
978-1-5090-3811-4/16/$31.00 ⃝c 2016 European Union IEEE AVSS 2016, August 2016, Colorado Springs, CO, USA

Abstract

Fast computation, efficient memory storage, and

performance on par with standard state-of-the-art

descriptors make binary descriptors a convenient tool for

many computer vision applications. However their

development is mostly tailored for static images. To

respond to this limitation, we introduce TREAT (Terse

Rapid Edge-Anchored Tracklets), a new binary detector

and descriptor, based on tracklets. It harnesses moving

edge maps to perform efficient feature detection, tracking,

and description at low computational cost. Experimental

results on 3 different public datasets demonstrate

improved performance over other popular binary features.

These experiments also provide a basis for benchmarking

the performance of binary descriptors in video-based

applications.

1. Introduction

Binary descriptors have demonstrated comparable

performance to some of their floating-point counterparts

[17] while significantly boosting application speed. This

has led to a flourishing literature on the topic [6][7][8][9].

More recently, some effort has been made to extend these

type of descriptors to the temporal dimension [1] [2], and

therefore to robotic and event recognition applications.

This is a challenging task as mining the temporal

dimension requires significant extra computation. As of

today, the state of the art has demonstrated the

effectiveness of some general characteristics in the design

of motion descriptors. However, current binary motion

features [1] [2] still lack some of those. Namely:

1. Long term motion patterns. As the work reported in

[11][12][13][14] has shown, fine representation of motion

patterns is paramount. These descriptors, typically based

on tracks or tracklets, need to be robust to camera motion,

noise and data variability.

2. Dense point extraction. Static feature [10] and

trajectories [11] dense sampling have been shown to

outperform sparse sampling for video activity recognition.

However, this strategy implies extensive computation,

which may not always be practically feasible for large

datasets.

3. Separation or compensation of background features.

Being able to differentiate background features from

object-of-interest features [15][16] has always been a

major problem in video based applications. Background

features should be isolated, or pruned, depending on

whether the background information is treated as

complementary information or outliers. Camera motion

compensation [11] was recently shown to be the best

solution to this issue. However, reliable camera motion

modelling is a time consuming operation that cannot be

performed in the context of real-time applications.

To address these shortcomings, we developed a novel

descriptor that incorporates these three characteristics.

TREAT (Terse Rapid Edge-Anchored Tracklets) features

harness moving edges to extract, track and represent

features.

Our contribution is twofold. First, we provide a new

tracklet-based binary feature suited for real-time

applications. Its extraction and description runs in real-

time and results obtained on an event recognition task

outperform other concurrent descriptors. The key idea to

perform extraction and description in real-time is to resort

to the same cue in each case, namely moving edges.

Second, results are provided on 3 public datasets of

increasing difficulty: UCFsports [27], Hollywood [26],

and Hollywood2 [16]. To the best of our knowledge, this

is the first time binary features are evaluated on such

challenging datasets. TREAT code is publicly available

[30].

The rest of this paper is organized as follows. Section 2

covers the related work. The third section presents the

TREAT descriptor extraction pipeline. Sections 4 to 6

detail each part of the process, namely the video

processing, the tracklets extraction and description

respectively. Section 7 is dedicated to experimental results

and parameter discussion. The final section.

2. Related work

Histogram-of-Gradient (HoG) based methods are the

counterparts of binary descriptors. SIFT [4] features detect

maxima and minima of the result of difference of

Gaussians and represents with a gradient orientation

histogram. PHOW [19] extend them by extracting them

densely at different scales. Efficient computation of

similar features is proposed by SURF [5]. Its 128 bit

version, e-SURF [29], extends it to the temporal

dimension. The possibility to compress HoG into a binary

representation has been explored with convolution chains

[22] or product quantization [25].

TREAT: Terse Rapid Edge-Anchored Tracklets

Remi Trichet

remi.trichet@gmail.com

Noel E. O’Connor
noel.oconnor@dcu.ie

Insight centre for data analytics, Dublin City University, Glasnevin, Ireland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/77222307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: TREAT descriptor extraction pipeline.

