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Abstract 

 

Fast computation, efficient memory storage, and 

performance on par with standard state-of-the-art 

descriptors make binary descriptors a convenient tool for 

many computer vision applications. However their 

development is mostly tailored for static images. To 

respond to this limitation, we introduce TREAT (Terse 

Rapid Edge-Anchored Tracklets), a new binary detector 

and descriptor, based on tracklets. It harnesses moving 

edge maps to perform efficient feature detection, tracking, 

and description at low computational cost. Experimental 

results on 3 different public datasets demonstrate 

improved performance over other popular binary features. 

These experiments also provide a basis for benchmarking 

the performance of binary descriptors in video-based 

applications. 

1. Introduction 

Binary descriptors have demonstrated comparable 

performance to some of their floating-point counterparts 

[17] while significantly boosting application speed. This 

has led to a flourishing literature on the topic [6][7][8][9]. 

More recently, some effort has been made to extend these 

type of descriptors to the temporal dimension [1] [2], and 

therefore to robotic and event recognition applications. 

This is a challenging task as mining the temporal 

dimension requires significant extra computation. As of 

today, the state of the art has demonstrated the 

effectiveness of some general characteristics in the design 

of motion descriptors. However, current binary motion 

features [1] [2] still lack some of those. Namely: 

1. Long term motion patterns. As the work reported in 

[11][12][13][14] has shown, fine representation of motion 

patterns is paramount. These descriptors, typically based 

on tracks or tracklets, need to be robust to camera motion, 

noise and data variability. 

2. Dense point extraction. Static feature [10] and 

trajectories [11] dense sampling have been shown to 

outperform sparse sampling for video activity recognition. 

However, this strategy implies extensive computation, 

which may not always be practically feasible for large 

datasets. 

3. Separation or compensation of background features. 

Being able to differentiate background features from 

object-of-interest features [15][16] has always been a 

major problem in video based applications. Background 

features should be isolated, or pruned, depending on 

whether the background information is treated as 

complementary information or outliers. Camera motion 

compensation [11] was recently shown to be the best 

solution to this issue. However, reliable camera motion 

modelling is a time consuming operation that cannot be 

performed in the context of real-time applications. 

To address these shortcomings, we developed a novel 

descriptor that incorporates these three characteristics. 

TREAT (Terse Rapid Edge-Anchored Tracklets) features 

harness moving edges to extract, track and represent 

features.  

Our contribution is twofold. First, we provide a new 

tracklet-based binary feature suited for real-time 

applications. Its extraction and description runs in real-

time and results obtained on an event recognition task 

outperform other concurrent descriptors. The key idea to 

perform extraction and description in real-time is to resort 

to the same cue in each case, namely moving edges. 

Second, results are provided on 3 public datasets of 

increasing difficulty: UCFsports [27], Hollywood [26], 

and Hollywood2 [16]. To the best of our knowledge, this 

is the first time binary features are evaluated on such 

challenging datasets. TREAT code is publicly available 

[30]. 

The rest of this paper is organized as follows. Section 2 

covers the related work. The third section presents the 

TREAT descriptor extraction pipeline. Sections 4 to 6 

detail each part of the process, namely the video 

processing, the tracklets extraction and description 

respectively. Section 7 is dedicated to experimental results 

and parameter discussion. The final section. 

2. Related work 

Histogram-of-Gradient (HoG) based methods are the 

counterparts of binary descriptors. SIFT [4] features detect 

maxima and minima of the result of difference of 

Gaussians and represents with a gradient orientation 

histogram. PHOW [19] extend them by extracting them 

densely at different scales. Efficient computation of 

similar features is proposed by SURF [5]. Its 128 bit 

version, e-SURF [29], extends it to the temporal 

dimension. The possibility to compress HoG into a binary 

representation has been explored with convolution chains 

[22] or product quantization [25]. 
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Figure 1: TREAT descriptor extraction pipeline. 

