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Abstract 
 
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is an important 

public health problem. This study used a human synovial cell line (SW982), 

macrophages, and sensory neurons related to those innervating the knee joint that 

secretes cytokines or neuropeptides upon onset of the disease. These are amongst 

most the important cell types in the progression of OA and RA. Recent publications 

report that injecting botulinum neurotoxin (BoNT) into knee joints of arthritic patients 

and mouse models of arthritis alleviates pain.   

Fibroblast-like synoviocytes are important mediators of inflammatory joint damage in 

arthritis through the release of cytokines, but it is unknown if exocytosis from these 

particular cells is SNARE-dependent. Wild type SW982 expressed SNAP-23, VAMP-

3, syntaxin 2-4 and synaptic vesicle protein 2C (SV2C). Specific KD of SNAP-23 or 

VAMP-3 decreased the exocytosis of IL-6 and TNF-α. Also, such reduction of the 

expression of SNAP-23 caused accumulation of SV2 in the peri-nuclear area. A 

monoclonal antibody specific for VAMP-3 precipitated SNAP-23 and syntaxin-2 (and 

-3 to a lesser extent). The formation of SDS-resistant complex(es) by SNAP-23 and 

VAMP-3 was lowered upon knocking down SNAP-23. Though syntaxin isoform -2, -

3 and -4 are expressed in SW982, KD of each did not affect the release of cytokines. 

These collective findings establish that SNAP-23 and VAMP-3 participate in IL-1β 

induced Ca2+-dependent release of IL-6 and TNF-α from SW982 cells. In contrast, 

chimera BA and DA cleaved VAMP-3 in rat synoviocytes but failed to blockade of 

the release of cytokines; however, KD of VAMP-8 resulted in a decrease in inhibition 

of TNF-α and  IL-6 release. 

Targeted BoNTs were evaluated in mouse macrophage cell line (RAW264.7), SW982 

and sensory neurons for truncation of VAMP-2/3 and inhibition of the release of 

cytokines and neuropeptides. ARA-7, a recombinantly expressed cell surface 

receptor-specific ligand conjugated to BoNT,  dose-dependently and potently cleaved 

VAMP-2/3 and inhibited release of two cytokines and substance-P whereas the 

control protein (LC.HN/D) failed to truncate VAMP-2/3. Moreover, lentiviral particles 

expressing LC/D successfully truncated VAMP-3 in synoviocytes or macrophages 

and blocked the release of cytokines (TNF-α and IL-6), confirming the finding from 

KD of VAMP-3 in SW982 cells. 
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1.1 PAIN  

Pain is an unpleasant sensory and emotional experience associated with actual or 

potential damage (or described in terms of such damage). It is a complex perceptual 

experience that, in addition to conveying sensory information such as location, type, 

and intensity of stimulus, has profound affective and cognitive features (Merskey, 

1978; Smith et al., 2001). The sensation of pain is the final product of a complex 

information-processing network. Whether or not a particular stimulus will be 

perceived as painful depends not only on the nature of the stimulus but, also, on the 

context within which it is experienced; memories-emotions and so on (Roth-Isigkeit 

et al., 2005; Breivik et al., 2006).  

A number of theories have been postulated to describe mechanisms underlying 

pain perception. In the 16th century, the French philosopher and mathematician Rene 

Descartes set the basis for one of the original theories of pain. The specificity (or 

labeled line) theory, developed in the 19th century, considers pain as an independent 

sensation with specialized peripheral sensory receptors (nociceptors), which respond 

to damage and send signals through pathways (along nerve fibers) in the nervous 

system to target centers in the brain. These brain centers process the signals to 

produce the experience of pain. 

In 1955, Sinclair and Weddell developed the peripheral pattern theory. They 

proposed that all skin fiber endings (with the exception of those innervating hair cells) 

are identical, and that pain is produced by intense stimulation of these fibers. 

Therefore, touch, warmth and other non-damaging as well as to damaging stimuli, 

give rise to non-painful or painful experiences as a result of differences in the patterns 

(in time) of the signals sent through the nervous system. 

 In the 20th-century, a new pain theory was introduced by Wall and Melzack: 

the gate control theory. The authors proposed that both thin (pain) and large diameter 

(touch, pressure, vibration) nerve fibers carry information from the site of injury to 

two destinations in the dorsal horn of the spinal cord, and that the more large-fiber 

activity relative to thin-fiber activity at the inhibitory cell, the less pain is felt. Both 

peripheral pattern theory and gate control theory have been superseded by more 

modern theories of pain. 
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Fig.1-1 Classification of pain. 

 

Pain can be classified as nociceptive, inflammatory and pathological. The 

body’s early protective response to noxious stimuli of different modalities (heat, cold, 

mechanical or chemical) is referred as nociceptive pain. It involves the activation of 
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nociceptive sensory neurons only by intense (i.e. high-threshold) noxious stimulation, 

and elicits a withdrawal reflex which keeps the affected body area away from the 

potentially harmful stimuli. On the other hand, inflammatory pain is caused by an 

immune reaction driven by immune cells such as macrophages, mast cells and 

neutrophils, in response to tissue damage. Under these conditions, hypersensitivity to 

both noxious and non-noxious stimuli develops in the injured area and surrounding 

tissue. This helps to reduce the risk of further damage and promotes recovery and 

repair, as in the case of a surgical wound or in an inflamed joint. Therefore, this type 

of pain is adaptive. Typically, inflammatory pain disappears after resolution of the 

initial tissue injury. However, in chronic disorders, such as rheumatoid arthritis, the 

pain persists for as long as inflammation is active.  

Finally, pathological pain is caused by an abnormal function of the nervous 

system. It may occur in absence of peripheral activation of nociceptors by different 

types of stimuli, and in contrast, arises spontaneously. The correlation between the 

intensity of peripheral noxious stimuli (if any) and the intensity of pain sensation is 

lost, therefore, in these clinical syndromes, pain is maladaptive and non-protective. 

Neuropathic pain falls into this category, and it develops due to damage of the 

nervous system. In contrast, a second kind of pathological pain, dysfunctional pain, 

emerges in absence of identifiable neural injury or inflammation. This pain is 

characteristic of syndromes such as fibromyalgia and irritable bowel syndrome (Fig. 

1-1) (Woolf, 2010, 2011).  

Based on its duration, pain can also be classified as acute or chronic. Acute 

pain is of a sudden onset and occurs after bone, muscle, organ or other tissue damage. 

It resolves with the healing of the underlying cause. Chronic pain persists for over 6 

months, and, when associated to an injury, outlasts the normal time of healing. 

1.2 PAIN TRANSMISSION 

Pain sensations are transmitted from the periphery by the primary afferent neurons, 

whose cell bodies are located in the trigeminal and the dorsal root ganglia. However, 

central mechanisms also play a role in the maintenance of chronic pain conditions as 

indicated by the contribution of descending input from the rostral ventral medulla to 

the maintenance of both inflammatory and neuropathic pain (Fig. 1-2) (Bingham et 

al., 2009). 
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Fig. 1-2 The nociceptive pain pathway. CNS, central nervous system. 

 

It was thought that a sensory input, such as a pinprick, would simply cause a 

pain “signal” to be sent directly to the brain via a single nerve. Although still not 

completely understood today, the science of pain reveals a much more complex 

process, and theories still continue to evolve today. Pain is a conscious experience 

that emerges from brain activity. The activation of peripheral pain receptors (also 

called nociceptors) by noxious stimuli, such as tissue injury or chemical mediators, 

generates signals that travel to the dorsal horn of the spinal cord via the dorsal root 

ganglion neurons mainly by faster A-delta and slower C-fibers as these detect 

mechanical, thermal and chemical stimuli. Peripheral pain receptors terminate in the 

dorsal horn of the spinal cord, where they have connections with many spinal neurons. 

The signals from dorsal horn are carried along by ascending pain pathway or the 

spinothalamic tract to the thalamus and the cortex. Then descending signals 

originating in supraspinal centers can modulate activity in the dorsal horn by 

controlling spinal pain transmission.  
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Fig. 1-3 Pain pathway and various sites of action of analgesics. 

 

The effectiveness of treatments can be increased by combining effects of 

various mechanisms to achieve synergistic effects. Paracetamol (acetaminophen) 

when combined with NSAIDS (non-steroidal anti-inflammatory drugs) provide 

additive analgesic effect in mild to moderate acute pain. The synergistic effects of α-

adrenergic and opioid systems have been shown with the effects of clonidine 

potentiating the effects of morphine. Epidural analgesia with a combination of local 

anaesthetics and opioids is an excellent multimodal method for better analgesia and 

enhanced recovery. Pain relief can be attained by the conventional pharmacological 

option of administering opioids like morphine or fentanyl (Gottschalk and Smith, 

2001; Bingham et al., 2009). Morphine and fentanyl have been the analgesic drugs of 

choice for anaesthesia for decades. Cyclooxygenase, the key enzyme for the 

production of prostaglandins in inflammatory exudates and inhibitors of the COX-2 

have similar efficacy to other NSAIDs but have reduced gastrointestinal side effects 

(Fig. 1-3).  (See pharmacology of these drugs in later section). 
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Fig. 1-4 Peripheral inflammatory reactions. 

  

The link between the nervous and immune systems is an important one. 

Cytokines, a type of proteins found in the nervous system, are also part of the body's 

immune system. Cytokines can trigger pain by promoting inflammation, even in the 

absence of injury or damage. After trauma, cytokine levels rise in the brain and spinal 

cord and at the site in the peripheral nervous system (sensory neurons) where the 

injury occurred (Fig. 1-4). Immune response in the dorsal root ganglia (DRGs) driven 

by macrophages, lymphocytes and satellite cells results in peripheral nerve injury.  

Pain-peptides such as substance P and calcitonin-gene related peptide (CGRP) 

are released from sensory neurons due to injury stimulates immune cells like 

macrophages and synoviocytes which results in secretion of pro-inflammatory 

cytokines such as TNF-α and IL-6. On the other hand, neurodegeneration causes 

release of pain-peptides such as substance P and CGRP from sensory neurons which 

stimulate immune cells to release cytokines. Understanding of the role of cytokines in 

producing pain, especially pain resulting from injury (Scholz and Woolf, 2007; Chiu 

et al., 2012), may lead to generation of new classes of drugs that can block the action 

of these substances.  

1.3 ARTHRITIS  

Arthritis means joint inflammation, one of the body's natural reactions to disease or 

injury, and includes swelling, pain, and stiffness. Inflammation that lasts for a very 

long time or recurs, as in arthritis, can lead to tissue damage. Over time, stiffness, 

pain, inflammation and loss of movement develop in affected joints. People with 

arthritis may have difficulty with very basic movements and every day activities, such 
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as walking, climbing stairs, typing, or brushing their teeth. Arthritis affects 43 million 

U.S. adults and is the leading cause of disability in the United States. These patients 

are affected by musculoskeletal signs or symptoms, including limitation of motion 

and pain of the joint.  

1.3.1 Articular joints 

Human articular joints are composed of several different tissues (cartilage, calcified 

cartilage, bone, synovium, ligament, meniscus, and patella) (Fig. 1-5) that function 

inter-dependently to allow the joint to function for many years under normal 

conditions. These tissues are all important to the health of the whole joint so if one 

tissue is compromised, it inevitably has an impact on the others. When this delicate 

balance between the tissues gets upset, a cascade of abnormal physiological reactions 

is often triggered, ultimately leading to the total failure of the joint. The primary 

bearing surface in a synovial joint is the articular cartilage (Fig. 1-5).  

 

 

 

Fig. 1-5.  Anatomy of the  human knee joint.  

A normal knee joint consists of cartilage, meniscus, patella and ligaments (Moskowitz 

et al., 2004).  
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The collagen and proteoglycans in the articular cartilage are arranged to 

withstand primarily tensile and shear stresses at the surface, and compressive stresses 

in the deeper cartilage layers (O'Connell, 2000). The knee is a "hinge type" joint 

which is formed by two bones held together by flexible ligaments. The bones are 

the femur (thigh bone) and the tibia and fibula (shin bone). The knee cap (patella) also 

forms part of the knee joint. It glides over the end of the femur as the knee bends. The 

moving parts of a normal knee are covered with a layer of articular cartilage which is 

a white smooth substance about 1/4 of an inch thick on the patella and 1/8 of an inch 

thick on the femur and tibia. Synovial membrane is a tissue lining the joint and 

sealing it into a joint capsule. The synovial membrane secretes synovial fluid (a clear, 

sticky fluid) around the joint to lubricate it (Moskowitz et al., 2004). Synoviocytes are 

cells derived from synovial membrane, which contains synovial fibroblasts and 

macrophages. These cells are involved in the progression of arthritis by producing 

cytokines. 

1.3.2 Rheumatoid arthritis (RA) 

This is an inflammatory autoimmune joint disease that occurs in approximately 1% of 

the human population. RA mainly affects the synovium, the cartilage and subchondral 

bone but the disease can have systemic effects with increased comorbidity and 

mortality, particularly due to cardiovascular disease (Wallberg-Jonsson et al., 1997). 

There are well-developed criteria for the characterization of RA in clinical practice, 

i.e., the so-called American College of Rheumatology (ACR) criteria (Arnett et al., 

1988). Briefly, these are as follows: (1) morning stiffness, (Flynn and Clark) arthritis 

of 3 or more joint areas, (3) arthritis of the hand joints, (4) symmetrical arthritis, (5) 

presence of rheumatoid nodules, (6) detectable serum rheumatoid factor (RF), and (7) 

radiographic changes. An assay using anti-cyclic citrullinated peptide/protein 

antibody, with higher specificity than for RF but equal sensitivity has been developed, 

increasing diagnostic capability for RA (Rantapaa-Dahlqvist, 2005). 

The exact mechanisms of disease initiation and propagation are still essentially 

unknown. However, research on the etiology of RA has been, and still is, extensive 

and it is now well-established that genetic factors, both human leukocyte antigen 

(HLA) and non-HLA genes are important for disease onset (Gregersen, 1999; Bowes 

and Barton, 2008). The disease is characterized by joint inflammation, i.e. synovitis 

(inflammation in the synovium) together with hyperplasia (thickening of the synovial 
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membrane) leading to pannus formation. Cartilage and bone destruction gradually 

appear, in the end leading to deformity of the inflamed joints which in the case of the 

knee joints, eventually may lead to prosthesis operations. Nevertheless, RA is a 

multifactorial disease in which environmental and life-style factors, e.g., obesity and 

smoking, are potentially relevant (Symmons, 2003). No curative treatment is available 

but disease modifying anti-rheumatic drugs (DMARDs) (e.g., methotrexate, 

sulphazalasine, leflunomide, etc.) can reduce the symptoms when used efficiently. 

Treatment has recently been improved by the use of drugs targeting tumor necrosis 

factor alpha (TNF-α) (Emery, 2006). For evaluation of disease status, several clinical 

parameters are employed. Laboratory analyses of both C-reactive protein (CRP) and 

erythrocyte sedimentation rates (ESR) are valuable, and easily performed, procedures 

for estimating the degree of inflammation. To evaluate response of the disease to 

therapy over time, disease activity scores (DAS) are calculated. These are based on 

the number of tender and swollen joints, patients global assessment (visual analogue 

scale, VAS) and ESR. DAS has been validated in different studies and currently used 

with a DAS score of 28 (Prevoo et al., 1995). 

1.3.3 Osteoarthritis (OA) 

OA of the joints is a common disease affecting humans but its prevalence increases 

with age. OA can be primary or secondary to trauma, surgery, infection or other 

disease processes. OA of the joint is diagnosed using Altman’s diagnostic criteria 

(Altman et al., 1986). The disease is caused by an imbalance in cartilage metabolism, 

i.e., levels of synthesis vs. destruction, which leads to degradation of cartilage. There 

is also inflammation in the synovium and damage to the subchondral bone. The 

processes of OA are very complex and its etiology is not well defined. Many different 

mediators in various cell types are involved including cytokines, growth factors, 

matrix metalloproteinases (MMPs) and chondrodegradative enzymes (Moskowitz et 

al., 2004). When the disease is very pronounced, a knee joint prosthesis operation 

may have to be performed. The extent of involvement in the knee joint OA is  

determined radiographically and graded according to Ahlback’s criteria (Ahlback, 

1968). 
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1.4 NON-NEURONAL AND NEURONAL INVOLVEMENT IN 

THE PROGRESSION OF ARTHRITIS 

1.4.1 Synovial tissue and its cells 

The synovial membrane in normal joints is thin, consisting of only a few layers of 

cells. In the deep parts, it is composed of loose connective, fibrous and adipose tissues 

(Fig. 1-5). Collagen, particularly type I and III, fibronection and proteoglycans are 

present in the matrix of the synovium. Main functions of the synovium are production 

of synovial fluid and removal of debris from the joint space. The cells in normal 

synovial tissue are predominantly phagocytic cells, generated from monocytes (tissue 

specific macrophages) and fibroblasts. The synovium in patients with RA is 

hypertrophic and contains numerous mononuclear cells (Fig. 1-6). Pannus tissue, the 

destructive tissue in RA, is a hypertrophic and inflammatory synovial tissue localized 

at the junction of the synovial lining and cartilage and bone. Macrophages and 

fibroblast-like synoviocytes (FLS) are the predominant cell types in the inflamed 

synovium (Tak and Bresnihan, 2000). The macrophages are particularly important for 

inflammation in RA due to a high density around the inflamed synovial membrane 

and at the cartilage-pannus junction (Mulherin et al., 1996; Kinne et al., 2007); they 

are pro-inflammatory and major contributors to the joint destruction via secretion of 

cytokines and MMPs.  
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Fig. 1-6.  A schematic overview of an arthritic joint.  

In RA, synovium becomes hyperplastic and synovial fluid level increases, whereas OA 

causes degradation of cartilage and osteophyte formation. In both conditions,  

immune cells starts  producing cytokines which results in cartilage and synovium 

degradation (Ahlback, 1968). 
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The FLS are, together with osteoclasts, involved in the processes of bone erosion and 

destruction of cartilage plus bone (Goldring and Gravallese, 2000; Abeles and 

Pillinger, 2006). They function in a direct manner by secreting MMPs and indirectly 

by secreting cytokines leading to recruitment of many other cells such as monocytes, 

lymphocytes, neutrophils and mast cells (Abeles and Pillinger, 2006). Lymphocytes, 

neutrophils and mast cells also participate in the process(es) of joint destruction in RA 

(Tak and Bresnihan, 2000). It is well-established that both T- and B-lymphocytes in 

the synovium play central roles in the pathogenesis of RA (Bugatti et al., 2007; Lundy 

et al., 2007), being important, not least for autoantibody production, whilst T-

lymphocytes contribute to inflammation and tissue destruction (Bugatti et al., 2007; 

Lundy et al., 2007). Fine venules and capillaries occur beneath the lining cells of the 

synovium. These superficial vessels have a fenestrated endothelium via which fluid 

transudates in order to contribute to the joint fluid; larger vessels are present in the 

deep parts of the synovium. Angiogenesis is crucial for the formation of the pannus in 

RA; hence, the ingrowth of arterioles and venules occurs in the deep parts of the 

synovium. In this context, it is known that vascular endothelial growth factor (VEGF) 

plays an important role for the angiogenesis in RA synovium (Malemud, 2007). There 

are also several other factors which are of potential interest in the neo-angiogenesis in 

RA, e.g., growth hormone and insulin like growth factor-1 (IGF-1) (Malemud, 2007). 

1.4.2 Mechanoreceptors and chemical receptors 

The knee joint mechanoreceptors consist of pacinian and Ruffini corpuscles 

that respond to mechanical pressure and distortion. These are mainly present in joint 

capsule, ligaments and menisci. Pacinian corpuscles are free nerve endings sensitive 

to small changes in deformation caused by mechanically applied pressure and initiate 

vigorous discharge of electrical potentials during acceleration or deceleration of the 

moving joint. Therefore, pacinian corpuscles are fast-adapting receptors initiating 

signal when there is dynamic change in the joint motion and joint deformation, while 

being insensitive to constant or steady movement. Ruffini mechanoreceptors are 

thinly encapsulated and sensitive to low level mechanical deformation. The Ruffini 

endings are slow-adapting, which implies that they may register changes in tissue 

stress and strain as well as continue to signal the new steady state for prolonged 

periods of time.  These receptors have static and dynamic factors present in joint 
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angle, velocity and intra-articular pressure and strain and are mainly found in the 

ligaments, joint capsule and menisci.  

Chemoreceptors respond to water-soluble and lipid-soluble compounds that 

contact their cell membranes. Chemoreceptive neurons in the CNS respond to changes 

in the pH and carbon dioxide concentrations of the cerebrospinal fluid; those along 

arterial trunks monitor the oxygen content of the blood. Chemical signal transmission 

is a key process for intracellular communication; in neurons, neurotransmitters are 

accumulated in the synaptic vesicles and are released upon stimulation and these 

released neurotransmitters stimulate target cells by binding to the specific receptors. 

The cytokine like IL-1 binds to specific receptor (IL-1 receptor) on immune cells  

(e.g. macrophages, synoviocytes) to transduce signal to signaling molecules (IKK and 

IkB) by phosphorylation, then NF-κB binds to promoter, and transcription and 

translation of genes occur which result in release of other pro-inflammatory cytokines, 

such as IL-6 and TNF-α. Many drugs based on disruption of cytokines binding to their 

receptors are currently under development. Toll-like receptors (TLRs) are responsible 

for the recognition of pathogen-associated molecular patterns expressed by a wide 

spectrum of infectious agents. TLRs activate the NF-κB pathway, which regulates 

cytokine expression through several adaptor molecules. Activation of the NF-κB 

pathway links innate and adaptive immune response by production of inflammatory 

cytokines such as IL-1, IL-6, IL-8, TNF and IL-12. Activation of TLRs by the 

cytokines and other components in knee joint then results in release of other pro-

inflammatory cytokines. TLR4 is a receptor and signaling molecule, responding to 

bacterial lipoproteins like LPS, which has been implicated in inflammation.  
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Fig.1-7 Peripheral Mediators of Inflammation. 

 

The tissue damage due to injury leads to the release of inflammatory mediators by 

activated sensory nerves or non-neural cells like macrophages, fibroblasts, 

neutrophils, and mast cells that infiltrate into the injured area. This mixture of 

inflammatory mediators of signalling molecules include serotonin, histamine, 

glutamate, ATP, adenosine, substance P, CGRP, bradykinin, eicosanoids 

(prostaglandins, thromboxanes, leukotrienes), endocannabinoids, nerve growth factor 

(NGF), TNF-α, IL-1β, extracellular proteases, and protons. These mediators act 

directly on the nociceptor by binding to one or more cell surface receptors, including 

G protein-coupled receptors (GPCR), Transient Receptor Potential channels (TRP), 

acid-sensitive ion channels (ASIC), two-pore potassium channels (K2P), and receptor 

tyrosine kinases (RTK) (Fig. 1-7). These interactions enhance excitability of the nerve 

fibre, thereby increasing its sensitivity to temperature or touch. TRPV1, a member of 

the transient potential family of receptors allows transient influx of cations, can be 

activated by a diverse variety of stimuli, including heat, acid and capsaicin. Abnormal 

activation at peripheral neurons contributes to neuropathic pain and the inflammatory 

response at damaged tissue. TRPV1 also found on non-neuronal cells like 

synoviocytes where it initiates signaling that culminates in pain perception in 

inflammatory diseases (Julius, 2013).  
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Receptors that are classified according to the source of the stimulus are placed 

in one of the following three categories: exteroceptors, proprioceptors, or 

interoceptors. Proprioception is conscious and/or unconscious perception of position 

and movement of an extremity or a joint in space. Knee proprioception derives from 

the integration of afferent signals from proprioceptive receptors in different structures 

of the knee and is influenced by signals from the outside of the knee. Proprioceptive 

information is used to protect the knee against possible injurious movements by reflex 

response. Impairment in proprioception was reported in OA. Exteroceptive receptors 

respond to stimuli from external environment including visual, auditory and tactile 

stimuli, while interceptive receptors detect internal events such as change in blood 

pressure. Exteroceptive receptors are located on the surface of the bodies of animals 

and humans (including the mucous membranes of the nose, mouth, and tongue). 

Depending on the nature of the stimulus perceived, a distinction is made between 

mechanoreceptors of the skin (tactile), chemoreceptors (gustatory and olfactory 

organs) and thermoreceptors of the skin. Primary interoceptive representation in the 

dorsal posterior insula engenders distinct highly resolved feelings from the body that 

include pain, temperature, itch, sensual touch, muscular and visceral sensations 

(Knoop et al., 2011).  

1.4.3 Joint innervations      

 It has been observed that knee joints are supplied with sensory, sympathetic nerve 

endings and mechanoreceptors (Samuel, 1952; Skoglund, 1956; Heppelmann, 1997), 

and these have studied in both normal and inflamed joint tissue (Heppelmann, 1997). 

The innervation pattern consists of group I – IV sensory afferents and sympathetic 

fibres (Table 1-1) (Heppelmann, 1997).   

Peptide containing sensory (Saito and Koshino, 2000) as well as sympathetic 

(Miller et al., 2000) nerve fibres have been found in the human knee joint synovium. 

The presence of substance-P (SP) in the sensory innervation in animal joints has been 

frequently documented (Miller et al., 2000). 
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Table 1-1 List of articular nerve endings in knee joints 

 (Heppelmann, 1997). 

 

Type Morphology Location Parent nerve 

fibres 

Behavioural 

characteristics 

I Thinly encapsulated 

globular corpuscles 

(100 x 40µm) 

Fibrous capsule 

of joint (mainly 

superficial 

layers) 

Small 

myelinated (6-

9µm) 

Static and dynamic 

mechanoreceptors; 

low-threshold, 

slow adopting 

II Thickly 

encapsulated 

conical corpuscles 

(280 x 120 µm), in 

a cluster of 2-4 

corpuscles 

Fibrous capsule 

of joint (mainly 

deeper layers). 

Articular fat 

pads 

Medium size 

myelinated (9-

12 µm) 

Dynamic 

mechanoreceptors 

low threshold, 

rapidly adapting 

III Thinly encapsulated 

fusiform corpuscles 

(600 x 100 µm) 

Joint ligaments 

(intrinsic and 

extrinsic) 

Large 

myelinated 

(13-17 µm) 

Dynamic 

mechanoreceptors; 

high threshold, 

very slow adapting 

IV Plexuses and free 

nerve endings 

Fibrous 

capsule, 

articular fat 

pads, ligaments 

and walls of 

blood vessels 

Very small 

myelinated (2-

5 µm) 

Unmyelinated 

(<2 µm) 

Pain receptors; 

high threshold, 

non-adapting 

 

 

 It has been suggested that an imbalance between sympathetic and sensory 

innervation in the arthritic joint may be of importance for the inflammation therein 

(Weidler et al., 2005). Interestingly, findings from studies on rat knee joints indicates 

that monoarthritis leads to increase in neuropeptide levels in the synovial fluid 

(Bileviciute et al., 1993); likewise, SP and calcitonin gene-related peptide (CGRP) in 

the spinal cord (Mapp et al., 1993). 
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 The main function of sensory nerves in joints is to detect and transmit 

mechanical information to the central nervous system. The process of pain in arthritis 

is, to a large extent, unknown although much effort has been made in understanding 

this process (McDougall, 2006). Nevertheless, early studies showed that sensory 

denervation with capsaicin attenuated inflammation and nociception in arthritic rats 

(Cruwys et al., 1995). Joint innervation is of interest as the nervous system generally 

is assumed to be involved in the development of arthritis. For example, it is known 

that the paralytic limb of hemiplegic patients with RA is spared from the 

inflammatory process (Thompson and Bywaters, 1962; Glick, 1967). The 

involvement of the richly-innervated peripheral joints in RA also suggest that this 

may be of importance in the pathogenesis of RA (Konttinen et al., 2006). Neuro-

immune pathways are, on the whole, suggested to be important for the modulation of 

arthritic processes (Kane et al., 2005).  

 The joint nerves contain sensory, Aβ-, Aδ- and C-fibers. Under normal 

physiological conditions, nociceptive signals are produced by intense stimulation of 

primary afferent sensory A and C nerve fiber terminals by chemicals, thermal and 

mechanical stimuli in the joints. The first relay in pain pathways activated by Aδ- and 

C-nociceptors is the spinal dorsal horn and, as such, this represents an important site 

for the modulation of pain signals. Corpuscular endings of Aβ-fibers have been 

identified in the ligaments and the fibrous capsule. Sensory nerve endings were found 

in all structures of the joint except the normal cartilage (Wong, 1993; Riedel and 

Neeck, 2001; Grubb, 2004). Pain is elicited when noxious mechanical, thermal and 

chemical stimuli are applied to the fibrous structures such as ligaments and fibrous 

capsule. While most fibers in the Aβ-fiber range show responses to innocuous 

movements of the joints, a large number of Aδ- and C-fibers show thresholds for 

noxious stimuli. One group of so-called “silent nociceptors” of mainly C-fibers  

consisting does not respond even to noxious mechanical stimuli of the normal joint 

(Schaible et al., 2006; Schaible, 2007); they begin to respond to mechanical 

stimulation during inflammation of the joint.  

1.4.4 Synovial joint fluid 

This consists of hyaluronic acid produced by the lining cells and fluid from superficial 

capillaries and venules, together with low molecular weight proteins. Normal synovial 

fluid has a high viscosity and is difficult to aspirate. However, a synovial fluid sample 
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from a patient with inflammatory arthritis, e.g., RA, has a lower viscosity and 

contains numerous polymorphonuclear cells (Choy and Panayi, 2001; Dieppe and 

Lohmander, 2005). Inflammatory markers and nerve signaling substances can also be 

detected in the synovial fluid from patients with RA or OA. 

1.4.5 Articular cartilage 

The ends of all the bones at the joint are covered by articular cartilage. This is a 

glistening white substance that has the consistency of firm rubber. However, it is 

actually a mixture of collagen and special large, sponge-like molecules that are 

maintained by living cells (chondrocytes). Hyaline cartilage is found on the joint 

surfaces of the bones forming the knee joint. It functions as the self-lubricating, low-

friction gliding and load-distributing joint surface. This articular cartilage, as well as 

other types of cartilage, contain two types of cells – chondrocytes and chondroblasts 

(A chondroblast is a cell which originates from a mesenchymal stem cell and 

forms chondrocytes, commonly known as cartilage cells). Furthermore, articular 

cartilage is made up of a fibrillar meshwork of collagen II fibres and proteoglycans 

(Dieppe and Lohmander, 2005). The chondrocytes have secretary capacities, not least 

including production of collagen and chondromucoprotein. The articular cartilage 

obtains nutrients from the synovial fluid. The level of proliferation of chondrocytes in 

healthy individuals is limited, as is the level of penetration of other cell types from the 

joint cavity into the articular cartilage  (Otero and Goldring, 2007). The destruction of 

cartilage in arthritis occurs at the junction between the pannus and cartilage 

(Kobayashi and Ziff, 1975; Woolley et al., 1977). Both FLS and macrophages can 

attach to the cartilage and initiate the destruction by secreting proteinases (Edwards, 

2000). The chondrocytes respond to different mediators by alteration in their 

metabolism and can start to produce and secrete pro-inflammatory factors such as 

nitric oxide and prostaglandin E2 (PGE2)  (Otero and Goldring, 2007). Osteoclasts 

(bone-resorbing cells) also contribute to the destruction of cartilage (Bromley and 

Woolley, 1984; Gravallese et al., 1998). 

1.4.6 Cytokines in arthritis disease progression 

The immunology of RA synovial inflammation actually involves numerous pro-

inflammatory cytokines and extensive research in this area has been made during the 

past two decades. Cytokines are mainly produced by monocytes and macrophages, 
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but also by other cells such as lymphocytes and fibroblasts (Chu et al., 1991). Pro-

inflammatory cytokines such as TNF-α, interleukin-1 (IL-1β), IL-6, IL-15 among 

others are of great importance in the pathogenesis (Fig.1-8) and inflammatory 

processes in RA (Koch et al., 1995). TNF, IL-1, IL-6 and IL-17 upregulate the 

expression of RANKL (receptor activator of NF-κB ligand) in osteoblasts and 

synovial fibroblasts. RANKL mediates differentiation, survival and activation of 

osteoclasts. It also has a function in the immune system, where it is expressed by T 

helper cells and is thought to be involved in dendritic cell maturation. Osteoprotegerin 

(OPG), a member of the tumour necrosis factor receptor superfamily, is a soluble 

decoy receptor for the osteoclast differentiation factor RANKL that inhibits 

interaction between RANKL and its membrane-bound receptor RANK. RANKL 

exhibits several properties with relevance to atherogenesis, such as promotion of 

inflammatory responses in T cells and dendritic cells, induction of chemotactic 

properties in monocytes, induction of matrix metalloproteinase (MMP) activity, 

which also play role in inflammation. 

TNF-α, produced by fibroblasts and macrophages, promotes differentiation 

and survival of osteoclasts. IL-6 is largely produced by fibroblasts and macrophages; 

it enhances the expression of RANKL and contributes to the induction of Th17 cells. 

Th17 cells secrete IL-17, but mast cells are probably a main source of synovial IL-17 

(Fig. 1-8).  TNF-α is a potent inducer of other important cytokines such as IL-1β, IL-6 

and also MMPs. TNF-α is found in elevated levels in synovial fluid and highly 

expressed in the pannus from patients with RA (Saxne et al., 1988; Chu et al., 1991; 

Brennan et al., 1992). It is also involved in peripheral mediation of neuropathic pain. 

There are two cellular receptors for TNF-α, TNFR1 and TNFR2, which are present in 

circulating blood and synovial fluid following cleavage of the extracellular portions 

by proteases (Cope et al., 1992). Both receptors’ distinct and overlapping signal 

transduction pathways lead to a range of cellular responses, which include cell death, 

survival, differentiation, proliferation and migration.  The biological function of TNF-

α is a host defense to bacterial, viral and other infections but its excessive production 

can lead to the inflammation. For example, over-production of TNF-α in knee joint 

causes inflammation in RA and OA.  