Binary descriptors are an alternative to HoG-based

features. They rely on n simple binary intensity tests to

produce a corresponding n-bits description. The precursor

was the BRIEF descriptor [6], featuring randomly selected

pairs without orientation compensation. Its successors all

improved this approach in some way. D-BRIEF [23]

extended it by using box filtering. ORB [7] provided

orientation compensation based on the intensity centroid

moment and learned uncorrelated sampling pairs. FAST

[20] detector compared pixels on a ring centred at a

feature point. BRISK [8] further extended FAST by

searching for maxima in a 3D scalespace. Rotation

invariance was also investigated in MRRID and MROGH

descriptors [20]. Finally, the main contribution of FREAK

[9] is the use of a circular pattern. Points are equally

spaced on circles concentric, similarly to DAISY [21].

Recently, [31] employed deep learning. An evaluation of

the performance of static binary detectors and descriptors

in the context of image recognition was provided in

[17][32].

Binary motion features extend typical binary features to

the temporal dimension. [3] developed a descriptor fusing

intensity comparison over successive frames of a spatio-

temporal volume. However, the method is not robust to

camera motion. [1] proposed MoFREAK features,

extending FREAK [9]. It concatenates 8 core bits from the

FREAK descriptor with 8 bits of interchange patterns [3]

computed over the temporal dimension.

3. TREAT Extraction and Description

Overview

TREAT feature extraction and description, illustrated in

figure 1, proceeds as follows. For each frame, gradients

are extracted along the X, Y and temporal axes, and

combined to form a spatio-temporal map of the image.

This map represents moving edges. We then build up on it

a three-level moving edge pyramid. An edge codeword is

then associated with each pixel calculated based on 8

moving edges values coarsely depicting its 12×12

neighbourhood. Edge and codeword maps are stored for

further use. We densely extract keypoints over moving

edge locations and track them according to their

neighbourhood edge patterns. Finally, each tracklet is

described according to a 64-byte edge presence histogram

along the tracklet, 12 bytes for edge variations over

successive keyframes, and 1 byte for its motion over each

successive keyframe. Features are extracted at several

scales determined by a resolution pyramid.

4. Video processing

Most of our tracklet-based video representation is based

on a video pre-processing step. First of all, incoming

frames are reduced to 640 pixels in width if necessary.

Smaller resolutions are possible for optimal speed but we

found this size to give reasonable computation time

without adversely affecting the performance.

The core cues used by our descriptor are the moving

edge locations. They provide a natural way to distinguish

foreground objects from background and have shown

reliable performance in the past [11]. A key idea of this

approach is to extract, track and describe features based on

this same cue in order to limit computation.

To produce them, we extract X, Y and temporal

gradients by applying a 3-pixel wide Sobel filter and

subtracting subsequent frames. A threshold over a

weighted combination of these three gradient inputs is

applied to obtain the final spatio-temporal gradients. The

threshold controls the desired magnitude of the edge shift.

In our experiments, we assume no a priori knowledge and

set it low to extract moving edges of any magnitude. Note

that gradient magnitudes, typically used in gradient based

descriptors, are lost in the process.

Figure 2: Toy example of a 3-level edge map representation

build over an initial edge map (i.e. the level 0) of 5×4 pixels.

Figure 3: Example of edge codeword determined over a

12×12 pixel patch. a) Image patch. b) Corresponding last

level of the edge map representation c) Resulting binary code

d) Edge codeword.

We then build a three-level moving edge map

representation on this initial map, by summing and

thresholding to the average each 2×2 patch of the previous

level. Further operations only use the last level of the edge

map. A toy example is provided in figure 2.

Lastly, we represent each lpixel (x,y) 12×12 vicinity at

frame f with an edge codeword Cf(x,y). This patch is first

divided in 9 4×4 areas. The bits corresponding to the 8

outer parts on the last level of the edge map representation

are stacked to form a 1-byte encoding. The converted

integer value, ranging from 0 to 255, is the final edge

codeword. This codeword value is assigned to the patch’s

central pixel. Figure 3’s example illustrates the process.