 

Binary descriptors are an alternative to HoG-based 

features. They rely on n simple binary intensity tests to 

produce a corresponding n-bits description. The precursor 

was the BRIEF descriptor [6], featuring randomly selected 

pairs without orientation compensation. Its successors all 

improved this approach in some way. D-BRIEF [23] 

extended it by using box filtering. ORB [7] provided 

orientation compensation based on the intensity centroid 

moment and learned uncorrelated sampling pairs. FAST 

[20] detector compared pixels on a ring centred at a 

feature point. BRISK [8] further extended FAST by 

searching for maxima in a 3D scalespace. Rotation 

invariance was also investigated in MRRID and MROGH 

descriptors [20]. Finally, the main contribution of FREAK 

[9] is the use of a circular pattern. Points are equally 

spaced on circles concentric, similarly to DAISY [21]. 

Recently, [31] employed deep learning. An evaluation of 

the performance of static binary detectors and descriptors 

in the context of image recognition was provided in 

[17][32].  

Binary motion features extend typical binary features to 

the temporal dimension. [3] developed a descriptor fusing 

intensity comparison over successive frames of a spatio-

temporal volume. However, the method is not robust to 

camera motion. [1] proposed MoFREAK features, 

extending FREAK [9]. It concatenates 8 core bits from the 

FREAK descriptor with 8 bits of interchange patterns [3] 

computed over the temporal dimension.  

3.  TREAT Extraction and Description 

Overview 

TREAT feature extraction and description, illustrated in 

figure 1, proceeds as follows. For each frame, gradients 

are extracted along the X, Y and temporal axes, and 

combined to form a spatio-temporal map of the image. 

This map represents moving edges. We then build up on it 

a three-level moving edge pyramid. An edge codeword is 

then associated with each pixel calculated based on 8 

moving edges values coarsely depicting its 12×12 

neighbourhood. Edge and codeword maps are stored for 

further use. We densely extract keypoints over moving 

edge locations and track them according to their 

neighbourhood edge patterns. Finally, each tracklet is 

described according to a 64-byte edge presence histogram 

along the tracklet, 12 bytes for edge variations over 

successive keyframes, and 1 byte for its motion over each 

successive keyframe. Features are extracted at several 

scales determined by a resolution pyramid. 

4. Video processing 

Most of our tracklet-based video representation is based 

on a video pre-processing step. First of all, incoming 

frames are reduced to 640 pixels in width if necessary. 

Smaller resolutions are possible for optimal speed but we 

found this size to give reasonable computation time 

without adversely affecting the performance.  

The core cues used by our descriptor are the moving 

edge locations. They provide a natural way to distinguish 

foreground objects from background and have shown 

reliable performance in the past [11]. A key idea of this 

approach is to extract, track and describe features based on 

this same cue in order to limit computation. 

To produce them, we extract X, Y and temporal 

gradients by applying a 3-pixel wide Sobel filter and 

subtracting subsequent frames. A threshold over a 

weighted combination of these three gradient inputs is 

applied to obtain the final spatio-temporal gradients. The 

threshold controls the desired magnitude of the edge shift. 

In our experiments, we assume no a priori knowledge and 

set it low to extract moving edges of any magnitude. Note 

that gradient magnitudes, typically used in gradient based 

descriptors, are lost in the process. 



 
Figure 2: Toy example of a 3-level edge map representation 

build over an initial edge map (i.e. the level 0) of 5×4 pixels. 
 

 
Figure 3: Example of edge codeword determined over a 

12×12 pixel patch. a) Image patch. b) Corresponding last 

level of the edge map representation c) Resulting binary code 

d) Edge codeword. 
 

We then build a three-level moving edge map 

representation on this initial map, by summing and 

thresholding to the average each 2×2 patch of the previous 

level. Further operations only use the last level of the edge 

map. A toy example is provided in figure 2. 

Lastly, we represent each lpixel (x,y) 12×12 vicinity at 

frame f with an edge codeword Cf(x,y). This patch is first 

divided in 9 4×4 areas. The bits corresponding to the 8 

outer parts on the last level of the edge map representation 

are stacked to form a 1-byte encoding. The converted 

integer value, ranging from 0 to 255, is the final edge 

codeword. This codeword value is assigned to the patch’s 

central pixel. Figure 3’s example illustrates the process. 