  IL-6, produced by T-cells, monocytes, macrophages and FLS, is also of 

importance for synovial inflammation in RA (Van Snick, 1990). IL-6 acts as both a 

pro-inflammatory and anti-inflammatory cytokine. IL-6's anti-inflammatory role is 
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mediated through its inhibitory effects on TNF-α and IL-1, and activation of IL-1ra 

(IL-1 receptor antagonist) and IL-10.  Other main functions of IL-6 are promoting the 

development of B-cells into plasma cells, induction of C-reactive protein (CRP), 

formation of osteoclasts and proliferation of FLS (Van Snick, 1990). IL-6 also plays a 

role in establishing the FLS phenotype, including the induction of FLS proliferation. 

Release of IL-6 by FLS may induce further FLS activation and proliferation. This 

could explain elevated levels of IL-6 in synovial fluid and sera of patients with RA 

(Houssiau et al., 1988).  It has been shown that IL-6 contributes to the production of 

autoantibodies such as RF (rheumatoid factor) and anti-citrullinated peptide antibody 

and leads to RA. Increased angiogenesis and vascular permeability of synovial tissue, 

a pathological feature of RA is also induced by IL-6. Therefore, IL-6 plays important 

role in immunological abnormalities which lead to joint inflammation in RA and OA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-8.  The role of cytokines in arthritis. (Braun and Zwerina, 2011). 

 

IL-1β is mainly produced by monocytes and macrophages, but also by B- and T-cells 

(Koch et al., 1995). It is an important pro-inflammatory cytokine which can induce 

secretion of TNF-α and chemokines from chondrocytes and fibroblasts (Arend and 

Dayer, 1990). IL-1β can also stimulate release of MMPs from fibroblasts and 

chondrocytes (von Banchet et al., 2007).  
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1.5 CURRENT AVAILABLE TREATMENTS FOR ARTHRITIS 

Analgesic therapies for acute and chronic pain conditions currently rely on three 

major classes of drugs: nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, and 

a group of drugs with diverse pharmacological actions collectively known as 

adjuvants (antidepressants, anticonvulsants, local anaesthetics, 2-adrenoceptor 

agonists) (Brown, 2000; Colmegna et al., 2012). The systemic administration of both 

NSAIDs and opioids exhibit a variety of adverse actions (nausea, vomiting, gastric 

ulcer, kidney failure, liver failure, respiratory depression, cough suppression, etc.), 

and many chronic pain states are not adequately controlled by these agents, 

particularly those involving nerve injury (Brown, 2000; Mugnier and Bouvenot, 2000; 

Saag et al., 2008; Tugwell et al., 2011). With adjuvants, it is often necessary to titrate 

the dosage until adequate pain relief or intolerable side effects develop. 

Unfortunately, the latter outcome often occurs, and the degree of pain relief that 

results is only partial. An alternative important approach to pain control is to apply 

drugs locally to the peripheral site of origin of the pain. This can be attained by the 

topical application of a cream, lotion, gel, aerosol, or patch to skin or by injections 

directly into the joints. These application methods allow a higher local concentration 

of the drug at the site of initiation of the pain and lower or negligible systemic drug 

levels, producing fewer or no adverse drug effects. Other potential advantages of 

localized applications are the absence of drug interactions, this lack of need to titrate 

doses to tolerability and, importantly, the ease of use. Both acute and chronic pain 

conditions are likely to be amenable to this approach but, to date; there are only a 

limited number of topical therapies available for the relief of somatic pain (Mugnier 

and Bouvenot, 2000; Senolt et al., 2009; Tugwell et al., 2011).  

1.5.1 Non-steroidal anti-inflammatory drugs (NSAIDs) 

The major effect of NSAIDs is anti-inflammatory antinociceptive by inhibiting 

cyclooxygenase enzymes and later decrease the level of prostaglandins such as PGE2 

(Kidd et al., 2007).  The COX enzyme converts arachidonic acid liberated from the 

phospholipid membrane by phospholipases to prostanoids such as prostaglandins. 

Two forms of COX are well characterized, a constitutive form (COX1) that is 

normally expressed in tissues such as stomach and kidney and plays a physiological 

role in maintaining tissue integrity, and a form that is induced by inflammatory 

mediators (COX2) which serves a significant role in pain and inflammation (Edwards 
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et al., 2005). The potential clinical benefit of COX-2 inhibitors is significant due to 

the number of patients chronically treated with NSAIDs and the higher risk of 

gastrointestinal injury and death associated with traditional NSAIDs. Systemic 

administration of NSAIDs is also associated with several side effects, including 

nausea, vomiting, diarrhea, constipation, decreased appetite, rash, dizziness, 

headache, and drowsiness.  

1.5.2 Opioids 

The central effects of opioids on pain transmission by acting within the dorsal horn of 

the spinal cord, at brainstem and other supraspinal sites have been recognized for 

some time. Patients who are not responsive to NSAIDs are treated with opioids. The 

main active agent in opioids is morphine, which is used to treat many forms of 

chronic pain in humans. Opioid receptor subtypes were identified by their different 

anatomical location and pharmacological profiles of compounds that eventually used 

to name them, i.e. morphine (µ), ketocyclazocine (к) and vas deferens (δ). These 3 

different types of opioid receptors- the µ, δ and к- which are widely expressed in both 

central and peripheral nervous systems (Bidlack, 2000). The pharmacodynamic 

response to an opioid depends upon the receptor to which it binds, its affinity for that 

receptor, and whether the opioid is an agonist or an antagonist. for eg, a µ acts as 

spinal and supraspinal analgesia, δ as spinal analgesia and к receptor as spinal 

analgesia and supraspinal analgesia. Activation of these receptors inhibits the 

formation of cAMP, close voltage-gated Ca2+ channels and opens inwardly rectifying 

K+ channels. The net effect of these cellular actions is to reduce neuronal excitability 

and neurotransmitter release (Dieppe and Lohmander, 2005; Kidd et al., 2007). The 

opioid drugs produce analgesia by acting at several levels of the nervous system, 

causing inhibition of neurotransmitter release from the primary afferent terminals in 

the spinal cord and activation of descending inhibitory controls in the midbrain. The 

main side effect of opioids is constipation, nausea and vomiting.  

1.5.3 Corticosteroids 

This therapy for RA acts mainly through the reducing circulating monocytes plus 

macrophages and cytokine secretion which, in turn, inhibits collagenase and 

prostaglandins (Kidd et al., 2007). The most commonly used corticosteroids are 

glucocorticoids which exert anti-inflammatory effect by binding of glucocorticoid or 
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glucocorticoid receptor complex to glucocorticoid responsive element in the promoter 

region of  genes or transcription factor such as nuclear factor-κB which causes 

inhibition of translation and transcription of cytokines. Intra-articular injection of 

corticosteroid  cause a significant reduction in pain and tenderness in OA. Patients are 

treated with corticosteroids if they not respond to other drugs. However, steroids 

possess numerous side effects which include bone loss, increased susceptibility to 

infection, osteoporosis and peptic ulcers.  

1.5.4 Disease-modifying anti-rheumatic drugs (DMARDs) 

These are often given to patients as combination therapy with NSAIDs. This category 

of drugs includes hydroxychloroquine, methotrexate, auranofin, sulfasalazine, d-

penicillamine, cyclosporine, azathioprine and cyclophosphamide (Breedveld and 

Combe, 2011; Curtis and Singh, 2011, 2011). 

DMARDs alleviates arthritis pain by decreasing inflammation eg. Sulaphasalamine 

lowering the translocation of NF-kB into the nucleus by inhibiting IkB-alpha kinase 

which results in inhibition of cytokines and chemokines (De Silva et al., 2010).  

Methotrexate inhibits T-cell activation and proliferation, down regulates the 

expression of some activation and adhesion molecules, for example, intercellular 

adhesion molecule-1, decreases immunoglobulin production, inhibits 

cyclooxygenases and lipooxygenases, and modulates monocyte and macrophage 

secretion of various cytokines.  Methotrexate is effectively used to treat RA but this 

therapy has some limitations. Azathioprine is an immunosuppressant, which inhibits 

the enzyme required for DNA synthesis in dividing cells like T-cells, macrophages 

and B-cells, thereby blocking immune response. Cyclophosphamide is another 

immunosuppressant, it adds alkyl group to guanine bases of DNA and inhibits DNA 

synthesis in proliferating cells like T-cells which produce cytokines. 

1.5.5 Anti-cytokine therapy 

Cytokines released from immune cells, chondrocytes and synoviocytes have ability to 

stimulate the release of other pro-inflammatory cytokines. There are many different 

cytokines involved; however, TNF-α plays a major role by initiating and maintaining 

the inflammatory cascades. TNF-α stimulates production of many different cytokines 

and tissue degradative enzymes such as MMPs (Fernandes et al., 2002). TNF-α is 

produced mainly by macrophages, monocytes, T cells, B cells and synoviocytes, and 
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its levels increase upon disease onset. An anti- antibody against TNF-α has been 

shown to significantly decrease joint pain and inflammation (Barrera et al., 2001; 

Burmester et al., 2013). Five anti-TNF-α agents are available for RA treatment 

including infliximab, etanercept, golimumab, adalimumab and certolizumab pegol 

(Colmegna et al., 2012) (Table 1-2). Tocilizumab, another example of an anti-

cytokine therapy, is an anti-IL-6 drug. This is a humanized mAb combining the 

complementarity-determining region of a murine anti-human-IL-6R (IL-6 receptor) 

with human IgG1 antibody. Tocilizumab inhibits IL-6 receptor signaling (Emery et 

al., 2008; Fujimoto et al., 2008) (Table 1-2).  

Interleukin 1 (IL-1) is a general name for two distinct proteins, IL-1α and IL-1β, that 

are considered the first of a small (but possibly growing) family of regulatory and 

inflammatory cytokines (Bazan et al., 1996). IL-1α and IL-1β are synthesized as 31-

33 kDa, variably glycosylated pro-cytokines that share 25% amino acid (aa) identity 

across their entire precursor structure, and 22% aa identity over their mature segments 

(March et al., 1985). IL-1α and IL-1β share same type of biological activities 

following binding to the IL-1R (IL-1 receptor). Thus, IL-1α and IL-1β differ in the 

subcellular compartments in which they are active as well as distinct intracellular 

metabolism/processing; IL-1α is mainly active as a cytosolic precursor (31 kD), while 

IL-1β is  active only in its secreted form. Blockade of IL-1 release has recently been 

developed to treat RA. IL-1α and IL-1β are produced by macrophages, monocytes, 

lymphocytes and fibroblasts.  Binding of IL-1 to IL-1R leads to production of other 

cytokines like IL-6 and TNF-α. Anakinra is an interleukin-1 (IL-1) receptor 

antagonist (Table 1-2), it blocks the biologic activity of naturally occurring IL-1, 

inflammation and cartilage degradation associated with RA, by competitively 

inhibiting the binding of IL-1 to the IL-1 type receptor, which is expressed in many 

tissues and organs (Fleischmann et al., 2006).  
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Table 1-2. Current biological agents to treat arthritis  

(Fleischmann et al., 2006; Emery et al., 2008; Fujimoto et al., 2008; Caporali et al., 

2009; Colmegna et al., 2012)  

Agent Structure Pharmacology 

Abatacept Recombinant 

CTLA4 molecule 

dimerized to IgG 

Blocks T-cell co-stimulation by preventing antigen-

presenting cells (APCs) from delivering the co-

stimulatory signal to T cells to fully activate  

Adalimumab Monoclonal 

antibody (Mab) 

against TNF-α 

Reduces inflammatory reaction by binding to TNF-α 

preventing it from activating TNF receptors  

Anakinra Recombinant IL-1 

receptor antagonist 

Competitively inhibits the binding of naturally 

occurring IL-1 to the ILR1 

Certolizumab 

pegol 

Pegylated Mab Fab 

fragment from 

humanized TNF-α  

A monoclonal antibody directed against TNF-α 

Etanercept Recombinant TNF- 

α receptor 

dimerized on IgG1  

Functions as a decoy receptor that binds to TNF and 

reduces the effect of naturally present TNF  

Golimumab Human Mab against 

TNF-α 

 TNF-α inhibitor used as immunosuppressive drug  

Infliximab Chimeric Mab 

against TNF-α 

Binds to the TNF-α and inhibits or prevents the 

effective binding of TNF-α with its receptors 

Rituximab Chimeric Mab 

against CD20 

Destroys overactive or dysfunctional B-cell by 

binding to CD20 expressed on these cells 

Tocilizumab Humanized Mab 

against IL-6R 

Binds soluble as well as membrane bound 

interleukin-6 receptors, hindering IL-6 from exerting 

its pro-inflammatory effects 

CTLA4, cytotoxic T-lymphocytes antigen 4; IL, interleukin; TNF-α, tumour necrosis 

factor alpha. 
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1.6 SNARES CYTOKINES, NEUROPEPTIDES AND BOTULINUM 

NEUROTOXINS 

Exocytosis is a multistage process involving a fusion between the vesicle and the 

plasma membranes, leading to the formation of a channel, through which secretions 

are released from the vesicle to the cell exterior (Jahn et al., 2003; Jahn, 2004). In 

neurons and non-neuronal cells, signalling molecules are stored in membrane-bound 

secretory vesicles inside the cells and are released into the extracellular space after 

fusion of the secretary vesicle membrane with the plasma membrane. SNARE 

[soluble-NSF (N-ethylmaleimide-sensitive factor) attachment receptor] proteins drive 

membrane fusion and contribute to membrane/protein targeting and delivery in all 

eukaryotic cells. This SNARE complex is formed from syntaxin 1, SNAP-25 

(Synaptosomal-associated protein 25) and VAMP (Vesicle associated 

membrane proteins) (Jahn et al., 2003). The vesicular membrane carries a v-SNARE 

and the target membrane, a t-SNARE. In neuronal exocytosis, syntaxin and 

synaptobrevin are anchored in respective membranes by their C-terminal domains, 

whereas SNAP-25 is tethered to the plasma membrane via several cysteine-linked 

palmitoyl chains. The core SNARE complex is a four-α-helix bundle, where one α-

helix is contributed by syntaxin-1, one α-helix by synaptobrevin and two α-helices are 

contributed by SNAP-25. Thus, progression of SNARE-mediated fusion can be 

divided into a step-wise process involving – a) assembly of free SNAREs into an 

acceptor complex, a process probably mediated by the SM (Sec-Munc proteins) 

proteins, b) association with VAMP from synaptic vesicles to form a loose trans-

SNARE complex and c) creation of tight SNARE complexes which is catalysed by 

complexins and syntaxin and formation of a stable cis-SNARE complex.  For vesicle 

fusion influx of Ca2+ into the cell is required. Synaptotagmin and SV2 (synaptic 

vesicle protein) are present on synaptic vesicles and act as calcium sensors which 

regulate Ca2+ at the synapse. The two SNAREs can form a fusion particle with energy 

input from the hydrolysis of ATP and cause membrane fusion (Scales et al., 2000) and 

release of neurotransmitter into synaptic cleft. SNARE proteins function in fusion by 

a cycle of assembly into complexes that fuel membrane fusion, and disassembly of the 

complexes by NSF and SNAPs that makes SNARE proteins available again for 

another round of fusion (Fig. 1-9, Fig. 1-11). 
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Fig. 1-9 Formation of SNARE complex.  

The core SNARE complex is formed by four α-helices contributed by synaptobrevin 

(VAMP), syntaxin and SNAP-25, synaptotagmin serves as a calcium sensor and 

regulates intimately the SNARE zipping and membrane fusion. 

 

 The involvement of SNARE molecules in cytokine and granules release from 

immune cells has been shown recently (Table 1-3). The secretion of immune 

mediators, phagocytosis and endocytosis and the release of stored inflammatory 

mediators from secretary granules, all require SNARE-mediated membrane fusion 

(Stow et al., 2009). In macrophages, neutrophils, platelets, eosinophils, secretion of 

cytokines or granules requires SNAREs (Stow et al., 2006) (Table 1-3). 
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Table 1-3. List of SNAREs and their function in immune cells   

(Logan et al., 2003; Stow et al., 2006; Lacy and Stow, 2011) 

SNARE Cell type SNARE partners Immune function 

R-SNAREs    

VAMP-1 Neutrophils STX4–SNAP23 Secretion from all 

granules 

VAMP2 Neutrophils STX4–SNAP23 Secretion from 

specific and 

gelatinase granules 

 Eosinophils ND Secretion from small 

secretory vesicles, 

CCL5 

VAMP3 Macrophages STX6–STX7–Vti1b, 

STX4–SNAP23 

Phagocytosis and 

TNF secretion 

 Platelets STX4 Secretion from both 

dense and -granules 

 NK cells STX4 IFNγ, TNF 

VAMP7 Macrophages ND Phagocytosis 

 Neutrophils STX4 Secretion from all 

granules 

 Eosinophils ND Secretion from 

crystalloid granules 

VAMP8 Platelets STX4 Secretion from dense 

granules 

 

 Macrophages STX4, STX6 TNF 

 

Qa-SNAREs 

   

STX2 Platelets SNAP23 Secretion from -

granules, dense 

granules and 

lysosomes 

STX4 Macrophages SNAP23–VAMP3 Phagocytosis and 

TNF secretion 

 Platelets ND Secretion from -
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granules and 

lysosomes 

 Mast cells SNAP23–VAMP2, 

SNAP23–VAMP3, 

SNAP23–VAMP8 

Degranulation 

 Neutrophils SNAP23–VAMP1, 

SNAP23–VAMP2, 

VAMP7 

Secretion from 

specific, gelatinase 

and azurophilic 

granules 

 Eosinophils SNAP23 Secretion from 

crystalloid granules 

STX7 Macrophages STX6–Vti1b–

VAMP3 

TNF secretion and 

phagosome 

maturation 

STX13 Macrophages ND Phagosome 

maturation 

STX18 Macrophages 

 

ND Phagocytosis 

Qb-SNAREs    

Vti1b Macrophages 

 

STX6–STX7–

VAMP3 

TNF secretion 

Qc-SNAREs    

STX6 Macrophages STX7–Vti1b–

VAMP3 

TNF secretion 

 Neutrophils ND Secretion from 

specific and 

azurophilic granules 

Qb,c-SNAREs    

SNAP23 Macrophages STX4–VAMP3 TNF secretion and 

phagocytosis 

 Platelets STX2 Secretion from dense 

granules and 

lysosomes 

 Mast cells STX4–VAMP2, 

STX4– VAMP3, 

Degranulation, TNF, 

CCL3 
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STX4– VAMP8, 

STX3– VAMP8, 

STX2, STX3 

 Neutrophils STX4–VAMP1, 

STX4–VAMP2 

Secretion from 

specific and 

gelatinase granules 

 Plasma cells ND Antibody secretion 

 Eosinophiles STX4 CCL5 

 

ND, not determined; SNAP, soluble-N-ethylmaleimide-sensitive-factor accessory 

protein; SNARE, SNAP receptor; STX, syntaxin; TNF, tumour-necrosis factor; 

VAMP, vesicle-associated membrane protein; Vti1b, vesicle transport through 

interaction with t-SNAREs homologue 1b 

 

Botulism is a neuroparalytic disease, most commonly caused by foodborne 

ingestion of neurotoxin types A, B or E. The German scientist Justinus Kerner (1786-

1862) described botulism as “sausage poison” or “fatty poison”. After few years, 

Emile Pierre van Ermengem discovered causative agent as Clostridium botulinum. 

Much later, the botulinum neurotoxin (BoNT) (Fig. 1-10) was applied successfully to 

treat diseases, pioneered by Alan B. Scott and Edward J. Schantz (Erbguth, 2004).  

BoNTs are produced by Clostridium botulinum as a complex of proteins 

containing the neurotoxic moiety associated with nontoxic components.  Seven 

immunologically- distinct serotypes of BoNT target peripheral cholinergic neurons 

where they selectively proteolyse SNAP-25 (BoNT/A, /C1, and /E), syntaxin1 (/C1), 

and synaptobrevin (BoNT/B, /D, /F, and /G) at specific site of SNAREs (Fig. 1-11; 

Table 1-4).  
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Fig. 1-10. Crystal structure of BoNT/A.  

This protein is composed of a ~50 kDa light chain (LC-red) and a ~100 kDa heavy 

chain (HC) linked by a single disulphide and non-covalent bonds. The HC contains 

two functional ~50kDa domains; a C-terminal ganglioside binding moiety (HC-

purple) and N-terminal translocation domain (HN-blue) (Lacy et al., 1998).  

 

These serologically-distinct BoNT serotypes all act by inhibiting release of signal 

chemicals packaged in neuronal vesicles (Dolly and Aoki, 2006).   
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Fig. 1-11. Mechanism of action of BoNTs (Arnon et al., 2001) 

 

BoNTs bind to the pre-synaptic nerve endings of cholinergic neurons and 

enter by receptor-mediated endocytosis [synaptic vesicle protein (SV2) is an acceptor 

for BoNT/A, /D, /E and F and synaptotagmin I/II for /B and /G]. Acidity in the 

endosome is believed to induce pore formation, which allows translocation of the 

catalytic domain into the cytosol. The catalytic domain of the seven BoNT serotypes 

specifically cleaves one of three different SNARE proteins essential for synaptic 

vesicle fusion with the plasmalemma (SNAP-25 is cleaved by /A, /C1 and /E; 

syntaxin by /C1 and VAMP by /B, /D, /F and /G). It is noteworthy that in non-

neuronal cells SNAP-25 cleaving serotypes are not effective as levels of SNAP-25 in 
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these cells are very low and present SNAP-23 doesn’t get efficiently cleaved by 

BoNTs. Thus VAMP cleaving BoNTs provide therapeutical advantage by cleaving 

SNAREs present in both neuronal and non-neuronal cells. 

BoNTs affect striated muscle by creating a chemical denervation that is 

temporary through highly potent inhibition of acetylcholine release at the 

neuromuscular junction (Montecucco et al., 2009).   BoNTs have been found to affect 

the release of multiple SNARE-dependent neuropeptides, including SP, glutamate, 

cytokines and CGRP, all important mediators of articular pain transmission (Aoki and 

Francis, 2011).  

 

 

Table 1-4. BoNTs and their substrates 

(Binz et al., 2010) 

Serotype Intracellular target 

protein 

Cleavage sites in rat 

/A SNAP-25 EANQ197RATK 

/B VAMP-1, 2 GASQ76FETS 

/C1 SNAP-25 

Syntaxin-1A/B 

ANQR198ATKM 

DTKK254AVKY/DTKK 253AVKY  

/D VAMP-1, 2 RDQK61KSELD for I and II 

/E SNAP-25 QIDR180IMEK 

/F VAMP-1, 2 ERDQ60KLSE for I 

ERDQ58KLSE for II 

/G VAMP1, 2 ETSA83AKLK for I 

ETSA81AKLK for II 

 

BoNTs are the most potent neurotoxins known. However, small doses are 

successfully used as cosmetic and musculoskeletal therapies. Currently, BoNT/A is 

the best characterized and widely used clinically because of its long duration of 

action. BoNT/A injections are analgesic for painful muscle contractions associated 

with cervical dystonia, migraine/tension headaches, and myofascial pain syndromes 

(Smith et al., 2002; Ranoux et al., 2008; Dolly et al., 2011). 



 36 

In BoNT/A treatment of painful soft tissue syndromes, pain relief preceded the 

resolution of muscle contractions, suggesting that BoNTs may have antinociceptive 

effects independent of known effects on neuromuscular junctions (Aoki, 2003). 

Efficacy of intra-articular BoNT/A for refractory arthritis pain in humans, and in 

murine models of arthritis joint pain, has been reported. Intra-articular BoNT/A 

reduced lower extremity arthritis pain by an average of 55%, and shoulder pain by an 

average of 71% in a study of 11 patients with chronic arthritis pain refractory to intra-

articular corticosteroids, with no noted adverse effects (Mahowald et al., 2006).  

In a pre-clinical study, intra-articular injection of BoNT/A resulted in reduced joint 

tenderness and increased nocturnal wheel running in a mouse model of carrageenan-

induced inflammatory arthritis (Krug et al., 2009). 

In clinical studies, intra-articular injection of BoNT/A produced a significant  

decrease in pain score at 3 months (Mahowald et al., 2006; Mahowald et al., 2009) 

and also decreased pain and joint stiffness (Boon et al., 2010). Similar results were 

found in a randomized placebo-controlled trial of BoNT/A in chronic severe shoulder 

pain. BoNT is used in the treatment of strabismus, blepharospasm, hemifacial spasm, 

adductor spasmodic dysphonia, bruxism, mandibular dystonia, cervix dystonia, local 

or segmental dystonia, hypercontractility of the internal anal sphincter, detrusor 

dyssynergy, spasticity, and stuttering. These observations support the hypothesis that 

chronic arthritis pain may be amplified by neuropeptide release in the periphery 

(Naumann et al., 2008; Dolly et al., 2009). This selective chemodenervation of 

articular pain fibres with intra-articular injection of neurotoxins is a novel local 

approach to treatment of arthritis joint pain. 

The novel BoNT-based bio-therapeutics for certain neuronal disorders 

including pain are being developed in ICNT. For example, BoNT/A, unlike BoNT/E, 

was found to be unable to abolish the CGRP1 receptor-mediated effect of capsaicin, a 

nociceptive TRPV1 stimulant, or its elevation of CGRP release from trigeminal 

ganglionic neurons (TGNs) in culture. It was established that TGNs lack SV2A/B 

acceptor for BoNT/A but expresses SV2C an acceptor for BoNT/E. To allow LC/E 

entry to the TGNs, recombinant chimera (EA) of BoNT/A and /E was engineered. 

This chimera effectively bound to SV2C via binding domain of BoNT/A and cleaved 

SNAP-25 by LC/E capable of inhibition of CGRP release (Meng et al, 2009).  

Using this strategy, the chimera BA and DA were engineered by substituting 

H(C)/A (C-terminal half of BoNT/A heavy chain) into BoNT/B or /D which 
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successfully delivered the BoNT/B or /D protease via the BoNT/A acceptor into 

neurons, or non-neuronal cells like synoviocytes that lack SNAP-25, cleaving VAMP 

isoform. BA or DA were shown potential to block exocytosis from non-neuronal cells 

expressing BoNT/A acceptor but lacking SNAP-25 by cleaving VAMP isoforms 

(Wang J. et. al., 2012). 

Thus, recombinant BoNT-based therapeutics developed in ICNT could be 

used to treat chronic pain and new molecules to treat arthritic pain were engineered. 

1.7 PRINCIPLE GOALS OF THIS STUDY 

Encouraged by recent reports on the ability of BoNT/A to treat tension 

headaches/migraines, rheumatologists found that injecting this bio-therapeutic into  

joints reduced the pain and inflammation in RA and OA patients, who were refractory 

to other anti-arthritic drugs. The proof of principle has been established in our 

laboratory that recombinant BoNTs can be used to treat pain by blocking release of 

cytokines or pain-peptides. Therefore it is warranted to develop new recombinant 

BoNT-based therapeutics to inhibit cytokine release from immune cells like 

synoviocytes and macrophages, as well as pain-peptide from sensory neurons, and test 

these in animal models of arthritic pain. 

To achieve this, 3 different experimental approaches to inhibition of release of 

cytokines and pain-peptides were adopted and evaluated in synoviocytes, 

macrophages and sensory neurons.   

- the lentiviral shRNA was used to knockdown selected SNAREs  

- the lentiviral expression of LC/D was used to truncate selected SNAREs 

- novel targeted BoNTs were created to preferentially enter non-neuronal cells 

 

Objectives:  

1) As recently reported, release of cytokines and pain-peptides in immune cells 

and sensory neurons requires SNAREs. In-vitro studies in non-neuronal cells 

(human and rat synoviocytes) were therefore carried out to demonstrate 

expression levels of different SNAREs. To truncate key SNARE, VAMP-3, 

recombinant BoNTs (chimera/BA and /DA) were engineered to deliver LC/B or 

/D to synoviocytes lacking receptor for BoNT/B or /D but expressing BoNT/A 

receptor.  
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In another approach, commercially available lentiviral shRNA to knockdown 

SNAP-23, VAMP-3, syntaxin isoforms or VAMP-8 was achieved in human 

synoviocytes and its effect on inhibition of cytokines was studied. The formation 

of SDS-resistant SNARE complex was evaluated in human synoviocytes (Chapter 

3 and 4). 

2) To increase therapeutic efficacy of BoNT by targeting to the requisite cells 

(e.g. synoviocytes, macrophages or rat dorsal root ganglion neurons) via an 

attached moiety capable of efficient endocytosis of toxin into cells lacking 

BoNT/A or /D acceptor was developed. We have previously shown that VAMP is 

required for release of cytokines in cells lacking SNAP-25. In this study 

synoviocytes, macrophages and sensory neurons were adopted to truncate VAMP 

which is present in both and investigate inhibition of release of cytokine/pain-

peptide (Chapter 5). This targeted bio-therapeutic was specifically developed to 

attenuate inflammatory and neuropathic pain by targeting immune cells and 

sensory neurons and will be further evaluated in relevant animal models. 

3) To further extend cleavage of VAMP in inflammatory cells and sensory 

neurons, lentiviral particles expressing LC/D were developed. The truncation of  

VAMP was carried out in synoviocytes and macrophages to inhibit release of 

cytokines and pain-peptides (Chapter 6). 
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2.1 IN VITRO STUDIES 

2.1.1 Ethics statement 

All procedures involving live animals were approved by the Research Ethics 

Committee of Dublin City University and licenses granted by the Minister for Health 

and Children under the Cruelty to Animals Act, 1876 as amended by European 

Communities Regulations 2002 and 2005. Experimental procedures had been 

approved by the Research Ethics Committee of Dublin City University and licensed 

by the Irish Authorities. 

2.1.2 Reagents and antibodies 

Rabbit affinity-purified polyclonal antibodies specific for IL-6 and IL-1 receptor were 

bought from Abcam (Cambridge, UK); cell culture reagents, rabbit polyclonal 

antibodies against SNAP-25, a syntaxin-1 mouse monoclonal, Penicillin and 

Streptomycin (Pen-Strep) and targeted and non-targeted lentiviral particles were from 

Sigma-Aldrich (Arklow, Ireland). Synaptic Systems GmbH (Goettingen, Germany) 

supplied rabbit polyclonal antibody against SNAP-23, VAMP-2, -3, -7 or -8, syntaxin 

-2, -3, -4, -5 or -6 and SV2A, 2B or 2C and synaptotagmin I/II. PAN (SV2) was 

purchased from Developmental Studies Hybridoma Bank). Goat anti-rabbit Alexa 568 

(red fluorescence), donkey anti-mouse 488 (green fluorescence), 4',6-diamidino-2-

phenylindole (DAPI) and precast NuPAGE gels were purchased from Bio-Sciences 

(Dun Laoghaire, Ireland). Donkey anti-rabbit and mouse horse radish peroxidase 

(HRP) secondary antibody from Jackson ImmunoResearch (Suffolk, UK); Enhanced 

chemiluminescence (ECL) reagent and  Polyvinylidenfluoride mesh material (PVDF) 

membrane was bought from Merck Millipore (Cork, Ireland).  The ELISA kit was 

purchased from Mabtech (Sweden), SPI-BIO (UK) and TrueBlot HRP secondary 

antibody from eBioscience (Hatfield, UK).  

2.1.3 Cell culture  

A human synovial cell line (SW982) and mouse macrophage cell line (RAW264.7) 

were obtained from the American Tissue Culture Collection (Manassas, VA) while 

Lenti-X 293T was from Clontech (Germany). The SW982 cells were routinely 

maintained in T-75 flasks (Corning, Ireland)  in RPMI1640 medium containing 2 mM 

L-glutamine, 10% fetal bovine serum (FBS) and 1% Pen-Strep at 37 °C, 5% CO2 
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(Yamazaki et al., 2003). Rat cerebellar granule neurons (rCGNs) were isolated and 

cultured as described previously (Meng et al., 2009).  Dorsal root ganglion neurons 

from rat were isolated. Ganglions were isolated and digested with collagenase (1 

mg/ml) for 30 min, centrifuged and cells suspendered in complete medium containing 

nerve growth factor before plating (Welch et al., 2000; Burkey et al., 2004). Rat 

trigeminal neurons (rTGNs) were isolated from trigeminal ganglions. The tissue was 

placed in ice-cold L15 medium, washed twice in ice-cold sterile HBSS before 

centrifugation at 170 g for 1 minute. After chopping into small pieces and passing 

through 10-ml Falcon pipettes pre-coated with L15 medium, the tissue was incubated 

while shaking at 37°C for 30 minutes in a 1:1 mixture of HBSS (containing 2.4 U/ml 

dispase II) and collagenase I (1 mg/ml). Cells were seeded onto 24-well plates 

precoated with poly-L-lysine (0.1 mg/ml) and laminin (20 µg/ml) in F12 medium 

supplemented with NGF (50 ng/ml) and maintained in a CO2 incubator at 37°C 

(Meng et al., 2007).   

2.1.4 Isolation and culture of rat synoviocytes 

Synovium, obtained from rat knee joint, was chopped into small pieces, washed in 

PBS and digested for 30 min. with collagenase (2 mg/ml) in sterile DMEM 

supplemented with 1% Pen-Strep in an incubator at 37°C. The cells were counted, 

seeded into 6-well tissue culture plates and left overnight to adhere.  

 2.1.5 Botulinum neurotoxins (BoNTs) 

 In our laboratory, novel BoNT chimeras DA, BA and mutated LC/E400(K224D)  

were designed,  constructed, expressed and purified by Dr. Jiafu Wang. Chimera/DA 

(a recombinant BoNT which contains the protease and translocation domain of 

BoNT/D and the binding C-terminal moiety of BoNT/A) and chimera/BA (a BoNT 

variant which contains protease and translocation domain of BoNT/B and binding C-

terminal moiety of BoNT/A).  LC/E400(K224D), due to the mutation, is capable of 

cleaving human SNAP-23 (Chen and Barbieri, 2009).  

2.1.6 shRNA reagents for knockdown of human SNAP-23, VAMP-3 and 

syntaxin-2, -3 or -4 gene expression in SW982  

As synoviocytes are heavily involved in arthritis disease progression commercially 

available human synovial cell line was used for this study. 



