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ABSTRACT 

 

ISOLATION AND CHARACTERIZATION OF MEMBRANE VESICLES SECRETED BY 

HUMAN RENAL CELLS 

Mayank Saraswat 

 

Most cells release membrane vesicles for various purposes including, but not limited to, 

intercellular communication and disposal of membrane and soluble proteins. These vesicles 

are secreted into urine coming from the cells lining the urinary tract and bladder epithelium. 

These vesicles are a promising source of biomarkers for various cardiovascular and renal 

diseases. This thesis pursues twofold objectives, one being the development and 

improvement of an isolation method for urinary membrane vesicles and the second being 

proteomic characterization of the content of these vesicles. These objectives are important to 

realise the clinical potential of these vesicles. An alternative method for removal of 

contaminant high-abundant proteins was developed which preserves the activity of vesicular 

proteins. Moreover, lipid-affinity and lectin-affinity-based novel methods to enrich 

membrane vesicles from minimally processed urine were evaluated and developed. More 

than 600 proteins were identified in urinary membrane vesicles using shotgun proteomic 

analysis. Post-translational modification (PTM) proteomics was carried out to identify the 

PTM status of vesicular proteins. Many different PTMs like glycosylation, ubiquitination and 

palmitoylation were assessed. Surface glycan profiles of these vesicles were elucidated using 

fluorophore-linked lectin assay (FLLA) employing 18 different lectins. Lectin blotting, 

lectin-affinity chromatography using multiple lectins and hydrazide chemistry based 

enrichment of glycoproteins were carried out. As a result, 108 glycoproteins were identified. 

Immuno-affinity chromatography was used to enrich and identify ubiquitin-conjugated 

proteins present in urinary membrane vesicles. A number of potential palmitoylated proteins 

were identified as well. Computational prediction and validation methods were applied to 

these protein lists. In conclusion, novel methods to isolate urinary membrane vesicles were 

developed. In addition, a thorough proteomic characterisation of contents of urinary 

membrane vesicles was achieved. This work will serve as platform for further 

characterization of urinary membrane vesicles. 
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1.1 Introduction 

 

Urine is a combination of plasma filtrate and the secretion profile of cells lining the urino-

genital tract. In healthy individuals, the origin of approximately 70% of the urinary proteome 

is kidney and the rest represents the plasma filtered by the glomerulus (Thongboonkerd & 

Malasit, 2005). Proteins present in urine are a collection of proteins secreted by a number of 

cell types and/or tissues so it is not possible to correlate the mRNA abundance of any 

particular tissue with the urine proteome, as is the case of other body fluids like plasma 

(Kawamoto et al., 1996). This leaves proteomic analysis as the only option to reflect the 

disease state of an organism. Therefore, the urinary proteome might serve as a rich source of 

biomarkers for uro-genital and systemic diseases which have been reviewed previously 

(Pisitkun, Johnstone & Knepper, 2006). Moreover, urine collection is a non-invasive 

procedure which makes it an ideal source for biomarker discovery. Kidneys are located on 

each side of the vertebral column in the posterior part of the abdomen (Brenner, 1996). These 

organs maintain the water, electrolyte and pH balance of the human body (Knepper & Burg, 

1983). Each kidney is enveloped by a fibrous capsule and contains a renal artery and a renal 

vein (Brenner, 1996).  

 

Figure 1.1: Schematic diagram of bisected kidney (Brenner, 1996) 
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Kidney can be divided into cortex and medulla as can be seen in Figure 1.1, showing the 

bisected kidney. Nephrons are the functional unit of kidney and each kidney consists of 

approximately 1 million nephrons. Figure 1.2 displays the schematic diagram of the nephron 

elements. 

 

Figure 1.2: Schematic diagram of a nephron with its major segments (Nielsen et al., 2002). 

Glomeruli are found exclusively in the kidney cortex while tubular segements are found in 

the cortex, outer medulla and inner medulla, as can be seen in the Figure 1.2. The proximal 

tubule consists of segments of the convoluted and straight tubules and the loops of Henle, 

which is made up of a thin descending as well as an ascending limb and a thick ascending 

limb. This is followed by collecting ducts which consist of inner and outer medullar 

collecting ducts (Brenner, 1996). Kidney diseases are mostly due to genetic, inflammatory, 
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infectious or metabolic causes. Urinary proteins, interestingly, are derived from all segments 

of nephrons as well as the bladder epithelium and, thus, are expected to reflect respective 

changes in the characteristic urinary protein signature. Approximately 3% of urinary proteins 

are secreted encapsulated within membrane vesicles (Hoorn et al., 2005).  