The edge codeword map is the core component of 

TREAT extraction. Indeed, this feature has the advantage 

of being discriminative and widely present across the 

video. Further feature detection, tracking, and description 

will mostly be based on this cue, allowing efficient video 

characterization while keeping the computation load low.  

The multi-level edge map representation and edge 

codeword map are stored for further use.  

5. Tracklet extraction 

TREATs are densely computed on a regular grid. 

Computation is restricted to edge locations as the 

descriptor is based on edge presence and motion. This is a 

crucial constraint as it allows us to focus the feature 

extraction process on a limited set of distinctive cues, 

therefore limiting the computation while yielding robust 

features. We used a 3-pixel stride for all our experiments. 

Each selected edge location is further tracked over a 

time window of temporal size L according to a simple 

Kalman filter. This step allows us to exploit the longer-

term motion information that is lacking in existing motion 

binary features [1][3]. 

Matching compares moving edges in an 18×18 

neighbourhood around the point to track, giving more 

weight to the central area. This is achieved by comparing 

the 4 edge codewords located at the corners of the 6×6 

pixel patch centred on the point to track, utilizing the 

Hamming distance. This representation allows efficient 

matching based on only 4 integer values. Substantial 

feature filtering, based on edge presence, is performed to 

offer a discriminative set of tracks computed in real-time. 

Practically, we: 

 Eliminate tracks of “low edgeness”. Tracks centred on 

patches with few moving edges are considered neither 

sufficiently discriminative nor robust. These noisy 

artefacts are discarded. 

 Prune out tracks for which the surrounding edges do 

not vary (i.e. H(.) too low). Such tracks are assimilated 

to object textured parts or the background. 
 Similarly, tracks with very high variation (i.e. H(.) too 

high) are considered lost, and discarded. 
To avoid drifting, the last two tests are performed between 

consecutive frames as well as consecutive keyframes. 

Keyframes are evenly spaced along the track.  

 

   

   
UCFsports, kicking Hollywood, Sit down Hollywood, Stand up 

Figure 4: Example of final extracted feature locations as well as their detected TREATs. First row: Original image. Second row: 

detected moving edges in white and TREAT features in green (the stroke representing the flow direction). Corresponding 

database and event information are below the images. Best viewed in colour.  



Their number K (2 ≤ K ≤ L) is a predefined parameter. The 

influence of K and L on the feature extraction process is 

further discussed in section 7.3. Loose thresholding is used 

to avoid overfitting and guarantee a dense set of tracks 

(see implementation for threshold values). Figure 4 shows 

examples of final extracted feature locations as well as 

their detected TREATs. 

To yield a multiscale feature, we extract TREAT at 

various scales. The frame doesn’t undergo the typical 

blurring performed while reducing its size, as it impairs 

edge detection. We use a 3 scale pyramid with a √2 

shrinking factor for all our experiments. In practice, this 

last step leads to a 2% to 6% performance boost while 

doubling the computation time. 

6. Tracklet description 

Our descriptor representation is based on 3 

complementary cues: edge variation, edge motion, and 

edge presence. Edge presence and variation are extracted 

along the tracklet to compensate for its displacement. 

Motion is represented separately. In order to avoid 

redundancy and limit computation, a set of key frames are 

selected at regular intervals along the tracklet for 

descriptor calculation. 

The edge variation broadly describes the moving edge 

variation around the tracklet. Learning from the 

experiences of previous work [6][7][8][9], bitwise 

differences between the edge codewords of consecutive 

keyframes are utilized for this purpose. 
 

𝑑(𝐶(𝑖, 𝑗, 𝑡1), 𝐶(𝑖, 𝑗, 𝑡2)) =  𝐶(𝑖, 𝑗, 𝑡1) 𝑋𝑂𝑅 𝐶(𝑖, 𝑗, 𝑡2) (1) 
 

with C(i,j,t) edge codewords at spatial locations (i, j) and 

keyframe t. These comparisons are performed at 12 spatial 

locations (i+x, j+y) with 𝑖, 𝑗 ∈ {−6, −3, 0, 3, 6}. Locations 

are chosen to avoid overlap of the corresponding edge 

codeword patches. It yields a 12-byte descriptor per 

consecutive keyframes. 