The edge codeword map is the core component of

TREAT extraction. Indeed, this feature has the advantage

of being discriminative and widely present across the

video. Further feature detection, tracking, and description

will mostly be based on this cue, allowing efficient video

characterization while keeping the computation load low.

The multi-level edge map representation and edge

codeword map are stored for further use.

5. Tracklet extraction

TREATs are densely computed on a regular grid.

Computation is restricted to edge locations as the

descriptor is based on edge presence and motion. This is a

crucial constraint as it allows us to focus the feature

extraction process on a limited set of distinctive cues,

therefore limiting the computation while yielding robust

features. We used a 3-pixel stride for all our experiments.

Each selected edge location is further tracked over a

time window of temporal size L according to a simple

Kalman filter. This step allows us to exploit the longer-

term motion information that is lacking in existing motion

binary features [1][3].

Matching compares moving edges in an 18×18

neighbourhood around the point to track, giving more

weight to the central area. This is achieved by comparing

the 4 edge codewords located at the corners of the 6×6

pixel patch centred on the point to track, utilizing the

Hamming distance. This representation allows efficient

matching based on only 4 integer values. Substantial

feature filtering, based on edge presence, is performed to

offer a discriminative set of tracks computed in real-time.

Practically, we:

 Eliminate tracks of “low edgeness”. Tracks centred on

patches with few moving edges are considered neither

sufficiently discriminative nor robust. These noisy

artefacts are discarded.

 Prune out tracks for which the surrounding edges do

not vary (i.e. H(.) too low). Such tracks are assimilated

to object textured parts or the background.
 Similarly, tracks with very high variation (i.e. H(.) too

high) are considered lost, and discarded.
To avoid drifting, the last two tests are performed between

consecutive frames as well as consecutive keyframes.

Keyframes are evenly spaced along the track.

UCFsports, kicking Hollywood, Sit down Hollywood, Stand up

Figure 4: Example of final extracted feature locations as well as their detected TREATs. First row: Original image. Second row:

detected moving edges in white and TREAT features in green (the stroke representing the flow direction). Corresponding

database and event information are below the images. Best viewed in colour.

Their number K (2 ≤ K ≤ L) is a predefined parameter. The

influence of K and L on the feature extraction process is

further discussed in section 7.3. Loose thresholding is used

to avoid overfitting and guarantee a dense set of tracks

(see implementation for threshold values). Figure 4 shows

examples of final extracted feature locations as well as

their detected TREATs.

To yield a multiscale feature, we extract TREAT at

various scales. The frame doesn’t undergo the typical

blurring performed while reducing its size, as it impairs

edge detection. We use a 3 scale pyramid with a √2

shrinking factor for all our experiments. In practice, this

last step leads to a 2% to 6% performance boost while

doubling the computation time.

6. Tracklet description

Our descriptor representation is based on 3

complementary cues: edge variation, edge motion, and

edge presence. Edge presence and variation are extracted

along the tracklet to compensate for its displacement.

Motion is represented separately. In order to avoid

redundancy and limit computation, a set of key frames are

selected at regular intervals along the tracklet for

descriptor calculation.

The edge variation broadly describes the moving edge

variation around the tracklet. Learning from the

experiences of previous work [6][7][8][9], bitwise

differences between the edge codewords of consecutive

keyframes are utilized for this purpose.

𝑑(𝐶(𝑖, 𝑗, 𝑡1), 𝐶(𝑖, 𝑗, 𝑡2)) = 𝐶(𝑖, 𝑗, 𝑡1) 𝑋𝑂𝑅 𝐶(𝑖, 𝑗, 𝑡2) (1)

with C(i,j,t) edge codewords at spatial locations (i, j) and

keyframe t. These comparisons are performed at 12 spatial

locations (i+x, j+y) with 𝑖, 𝑗 ∈ {−6, −3, 0, 3, 6}. Locations

are chosen to avoid overlap of the corresponding edge

codeword patches. It yields a 12-byte descriptor per

consecutive keyframes.

The edge motion represents the tracklet optical flow

between the selected keyframes. The intensity of the

displacement in each of the four possible directions (up,

down, left, right) is downsampled to 2 bits. The four

direction representations are further concatenated to

form a 1-byte motion description per consecutive

keyframes.