1.2 Membrane vesicles  

Extracellular spaces of multicellular organisms contain a special set of cell secretion products 

including ions, metabolites, proteins and complex carbohydrates. It has recently been 

established that they also contain membrane vesicles secreted by various cells. Current 

research endeavours mainly focus on two types of membrane vesicles: microvesicles and 

exosomes whose primary characteristics are listed in Table 1.1. There are two main research 

themes in the membrane vesicle field. One establishes the role of membrane vesicles in 

cellular processes like growth, proliferation, differentiation and immune responses. The other 

focuses on biomarker discovery and validation of the vesicular secretory pattern. These 

biomarkers are further used for various disease diagnoses, for monitoring and for therapeutic 

efficacy, using membrane vesicles as the source for biomarkers. 

Acquisition of host major histocompatibility complex (MHC) antigens by donor T-

lymphocytes in tissue transplantations was observed thirty years ago (Sharrow, Mathieson & 

Singer, 1981). Since then many studies have reconfirmed that membrane proteins can be 

acquired by either cell to cell contact or through secretion of membrane vesicles. Similar 

membrane-coated vesicles had been seen in cultured malignant cells and red cells while little 

was understood of the significance of this phenomenon. A popular view was that they are the 

result of a less important mechanism of membrane shedding or membrane blebbing (Lutz, 

Liu & Palek, 1977; Dumaswala & Greenwalt, 1984; Taylor et al., 1988). They were even 

thought to be the result of cell lysis caused by small changes in the osmolarity of the medium. 
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Shortly thereafter, shedding of a major red cell protein, the transferrin receptor, by maturing 

reticulocytes was reported simultaneously in two publications (Harding, Heuser & Stahl, 

1984; Pan et al., 1985) which established them as being definitely physiological and not an 

artefact. Hence the name exosome was given to them owing to their obvious exocytic nature 

or derivation (Johnstone et al., 1987). Since then these membrane-coated vesicles have been 

known to be secreted by a multitude of cells.  The membrane vesicles appear spherical in 

shape and limited by a lipid bilayer. These vesicles contain soluble contents which are mainly 

derived from the cytosol of the respective secreting cell. Their membrane is in the same 

orientation (and not inside out) as that of the secreting cell. These membrane vesicles, 

depending on their intracellular site of origin may have different biochemical properties and 

composition. This suggests that they serve different functions in an organism’s physiology. 

The nomenclature of such vesicles is a source of confusion for the scientific community 

because of the different names used by different groups and also because these vesicles share 

many common physico-chemical properties like size and density. In addition, they have been 

called microparticles, vesicles, microvesicles, nano vesicles, membrane particles, exosomes, 

dexosomes, argosomes and ectosomes among other names (Johnstone, 2006; Thery, 

Ostrowski & Segura, 2009).  
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Figure 1.3: A schematic diagram showing the site and the process of secretion of various 

types of membrane vesicles. The figure was taken from (Thery, Ostrowski & Segura, 2009). 

A schematic diagram of secretion of different types of membrane vesicles is shown in Figure 

1.3. Major physicochemical characteristics of different types of defined vesicles known are 

summarised in Table 1.1.  
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Table 1.1 was taken from (Thery, Ostrowski & Segura, 2009). It summarises different type 

of membrane vesicles and their biophysical and other characteristics. ND: Not determined. 

 

*The listed features of vesicles secreted by live cells are based on observation of preparations of 100% pure vesicles. However, in practice, 

all vesicle preparations are heterogeneous, with different protocols allowing the enrichment of one type over another, and they can be 

classified according to the presence of several (but not necessarily all) of the listed features. ‡Appearance by electron microscopy is only an 
indication of vesicle type and should not be used to define vesicles, as their microscopic appearance can be influenced by the fixation and 

phase contrast techniques used. CR1, complement component receptor 1; ND, not determined; TNFRI, tumour necrosis factor receptor I; 

TSG101, tumour susceptibility gene 101. 

 

This process of secretion of membrane vesicles may be evolutionarily conserved as suggested 

by release of such vesicles by certain types of bacteria (Mashburn & Whiteley, 2005). Only 

the eukaryotic vesicles are discussed here.  