The edge motion represents the tracklet optical flow 

between the selected keyframes. The intensity of the 

displacement in each of the four possible directions (up, 

down, left, right) is downsampled to 2 bits. The four  

direction representations are further concatenated to 

form a 1-byte motion description per consecutive 

keyframes. 

Histograms have demonstrated robustness and 

summarization capabilities ([11][19]…). We extend here 

the principle to binary descriptors. The edge presence 

histogram describes the edge presence along the tracklet 

according to the calculated edge codewords. We utilize a 

256 bin histogram for this purpose, each bin representing 

one of the possible edge codeword encoding values. Each 

edge codeword in a 12×12 neighbourhood centred on the 

tracklet at each frame increments its corresponding bin. 

Finally, the histogram is binarized. Each bin is encoded 

with 2 bits. The first one is set to 1 if the bin value is 

positive. Then, as peaks are an important component of 

histograms, the second one is thresholded by the average 

bin value. More formally, the binarization of the bin bi in 

𝑏𝑖
𝑗
, 𝑗 = {0,1} translates as: 

 

𝑏𝑖
0 = {

1     𝑖𝑓 𝑏𝑖 > 0
0             𝑒𝑙𝑠𝑒

𝑏𝑖
1 = {

1     𝑖𝑓 𝑏𝑖 > 144 ∗ 𝐿/256
 0                                   𝑒𝑙𝑠𝑒

 (2) 

 

with L the tracklet length. The total histogram size is 64 

bytes. With K the number of keyframes, the total 

descriptor size is 64+13(K-1). 

This representation statically and dynamically describes 

every single tracklet according to the moving edges 

patterns in its vicinity. It differs, in spirit, from existing 

binary descriptor techniques that use binary intensity 

comparisons. 

7. Experiments 

In this section, we compare our binary features to state-

of-the-art competitors. Also, by evaluating them on 

datasets of various difficulties, we aim to assess the 

performance of current binary descriptor and thereby 

provide a benchmark for event recognition applications. 

Parameter influence for our approach is also discussed. 

7.1. Experimental setup 

We performed tests on the Hollywood [26], hollywood2 

[16], and UCFsports [27] datasets. Performance on the 

latter is evaluated according to a 5-fold cross validation 

scheme. We restricted our comparisons to real-time or 

near-real time features. However, we also added one 

commonly used and well performing feature for each 

dataset, as reference. As the purpose of this experiment is 

to evaluate and compare the descriptor raw potential in the 

context of event recognition, we utilized the most common 

encoding and normalization techniques, that is, k-means 

clustering, hard-assignment, and L2-histogram 

normalization. The codebook size is 1000. A linear SVM 

is employed for all runs. Hamming distance is utilized for 

comparing binary descriptors, χ
2 

for their floating-value 

counterparts. No PCA, spatial or temporal pooling was 

performed. SIFT and PHOW features were obtained using 

the VlFeat toolbox [28]. We used the author’s 

implementations of MoFREAK [1] and MBP [3]. Other 

features were based on OpenCV code. When the 

descriptor is available along with its detector, we used it. 

We employed the grid FAST detector [20] for others, 

which has shown good and fast performance [17]. As 

MBP [3] directly produces histograms for each video clip, 

we utilized a histogram size of 1024 for fair comparison 

with the codebook size of other methods. TREAT 

performance is provided for various settings of the two 

main parameters, the tracklet length L and the number of  



 STATIC FEATURES MOTION FEATURES 

Detector Dense SIFT SURF 
grid 
FAST 

grid 
FAST 

ORB BRISK 
grid 
FAST 

BRISK MBP TREAT TREAT TREAT TREAT 

descriptor  PHOW SIFT SURF BRIEF32 BRIEF64 ORB BRISK FREAK 
Mo-FREAK 

(L=2) 
MBP 
(L=3) 

TREAT 
(L=7 K=4) 

TREAT 
(L=9 K=3) 

TREAT 
(L=5 K=2) 

TREAT 
(L=5 K=3) 

descriptor 
size (byte) 

128 128 64 32 64 32 64 64 16 n.a. 103 90 77 90 

Diving 100% 100% 93.56% 98.29% 100% 100% 97.32% 100% 80.78% 90.01% 100% 100% 100% 100% 