Histograms have demonstrated robustness and

summarization capabilities ([11][19]…). We extend here

the principle to binary descriptors. The edge presence

histogram describes the edge presence along the tracklet

according to the calculated edge codewords. We utilize a

256 bin histogram for this purpose, each bin representing

one of the possible edge codeword encoding values. Each

edge codeword in a 12×12 neighbourhood centred on the

tracklet at each frame increments its corresponding bin.

Finally, the histogram is binarized. Each bin is encoded

with 2 bits. The first one is set to 1 if the bin value is

positive. Then, as peaks are an important component of

histograms, the second one is thresholded by the average

bin value. More formally, the binarization of the bin bi in

𝑏𝑖
𝑗
, 𝑗 = {0,1} translates as:

𝑏𝑖
0 = {

1 𝑖𝑓 𝑏𝑖 > 0
0 𝑒𝑙𝑠𝑒

𝑏𝑖
1 = {

1 𝑖𝑓 𝑏𝑖 > 144 ∗ 𝐿/256
 0 𝑒𝑙𝑠𝑒

 (2)

with L the tracklet length. The total histogram size is 64

bytes. With K the number of keyframes, the total

descriptor size is 64+13(K-1).

This representation statically and dynamically describes

every single tracklet according to the moving edges

patterns in its vicinity. It differs, in spirit, from existing

binary descriptor techniques that use binary intensity

comparisons.

7. Experiments

In this section, we compare our binary features to state-

of-the-art competitors. Also, by evaluating them on

datasets of various difficulties, we aim to assess the

performance of current binary descriptor and thereby

provide a benchmark for event recognition applications.

Parameter influence for our approach is also discussed.

7.1. Experimental setup

We performed tests on the Hollywood [26], hollywood2

[16], and UCFsports [27] datasets. Performance on the

latter is evaluated according to a 5-fold cross validation

scheme. We restricted our comparisons to real-time or

near-real time features. However, we also added one

commonly used and well performing feature for each

dataset, as reference. As the purpose of this experiment is

to evaluate and compare the descriptor raw potential in the

context of event recognition, we utilized the most common

encoding and normalization techniques, that is, k-means

clustering, hard-assignment, and L2-histogram

normalization. The codebook size is 1000. A linear SVM

is employed for all runs. Hamming distance is utilized for

comparing binary descriptors, χ
2

for their floating-value

counterparts. No PCA, spatial or temporal pooling was

performed. SIFT and PHOW features were obtained using

the VlFeat toolbox [28]. We used the author’s

implementations of MoFREAK [1] and MBP [3]. Other

features were based on OpenCV code. When the

descriptor is available along with its detector, we used it.

We employed the grid FAST detector [20] for others,

which has shown good and fast performance [17]. As

MBP [3] directly produces histograms for each video clip,

we utilized a histogram size of 1024 for fair comparison

with the codebook size of other methods. TREAT

performance is provided for various settings of the two

main parameters, the tracklet length L and the number of

 STATIC FEATURES MOTION FEATURES

Detector Dense SIFT SURF
grid
FAST

grid
FAST

ORB BRISK
grid
FAST

BRISK MBP TREAT TREAT TREAT TREAT

descriptor PHOW SIFT SURF BRIEF32 BRIEF64 ORB BRISK FREAK
Mo-FREAK

(L=2)
MBP
(L=3)

TREAT
(L=7 K=4)

TREAT
(L=9 K=3)

TREAT
(L=5 K=2)

TREAT
(L=5 K=3)

descriptor
size (byte)

128 128 64 32 64 32 64 64 16 n.a. 103 90 77 90

Diving 100% 100% 93.56% 98.29% 100% 100% 97.32% 100% 80.78% 90.01% 100% 100% 100% 100%

Golfing 78.00% 63.12% 65.31% 67.19% 70.93% 68.05% 74.29% 69.59% 69.14% 45.49% 81.24% 74.63% 79.06% 78.98%

Kicking 65.43% 49.87% 58.35% 57.83% 58.79% 51.02% 45.96% 49.87% 58.72% 49.87% 51.02% 53.11% 52.84% 51.71%