1.2.1 Ectosomes/Shed vesicles: 

Large membrane vesicles or microvesicles (100-1000nm) are secreted by budding or 

shedding from the plasma membranes of many types of cells (Figure 1.4) including, but not 

limited to, platelets, neutrophils, dendritic cells and tumour cells (Poutsiaka et al., 1985; 

Heijnen et al., 1999; Hess et al., 1999; Obregon et al., 2006; Al-Nedawi et al., 2008a). 
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Figure 1.4: Release of shedding vesicles/microvesicles from the cell surface upon 

exogenous/endogenous stimulus. The Figure was taken from (Cocucci, Racchetti & 

Meldolesi, 2009). 

However, some studies have reported their size is not 100-1000nm as is widely believed. 

These studies claim, that, if stringent criteria are used to distinguish the interference of cell 

debris and organelles from disrupted/apoptotic/necrotic cells, then these vesicles are no more 

than 200 nm in diameter (Scholz et al., 2002; Cocucci et al., 2007; Eken et al., 2008). The 

term, microvesicle is taken from the study for vesicles proven to be distinct from exosome 

(Heijnen et al., 1999) and it is not to be confused with context where the term microvesicles 

was applied to refer to a mixture of heterogenous vesicles including ectosomes and 

exosomes. These membrane shedded or budded vesicles are also called ectosome and the 

process is called ectocytosis. We use the term microvesicles for membrane-shed vesicles and 

it does not include exosomes. Apart from the specific sorting of proteins to these vesicles, 

specific enrichment of cholesterol and diacylglycerol suggest specific lipid sorting (Stein & 

Luzio, 1991). Membrane asymmetry at the cell surface upon activation was observed (Frasch 

et al., 2004) but it has not been conclusively proven that only these sites support ectocytosis 

and shedding of ectosomes. However, the exposure of phosphatidylserine (PS) on their 
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surface is a characteristic of microvesicles while one study disputes that PS exposure is 

always the case with these vesicles (Connor et al., 2010). Another study has characterised 

platelet-derived microvesicles after separating them into four fractions using chromatography  

(Dean et al., 2009). These four fractions differ in their average size of vesicles and also have 

different functions as well as different protein and lipid compositions as judged by different 

localisation of these proteins among the respective fractions (Figure 1.5).  

 

Figure 1.5: The subcellular localization of proteins identified in microvesicles fractionated 

according to size. The data for generating this figure was taken from (Dean et al., 2009). nm 

is short form for  nanometer and size given is the diameter of vesicles.  

Together, these data highlight that there is a great heterogeneity among the vesicles, which 

may not only be cell-specific, but may also be stimulation and secretion pathway-specific 

when derived from the same type of cells. Although secretion of such vesicles is stimulus-
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regulated, a constitutive level of their secretion is thought to occur and this is supported by 

the finding of such vesicles in normal plasma (Freyssinet 2003a) and urine (Pascual et al., 

1994; Lescuyer et al., 2008).  

1.2.1.1 Ectosome biogenesis 

Small cytoplasmic protrusions bud out from the cell at specific locations and then detach 

from the cell by fission of their stalk (Dolo et al., 2000; Cocucci et al., 2007). Complement 

attack was known to induce secretion of ectosomes by endothelial and circulating blood cells 

(Pilzer et al., 2005) while bacterial cell wall components such as lipopolysaccharide (LPS) 

induce their release from monocytes  (Satta et al., 1994). Platelets have been shown to release 

ectosomes upon activation by thrombin (Freyssinet, 2003b) while many cancerous cells have 

an activated phenotype with high levels of ectocytosis without any stimuli (Dolo et al., 1998; 

Johnstone, 2006; Al-Nedawi et al., 2008b). Specific protein sorting was observed in the buds 

with inclusion of some membrane proteins while exclusion of others (Cocucci et al., 2007; 

Moskovich & Fishelson 2007). The mechanism behind the specific sorting of cargo to these 

vesicles remains less well defined but many types of stimuli known to induce the secretion 

were reported. Use of inducers and inhibitors of specific pathways has shed light on the 

critical factors involved in release of such vesicles. The use of inhibitors of cholesterol 

synthesis has implicated the involvement of lipid rafts (Del Conde et al., 2005) but these 

special membrane domains are also implicated in exosome biogenesis (Lakkaraju & 

Rodriguez-Boulan 2008). Stimulation of cells, like dendritic cells and microglia, by calcium 

results in induction of ectosome release which can be recorded by confocal time-lapse 

microscopy (Bianco et al., 2005; Pizzirani et al., 2007). Induction by calcium is cell-type 

specific as induction of PC-12 cells by Ca
++

-ionophore fails to release shed vesicles while 

induction by phorbol ester involving activation of protein kinase C (PKC), is effective in 

these cells (Cocucci et al., 2007). Increase in intracellular calcium occurs before release of 
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vesicles upon activation of cell surface receptor or apoptosis (Baroni et al., 2007; Kahner, 