Golfing 78.00% 63.12% 65.31% 67.19% 70.93% 68.05% 74.29% 69.59% 69.14% 45.49% 81.24% 74.63% 79.06% 78.98% 

Kicking 65.43% 49.87% 58.35% 57.83% 58.79% 51.02% 45.96% 49.87% 58.72% 49.87% 51.02% 53.11% 52.84% 51.71% 

Lifting 100% 100% 100% 100% 100% 100% 100% 100% 96.66% 96.66% 100% 100% 100% 100% 

Horse Riding 69.91% 83.21% 68.77% 71.50% 77.24% 52.44% 73.74% 73.16% 54.44% 52.68% 71.18% 73.18% 77.20% 71.66% 

Running 68.48% 62.31% 65.08% 70.73% 69.02% 70.84% 72.29% 73.84% 47.94% 61.39% 75.39% 72.61% 74.01% 75.75% 

Skateboarding 83.25% 86.16% 84.31% 83.25% 83.25% 83.25% 83.01% 83.25% 83.25% 83.25% 83.25% 83.25% 83.25% 83.55% 

Swinging 96.17% 89.78% 97.26% 95.52% 97.04% 91.56% 95.86% 90.10% 55.71% 63.96% 88.58% 87.95% 87.36% 88.23% 

Walking 59.44% 41.42% 74.26% 46.51% 47.00% 62.50% 65.06% 66.39% 66.01% 51.62% 70.21% 74.61% 77.66% 77.73% 

mAP 80.08% 75.10% 78.54% 76.76% 78.14% 75.52% 78.61% 78.47% 68.07% 66.10% 80.10% 79.93% 81.26% 80.85% 

time (ms/fr) 2078.76 178.52 40.91 4.43 5.31 8.06 393.32 47.28 67.73 6.72 31.57 34.27 27.56 27.48 

Table 1: AP performance comparison of various descriptors on the UCFsports dataset. Best scoring ones are in bold; mAP over 

the 9 classes is displayed in red. Computational time is provided in blue. 

 STATIC FEATURES MOTION FEATURES 

Detector 
HoG 
[26] 

SIFT SURF 
grid 
FAST 

grid 
FAST 

ORB BRISK 
grid 
FAST 

BRISK 
grid 
FAST 

TREAT TREAT TREAT TREAT 

descriptor  
HoG 
[26] 

SIFT SURF BRIEF32 BRIEF64 ORB BRISK FREAK 
Mo-FREAK 

(L=2) 
MBP 
(L=3) 

TREAT 
(L=7 K=4) 

TREAT 
(L=9 K=3) 

TREAT 
(L=5 K=2) 

TREAT 
(L=5 K=3) 

descriptor 
size (byte) 

96 128 64 32 64 32 64 64 16 n.a. 103 90 77 90 

AnswerPhone 13.40% 16.95% 15.76% 22.51% 19.46% 15.74% 17.20% 16.92% 18.08% 23.57% 20.11% 24.67% 19.37% 18.24% 

GetOutCar 21.90% 22.03% 22.10% 31.12% 34.41% 29.74% 28.83% 27.28% 49.50% 19.46% 31.87% 26.71% 20.20% 26.23% 

HandShake 18.60% 15.43% 16.60% 13.91% 15.45% 17.35% 17.16% 12.29% 11.31% 29.36% 27.84% 27.47% 25.15% 27.02% 

HugPerson 29.10% 22.81% 25.97% 16.22% 18.21% 17.34% 20.26% 27.38% 12.31% 20.32% 36.18% 36.95% 28.26% 33.24% 

Kiss 52.00% 36.41% 39.09% 33.06% 28.93% 31.75% 35.44% 34.34% 43.45% 35.43% 55.88% 55.12% 53.71% 54.06% 

SitDown 29.10% 21.48% 21.48% 21.48% 21.48% 21.48% 23.08% 21.87% 23.63% 24.65% 22.57% 22.57% 22.57% 22.57% 

