in Figure 6.3 (a) and (b). In (a), the system is seen to settle to a
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(a) (b)

(c) (d)

Figure 6.3: Sampled steady-state response (a) without quantization (b) with quan-
tization. Frequency response of system (c) without quantization and (d) with
quantization.

steady-state value with no oscillations on the output. It is important to note that
voltage ripple is present in the system. However, since the output is sampled once
per switching cycle, the ripple is excluded from the plot. In (b), when quantization
is employed, the output does not settle to a steady-state value and instead oscillates
between 2.4→ 2.6 (V ) i.e. a limit-cycle is present.

A similar scenario can be seen in (c) and (d), where the frequency response of the
system without quantization and with quantization is plotted, respectively. A large
spur is present in (d) that is not present in (c) at approximately 16 (kHz). This
is much lower than the switching frequency of 1 (MHz) and indicates the system
is oscillating at this frequency. It is clear that the introduction of quantization has
induced limit-cycle oscillations on the output. The frequency of the limit-cycle is
16 (kHz).

An obvious question is, how do limit-cycles manifest themselves through quantiza-
tion? Consider the simplest case; a limit-cycle oscillation over two duty-cycle levels.
This is illustrated in Figure 6.4 (a). In this instance, the phase portrait of the sin-
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6.5 Occurrence of limit-cycles

gle loop limit-cycle from Figure 6.3 (b) is shown. The limit-cycle is confined to the
±1 and 0 error bins. The duty-cycle switches between two levels at d = 0.5 and
d = 0.504. Starting at SP0.5 and moving clockwise, the output rotates about the
fixed point x∗0.5 with d = 0.5. At SP0.504, the duty-cycle changes to d = 0.504 and
the system winds about the fixed point x∗0.504 until SP0.5 is reached again. The
dynamics of this motion and the interaction between the duty-cycle command, the
duty-cycle and the error bins is now discussed.

(a) (b)

Figure 6.4: (a) Single loop limit-cycle rotating about two fixed point x∗0.5 and x∗0.504.
The trajectory is marked with black dots, the switching points between duty levels
with red circles and the fixed points with black squares. (b) How d (black) and
dc (blue) vary with time when a limit-cycle is present.

In Figure 6.4 (a), let the trajectory have P iterations. The frequency of the limit
is therefore given by ωosc = 2π

PT
. Starting at SP0.5, and moving clockwise, the

trajectory winds about x∗0.5. Let this motion have p1 iterations. At SP0.504, the
duty-cycle changes to 0.504 and the trajectory winds about x∗0.504. Let this motion
have p2 iterations. Thus, P = p1 + p2. Oscillations moving in this manner about
fixed points are deemed to be limit-cycles.

Recall the control law for the PID controller given in (6.7). Figure 6.4 (b) illustrates
how the duty-cycle, d, and the duty-cycle command, dc, vary for the limit-cycle
presented in (a).

Consider the evolution of the limit-cycles trajectory from SP0.5 to SP0.504. Let there
be Nb iterations in the +1 error bin, N0 iterations in the 0 error bin and Nc iterations
in the -1 error bin. In the +1 error bin vq = qA/D, in the 0 error bin vq = 0 and in the
-1 error bin vq = −qA/D. The trajectory starts in the +1 error bin, assuming it has
occupied this bin for three or more switching cycles, vq(k + 1)− vq(k) = 0 meaning
that the proportional term has no effect. Also, vq(k + 1) − 2vq(k) + vq(k − 1) = 0,
meaning that the derivative term has no effect. However, since vq(k+1) = qA/D, the
integral term causes dc to decrease by −KIqA/D for each iteration in the +1 error
bin. The total change in dc for this section is ∆dcb = Nb

(
−KIqA/D

)
.
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6.6 Filtering limit-cycle oscillations

The trajectory then enters the 0 error bin.

• The first iteration in the bin. In this case, vq(k+1) = 0 and vq(k) = vq(k−1) =
qA/D. The proportional term causes the duty-cycle command to jump by a
distance KP qA/D and the derivative term causes a jump of −KD(−2qA/D +
qA/D) = KDqA/D. The integral term has no effect. Thus, the net change in dc
is (KP +KD)qA/D.

• The second iteration in the bin. In this case, vq(k + 1) = vq(k) = 0 and
vq(k−1) = qA/D. The integral and proportional term have no effect. However,
the derivative term causes a jump of −KDqA/D.

• The remaining N0 − 2 iterations. Since vq(k + 1) = vq(k) = vq(k − 1) = 0,
none of the control terms will alter dc. Thus, the duty-cycle command remains
constant during this period.