Lifting 100% 100% 100% 100% 100% 100% 100% 100% 96.66% 96.66% 100% 100% 100% 100%

Horse Riding 69.91% 83.21% 68.77% 71.50% 77.24% 52.44% 73.74% 73.16% 54.44% 52.68% 71.18% 73.18% 77.20% 71.66%

Running 68.48% 62.31% 65.08% 70.73% 69.02% 70.84% 72.29% 73.84% 47.94% 61.39% 75.39% 72.61% 74.01% 75.75%

Skateboarding 83.25% 86.16% 84.31% 83.25% 83.25% 83.25% 83.01% 83.25% 83.25% 83.25% 83.25% 83.25% 83.25% 83.55%

Swinging 96.17% 89.78% 97.26% 95.52% 97.04% 91.56% 95.86% 90.10% 55.71% 63.96% 88.58% 87.95% 87.36% 88.23%

Walking 59.44% 41.42% 74.26% 46.51% 47.00% 62.50% 65.06% 66.39% 66.01% 51.62% 70.21% 74.61% 77.66% 77.73%

mAP 80.08% 75.10% 78.54% 76.76% 78.14% 75.52% 78.61% 78.47% 68.07% 66.10% 80.10% 79.93% 81.26% 80.85%

time (ms/fr) 2078.76 178.52 40.91 4.43 5.31 8.06 393.32 47.28 67.73 6.72 31.57 34.27 27.56 27.48

Table 1: AP performance comparison of various descriptors on the UCFsports dataset. Best scoring ones are in bold; mAP over

the 9 classes is displayed in red. Computational time is provided in blue.

 STATIC FEATURES MOTION FEATURES

Detector
HoG
[26]

SIFT SURF
grid
FAST

grid
FAST

ORB BRISK
grid
FAST

BRISK
grid
FAST

TREAT TREAT TREAT TREAT

descriptor
HoG
[26]

SIFT SURF BRIEF32 BRIEF64 ORB BRISK FREAK
Mo-FREAK

(L=2)
MBP
(L=3)

TREAT
(L=7 K=4)

TREAT
(L=9 K=3)

TREAT
(L=5 K=2)

TREAT
(L=5 K=3)

descriptor
size (byte)

96 128 64 32 64 32 64 64 16 n.a. 103 90 77 90

AnswerPhone 13.40% 16.95% 15.76% 22.51% 19.46% 15.74% 17.20% 16.92% 18.08% 23.57% 20.11% 24.67% 19.37% 18.24%

GetOutCar 21.90% 22.03% 22.10% 31.12% 34.41% 29.74% 28.83% 27.28% 49.50% 19.46% 31.87% 26.71% 20.20% 26.23%

HandShake 18.60% 15.43% 16.60% 13.91% 15.45% 17.35% 17.16% 12.29% 11.31% 29.36% 27.84% 27.47% 25.15% 27.02%

HugPerson 29.10% 22.81% 25.97% 16.22% 18.21% 17.34% 20.26% 27.38% 12.31% 20.32% 36.18% 36.95% 28.26% 33.24%

Kiss 52.00% 36.41% 39.09% 33.06% 28.93% 31.75% 35.44% 34.34% 43.45% 35.43% 55.88% 55.12% 53.71% 54.06%

SitDown 29.10% 21.48% 21.48% 21.48% 21.48% 21.48% 23.08% 21.87% 23.63% 24.65% 22.57% 22.57% 22.57% 22.57%

SitUp 6.50% 8.36% 13.70% 6.27% 6.90% 5.88% 23.63% 8.14% 22.68% 9.43% 9.08% 9.16% 9.12% 9.21%

StandUp 45.40% 36.99% 34.20% 34.71% 35.64% 35.26% 29.76% 29.44% 27.21% 28.66% 37.72% 38.31% 39.13% 40.56%

mAP 27.00% 22.56% 23.61% 22.41% 22.56% 21.82% 24.42% 22.21% 26.02% 23.86% 30.16% 30.12% 27.19% 28.89%

time (ms/fr) ? 84.24 14.63 2.01 3.73 3.56 385.63 32.74 39.18 2.21 22.13 24.83 19.25 19.45

Table 2: AP performance comparison of various descriptors on the Hollywood dataset. Best scoring ones are in bold; mAP over

the 8 classes is displayed in red. Computational time is provided in blue.

selected keyframes K. The performance is measured by

mean average precision (mAP) over all classes.