 42 

Targeted and non-targeted (control) shRNA lentiviral particles, at 20 multiplicity of 

infection (MOI) for each clone, were used to knockdown (KD)  the expression level 

of individual SNAREs in SW982. After adding the requisite shRNA to the cells and 

culturing for 7-8 days, SNAP-23 KD stable cells were established by incubating with 

puromycin (5 µM) for 4-5 days before use in experiments. These cells were sub-

cultured in the presence of puromycin to maintain KD of SNAP-23. Transient KD of 

VAMP-3 or -8, syntaxin-2, -3 or -4 was achieved by incubating SW982 with shRNA 

for 7-8 days, followed by culturing in medium containing puromycin for 3-4 days, 

before evaluating protein expression by Western blotting. In case of transient KD 

cells were not sub-cultured like SNAP-23 KD. KD of each protein, relative to an 

internal control (i.e. β-tubulin) was measured by densitometric scanning of the blots 

and analysis by Image J (NIH, USA). The ratio of the protein of interest (relative to 

internal control, β-tubulin) for shRNA-treated cells was subtracted from the value for 

control cells and the resultant number expressed over that of the control to give the % 

KD. 
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Table 2-1. shRNA target set for KD of human SNAP-23 

Clone 

no. 

shRNA TRC* 

no. 

Sequence and targeting region 

1 TRCN0000144

931 

CCGGGCTCTTCTAATTGGGAGATAACTCGAGTTA

TCTCCCAATTAGAAGAGCTTTTTTG  

Region: 3’UTR* 

2 TRCN0000142

094 

CCGGGCCAGAGCAAAGAAACTCATTCTCGAGAAT

GAGTTTCTTTGCTCTGGCTTTTTTG 

Region: CDS* 

3  TRCN0000144

789 

CCGGGCAATGAGATTGATGCTCAAACTCGAGTTT

GAGCATCAATCTCATTGCTTTTTTG 

Region: CDS* 

4 TRCN0000145

326 

CCGGGAACAACTAAACCGCATAGAACTCGAGTTC

TATGCGGTTTAGTTGTTCTTTTTTG 

Region: CDS* 

5 TRCN0000139

864  

CCGGGCCATGAAGAAGGAAGCTGTACTCGAGTAC

AGCTTCCTTCTTCATGGCTTTTTTG 

Region: CDS* 

 

3’UTR, 3’ untranslated  region; CDS, coding sequence; TRC, the RNAi consortium 
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Table 2-2. shRNA target set for KD  of human VAMP-3 

Clone 

no. 

shRNA TRC* 

no. 

Sequence 

1 TRCN0000029

815 

CCGGGCAGCCAAGTTGAAGAGGAAACTCGAGTTT

CCTCTTCAACTTGGCTGCTTTTT 

Region: 3’UTR* 

2 TRCN0000029

816 

CCGGTGGTGGACATAATGCGAGTTACTCGAGTAA

CTCGCATTATGTCCACCATTTTT 

Region: CDS* 

3  TRCN0000029

817 

CCGGCAGGCGCTTCTCAATTTGAAACTCGAGTTTC

AAATTGAGAAGCGCCTGTTTTT 

Region: CDS* 

4 TRCN0000330

913 

CCGGCAGGCGCTTCTCAATTTGAAACTCGAGTTTC

AAATTGAGAAGCGCCTGTTTTTG 

Region: CDS* 

5 TRCN0000330

914  

CCGGGCAGCCAAGTTGAAGAGGAAACTCGAGTTT

CCTCTTCAACTTGGCTGCTTTTTG 

Region: CDS* 
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Table 2-3. shRNA target set for KD of human syntaxin-2 

Clone 

no. 

shRNA TRC* 

no. 

Sequence 

1 TRCN0000065

283 

CCGGCGAGCCAAGTTAAAGGCTATTCTCGAGAAT

AGCCTTTAACTTGGCTCGTTTTTG 

Region: CDS* 

2 TRCN0000065

284 

CCGGCCTAGCAACAACATTGTCCTACTCGAGTAG

GACAATGTTGTTGCTAGGTTTTTG 

Region: CDS* 

3 TRCN0000065

285 

CCGGGCGTGTAGGAAGAATGATGATCTCGAGATC

ATCATTCTTCCTACACGCTTTTTG 

Region: CDS* 

4 TRCN0000065

286 

CCGGCCATCTTCACTTCCGACATTACTCGAGTAAT

GTCGGAAGTGAAGATGGTTTTTG 

Region: CDS* 

5 TRCN0000065

287 

CCGGGCATGAGATGTTCATGGACATCTCGAGATG

TCCATGAACATCTCATGCTTTTTG 

Region: CDS* 
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Table 2-4.  shRNA target set for KD of human syntaxin-3 

Clone 

no. 

shRNA TRC* 

no. 

Sequence 

1 TRCN0000065

014 

CCGGGCAGCTCACGACTGAGATTAACTCGAGTTA

ATCTCAGTCGTGAGCTGCTTTTTG 

Region: CDS* 

2 TRCN0000303

419 

CCGGAGAGCATGGAGAAGCATATTGCTCGAGCAA

TATGCTTCTCCATGCTCTTTTTTG 

Region: CDS* 

3 TRCN0000379

420 

GTACCGGCAGACCTTCGGATTCGGAAATCTCGAG

ATTTCCGAATCCGAAGGTCTGTTTTTTG 

Region: CDS* 

4 TRCN0000382

342 

GTACCGGTTTCCGTTGGGCTGAATTAAGCTCGAG

CTTAATTCAGCCCAACGGAAATTTTTTG 

Region: CDS* 

5 TRCN0000065

013 

CCGGGCCCGGAAGAAATTGATAATTCTCGAGAAT

TATCAATTTCTTCCGGGCTTTTTG 

Region: CDS* 
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Table 2-5.  shRNA target set for KD of human syntaxin-4 

Clone 

no. 

shRNA TRC* 

no. 

Sequence 

1 TRCN0000065

023 

CCGGCCGTCAACACAAGAATGAGAACTCGAGTTC

TCATTCTTGTGTTGACGGTTTTTG 

Region: CDS* 

2 TRCN0000065

025 

CCGGGCAATTCAATGCAGTCCGAATCTCGAGATT

CGGACTGCATTGAATTGCTTTTTG 

Region: CDS* 

3 TRCN0000065

027 

CCGGGCTGCACGACATATTCACTTTCTCGAGAAA

GTGAATATGTCGTGCAGCTTTTTG 

Region: CDS* 

4 TRCN0000299

048 

CCGGCCGTCAACACAAGAATGAGAACTCGAGTTC

TCATTCTTGTGTTGACGGTTTTTG 

Region: CDS* 

5 TRCN0000380

073 

GTACCGGGTGACTCGACAGGCCTTAAATCTCGAG

ATTTAAGGCCTGTCGAGTCACTTTTTTG 

Region: CDS* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 48 

Table 2-6. shRNA target set for KD of rat VAMP-8 

Clone 

no. 

shRNA TRC* 

no. 

Sequence 

1 TRCN0000110

535 

CCGGCCTCCCTAATATGTGCCAAGACTCGAGTCTT

GGCACATATTAGGGAGGTTTTTG 

Region: CDS* 

2 TRCN0000110

536 

CCGGCGTCTGAACACTTCAAGACAACTCGAGTTG

TCTTGAAGTGTTCAGACGTTTTTG 

Region: CDS* 

3 TRCN0000110

537 

CCGGCCACGTCTGAACACTTCAAGACTCGAGTCT

TGAAGTGTTCAGACGTGGTTTTTG 

Region: CDS* 

4 TRCN0000110

538 

CCGGCCGGAAGTTCTGGTGGAAGAACTCGAGTTC

TTCCACCAGAACTTCCGGTTTTTG 

Region: CDS* 

5 TRCN0000110

539 

CCGGCTGTGTGATTGTCCTTATCATCTCGAGATGA

TAAGGACAATCACACAGTTTTTG 

Region: CDS* 

 

2.1.7 SDS-PAGE and Western blotting  

Proteins were loaded onto 12% or 4-12% precast Bis-Tris gel and electrophoresis run 

at 180 volts, using MOPs running buffer (Appendix 2), until proteins were separated 

according to their molecular weights, as indicated by pre-stained protein markers. 

Proteins were then electrophoretically transferred to a ImmobilonTM PVDF membrane 

for immunoassay. A piece of PVDF membrane with a rated pore size of 0.45 µm was 

placed for about 30 second in methanol followed by rinsing with ddH2O twice, before 

soaking in transfer buffer (Appendix 2) for 15 mins; then a “sandwich” was 

assembled for transblotting in a transfer tank filled with transfer for 2-3 h at 45 volts 

at 4oC. The membrane was then immersed in blocking buffer for 1 h at room 

temperature (RT). Thereafter, the samples are incubated with primary antibody for 1 

hour at RT, rinsed thrice with washing buffer before adding secondary antibody. After 

incubation, the blot was rinsed 3 times in washing buffer and proteins were detected 
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by ECL reagent. Images were recorded with a G-Box and analysed using Image J 

software (Wang et al., 2008). 

 2.1.8   2-Dimensional (2-D) gel electrophoresis  

An established protocol in the laboratory was used to investigate whether SNAP-23,  

VAMP-3 and other SNAREs  form SDS-resistant SNAREs  complexes in KD and 

control cells. The cells were solubilised in LDS-sample buffer without boiling and the 

proteins separated on 12% PAGE gels. Each sample lane was cut into strips reflecting 

different distances of migration through the gel, chopped into small pieces and boiled 

for 10 mins in LDS buffer. After being left overnight at RT to extract proteins from 

gel sections, the samples were boiled again for 5 min. to solubilise proteins before 

loading onto a second 4-12% gel. The SNAREs released form complex after boiling 

were detected by Western blotting with specific antibodies (Lawrence and Dolly, 

2002).  

2.1.9 Co-immunoprecipitation   

SW982 cells were incubated for 20 h with IL-1β (100 ng/ml) in complete medium, 

before centrifugation for 5 min at 170 g; cell pellets were lysed in lysis buffer 

(Appendix 2) supplemented with a cocktail of protease inhibitors for 30 min followed 

by brief sonication. After centrifugation at 15,000 g for 10 min, protein concentration 

of the supernatant was determined by Bradford’s assay to be 1mg/ml. Protein extracts 

(300 µg in 300 µl) were incubated with VAMP-3-specific mouse antibodies (30 µg in 

50 µl), pre-complexed with protein-A agarose for 1 h, before washing 5 times with 

lysis buffer. Negative controls were performed using mouse non-immune IgG, pre-

labelled protein A agarose. Before binding, 50µg of protein in 20 µl of input were 

kept for analysing the efficiency of co-immunoprecipitation. The sealed agarose-

bound samples were boiled for 10 min in 50 µl reducing LDS-sample buffer before 

50% of the eluate was subjected to SDS-PAGE and Western blotting, using rabbit 

polyclonal antibodies specific for SNAP-23, syntaxin-2, -3 or -4, and mouse TrueBlot 

HRP secondary antibody.  

2.1.10 Biotinylation of cell-surface proteins 

Two T75 flasks of WT or SNAP-23 KD cells were grown to 90–95% confluence 

before being treated with or without IL-Iβ (100 ng/ml) for 20 h. Cells were washed 
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twice in the flasks with ice-cold PBS, pH 8.0 before being incubated with 0.5 mg/ml 

EZ-Link NHS-SS-Biotin in ice-cold PBS for 1 h at 4°C. The biotinylation of cell 

surface proteins was terminated by adding quenching solution and rinsing with Tris-

buffered saline (Appendix 2). The cells were then harvested and lysed in the lysis 

buffer containing protease inhibitors; to improve solubilization, the cells were 

sonicated on ice and centrifuged at 10,000 × g for 2 min at 4°C. The biotinylated 

membrane proteins were adsorbed from the supernatant by immobilized NeutrAvidin 

gel slurry which was washed twice in washing buffer; proteins were eluted from the 

gel by heating at 95°C for 5 min in SDS-PAGE sample buffer in the presence of 50 

mM DTT and subjected to Western blotting using an anti-IL-1 receptor antibody. IL-1 

receptor expression in whole cell extracts (total) prior to incubation with agarose-

NeutrAvidin was also subjected for Western blotting. 

2.1.11 Assay of protein concentration by BCA kit 

Protein concentrations were quantified using a commercially available BCA assay kit, 

as per instructions, with bovine serum albumin (BSA) as a standard.  

2.1.12 Enzyme-linked immunosorbent assays (ELISAs) 

ELISA for IL-6 or TNF-α was performed according to protocols provided with the 

kits supplied. A specific mAb for capturing the cytokine of interest is coated on a 

ELISA plate. A second mAb, used for detection, binds a different epitope on the 

cytokine; it is labelled with biotin which allows subsequent binding of a streptavidin-

conjugated enzyme. Any unbound reagents are washed away. When substrate is 

added, a colour reaction develops that is proportional to the amount of cytokine 

bound. The concentration of cytokine is determined by comparison with a standard 

curve, of known concentrations of cytokine. Substance-P and CGRP were assayed 

likewise with their requisite commercial kits. 

SW982 cells were stimulated overnight with IL-1β (100 ng/ml) in HEPES-buffered 

solution containing 60 mM K+ with adjustment 3mM NaCl concentration or 

with/without EGTA for 4 h. Cell culture supernatant was harvested for ELISA assay.  

RAW264.7 cells were stimulated with LPS (100 ng/ml) + IFN-γ (500 pg/ml) for 6h 

(Yeh et al., 2011). 
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2.1.13 Cytochemical staining and microscopic recording of images 

Cells cultured on collagen-coated coverslips were washed three times with 

Dulbecco’s phosphate buffered saline (lacking Mg2+ and Ca2+, D-PBS) and then fixed 

for 20 min. with 3.7% paraformaldehyde at RT in the later buffer. The cells were 

washed three times with D-PBS, followed by permeabilisation for 5 min. in D-PBS 

containing 0.2% Trition X-100 before blocking with 1% BSA in D-PBS for 1 h. 

Primary antibodies were applied in the same solution and left overnight at 4oC; after 

extensive washing, fluorescently-conjugated secondary antibodies were added and 

incubated for 1 h at RT. After adequate washing, the coverslips were mounted on 

slides using mounting medium containing DAPI for nuclei staining. Negative controls 

were performed with same procedure without primary antibody but incubated with 

secondary antibody. Immuno-fluorescent pictures were taken with an inverted 

confocal (Leica) or Olympus IX71 microscope equipped with a CCD camera (Meng 

et al., 2009).  

2.1.14 Cell viability assay 

This was performed using 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT). 

Cells were incubated with MTT (5 mg/ml in 10% FBS) for 4-5 h at 37 OC, the plate 

was observed for formation of formazan crystals (artificial chromogenic  products of 

the reduction of tetrazolium salts by  oxidoreductase enzymes).  The MTT dye was 

removed carefully without disturbing the cells at the bottom of each well and 90 µl of  

20% SDS + 50% DMF solution added as a solvent for these crystals. The plate was 

incubated at 50 OC for a period of 45 - 60 min before reading absorbance at 630 nm in 

an ELISA plate reader.  

2.1.15 Production of LC/D expressing lentiviral particles 

Lenti-X 293T cells were used for lentiviral production. A total of 6 × 15 cm poly L-

lysine coated dishes of confluent Lenti-X 293T cells were grown in DMEM + 10% 

FBS. All 3 vectors (psPAX2, pMD2.G and pWPI-LC/D) with concentration of 20, 10 

and 20 µg of plasmids for each plate were transfected into 293T cells by using CaPO4  

and 2X HBS (HEPES Buffered Saline, Appendix 2) precipitation method and 

incubated for 6 h at 37 OC and 5% CO2. After 6 h incubation, the culture medium was 

removed and cells were washed with PBS (Appendix 2) and replaced with complete 

medium and incubated for a further 4 days. Culture supernatant was harvested daily 
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for 4 days and stored at 5 OC. Supernatant containing lentiviral particles were 

concentrated by centrifuging at 70,000g for 2 h at 4 OC. in a Beckman SW28 rotor. 

The pellet was re-suspended in 500 µl of Hank’s balanced salt solution (HBSS), 

aliquoted and stored at -80 °C until further use.  

2.1.16 Protease activities of new BoNT variants 

For analysis of VAMP-2 cleavage by BoNT/B and chimera/BA, DNA-encoding GFP 

(green fluorescent protein) was fused to nucleotides encoding rat VAMP-2 (residues 

2–94) and a His6 tag. The GFP–VAMP2 (2–94)–His6 fusion protein, expressed in E. 

coli and purified by IMAC, acted as substrate in the fluorescence assay following an 

established protocol (Wang et al., 2008). 

2.1.17 Cell-based SNARE cleavage assay 

Preparation and maintenance of rat CGNs and trigeminal ganglion neurons (TGNs)  

followed standard methods (Wang et al., 2008; Meng et al., 2009). Neurons were 

cultured in presence of cytosine arabinoside (Ara-C) until complete removal of glial 

cells before use for experiments.  

2.1.18 Mouse LD50 assay 

Toxins' lethalities were determined using a LD50 assay after intraperitoneal injection 

into mice as described previously (Maisey et al., 1988). Groups of four mice were 

used for each concentration; the amount of each that killed half the animals within 4 

days was taken as one LD50 unit and specific neurotoxicities are expressed as the 

number of LD50 units/mg of toxin. 

2.1.19 Expression and purification of BoNT-based therapeutics 

Expression of therapeutics was carried out in E. coli strain BL21.DE3 (Merck 

Bioscience), using an established autoinduction system. BoNT-based therapeutics 

were purified by immobilised metal affinity chromatography (IMAC) using 4 ml of 

superflow cobalt-based resin (TALON® Superflow™). The resin was added to a 20 

ml column and washed twice with equilibration buffer (20 mM HEPES, 150 mM 

NaCl, pH 8.0). The clarified supernatant was mixed with equilibration buffer at a 1:1 

ratio and incubated with the resin for 1 hr at 4ºC on a roller. Following binding, the 

mixture was placed back into the column and the flow through collected. The protein 

bound to resin was washed three times with wash buffer (equilibration buffer plus 5 
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mM imidazole). Protein was eluted in 6 fractions with one bed volume 2 ml of elution 

buffer per fraction (20 mM HEPES, 150 mM NaCl, 500 mM imidazole). The eluted 

fractions were buffer exchanged into PBS using a PD10 column and concentrations of 

the eluates were estimated by Bio-Rad protein assay.  

2.1.20 Digitonin permeabilisation of cells 

The SW982 cells were washed twice with PBS and incubated with digitonin (40 µM)   

in complete medium for 30 min at 37ºC and 5% CO2 in presence of 

LC/E400(K224D). Cells were observed for any cell death or detachment.  After 30 

min of incubation, cells washed 3 times with  PBS and harvested for SDS-PGAE and  

western blot analysis. 

2.1.21 Statistical analysis 

Data are presented with the S.E.M. and respective sample size. Data analysis and 

graphs prepared using GraphPad Prism 4.0. Desitometric analysis was done for 

Western blots using Image J. P values calculated as indicated in the Fig. legends; 

P<0.05 was considered statistically significant using non-paired, 2 tailed student-t 

test. 
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CHAPTER 3  SNAREs ARE INVOLVED IN 

CYTOKINE RELEASE FROM A HUMAN 

SYNOVIAL CELL LINE  (SW982)   
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3.1 BACKGROUND 

RA and OA are chronic diseases marked by inflammation in the lining of the joint 

(i.e. the synovium) and destruction of cartilage and bone. The inner lining of the joint 

consists of the synovium located between the joint capsule and the joint cavity. 

Synovium is also important for maintaining proper joint function by providing the 

structural support and supplying the necessary nutrients to the surrounding cartilage. 

Synovial membrane is divided into two compartments – the outer layer (subintima) 

and the inner layer (intima). The inner layer is mainly composed of two cell types, 

specialized macrophages (macrophage-like synovial cells) and fibroblast-like 

synoviocytes (FLS), which are important in maintaining the internal joint homeostasis 

(Dasuri et al., 2004; Chang et al., 2010). FLS are cells of mesenchymal origin that 

display many characteristics common to fibroblasts, such as expression of several 

types of collagens and protein vimentin, a part of cytoskeletal filaments (Ospelt et al., 

2004; Bartok and Firestein, 2010). Synoviocytes contribute to the local production of 

cytokines, small molecule mediators of inflammation, and proteolytic enzymes that 

degrade the extracellular matrix (Ospelt et al., 2004; Bartok and Firestein, 

2010). Synoviocytes are one of the important cells in the progression of arthritis due 

to their increased secretion of cytokines after onset of disease. 

SNAREs are involved in release of cytokines or pain peptides in neuronal and non-

neuronal cells (Stow et al., 2006; Stow et al., 2009). In this chapter human synovial 

cell line (SW982) was used to study inhibition of cytokine release, by using lentiviral 

shRNA to knockdown (KD) SNAREs. SNAP-23 and VAMP-3 were required for 

release of cytokines in SW982 cells. Even though, these cells have BoNT/A receptor, 

SV2A/C, exposed to chimera BA or DA, failed to truncate VAMP-3.  Because SV2 

was not expressed on the cell surface but located intracellularly, the toxins were 

unable to bind the receptor and become internalized (see Results later). This problem 

was overcome by employing digitonin permeabilisation of SW982 cells to deliver a 

novel BoNT mutant, LC/E400(K224D), and exclusively truncate SNAP-23. 
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3.2 RESULTS 

3.2.1 Human synovial cell line (SW982) mostly contains fibroblast-like cells 

SW982 cells were routinely cultured in T-150 flasks and grown in RPMI1640 with 2 

mM L-glutamine, 10% fetal bovine serum (FBS) and 1% Pen-Strep at 37 °C, 5% 

CO2.  Labelling of all the cells with a fibroblast-specific vimentin antibody, and 

counterstaining with a nuclear marker, DAPI (Fig. 3-1B) established that FLS, spindle 

shaped cells of variable size, are the major constituents in cultured SW982 (Fig. 3-

1A). Immunostaining for CD68, a macrophage-specific marker, proved negative (data 

not shown). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-1. Human synovial cells mainly contain fibroblast-like cells.  

A) Bright field view of fibroblast-like synoviocytes, 4-5 days old (passage 5). B) 

Merged confocal microscopic image showing the fibroblast-cell marker, vimentin 

(red), expressed in all the cells counterstained with DAPI (blue). Alexa flour-labelled 

goat anti-rabbit 568 (1:1500) was used as secondary antibody. Scale for A and B is 

20 µm. 

 

3.2.2 Human synovial cells contain certain SNAREs and synaptic vesicle  

protein 2 
In seeking a molecular basis for exocytosis of cytokines from SW982, their 

complement of SNAREs was assessed in comparison to other secretory cells [mouse 

macrophage cell line, (RAW264.7) and rat cerebellar granule neurons (rCGNs)]. 
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Western blotting of cell lysates using isoform-specific antibodies revealed that, in 

contrast to RAW264.7 which contain SNAP-23, VAMP-3, -7, -8, and syntaxin 2-6, 

SW982 express a somewhat lower level of syntaxin-3 and similar amounts of SNAP-

23, VAMP-3, syntaxin-2 and higher levels of syntaxin-4 with little or no syntaxin-5 or 

6 and VAMP-7 or -8 (Fig. 3-2A). SNAP-25, syntaxin-1 and VAMP-2 characteristic of 

neurons were hardly detectable in SW982 but, as expected, enriched in rCGNs (Fig. 

3-2B). Interestingly, synaptic vesicle protein 2 (SV2) isoforms A and C — key 

proteins for Ca2+-regulated transmitter release in neuronal and endocrine cells 

(Schivell et al., 2005; Chang and Sudhof, 2009) —were also found in SW982, but not 

the Ca2+-sensor, synaptotagmin I or II, which (except for SV2C) occur (Chapter 

2.1.2), in rCGNs (Fig. 3-2B). Thus, it was warranted to establish if the SNAREs 

present in SW982 contribute to the release of cytokines.  
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Fig. 3-2. Immuno-blots of human synovial cells demonstrate the presence of  

SNAREs and SV2 isoforms. 

A) Western blots demonstrating that SNAP-23, VAMP-3, syntaxin 2-4 and traces of 

syntaxin-6 and VAMP-8 are expressed in SW982 cells; these proteins plus a relatively 

small amount of VAMP-7 were also detected in a RAW264.7. B) Detection in SW982 

of only traces of SNAP-25, syntaxin-1, VAMP-2, a relatively higher level of SV2C 

than SV2A and a lack of SV2B plus synaptotagmin (Syt) I and II, compared to the 

complement of these protein in rCGNs, with the exception of SV2C.  Equal amount of 

protein was loaded in each lane for all the blots and β–tubulin acted as a loading 

control; approximate sizes of the bands are indicated.    
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3.2.3 IL-1β induces the release of cytokines from SW982 in a Ca2+-dependent 

manner 

Although elevated [K+] is known to elicit transmitter release from excitatory cells 

(Meng et al., 2007), the levels of IL-6 secretion triggered in 3.5 and 60 mM [K+] from 

SW982 after 4 h incubation were similar; K+-depolarisation induced release was 

unaffected by the absence of extracellular Ca2+ and presence of EGTA (Fig. 3-3A). 

On the other hand, a 4 h incubation of the cells with an established effective 

concentration (100 ng/ml) of the pro-inflammatory factor, IL-1β (Tsuji et al., 1999), 

together with 60 mM [K+] and 2.5mM Ca2+ (Chapter 2.1.12), elicited a ~3.5-fold 

increase in the release of IL-6 over the Ca2+-free level (Fig. 3-3A). A cell viability 

assay performed after 4 h incubation with LK or HK buffer, with or without external 

Ca2+ and IL-1β, showed that the cells had not died (Fig. 3-3A, lower panel), and 

representative image galleries of cells after each treatment showed that they had not 

detached (Fig. 3-3C). Incubation for 20 h, rather than 4 h, with IL-1β in culture 

medium which contained Ca2+ gave a ~10-fold increment of IL-6 release (Fig. 3-3B), 

suggestive of the time course of this cytokine release induced by IL-1β alone needs 

longer than 4 h. These results indicate the importance of IL-1β in stimulating cytokine 

release from SW982 cells.  
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Fig. 3-3. IL-1β-induced IL-6 release by SW982 requires external Ca2+. 

A upper) A 4 h incubation of the cells with a high [K+] buffer (HK) in the presence or 

absence of extracellular Ca2+ gave minimal stimulation of IL-6 release, whereas the 

additional application of IL-1β (100 ng/ml) in HK with Ca2+ yielded a ~3.5-fold 

increase over the basal value without extracellular Ca2+. A lower) A cell viability 

assay using MTT showed no cell death occurred after a 4 h-incubation in HK or LK 
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buffer, with or without external Ca2+ and IL-1β. B) Incubation of SW982 for 20 h in 

the culture medium containing Ca2+ and  IL-1β (100 ng/ml) elicited ~10-fold more 

release of IL-6 over that for medium alone; however, incubation for 4 h with medium 

and IL-1β did not yield significant release of IL-6. C) Representative gallery images 

showing cells were not detached after each treatment for 4 h. Data represented as 

mean ± S.E.M.; n = 3 for each experiment; p < 0.05 considered statistically 

significant, ***p < 0.001; scale bar 100 µm. 

3.2.4 SNAP-23 is required for IL-1β-induced release of IL-6 and TNF-α from 

SW982: KD of SNAP-23 enhances peri-nuclear distribution of SV2  

To examine the involvement of SNAP-23 in the release of cytokines from SW982, 

KD of this protein was achieved by culturing the cells with specific shRNA lentiviral 

particles (Table 2-1) before Western blotting of the total cell lysates. Immunoblot 

analysis showed that the KD cells had a substantially reduced content of SNAP-23 

(Fig. 3-4A); its quantitation in KD and control, relative to β-tubulin as an internal 

standard, yielded a reduction of ~80% (Fig. 3-4B). The extensive KD of SNAP-23 

was confirmed by immuno-cytochemical visualisation (Fig. 3-4E).  Specificity of the 

KD was confirmed by the observed absence of any significant changes in the levels of 

VAMP-3 or syntaxin 2-4 (Fig. 3-4A). Notably, the release of TNF-α and IL-6 elicited 

by IL-1β overnight was decreased by ~50% and ~55%, respectively, from the cells 

after KD of SNAP-23 (Fig. 3-4C, D); likewise, a ~55% decrease in IL-6 release was 

observed when assayed after a  4 h treatment with IL-1β together with HK (Fig. 3-

4D). Therefore, SNAP-23 contributes to IL-6 and TNF-α release from SW982. 

Interestingly, total SV2, detected with an isoform non-specific antibody, displayed a 

diffuse pattern in control cells, but had a striking peri-nuclear distribution in SNAP-23 

KD cells (Fig. 3-4E). Because this protein occurs on secretory vesicles, this 

accumulation suggests that in SNAP-23 KD cells is impaired (Fig. 3-4E). A stable 

cell line of SNAP-23 KD was successfully established using lentiviral shRNA.  
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Fig. 3-4. Specific KD of SNAP-23 greatly reduced IL-1β mediated release of IL-6 

and TNF-α from SW982 as well as enhancing peri-nuclear distribution of SV2.  

A) Western blots of SNAREs and SV2A/C in lysates of control and SNAP-23 KD cells 

(60 µg/lane) demonstrating that the level of SNAP-23 only was significantly reduced 

after its KD compared to the control.  B) % KD of SNAP-23 relative to the control 

was calculated using β-tubulin as an internal reference.  After overnight incubation in 

the presence of IL-1β (100 ng/ml), the extents of inhibition of evoked release of TNF-α 

C) and IL-6 D) from KD cells were calculated relative to those for the control. Data 

are mean ± S.E.M. from n = 3, p < 0.05 considered statistically significant, **p < 

0.01, ***p < 0.001. E) Confocal microscopy images reveal that SV2 acquired a 

pronounced peri-nuclear distribution in KD SW982, whereas in controls its 

distribution appeared more diffuse. Alexa flour-tagged goat anti-rabbit 568, (1:1500) 

and donkey anti-mouse 488 (1:1500) were used as secondary antibodies, with nuclei 

stained by DAPI.  The scale bar is 10 µm. 

  

3.2.5 KD of VAMP-3, but not syntaxin-4, decreased IL-1β-induced release of  

IL-6 and TNF-α from cultured SW982 

To ascertain if VAMP-3 is needed for exocytosis of cytokines, its content in SW982 

was decreased by ~75% after transient KD (Table 2-2), calculated using β-tubulin as 

an internal control (Fig. 3-5A and B). No Change in expression of other SNAREs 

were observed after VAMP-3 KD (Fig. 3-5A). Accordingly, there were respective 

decreases of ~55% and ~60% with IL-1β stimulated release of TNF-α (Fig. 3-5C) and 

IL-6 (Fig. 3-5D) from VAMP-3 KD cells.  These convergent findings highlight the 

functional importance in exocytosis of SNAP-23 and VAMP-3.  A different set of 

results was obtained for syntaxin.  The transient KD of syntaxin-4 (Table 2-5) to 

~50% observed (Fig. 3-5E, F) failed to reduce the stimulated release of TNF-α (Fig. 

3-5G) or IL-6 (Fig. 3-5H) compared to controls). Residual syntaxin-4 and/or other 

isoforms (i.e. 2 and 3) might have compensated for the reduction of syntaxin-4 

achieved. To investigate role of syntaxin-2 or 3 in release of cytokines, their KD was 

achieved.  
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Fig. 3-5. KD of VAMP-3, but not syntaxin-4, significantly decreased the IL-1β 

stimulated release of IL-6 and TNF-α from SW982 cells.  

A) Immunoblotting revealed that VAMP-3 was diminished in the KD cells after 

densitometric scanning and calculation of its level relative to that in the control B), 

using β-tubulin as a reference.  Cells were incubated overnight with IL-1β (100 

ng/ml) in medium before collecting the supernatant for quantifying the amounts of 

TNF-α and IL-6. VAMP-3 KD caused significant reductions in the release of both 

cytokines, TNF-α C) and IL-6 D), relative to that for non-treated control. E,F) 
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Western blot analysis showed ~50% KD of syntaxin-4, calculated as in B.) Overnight 

stimulation with IL-1β (100 ng/ml) failed to inhibit the release of TNF-α G) or IL-6 H) 

after KD of syntaxin-4.  The results are expressed as mean ± S.E.M., n = 3, p < 0.05 

considered statistically significant, **p < 0.01. 

3.2.6 Non-targeted lentiviral shRNA particles failed to KD any SNAREs 

To confirm specificity of above mentioned SNAREs KD with shRNA, SW982 cells 

were transduced with non-targeted lentiviral particles. The this non-targeted lentiviral 

particles could not KD any SNAREs (Fig. 3-6A) as well as inhibit release of TNF-α 

(Fig. 3-6B) and IL-6 (Fig. 3-6C), confirming specificity of shRNA used in these 

experiments. 

 

 

 

 

 

 

 

 

 

 

Fig. 3-6. The non-targeted lentiviral shRNA failed to KD SNAREs and inhibit 

release of cytokines. 

 A) Western blotting showing non-targeted shRNA could not KD SNAP-23, VAMP-3, 

Syntaxin-2, 3 or 4, control used as reference.  B, C) Cell culture supernatant was 

collected after stimulation with IL-1β (100 ng/ml) for 20 h . The non-targeted shRNA  

did not inhibited TNF-α and IL-6 release.  The results were expressed mean ± S.E.M., 

n=3. 
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3.2.7 Syntaxin-2 is not involved in release of cytokines (TNF- α and IL-6) 

SW982 cells were transduced with shRNA (Table 2-3) for 10 days and then 

untransduced cells were removed by adding puromycin (5 µM) for 3-5 days. Cells 

were then stimulated with IL-1β (100 ng/ml) for 20 h before harvesting for Western 

blot analysis. The transient knock down of syntaxin-2 was achieved by ~ 60% when 

compared to control cells, without altering expression of other SNAREs (Fig. 3-7A, 

B). KD of syntaxin-2 did not alter expression of other SNAREs (Fig. 3-7A). The 

release of TNF-α (Fig. 3-7C) and IL-6 (Fig. 3-7D) was not reduced when compared to 

control. This is suggesting that syntaxin-3 might be involved in release of cytokines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 67 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-7.  KD of syntaxin-2 failed to reduce release of cytokines (TNF-α and IL-6). 