• The net change in dc in the zero error bin is ∆dc0 = KP qA/D.

Upon leaving the 0 error bin, the trajectory enters the −1 error bin.

• The first iteration in the bin. In this case vq(k + 1) = −qA/D and vq(k) =
vq(k − 1) = 0. All three control terms have an effect on dc. The proportional
term causes a jump of KP qA/D, the derivative term causes a jump of KDqA/D

and the integral term a jump of KIqA/D. The combined effect of the three
terms is (KP +KI +KD) qA/D.

• The second iteration in the bin. In this case vq(k + 1) = vq(k) = −qA/D and
vq(k − 1) = 0. Since vq(k + 1) − vq(k) = 0, the proportional term has no
effect. The change due to the integral term is KIqA/D and the change due to
the derivative term is −KD (vq(k + 1)− 2vq(k)) = −KDqA/D. The combined
change is therefore the net change is (KI −KD)qA/D.

• The output stays in this bin for Nc− 2 iterations before reaching SP0.504. For
the remaining Nc − 2 iterations, since vq(k + 1) = vq(k) = vq(k − 1) = −qA/D,
the integral term causes the duty-cycle command to jump by KIqA/D on each
iteration within the bin and the proportional term and the derivative term
have no effect.

• The net change in dc in the −1 error bin is ∆dcc = KP qA/D +NcKIqA/D.

Similar dynamics move the trajectory from SP0.504 back to SP0.5.

6.6 Filtering limit-cycle oscillations

The previous section explained in detail how quantization-induced limit-cycles can
manifest themselves in a digitally controlled buck converter. Now, a method to
effect their elimination is considered. The frequency of the limit-cycle is dependent
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6.6 Filtering limit-cycle oscillations

Figure 6.5: Digital control loop inclusive of digital filter.

on the KP/KI ratio and therefore, has a fixed frequency, assuming that the control
parameters are fixed. If the frequency of the limit-cycle is known, then a simple filter
can be used to eliminate it. Figure 6.5 shows the proposed control loop. Placing
a digital filter directly after the compensator and filtering the duty-cycle command
creates a new signal, dcf , the filtered duty-cycle command. The function of the
digital filter is to remove oscillations at the limit-cycle frequency. The rest of the
control loop works as described in Section 6.3. The simplest type of filter to first
consider is the notch filter.

6.6.1 Implementation of a notch filter

A band-stop filter is a filter that allows most frequencies to pass and attenuates
those in a specific range to very low levels, this range is known as the stop-band
[84]. A notch filter is a specific type of band-stop filter where the stop-band is
narrow. The function of the notch filter is to create a null in the frequency domain
at the limit-cycle frequency to effect its elimination while allowing other frequencies
to pass. The transfer function of the notch filter is

H(z) = α
(
1− 2 cos (ωLCT ) z−1 + z−2

)
(6.8)

where the coefficient α is set so that the transfer function has a unity magnitude
at 0 (Hz) and ωLC is the frequency of the limit-cycle in radians. The filter has a
zero magnitude response at ωLC . Figure 6.6 (a) shows the magnitude response of
the filter described by (6.8). It is clear that the filter has unity magnitude at 0 (Hz)
and zero magnitude at 16 (kHz), which is the frequency of the limit-cycle presented
in Figure 6.3 (b).

This filter is an example of a finite impulse response (FIR) filter. An FIR filter
is one whose impulse response is of finite duration as it settles to zero in finite
time. In contrast, the infinite impulse response (IIR) filter may continue to respond
indefinitely to an impulse. The main advantage of an FIR filter compared to an IIR
filter is that FIR filters have intrinsically stable implementations [85].

Figure 6.6 (b) demonstrates the effectiveness of placing the notch filter in the feed-
back path of the control loop. Using the initial conditions from Figure 6.1 (a), the
system starts with limit-cycle oscillations on the output. However, the notch filter
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: (a) Magnitude response of the notch filter (b) Transient response of the
system (c) Frequency response of the system (d) Frequency spectra of ve (blue)
and dc (red) with quantization removed and no filter (e) Frequency spectra of vq
(blue) and dc (red) when no filter is used and (f) Frequency spectra of vq (blue),
dc (red) and dcf (black) when the notch filter is used.
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dampens the oscillations and the system settles to the desired period-1 orbit. A sim-
ilar picture is shown in (c), where previously a large spur was shown at 16 (kHz) in
the frequency response in Figure 6.3 (d), while the notch filter does not completely
remove the spur, its amplitude is greatly reduced.