Computation time is is performed on frames of 640 pixels

in width, and measured in milliseconds per frame, using

only one core of an Intel i7-4770 3.4GHz.

7.2. Comparison with state-of-the-art features

Detailed results are provided in tables 1 to 3. The best

real-time static descriptor for event recognition is SURF.

Surprisingly, the best binary static descriptor for event

recognition is, despite its simplicity, BRIEF. The overall

best performing real-time descriptor for event recognition

is TREAT. Its computation load is a factor of the scene

complexity and the video resolution. Tracking features

across time takes the bulk of the computation. Hence, the

tracklet length L has a significant impact on the

computation time. Other motion-based binary descriptors

score lower than their static counterparts on UCFsports,

probably due to limited camera motion. However, they

achieve on par or better mAP on the more complex

Hollywood and Hollywood2 datasets.

However, although they are faster, binary features still

achieve significantly lower results than non-binary ones

on event recognition tasks. As reference, dense trajectories

[11] report (with a 4000 codeword dictionary) 58.3% mAP

on Hollywood2, 88.2% on UCFsports, and run at 1081

ms/frame with our setting. Hence, when faced with

challenging datasets, performance drop remains a

challenge for binary descriptors.

7.3. Parameter influence and discussion

As shown on tables 1 to 3, TREAT descriptors yield

good results across a wide range of parameters. The best

tracklet length L ranges between 3 and 11 frames,

depending on motion pattern velocity and scene

complexity. Shorter tracks lack information.

 STATIC FEATURES MOTION FEATURES

Detector
HoG/HoF

[16]
SIFT SURF

grid
FAST

grid
FAST

ORB BRISK
grid
FAST

BRISK
grid
FAST

TREAT TREAT TREAT TREAT

descriptor
HoG/HoF

[16]
SIFT SURF BRIEF32 BRIEF64 ORB BRISK FREAK

MoFRE
AK (L=2)

MBP
(L=3)

TREAT(L
=7 K=4)

TREAT(L=9
K=3)

TREAT(L
=5 K=2)

TREAT(L
=5 K=3)

descriptor
size (byte)

204 128 64 32 64 32 64 64 16 n.a. 103 90 77 90

AnswerPhone 8.80% 10.50% 17.11% 13.21% 13.21% 11.55% 9.97% 12.28% 10.40% 11.38% 15.69% 14.57% 16.65% 15.31%

DriveCar 74.90% 31.30% 51.96% 45.05% 45.41% 47.02% 44.11% 21.91% 39.93% 25.54% 43.11% 42.32% 44.79% 43.11%

Eat 26.30% 8.20% 12.37% 14.58% 12.23% 20.22% 19.42% 19.26% 37.91% 10.97% 27.79% 19.32% 33.52% 34.76%

FightPerson 67.50% 8.10% 41.85% 57.78% 57.22% 42.54% 42.84% 43.89% 27.03% 11.67% 39.74% 39.76% 41.55% 37.25%

GetOutCar 9.00% 19.10% 22.62% 26.59% 27.87% 18.80% 14.15% 22.05% 13.64% 7.80% 24.85% 24.16% 23.61% 24.01%

HandShake 11.60% 12.30% 11.06% 17.32% 16.27% 9.33% 6.36% 16.61% 11.79% 7.50% 21.49% 17.85% 26.31% 23.66%

HugPerson 13.50% 12.90% 15.77% 19.65% 20.25% 9.88% 13.31% 20.99% 10.88% 9.90% 25.82% 23.05% 21.81% 24.64%

Kiss 49.60% 34.80% 37.02% 35.87% 36.20% 33.07% 32.85% 31.92% 19.04% 14.13% 36.15% 38.57% 36.70% 35.94%

Run 53.70% 45.80% 52.99% 50.96% 50.92% 41.90% 40.95% 53.19% 38.51% 37.57% 50.81% 48.62% 53.45% 50.05%