A) Immunoblot was significantly reduced levels of syntaxin-2 compared to the control 

without altering other SNAREs.  B) % KD of syntaxin-2 relative to the control was 

calculated using β-tubulin as an internal control.  The KD of syntaxin-2 failed to 

inhibition of evoked release of TNF-α C) and IL-6 D).  The results are expressed as 

mean ± S.E.M., n = 3, p < 0.05 considered statistically significant, *p < 0.05. 
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3.2.8 Knocking down syntaxin-3 did not alter cytokine release 

SW982 cells were plated on 24-well plate and incubated overnight. After, incubation 

cells were infected with syntaxin-3 lentiviral shRNA (Table 2-4) for 10 days. Non-

infected cells were died because of addition of puromycin (5 µM). Cells further 

incubated for another 4-5 days, before stimulating with IL-1β (100 ng/ml) for 20 h. 

The cell culture supernatant was collected and cells were recovered for immunoblot 

analysis. Western blot showed that ~50% KD was achieved (Fig. 3-8 A, B). The 

levels of other SNARE proteins were not affected after syntaxin-3 KD (Fig. 3-8A). 

The evoked release of TNF-α (Fig. 3-8C) and IL-6 (Fig. 3-8D) were not inhibited 

after syntaxin-3 KD. 
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Fig. 3-8. No decrease in release of cytokines (TNF- α and IL-6) was observed after 

KD of syntaxin-3. 

A) Western blot demonstrated decreased expression of syntaxin-3, unaffected levels of 

other SNAREs. B) % knock down of syntaxin-3 compared to control was analysed. β-

tubulin served as internal control. IL-1β (100 ng/ml) stimulated release of TNF-α C) 

and IL-6 D) was not inhibited after KD of syntaxin-3. The results are expressed as 

mean ± S.E.M., n = 3, p < 0.05 considered statistically significant, *p < 0.05.   
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3.2.9 Formation of SDS-resistant SNARE complexes was decreased by KD of 

SNAP-23 

Ca2+-dependant membrane fusion requires formation of stable SNARE complex(es) 

and these are resistant to denaturation by SDS at temperatures up to ~80°C (Hayashi 

et al., 1994). In order to identify the SNARE partners participating in formation of 

such complex(es), 2-D electrophoresis (Chapter 2.1.8) was performed. Proteins from 

the cells were extracted by LDS and applied to the first dimensional gel (data not 

shown) without boiling; gel strips were cut and solubilised in LDS sample buffer, 

boiled, and applied to the second dimensional SDS-PAGE (Fig. 3-9A). Because 

SNAP-23 and VAMP-3 were found to contribute to the exocytosis of cytokines in 

SW982 cells, their participation in the formation of SDS-resistant SNARE 

complex(es) was investigated. In IL-1β-stimulated wild type (WT) SW982 cells, the 

majority of SNAP-23, VAMP-3 and syntaxin-2 did not occur in SDS-resistant 

complex(es) (Fig. 3-9A); this is shown by their electrophoretic migrations being 

unchanged by boiling and matching the mobilities known for their molecular masses. 

However, some SNAP-23 was retained in complex(es), presumably with other 

SNAREs, ranging in Mr of ~49 to ~272 k (Fig. 3-9A); complex(es) of Mr > 69 k 

displayed weak signal for VAMP-3 (Fig. 3-9A), with the intensity corresponding to 

that of SNAP-23 especially at Mr > 137 k. In contrast, IL-1β-treated cells in which 

SNAP-23 was stably knocked down showed only a minute amount of SNAP-23 in the 

free form and even less in complex(es) (Fig. 3-9B). Although an abundance of free 

VAMP-3 and syntaxin-2 remained, there was little if any complexed. These 

observations are suggestive of SNAP-23, VAMP-3 and syntaxin-2 forming SNARE 

complex(es) in normal cells which could contribute to evoked release of cytokines 

(c.f. Fig.. 3-3 and 3-4). Diminishing SNAP-23 caused abolishment of its partner, 

VAMP-3 and syntaxin-2 from SDS-resistant SNARE complex(es). Using co-

immunoprecipitation, confirmatory evidence was obtained for SNAP-23 complex(es) 

containing VAMP-3, and VAMP-3 forming complex(es) with syntaxin-2, but hardly 

with syntaxin-3 and -4(Fig. 3-9C).  
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Fig. 3-9.  KD of SNAP-23 lowered the formation of SDS-resistant SNARE 

complexes in SW982 

 Control and SNAP-23 KD SW982 cells were solubilised in LDS buffer without 

boiling and the proteins separated on precast 4-12% gels by SDS-PAGE. Gel sections 

containing the separated proteins were excised according to migration distances and 

extracted by boiling in LDS sample buffer before re-electrophoresis and immuno-

blotting with antibodies specific for SNAP-23, VAMP-3 and syntaxin-2.  A) SNAP-23 
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formed complex(es) with VAMP-3and syntaxin-2 in control cells after IL-1β (100 

ng/ml) stimulation for 20 h. Note that the proteins in higher molecular weight are in 

complexes, while free forms of SNAREs are present at lower molecular weight. B) KD 

of SNAP-23 resulted in minimal formation of complex(es) with VAMP-3 and syntaxin-

2 under stimulation conditions.  C) VAMP-3 complex(es) with SNAP-23 or syntaxin-2 

in stimulated control SW982. Total lysate (50 ug input) and 50% of the eluted protein 

were subjected to SDS-PAGE. Only the lower halves of the gels are shown because of 

excessive staining of the rabbit IgG that overlapped the SNARE complex(es). Note 

that SNAP23 associated with VAMP-3 was readily detected by Western blotting, 

confirming the result of panel A. 

3.2.10 IL-1β stimulation significantly increased the expression of SNAP-23 and 

IL-6 in control cells whereas weaker signals were seen after SNAP-23 KD 

Identical numbers of control or SNAP-23 KD cells were treated with IL-1β overnight 

before being lysed in LDS sample buffer and subjected to SDS-PAGE and Western 

blotting (Fig. 3-10A, B). Notably, IL-1β raised the expression of IL-6 and to a lesser 

extent SNAP-23 in control cells (Fig. 3-10A); quantities of their levels revealed 

respective increment of  2.8 (± 0.04; P < 0.01; n = 3) and 1.3 (± 0.05; P < 0.05; n = 3) 

fold.. Interestingly, IL-1β treatment did not induce such a change (P>0.05) the content 

of these two proteins in the SNAP-23 KD and normal cells (Fig. 3-10B).  Moreover, 

confocal microscopy (Chapter 2.1.13) demonstrated an increased expression of IL-6 

in the peri-nuclear region of control cells after stimulation with IL-1β overnight (Fig. 

3-10C); in stark contrast, SNAP-23 in the KD cells only gave a very weak signal for 

IL-6 under both conditions, consistent with the finding in Fig. 3-4D, though a striking 

clustered distribution of IL-6 was seen in the stimulated cells (Fig. 3-10C). These 

cumulative findings indicate that SNAP-23 contributes to the trafficking of vesicles 

and secretion of IL-6 in human synovial cells. 
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Fig. 3-10.  Stimulation with IL-1β raised the levels of SNAP-23 and IL-6 in control 

SW982 but weaker signals were seen after SNAP-23 KD. 

 A) Western blotting of the wild type cells stimulated with IL-1β (100 ng/ml) showed 

increased expression of SNAP-23 and IL-6, relative to their contents under basal 

conditions. B) In SNAP-23 KD cells, no significant calculated changes were found in 

the levels of SNAP-23 and IL-6 under basal or stimulated conditions.  β-tubulin acted 

as an internal standard for A and B. C) Confocal micrographs showing an increased 

occurrence of IL-6 at peri-nuclear region in IL-1β (100 ng/ml) stimulated control 

cells whereas the non-stimulated control displayed very weak staining for IL-6.  

Notably, the SNAP-23 KD cells exhibited very weak signals under basal and 

stimulated conditions, with some clustering near the nuclei in the latter. Alexa flour-

labelled goat anti-rabbit 568 (1:1500) was used as a secondary antibody.  The scale 

for images is 20 µm. 
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3.2.11 SNAP-23 KD abolished the filamentous-like distribution of IL-1 receptor 

but not its apparent surface content  

To search for possible changes in the surface level of IL-1 receptor upon KD of 

SNAP-23, WT and SNAP-23 KD cells were stimulated with IL-1β (100 ng/ml) for 20 

h.  Total proteins and biotinylated cell surface IL-1 receptors (Chapter 2.1.10) were 

isolated from the cells, extracted in 2 x LDS sample buffer and separated by SDS-

PAGE for Western blot analysis.  Notably, in the stimulated and SNAP-23 KD cells, 

no change in total and surface content of IL-1R was observed, compared to non-

stimulated WT (Fig. 3-11B).  Thus, it is concluded that although the distribution 

pattern of IL-1 receptor on the SNAP-23 KD cells seemed to be changed, this did not 

alter its surface expression or total membrane content (Fig. 3-11 A). 
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 Fig. 3-11. Peri-nuclear accumulation of IL-1 receptor and lack of filamentous 

distribution resulted from SNAP-23 KD in SW982 cells. 

 A) WT SW982 and SNAP-23 KD cells were stimulated 20 h with IL-1β before being 

fixed, permeabilized, and labelled with IL-1 receptor rabbit antibody at 4°C for 16 h. 

Goat anti-rabbit Alexa 594 was applied as the fluorescent secondary antibody. Nuclei 

were stained with DAPI. Confocal images showing, that compared to control SW982 

cells, the distribution of IL-1 receptor on the cell bodies and filaments was changed in 

SNAP-23 KD, showing a decreased expression on the cell body surface and filaments 

and an accumulation of IL-1 receptor near nuclei. Scales are indicated.  B) IL-1ß did 

not alter the cell surface content of IL-1 receptor in WT and SNAP-23 KD SW982 

cells. Top panel shows total IL-1 receptor expression in whole cell extracts. Western 

blots of the surface expressed biotinylated IL-1 receptor with or without IL-1ß 



 76 

stimulation are illustrated in the middle panel. ß-tubulin was used as internal control 

for biotinylated samples (bottom panel).  Notably, KD of SNAP-23 in SW982 cells did 

not alter the level of surface IL-1 receptor in the presence or absence of IL-1ß. 

3.2.12 Cleavage of SNAP-23 by LC/E400(K224D) mutant  

Modification of BoNT to truncate SNAREs in non-neuronal cells by retargeting the 

catalytic activity of BoNT has been developed to extend therapeutic application. In 

order to target non-neuronal SNARE proteins, targeted position 224 within the 

catalytic site of BoNT-E, which specifically cleaves the neuronal SNARE, SNAP-25. 

In addition to cleaving SNAP-25, the engineered BoNT-E (K224D) cleaved non-

neuronal SNAP-23, at a similar rate to that at which the wild-type toxin cleaves its 

native target (Chen and Barbieri, 2009).  In SW982 cells, EA (mutant) did not get into 

cells itself though SV2 is present. 

The delivery of LC/E400(K224D) in SW982 cells  was performed by digitonin 

permeabilisation over 30 mins in presence of LC/E400(K224D); cells were then 

washed with DMEM containing 10% FBS for 3 times and incubated overnight at 

37oC. The partial cleavage of SNAP-23 found at 1000nM concentration of 

LC/E400(K224D) (Fig. 3-12). The VAMP-3 served as loading control. 

 

 

 

 

 

 

 

 

 

Fig. 3-12.  SNAP-23 is partially proteolysed by LC/E400(K224D) in digitonin- 

permeabilized cells. 

The permeabilisation of cells was achieved by digitonin (40 µM)   in complete medium 

for 30 min in presence of LC/E400(K224D). After 30mins, cells washed 3 times with 

1X PBS and harvested for western blot analysis. The truncation of SNAP-23 observed 

with 50, 100 and 1000 nM. The antibody against LC/E400(K224D) used to confirm 

presence of LC/E.  
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3.3 DISCUSSION 

The importance of synoviocytes in arthritis disease progression is elucidated in this 

chapter. It is known that synoviocytes contributes to joint inflammation by producing 

cytokines upon disease onset (von Banchet et al., 2007).  However, the SNAREs 

proteins are involved in exocytosis of cytokines and other pain mediators. Previous 

study demonstrated that, recruitment of SNAP-23 to granule membranes in rat 

peritoneal cells is implicated as an essential prerequisite for mediator release from 

mast cells (Murray et al., 2005). SNAREs are shown to be involved in exocytosis of 

cytokines and other mediators in cells, such as neutrophiles, mast cells, macrophages 

and platelets (Logan et al., 2003).  It is very interesting to investigate whether 

SNAREs proteins are required in exocytosis of cytokines in synoviocytes.  

This study provides the first evidence for the presence of particular SNAREs 

in a SW982 cells, and the involvement of SNAP-23 and VAMP-3 but not syntaxin-2, 

-3, or -4 in exocytosis of cytokines.  During necrosis and cell lysis in pathological 

stages of RA and OA, there is enhanced exocytosis of IL-6 and TNF-α induced by IL-

1β (Houssiau, 1995; Schaible et al., 2006; Lacy and Stow, 2011). IL-1β is one of the 

most critical pro-inflammatory factors that are released by many innate immune-cells, 

and contributes to inflammatory pain hypersensitivity. In fact, the generation and 

propagation of arthritis could involve sequential release of multiple inflammatory 

cytokines which act through a positive feed-back cascade involving surrounding cells 

(Houssiau, 1995; Choy and Panayi, 2001; Feldmann, 2001; Schaible et al., 2006; 

Kinne et al., 2007). Our finding of increased secretion of IL-6 and TNF-α upon 

incubation of SW982 with IL-1β is reminiscent of their co-release from 

lipopolysaccharides (LPS)-treated macrophages (Manderson et al., 2007; Lacy and 

Stow, 2011). Overnight stimulation of the normal SW982 with IL-1β resulted in 

increased expression of SNAP-23 and IL-6, which indicates up-regulation of SNAP-

23 is required to meet the demand for the increased cytokine trafficking/secretion; a 

similar finding was reported for immune cells upon lipopolysaccharides treatment 

(Han et al., 2009; Lacy and Stow, 2011). Furthermore, convincing evidence for the 

involvement of SNAP-23 and VAMP-3 in the exocytosis was obtained because their 

KD did not reduce the levels of other SNAREs, but decreased the secretion of IL-6 

and TNF-α to similar extents. The remaining release can reasonably be attributed to 

the residual levels of SNAP-23 and VAMP-3 after KD or, perhaps, the participation 
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of other unidentified SNARE isoforms, and even non-classical secretion pathways 

(Stanley and Lacy, 2010). The simultaneous participation of both SNAP-23 and 

VAMP-3 in the co-release of IL-6 and TNF-α from SW982 cells is an interesting 

feature, because the intracellular trafficking pathways for IL-6 and TNF-α in other 

cell types, i.e. macrophages, overlap but with some divergence. For example, in 

macrophages after synthesis of these cytokines in the endoplasmic reticulum (ER), 

they co-accumulate in the Golgi complex(es) before sorting. The membrane-bound 

TNF-α is delivered by recycling endosomes to phagocytic cups or the plasma 

membrane for secretion. IL-6 which lacks a transmembrane domain could be secreted 

directly, though KD of VAMP-3 does affect the secretion of TNF-α in macrophages 

(Murray et al., 2005; Manderson et al., 2007). This clearly supports the notion that 

cytokine secretion can be tailored to the needs of inflammatory systems, through 

variant SNARE-dependent pathways (Stow et al., 2009). Notably, TNF-α release 

from secretory granules in mast cells also requires SNAP-23 (Stanley and Lacy, 

2010), similar to our finding in SW982. KD of the syntaxin-2,-3 or -4 present in 

SW982 did not impair the IL-1β-stimulated release of IL-6 and TNF-α, though trace 

amounts of isoforms -2 and -3 were co-immunoprecipitated with VAMP-3. This lack 

of inhibition of exocytosis is presumably due to incomplete and less extensive KD 

than that of SNAP-23 and VAMP-3, and/or any other isoforms possibly present, 

compensating for their function. In macrophages, multiple syntaxin isoforms (4, 6 and 

7) are implicated in TNF-α release (Stanley and Lacy, 2010). 

KD of SNAP-23 significantly reduced the amount of SDS-resistant 

complex(es) formed between SNAP-23, VAMP-3 and synatxin-2 but did not affect 

surface content of IL-1 receptor though the filamentous-like distribution was 

disappeared. As such complex(es) are known to be essential for transport of TNF-α 

vesicles and membrane fusion (McMahon and Sudhof, 1995; Pagan et al., 2003), their 

decrease appears to underlie the reduced exocytosis of IL-6 from SNAP-23 KD cells.  

It is well knows that Ca2+ binding to its sensor which triggers exocytosis of vesicles 

by SNARE complex(es) assembly (Chen et al., 1999).  

  External Ca2+ was found to be required for cytokine release as incubation with 

IL-1β in the presence of extracellular Ca2+ enhanced this release and did not affect 

survival of the SW982 cells (~95% of cells were viable).  Consistent with the Ca2+-

dependence of cytokine release, voltage-dependent Ca2+ channels, mainly L-type, 

occur in SW982 (Kochukov et al., 2006).  Also, carrier membrane proteins 
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(SCAMPs) have been implicated in the Ca2+ regulation of cytokine trafficking in 

immune cells (Han et al., 2009).  SCAMPs directly bind to Ca2+ sensor in immune 

cells; thus, these proteins have potential roles in cooperation with the SNARE 

machinery in Ca2+-regulated exocytosis of cytokines (Han et al., 2009).  The observed 

ability of IL-1β to increase K+-stimulated release of IL-6, ~3.5-fold over the basal in 4 

h, and its inhibition upon depleting SNAP-23 reaffirms a need for extracellular Ca2+ 

in SNARE-mediated cytokine release in SW982. The lack of significant IL-6 release 

after 4 h incubation compared to 20 h might suggest only a portion of release was 

collected during shorter time and the release requires longer time of stimulation. 

  Our interesting finding of peri-nuclear localisation of SV2 protein after SNAP-

23 KD, but not in normal cells, suggests participation of the former in the 

transportation of cytokines from this locus, presumably trans-Golgi or ER regions 

(unfortunately, suitable paired antibodies were not available for counter-staining). 

Although the role of SV2 in regulating the expression and trafficking of the Ca2+ 

sensor protein, synaptotagmin, has been well documented (Chang and Sudhof, 2009), 

nothing is known about the function of this trans-membrane protein in non-neuronal 

cells except for its location on secretory vesicles visualized by immuno-electron 

microscopy (Feany et al., 1993). Nevertheless, the enhanced occurrence of SV2 in the 

peri-nuclear region in SNAP-23 KD cells implicates this protein in the package and 

delivery of cytokines to the cell surface.  IL-6 is also visualised in the peri-nuclear 

area in both control and SNAP-23 KD cells after overnight stimulation with IL-1β. 

This is in agreement with the finding in macrophages where LPS or interferon (IFN) 

increases IL-6 expression in peri-nuclear Golgi complex 2-fold (Manderson et al., 

2007). IL-β stimulated wild type cells showed increased expression of SNAP-23 and 

IL-6, but not in SNAP-23KD cells. It is also interesting that in SW982, SV2 located 

intracellularly and it does not serve as the protein acceptor for BoNT/A, unlike in the 

neuronal cells (Dong et al., 2006). Mutated LC/E400(K224D) developed, which can 

cleave human SNAP-23 (Chen and Barbieri, 2009), did not get into cells. Though 

successful delivery of LC/E400(K224D) into HeLa cells to inhibit IL-8 and mucin 

secretion supports a role for LC/E400(K224D) as a research tool and, also, shows the 

potential for therapy to regulate human hypersecretion diseases such as asthma and 

inflammatory diseases  (Chen and Barbieri, 2009). LC/E400(K224D) was delivered 

into SW982 cells by permeabilisation cleaved SNAP-23.  
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Because of the importance of synovial cells in the propagation of 

inflammatory response in RA and OA, the finding herein of SNAREs involvement in 

the release of cytokines could aid the development of novel and effective therapeutics. 

It is known that BoNTs cleave SNAREs and, subsequently, block the release of cell 

mediators (Dolly et al., 2011; Dolly and O'Connell, 2012).  Accordingly, SNAP-23 is 

inactivated by a mutant of type /E light chain which reduces the release of cytokines 

from HeLa cells (Chen and Barbieri, 2009); likewise, VAMP-3 is cleaved by /D and 

blocks TNF-α release from human monocytes (Imamura et al., 1989). Notably, some 

serotypes of BoNTs have been used successfully to alleviate inflammatory pain 

symptoms in RA and OA (Mahowald et al., 2006; Singh et al., 2009b; Singh et al., 

2009a; Chou et al., 2010), and in chronic arthritis models (Krug et al., 2009; 

Anderson et al., 2010). Consistent with our demonstrated presence of SV2 isoforms 

(receptors for BoNT/A, /D, /E /F and tetanus toxins) (Hayashi et al., 1994; Mahrhold 

et al., 2006; Schaible et al., 2006; Fu et al., 2009; Yeh et al., 2010; Peng et al., 2011; 

Wang et al., 2012) in rat cultured synoviocytes, these cells are susceptible to BoNT 

chimera /BA (Wang et al., 2012), generated by substituting the HC/A (C-terminal half 

of BoNT/A heavy chain) into BoNT/B. BA delivers the type B protease via the 

BoNT/A acceptor into synoviocytes and cleaves the requisite isoforms of VAMP . 

Future work could attempt to specifically target synoviocytes, macrophages and 

sensory neurons using BoNT chimeric strategy (Wang et al., 2008; Meng et al., 2009; 

Somm et al., 2012)  by switching the wide-spectrum binding domain to a cell-type 

unique ligand (Somm et al., 2012).  

In conclusion, particular SNAREs and SV2 present in SW982 cells have been 

identified; KD of SNAP-23 or VAMP-3 impaired release of IL-6 and TNF-α upon 

stimulation with IL-1β, implicating these SNAREs in the exocytosis of cytokines. 
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CHAPTER 4 VAMP-8 IS REQUIRED FOR 
THE RELEASE OF CYTOKINES FROM  RAT 

SYNOVIOCYTES 
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4.1 BACKGROUND  

As part of the investigation of BoNT as therapeutic agent in rat models of arthritis, rat 

synoviocytes (rSCs) were first used to measure the expression of BoNT receptors, 

SNAREs, their truncation, native or chimeric BoNTs and inhibition of the release of 

cytokines.  

Synoviocytes were isolated from rat knee joint synovium and cultured using 

DMEM containing FBS. The synovium is the central area of pathology in a number of 

inflammatory joint diseases, including RA and OA. The type A synoviocyte has cell 

surface markers identifying it as being from macrophage lineage derived from blood 

monocytes while the type B is of fibroblast lineage are intimal fibroblasts which are 

derived locally (Smith et al., 2003; Smith, 2011).   

Rat synoviocytes were found to express the receptor SV2A for BoNT/A and 

/D but not that for BoNT/B-synaptotagmin I/II for BoNT/B, moreover, SNAP-25 is 

absent, thereby, precluding the use of BoNT/A or /E with these cells. To truncate 

VAMP-3, BA or DA chimaeras were generated by substituting HC/A by its 

counterparts from BoNT/B or /D; these exhibited high specific activity, delivered the 

BoNT/B or /D protease via the BoNT/A acceptor into synoviocytes (Wang et al., 

2012). In the present study, these novel hybrid BoNTs truncated VAMP-3 in 

synoviocytes but failed to inhibit release of cytokines (TNF-α and IL-6), suggesting 

involvement of other isoform(s) of VAMP. Because these cells express VAMP-8, 

knockdown of VAMP-8 was carried out and shown to it result in inhibition of the 

release of cytokines.  

 

 

 

 

 

 

 

 



 83 

4.2 RESULTS 

4.2.1 Construction and expression of BoNT/BA or DA chimaeras 

Both chimeras were engineered and expressed by Dr. Jiafu Wang. The BA and DA 

(Fig. 4-1) were generated by ligation of the corresponding genes generated by PCR 

for LC.HN/B or  LC.HN/D and HC/A via a linker encoding two extra residues (DI) 

into pET29a to create an expression vector containing the BA or DA insert (Chapter 

2.1.5). Both chimeras contain two thrombin-cleavage sites generated by PCR, using 

suitable primers followed by self-ligation. One site is in the loop region to facilitate 

specific nicking, whereas extra nucleotides were also added to encode a thrombin 

consensus site for cleaving the C-terminal His6 tag. All of the DNA sequences were 

verified and each new single chain (SC) gene was transformed into E. coli BL21.DE3 

cells, expressed and the protein purified by IMAC (immobilized metal-affinity 

chromatography, Chapter 2.1.19). The IMAC purification of chimaera BA or DA was 

gel-filtered into 20 mM sodium phosphate buffer (pH 5.8) and further purified on a 

UNO S1 column, followed by washing with 100 mM NaCl and elution with a 

stepwise gradient (up to 1 M NaCl in the phosphate buffer). After buffer exchanging 

the eluted toxin into 20 mM Hepes and 145 mM NaCl (pH 7.8), purified SC toxin was 

either stored at −80°C or nicked by biotinylated thrombin (1 unit/mg for 1 h at 22°C) 

followed by removal of the thrombin by Streptavidin agarose, using the 

manufacturer's protocol before storage (Wang et al., 2012).  

 

 

 

  

 

 

 

Fig. 4-1.  Schematic of chimera BA and DA.  

Chimera BA or DA were generated by ligating the relevant fragments of the BoNT/B 

or /D gene (blue and green, respectively), encoding LC-HN/B or /D, to the SV2-

binding domain (HC) of BoNT/A (yellow) via a linker encoding two extra residues 

(DI). Both constructs were tagged with His6 to facilitate purification.  
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It was necessary to verify that the HC substitution of BoNT/B did not in any way 

hinder protease function, using an assay with a model synthetic substrate (Table 4-1). 

Chimera BA showed protease activities comparable to their parent toxin (BoNT/B) 

demonstrating that these were not altered by the binding domains being swapped. 

Therefore, any differences found later between the performance of this chimaera and 

the parent could be ascribed to the translocation and/or acceptor-binding domain 

(Table 4-1). In the terms of specific neurotoxicity (Chapter 2.1.18), no significant 

difference between BoNT/B and chimera BA. 

 

Table 4-1. Proteolytic activities and mouse lethalities of DC chimaera and parental 

toxin. 

Toxin EC50  nM for cleavage of 

GFP–VAMP2(2–94)-His6 

mLD50units/mg 

BoNT/B 2.72 ± 2.08 (n=5) 7 ×108 

Chimera BA 3.81 ± 2.18 (n=5) 6 ×108 

Chimera DA ND 6 x 107 

 

Proteolytic activities of chimeric and parental DC toxins were determined using 

model substrates (13.5 µM GFP–VAMP2(2–94)–His6). Values represent the amount 

of each toxin needed to cleave 50% of substrate within 30 min at 37°C. The lowest 

dose of toxin that killed 50% of a group of four mice within 4 days after intra-

peritoneal injection is defined as 1 mLD50 unit. DC, di-chain; GFP, green fluorescent 

protein; ND, not determined; His6, histidine tag. 

 

4.2.2 Synoviocytes isolated from rat knee joint 

Synovium was isolated from rat knee joint as shown (Fig. 4-2). Briefly, knee joint 

was separated from tibia and fibula and then cut open patella surrounded by synovium 

(Hyc et al., 2007). Rat synovial cells (rSCs) were dissociated from synovial 

membrane by digesting with collagenase and plated onto 24-well plate. For all 

experiments, cells were used between passage number 4-12. Purity of rSC cultures 

was confirmed by fibroblast-specific vimetin staining. Cultures were found to be 

consisting of ~95% of fibroblasts and free from macrophages. 
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Fig. 4-2. Preparation of synovial membrane from rat knee joint.  

(Hyc et al., 2007) 

A) Showing knee joint cut from tibia and fibula using scissors and removal of skin 

with scalpel, B) knee joint was opened from one end  C)  the patella was exposed by 

removing the upper tissue of joint, D) the patella with surrounding  synovium E) 

further dissection of synovium F)  synovium is separated from patella. Open arrow –

patella and rhomboidal arrow synovium. 

 

4.2.3 Culture of rCGNs and rTGNs 

rCGNs and rTGNs were cultured as described in Chapter 2.1.3. Phase contrast 

micrographs revealed that rCGNs and rTGNs (Fig 4.3) neuronal cells are 

distinguished by round, phase-bright cell bodies with extended fine fibres and cultures 

were free from non-neuronal cells. All neuronal cultures were used for experiments at 

7 days in vitro (see later).  
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Fig. 4.3 Culture of rCGNs and TGNs. 

Neurons were isolated from rat cerebelli or trigeminal ganglia and cultured using 24-

well plate. Bright field images of rCGNs and rTGNs viewed using phase-contrast 

show round cell bodies and neurite outgrowth.  

 

4.2.4 rSCs contain SNAREs and BoNT/A receptor 

To investigate the involvement of SNAREs in release of cytokines from synoviocytes, 

cells were isolated from rat knee joint, and the total cell lysate analysed for SNAREs 

and receptors for BoNT/A. Western blotting revealed the presence of SNAP-23, 

VAMP-2, -3, -8 and lesser amount of syntaxin-1 (Fig. 4-4A) and SV2A (Fig. 4-4B).  

Thus, it was warranted to establish if the SNAREs present in rSCs contribute to the 

release of cytokines.  
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Fig. 4-4. Demonstration of SNAREs and BoNT receptor in rSCs.  

A) Immuno-blot demonstrating the presence of SNAP-23, VAMP-2, -3 and -8 and B) 

SV2A in rSCs.  An equal amount of protein was loaded into each lane for all the 

blots; the approximate sizes of the bands are indicated.  

 

4.2.5 BoNT  DA and BA chimeras truncated VAMP-2 in cultured  rTGNs  

and rCGNs 
To assessing the novel chimera-DA and BA toxins undergo the multiple steps of 

binding, translocation and cleavage of their respective substrates in situ, they were 

incubated with rTGNs and rCGNs (Chapter 2.1.3) for 24 h and cleavage of VAMP-2 

was monitored by immuno-blotting.  In rTGNs, chimera DA caused a dose dependent 

cleavage of VAMP-2 (Fig. 4-5A). Western blotting of rCGNs lysates for VAMP-2 

cleavage showed BA matched the activity of /B (Fig. 4-5B). 
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Fig. 4-5. Both BoNT chimeras potently and specifically cleaved their requisite 

substrate in intact cultured neurons. 

 Rat TGNs at 7 days in vitro were incubated with chimera-DA A) and rCGNs were 

treated with chimera-BA or BoNT/B B) for 24 h in culture medium, washed and 

solubilised in SDS sample buffer. Equal amounts of protein were subjected to SDS-

PAGE, under non-reducing conditions, and Western blotting. The proportions of 

intact VAMP-2 remaining were calculated relative to an internal un-cleaved syntaxin-
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1 control in the same lane, before calculating their intensities as a % of the signal 

observed in toxin-free control lanes. 

 

4.2.6 Chimera DA and  BA cleaved VAMP-3 after successful delivery into 

 rSCs through /A binding receptor, SV2  
Because rSCs express the protein receptor SV2A for /A, chimera DA was used to 

cleave VAMP-3. The cells were plated onto 24-well plate and incubated for 20h 

before adding DA (100 nM) in presence of lipopolysaccharide (LPS, 50 µg/ml); after 

overnight incubation at 37oC, the cells were harvested for immuno-blot analysis. DA 

cleaved VAMP-3 in presence of LPS (Fig. 4-6A). LPS was used because it sensitizes 

cells to secrete cytokines and thus, should stimulate the exocytosis-coupled 

endocytosis. Densitometric analysis revealed that ~45% of VAMP-3 got truncated 

(Fig. 4-6B). Where BoNT/A, /B or BA (100 nM) were added to cells in presence of 

substance P (1 µM) and incubated for 24 h; unlike /B and /A, BA cleaved VAMP-3 

(Fig. 4-6C). The densitometric analysis show ~60% cleavage of VAMP-3 (Fig. 4-6D). 

BoNT/B failed to cleave VAMP-3 due to a lack of its synaptotagmin receptor in these 

cells; because there is no SNAP-25 in these cells, /A did not give any cleavage (Fig 4-

6C).  
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Fig. 4-6. Chimera DA and BA entered cultured rSCs and cleaved VAMP-3, unlike 

their parents which failed to truncate their respective substrates. 

 rSCs were incubated at 37°C for 24 h with or without 100 nM of /DA with LPS (50 

µg/ml) and B/A  in the presence of 1 µM substance P in culture medium. Cells were 

washed and harvested in SDS sample buffer. Solubilised proteins were subjected to 

SDS-PAGE and Western blotting using the antibodies indicated. A) Immuno-blots 

showing cleavage of VAMP-3 by DA (triplicate lanes); no change occurred in two 

controls: medium alone and the latter containing LPS. B) The amount of intact 

VAMP-3 left after toxin treatment. C) Representative blots indicating that BoNT/A, 

relative to the non-toxin treated control (Ctrl), failed to truncate SNAP-23 but 

chimera BA cleaved VAMP-3 (duplicate lanes) unlike /B.  D) The proportions of 

VAMP-3 remaining intact after treatment with 100 nM of either chimera BA or /B 

were calculated (± S.E.M.; n = 3) relative to the uncleaved SNAP-23, internal 

standard.  
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4.2.7 Truncation of VAMP-3 by chimera DA or BA failed to inhibit release of 

TNF-α and IL-6 indicating VAMP-8 may be required for exocytosis of cytokines 

rSCs were incubated for 24h at 37oC with 100 nM of DA in presence of LPS (50 

µg/ml), /BA(100 nM) in presence of substance P (1 µM) or BoNT/B. Cells were  

washed twice with PBS and stimulated with IL-1β (100 ng/ml) in complete medium 

for 20 h to release cytokines. Notably, IL-1β stimulated release of IL-6 (Fig. 4-7A) 

and TNF-α (Fig. 4-7B) was not inhibited by either toxin. Because VAMP-3 cleavage 

was shown by Western blot analysis but no blockade of cytokines release, the 

isoform, VAMP-8 present in rSCs may be functional. This possibility was next 

examined.   

 

 

 

 

 

 

 

 

Fig. 4-7.  ELISA for IL-6 and TNF-α in cell culture supernatant. 

Cells exposed for 24 h to BA plus substance P, DA in presence of LPS or BoNT/B. 