In (d), the frequency spectra of several signals in the control loop with the effects
of quantization removed is plotted. In (e), the frequency spectra with the effects of
quantization included but without the digital filter is shown. It is evident that the
quantization introduces a lot of high frequency content. In (f), the frequency spectra
with the effects of quantization included and with a digital filter is considered. The
notch filter is successful in reducing the magnitude at higher frequencies, it is seen
that the notch filter actually increases the magnitude of the response when dc and
dcf are compared. In some applications, this may not be acceptable. Thus, the
aim of the filter now is to improve dampening at high frequencies. For this reason,
a comb filter is considered as this creates a null in the frequency domain at the
limit-cycle frequency and at higher frequencies.

It is important to note that the digital filter has an indirect effect on signals in the
feedback loop. Since it filters dc, this has an effect on the duty cycle and thus, the
output voltage which is the input to the feedback path. For this reason, dc in (e)
and (f) are different.

6.6.2 Comb filter implementation

A comb filter creates a null in the frequency domain at evenly spaced intervals
spread across the frequency domain [86] as illustrated in Figure 6.7 (a) where a null
can be seen at the limit-cycle frequency of 16 (kHz) and at evenly spaced intervals.
The first null can be used to eliminate oscillations at the limit-cycle frequency. In
addition, the filter eliminates higher frequencies and thus, should reduce the effect
of the high-frequency content induced by quantization. Figure 6.7 (b) shows the
phase response of the filter. It is evident that the comb filter introduces a significant
phase lag which would have to be considered in designs and related stability issues.
However, if the frequency to be eliminated is close to the resonant frequency of the
system, the increased phase lag may not be as important as the loop gain falls before
it rises again. The filter is made up of a direct signal and a delayed version. Its
transfer function is given as

H(z) = 1− α
(
2− z−N

)
(1− g) (6.9)

g is the gain parameter where 0 ≤ g ≤ 1. It affects the magnitude of the response
at the null frequency. Similar to the notch filter, α and g are selected to give unity
around the null frequency. The N value determines where the first null in the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: (a) Magnitude response of the comb filter (b) Phase response of the
filter (c) Transient response of the system (d) Frequency response of the system
(e) Frequency spectra of vq (blue), dc (red) and dcf (black) and (f) Transient
response of both comb filter (black) and notch filter (red).
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frequency gain occurs. For this application, the appropriate values are α = 0.5,
g = 0 and N = 31. This gives unity at 0 (Hz) and a null at 16 (kHz).

From Figure 6.7 (c), it is clear that limit-cycle oscillations are effectively removed by
the comb filter. After an initial oscillation, the system settles to the desired period-1
orbit. This is further illustrated in (d), where the frequency response of the output
voltage can be seen. There is a large reduction in the amplitude of the spur at
the limit-cycle frequency. Furthermore, the high-frequency content introduced by
quantization is greatly reduced compared to Figure 6.6 (c).

Figure 6.7 (e) shows the frequency response of some of the control signals. For
the vq frequency spectrum, the comb filter performs at a similar level to the notch
filter. However, when comparing both filters with respect to the dc and d frequency
spectra, it is clear that the comb filter outperforms the notch filter in this regard.
After passing through the filter, the notch filter causes the magnitude of the response
to increase at high frequencies while the comb filter maintains the response below
10−1 (dB). Furthermore, in (f), the transient response of both the notch filter and
comb filter are plotted. It is clear that while both are effective in removing limit-
cycle oscillations, the settling time with the comb filter is superior to that when the
notch filter is employed. It is clear from this analysis, that the comb filter is more
suited for this application.

6.7 Conclusion

A model of a digitally controlled buck converter was derived. It included both ca-
pacitor and inductor ESR. The steady-state behaviour of the system, the occurrence
of fixed points and limit-cycles were investigated. The issue of quantization-induced
limit-cycles and how they manifest themselves in digitally controlled systems was
described in detail. Two types of filters were considered to effect their elimination; a
notch filter and a comb filter. While the notch filter was effective in dampening the
limit-cycle oscillations, it was shown that the quantization effects introduced a lot of
high-frequency content. The notch filter was not adept at removing or dampening
these effects. In contrast, the comb filter was both effective at removing limit-cycle
oscillations and dampening the high-frequency content. Furthermore, the comb fil-
ter had a better transient response. Thus, the comb filter is more suited to removing
limit-cycle oscillations. However, the comb filter creates a null in the frequency do-
main at evenly spaced intervals spread across the frequency domain. If the buck
converter is required to operate close to once of these frequencies, the comb filter
may not be suitable. In this case, a notch filter is recommended.
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7 Conclusions

The conclusions arrived at from the research carried out to investigate the occur-
rence of bifurcations in dc-dc converters and methods to effect their elimination are
presented below. Extensive mathematical analyses has been carried out to deter-
mine the critical value at which bifurcations occur and simulations verify the validity
of the analyses using MATLAB R© [65].