Dorsam & Kunapuli 2008). Activation of the purinergic receptor-channel P2X7 increases the 

release of shed vesicles in dendritic cells, macrophages and microglia while activation of P2Y 

coupled with Gq protein is important in other cells like platelets and PC12 (MacKenzie et al., 

2001; Wilson et al., 2004; Bianco et al., 2005; Pizzirani et al., 2007). Regardless of the type 

of stimulation the generation of shed vesicles is delayed by tens of seconds to 2 minutes 

depending on stimuli and type of cell (Lee et al., 1993; MacKenzie et al., 2001; Pilzer & 

Fishelson, 2005; Cocucci et al., 2007; Moskovich & Fishelson 2007; Pilzer et al., 2005; 

Pizzirani et al., 2007;). This implies that a specific sorting of proteins lipids and metabolites 

occurs upon stimulation, and consequently, the shed vesicles are released. The mechanism of 

cargo sorting and biogenesis of these vesicles remains to be understood in detail. 

1.2.1.2 Ectosome/Shed vesicle functions 

One of the first discovered physiological roles mediated by shed vesicles or microvesicles 

was that they supply the membrane surface necessary for assembling of procoagulant enzyme 

complexes (Sims et al., 1988). This is mediated by a tissue factor displayed by these vesicles 

on their surface (Spek, 2004). These vesicles bind to macrophages, neutrophils and other 

platelets activating them in the process (Polgar, Matuskova & Wagner, 2005; Pluskota et al., 

2008). Vesicles released by neutrophils are typically enriched in the adhesion molecule, Mac-

1, which also activate platelets (Andrews & Berndt 2004). Shed vesicles can also regulate the 

blood flow as shown in a study where, in a vesicular preparation from the T cell line, CEM, 

mediated the modulation of dilation and relaxation of mouse aortic rings and mesenteric 

arteries by decreasing the expression of nitric oxide synthase and consequently increasing the 

expression of caveolin-1 (Martin et al., 2004). Moreover, platelet-derived microvesicles can 

induce the expression of cyclooxygenase 2 (COX-2) in endothelial cells thereby inducing the 

vasodilation by prostagandin production (Barry et al., 1997; Barry et al., 1998). Complement 
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attack can also trigger the release of ectosomes, containing the membrane attack complex, by 

neutrophils, oligodendrocytes, platelets, glomerular epithelial cells, and the tumor cell lines 

Ehrlich, U937, and K562 thereby protecting them from cell death (Carney, Hammer & Shin, 

1986; Morgan et al., 1986; Morgan, 1989; Scolding et al., 1989). Human monocyte-derived 

macrophages demonstrate inflammatory responses to Zymosan A (inducer of experimental 

sterile inflammation) and LPS (inducer of immune response) which can be blocked by 

ectosomes derived from polymorphonuclear leukocytes (PMN) by inhibiting the release of 

tumour necrosis factor-α (TNF-α) and reducing the release of interleukin (IL)-8 and IL-10 

(Gasser & Schifferli 2004). PMN-derived ectosomes also interfere with maturation of 

monocyte-derived dendritic cells (Eken et al., 2008). However, in a later stage of 

inflammation these vesicles can become pro-inflammatory as suggested by the complement 

component C1q binding to microvesicles released from apoptotic Jurkat cells, and subsequent 

deposition of complement components C3 and C4 (Nauta et al., 2002). Classical complement 

pathway activation could thus trigger the proinflammatory effect of complement. 