Cell culture supernatants were collected after stimulating cells with IL-1β (100 

ng/ml). Cytokine release was assayed using commercial ELISA kit for IL-6 A) and 

TNF-α B), while the cells were subjected to Western blot analysis. Notably, no 

significant difference was detected between toxin-treated and control cells.  Data 

plotted are Mean ± S.E.M.; n=3. 
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days to kill off the non-transduced cells. For evoked release of TNF-α and IL-6, cells 

were stimulated with IL-1β (100 ng/ml) for 20 h before collecting cell supernatants 

for ELISA and cells for Western blot analysis. shRNA caused ~50% KD of VAMP-8 

whilst not affecting expression of SNAP-23 (Fig. 4-8A, B), reduced by ~35% the 

release of TNF-α (Fig. 4-8C) and ~30% of IL-6 (Fig. 4-8D). This finding indicates 

that VAMP-8 is required for release of cytokines from rSCs. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-8.  KD of  VAMP-8 reduced  cytokine release from rSCs.  

VAMP-8 KD was achieved by incubating the cells (5 x 104 cells/well in 24-well plate) 

with lentiviral shRNA (20 MOI) for 7-8 days. A and B) Immunoblot analysis was done 

to calculate percentage of KD compared to a virus-free control. No change in 

expression of SNAP-23 was observed. C and D) KD of VAMP-8 resulted in reduction 

of the release of cytokines, TNF-α and IL-6.  The data represents mean ± S.E.M., n=3, 

p<0.05 considered as significant. 
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4.3 DISCUSSION 

VAMP-3 had been shown to be involved in release of cytokines from human 

synoviocytes (Chapter 3), additional experiments were performed to ascertain if this is 

also the case for rSCs. From our previous findings, chimera EA successfully entered 

nociceptive neurons and inhibited CGRP release (Meng et al., 2009). Thus, it was 

warranted to engineer chimeric BoNTs to target non-neuronal cells like synoviocytes. 

As rSCs were found to express SNAP-23, VAMP-3 (but not SNAP-25) and SV2A 

receptor for BoNT/A (but not but not Syt I or II making them inaccessible to /B),  

chimeras BA and DA were used. These toxins utilised the binding domain of BoNT/A 

to enter synoviocytes and cleave VAMP-3. Cleavage of VAMP-3 occurred following 

stimulation by LPS or substance P, a pain mediator involved in the development of 

arthritis (Wang et al., 2012). Although truncation of VAMP-3 could not inhibit 

release of IL-6 and TNF-α from rSCs, this could be due to limited extent of truncation 

of VAMP-3 (~50%); for example in SW982, ~75% KD of VAMP-3 resulted in 50-

55% inhibition of IL-6 and TNF-α release (Chapter 3).  Our collective observations 

suggest that BA or DA could offer an advantage of counteracting the symptoms of 

arthritis at two points: directly upstream on the neuronal component like BoNT/A 

and, indirectly, on synoviocytes.   

Interestingly, VAMP-8 KD resulted in reduction of the secretion of cytokines 

from rSCs, unlike human synoviocytes. It has been reported that mast cells requires 

VAMP-8 for histamine release (Sander et al., 2008).  These findings indicate that 

VAMP-8 is required for release of cytokines from rSCs instead of VAMP-3. 

However, VAMP-8 could not be detected in human synoviocytes instead; VAMP-3 

participated in the release of cytokines (Chapter 3).  It is notable that in mouse 

macrophages, TNF-α was found to co-localize with VAMP-8-positive vesicle, and in 

VAMP8-deficient macrophages, TNF-α release was inhibited but VAMP-3 is also 

required for this process (Stow et al., 2009; Pushparaj and Tay, 2013).  Interestingly, 

VAMP-8 is necessary for the release of protein-containing granules in response to 

FcγRI-mediated secretion in mouse mast cells (Puri and Roche, 2008; Lacy and Stow, 

2011). Furthermore, VAMP-8 has been shown to regulate the release of TNF-α and β-

hexosaminidase from macrophages. KD of VAMP-8 results in decreasing evoked 

hypersecretion of mucin in human airway epithelial cell cultures (Jones et al., 2012). 

Unlike VAMP-8 silencing, KD of VAMP-2 or VAMP-3 did not affect this mucin 
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secretion (Jones et al., 2011; Jones et al., 2012). Previously reported in human mast 

cells, VAMP-8 is involved in the release of CXCL8 but not of CCL2, CCL3, or CCL4 

(Frank et al., 2011). 

Different species were found to use distinct isoforms of VAMP. For example, 

in human platelets, VAMP-3 is required for alpha granules and dense-granules 

secretion and VAMP-8 for secretion of dense granules but not alpha granules (Polgar 

et al., 2002).   Also, we demonstrated that VAMP-3 can be used in human 

synoviocytes to release cytokines. 
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CHAPTER 5  EVALUATION OF TARGETED 
BIO-THERAPEUTIC IN CYTOKINE AND 

NEUROPEPTIDE-RELEASING CELLS 
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5.1 BACKGROUND  

Arthritis is the bane of millions of lives. Though it comes in many forms, their 

common theme is inflammation of the tissues around joints. Treatment is merely 

palliative: anti-inflammatory drugs, painkillers or both (Feldmann, 2001; Emery, 

2006). Unfortunately, the majority of sufferers do not respond to currently available, 

non-additive medicines; also, commonly used analgesics are short-acting, and cause 

unwanted adverse effects which raise serious problems for repeated use over long 

periods. Thus, there is a huge unmet need for more effective, long-acting treatments. 

Immune cells like macrophages, synoviocytes and mast cells release cytokines (TNF-

α and IL-6) and, thereby, induce inflammation in mainly joints in disease conditions 

(Houssiau, 1995; Feldmann, 2001).  It is now apparent that RA and OA pain involve 

substantial changes in the nociceptive (pain) system at all levels of the neuraxis, 

including the peripheral neurons and the central nervous system (Konttinen et al., 

2006). Both TNF-α and IL-6 potently stimulates joint nociceptors resulting in the 

secretion of SP and CGRP.  Recent studies showed that intra-articular injection of 

BoNT/A or /B into humans or murine models of arthritis reduces the associated pain, 

reaffirming the neuronal input in the pathogenesis of arthritis (Mahowald et al., 2009; 

Singh et al., 2009b; Singh et al., 2009a). BoNT inhibit regulated exocytosis, 

specifically the release of neurotransmitters at the neuromuscular junction. These 

toxins cleave SNAREs, proteins involved in the fusion of synaptic vesicles with the 

plasma membrane (Dolly and Aoki, 2006). Therefore, resulting the inhibition of the 

release of acetylcholine at the neuromuscular junction. BoNTs are synthesized as 

single-chain polypeptides of ~150 kDa and subsequently cleaved to DC forms, in 

which the light (LC) and heavy chains (HC) are linked by a single disulphide and 

non-covalent bond. The 50-kDa LC acts as a zinc-dependent endopeptidase (Dolly 

and Aoki, 2006). The heavy chain contains two functional domains, each of ~50 kDa.  

The N-terminal half (HN) acts as a translocation domain, known to form membrane  

ion channels; as the C-terminal half (HC) mediates acceptor binding, it plays a key 

role targeting cells and the binding leads to internalization of the toxin into neurons. 

The HC further comprises two sub-domains: the extreme carboxy-sub-domain, HCC, 

and the proximal HCN sub-domain (Foster et al., 2006; Foster, 2009). Although the 

SNARE proteins and their role in secretion were first identified in neuronal cells, the 

SNARE complex is ubiquitous. It is well established that SNARE proteins are 
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expressed and participates in secretion from many cell types, including eosinophils, 

neutrophils, synoviocytes, macrophages, and mast cells (Stow et al., 2006; Stow et al., 

2009). Our previous study (Chapter 3), demonstrated that knocking down SNAP-23 

or VAMP-3 using lentiviral shRNAs inhibited the release of TNF-α and IL-6 from 

SW982 cells.  Although the SNARE inactivating toxins have the ability to suppress 

exocytosis; their full therapeutic potential has not been reached because of the lack of 

the acceptor on non-neuronal cells. This can be circumvented by engineering BoNT  

to generate recombinant derivative, endowed with ability to  target cytokine-releasing 

cells and sensory neurons (but not motor neurons) for treating chronic inflammatory 

pain. Two novel ligands were selected to deliver protease domain of BoNT/D into 

both of the above mentioned cells with the aim of inhibiting the release of cytokines 

and pain peptides by truncating VAMP isoforms; this raised the exciting project of 

novel therapeutics for inflammatory as well as neuropathic pain.  In this study the 

targeted bio-therapeutics were created by recombinantly fusing the genes encoding 

LC/D and translocation domain (HN), with or without HCN to targeting ligands. The 

latter were selected to specifically bind receptors expressed on cells involved in 

arthritis (sensory neurons and cytokine-releasing cells) and, hopefully, culminate in 

translocation of LC and subsequent block of exocytosis. A total of 3 candidates were 

developed using 2 different ligands.  One of these was found to enter both cell types 

and translocate the protease domain of BoNT/D, as reflected by cleavage of its 

substrate VAMP. As expected, the release of cytokines and a pain peptides from 

synoviocytes or macrophages and rDRGS was inhibited.  The control non-liganded 

protein (LC.HN/D), did not cleave VAMP or cause any inhibition, confirming the 

targeting by the ligand.  
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5.2 RESULTS 

5.2.1 RAW264.7 cells contain SNARE proteins but not BoNT acceptors 

To investigate expression of SNAREs and BoNT receptors in RAW264.7 cells were 

subjected to Western blot analysis and using antibodies specific for SNAP-23, SNAP-

25, VAMP-2/3, syntaxin-1, SV2 A/B/C or synaptotagmin I/II.  RAW264.7 expresses 

SNAP-23 and VAMP-3 (Fig. 5-1A) but not the SNAP-25, VAMP-2, syntaxin-1, SV2 

A/B/C, synaptotagmin I/II (Fig. 5-1B).  Because of lack of BoNT receptors in 

macrophages, it was necessary to develop targeted BoNT-based bio-therapeutics. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-1.  RAW264.7 contains SNAP-23 and VAMP-3 but lacks BoNT acceptor 

RAW264.7 were harvested, solubilised in LDS sample buffer and separated on SDS-

PAGE before doing immunoblot analysis. Antibodies specific for each SNARE and 

BoNT receptors were used. SNAP-23 and VAMP-3, but not other SNAREs or BoNT 

acceptors detected.  SW982 and rCGN served as positive controls.  
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5.2.2 Construction, expression and purification of targeted bio-therapeutics 

A total of 3 targeting proteins containing 2 different ligands were engineered by Dr. 

Jiafu Wang. The first BoNT/D∆HCC-TL consists of LC and translocation (HN) and 

HcN (C-terminal subdomain of Hc) of BoNT/D and ligand 1 (TL-1). The second 

BoNT/D∆HC-TL-1, lacks the HcN of /D. The third BoNT/D∆HC-TL2, abbreviated as 

ARA-7 contains LC.HN/D and targeting ligand 2 (Fig. 5-2A); a non-targeted version 

(Fig. 5.2B) acted as a control.  

These targeted proteins were expressed in BL21.DE3 strain, using auto-induction 

medium, and purified by IMAC only (Chapter 2.1.19). SDS-PAGE followed by 

protein staining revealed  that these therapeutics were expressed and purified as SC 

form, which were fully nicked to DC by thrombin (1 mg toxin/unit at 22ºC for 2 h) 

(Fig. 5.2C). A protein of ∼115 kDa was eluted by imidazole, as demonstrated by SDS-

PAGE and Coomassie Blue staining. The resultant recombinants gave a single band 

of ∼115 kDa upon SDS-PAGE followed by Coomassie blue staining in either the 

absence or presence of DTT (Fig. 5-2C). Control protein (LC.HN/D) was also 

expressed and purified as non-targeting protein (Fig. 5-2B).  
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Fig. 5-2. Schematics of engineered bio-therapeutics; expression of SC and 

conversion of the purified to DC forms by nicking and simultaneous tag removal. 

A) Showing the composition of the three targeted constructs. B) Control protein 

(LC.HN/D) was engineered by deleting HC domain from BoNT/D.  (C) The purified 

recombinant therapeutics were incubated with thrombin. Aliquots were analyzed by 

SDS-PAGE in the absence or presence of 25 mM DTT, followed by Coomassie Blue 

staining.  Arrows indicate the positions of the DC, LC, HN-TL, HN-HCN-TL.  

Abbreviations: HCN, N-terminal subdomain of Hc; HN, translocation domain; LC, 

catalytic light chain; S-S , disulphide bond; TL, Targeted ligand (TL) 1 or 2; M,  

standard  proteins.  
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5.2.3 BoNT/D∆HCC-TL1 protein cleaved VAMP-3 and inhibited release of 

cytokines (IL-6 and TNF-α) from mouse macrophage cell line (RAW264.7) but 

only at high concentration  

RAW264.7 were incubated with differnent concentrations of BoNT/D∆HCC-TL1 for 

48 h before being washed and stimulated by LPS (100 ng/ml) + IFN-γ (500 pg/ml) 

over 6 h to release cytokines. As shown by Western blot analysis, the first targeted 

therapeutic significantly cleaved VAMP-3 ~ 50%  at 100 nM concentration (Fig. 5-

3A); this resulted in inhibition of evoked release of TNF- α and IL-6 by ~65% and 

~55% respectively, compared to non-treated control (Fig. 5-3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 



 102 

         

                   

 

                       

 

 

                  

 

 

               

                    
Fig. 5-3. BoNT/D∆HCC-TL1 cleaved VAMP-3  in macrophages and decreased 

release of cytokines.  

A) The cells were harvested after stimulation and proteins separated on SDS-PAGE 

for Western blotting which shows cleavage of VAMP-3 by increased concentration of  

the therapeutic. Syntaxin-4 served as internal control. B) The cells were stimulated 

with LPS (100 ng/ml) + IFN-γ (500 pg/ml) for 6h before collecting the supernatants 

for ELISA. The graph represents cleavage of VAMP-3 and inhibition of release of 

both cytokines (TNF-α and IL-6). Densitometric analysis using Image J was done to 

calculate % of cleavage of VAMP-3 relative to control. The amounts of release of 

TNF-α and IL-6 were calculated relative to non-treated controls. Data plotted as % of 

control. The data represents mean ± S.E.M, n = 3, *p <0.05 considered as significant. 
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5.2.4 BoNT/D∆HC-TL1 did not give significant cleavage of VAMP-3 and failed to 

inhibit the release of cytokines from mouse macrophage cell line (RAW264.7) 

Cells were intoxicated with for BoNT/D∆HC-TL1 48 h before stimulation with  LPS 

(100 ng/ml) + IFN-γ (500 pg/ml) for 6h. The Western blotting showed that it failed to 

truncate VAMP-3 at any concentration tested (Fig. 5-4A); accordingly, the release of 

cytokines (TNF-α and IL-6) was not inhibited by this treatment (Fig. 5-5B).  

          

     

         
 

 

 

 

 

 

 

 

 

 

 

 

         
Fig. 5-4. BoNT/D∆HC-TL1 did not truncate VAMP-3 or decrease the release of 

cytokines  from RAW264.7 

A) Immunoblot revealing the absence of VAMP-3 cleavage by BoNT/D∆HC-TL-1; 

syntaxin-4 acts as a  loading control. Densitometric analysis was done to measure % 

of cleavage of VAMP-3. B) The stimulated release of cytokines, TNF-α and IL-6 was 

not affected by this protein even at 100 nM concentration. Data presented as mean ± 

S.E.M, n=3. 
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5.2.5 BoNT/D∆HC-TL2  (ARA-7) entered cultured RAW264.7 cells, cleaved 

VAMP-3 and blocked the release of cytokines, unlike its control protein 

Mouse macrophages were incubated with its various concentrations of ARA-7 for 48 

h and then stimulated by LPS (100 ng/ml) + IFN-γ (500 pg/ml) for 6 h for to release 

cytokines before cells harvested for Western blot analysis. ARA-7 dose-dependently 

cleaved VAMP-3 with EC50 of ~10 nM (Fig. 5-5A, B), after calculating the 

percentage of VAMP-3 cleavage relative to non-treated control using densitometry 

scanning and Image J analysis. Further experiments were carried out to test this 

therapeutic on other inflammatory cell lines like synoviocytes (SW982). To verify 

specificity of ARA-7 for VAMP cleavage, the control Protein (LC.HN/D) which is 

devoid of a TL was used as control. Cells were incubated with LC.HN/D same as 

before for 48h and the evoked release of cytokines analysed by ELISA. LC.HN/D 

failed to cleave VAMP-3 (Fig. 5-5C) and decrease the release of TNF-α and IL-6 

(Fig.  5-5D).  
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Fig. 5-5. ARA-7 cleaved VAMP-3 and inhibited release of cytokines from 

RAW264.7, unlike its control protein (LC.HN/D) 

A) Cells were harvested for SDS-PAGE and immunoblotting. ARA-7 dose-dependently 

cleaved VAMP-3; extent of VAMP-3 cleavage of VAMP-3 were calculated relative to 

its non-treated control. B) The cells were stimulated with LPS (100 ng/ml) + IFN-γ 

(500 pg/ml) for 6 h before collecting cell culture supernatants for ELISA. C) Control 

protein (LC.HN/D) did not cleave VAMP-3 or reduce cytokine release (D). Data 

presented as mean ± S.E.M, n = 3, p < 0.05 considered statistically 

significant,*P<0.05, **p < 0.01, ***p < 0.001 when compared to non-toxin treated 

control. 
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5.2.6 ARA-7, but not LC.HN/D, truncated VAMP-3 dose-dependently in a human 

synovial cell line (SW982) and reduced the release of cytokines 

Human synovial cells were plated at density of 5 x 104 per well in 24-well plate. After 

overnight incubation, the cells were incubated with different concentration of ARA-7 

for 48 h., stimulated with IL-1β (100 ng/ml) for 20 h before immunoblot analysis of 

the cell lysates. ARA-7 cleaved VAMP-3 in a dose-dependent manner (Fig. 5-6A) and 

reduced the release of TNF-α and IL-6 (Fig. 5-6B). The EC50 for VAMP-3 cleavage 

was found to be ~10nM (Fig. 5-6B).   

When SW982 cells were treated with control protein (LC.HN/D) for 48h and 

stimulated as before no cleavage of VAMP-3 or alternation in the release of TNF-α 

and IL-6 were observed (Fig. 5-6C, D), demonstrating ARA-7 specifically enters into 

the cells and cleaves VAMP-3. 
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Fig. 5-6.  Unlike control protein, ARA-7 truncated VAMP-3 in SW982 cells and 

inhibited release of cytokines in a  dose-dependent fashion  

 A) Immunoblots demonstrating cleavage of VAMP-3 by ARA-7, which was calculated 

relative to non-treated control using SNAP-23 as a loading control. B) The cell 

culture supernatants after stimulation with IL-1β (100 ng/ml) for 20 h  were assayed 

for release of cytokines (TNF-α and IL-6).  Both cytokines were reduced by ARA-7 at 

>10nM. C) The control protein (LC.HN/D) did not truncate VAMP-3 and D) failed to 

inhibit the release of TNF-α and IL-6.  Data presented as mean ± S.E.M., n=3, p < 

0.05 considered statistically significant,*P<0.05, **p < 0.01, ***p < 0.001. 

 

5.2.7 ARA-7 did not affect the viability of cultured macrophages or synoviocytes 

Equal number of cells were plated on 24-well plate and incubated overnight; ARA-7 

was then added incubation continued for 48 h, before MTT assay of cell viability. Cell 

culture supernatants were removed, MTT (Chapter 2.1.14) was added to wells and 
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incubated for 4h. Absorbance was measured after 4h. SW982 (Fig. 5-7A) and 

RAW264.7 (Fig. 5-7B) cells did not died or become detached when ARA-7 treatment 

for 48h, demonstrating its the lack of toxicity. 

                                  

 

 

 

 

 

 

 

 

 

 

Fig. 5-7. Viability of SW982 and RAW264.7 cells were not affected by incubation 

with ARA-7. 

A) SW982 and B) RAW264.7 cells were exposed to ARA-7 for 48h. No cell death was 

observed after at any  ARA-7 concentrations. Data presented mean ± S.E.M, n=3. 

 

5.2.8 BoNT/D∆HC-TL2  (ARA-7) cleaved VAMP-2 in  rDRGs  and decreased 

release of substance P 

To assess ability of the therapeutic to undergo the receptor binding, translocation and 

cleavage VAMP, it was incubated with rDRGs for 24 h and cleavage of VAMP-2 

monitored by immunoblotting. The rDRGs were incubated with various 

concentrations of ARA-7 for 24 h, before being stimulated by 60 mM [K+] and 

2.5mM [Ca2+]  for 10 min. The amounts of substance P released under basal and 

stimulated conditions were quantified by ELISA. ARA-7 successfully entered rDRGs, 

cleaved VAMP-2 with EC50 ~30nM (Fig. 5-8A). Consistently the evoked release of 

substance P was decreased by ARA-7 with IC50 ~30nM (Fig. 5-8B). On the other 

hand, control protein (LC.HN/D) similarly exposed to rDRGS failed to cleave VAMP-

2 (Fig. 5-8C), confirming ARA-7 specifically enters into neurons and truncates 

VAMP-2 through the TL. 
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Fig. 5-8. ARA-7 truncated VAMP-2 in rDRGs and inhibited the release of 
substance P. 
rDRGs were exposed to ARA-7 and release of substance P was assayed over 10 min. 

Cells were then solubilised in SDS-sample buffer and equal volumes subjected to 

SDS-PAGE and Western blotting, using an antibody that recognises VAMP-2 or 

SNAP-25. The proportion of intact VAMP-2 remaining was calculated relative to an 

internal SNAP-25 control, using digital images of the gels. (A) Immunoblot showing 

the cleavage by the therapeutic of VAMP-2; SNAP-25 served as internal control. (B) 

Dose-response blockade of substance P release evoked by 60 mM K+. C) Control 

protein (LC.HN/D) did not cleave VAMP-2.  Data represented mean ± S.E.M., n=2, 

p<0.05 considered significant.  
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5.3 DISCUSSION  

This study aimed to selectively target the endopeptidase activity of BoNTs to specific 

cell types. In this chapter, targeted SNARE-inactivating endopeptidases were 

developed to selectively target synoviocytes, macrophages and nociceptive sensory 

neurons. Initial work consisted identification of ligands that had greatest selectivity to 

target cells of interest; conjugate its gene to that of the core therapeutic (LC.HN) and 

express the fusion protein in E. coli. The purified products were then applied to 

synoviocytes, macrophages or sensory neurons to demonstrate their cleavage of 

intracellular SNARE and blockade of release. 

Vesicle fusion with the plasma membrane involving the SNARE complex 

represents a universal mechanism for exocytosis in eukaryotic cells. BoNTs potently 

inhibits neurotransmitter release at the neuromuscular junction by proteolysis of 

specific components of the vesicle docking/fusion complex (Dolly and Aoki, 2006). 

Their mechanism of action of entails distinct phases, includes binding to cell surface 

acceptor, internalisation, endosomal release and cleavage of SNARE involved in 

fusion of exocytotic vesicles, which disable release of neurotransmitter (Montal, 

2009, , 2010). However, many non-neuronal cells lack BoNT acceptor, so there was 

an unmet need to engineer recombinantly targeted biotherapeutic variants. Disease-

modifying antirheumatic drugs (DMARDs) have long been used to slow the 

progression of joint destruction in patients with RA and OA. However, these synthetic 

agents fail to significantly improve the course of RA and OA in a substantial number 

of patients, and they are associated with considerable toxicity (Breedveld and Combe, 

2011). Moreover, many patients do not respond adequately to these treatments or 

other available drugs. Intra-articular injection of BoNT/A reduced pain in patients 

with chronic arthritis who were less responded with other available drugs as well as in 

mouse models of arthritis alleviated pain (Mahowald et al., 2006). Off-target side 

effects can occasionally occur with conventional BoNT therapy.  To overcome these 

shortcomings, new therapeutics to treat arthritis with little or no side effects would be 

highly desirable. A recombinant chimeric protein composed of the growth hormone–

releasing hormone (GHRH) coupled to LHN of BoNT/D, specifically bind to GHRH 

receptor on  pituitary somatotrophs, cleaved VAMP-2 and reduced secretion of  

growth hormone (GH), offering a potential treatment for hyper secretion of pituitary 

GH (Leggett et al., 2013). A recombinant fusion protein consisting of the LCHN-
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fragment of BoNT/C1 and epidermal growth factor (EGF) was able to inhibit secretion 

of mucus from epithelial cells (Foster et al., 2006).  

Synoviocytes, macrophages and sensory neurons are involved in progression 

of arthritis by secreting cytokines and neuropeptides and inhibition of these pain-

mediators by novel targeted bio-therapeutics could prove very beneficial. In this 

study, a HC domain of BoNT/D substituted with a ligand was engineered to target to 

desired cell type harnessing the receptor for that particular ligand. A LC/D was 

chosen because it has advantage over LC/B in that it can cleave all three isoforms of 

VAMP (1, 2, and 3).  We selected two different ligands to engineer targeted bio-

therapeutics. Binding of ligand to receptor on cell surface enabled translocation of 

LC/D into cell cytoplasm and resulted in cleavage of VAMP. Cytokines produced by 

immune cells stimulate sensory nerves which innervate the knee joint. This bio-

therapeutic was able to truncate VAMP in synoviocytes and macrophages and dose-

dependently inhibited release of cytokines. BoNT/D∆HCC-TL-1 proved less potent in 

macrophages cleaved VAMP-3 at higher concentration. The another molecule, 

BoNT/D∆HC-TL1 was unable to truncate VAMP-3 in macrophages. These two less 

active molecules may result from a lower abundance of TL-1 receptor in these cells 

and/or inadequate efficiency. The most effective and promising therapeutics was 

BoNT/D∆HC-TL2 (ARA-7), which cleaved VAMP-2/3 in macrophages, synoviocytes 

and rDRGS at very low concentration. ARA-7 is the most potent in cleaving VAMP  

may be due to a higher expression of its receptor on the cell surface. A dose-response 

study revealed that EC50 for ARA-7 is ~10 nM in macrophages and synoviocytes. 

Control protein (LC.HN/D) without targeted ligand failed to cleave VAMP in all cell 

types tested confirming this bio-therapeutic specifically bind to its receptor and 

subsequently become internalised LC/D into cell cytosol. Most importantly, both 

targeted and control protein did not effect on cell viability.            

This investigation also confirmed findings from Chapter 3, where VAMP-3 

KD was achieved with lentiviral shRNAs resulted in blockade of release of cytokines 

from SW982 cells. Consistently, antibody-mediated delivery of BoNT/B into 

macrophages cleaved VAMP-3 and decreased release of TNF-α (Yeh et al., 2011). 

Although, KD of VAMP-3 found to reduce release of cytokines from macrophages 

(Murray et al., 2005; Stow et al., 2006; Stow et al., 2009), similar results were 

obtained here for synoviocytes and macrophages which are involved in arthritic pain. 
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Another advantage of this therapeutic is that it enter into the sensory neurons and 

cleaves VAMP-2, resulting in inhibition of substance P release. This ability to block 

secretion from both sensory neurons and inflammatory cells is particularly important 

painful situations, where it is known that multiple mediators are involved in the 

sensation of pain and associated inflammation. The importance of this novel bio-

therapeutic is that it can be used to truncate VAMP in neuronal and non-neuronal cells 

and block release of cytokines and pain peptides from sensory neurons and 

inflammatory cells both of which mediate arthritic pain. 

              This prototype therapeutic would have more beneficial for the medical 

application the native neurotoxins, while removing the inherent toxicity (natural 

BoNT/A with 2.5×108 median lethal doses [MLD50] per mg) and offering a much-

improved therapeutic window by only targeting non-neuronal cells and sensory 

neurons.  
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6.1 BACKGROUND 

KD of the expression of SNAP-23 or VAMP-3 in synoviocytes by lentiviral shRNA 

results in reduction of  the release of TNF-α and IL-6 and truncation of VAMP by 

engineered bio-therapeutic in synoviocytes, macrophages or sensory neurons 

decreased the secretion of both cytokines and neuropeptide (substance P) highlighting 

the importance of these SNARES for exocytosis of cytokines.  

Viral vectors have been successfully used for delivering therapeutics. Adeno–

associated virus vectors can express a cleavage-resistant mutant of SNAP-25 in rats 

which diminish neuromuscular paralysis by BoNT/A. (Raghunath et al., 2008). 

Lentiviral particles (LVs) mediated blockade of nuclear factor кB (NF-кB activity) in 

spinal glial cells attenuates pain in a chronic constriction injury (CCI) model in rats 

(Meunier et al., 2007). Thus, this chapter focuses on engineering and production of 

capable of infecting synoviocytes and macrophages, lentiviral particles expressing 

LC/D cleaving VAMP and hopefully block the release of pain peptides and cytokines.  

Such virus could be used in-vitro to truncate VAMP in neurons and/or non-neuronal 

cells as well as in vivo to potentially attenuate pain behaviour in animal models.  

LVs belongs to the genus of Retroviridae family which includes the human 

pathogen human immunodeficiency virus (HIV). Replication-incompetent vector 

particles derived from lentiviruses have been shown to mediate transfer and 

expression of heterologous genes (transgenes) into a variety of cells including e.g. 

macrophages, synoviocytes, lymphocytes and nerve cells (Jurgens et al., 2012). In 

addition to use in ex vivo cell transduction, LVs could be useful for gene delivery in 

vivo. Furthermore, LVs may allow for long-term expression of transgene, as the 

transcript silencing observed with other retroviral vectors is less frequent with LV and 

as such may provide a means more prolonged clinical management of chronic 

diseases (Tiscornia et al., 2006; Jurgens et al., 2012). 

 The virions are roughly 100 nm in diameter, spherical and the outer layer is a 

lipid envelope displaying viral glycoproteins (Fig. 6-1).  Each particle contains two 

copies of the linear viral RNA genome (~ 10 kb) which contains three essential genes, 

gag, pol and env. The pol gene encodes three viral enzymes: the protease, reverse 

transcriptase (RT), and integrase. The gag gene encodes structural proteins: the 

capsid, matrix, and nucleocapsid. The Env gene encodes the envelope glycoproteins 

of the virus (Akhtar et al., 2013). After the retrovirus enters the target cell, the viral 
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genome is converted into double-stranded DNA by RT. Proviral genome is then 

integrated into that of the target cell by the integrase. Viral long terminal repeats 

(LTRs) are important for the initiation of viral DNA synthesis, integration and 

regulation of viral transcription (Akhtar et al., 2013). In addition, there are a number 

of cis-acting elements required during viral life cycle; the TAT activation region 

(Jurgens et al., 2012; Akhtar et al., 2013), splice donor and acceptor sites, packaging 

and dimerization signal (Ψ), Rev-responsive element (RRE) as well as the central and 

terminal polypurine tracts (PPT) during viral life cycle. To produce replication-

defective vector particles, all dispensable genes have to be eliminated from HIV-1 

genome; the cis-acting sequences are required for viral production (Yu et al., 2011; 

Sakuma et al., 2012). 
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Fig. 6-1. Structure of wild type LV (http://www.niaid.nih.gov/factsheets/how 

hiv.htm).  

LVs are double stranded RNA enveloped viruses mainly characterized by the ability to 

“reverse-transcribe” their genome from RNA to DNA. Virions measure ~100 nm in 

diameter and contain a dimeric genome of identical positive RNA strands complexed 

with the nucleocapsid (NC) proteins. The genome is enclosed in a protein capsid (CA) 

that also contains enzymatic proteins, namely the reverse transcriptase (RT), the 

integrase (IN) and proteases (PR), required for viral infection. The matrix proteins 

(MA) form a layer outside of the capsid core that interacts with the envelope and a 

lipid bilayer derived from the host cellular membrane, which surrounds the viral core  

particle (Coffin JM, 1997). Anchored in this bilayer are the viral envelope 

glycoproteins (Env) responsible for recognizing specific receptors on the host cell and 

initiating the infection process. Envelope proteins are formed from two subunits, the 

transmembrane (TM) that anchors the protein to the lipid membrane and the surface 

(SU) which binds to cellular receptors. 

 

For the production of  LVs, a second-generation LV vector system was used, which 

consists of plasmids, psPAX2 (Fig. 6-2), pMD2.G (Fig. 6-3) and pWPI (Fig. 6-4).  
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Fig. 6-2. Packaging vector ( psPAX2) vector map (Source-Addgene).  

GAG – group specific antigen; Pro – protease; POL –polymerase; dVpu. dVpr and 

dENV – deleted viral protein U, viral protein R and envelope proteins; pA sequence, 

polyadenylation. 
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Fig. 6-3. Envelope vector plasmid (pMD2.G) map (Source-Addgene). 

This diagram of pMD2.G show its  important constituents and unique restriction site. 

AMP – beta-lactamase gene; CMV – cytomegalovirus promoter; VSV-G, vesicular 

stomatitis virus-G; beta-globin pA –globin poly-adenylation site. 
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Fig. 6-4. Transfer vector (pWPI-LC/D) vector map (Designed by Dr. Jiafu Wang). 

The transfer vector construct, pWPI-LC/D, containing the essential cis-acting 

sequences and LC/D insert (red). LTR – Long terminal repeats; RRE – rev responsive 

element; cPPT – central poly-purine tract; EF1 – elongation factor 1 promoter; 

EGFP, enhanced green fluorescent protein. 

 

 

The transfer vector (pWPI), containing cis-acting sequences required for genomic 

RNA production, was used to clone LC/D. All three plasmid were co-transfected into 

Lenti-X 293T and viral particles released in the supernatant. High-titre viral 

preparations were obtained by ultracentrifugation. Both LVs, concentrated and 

supernatant were used to transduce synoviocytes and macrophages with objective of 

cleaving VAMP-3.  
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6.2 RESULTS 

6.2.1 Schematic of vectors used to produce LVs 

The requisite vectors, psPAX2, pMD2.G and pWPI-LC/D were used to produce LVs. 