SitUp 6.50% 8.36% 13.70% 6.27% 6.90% 5.88% 23.63% 8.14% 22.68% 9.43% 9.08% 9.16% 9.12% 9.21% 

StandUp 45.40% 36.99% 34.20% 34.71% 35.64% 35.26% 29.76% 29.44% 27.21% 28.66% 37.72% 38.31% 39.13% 40.56% 

mAP 27.00% 22.56% 23.61% 22.41% 22.56% 21.82% 24.42% 22.21% 26.02% 23.86% 30.16% 30.12% 27.19% 28.89% 

time (ms/fr) ? 84.24 14.63 2.01 3.73 3.56 385.63 32.74 39.18 2.21 22.13 24.83 19.25 19.45 

Table 2: AP performance comparison of various descriptors on the Hollywood dataset. Best scoring ones are in bold; mAP over 

the 8 classes is displayed in red. Computational time is provided in blue. 

 

selected keyframes K. The performance is measured by 

mean average precision (mAP) over all classes. 

Computation time is is performed on frames of 640 pixels 

in width, and measured in milliseconds per frame, using 

only one core of an Intel i7-4770 3.4GHz.  

7.2. Comparison with state-of-the-art features 

Detailed results are provided in tables 1 to 3. The best 

real-time static descriptor for event recognition is SURF. 

Surprisingly, the best binary static descriptor for event 

recognition is, despite its simplicity, BRIEF. The overall 

best performing real-time descriptor for event recognition 

is TREAT. Its computation load is a factor of the scene 

complexity and the video resolution. Tracking features 

across time takes the bulk of the computation. Hence, the 

tracklet length L has a significant impact on the 

computation time. Other motion-based binary descriptors 

score lower than their static counterparts on UCFsports, 

probably due to limited camera motion. However, they 

achieve on par or better mAP on the more complex 

Hollywood and Hollywood2 datasets. 

However, although they are faster, binary features still 

achieve significantly lower results than non-binary ones 

on event recognition tasks. As reference, dense trajectories 

[11] report (with a 4000 codeword dictionary) 58.3% mAP 

on Hollywood2, 88.2% on UCFsports, and run at 1081 

ms/frame with our setting. Hence, when faced with 

challenging datasets, performance drop remains a 

challenge for binary descriptors. 

7.3. Parameter influence and discussion 

As shown on tables 1 to 3, TREAT descriptors yield 

good results across a wide range of parameters. The best 

tracklet length L ranges between 3 and 11 frames, 

depending on motion pattern velocity and scene 

complexity. Shorter tracks lack information.



 

 

 STATIC FEATURES MOTION FEATURES 

Detector 
HoG/HoF 

[16] 
SIFT SURF 

grid 
FAST 

grid 
FAST 

ORB BRISK 
grid 
FAST 

BRISK 
grid 
FAST 

TREAT TREAT TREAT TREAT 

descriptor  
HoG/HoF 

[16] 
SIFT SURF BRIEF32 BRIEF64 ORB BRISK FREAK 

MoFRE
AK (L=2) 

MBP 
(L=3) 

TREAT(L
=7 K=4) 

TREAT(L=9 
K=3) 

TREAT(L
=5 K=2) 

TREAT(L
=5 K=3) 

descriptor 
size (byte) 

204 128 64 32 64 32 64 64 16 n.a. 103 90 77 90 

AnswerPhone 8.80% 10.50% 17.11% 13.21% 13.21% 11.55% 9.97% 12.28% 10.40% 11.38% 15.69% 14.57% 16.65% 15.31% 

DriveCar 74.90% 31.30% 51.96% 45.05% 45.41% 47.02% 44.11% 21.91% 39.93% 25.54% 43.11% 42.32% 44.79% 43.11% 

Eat 26.30% 8.20% 12.37% 14.58% 12.23% 20.22% 19.42% 19.26% 37.91% 10.97% 27.79% 19.32% 33.52% 34.76% 

FightPerson 67.50% 8.10% 41.85% 57.78% 57.22% 42.54% 42.84% 43.89% 27.03% 11.67% 39.74% 39.76% 41.55% 37.25% 

GetOutCar 9.00% 19.10% 22.62% 26.59% 27.87% 18.80% 14.15% 22.05% 13.64% 7.80% 24.85% 24.16% 23.61% 24.01% 