Interestingly, platelet-derived microvesicles can deliver arachidonic acid directly to target 

cells. Arachidonic acid from microvesicles can also increase adhesion of monocytes to 

endothelial cells (Barry et al., 1998). Furthermore, arachidonic acid derived from 

microvesicles also increases expression of COX-2 in endothelial and monocyte cells 

stimulating production of prostaglandins (Barry et al., 1997; Barry et al., 1999), which may 

be involved in regulation of inflammation. Extracellular ATP-based induction of P2X7 

receptor in THP-1 monocytic cells stimulates shedding of microvesicles containing IL-1β 

(MacKenzie et al., 2001) which is a mediator of the inflammatory response and is distinctly 

involved in cell proliferation, differentiation and apoptosis. These contrasting anti- and pro-

inflammatory effects of microvesicles might be cell type and physiological state-dependent 

and probably the type of stimulation might determine their function post secretion.  
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1.2.2 Exosomes 

Although any membrane vesicles released by cells in extracellular space contain cell type-

specific proteins and lipids, distinct features of a sub-population of vesicles define them and 

they can be referred to as exosomes according to the following characteristics. Exosomes are 

40-100nm in diameter, and appear as “cup-shaped” or round in morphology in transmission 

electron microscopy or cryo-electron microscopy (Conde-Vancells et al., 2008). They 

typically float on a sucrose density gradient to a density that ranges from 1.13 to 1.19 g/ml 

(Simons & Raposo, 2009). Elements of cellular compartments, named multivesicular bodies 

(MVBs), containing intraluminal vesicles, can fuse with plasma membranes to release these 

vesicles, termed exosomes, to the extracellular space  (Lakkaraju & Rodriguez-Boulan, 

2008). Nearly all exosomes, regardless of the cell of origin, contain specific proteins because 

of their endosomal origin. These include proteins involved in membrane fusion and transport 

(Rab GTPases, Annexins, flotillin), MVB biogenesis (Alix, TSG101), heat shock proteins 

(hsp70 and 90), integrins and tetraspanins (CD63, CD9, CD81 and CD82). Some of these 

proteins merely reflect the cellular abundance of these proteins in secreting cells while others 

can be termed exosomal markers (Alix, TSG101, Flotillin and CD63). Similarly, some lipids 

are enriched in exosomes such as lipids localised to rafts e.g. cholesterol, sphingomyelin, 

ceramide and glycerophospholipids with long and saturated fatty-acyl chains (Wubbolts et 

al., 2003; Subra et al., 2007; Trajkovic et al., 2008). Although some vesicles shed directly 

from membranes can also be in the exosomal size range (50-100nm) (Booth et al., 2006), 

endosomal origin and specific enrichment of exosomal marker proteins and lipid as well as 

morphology of vesicles are used to define exosomes and differentiate them from such 

vesicles. 
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1.2.2.1 Exosome biogenesis 

Exosomes are intraluminal vesicles (ILVs) of MVBs and their biogenesis is thought to occur 

in MVB compartments (Figure 1.6).  

 

Figure 1.6: Formation of multivesicular body (MVB) and subsequent release of exosomes 

upon its fusion with plasma membrane. This figure was taken from  (Simons & Raposo 2009) 

Strong evidence that ILVs are indeed released as exosomes comes from a study in which a 

specific label was allowed to be internalised by cells and was found to be released with 

exosomes coming from endosomal-like domains (Raposo et al., 1996). The generation of 

ILVs involves lateral segregation of cargo within the limiting membrane of endosomes 

followed by inward budding of ILV and subsequent release of ILV into the lumen of 

endosome. Although Endosomal Sorting Complex Required for Transport (ESCRT) 

machinery is thought to function in cargo sorting, its role is not clear. Exosomes derived from 

various cell types contain enriched ESCRT components and ubiquitinated protein (Buschow 

et al., 2005; Liu et al., 2009) lending support to this theory. Figure 1.7 shows a schematic 

diagram of ESCRT components mediating sorting of cargo into multivesicular body lumen.  
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Figure 1.7: Ubiquitination of membrane proteins and their subsequent ESCRT-mediated 

incorporation into intralumenal vesicles of multivesicular bodies. This figure is taken from 

(Welchman, Gordon & Mayer, 2005) 

More support comes from other observations that Nedd4 family interacting protein-1 

expression is associated with increased ubiquitination in exosomes (Putz et al., 2008) and 

Alix, which associates with ESCRT machinery, is required for sorting of transferrin receptor 

into exosomes (Geminard et al., 2004). Moreover, treatment of TS/A tumour cell 

(metastasizing mouse cell line, originated from a mammary adenocarcinoma) with curcumin 

(an active component of spice turmeric) enhances ubiquitination of exosomal protein and 

their accumulation in tumour cell-derived exosomes (Zhang et al., 2007). Exosomes contain a 

number of ubiquitinated proteins (Buschow et al., 2005) leading to the conclusion that 

ubiquitination of proteins is involved in sorting of the cargo to exosomes and affects exosome 

functions. 
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However, the situation is more complex than it seems and some proteins are known to be 

sorted to exosomes independent of ESCRT involvement (Fang et al., 2007; Trajkovic et al., 

2008). Ceramide was shown to be involved in one of these ESCRT-independent pathways 

(Trajkovic et al., 2008; Bianco et al., 2009; Zhang et al., 2009). This is not surprising as 

ceramide is known to induce phase-separation and domain formation in model membranes 

(Goni & Alonso 2006). Protein such as tetraspanins may then partition into these domains. 