Replication-deficient LVs encoding green fluorescent protein (GFP) as reporter gene 

were pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). The 

packaging vector (psPAX2) contain promoter, gag, pol gene (Fig. 6-5A). The pol 

gene encodes three viral enzymes: the protease, reverse transcriptase, and integrase, 

and a gag gene encodes the structural proteins: the capsid, matrix, and nucleocapsid 

and rev for reverse transcription. The envelope vector consists of VSV-G and 

cytomegalovirus (CMV) region with a poly A tail (Fig. 6-5B). A transfer vector 

(pWPI) containing a promoter and protease domain from BoNT/D (LC/D) as well as 

IRES sequence for the co-expression of GFP was constructed by Dr. Jiafu Wang (Fig. 

6-5C). All three vectors were used for producing LV particles.  
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Fig. 6-5. Schematic of LV vectors. 

A) psPAX2 with promoter, GAG, POL,TAT and REV gene; B) envelope vector 

(pMD2.G) consisting of VSV-G, CMV and poly A and C) transfer vector with LC/D 

and non-neuronal promoter incorporated.  

GAG, group-specific antigen; POL, reverse transcriptase; REV, regulator of 

expression of  virion proteins; TAT, trans-activator of transcription; VSV-G, 

Vesicular stomatitis virus-envelope glycoprotein; CMV, Cytomegalovirus envelope 

protein gene; poly-A, polyadenylation;  LC/D, light chain of BoNT/D.  

 

6.2.2 Validation of vectors by restriction digestion  

To check the quality of vectors prepared on a large-scale, all 3 were digested using  

specific restriction enzyme which cuts plasmids at particular sequences in the gene. 

Correct sizes of gene fragment were revealed when separated by agarose gel 

electrophoresis.  pWPI containing LC/D was digested with Pme-1 and Pst-1 which 

gave a band at ~8 Kb. While psPAX2 with Sal-I and pMD2.G with ECoR-I digestion 

VSV-G CMV polyA
pMD2.G 

(envelope vector)
VSV-G CMV polyA

pMD2.G 

(envelope vector)

LTR Promotor LC/D LTR
pWPI-LC/D 
(transfer vector)

LTR Promotor LC/D LTR
pWPI-LC/D 
(transfer vector)

GAG POL TAT REVPromotor
psPAX2 

(packaging vector)
GAG POL TAT REVPromotor

psPAX2 

(packaging vector)
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gave right size restriction fragments. Thus, all vectors gave the expected restriction 

patterns suggesting free from contamination with other plasmid (Fig. 6-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-6. Restriction digestion of vectors. 

All 3 vectors, psPAX2, pMD2.G and pWPI-LC/D were enzymatically digested with the 

specific enzyme as shown in Fig.. After addition of enzyme in buffer, DNAs were 

incubated for 3h at 37 0C and then separated on 1% agarose containing ethidium 

bromide.  A 1 Kb ladder was used to identify size of each band. Kb= kilobases. Pme-I 

digestion released  the insert LC/D (~1.3 Kb) from the transfer vector pWPI.   
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6.2.3 Successful co-transfection of three vectors in Lenti-293T cells resulted in  

production of LVs expressing LC/D  

 To produce lentiviral particles, Lenti-293T cells were plated onto 6 x 15 cm poly L-

lysine coated petri-plates to give 80-90% confluency and incubated overnight. Cells 

were then transfected with all three plasmids, psPAX2, pMD2.G and pWPI-LC/D (see 

Chapter 2.1.15 for transfection protocol) and incubated for 24 h before collecting the 

cell culture supernatant over 4 days by changing the medium daily. Supernatant 

containing LVs were filtered and aliquoted or concentrated by ultracentrifugation (as 

described in Chapter 2.1.15). As transfer vector contains a GFP marker gene, the 

expressed GFP signal was used to calculate transfection efficiency by counting the 

fluorescent cells relative to the total. In fact, ~90% of cells were transfected with 

lentiviral vectors after 40 h (Fig. 6-7). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-7. GFP signal indicated successful transfection. 

Lenti-293T cells were transfected with psPAX2, pMD2.G and pWPI-LC/D and 

incubated for 24 h. Images taken under bright field and fluorescent mode after 48 h of 

transfection. The detected GFP signal confirmed that transfection had been achieved. 

Scale bar indicates 100 µm. 

 

6.2.4 LC/D expressed by LVs cleaved VAMP-3 in human synovial cell line 

(SW982) 

SW982 cells were plated on to 24-well plate and incubated overnight at 37 OC with 

5% CO2 before being transduced with 20 or 40 µl of concentrated or 1:2, 1:5 of non-
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concentrated LVs (cell culture supernatant) and incubated for 3 days without 

changing the medium. Cells were then harvested for immunoblot analysis. As 

expected, concentrated LVs more extensively cleaved VAMP-3 (almost complete) 

than the non-concentrated virus (Fig. 6-8). 

 

 

 

 

 

 

 

 

 

 

Fig. 6-8. Lentiviral particles expressing LC/D cleaved VAMP-3 in SW982 cells. 

The cells were transduced with the amounts of lentiviral particles indicated, washed 

twice with PBS before being collected for Western blot analysis. β-tubulin served as 

internal control. 

 

6.2.5 Cleavage of VAMP-3 by LVs expressing LC/D resulted in blockade of the 

release of cytokines from SW982 cells 

Equal number of SW982 cells were plated onto 24-well plate and incubated overnight  

at 37 OC, infected with concentrated or non-concentrated LVs and incubated further 

for 3 days before collecting lysate for Western blot analysis. Concentrated LVs gave 

complete cleavage of VAMP-3 (~ 80%) compared to non-concentrated LVs (Fig. 6-

9A and B). Truncation of VAMP-3 resulted in inhibition of the IL-1β evoked release 

of TNF-α  ~60% (Fig. 6-9C)  and  IL-6 ~50% (Fig. 6-9D) with both concentrated and 

non-concentrated LVs. 
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Fig. 6-9. LVs expressing LC/D cleaved VAMP-3 and inhibited release of cytokines 

in SW982 cells. 

Cells were transfected with LVs and lysate harvested after 3 days. A) Immunoblot 

revealing cleavage of VAMP-3 with both concentrated and non-concentrated LVs. B) 

Densitometric analysis showing truncation of VAMP-3 by concentrated and un-

concentrated LVs. Due to cleavage of VAMP-3, IL-1β-evoked release of TNF-α (C) 

and IL-6 (D) was inhibited. Data represented as mean ± S.E.M, n=2. 
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6.2.6 In RAW264.7 cells, LVs expressing LC/D inhibited cytokine release by 

truncating VAMP-3 

In order to further investigate whether LVs expressing LC/D would enter and cleave 

VAMP-3 and inhibit cytokine release, RAW264.7 cells were transduced with LVs 

and incubated for 3 days. A cell lysate and cell culture supernatant was collected for 

immunoblot and ELISA assays. LVs; concentrated (20 µl) and non-concentrated (1:2 

and 1:5 dilution), infected macrophages and cleaved VAMP-3 (Fig. 6-10A). Both 

concentrated and non-concentrated LVs gave ~ 50% cleavage of VAMP-3 in 

macrophages (Fig. 6-10B) and this was accompanied by inhibition of LPS (100 

ng/ml) + IFN-Υ(500 pg/ml) stimulated release ~ 40% of TNF-α (Fig. 6-10C) and IL-6 

(Fig. 6-10D). 
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Fig. 6-10. LVs truncated VAMP-3 and blocked the release of cytokines from 

RAW264.7 cells. 

A) Cells were transduced with LVs caused cleavage of VAMP-3. B) VAMP-3 cleavage 

was found with both concentrated and non-concentrated LVs. Non-treated cells 

served as control. Stimulated release of TNF-α (C) and IL-6 (D) compared to control 

after VAMP-3 truncation was plotted. Data represented as mean ± S.E.M., n=2. 
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6.3 DISCUSSION 

Targeted delivery and expression of ameliorative genes in neuronal and non-neuronal 

cells are highly relevant for basic research and front-line medical advancement 

(Nanou and Azzouz, 2009).  Numerous disease-modifying drugs for treating OA and 

RA have been proposed, focusing largely on antagonising production or activity of 

inflammatory mediators. Intra-articular drug delivery is compromised by the presence 

of a highly efficient lymphatic system that rapidly eliminates molecules from the 

synovial cavity, requiring frequent administration of the drug (Levick, 1980; Allen et 

al., 2010). Therapeutic gene transfer via LVs is a valuable approach over other 

traditional anti-inflammatory treatments because it has the potential to allow the 

production of factors over extended periods compared with the application of 

molecules with short pharmacological half-lives. LVs was selected because of larger 

cloning capacity and easier production of high titres (Connolly, 2002; Wu et al., 2007; 

Federici et al., 2009). LV vectors can deliver exogenous gene in vitro and in vivo in 

neuronal and non-neuronal cells (Gouze et al., 2002; Gouze et al., 2003; Van den 

Haute et al., 2003; Peluffo et al., 2013). Our previous use of lentiviral shRNA and 

targeted bio-therapeutics, KD or cleavage of VAMP-2/3 resulted in inhibition of the 

release of cytokines or pain peptides from synoviocytes, macrophages and sensory 

neurons (Chapter 3 and 5). A recombinant form of full-length inactive BoNT/B 

(BoTIM/B) fused with core streptavidin (CS-BoTIM/B)-guided lentiviral transduction 

with the expression BoNT/A- or /E- cleavage resistant SNAP-25, attenuated the effect 

by BoNT/A or /E in spinal cord neurons (O'Leary et al., 2011). Thus, it was warranted 

to develop LVs expressing LC/D to knockdown VAMP in synoviocytes, macrophages 

and sensory neurons.  

To minimize the possibility of generating replication-competent virus through 

recombination, a three-plasmid expression system was used, consisting of an 

packaging plasmid, a vector plasmid containing viral integrase and promoter-driven 

transgene, and a plasmid expressing the surface VSV-G glycoprotein. To enhance the 

safety of this system further, a self-inactivating (SIN) lentivirus vector has been 

introduced. The U3 region of the 5' LTR was replaced with the CMV promoter, and 

the U3 region of the 3' LTR (containing TATA box and transcription-factor binding 

sites) was deleted. In addition, inclusion of polyadenylation sequence in the U5 region 

of the 3' LTR increases vector titres (Miyoshi et al., 1998; Kafri et al., 1999; Cockrell 
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and Kafri, 2007; Akhtar et al., 2013). All three plasmids (psPAX2, pMD2.G and 

pWPI-LC/D) showed correct gene sequence.  LVs expressing LC/D were successfully 

produced and its activity demonstrated by cleavage of VAMP-3 in human 

synoviocytes. Both concentrated and non-concentrated LVs truncated VAMP-3 in 

human synoviocytes and macrophages, blocked the release of cytokines, reaffirming 

previous finding that VAMP-3 is required for exocytosis of TNF-α and IL-6. 

Although, co-expression of GFP in LVs infected cells provided somewhat evidence 

for viral infection efficiency, the titre of LVs is to be determined by p24 ELISA kit. 

Further experiments need to be carried out to completely characterise LVs and its 

activity in inflammatory cells.  
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7.1 A REQUIREMENT FOR SNAP-23 AND VAMP-3 IN THE 

EXOCYTOSIS OF CYTOKINES FROM HUMAN 

SYNOVIOCYTES BUT VAMP-8 IN RAT  

The current available drugs are not very effective to treat arthritis. So, there is unmet 

need of new potent and longer acting therapeutics to combat arthritic pain.  

Synoviocytes, microphages and sensory neurons are involved in the progression of 

arthritis by producing cytokines and neuropeptides. SNAREs comprise distinct 

families of conserved membrane-associated proteins which facilitates membrane 

fusion exocytosis in eukaryotes. They are found throughout the secretory pathways 

and participates in number of membrane-trafficking events, including trafficking of 

cargo-containing vesicles, compartmental organisation and organelle fusion (Han et 

al., 2009; Stanley and Lacy, 2010). New BoNT-based targeted bio-therapeutics and 

lentiviral particles expressing LC/D were engineered in the current studies to block 

release of pain mediators from inflammatory cells and sensory neurons.  

In this study, KD of SNAP-23 or VAMP-3 inhibited release of TNF-α and IL-

6 from SW982. However, KD of syntaxin-2, -3 or -4 failed to reduce secretion, 

suggesting involvement of other syntaxin isoforms. SNAP-23 and VAMP-3 

containing SDS-resistant SNARE complexes were detected; also co-

immunoprecipitation identified VAMP-3 as a constituent of the complex with SNAP-

23 and to a lesser extent to syntaxin-2 or -3 but not with -4. Even though syntaxin-2 or 

-3 formed complex with VAMP-3 did not alter the release of cytokines, may be 

because of other syntaxin isoforms involved in secretion of cytokines which were not 

investigated in SW982. A peri-nuclear localisation of SV2 protein after KD of SNAP-

23 was observed, but not in normal cells, suggesting participation of the former in the 

transportation of cytokines from this locus, presumably trans-Golgi or ER regions. 

Even though SW982 cells express SV2 receptor, /EA failed to enter.  To overcome 

this problem, access of novel BoNT LC/E400(K224D) mutant was achieved with 

digitonin permeabilisation; this resulted specific cleavage of SNAP-23. Although KD 

of SNAP-23 blocked release of cytokines, it did not affect the surface content of IL-1 

receptor; its filamentous-like distribution disappeared, suggesting IL-1 receptor 

trafficking is not affected (Chapter 3). IL-1 receptor expression was not altered after 

SNAP-23 KD, showing IL-1β can bind to receptor and internalise. 
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Novel BoNT-based chimeras BA and DA were engineered were internalised 

by binding to SV2 receptor, translocated LC/B or LC/D into the cytosol and cleaved 

VAMP in rCGNs, rTGNs and rSCs.  BA and DA cleaved VAMP-3 in rSCs, but did 

not inhibited cytokine release; however, KD of VAMP-8 blocked release of 

cytokines, suggesting that it fulfils this function in these cells instead of VAMP-3 in 

SW982 (Chapter 4).  Recombinant chimera (EA) of BoNT/A and BoNT/E was bound 

to SV2C expressed in rTGNs and cleaved SNAP-25, indicates that /A binding domain 

(HC) mediated uptake of the active /E protease (Meng et al., 2009).  Such 

recombinant BoNTs can be engineered to deliver LC into the non-neuronal cells 

which express SV2.  

Even though synoviocytes expresses BoNT/A receptor, it was difficult to 

cleave SNAREs using native BoNTs. To overcome these difficulties, BoNT chimeric 

strategy by switching the wide-spectrum binding domain to a cell-type unique ligand 

and LVs expressing LC/D  was achieved.   

7.2 TARGETED BIO-THERAPEUTIC AND LVs EXPRESSING 

LC/D BLOCKED THE RELEASE OF CYTOKINES AND/OR 

PAIN PEPTIDES BY CLEAVING AND KD OF VAMP, 

RESPECTIVELY 

As previously shown that SNAP-23 and VAMP-3 required for exocytosis of 

cytokines, a novel BoNT-based targeted bio-therapeutic with a unique ligand was 

engineered, which specifically binds to receptors on the cells of interest, gets 

internalised and cleaves its substrate. A chemical conjugate of E. cristagalli lectin and 

recombinant LH(N)/A or LC/A of BoNT/A conjugated to SP cleave SNAP-25 and 

inhibit neuropeptide release from rDRGs and other neuronal cells (Duggan et al., 

2002; Mustafa et al., 2013). However, chemical conjugation is problematic not 

reproducible and the products usually display lower activity. Use of targeted bio-

therapeutics overcomes these difficulties, because these can be engineered and 

expressed recombinantly as stable and active fusions. It has been reported that a   

fusion of LH(N)-domains of BoNT/C1 and epidermal growth factor (EGF) inhibits 

secretion of mucus from epithelial cells (Foster et al., 2006).  In this project three 

proteins with two different ligand were developed; ARA-7 proved to be most 

promising therapeutic, cleaving VAMP at low concentration with an EC50 ~10 nM. 
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ARA-7 cleaved VAMP not only in macrophages and synoviocytes but also in sensory 

neurons and reduced release of cytokines or a pain peptide, suggesting it could be 

used to decrease inflammatory as well as neuropathic pain. A control protein 

(LC.HN/D) without the ligand failed to cleave VAMP presumably due to lack of 

binding/internalisation (Chapter 5). As reported previously, BoNTs can be used to 

alleviate arthritic pain in patients, these bio-therapeutic can be used to reduce 

inflammation by specifically targeting inflammatory cells and sensory neurons which 

are involved in pain. 

In an alternative approach, replication-defective LVs have been used to deliver 

therapeutic gene due to their intrinsic ability to integrate into the host genome, 

resulting in expression of gene. LVs expressing LC/D were developed in the 

laboratory to target neuronal and non-neuronal cells; these cleaved VAMP-3 in 

synoviocytes and macrophages which lead to a blockade of cytokine release (Chapter 

6).  

As both therapeutics successfully truncated VAMP and blocked release of a 

pain mediators, it is warranted to evaluate these in other inflammatory cells like mast, 

lymphocytes, primary human synoviocytes and chondrocytes which are also involved 

in arthritic pain and in rat models of arthritis. Further studies can be carried out based 

on these findings by engineering novel therapeutics with other ligands like TLRs 

(Toll-like receptors) which are expressed on inflammatory and sensory neurons. The 

existence of several toxin serotypes with different SNARE substrates/cleavage sites 

and have a potential to create chimeric toxins to treat pain. These therapeutics can be 

further tested in animal models of inflammatory and neuropathic pain and based on 

the results of these pre-clinical studies. 
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Appendix 1 

Company Country Web 

Abcam Ltd. UK www.abcam.com 

Amersham GE Healthcare UK www.amersham.com 

Biosciences Ireland www.biosciences.ie 

Gibco  Ireland www.biosciences.ie 

Invitrogen Ireland www.biosciences.ie 

Jackson ImmunoResearch 

Europe 

UK www.jacksonimmunoresearch.com 

Harlan, UK UK www.harlan.com 

MabTech AB Sweden www.mabtech.com 

Millipore Ireland www.millipore.ie 

Pierce (order through Medical 

Supply Company Ltd.) 

Ireland www.medical-supply.ie 

Santacruz Biotech. Ireland www.scbt.ie 

Sigma-Aldrich  Ireland www.sigmaaldrich.com 

Synaptic Systems Germany www.sysy.com 

Trinity college, Dublin 

Bio-Resources Dept. 

Ireland www.tcd.ie/BioResources 

SPI-BIO/Cayman chemical 

company 

USA www.caymanchem.com 
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Appendix 2 

Buffers and Solutions  
 

Phosphate buffered Saline (PBS): 10 mM NaH2PO4.2H2O; 1.8 mM KH2PO4; 137 
mM NaCl; 2.7 mM KCl  
 
Tris buffered saline (TBS): 150 mM NaCl; 50 mM Tris-HCl pH 7.4  
 
TBS/Tween: 50 mM Tris; 150 mM NaCl; 0.05% Tween-20  
 
2x HBS for transfection: 50mM HEPES; 280mM NaCl; 1.5mM NaH2PO4 
 
CaCl2 for transfection: 0.25M CaCl2.2H2O  
 
MOPs running buffer:  250mM MOPs; 250mM Tris; 5mM EDTA; 0.1% SDS 
 
Western transfer buffer:  25mM Tris-base; 190mM Glycine; 100ml Methanol; and 
900ml H2O 
 
Lysis buffer:  20 mM HEPES- pH 7.4;  150 mM NaCl; 1mM MgCl2; 1mM EGTA; 
0.1% Triton X-100 
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Longer-acting and highly potent chimaeric inhibitors of excessive
exocytosis created with domains from botulinum neurotoxin A and B
Jiafu WANG*, Tomas H. ZURAWSKI*, MacDara O. BODEKER*, Jianghui MENG*, Sanjay BODDUL*, K. Roger AOKI† and
J. Oliver DOLLY*1

*International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland, and †Allergan, P.O. Box 19534, Irvine, CA 9262, U.S.A.

Various human neurogenic hyper-excitability disorders are
successfully treated with type A or B BoNT (botulinum
neurotoxin). The BoNT/A complex is widely used because of
its longer-lasting benefits; also, autonomic side-effects are more
often reported for BoNT/B. To establish if this distinct effect
of BoNT/B could be exploited therapeutically, BoNT/A was
modified so that it would bind the more abundant BoNT/B
acceptor in rodents while retaining its desirable persistent action.
The advantageous protease and translocation domain of BoNT/A
were recombinantly combined with the acceptor-binding moiety
of type B [HC/B (C-terminal half of BoNT/B heavy chain)],
creating the chimaera AB. This purified protein bound the
BoNT/B acceptor, displayed enhanced capability relative to
type A for intraneuronally delivering its protease, cleaved SNAP-
25 (synaptosome-associated protein of 25 kDa) and induced
a more prolonged neuromuscular paralysis than BoNT/A in

mice. The BA chimaera, generated by substituting HC/A (C-
terminal half of BoNT/A heavy chain) into BoNT/B, exhibited
an extremely high specific activity, delivered the BoNT/B
protease via the BoNT/A acceptor into neurons, or fibroblast-like
synoviocytes that lack SNAP-25, cleaving the requisite isoforms
of VAMP (vesicle-associated membrane protein). Both chimaeras
inhibited neurotransmission in murine bladder smooth muscle.
BA has the unique ability to reduce exocytosis from non-neuronal
cells expressing the BoNT/A-acceptor and utilising VAMP, but
not SNAP-25, in exocytosis.

Key words: clostridial neurotoxins, drug design, dur-
ation of action, exocytosis, protein chimaeras, soluble
N-ethylmaleimide-sensitive fusion protein-attachment protein
receptor (SNARE).

INTRODUCTION

Hyper-excitability disorders of cholinergically innervated skeletal
and smooth muscles are treatable with BoNTs (botulinum
neurotoxins) [1]. There are seven serotypes of BoNT/(A–G), from
Clostridium botulinum, consisting of a LC (light chain) protease
which is linked to a HC (heavy chain) through a disulphide and
non-covalent bonds. HC (C-terminal half of HC) binds to its
specific acceptors expressed on susceptible neurons, whereas HN

(N-terminal half of HC) forms a channel that allows the attached
LC to translocate from ‘endosomal-like’ membrane vesicles into
the cytosol. Thereafter, the LC cleaves intracellular SNAREs
(soluble N-ethylmaleimide-sensitive fusion protein-attachment
protein receptor) and negates their roles in neurotransmitter
release (reviewed in [2,3]). BoNT/A binds SV2 (synaptic vesicle
protein 2) isoforms [4,5] and removes nine amino acids from
the C-terminus of SNAP-25 (synaptosome-associated protein of
25 kDa) resulting in a very prolonged neuroparalysis, one of the
key features that underlies its widespread and effective treatment
for various disorders of muscles (e.g. dystonias, dysphonias,
spasticity, over-active bladder and certain gastrointestinal
conditions) and glands (hyper-hydrosis and sialorrhea) due to their
overly-active cholinergic nerves [1]. Syt (synaptotagmin) I and II
plus gangliosides serve as acceptors for BoNT/B [6–8]. There is
a higher content of Syts in rat synaptic vesicles than SV2 [9], and
murine motor nerve endings possess a higher density of binding
sites for BoNT/B than BoNT/A [10]. After internalization, VAMP
(vesicle-associated membrane protein) is cleaved by BoNT/B

[11]; its complex with haemagglutinin is sometimes injected intra-
muscularly into patients not responding to BoNT/A, but much
higher doses are required [12,13]. Neurologists have noticed that
patients given BoNT/B tended to show autonomic side-effects
(e.g. dry mouth, accommodation difficulties, dryness of eyes and
reduced sweating) [14,15], an interesting finding in relation to SytI
being mainly expressed in rat peripheral autonomic and sensory
neurons rather than motor endplates [16]. Hence, it seemed
warranted to evaluate if a novel therapeutic could be engineered
that encompasses the most advantageous properties of BoNT/A
(e.g. its long-lived LC protease [17]), the more abundant BoNT/B
acceptors in rodents and the, apparently, more pronounced action
of BoNT/B on autonomic cholinergic nerves innervating secretory
glands. One strategy for such an attractive improvement entailed
creating the chimaera AB by replacing the C-terminal acceptor
binding domain of BoNT/A (HC/A) with its counterpart HC/B.
In a complementary approach, the acceptor binding domain of
BoNT/B was replaced with its counterpart from BoNT/A in order
to establish if the resultant protein has new therapeutic potential by
delivering its VAMP-cleaving protease into BoNT/B-insensitive
cells.

In the present study, the chimaera AB was constructed by
protein engineering to harness the LC/A protease, including the
contiguous translocation domain (HN) of BoNT/A together with
the HC of BoNT/B. For its counterpart, BA, HC/A was combined
with the VAMP-cleaving LC protease and HN/B. Both chimaeras
were readily expressed in Escherichia coli as SC (single chain)
His6-tagged proteins, completely purified and converted readily

Abbreviations used: BoNT, botulinum neurotoxin; CGN, cerebellar granule neuron; DAS, digit abduction score; DC, di-chain; DTT, dithiothreitol; GFP,
green fluorescent protein; GST, glutathione transferase; HC, heavy chain; HC, C-terminal half of HC; HN, N-terminal half of HC; IMAC, immobilized
metal-affinity chromatography; LC, light chain; mLD50, mouse LD50; SC, single chain; SNAP-23, synaptosome-associated protein of 23 kDa; SNAP-25,
synaptosome-associated protein of 25 kDa; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SV2, synaptic vesicle protein
2; Syt, synaptotagmin; TDmax., maximal tolerated dose; VAMP, vesicle-associated membrane protein.

1 To whom correspondence should be addressed (email oliver.dolly@dcu.ie).
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into their disulfide-linked DC (di-chain) forms by controlled
proteolysis. AB was found to enter cultured neurons efficiently
cleaving SNAP-25, and to block synaptic transmission in mouse
phrenic nerve-muscle like BoNT/A. Most importantly, it produced
a more extended neuromuscular paralysis than BoNT/A in mice.
BA exhibited all the functional characteristics of BoNT/B, and
with an exceptionally high specific neurotoxicity. An observed
ability of BA to cleave VAMP in non-neuronal cells highlights
its therapeutic potential for normalizing secretion from cells
expressing the acceptor for BoNT/A (SV2), but not that for
BoNT/B (SytI and II), and requiring VAMP for exocytosis.

EXPERIMENTAL

Materials

Suppliers of reagents for production of chimaeric proteins were
listed previously [18]. Custom-made antibodies specific for LC/A,
LC/B or BoNT/A were prepared by Zymed Laboratories; anti-
BoNT/B IgG antibody was from Metabiologics. Natural purified
BoNTs were purchased from List Laboratories (BoNT/A in
the DC form) and Metabiologics (BoNT/B); the latter SC was
proteolytically nicked to DC with TrypZean (8 μg/mg toxin for
40 min at 22 ◦C). Mouse SytII cDNA clone was obtained from
ImaGenes. Unless specified, all other reagents were from Sigma.

Animals

Female Tyler’s Ordinary mice were purchased from Harlan UK
and Sprague–Dawley rats were bred in an approved Bioresource
Unit at Dublin City University. All experimental procedures
involving animals were approved by the Institutional Ethics
Committee and licensed by the Irish Government, Department
of Health and Children.

Construction of BoNT AB and BA chimaeras

The cloning and expression of all BoNT variants were performed
in accordance with European Union regulations, registered in
Ireland with the Environmental Protection Agency and notified
to the Health and Safety Authority. Codon-optimized genes
encoding the SC of either BoNT/A or BoNT/B were synthesized
and their sequences verified. Gene fragments encoding the LC
plus the HN of BoNT/A (LC.HN/A) and that for the BoNT/B-
binding domain (HC/B) were produced by PCR and cloned into
pET29a vector to generate the chimaera AB (Figure 1A, upper
panel). Nucleotides encoding a 9-residue linker (ELGGGGSEL)
were inserted between the HN and HC to improve protein folding.
The chimaera BA (see Figure 1A, lower panel) was, likewise, gen-
erated by ligation of the corresponding genes generated by PCR
for LC.HN/B and HC/A via a linker encoding two extra residues
(DI) into pET29a to create an expression vector containing the BA
insert. This construct, unlike AB, contains two thrombin-cleavage
sites generated by PCR using suitable primers followed by self-
ligation. One site is in the loop region to facilitate specific nicking,
whereas extra nucleotides were also added to encode a thrombin
consensus site for cleaving the C-terminal His6 tag (Figure 1A,
lower panel), a strategy successfully used before [19].

Expression and purification of the chimaeric neurotoxins

All of the DNA sequences were verified and each new SC
gene was transformed into E. coli BL21.DE3 cells, expressed
and the protein purified by IMAC (immobilized metal-affinity
chromatography) as described previously [18]. The resultant AB
chimaera was buffer exchanged into 50 mM Tris/HCl (pH 8.1)

Figure 1 Arrangements of the functional domains in the BoNT chimaeras
AB and BA, their expression and purification

(A) Chimaera AB was generated by ligating the relevant fragments of the BoNT/A gene (grey),
encoding LC-HN/A, to the Syt-binding domain (HC) of BoNT/B (white) via a linker of nine inserted
residues (ELGGGGSEL). For creating chimaera BA, the requisite domains were swapped in a
similar manner as for AB; LC-HN/B (white) was fused to SV2-binding subdomain (HC) of BoNT/A
(grey) via a linker encoding two extra residues (DI). Both constructs were tagged with His6 to
facilitate purification. Please note that the BoNT/A sequence used for AB includes a trypsin
nicking site in the loop, whereas the BA construct has two thrombin cleavage sites inserted, one
in a specially engineered nicking loop of BoNT/B and a second designed for tag removal. The
numbers indicate amino acid positions in sequences of parental toxins (GenBank® accession
numbers AF488749 and M81186). After expression in E. coli as SC proteins, AB (B) and BA
(D) were purified by IMAC, followed by anion- or cation-exchange chromatography (C and
E) and analysed by SDS/PAGE, under reducing conditions with protein staining. (B and D)
Lane 1, cleared lysate; lane 2, flow-through from IMAC; lane 3, washes; and lanes 4–9, eluted
fractions. Lane P in (D) shows the pooled eluates from IMAC. Molecular masses are shown on
the right-hand side in kDa. (C and E) The eluted peak from ion-exchange chromatography of
each is highlighted (�). mS, milli-Siemens.

and further purified on a UNO Q1 column; after washing with
30 mM NaCl, elution was achieved with a stepwise gradient (up
to 1 M NaCl in 50 mM Tris/HCl). Pooled fractions containing
pure SC were either stored at − 80 ◦C or proteolytically nicked by
TrypZean (1 μg/mg of toxin for 1 h at 22 ◦C) before the addition of
trypsin inhibitor (100 μg/mg of toxin) and storage (as for the SC).
Material from the IMAC purification of chimaera BA was gel-
filtered into 20 mM sodium phosphate buffer (pH 5.8) and further
purified on a UNO S1 column, followed by washing with 100 mM
NaCl and elution with a stepwise gradient (up to 1 M NaCl in the
phosphate buffer). After buffer exchanging the eluted toxin into
20 mM Hepes and 145 mM NaCl (pH 7.8), purified SC toxin
was either stored at − 80 ◦C or nicked by biotinylated thrombin
(1 unit/mg for 1 h at 22 ◦C) followed by removal of the thrombin
by Streptavidin agarose, using the manufacturer’s protocol before
storage. The chimaeras were analysed by SDS/PAGE (4–12%
precast Bis-Tris gel, Invitrogen) and Western blotting at each
stage, as described previously [18]. Note that all assays were
performed using their DC forms.
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Protease activities of new BoNT variants

A model recombinant substrate for assay of SNAP-25 cleavage by
BoNT/A and the chimaera AB was used as described previously
[18,20]. For analysis of VAMP2 cleavage by BoNT/B and
chimaera BA, DNA-encoding GFP (green fluorescent protein)
was fused to nucleotides encoding rat VAMP2 (residues 2–
94) and a His6 tag. The GFP–VAMP2(2–94)–His6 fusion protein,
expressed in E. coli and purified by IMAC, acted as substrate in
the fluorescence assay following an established protocol [18,20].

In vitro acceptor-binding assay

GST (glutathione transferase)-tagged intra-luminal fragments
of acceptors for BoNT/A [GST–rat SV2C(454–579)] [21] and
BoNT/B [GST–mouse SytII(1–63)–His6] were expressed/purified
as described previously [18] and employed for measuring the
binding characteristics of the two chimaeras. GST–SytII(1–63)–
His6 was generated from the mouse SytII gene using PCR,
cloned into the pET-41a vector (Novagen) and expressed in E.
coli cells (BL21.DE3). The binding assay was performed as
described previously [4,21]. Briefly, the proteins (∼100 μg) were
immobilized using 100 μl of slurry of glutathione Sepharose-4B
Fast Flow resin (GE Healthcare) and incubated with 100 nM of
each toxin in total volume of 100 μl of binding buffer [50 mM
Tris/HCl, 150 mM NaCl and 0.5% Triton X-100 (pH 7.6)]. Beads
were then collected by centrifugation (500 g for 5 min at 4◦C) and
washed five times with >10 bed volumes of the same buffer for
15 min at 4 ◦C. Bound proteins were eluted from the washed beads
by adding SDS sample buffer. Less than 5% of bound material
was subjected to electrophoresis on 4–12 % precast Bis-Tris gels
(Invitrogen). Toxins were detected by Western blotting with the
antibodies indicated.

Cell-based SNARE cleavage assay

Preparation and maintenance of rat CGNs (cerebellar granule
neurons) followed standard methods [17]. After 7 days in vitro,
the cells were exposed for 24 h at 37 ◦C to a series of toxin
concentrations. Spinal neurons were prepared from mouse spinal
cords removed at gestation day 13, as described previously
[18]. Cultures were exposed to 400 pM of toxin in stimulation
buffer [18] for the time indicated, washed twice with toxin-
free medium and incubated for a further 20 h before harvesting.
Fibroblast-like synoviocytes were prepared from the knee joint
synovium of Sprague–Dawley rats (8–10-weeks-old), as reported
previously [22,23]. After four passages, the cells were incubated
at 37 ◦C for 20 h with or without 100 nM toxin in the presence
of 1 μM substance P in complete DMEM (Dulbecco’s modified
Eagle’s medium) [22,23]. The cells were washed twice before
harvesting, solubilization in SDS sample buffer and SDS/PAGE
(12% precast Bis-Tris gel) followed by Western blotting; cleavage
of endogenous SNAREs was quantified as described previously
[17,24].