HandShake 11.60% 12.30% 11.06% 17.32% 16.27% 9.33% 6.36% 16.61% 11.79% 7.50% 21.49% 17.85% 26.31% 23.66% 

HugPerson 13.50% 12.90% 15.77% 19.65% 20.25% 9.88% 13.31% 20.99% 10.88% 9.90% 25.82% 23.05% 21.81% 24.64% 

Kiss 49.60% 34.80% 37.02% 35.87% 36.20% 33.07% 32.85% 31.92% 19.04% 14.13% 36.15% 38.57% 36.70% 35.94% 

Run 53.70% 45.80% 52.99% 50.96% 50.92% 41.90% 40.95% 53.19% 38.51% 37.57% 50.81% 48.62% 53.45% 50.05% 

SitDown 31.60% 16.10% 19.35% 22.02% 18.40% 19.33% 17.25% 17.18% 19.73% 13.73% 31.26% 25.55% 24.89% 25.70% 

SitUp 7.20% 14.20% 6.05% 6.29% 6.71% 6.15% 8.61% 6.05% 6.06% 9.23% 8.53% 7.83% 8.24% 7.86% 

StandUp 35.00% 26.20% 24.11% 24.08% 23.86% 19.41% 20.22% 24.97% 29.56% 19.21% 28.69% 29.36% 29.99% 30.12% 

mAP 32.39% 19.96% 26.02% 27.78% 27.38% 23.27% 22.50% 24.19% 22.04% 14.89% 29.49% 27.58% 30.13% 29.37% 

time (ms/fr) ? 98.51 15.21 2.48 3.71 5.47 382.23 41.63 43.57 5.13 31.87 33.28 28.54 27.11 

Table 3: AP performance comparison of various descriptors on the Hollywood2 dataset. Best scoring ones are in bold; mAP over 

the 12 classes is displayed in red. Computational time is provided in blue. 

 
Figure 5: Codebook size impact on the UCF sports dataset 

classification results. Best viewed in colour. 
 

Longer ones may summarise too much information. 

Setting up the number of keyframes K is straightforward: 

the more, the better. Nevertheless, a minimum temporal 

gap of 2 frames is often needed to allow for significant 

motion pattern changes between 2 consecutive keyframes. 

Increasing this parameter also increases the descriptor 

size. We also state that changing the tracklet length and 

the number of keyframe parameters leads to different class 

performance. Therefore, stacking TREATs of various 

lengths and keyframe densities might lead to better results. 

Nevertheless, this modification will be at the cost of the 

real-time performance. More sophisticated keyframe 

selection might be another direction to investigate. 

However, considering the relatively small length of 

tracklets, and therefore the small changes it may induce, 

we didn’t prioritize it. 

As most binary descriptors are utilized in the context of 

real-time applications, one might be interested in reducing 

their associated codebook to speed-up the application. 

Therefore, we have also evaluated descriptors according to 

their performance loss as the codebook size dwindles. 

Results on the UCF sports dataset are displayed in figure 5 

(note: quantization experiments are assumed consistent 

across datasets). 

The ability of a descriptor to maintain performance 

despite a reduction in codebook size is related to its global 

performance. In other words, better descriptors better 

resist to a drop in performance. More importantly, binary 

and floating-point descriptors behave the same way. The 

average performance drop, compared to the original one 

and calculated over the 9 best features is 1.4% for 500 

codewords, 5.66% for 40 codewords. TREATs show the 

best resilience to a reduction in codebook size, 

maintaining performance for a codebook size as low as 80 

codewords. 

8. Conclusion 

In this paper, we have presented TREAT, a new motion 

binary descriptor that successfully harnesses moving edges 

to detect, track, and describe motion patterns in real-time. 

Results on three public datasets significantly outperform 

existing binary descriptors and even show comparable 

performance to some state-of-the-art floating value 

references. These experiments also establish a baseline for 

the current capacities of binary descriptors on event 

recognition tasks. 

Stacked TREATs using various set of tracklet 

parameters as well as fusion with existing static 

descriptors will be investigated in future work. 
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