Tetraspanins are being suggested because they form tetraspanin webs by forming oligomers 

by interacting among themselves and also with other transmembrane and cytosolic proteins 

(Zoeller, 2009). This is further supported by observations that antibody-induced clustering of 

proteins, such as transferrin receptor, MHC-II and CD43, increases their secretion with 

exosomes in diverse cell types (Vidal, Mangeat & Hoekstra, 1997; Fang et al., 2007; 

Muntasell, Berger & Roche 2007). Addition of multiple homo-oligomerization domains to an 

acylated reporter protein enhances its exosomal secretion (Fang et al., 2007). Taken together, 

these data suggest that oligomerization and clustering of exosomal cargo alone, may lead to 

recruitment of these proteins into, and stabilisation of, exosomal membrane. Exosomal 

enrichment of lipid-rafts may lead to spontaneous budding of vesicles, driven by tension 

between liquid-ordered and disordered boundaries. This kind of mechanism would not need 

involvement of ESCRT machinery. Another example of oligomerization-mediated sorting of 

proteins into intralumenal vesicles is glycoprotein Pmel17. Pmel17 forms fibers with its 

luminal domains which induce its sorting into intralumenal vesicles of multivesiclular 

endosome in an ESCRT-independent manner (Theos et al., 2006). However, exosomes, in 

addition to proteins and lipids, also contain mRNA and miRNA and only a subset of cells’ 

mRNA and miRNA are found in exosomes suggesting involvement of an active sorting 

process. No studies have tried to uncover sorting of these RNA species to exosomes. In 

addition to MVBs, vesicles with exosomal characteristics have also been found to accumulate 
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into specific domains at plasma membranes and these domains have been termed, 

‘endosome-like’ domains (Booth et al., 2006). These domains are enriched in exosomal and 

endosomal proteins like CD63 and CD81. Moreover, a lipid probe, N-Rh-PE (1,2-

dipalmitoyl-sn-glycero-3-phophoethanolamine-N-[lissamine rhodamine B sulfonyl]) which 

normally internalises, and releases with exosomes, accumulates in these domains. Electron 

microscopy detected the budding profile of these domains proving that these domains serve 

as the sites for exosomal biogenesis. Moreover, addition of acyl chains to a reporter protein 

targeted it to these ‘endosome-like’ domains and increased its secretion with exosomes. 

Higher order oligomerization can target plasma membrane proteins to exosomes (Fang et al., 

2007). Various plasma membrane anchors, like the myristoylation tag and PIP2 binding 

domain, can target oligomeric proteins to these vesicles (Shen et al., 2011). This suggests that 

oliogmerization and plasma membrane association is one of the several signals which affect 

protein sorting to exosomes. Another important factor in specifying exosome secretion may 

be the interaction with a protein with known association to exosomes. Accordingly, CD43 

fusion protein is secreted in association with exosomes although to a lesser extent than other 

plasma membrane anchors (Shen et al., 2011). Tumour suppressor activated pathway 6 

(TSAP6), a p53-inducible 5-6 transmembrane protein, is associated with exosomes and it 

promotes the exosomal secretion of translationally controlled tumour protein (TCTP) 

(Amzallag et al., 2004).  More studies are needed to clarify the role of these different 

pathways in exosome biogenesis which might be cell type-specific.  

1.2.2.2 Exosomes function 

One of the earliest functions attributed to exosomes was elimination of proteins from cells 

needed for their maturation (Harding, Heuser & Stahl 1984; Pan et al., 1985). Transferrin 

receptor is lost from RBCs in all known species but sheep cells retain glucose transporter 

while losing nucleoside transporters and the reverse is true of pig cells (Jarvis et al., 1980; 
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Jarvis & Young 1982; Zeidler & Kim 1982; Johnstone et al., 1987) In addition to 

transmembrane proteins, GPI-anchored proteins like acetylcholine esterase and prions are 

secreted out from the cells using exosomes (Johnstone, Bianchini & Teng 1989; Fevrier et 

al., 2004; Porto-Carreiro et al., 2005). Some of the p53-regulated extracellular proteins are 

secreted via exosomes and this is accomplished by upregulation in the expression of the 

protein TSAP6 by p53 (Yu, Harris & Levine, 2006). Some cytokine receptors like Tumour 