Neuromuscular paralytic activities and lethalities of BoNTs

Mouse phrenic-nerve hemi-diaphragms were set up as described
previously [18]. The whole bladder was removed from freshly
decapitated rats or mice, processed and stimulated, as established
by others [25]. The times taken for each toxin, at a range of
concentrations, to reach 50% paralysis were recorded. For clarity,
data for a single representative concentration have been plotted.
Comparison of the recovery times from neuromuscular paralysis
in vivo was based on the DAS (digit abduction score) assay
[18,26]. For each BoNT, the TDmax. (maximal tolerated dose)

was established [18]; ten mice per sample were injected with the
doses summarized in the Figure legends. Toxins’ lethalities were
determined using a LD50 assay after intraperitoneal injection into
mice as described previously [27]. Groups of four mice were used
for each concentration; specific neurotoxicities are expressed as
the number of mLD50 (mouse LD50) units/mg of toxin.

Statistical analysis and data presentation

Average data are presented with the S.E.M. and relevant sample
size. All calculations and graphs were done using GraphPad Prism
4.0 and P values calculated as indicated in the Figure legends;
P < 0.05 was considered statistically significant.

RESULTS

Inter-changing functional domains between BoNT/A and BoNT/B
generated chimaera AB and BA with unaltered levels of the
requisite protease activities

It was highly desirable to create a therapeutic encompassing the
most advantageous features of the two clinically used serotypes,
BoNT/A and BoNT/B. In the first instance, the long-acting
LC/A protease and associated translocation moiety (HN) was
combined recombinantly with the binding domain of BoNT/B,
HC/B, which targets the relatively abundant acceptors, SytI and
II in rodents (see the Introduction section). This chimaera AB
(LC.HN/A–HC/B) was created by fusing portions of the genes
encoding the protease and translocation domains of BoNT/A
with the C-terminal acceptor-binding moiety of BoNT/B, on
the basis of their crystal structures [28,29]. A linker of nine
exogenous residues between the HN/A and HC/B domains was
added to facilitate protein folding and functioning of these
moieties (Figure 1A, upper panel). Generation of the counterpart
chimaera was achieved in a similar manner. In this case, DNA
encoding the LC.HN of BoNT/B was fused to the sequence for
the HC/A, creating a contiguous open reading frame for the BA
chimaera (Figure 1A, lower panel). In the present study, the
native loop of BoNT/B was partially substituted with a specific
consensus sequence and a six-residue non-structured linker for
efficient cleavage by thrombin. Both proteins were C-terminally
tagged with His6 for affinity purification; a C-terminal recognition
site for thrombin was also introduced in chimaera BA to facilitate
tag removal.

Both chimaeric toxins were successfully expressed in E. coli
and purified from the lysed bacteria to �80% purity by IMAC
via their His6 tag. Following elution with imidazole, proteins of
the expected size (∼150 kDa) were detected by SDS/PAGE and
Coomassie Blue staining, together with contaminants of lower
molecular mass (Figures 1B and 1D). Nearly all impurities were
removed by subsequent ion-exchange chromatography; chimaera
AB was eluted from an anion-exchange column at �70 mM NaCl
(∼1 mg of pure toxin per litre of culture) (Figure 1C), whereas BA
could be readily purified using cation-exchange chromatography
(Figure 1E), eluting at �180 mM NaCl, with a typical yield
of ∼8 mg of pure toxin per litre of culture. SDS/PAGE analysis of
peak fractions, followed by protein staining, revealed a single
band of expected size for both chimaera AB (Figure 2A) and BA
(Figure 2C) in the presence or absence of DTT (dithiothreitol).
Controlled nicking of chimaera AB with TrypZean resulted
in near-complete proteolysis of SC to a disulfide-linked DC
(Figure 2A). Virtually all of chimaera BA was nicked with
thrombin (Figure 2C). The appearance of HC and LC from both
chimaeras in the presence of reducing agent not only confirms
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Figure 2 Activation of SC chimaeric BoNTs by specific proteolytic nicking

Pure SC chimaera AB (A and B) and BA (C and D) were efficiently converted to DC forms by
incubation with TrypZean and thrombin respectively (see the Experimental section). Aliquots
were analysed by SDS/PAGE in the absence and presence of DTT, followed by either protein
staining (A and C) or Western blotting using the antibodies indicated (B and D). Arrows indicate
the position of the SC, DC, HC and LC. Molecular masses are shown on the left-hand side in
kDa.

efficient nicking, but also indicates that the inter-chain disulfide
bond had been successfully formed in each (Figures 2A and 2C).
Presence of the requisite functional domains in AB and BA was
confirmed by Western blotting, using specific IgGs (Figures 2B
and 2D). Unlike visualization of His6 in the SC and DC of
chimaera AB, and in the HC in the presence of DTT (Figure 2B),
this signal could not be detected in BA after treatment with
thrombin, confirming complete removal of the tag (Figure 2D).

It was necessary to verify that the HC substitution of BoNT/A
and BoNT/B did not in any way hinder protease function, using an
assay with two model synthetic substrates (see the Experimental
section and [18]). Both chimaeras showed protease activities
comparable with their parents (Table 1), demonstrating that
these were not altered by the binding domains being swapped.
Therefore, any differences between the performance of chimaeras
and their parents could be ascribed to the translocation and/or
acceptor-binding domain.

Chimaera AB specifically binds to a BoNT/B acceptor, SytII,
whereas BA interacts with SV2C, the acceptor for BoNT/A

Previous studies established that the binding of BoNT/B to SytI
and II leads to uptake into cells, whereas the entry of BoNT/A
is mediated by SV2 (see the Introduction section). To ensure
successful delivery of LC/B via the BoNT/A-binding domain
and of LC/A via the acceptor for HC/B, it was first necessary
to ascertain if both chimaeras had acquired the ability to bind the
acceptors dictated by their HC domains. Evaluating their binding
in a pull-down assay utilized purified intra-luminal fragments of
acceptors for BoNT/A [GST–rat SV2C(454–579)] or BoNT/B [GST–
mouse SytII(1–63)–His6]. SytII rather than I was chosen because
the former has been confirmed to be present at the neuromuscular

Figure 3 Exclusive interaction of chimaera AB with SytII and BA with SV2C
in vitro

Binding assays were performed using GST-tagged recombinantly expressed and purified
intraluminal fragments of acceptors for BoNT/A [GST–rat SV2C(454–579)] and BoNT/B
[GST–mouse SytII(1–63)]. Each protein (∼100 μg) was immobilized on to 100 μl of
glutathione–Sepharose-4B matrix; the beads were incubated with 100 nM of toxin. After washing,
bound proteins were eluted by SDS sample buffer under non-reducing conditions and subjected
to electrophoresis. Toxins were detected with specific antibodies as indicated.

junction and does not require the presence of gangliosides for
BoNT binding [6,8,30]. Binding to the protein acceptors was
established by confirming the specificities of antibodies used
for detecting the toxins (Figures 3A and 3B, left-hand panels).
As expected, the BoNT/A acceptor pulled down only toxins
containing HC/A (BoNT/A and BA) (Figure 3A, right-hand panel).
This interaction has to be attributed to the binding of HC/A to
SV2C as this is the only domain shared by these two toxins. The
binding also appears to be specific as HC/B-containing toxins
(BoNT/B and AB) were not detected (Figure 3A, right-hand
panel). In other experiments, where the toxins were pulled down
using the BoNT/B acceptor, only BoNT/B and chimaera AB were
found to bind to the SytII fragment (Figure 3B, right-hand panel).
This reaffirms that acceptor binding can be mediated through
the HC/B in BoNT/B or chimaera AB. Neither chimaera nor
parental BoNTs displayed any binding to GST–agarose (results
not shown).

AB and BA cleave their requisite SNAREs, SNAP-25 and VAMP, in
neurons and block transmission in both skeletal and smooth
muscles

To assess the toxins’ abilities to undergo the multiple steps of
binding, translocation and cleavage of their respective substrates
in situ, they were incubated with rat cultured CGNs for 24 h
and cleavage of SNAP-25 and VAMP2 was monitored by
immunoblotting. Chimaera AB and BoNT/A proved equipotent,
with the ratio between intact and cleaved SNAP-25 being the same
for both of these BoNT/A protease-containing toxins (Figure 4A).
Immunoprobing of cell lysates for VAMP2 cleavage showed BA
matched the activity of BoNT/B (Figure 4B). As the cause of death
by BoNT is asphyxiation due to blockade of neurotransmission in
the diaphragm, uptake of these toxins into the phrenic nerve was
examined. Both chimaeras took similar times to paralyse mouse
nerve hemi-diaphragms as their parental toxins (Figure 4C).
Hence successful delivery of the respective LCs into motor
neurons, via different acceptors, followed by translocation to
the cytosol had occurred. The versatility of these chimaeras
was assessed in the autonomic nervous system. BA and AB
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Table 1 Proteolytic activities and mouse lethalities of DC chimaeras and parental toxins

Toxin EC50 (nM) for cleavage of GFP–SNAP-25(134–206)–His6 or GFP–VAMP2(2–94)-His6* mLD50 units/mg‡

BoNT/A 0.57 +− 0.11 (n = 5) 3 × 108

Chimaera AB 0.53 +− 0.10 (n = 3) 0.3 × 108§
BoNT/B 2.72 +− 2.08 (n = 5)† 7 × 108

Chimaera BA 3.81 +− 2.18 (n = 5)† 6 × 108

*Proteolytic activities of chimaeric and parental DC toxins were determined using model substrates (13.5 μM GFP–SNAP-25(134–206)–His6 or 13.5 μM GFP–VAMP2(2–94)–His6). Values represent
the amount of each toxin needed to cleave 50 % of substrate within 30 min at 37◦C.

†There are no significant differences between BoNT/B and chimaera BA (P > 0.05 using unpaired Student’s t test).
‡The lowest dose of toxin that killed 50 % of a group of four mice within 4 days after intraperitoneal injection was 1 mLD50 unit.
§A similar value was obtained for AB devoid of the His6 tag.

Figure 4 Both chimaeras potently and specifically cleave their requisite
substrates in intact cultured neurons and block neuromuscular transmission
in vitro

(A and B) Rat CGNs at 7 days in vitro were incubated with each toxin for 24 h in culture medium,
washed and solubilized in SDS sample buffer; equal amounts of protein were subjected to
SDS/PAGE, under non-reducing conditions, and Western blotting. The proportions of remaining
intact SNAP-25 (A) or VAMP2 (B) were calculated relative to an internal uncleaved syntaxin
control in the same lane, before calculating their intensities as the percentage of the signal
observed in toxin-free control lanes. Insets: immunoblots demonstrating cleavage of SNAP-25
by 1 nM of BoNT/A or AB (A) and VAMP2 by 1 nM BoNT/B or BA (B). Both chimaeras blocked
transmission in mouse phrenic-nerve hemi-diaphragm (C); times required for 90 % reduction of
the starting tension were calculated. (D) Toxins (1 nM) were also added to stabilized electrically
stimulated mouse or rat bladder strips and the times taken to reach 50 % reduction were
determined after subtracting the decline due to fatigue. Results are means +− S.E.M., n�3. Ctr,
control; NS, not sensitive. In some cases symbols overlap, and some error bars are encompassed
by the symbols.

displayed characteristics comparable with the parental toxins
when tested on mouse bladder strips; 1 nM of each achieved 50%
paralysis within 3 h (Figure 4D). Contraction of bladder from rat
was inhibited only by BoNT/A but not BoNT/B (Figure 4D),
observations reflected by their chimaeras where only AB induced
muscle paralysis. An insensitivity of rat bladder to BoNT/B or BA
may be attributable to the known non-susceptibility of VAMP1 to
cleavage [11]; this observation suggests an apparent preferential
use of isoform 1 for neurotransmission in smooth muscle rather
than an absence of the Syt acceptors (see the Discussion section).

Unique characteristics of BA offering potential for new therapeutic
avenues

The neurotoxicity of chimaera BA, measured by intraperitoneal
injection into mice, gave a very high value (6×108 mLD50/mg),
20-fold greater than that for AB (Table 1). Such findings could
indicate more optimal folding and/or interactive compatibility
of the constituent domains of BA than is the case for AB, even
though the latter contains a linker which does slightly improve the
potency (results not shown). Special features of this new chimaera
could allow additional unexplored applications in the treatment of
diseases. Such prospects are exemplified by attempts to cleave the
particular SNARE isoforms found in fibroblast-like synoviocytes,
with the possibility of reducing their exocytosis of cytokines
and, in that way, alleviating symptoms of arthritis [31,32].
These cells were found by Western blotting to contain VAMP3
and SNAP-23 (synaptosome-associated protein of 23 kDa) rather
than SNAP-25 (Figures 5A and 5C); SNAP-23 is not cleaved
by BoNT/A (Figure 5A). Despite VAMP3 being a substrate for
BoNT/B, the latter failed to cleave this target in the synoviocytes
(Figures 5A and 5B); encouragingly, 100 nM BA cleaved ∼60%
of VAMP3 in the presence of substance P (Figure 5A and 5B),
a pain mediator whose level is known to be elevated under
arthritic conditions [33]. These contrasting findings are explained
by the demonstrated presence of the BoNT/A acceptor, SV2A, in
these cells and an absence of SytI and II, in contrast with their
occurrence in CGNs (Figure 5C). This example highlights the
utility of BA which could be applicable to other non-neuronal
cells lacking SNAP-25, but possessing the SV2, the BoNT/A
acceptor, and utilising VAMP(1–3) in exocytosis.

AB enhanced the delivery of LC into spinal cord neurons and
induced longer neuromuscular paralysis than BoNT/A in vivo

It was hypothesized that the expression of a higher content of Syt
I/II than SV2 in rat synaptic vesicles [9], and a higher density of
binding sites for BoNT/B than BoNT/A in murine motor nerve
endings [10], would allow more uptake of AB than BoNT/A
which, in turn, might culminate in an extension of the duration
of action. Mouse spinal cord neurons were used initially for
addressing this possibility. These cultured neurons were briefly
bathed in stimulation buffer containing 400 pM toxin for selected
periods, followed by extensive washing; subsequent incubation
for 20 h allowed extrapolation of the amounts of toxin bound
from the extents of SNARE cleavage. Under this paradigm, there
seemed to be less binding of BoNT/A than BoNT/B over short
times as reflected in a minor fraction of SNAP-25 being cleaved
(Figure 6A), compared with the extent of VAMP2 disappearance
due to BoNT/B (Figure 6B). There was only enough of BoNT/A
bound to the acceptor in 5 min to truncate ∼10% of SNAP-25
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Figure 5 Chimaera BA enters rat cultured synoviocytes and cleaves VAMP
3, unlike BoNT/B which fails to cleave its substrate

Synovial cells (SCs) were incubated at 37◦C for 20 h with or without 100 nM of each toxin in
the presence of 1 μM substance P in culture medium. Cells were washed and harvested in SDS
sample buffer. Solubilized proteins were subjected to SDS/PAGE and Western blotting using
the antibodies indicated. (A) Representative blots indicating that chimaera BA cleaved VAMP3
(duplicate lanes) unlike BoNT/B; as expected, SNAP-23 was not cleaved by BoNT/A. (B) The
proportions of VAMP 3 remaining intact after treatment with 100 nM of either chimaera BA or
BoNT/B were calculated ( +− S.E.M., n = 3) relative to the uncleaved SNAP-23, internal standard.
* P < 0.05, BoNT/B compared with BA using unpaired Student’s t test. (C) Immunoblots from
non-toxin treated samples demonstrating the presence of SV2A in synovial cells and the absence
of SV2B, SV2C, SytI, SytII and SNAP-25. Cell lysates from rat cultured CGNs were used as
neuronal controls. Ctrl, control.

after incubation for 20 h (Figure 6A), whereas BoNT/B caused
cleavage of over 80% of VAMP2 (Figure 6B). AB cleaved
significantly more SNAP-25 than BoNT/A (Figure 6A), even
though it possesses the same protease, more closely reflecting
the binding time course of BoNT/B. As the AB chimaera shares
the same protease and HN regions as its BoNT/A parent, it is
reasonable to deduce that these differences are attributable to
acceptor HC-mediated binding. This deduction was reinforced
by comparing BA with BoNT/A. Even though BA contains the
VAMP2-cleaving LC/B, shown to cause significant cleavage when
part of BoNT/B (Figure 6B), the protease activity of this chimaera
deduced from this assay was significantly retarded, registering
∼10% cleavage after 5 min of binding compared with BoNT/B,
which cleaved ∼80% of VAMP2 (Figure 6B). Again, their
near-identical protease activities towards recombinant VAMP2
substrate (Table 1) rule out any of these differences being derived
from LC.

The above-noted enhanced acceptor-binding capabilities of AB
compared with BoNT/A in spinal cord neurons might alter the
persistence of its neuromuscular paralysis in vivo. Therefore, this
was measured using the DAS assay in mice (Figure 6C). The
TDmax. of each toxin was established empirically (Figure 6C,
inset) to avoid any local and systemic side-effects [18]. As
found previously [18], full muscle paralysis (DAS = 4) was
observed in mice injected with TDmax. of BoNT/A, lasting up to
28 days (when DAS = 0). The amount of BoNT/B that could be
injected without inducing systemic effects was limited by its high
LD50 value and when the smaller permitted amount of BoNT/B
(1.5 units/∼2 pg) was injected intramuscularly, near-complete
paralysis ensued within 2 days and full recovery occurred by day
14 (Figure 6C). Chimaera BA containing LC/B proved to be
highly effective in inducing muscle weakening; again the limiting
dose (1.5 units/∼2 pg) injected caused paralysis followed by
recovery within ∼10 days. On the other hand, the neuromuscular
paralysis induced by chimaera AB (6 units/200 pg) outlasted that

Figure 6 Cleavage of SNAREs by the chimaeras in spinal cord neurons
approximates to that of the parental toxins providing their HC: AB induces
the longest neuroparalysis in vivo

To assess the binding capabilities of chimaeric toxins and the parents, mouse spinal cord neurons
were briefly bathed in stimulation buffer containing 400 pM of each. After the times indicated, cells
were washed, medium was replaced and cells were cultured for a further 20 h before assaying for
cleavage of SNAP-25 (A) or VAMP 2 (B) as before. The remaining intact substrate was calculated
relative to an internal syntaxin control. The upper panels of (A) and (B) are representative blots of
samples exposed to the toxins for 10 min. (C) Duration of paralytic action in vivo was monitored
after injecting toxin (5 μl) unilaterally into mouse gastrocnemius muscle by determining the
level of paralysis using the DAS scale (0 = normal; 4 = maximal reduction in digit abduction).
Inset, the dose of each toxin determined for inducing a total loss of toe spread reflex without
causing systemic effects [TDmax. as units (mLD50 intraperitoneal units) and protein quantity
used]. Motor impairment was limited to the toxin-treated limb. AB was compared with BoNT/A
using a two-way ANOVA followed by post-hoc Bonferroni test for comparison of individual time
points where these two could be compared (*P < 0.05, **P < 0.01, ***P < 0.001). Note that
a few symbols overlap, and some error bars are encompassed by the symbols. Results are
means +− S.E.M., n = 10. Ctr, control.

of the other toxins tested in rodents, exceeding the previously
published record set by the clinically used type A complex [34].
This result seems to support the hypothesis that the more efficient
binding of AB, apparently facilitated by a greater abundance
of SytI/II acceptors, lengthens the duration of neuromuscular
paralysis (up to 50 days) in this test system.

These collective findings demonstrate clearly that BoNT
chimaeras can be constructed through recombination of functional
domains from different serotypes and, also, highlight how these
can be expressed efficiently, simply purified to homogeneity, and
readily converted into active DC forms. Both proteins retained
functional characteristics of their parents; most importantly, AB
displays a persistent BoNT/A-like property, but of even longer
duration, in mice, whereas BA has the potential to substitute
for BoNT/B because of its high specific neurotoxicity and
demonstrated ability to deliver LC/B into cells insensitive to
BoNT/B, but susceptible to VAMP cleavage.
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DISCUSSION

Engineered BoNTs with potential as improved and more versatile
inhibitors of exocytosis

Development of novel forms of BoNTs with extended duration
of paralytic activity and wider applications is very desirable for
treating human neurogenic hyper-activity disorders. For the first
time, it is shown in the present study that the duration of BoNT/A
can be extended substantially in a murine model by replacing
the acceptor-binding domain with its counterpart from BoNT/B,
resulting in the chimaera AB. Due to utilizing a different acceptor
to initiate entry, it could provide an additional and/or improved
form active on certain neuron types. On the other hand, BA, which
harnesses the binding domain of BoNT/A, can enter neurons,
block neuromuscular transmission and has an extremely high
potency, giving a similar duration of neuroparalysis as BoNT/B.
Its ability to target an alternative SNARE in BoNT/A-sensitive
neurons, or other cells, creates the exciting potential for being
an innovative therapeutic applicable to cells whose exocytosis
involves VAMP, but not SNAP-25 (see below).

Chimaera AB causes the most persistent neuromuscular
weakening in a mouse model

Proof of principle was obtained for generating a longer-
lasting chimaeric neurotoxin by selectively combining the most
advantageous domains of two BoNTs, based on an understanding
of their multi-step mechanisms of action. As BoNT/A causes
the most prolonged muscle weakness in human therapy, LC/A
was selected for this purpose, as the life-times of LCs determine
durations of action [17,18,35,36]. Murine motor endplates possess
more acceptors for 125I-labelled BoNT/B than BoNT/A [10],
consistent with findings from a proteomic demonstration that
more copies of Syt than SV2 are present on small synaptic
clear vesicles from rat brain [9]. Additionally, evidence from
rat cultured neurons suggests that SytI and II can accumulate
at the cell surface, forming a stockpile of acceptor available for
binding HC/B, which is not the case for SV2C, whose distribution
is skewed towards the synaptic vesicle rather than the cell
surface [37,38]. Recently, in-vitro-translated 35S-labelled HC/B
was reported to have a higher affinity for rat brain synaptosomes
than HC/A, although the sensitivity of motor nerve endings was not
measured [39]. Transfer of BoNT/B acceptor-binding domain to
BoNT/A could, it was speculated, allow delivery of more BoNT/A
protease to the rodent nerve terminals and, thereby, cause an
extended duration of its action. Moreover, as BoNT/B appears to
show a more pronounced action on autonomic cholinergic nerves
in human secretory glands (see the Introduction section), transfer
of this feature to BoNT/A could increase its scope for targeting
the BoNT/A long-lived protease to certain nerve types. For these
purposes, the engineered AB, expressed in E. coli as a SC and
purified to homogeneity, followed by activation by controlled
proteolysis, was shown to retain characteristics of the respective
functional domains from BoNT/A and BoNT/B, i.e. binding the
luminal portion of murine SytII, entering into neurons, cleaving
SNAP-25 and blocking nerve–muscle transmission.

Experiments on time-dependency of acceptor binding to murine
spinal neurons indicated that AB does, indeed, deliver its LC more
efficiently than BoNT/A into the cytosol, as reflected by a greater
extent of SNAP-25 cleavage at each time tested. This difference
may underlie the notably prolonged neuroparalysis resulting from
AB, which even exceeds that of BoNT/A. Such an extended
action of AB seems to be due to binding to distinct acceptors
via its modified HC domain. Notably, chimaera AB is equipotent
to native BoNT/A in blocking neurotransmission in mouse hemi-

diaphragm in vitro, but it exhibits much lower specific toxicity
in a mouse lethality assay. This could be due to fact that the
in vitro assay only reflects the speed of onset of neuroparalysis,
rather than true potency. Therefore, the recent report of a 4-fold
greater potency on the diaphragm for the SC of chimaera AB
compared with SC BoNT/A [39], may not necessarily translate
into a higher specific lethality in vivo; no comparative biological
data for BoNT/A were provided [39]. Nevertheless, ∼1.7-fold
increase in the duration of muscle weakness in mice observed for
AB relative to BoNT/A could further extend the therapeutic action
in patients as the time courses observed in mice are known to be far
longer in humans. Although ethical issues pose difficulties, it will
be necessary eventually to evaluate AB in humans, especially as
human SytII was recently excluded as a high-affinity acceptor for
BoNT/B due to a single amino acid difference in the interaction
site compared with the rodent protein [40], which leaves Syt I as
the protein constituent of the acceptor for mediating entry of the
toxin into motor endings in humans. This and the lower specific
neurotoxicity of AB compared with BoNT/A may require
injection of a higher protein dose, which could increase the
possibility of triggering the production of neutralising antibodies.
It may be possible to overcome the latter by protein engineering
an improved version of the toxin via site-directed mutagenesis
in its binding site for human SytII, thereby raising the affinity
for the acceptor, as suggested previously [40]. The duration of
action of AB on autonomic neurons should also be evaluated, as
the autonomic side-effects reported for BoNT/B could be due to
the higher abundance of SytI in autonomic neurons as shown in
rodents [16] or by the higher amounts injected.

BA offers scope for attenuating secretion from a variety of cell
types (e.g. fibroblast-like synoviocytes) via two sites of action

Notably, both BA and BoNT/B gave a much shorter duration of
neuromuscular paralysis than BoNT/A, further confirming that
the protease life-time determines the normal duration of action,
as reported previously [17,18,35,36]. Nevertheless, BA proved as
effective as BoNT/B in cleaving VAMP in cultured neurons
and inhibiting neuromuscular transmission; of special note is its
extremely high specific neurotoxicity. These attractive features
highlight that BA was properly folded in E. coli, forming all of
the fully functional multiple domains. As BA targets LC/B to
BoNT/A-susceptible neurons by binding to SV2 rather than Syt
in humans, it has the potential to be applied as an alternative
to BoNT/B, but with much lower doses required. Moreover,
because BA targets VAMP, it could complement BoNT/A-based
neurotherapy. The further utility of BA has been highlighted with
synoviocytes, that express BoNT/A-acceptor SV2A but not SytI
or II (making them inaccessible to BoNT/B), in which cleavage
of VAMP3 occurred following stimulation by substance P, a
pain mediator in the development of arthritis [33]. BoNT/A
also can reduce arthritis-associated pain in humans, an effect
most probably mediated through direct inhibition of peripheral
nociceptive nerve activation and thereby prevents sensitization
[41]. Our collective observations suggest that BA could offer an
advantage of counteracting the symptoms of arthritis at two points:
directly upstream at the neuronal component like BoNT/A and,
indirectly, in synoviocytes.

Involvement of VAMP 1 isoform in exocytosis from autonomic
nerves revealed by BoNT chimaeras

The therapeutic effectiveness of BoNT/A in autonomic
cholinergic diseases (reviewed in [42]) prompted evaluation of
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the performance of these chimaeras in the bladder. Although
neuroparalysis observed in mouse bladder confirmed their
functionality, reminiscent of that of their parents, experiments
on rat bladder implicated VAMP1 in neurotransmission. The
observation that BoNT/B had no effect on rat bladder suggested
that there might be a BoNT/B-insensitive VAMP 1 [11] mediating
transmitter release or a lack of the acceptor for BoNT/B.
The latter notion was excluded because chimaera AB blocked the
transmission like BoNT/A, establishing the presence of
the Syt I/II acceptor, as it successfully delivered the LC/A
protease culminating in paralysis. Likewise, the inability of
BA to block transmission in the rat bladder reaffirmed the
notion that insensitivity to BoNT/B in rat is due to the resistant
VAMP1 mediating transmitter release, as demonstrated for
sensory neurons [24] and motor endplates [43].
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Fibroblast-like synoviocytes are important mediators of inflammatory joint

damage in arthritis through the release of cytokines, but it is unknown

whether their exocytosis from these particular cells is SNARE-dependent.

Here, the complement of soluble N-ethylmaleimide-sensitive factor attach-

ment protein receptors (SNAREs) in human synovial sarcoma cells

(SW982) was examined with respect to the secretion of interleukin-6 (IL-6)

and tumour necrosis factor a (TNFa), before and after knockdown of a

synaptosome-associated protein of molecular mass 23 kDa (SNAP-23) or

the vesicle-associated membrane protein 3 (VAMP-3). Wild-type SW982

cells expressed SNAP-23, VAMP-3, syntaxin isoforms 2–4 and synaptic

vesicle protein 2C (SV2C). These cells showed Ca2+-dependent secretion of

IL-6 and TNFa when stimulated by interleukin-1b (IL-1b) or in combina-

tion with K+ depolarization. Specific knockdown of SNAP-23 or VAMP-3

decreased the exocytosis of IL-6 and TNFa; the reduced expression of

SNAP-23 caused accumulation of SV2 in the peri-nuclear area. A mono-

clonal antibody specific for VAMP-3 precipitated SNAP-23 and syntaxin-2

(and syntaxin-3 to a lesser extent). The formation of SDS-resistant com-

plexes by SNAP-23 and VAMP-3 was reduced upon knockdown of SNAP-

23. Although the syntaxin isoforms 2, 3 and 4 are expressed in SW982

cells, knockdown of each did not affect the release of cytokines. Collec-

tively, these results show that SNAP-23 and VAMP-3 participate in IL-1b-
induced Ca2+-dependent release of IL-6 and TNFa from SW982 cells.

Structured digital abstract

� VAMP-3 physically interacts with syntaxin 2 and SNAP-23 by anti-bait coimmunoprecipitation (View inter-

action)

Introduction

Arthritic pain is a common and widespread condition

that severely affects the functional performance of

sufferers, resulting in a poor quality of life [1]. Joint

pain may result from many types of injuries or abnor-

malities, the most frequent being rheumatoid and

osteoarthritis [2,3]. Approximately 1% of humans

have rheumatoid arthritis, an inflammatory auto-

immune disease of the joints. It mainly affects the

synovium, cartilage and sub-chondral bone, but also

has systemic effects, leading to increased co-morbidity

and mortality, particularly due to cardiovascular

disease [4,5]. Osteoarthritis occurs in 10% of the
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population, and is caused by an imbalance in carti-

lage metabolism, i.e. levels of synthesis versus destruc-

tion, which leads to a progressive loss of the tissue;

additionally, inflammation of the synovium and dam-

age to the sub-chondral bone may occur. Many medi-

ators are involved in both rheumatoid arthritis and

osteoarthritis, including cytokines, growth factors,

matrix metalloproteinases and chondro-degradative

enzymes [6]. Macrophages and fibroblast-like synovial

cells represent the predominant cell types in the

inflamed synovium [7], being largely responsible for

joint destruction via attachment to the cartilage and

secretion of cytokines and matrix metalloproteinases

[7,8]; osteoclasts also participate in the breakdown of

cartilage [9,10].

Secreted cytokines and chemokines profoundly alter

bodily responses to cellular damage or invasive patho-

gens. Pro-inflammatory cytokines such as tumour

necrosis factor a (TNFa) and interleukin-1b (IL-1b),
interleukin-6 (IL-6) and interleukin-15, among others,

are involved in the pathogenesis and inflammatory

processes in rheumatoid arthritis and osteoarthritis.

Synoviocytes contribute to joint inflammation by pro-

ducing cytokines after onset of the disease [11–13];
although secretion of cytokines has been widely

studied, little is known about the precise molecular

components involved in these particular cells. In yeast

and mammalian cells, soluble N-ethylmaleimide-

sensitive factor attachment protein receptors

(SNAREs) drive membrane fusion and exocytosis, as

well as contributing to membrane/protein targeting

and delivery [14,15]. Botulinum neurotoxins (BoNTs)

inhibit SNARE-dependent release of substance P, cal-

citonin gene-related peptide and glutamate, which are

the important mediators of arthritic pain [16–18]. A

broad spectrum of factors, including immune and pain

mediators are stored in pre-formed granules of granu-

locytes (neutrophils, eosinophils and mast cells) [15].

Cytokine release from macrophages may be inhibited

by delivering BoNT/B, using a targeting antibody,

and the toxin’s protease truncating vesicle-associated

membrane protein isoform 3 (VAMP-3) [19]. Stimu-

lated release of vesicular contents requires membrane

fusion, which involves particular SNAREs present on

the granules and plasma membrane [15,20,21]. For

example, recruitment of a synaptosome-associated

protein of molecular mass 23 kDa (SNAP-23) to gran-

ule membranes in rat peritoneal cells is as an essential

prerequisite for release of mediators from mast cells

[15,21]. Moreover, members of the SNARE family

mediate membrane fusion of TNFa transport vesicles

[15]. Previous studies have shown that cytokines

synthesized by various immune cells co-localize with

certain Rab proteins and SNAREs, and are translo-

cated to the plasmalemma in response to extracellular

stimuli [22–25].
In view of the involvement of synoviocytes in

arthritic conditions, we wished to establish whether

SNAREs mediate exocytosis of cytokines from cul-

tured synoviocytes. Knockdown of SNAP-23 or

VAMP-3 using lentiviral particles encoding short hair-

pin RNA (shRNA) demonstrated their involvement in

the secretion of IL-6 and TNFa stimulated by IL-1b,
whereas knockdown of syntaxin isoforms 2, 3 or 4 was

ineffective. Our novel findings suggest that these pro-

teins are potential targets for therapeutic agents to

alleviate the symptoms of arthritis.

Results

Human synovial sarcoma cells contain certain

SNAREs and synaptic vesicle protein 2

Inflammatory cytokines are known to be released from

SW982 cells, a line derived from human synovial sar-

coma [26,27]. Cultured SW982 cells mainly contained

fibroblast-like, spindle-shaped cells of variable size,

visualized by labelling with a vimentin fibroblast-spe-

cific antibody and counter-staining using the nuclear

marker 4′,6-diamidino-2-phenylindole (DAPI) (data

not shown). To determine the molecular basis for exo-

cytosis of cytokines from SW982 cells, their comple-

ment of SNAREs was assessed in comparison to other

secretory cells (mouse macrophage cell line RAW264.7

and rat cerebellar granule neurons). Western blotting

of cell lysates using isoform-specific antibodies

revealed that, in contrast to RAW264.7 cells which

contain SNAP-23, VAMP-3, -7 and -8, and syntaxin

isoforms 2–6, SW982 cells express a somewhat lower

level of syntaxin-3, similar amounts of SNAP-23,

VAMP-3, syntaxin-2 and higher levels of syntaxin-4,

but with little or no syntaxin isoform 5 or 6 or vesi-

cle-associated membrane proteins VAMP-7 or -8

(Fig. 1A). Expression of SNAP-25, syntaxin-1 and

VAMP-2, which is characteristic of neurons, was

hardly detectable in SW982 cells, but, as expected, was

enriched in rat cerebellar granule neurons (Fig. 1B).