SitDown 31.60% 16.10% 19.35% 22.02% 18.40% 19.33% 17.25% 17.18% 19.73% 13.73% 31.26% 25.55% 24.89% 25.70%

SitUp 7.20% 14.20% 6.05% 6.29% 6.71% 6.15% 8.61% 6.05% 6.06% 9.23% 8.53% 7.83% 8.24% 7.86%

StandUp 35.00% 26.20% 24.11% 24.08% 23.86% 19.41% 20.22% 24.97% 29.56% 19.21% 28.69% 29.36% 29.99% 30.12%

mAP 32.39% 19.96% 26.02% 27.78% 27.38% 23.27% 22.50% 24.19% 22.04% 14.89% 29.49% 27.58% 30.13% 29.37%

time (ms/fr) ? 98.51 15.21 2.48 3.71 5.47 382.23 41.63 43.57 5.13 31.87 33.28 28.54 27.11

Table 3: AP performance comparison of various descriptors on the Hollywood2 dataset. Best scoring ones are in bold; mAP over

the 12 classes is displayed in red. Computational time is provided in blue.

Figure 5: Codebook size impact on the UCF sports dataset

classification results. Best viewed in colour.

Longer ones may summarise too much information.

Setting up the number of keyframes K is straightforward:

the more, the better. Nevertheless, a minimum temporal

gap of 2 frames is often needed to allow for significant

motion pattern changes between 2 consecutive keyframes.

Increasing this parameter also increases the descriptor

size. We also state that changing the tracklet length and

the number of keyframe parameters leads to different class

performance. Therefore, stacking TREATs of various

lengths and keyframe densities might lead to better results.

Nevertheless, this modification will be at the cost of the

real-time performance. More sophisticated keyframe

selection might be another direction to investigate.

However, considering the relatively small length of

tracklets, and therefore the small changes it may induce,

we didn’t prioritize it.

As most binary descriptors are utilized in the context of

real-time applications, one might be interested in reducing

their associated codebook to speed-up the application.

Therefore, we have also evaluated descriptors according to

their performance loss as the codebook size dwindles.

Results on the UCF sports dataset are displayed in figure 5

(note: quantization experiments are assumed consistent

across datasets).

The ability of a descriptor to maintain performance

despite a reduction in codebook size is related to its global

performance. In other words, better descriptors better

resist to a drop in performance. More importantly, binary

and floating-point descriptors behave the same way. The

average performance drop, compared to the original one

and calculated over the 9 best features is 1.4% for 500

codewords, 5.66% for 40 codewords. TREATs show the

best resilience to a reduction in codebook size,

maintaining performance for a codebook size as low as 80

codewords.

8. Conclusion

In this paper, we have presented TREAT, a new motion

binary descriptor that successfully harnesses moving edges

to detect, track, and describe motion patterns in real-time.

Results on three public datasets significantly outperform

existing binary descriptors and even show comparable

performance to some state-of-the-art floating value

references. These experiments also establish a baseline for

the current capacities of binary descriptors on event

recognition tasks.

Stacked TREATs using various set of tracklet

parameters as well as fusion with existing static

descriptors will be investigated in future work.

9. Acknowledgment

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland

(SFI) under grant number SFI/12/RC/2289.

60,00%

63,00%

66,00%

69,00%

72,00%

75,00%

78,00%

81,00%

1000 500 160 80 40mAP
Codebook size

PHOW

SIFT

SURF

BRIEF32

BRIEF64

ORB

BRISK

FREAK

MoFREAK

MBP

TREAT(L

=7 K=4)

References

[1] C. Whiten, R. Laganière and G.-A. Bilodeau. Efficient

Action Recognition with MoFREAK, CRV, page 319-

325. IEEE, 2013.

[2] F. Baumann, J. Liao, A. Ehlers, B. Rosenhahn, Motion

Binary Patterns for Action Recognition, 3rd International

Conference on Pattern Recognition Applications and

Methods, 2014.

[3] O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf,

Motion Interchange Patterns for Action Recognition in

Unconstrained Videos, ECCV, 2012.