Necrosis Factor (TNF) receptor 1 are released through exosomes (Zhang et al., 2006). These 

exosomes may compete for ligand binding and the local concentrations of such exosomes 

may regulate the effect of cytokines on target cells. Also, transfer of active cytokine receptors 

to target cells may increase the target cell response to such cytokines. In another example of 

their function, exosomes released by the epididymis, called epididysomes, are known to 

transfer proteins to sperm cells which are necessary for their maturation and for egg binding 

(Sullivan et al., 2005). Exosomes also have a well-recognised role in activation of the 

immune system. Thus, exosomes from mature dendritic cells (DC) are two orders of 

magnitude more effective in antigen-specific T cell activation compared to those from 

immature DC (Segura, Amigorena & Thery, 2005). This also suggests that exosome 

functions can also be regulated by differentiation/maturation status of the cell secreting them. 

Exosome secreted from tumour-antigen-pulsed DCs induce anti-tumour immunity (Quah & 

O'Neill, 2005) although this immunity is not specific to tumour type suggesting that 

mechanisms deeper than only antigen presentation are at work. However, this immunity is T 

cell dependent so caution has to be exercised while making inferences. Exosomes also 

function in antigen cross-presentation as they can transfer the antigens from tumour cells to 

DCs (Wolfers et al., 2001). Apart from antigen presentation, exosomes also function as 

immunosuppressive agents. Injection of donor-haplotype exosomes from bone marrow DCs 

before transplantation leads to prolonged heart allograft survival in congenic MHC-
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mismatched rats (Peche et al., 2003). The same study also shows significant decrease in 

CD4+ T cells upon exosome treatment suggesting a role played by them in immuno-

tolerance. Exosomes from IL-4 and IL-10-treated immature DCs reduce the severity of 

collagen-induced arthritis (Kim et al., 2005; Kim et al., 2007). Exosomes from T cells, 

melanoma cells and ovarian cancer cells are known to carry the Fas ligand (FasL) on their 

surface which can induce T cell apoptosis (Karlsson et al., 2001; Van Niel et al., 2003; 

Mallegol et al., 2007). Moreover, exosomes released from DCs, virally transduced to produce 

FasL, exhibit anti-inflammatory activity (Kim et al., 2006). Based on all the qualities outlined 

above, exosomes have huge potential clinical applications, particularly in treatment of 

autoimmune diseases like rheumatoid arthritis and inflammatory diseases. Among their roles 

in immune functions, it has been discovered that exosomes released from basolateral 

enterocytes appear to function to induce tolerance for food antigens possibly by transferring 

antigens from the intestine to local dendritic cells (Lin, Almqvist & Telemo, 2005; Mallegol, 

van Niel & Heyman, 2005). Therefore, intestinal exosomes may help to maintain 

tolerogenicity and immuno-suppressive environment of the intestine. Exosome-mediated 

transfer of mRNA and miRNA has been proposed to confer completely new functions to the 

target cells (Valadi et al., 2007).  

1.2.3 Analysis methods for exosomes and shed vesicles and associated challenges 

As the clinical interest in exosomes and shed vesicles increases, new detection and analysis 

methods are urgently needed. All methods have their own advantages and drawbacks which 

are discussed below. The following are the commonly used and novel methods used for this 

purpose. 

1.2.3.1 Electron microscopy 

Transmission electron microscopy (TEM) uses electrons to generate an image and the 

wavelength of electrons is three orders of magnitude shorter than visible light. Therefore 
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resolution down to 1nm can be achieved. TEM is currently among the best method to 

determine the morphology and size of both exosomes and shed vesicles (Pisitkun, Shen & 

Knepper, 2004). A known source of artefacts is the fixation and dehydration steps which may 

affect size and morphology of vesicles. Purified vesicles are used for TEM analysis. 