Interestingly, synaptic vesicle protein 2 (SV2) isoforms

A and C, which are key proteins for Ca2+-regulated

transmitter release in neuronal and endocrine cells

[28,29], were also found in SW982 cells. The latter do

not possess the Ca2+ sensors synaptotagmin I or II,

all of which except SV2C are expressed in rat cerebel-

lar granule neurons (Fig. 1B). Thus, we wished to

establish whether the SNAREs present in SW982 cells

contribute to the release of cytokines.
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IL-1b induces the release of cytokines from

SW982 cells in a Ca2+-dependent manner

Although elevated [K+] is known to elicit transmitter

release from excitatory cells [18], the levels of IL-6

secretion from SW982 cells in LK buffer containing

3.5 or HK containing 60 mM [K+] after 4 h incubation

were similar; K+ depolarization-induced release was

unaffected by the absence of extracellular Ca2+ and

presence of EGTA (Fig. 2A, top panel). On the other

hand, 4 h incubation of the cells with an established

effective concentration (100 ng�mL�1) of the pro-

inflammatory factor IL-1b [26], together with 60 mM

[K+] and 2.5 mM Ca2+, elicited an approximately 3.5-

fold increase in the release of IL-6 over the Ca2+-free

level (Fig. 2A, top panel). A cell viability assay

performed after 4 h incubation in medium containing

3.5 or 60 mM [K+], with or without external Ca2+

and IL-1b, demonstrated that the cells had not died

(Fig. 2A, bottom panel), and representative images of

cells after each treatment showed that they had not

detached (Fig. 2C). Incubation for 20 h, rather than

4 h, with IL-1b in culture medium that contained

Ca2+ gave a approximately 10-fold increase in IL-6

release (Fig. 2B), indicating that induction of release

of this cytokine by IL-1b alone requires longer than

4 h. These results highlight the importance of IL-1b in

stimulating cytokine release from SW982 cells.

SNAP-23 is required for IL-1b-induced release of

IL-6 and TNFa from cultured SW982 cells:

knockdown of SNAP-23 enhances peri-nuclear

distribution of SV2

To examine the involvement of SNAP-23 in the release

of cytokines from SW982 cells, knockdown of this pro-

tein was achieved by incubating the cells with specific

shRNA lentiviral particles. Western blotting of total cell

lysates showed that the knockdown resulted in a sub-

stantially reduced content of SNAP-23 (Fig. 3A); speci-

ficity of this knockdown was confirmed by the absence

of any significant changes in the levels of VAMP-3 or

syntaxin isoforms 2–4 (Fig. 3A). Quantification of the

SNAP-23 content relative to b-tubulin as an internal

standard showed a decrease of approximately 80%

(Fig. 3B), with no change in a negative control treated

with non-targeted lentiviral particles (Fig. 3C). This

result was confirmed by immunocytochemical visualiza-

tion of SNAP-23 in knockdown and normal cells

(Fig. 3H); negative controls did not show any signal for

SNAP-23 (Fig. 3H). Notably, SNAP-23 knockdown
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Fig. 1. Human synovial sarcoma cells

contain SNAREs and SV2 isoforms. (A)

Western blots demonstrating that SNAP-

23, VAMP-3, syntaxin isoforms 2–4 and

traces of syntaxin-6 and VAMP-8 are

expressed in SW982 cells; these proteins

plus a relatively small amount of VAMP-7

and -8 were also detected in a mouse

microphage cell line (RAW264.7). (B)

Traces of SNAP-25, syntaxin-1 and VAMP-

2, a higher level of SV2C than SV2A and a

lack of SV2B and synaptotagmins I and II

(Syt I and Syt II), were observed in

SW982 cells compared to rat cerebellar

granule neurons, with the exception of

SV2C. Note that the antibodies used

recognize human, mouse and rat antigens,

alhough the difference in reactivity for the

various species is not unknown. An equal

amount of protein was loaded in each lane

for all blots, with b-tubulin acting as a

loading control; approximate sizes of the

bands are indicated (k).
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Fig. 2. IL-1b-induced IL-6 release from SW982 cells requires external Ca2+. (A, top panel) A 4 h incubation of the cells with high [K+] buffer

(HK) in the presence or absence of extracellular Ca2+ resulted in minimal stimulation of IL-6 release, but addition of IL-1b (100 ng�mL�1) in

HK with Ca2+ yielded an approximately 3.5-fold increase over the basal value without extracellular Ca2+. (A, bottom panel) Cell viability assay

using methylthiazolyldiphenyl tetrazolium bromide, showed that no cell death occurred after a 4 h incubation in HK or LK buffer (medium

containing 3.5 or 60 mM [K+]), with or without external Ca2+ and IL-1b. (B) Incubation of SW982 cells for 20 h in culture medium containing

Ca2+ and IL-1b (100 ng�mL�1) elicited an approximately 10-fold higher release of IL-6 compared with medium alone; however, incubation for

4 h with medium and IL-1b did not result in a significant release of IL-6. (C) Representative images showing that cells were not detached

after treatment for 4 h. Values are means and SEM (n = 3) for each experiment; asterisks indicate statistically significant differences

(***P < 0.001). Scale bar = 100 lm.

4 FEBS Journal (2013) ª 2013 FEBS

SNAREs mediate exocytosis of cytokines from SW982 cells S. V. Boddul et al.



decreased the release of TNFa and IL-6 elicited by IL-

1b during a 20 h incubation by approximately 50% and

55%, respectively (Fig. 3D,E); likewise, an approxi-

mately 55% reduction in IL-6 release was observed after

a 4 h treatment with IL-1b in medium containing

60 mM [K+] (Fig. 3E). As expected, the control lentivi-

ral particles failed to inhibit release of TNFa and IL-6

(Fig. 3F,G). These collective findings show that the IL-

1b-induced release of IL-6 and TNFa from SW982 cells

involves SNAP-23. Interestingly, SV2 detected using an

antibody reactive to all its isoforms [30] displayed a dif-

fuse pattern in control cells but co-localized to a signifi-

cant extent with IL-6 around the peri-nuclear area,

presumably the endoplasmic reticulum and the Golgi

apparatus (Fig. 3I). Strikingly, knockdown of the

expression of SNAP-23 led to an accumulation of the

SV2 signal around the peri-nuclear region (Fig. 3H).

Because SV2 is a synaptic vesicle protein, such accumu-

lation suggests that vesicle trafficking in SNAP-23

knockdown cells is impaired.

Knockdown of VAMP-3, but not syntaxin

isoforms 2, 3 or 4, reduces IL-1b-induced release

of IL-6 and TNFa from cultured SW982 cells

The content of VAMP-3 in SW982 cells decreased by

approximately 80% after transient knockdown, calcu-

lated using b-tubulin as an internal control (Fig. 4A,

B), without any significant alteration in the levels of

other SNAREs in these cells or in a negative control

treated with non-targeted lentiviral particles (Fig. 4A;

cf Fig. 3C). Accordingly, there were reductions of

approximately 55% and 60% in IL-1b-stimulated

release of TNFa and IL-6, respectively, from VAMP-3

knockdown cells (Fig. 4C,D). These results highlight

the functional importance of SNAP-23 and VAMP-3

in exocytosis of these two cytokines.

Experiments with syntaxin isoforms 2–4 yielded con-

trasting results. Transient knockdown of syntaxin-4 to

approximately 50% (Fig. 4E) was achieved without a

change in the levels of other SNARE proteins

(Fig. 4E), but there were no alterations in protein

levels in cells treated with the non-targeted lentiviral

particles (cf Fig. 3C). Notably, syntaxin-4 knockdown

did not reduce the stimulated release of TNFa or IL-6

compared to controls (Fig. 4G,H). Moreover, transient

knockdown of syntaxin-2 by approximately 60% com-

pared to control cells, without altering the expression

of other SNAREs (Fig 5A,B), did not significantly

inhibit release of TNFa and IL-6 (Fig. 5C,D). Like-

wise, knockdown of syntaxin-3 by approximately 50%

(Fig. 6A,B) did not reduce the release of TNFa and

IL-6 (Fig. 6C,D). Attempted knockdown of VAMP-3

in stable SNAP-23-deficient cells caused extensive cell

death, precluding further investigation.

Formation of SDS-resistant SNARE complexes is

decreased by knockdown of SNAP-23

Ca2+-dependent membrane fusion requires formation

of stable SNARE complexes, and these are resistant to

denaturation by SDS at temperatures up to approxi-

mately 80 °C [31]. In order to identify the SNARE part-

ners participating in formation of such complexes, 2D

electrophoresis was performed. Proteins were extracted

from the cells using lithium dodecyl sulfate (LDS) and

subjected to the first-dimension SDS/PAGE (data not

shown) without boiling; gel strips were cut and solubi-

lized in LDS sample buffer, boiled, and applied to sec-

ond-dimension SDS/PAGE (Fig. 7A). Because SNAP-

23 and VAMP-3 were found to contribute to exocytosis

of cytokines in SW982 cells, attention was focused on

their participation in the formation of SDS-resistant

SNARE complexes. Notably, in IL-1b-stimulated wild-

type SW982 cells, the majority of SNAP-23 and VAMP-

3 was not present in SDS-resistant complexes (Fig. 7A),

as indicated by the fact that their electrophoretic migra-

tions were unchanged by boiling and matched the

mobilities known for their molecular masses. However,

some SNAP-23 was retained in complexes, presumably

with other SNAREs with molecular masses ranging

from approximately 49 to approximately 272 kDa

(Fig. 7A); those with molecular mass > 69 kDa dis-

played weak signals for VAMP-3 (Fig. 7A), with the

increment in intensities corresponding to those for

SNAP-23 especially at a molecular mass > 137 kDa. In

contrast, IL-1b-treated cells in which SNAP-23 was sta-

bly knocked down showed only a very small amount of

SNAP-23, in the free form and even less in complexes

(Fig. 7B). Although an abundance of free VAMP-3

remained, little if any was complexed. These observa-

tions suggest that SNAP-23 and VAMP-3 form SNARE

complexes in normal cells that may contribute to evoked

release of cytokines (cf Figs 3 and 4). A decrease in

SNAP-23 excluded its partner, VAMP-3, from SDS-

resistant SNARE complexes. Co-immunoprecipitation

provided confirmatory evidence of SNAP-23 complexes

containing VAMP-3 and syntaxin-2; syntaxin-3 was

hardly detectable and syntaxin-4 was absent (Fig. 7C).

SNAP-23 knockdown abolishes the filamentous-

like distribution of the IL-1 receptor but not its

apparent surface content

Confocal immunofluorescence microscopy of intact

synoviocytes labelled with a polyclonal IgG specific for
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the IL-1 receptor (IL-1R) revealed that SNAP-23

knockdown decreased the filamentous-like staining of

IL-1R to a clustered pattern close to the nuclei, com-

pared to wild-type cells (Fig. 8A). To assess possible

changes in the surface level of IL-1R upon knockdown

of SNAP-23, wild-type and SNAP-23 knockdown cells

were stimulated with IL-1b (100 ng�mL�1) for 20 h.

Total proteins and biotinylated cell-surface IL-1Rs

were extracted from cells in 2 x LDS sample buffer,

and separated by SDS/PAGE for western blot analy-

sis. In stimulated and SNAP-23 knockdown cells, no

change in total and surface content of IL-1R was

observed, compared to non-stimulated wild-type

(Fig. 8B). Thus, although the distribution pattern of

IL-1R on SNAP-23 knockdown cells appeared to be

altered, this did not alter its surface expression or total

membrane content.

Discussion

This study provides evidence for the presence of particu-

lar SNAREs and SV2 in a human synovial sarcoma cell

line, and the involvement of SNAP-23 and VAMP-3 but

not syntaxin isoforms 2, 3 or 4 in the exocytosis of cyto-

kines. There is enhanced exocytosis of IL-6 and TNFa
induced by IL-1b during necrotic form of cell death in

rheumatoid arthritis and osteoarthritis [32,33]. IL-1b is

one of the most critical pro-inflammatory factors that

are released by innate immune cells, and contributes to

inflammatory pain hypersensitivity. In fact, the genera-

tion and progression of arthritis appears to involve

sequential secretion of multiple inflammatory cytokines

that act through a positive feedback cascade involving

the surrounding cells [4,8,11,32,33]. SW982 cells were

chosen for this investigation because these are fibro-

blast-like synovial cells, although their morphology is

mixed in culture [34]. Our finding of increased secretion

of IL-6 and TNFa upon incubation of SW982 cells with

IL-1b is reminiscent of their release from lipopolysac-

charide-treated macrophages [35,36]. Furthermore,

there is convincing evidence for the involvement of

SNAP-23 and VAMP-3 in their exocytosis, because

their knockdown did not reduce the levels of other

SNAREs but decreased the secretion of IL-6 and TNFa
to similar extents. The remaining release may be attrib-

uted to residual levels of SNAP-23 and VAMP-3 after

knockdown, or, perhaps, participation of other uniden-

tified SNARE isoforms and even non-classical secretion

pathways [37]. The simultaneous participation of both

SNAP-23 and VAMP-3 in the release of IL-6 and TNFa
from SW982 cells is an interesting feature, because the

intracellular trafficking pathways for IL-6 and TNFa in

other cell types (i.e. macrophages) overlap but with

some divergence. For example, in macrophages, after

synthesis of these cytokines in the endoplasmic reticu-

lum, they accumulate in Golgi complexes before sorting.

The membrane-bound TNFa is delivered by recycling

endosomes to phagocytic cups or the plasma membrane

for secretion, whereas IL-6, which lacks a transmem-

brane domain, may be secreted directly; however,

knockdown of VAMP-3 affects secretion of both

cytokines from macrophages [24,35]. Our findings

support the notion that cytokine secretion may be

tailored to the needs of inflammatory systems

through variant SNARE-dependent pathways [21].

Notably, TNFa release from secretory granules in mast

cells also requires SNAP-23 [37], similar to our finding

in SW982 cells. Knockdown of the syntaxin isoforms 2,

3 or 4 present in SW982 cells did not impair IL-1b-stim-

ulated release of IL-6 or TNFa, although trace amounts

of isoforms 2 and 3 co-immunoprecipitated with

VAMP-3 (Fig. 7C). This lack of inhibition of exocytosis

Fig. 3. Selective knockdown of SNAP-23 greatly reduces IL-1b-mediated release of IL-6 and TNFa from SW982 cells as well as enhancing

peri-nuclear distribution of SV2. (A) Western blots of SNAREs and SV2A/C in lysates of control and SNAP-23 knockdown cells (60 lg per

lane), demonstrating that the level of SNAP-23 only was significantly reduced compared to the control. (B) Percentage knockdown of

SNAP-23 relative to the control was calculated using b-tubulin as an internal standard. (C) As expected, use of non-targeted shRNA did

not alter the level of SNAP-23 or other proteins monitored. (D,E) After 20 h incubation with IL-1b (100 ng�mL�1) in complete medium, the

extent of inhibition of induced release of TNFa (D) and IL-6 (E) from knockdown cells was calculated relative to those for the control. The

reduction in IL-6 release after 4 h stimulation by IL-1b (100 ng�mL�1) in medium containing 60 mM [K+] (HK) is also shown (E). In

contrast, no significant difference in release of the two cytokines was seen in cells treated similarly but with non-targeted viral particles

(F,G). (H) Fluorescence images showing that SV2 adopted a pronounced peri-nuclear distribution in SW982 cells after knockdown of

SNAP-23, whereas its distribution was more diffuse in controls. Alexa Fluor 568-tagged goat anti-rabbit (1:1500) and Alexa Fluor 488-

tagged donkey anti-mouse (1:1500) were used as secondary antibodies, with nuclei staining using DAPI. Negative controls, treated in the

same way except that primary antibodies were omitted, failed to yield any positive signals for SV2 or SNAP-23. Scale bar = 10 lm. (I)

Confocal microscopic images of control SW982 cells show that SV2 and IL-6 have a diffuse distribution pattern but co-localize around

peri-nuclear areas. Values are means and SEM (n = 3) for each experiment; asterisks indicate statistically significant differences

(**P < 0.01, ***p < 0.001).
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is presumably due to incomplete and less extensive

knockdown than that of SNAP-23 and VAMP-3, and/

or any of the other isoforms present compensating

for their function. In macrophages, multiple syntaxin

isoforms (4, 6 and 7) are implicated in TNFa release

[37].

Knockdown of SNAP-23 significantly reduced the

amount of SDS-resistant complexes formed that contain
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Fig. 4. Knockdown of VAMP-3, but not syntaxin-4, significantly decreased the IL-1b-stimulated release of IL-6 and TNFa from SW982 cells.

(A) Immunoblotting reveals that VAMP-3 was decreased in the knockdown cells. (B) Densitometric scanning and calculation of the level of

VAMP-3 relative to that in the control, using b-tubulin as a reference. (C,D) Cells were incubated for 20 h with IL-1b (100 ng�mL�1) in

complete medium before collecting the supernatant to quantify the amounts of released TNFa (C) and IL-6 (D). VAMP-3 knockdown caused

significant reductions in their release compared with non-treated controls. (E,F) Western blot analysis (E) showed approximately 50%

knockdown of syntaxin-4 (F), calculated as in (B). (G,H) Stimulation with complete medium containing IL-1b (100 ng�mL�1) for 20 h did not

inhibit the release of IL-6 (G) or TNFa (H) after knockdown of syntaxin-4. Values are means and SEM (n = 3) for each experiment; asterisks

indicate statistically significant differences (**P < 0.01).

8 FEBS Journal (2013) ª 2013 FEBS

SNAREs mediate exocytosis of cytokines from SW982 cells S. V. Boddul et al.



SNAP-23 and VAMP-3, but did not affect the surface

content of IL-1R, although the filamentous-like distri-

bution virtually disappeared. As such complexes are

known to be essential for transport of TNFa vesicles

and membrane fusion [38,39], their decrease appears to

underlie the reduced cytokine exocytosis from SNAP-23

knockdown cells, suggesting that SNAP-23 and VAMP-

3 are involved in fusion of vesicles with plasmalemma.

However, a role in the trafficking of cytokine-containing

vesicles in synoviocytes cannot be excluded, and war-

rants in-depth future studies.

It is well knows that Ca2+ binding to its sensor trig-

gers exocytosis of vesicles by assembly of SNARE

complexes [40]. External Ca2+ was found to be

required for cytokine release, as incubation with IL-1b
in the presence of extracellular Ca2+ enhanced this

release and did not affect survival of the SW982 cells.

Consistent with the Ca2+ dependence of cytokine

release, voltage-dependent Ca2+ channels, mainly L-

type, occur in SW982 cells [41]. Also, secretory carrier

membrane proteins have been implicated in the Ca2+

regulation of cytokine trafficking in immune cells [14].

Secretory carrier membrane proteins directly bind to

the Ca2+ sensor in immune cells; thus, these proteins

have potential roles in cooperation with the SNARE

machinery in Ca2+-regulated exocytosis of cytokines

[14]. The observed ability of IL-1b to increase K+-

stimulated release of IL-6 approximately 3.5-fold over

the basal level within 4 h, and its inhibition upon

depletion of SNAP-23, reaffirms the requirement for

extracellular Ca2+ in SNARE-mediated cytokine

release from SW982 cells.
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The finding of increased peri-nuclear localization

of SV2 protein after SNAP-23 knockdown, suggests

participation of the former in transportation of cyto-

kines from this locus, presumably trans-Golgi or

endoplasmic reticulum regions. Unfortunately, suit-

able paired antibodies were not available for counter-

staining. Although the role of SV2 in regulating the

expression and trafficking of the Ca2+ sensor protein

synaptotagmin has been well documented [29], noth-

ing is known about the function of this trans-

membrane protein in non-neuronal cells except for its

location on secretory vesicles as visualized by immu-

noelectron microscopy [42]. Nevertheless, the

enhanced occurrence of SV2 in the peri-nuclear

region in SNAP-23 knockdown cells implicates this

protein in package and/or delivery of cytokines to

the cell surface.

Because of the importance of synovial cells in

propagation of the inflammatory response in rheuma-

toid arthritis and osteoarthritis, our finding regarding

the involvement of these SNAREs in the release of

cytokines may assist in the design of novel and effec-

tive therapeutic agents. It is known that serotypes of

BoNTs cleave SNAREs and subsequently inhibit the

release of cell mediators [43]. Accordingly, intra-

articular injection of BoNT/A or BoNT/B into

patients or murine models of arthritis reduces the

associated pain [44–47]. The latter probably results

from blockade by BoNTs of the release of transmit-

ters (e.g. calcitonin gene-related peptide, substance P,
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other SNAREs. (B) Percentage knockdown
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glutamate) from peripheral sensory fibres. Inhibition

of the release of these mediators reduces their activa-

tion of non-neuronal cells and thus reduces cytokine

release from the surrounding synoviocytes, macro-

phages and other inflammatory cells in the joints.

Such indirect action is likely because the latter cells

normally possess too low a density of BoNT accep-

tor for efficient toxin entry or lack the susceptible

substrates. It is worth noting that SNAP-23 may be

inactivated by a mutant of type E light chain in digi-

tonin-permeabilized HeLa cells, with a subsequent

reduction in the release of cytokines [48]. Although

rat cultured synoviocytes were found to express SV2

isoforms (receptors for BoNT/A, /D, /E, /F and teta-

nus toxins) [30,49–53], their densities on the cell

surface are much lower than in neurons, and thus

these non-neuronal cells are only susceptible to high

concentrations of the BoNT BA chimera [54], gener-

ated by substituting the C-terminal half of the

BoNT/A heavy chain into BoNT/B. When a rela-

tively high concentration of the BoNT BA chimera is

used, it delivers the type B protease via the BoNT/A

acceptor into rat synoviocytes and cleaves VAMP-3

[54]. Future studies may attempt to specifically re-tar-

get the above-mentioned BoNT protease(s) into

inflammatory cells by replacing the BoNT neuronal

receptor binding domain with a cell type-unique

ligand, a strategy that was successfully used in a

previous study [55].

In conclusion, certain SNAREs and SV2 have been

identified in SW982 cells; knockdown of SNAP-23 or

VAMP-3 impaired the release of IL-6 and TNFa upon

stimulation with IL-1b, implicating these SNAREs in

exocytosis of cytokines.
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Experimental procedures

Ethics statement

Maintenance, care and the experimentation on rodents

complied with the European Communities (Amendment of

Cruelty to Animals Act 1876) Regulations 2002 and 2005.

All procedures were approved by the Research Ethics Com-

mittee of Dublin City University, and licensed by the Irish

Ministry of Health and Children.

Antibodies and reagents

Rabbit affinity-purified polyclonal antibodies specific for IL-

6 and rabbit polyclonal anti-IL-1R were purchased from Ab-

cam (Cambridge, UK); cell culture reagents, targeted and

non-targeted shRNA lentiviral particles, rabbit polyclonal

antibodies against SNAP-25, a syntaxin-1 mouse monoclonal

antibody, protein A–agarose, fetal bovine serum, penicillin-

streptomycin (Pen-Strep) and shRNAs were purchased from

Sigma-Aldrich (St Louis, MO, USA). Synaptic Systems

GmbH (Goettingen, Germany) supplied rabbit polyclonal

antibodies specific for SNAP-23, VAMP-2,-3, -7 or -8,

syntaxin isoforms 2, 3, 4, 5 or 6, and SV2A, B or C.

Alexa Fluor 594-conjugated goat anti-rabbit (red fluores-

cence) and Alexa Fluor 488-conjugated donkey anti-mouse

(green fluorescence) were purchased from Bio-Sciences (Dun

Laoghaire, Ireland); horseradish peroxidise-conjugated don-

key anti-rabbit and anti-mouse secondary antibodies were

purchased from Jackson ImmunoResearch (West Grove,

PA, USA). The ECL reagent was supplied by Merck/Milli-

pore (Cork, Ireland), Vectashield was purchased from Vector

Labs (Peterborough, UK), TrueBlot horseradish peroxidase-

conjugated secondary antibody was purchased from eBio-

science (Hatfield, UK), and Cell Surface Protein Biotinyla-

tion & Purification Kit was purchased from Pierce

(Rockford, IL, USA).

Cell culture

A human synovial sarcoma cell line (SW982), obtained

from the American Tissue Culture Collection (Manassas,

Wild type                                                       SNAP-23 KD IL-1 receptor + DAPI
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A

Wild type SNAP-23 KD

– + – +
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Fig. 8. Loss of filamentous distribution of IL-1R resulted from SNAP-23 knockdown in SW982 cells. (A) Wild-type SW982 cells and SNAP-23

knockdown cells were stimulated 20 h with IL-1b before being fixed, permeabilized, and labelled with IL-1R rabbit antibody at 4 °C for 16 h.

Alexa Fluor 594-conjugated goat anti-rabbit was used as the fluorescent secondary antibody. Nuclei were stained using DAPI. The confocal

images show that, compared to control SW982 cells, the distribution of IL-1R on the cell bodies and filaments was altered after SNAP-23

knockdown, showing decreased expression on the cell body surface and filaments and accumulation near nuclei. (B) IL-1b did not alter the

cell surface content of IL-1R in wild-type and SNAP-23 knockdown SW982 cells. The top panel shows total IL-1R expression in whole-cell

extracts. The middle panel shows western blots of the surface-expressed biotinylated IL-1R with (+) or without (�) IL-1b stimulation.

b-tubulin acted as internal control for biotinylated samples (bottom panel). Knockdown of SNAP-23 in SW982 cells did not alter the level of

surface IL-1R in the presence or absence of IL-1b.
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VA), was maintained in T-150 flasks (Corning, Tewksbury,

MA, USA) in RPMI-1640 medium containing 2 mM L-glu-

tamine, 10% fetal bovine serum and 1% Pen-Strep at

37 °C, 5% CO2 [56]. The mouse macrophage cell line

RAW264.7 was cultured in Dulbecco’s modified Eagle’s

medium containing 10% fetal bovine serum and 1% Pen-

Strep. Cerebelli were dissected from Sprague–Dawley rats

on postnatal day 7, and rat cerebellar granule neurons were

cultured as described previously [54].

shRNAs for knockdown of expression of human

SNAP-23, VAMP-3, syntaxin isoforms 2, 3 or 4 in

SW982 cells

Targeted and non-targeted (control) shRNA lentiviral par-

ticles, at a multiplicity of infection of 20 for each clone,

were used to knockdown the expression of individual

SNAREs in SW982 cells. After adding the requisite shRNA

to the cells and culturing for 7–8 days, stable SNAP-23

knockdown cells were established by incubating with puro-

mycin (5 lM) for 4–5 days before use in experiments. These

cells were sub-cultured in the presence of puromycin to

maintain knockdown of SNAP-23. Transient knockdown

of VAMP-3, syntaxin isoforms 2, 3 or 4 was achieved by

incubating SW982 cells with shRNA for 7–8 days, followed

by culture in medium containing puromycin for 3–4 days,

before evaluation of protein expression by western blotting.

Knockdown of each protein, relative to an internal control

(b-tubulin) was measured by densitometric scanning of the

blots and analysed by ImageJ (http://rsb.info.nih.gov/ij).

The value for the protein of interest relative to the internal

control for shRNA-treated cells was subtracted from the

value for control cells, and the resulting number was

expressed relative to that for the control to give the per-

centage knockdown.

SDS/PAGE and western blotting

The protein samples were solubilized in LDS sample buffer,

loaded onto 12% or 4–12% pre-cast Bis/Tris gels, and elec-

trophoresis was performed at 180 V using MOPs running

buffer (50 mM MOPs, 50 mM Tris, 1 mM EDTA and 0.1%

SDS) until the pre-stained protein markers were well sepa-

rated. After electrophoretic transfer to an ImmobilonTM poly

(vinylidene difluoride) membrane (Thermo Fisher Scientific

Inc., Waltham, MA, USA), the proteins were detected using

the appropriate antibodies in conjunction with ECL

reagents, and images were recorded using a G-Box gel docu-

mentation system (Syngene, Cambridge, UK).

2D gel electrophoresis

An established protocol [57] was used to investigate

whether SNAP-23, VAMP-3 and syntaxin-4 form

SDS-resistant complexes in control, IL-1b-stimulated

or SNAP-23 knockdown cells. SW982 cells were solu-

bilized in LDS sample buffer without boiling, and pro-

teins were separated on 4–12% gels; each resulting

sample lane was cut into strips reflecting the various

distances of migration, chopped into small pieces and

boiled for 10 min. The extracted proteins were then

separated in a second 4–12% gel, and the SNAREs

that were released from complexes after boiling were

detected by western blotting using specific antibodies.

Co-immunoprecipitation

SW982 cells were incubated for 20 h with IL-1b
(100 ng�mL�1) in complete medium (RPMI-1640, 2mM

L-glutamine, 10% fetal bovine serum and 1% penicil-

lin-streptomycin), before centrifugation for 5 min at

170 g; cell pellets were lysed in 20 mM HEPES, pH 7.4,

containing 150 mM NaCl, 1 mM MgCl2, 1 mM EGTA

and 0.1% Triton X-100, supplemented with a cocktail

of protease inhibitors, for 30 min followed by brief son-

ication. After centrifugation at 15 000 g for 10 min, the

protein concentration of the supernatant was deter-

mined by Bradford’s assay as approximately

1 mg�mL�1. Protein extracts (300 lg in 300 lL) were

incubated with VAMP-3-specific mouse antibodies

(30 lg in 50 lL), pre-complexed with protein A–aga-
rose for 1 h, before washing the unbound for five times

(5min each) with ice-cold lysis buffer. Negative controls

were performed using non-immune mouse IgG, pre-

labelled protein A–agarose. Before immuno-precipita-

tion, 50 lg of protein extracts in 20 lL of input were

retained to analyse the efficiency of co-immunoprecipi-

tation. The sealed agarose-bound samples were boiled

for 10 min in 50 lL reducing LDS sample buffer,

before subjecting 50% of the eluate to SDS/PAGE and

western blotting, using rabbit polyclonal antibodies

specific for SNAP-23, syntaxin isoforms 2, 3 or 4, and

mouse TrueBlot horseradish peroxidase-conjugated sec-

ondary antibody.

Enzyme-linked immunosorbent assay

ELISA kits for IL-6 or TNFa were used according to

protocols provided by Mabtech AB (Nacka Strand,

Sweden). SW982 cells were stimulated for 20 h with

IL-1b (100 ng�mL�1) in complete medium (containing

Ca2+), or, in some cases, buffer containing 60 mM K+

(with adjustment of the NaCl concentration) and

2.5 mM Ca2+ with and without EGTA (3 mM) [57].

Cell viability was determined using methylthiazolyldi-

phenyl tetrazolium bromide, as described previously

[58].

FEBS Journal (2013) ª 2013 FEBS 13

S. V. Boddul et al. SNAREs mediate exocytosis of cytokines from SW982 cells

http://rsb.info.nih.gov/ij


Cytochemical staining and analysis of

microscopic images

Wild-type or knockdown SW982 cells cultured on colla-

gen-coated cover slips (IBIDI, Martinsried, Germany)

were stimulated with or without IL-1b (100 ng�mL�1)

for 20 h, washed three times for 5 min at room tem-

perature with Dulbecco’s phosphate buffer saline

(lacking Mg2+ and Ca2+) and then fixed for 20 min

using 3.7% paraformaldehyde in the latter buffer at

room temperature. After washing three times for 5

min at room temperature with NaCl/Pi, the cells were

permeabilized using 0.2% Triton X-100 in NaCl/Pi

for 5 min before blocking with 1% bovine serum

albumin in NaCl/Pi for 1 h. Primary antibodies were

applied in the same solution and left for 20 h at 4 °C;
following extensive washing, Alexa Fluor-conjugated

secondary antibodies were added for 1 h at room tem-

perature. After rinsing with NaCl/Pi, the cover slips

were mounted on slides using Vectashield medium

containing DAPI for nuclei staining. Negative con-

trols were performed using the same procedure with-

out primary antibody but were incubated with

secondary antibodies. Immunofluorescent images were

obtained using a Zeiss LSM 710 confocal microscope

(Zeiss, Jena, Germany) or an Olympus IX71 micro-

scope (Olympus, Tokyo, Japan) equipped with a CCD

camera [57].

Biotinylation of cell-surface proteins

Two T75 flasks of wild-type or SNAP-23 knockdown

cells were grown to 90–95% confluence before treat-

ment with or without IL-Ib (100 ng�mL�1) for 20 h.

Cells were washed twice in the flasks using ice-cold

NaCl/Pi, pH 8.0, before incubation with 0.5 mg�mL�1

EZ-Link NHS-SS-biotin in ice-cold NaCl/Pi for 1 h at

4 °C. The biotinylation of cell-surface proteins was ter-

minated by adding quenching solution (TBS; 25mM

Tris, 0.15 M sodium chloride; pH7.2) and rinsing with

Tris-buffered saline. The cells were then harvested by

scraping cells and transferring them to the tube before

centrifugation at 500 g for 3 min. Cell pellet were lysed

in lysis buffer containing protease inhibitors; to

improve solubilization, the cells were sonicated on ice

and centrifuged at 10 000 g for 2 min at 4 °C. The

biotinylated membrane proteins were adsorbed from

the supernatant using immobilized NeutrAvidin gel

slurry (Pierce, Rockford, IL, USA), which was washed

twice in washing buffer (0.05 M sodium acetate, pH

5.0); proteins were eluted from the gel by heating at

95 °C for 5 min in SDS/PAGE sample buffer in the

presence of 50 mM dithiothreitol and subjected to

western blotting using an anti-IL-1R antibody. IL-1R

expression in whole-cell extracts (total) prior to incu-

bation with agarose–NeutrAvidin was also determined

by western blotting.

Statistical analysis and data presentation

Data were analysed and plotted using GraphPad

Prism 4.0 (GraphPad, Software Inc., San Diego, CA,

USA). Values presented are means � SEM with sam-

ple sizes; P values were calculated using the non-

paired, two-tailed Student’s t test.
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