[4] D. G. Lowe, Object recognition from local scale-invariant

features. ICCV, 1999.

[5] B. Herbert, T. Tuytelaars, and L. Van Gool. Surf: Speeded

up robust features. ECCV pp. 404-417, 2006.

[6] M. Calonder, et al. Brief: Binary robust independent

elementary features. ECCV. pp. 778-792. 2010.

[7] E. Rublee, et al. ORB: an efficient alternative to SIFT or

SURF. ICCV, 2011.

[8] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK:

Binary robust invariant scalable keypoints, ICCV, 2011.

[9] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina

keypoint.CVPR, 2012.

[10] H. Wang; M. M. Ullah; A. Klaser; I. Laptev; C. Schmid,

Evaluation of local spatio-temporal features for action

recognition, BMVC, 2009.

[11] H. Wang, A. Kläser, C. Schmid, and L. Cheng-Lin. Action

Recognition by Dense Trajectories, CVPR, 2011.

[12] R. Messing, Christopher J. Pal, Henry A. Kautz. Activity

recognition using the velocity histories of tracked keypoints,

ICCV, 2009.

[13] B. D. Lucas and T. Kanade, An iterative image registration

technique with an application to stereo vision. Proceedings

of Imaging Understanding Workshop, pages 121-130, 1981.

[14] J. Sun, X. Wu, S Yan, L.-F. Cheong, T.S. Chua, and J. Li.

Hierarchical spatio-temporal context modeling for action

recognition, CVPR, 2009.

[15] G. Carmichael, R. Laganière, and P. Bose. Global Context

Descriptors for SURF and MSER Feature Descriptors,

CRV, 2010.

[16] M. Marszałek, I. Laptev, C. Schmid, Actions in context,

CVPR, 2009.

[17] Miksik O. and Mikolajczyk K. Evaluation of Local

Detectors and Descriptors for Fast Feature Matching, ICPR,

Tsukuba Science City, Japan, 2012.

[18] E. Shechtman and M. Irani, Matching Local Self-

Similarities across Images and Videos. CVPR, 2007.

[19] Mikolajczyk, Krystian, and Cordelia Schmid. A

performance evaluation of local descriptors, PAMI, vol. 27,

no. 10, p1615-1630, 2005.

[20] B. Fan, F. Wu, and Z. Hu, Rotationally invariant descriptors

using intensity order pooling, T-PAMI, 2011.

[21] E. Tola, V. Lepetit, and P. Fua, DAISY: An Efficient Dense

Descriptor Applied to Wide Baseline Stereo, PAMI, 2010.

[22] E. Tola, V. Lepetit, and P. Fua, A fast local descriptor for

dense matching, CVPR, 2008.

[23] T. Trzcinski and V. Lepetit, Efficient Discriminative

Projections for compact Binary Descriptors, ECCV, 2012.

[24] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R.

Grzeszczuk, and B. Girod. CHoG: Compressed Histogram

of Gradients a Low Bit-Rate Feature Descriptor, CVPR,

2009.

[25] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating

Local Descriptors into a Compact Image Representation,

CVPR, 2010.

[26] I. Laptev, M. Marszałek, C. Schmid and B. Rozenfeld,

Learning realistic human actions from movies, CVPR,

2008.

[27] M. Rodriguez, J. Ahmed, and M. Shah. Action MACH: A

spatio-temporal maximum average correlation height filter

for action recognition, CVPR, 2008.

[28] A. Vedaldi and B. Fulkerson. VLFeat - An open and

portable library of computer vision algorithms, ACM

Multimedia, 2010.

[29] G. Willems, T. Tuytelaars, and L. Van Gool, An efficient

dense and scale-invariant spatio-temporal interest point

detector, ECCV, 2008.

[30] Please contact authors to obtain the source code.

[31] K. Lin, J. Lu, C.-S. Chen, & J. Zhou, Learning Compact

Binary Descriptors With Unsupervised Deep Neural

Networks, CVPR 2016.

[32] Persson, Andreas, and Amy Loutfi. Fast Matching of Binary

Descriptors for Large-scale Applications in Robot Vision,

IJARS, 2016.