Chapter 2 presented a general introduction to the area of nonlinear dynamics. The
different types of bifurcations were categorised as well as the common modes of op-
eration exhibited by power electronic converters. The mathematical tools employed
to analyse both linear and nonlinear systems were presented along with a derivation
of the Filippov method.

Chapter 3 considered the area of dc-dc converters in power electronics. The buck
converter was introduced as it forms the basis for the majority of the work in this
thesis. Common control techniques used in power electronic converters were dis-
cussed as well as the various modelling techniques used in previous works. A survey
of previous works concerned with nonlinear analysis of converters was presented,
as well as, techniques for controlling the nonlinear behaviours which occur in these
circuits.

In Chapter 4, a buck converter with a PID controller was considered. The D-term
has been traditionally avoided as it can cause the amplification of noise or inject
significant noise into the closed-loop system. On the other hand, the requirement
for a fast transient response means the D-term is required. However, little or no
work exists on design procedures for PID controller to take into consideration fast-
scale instabilities. First, the behaviour found in the system was characterised and
the system model was presented. The types of steady-state behaviour exhibited
by the system were observed as various parameters were varied, such as the PID
control terms and the ramp characteristics, and the system underwent fast-scale
bifurcations. It was shown that the inclusion of the D-term not only improves the
transient response but also increases the stability margin of the system. However,
it is important to note that the inclusion of the D-term must be done with great
caution due to the aforementioned problems associated with it.

The research then proceeded to introduce the main framework of how a PID con-
trolled buck converter can be designed to include the consideration of fast-scale in-
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stabilities. Specifically, the Filippov method was applied to derive stability bounds
to ensure stable period-1 operation which enables designers to select control pa-
rameters that will ensure stable behaviour without using high gains the can cause
noise problems. This work enabled the development of an adaptive PID controller
whereby the D-term is updated at the end of every switching cycle as the load and
other characteristics vary. By simulating a step change in the load resistance, the
system without the adaptive controller was shown to undergo a period-doubling
bifurcation. However, when the adaptive controller was employed, the system main-
tained stable operation.

The Filippov method requires a smooth scalar function for the manifold that de-
scribes the switching action. However, when the D-term is employed, the resulting
functions may be non-smooth. Therefore, it is not straightforward to apply this
method for such converters and a modification to the Filippov method is required.
This work presented a technique for this modification and verified its validity through
simulations. How the Filippov method can be used to derive the saltation matrix
with a non-smooth switching manifold was detailed.

However, the work in chapter 4 assumes ideal operating conditions and ideal sources.
In practical applications, these cannot be guaranteed. Noise signals may arise be-
cause of finite input capacitances, ESR of the input capacitor or stray inductance
and stray capacitance in a circuit. Thus, Chapter 5 considered a buck converter
with a digital state-feedback controller where the input voltage is perturbed by a
sinusoidal signal. Since the frequency of the noise signal is unpredictable, all values
must be considered. Three categories for the ratio of the noise frequency to the
switching frequency were established:

1. When the noise frequency is an integer multiple of the switching frequency.

2. When the noise frequency is an irrational multiple of the switching frequency.

3. When the noise frequency is a rational multiple of the noise frequency but
close to one of the integer multiples.

For integer multiples, the system operated with the desired period-1 orbit. For
irrational multiples, the system operated with quasi-periodic behaviour. For rational
multiples close to integer multiples, intermittent operation was observed on the
output. The intermittent operation was shown through the use of time-bifurcation
diagrams. However, conventional bifurcation analysis cannot be carried out on these.
Instead, a transformation was performed to relate changes in time to changes in
another variable. This enabled parameter bifurcation diagrams to be used and
thus, conventional bifurcation analysis. Mathematical analysis was performed to
identify the critical value at which intermittent operation occurred using Filippov’s
method. Designers are able to select the controller parameters to avoid intermittent
operation and an adaptive controller was proposed. The adaptive controller was
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shown to eliminate intermittency.

While digital control was considered in Chapter 5, in order to distinguish between
the effects of noise and the effect of the digital implementation, the resolution of the
quantizer was assumed to be infinitely small. The effect of quantization on the non-
linear dynamics of the converters was investigated in Chapter 6. A buck converter
controlled by a digital PID controller was considered. The types of steady-state
behaviour seen in the system was described and compared to the analog implemen-
tation. It was shown that quantization can induce limit-cycle oscillations. However,
the occurrence of limit cycles is dependent on the initial conditions. An analysis of
limit cycles on two duty cycle levels was presented as well as a thorough explanation
of how limit cycles manifest themselves in digital controllers.

Unlike the previous chapters, limit-cycles cannot be prevented in the system by
simply reducing the gain parameters. Instead, filtering was considered as a method
to effect their elimination. Two filters were considered; a notch filter and a comb
filter. Placing the filter in the feedback path, it was shown that the notch filter was
effective at dampening limit-cycle oscillations. However, quantization introduces a
lot of high-frequency content. The notch filter was not effective at dampening the
high-frequency content as it only creates one null in the frequency domain at the
limit-cycle frequency. Therefore, a comb filter was employed as it creates a null
at evenly spaced intervals spread across the frequency domain. The comb filter
was effective at dampening limit-cycle oscillations as well as dampening the high-
frequency content. The transient response when the comb filter and when the notch
filter were used were compared. The comb filter had a faster settling time and is the
recommended filter for removing limit-cycle oscillations. However, since the comb
filter creates a null in the frequency domain at evenly spread intervals, if the buck
converter is required to operate close to one of these frequency, the comb filter may
not be suitable. In this case, the notch filter is recommended.

7.1 Scope for future work

With advances in technology, digital control has become a potentially advantageous
alternative to analog control. Some of the potential advantages include low power,
immunity to analog component variations, compatibility with digital systems and a
faster design process [1]. However, digital control of power electronic systems is a
field that requires intensive study to completely understand the nonlinear dynamics
so as to enable accurate and economic designs. The following areas require further
investigation:

• One of the main advantages of digital control is the ability to design more
sophisticated control strategies to enable high performance dc-dc converters
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to be designed. Digital state-feedback controllers are frequently used in dc-dc
converters when high/optimal performance is required. However, little work
exists on the nonlinear dynamics of such systems, particularly the effect of
quantization. Quantization can induce limit-cycles which greatly reduce the
efficiency of the converter. Thus, knowledge of when they occur and techniques
for their elimination are required.

• In the work of [49], Bradley derives conditions for a buck converter with a PI
digital controller to ensure no limit-cycle oscillations. These conditions are a
function of the resolution of the A/D converter, the D/A converter and other
system parameters. At present, high resolution DPWMs are used to reduce
the effect of limit-cycle oscillations [74]. However, the implementation of these
high-resolution DPWMs is highly challenging. One potential method to in-
crease their effective resolution is through the use of non-uniform quantizers.
In a uniform quantizer, the input bin sizes and the output quantization levels
are all the same. In a non-uniform quantizer, the size of the input bin in-
creases the further the system moves away from the desired value. This can
effectively increase the resolution of the quantizer. By selecting bin sizes in or-
der to satisfy the no limit-cycle conditions established by Bradley, non-uniform
quantization is a possible technique that may be employed to reduce the effect
of quantization induced limit-cycles. This research would obviate the need for
the high-resolution DPWMs.

• One drawback of digital control is the phase-lag introduced. Multiple-sampling
is a method where the state vector is sampled more than once per switching
cycle. This method can be used to extend the control bandwidth of the sys-
tem. However, it injects high-frequency disturbances into the feedback path
of the system [87]. Bradley investigates the effect of multiple-sampling on the
nonlinear dynamics of a buck converter with a digital PI controller [49]. Ow-
ing to the application of digital state-feedback controllers in high performance
applications, a thorough investigation into the effect of multiple sampling on
the nonlinear dynamics of a digital state-feedback controller when multiple
sampling is used is required.

Design guidelines for the avoidance/elimination of undesired operation typically as-
sume ideal operating conditions. However, in real life applications, dc-dc converters
operate in noisy environments leading to the intrusion of spurious signals. While
the work in this thesis and other research, detailed in chapter 5, has been carried
out, further work is required in order to develop design guidelines that characterise
the behaviour of systems operating in noisy environments. The work of [42] and
[45], utilize discrete-time iterative maps in order to derive the eigenvalues of dc-dc
converters with analog controllers injected with spurious signals with a sinusoidal,
triangular and sawtooth wave shape. However, this method is algebraically complex
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and not suited to deriving conditions for the elimination of the undesired behaviour.
Similar to the approach taken in chapter 5, further investigations into the effect of
noise when digital control is employed is required. Initially, by considering noise
with waveforms that are triangular and sawtooth in nature, design guidelines can
be developed in order to ensure stable operation. The work then needs to consider
waveforms of arbitrary shapes before considering random noise signals.
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