Therefore, pre-analytical factors, such as enrichment and aggregation of vesicles, can bias the 

counting making the determination of concentration inaccurate. The measurement time 

required for TEM is several hours and, additionally, fixation and negative staining have to be 

performed, further increasing the time required. Use of immunogold TEM can also provide 

information on biochemical composition (Pisitkun, Shen & Knepper, 2004) of the vesicles by 

detecting specific proteins although quantitation is not very accurate  (Griffiths & Hoppeler, 

1986) and sensitivity depends on retention of antigen conformation and antibody binding 

during fixation and staining. Field emission scanning electron microscopy (FESEM) has also 

been applied to image exosomes (Sharma et al., 2010) and the resulting images are three-

dimensional which seem better than TEM in determining morphology and size (Figure 1.8). 

 

Figure 1.8: TEM (a) is compared with FESEM (b) for determination of morphology, shape 

and size of exosomes. Both parts of image are for exosomes derived from saliva. The TEM 

image in part a) is taken from (Berckmans et al., 2011) and the FESEM image in part b) is 

taken from (Sharma et al., 2010) 
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A distinct advantage of FESEM is minimal sample preparation and elimination of the need 

for negative counterstaining of the exosome vesicles. Moreover, FESEM images are obtained 

at much lower beam energy compared to TEM which is expected to reduce the direct damage 

to vesicles during multiple imaging. 

1.2.3.2 Atomic force microscopy 

An atomic force microscope (AFM) consists of a cantilever with a tip at the end which scans 

the surface (Mica) without physical contact (tapping mode) and through recording the 

accurate movements of the tip, a three-dimensional image is created. AFM can be used to 

obtain information about size, morphology, shape and density of a vesicle population 

(Palanisamy et al., 2010). Figure 9 compares the images of exosomes obtained using tapping 

mode and amplitude modulation-AFM (AM-AFM)  (Sharma et al., 2010).  

 

Figure 1.9:  Salivary exosomal image obtained using the tapping mode (a) and the image 

obtained using amplitude modulation mode (b). In part (b), aggregation of vesicles can be 

more easily observed and tube like connections between individual vesicles are marked by 

arrows. This figure is taken from  (Sharma et al., 2010) 

However, AFM analysis entails immobilization of vesicles on a mica surface which can be 

physical adsorption or antibody-mediated immobilisation. Due to the variable efficiency of 
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these processes, the concentration of vesicles cannot be determined. Moreover, shape can be 

altered upon physical immobilization and the force applied by the AFM tip (Sharma et al., 

2010) may lead to generation of artefacts. A rise in concentration of the vesicles during 

isolation and purification can also produce artefacts like aggregation of exosomes. Density of 

protein receptors on the surface of individual vesicles can be obtained using antibody-

functionalised AFM tips or applying gold-conjugated antibody before AFM imaging (Sharma 

et al., 2010). The measurement time involved is in the order of many hours. 

1.2.3.3 Nanoparticle tracking analysis 

Nanoparticle tracking analysis (NTA) measures the absolute size distribution of particle in a 

fluid ranging from 50 nm to 1 µm. Particles in a fluid are illuminated by a laser light and 

scattered light is collected by an optical microscope. The movement of individual particles is 

followed by a video sequence and velocity is calculated which gives information about 

absolute size distribution of the particles after calibrating with beads of known size and 

concentration (Filipe, Hawe & Jiskoot, 2010). However, owing to the detection limit of the 

microscope, particles smaller than 50 nm cannot be detected. Fluorescence-based NTA 

methods are developing at a fast pace and they are ideally suited for exosomes (Sokolova et 

al., 2011) as the limit of detection is in range of the size of exosomes. Bigger vesicles 

(>50nm) can be readily analysed using NTA although the only information obtained is size 

distribution and biochemical composition and cellular origin remain undetermined. 

1.2.3.4 Flow cytometry 

In a flow cytometer (FC) particles are guided in a hydro-dynamically focused fluid stream 

using a laser beam. There are two detectors one measuring the forward light scattering (FSC) 

which is in line with laser and the other being perpendicular to the beam measuring side 

scattering (SSC). The lower detection limit of commercial flow cytometers for polystyrene 

beads is 300-500nm (Steen, 2004; Perez-Pujol, Marker & Key, 2007; Robert et al., 2009). 
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Only the particles differing in size by at least 280nm can be resolved by FC (Perez-Pujol, 

Marker & Key, 2007; Robert et al., 2009). Both these limitations mean that only certain sub-

populations can be detected by scattering FC and exosomes are not detected at all. 

Quantitative information about size is obtained by comparing the light scattering intensity of 

vesicles with beads of known size. However, scattering intensity is dependent not only on 

size but also on shape, refractive index and light absorption making inferences about size 

difficult. The concentration can be determined if the flow rate is known, provided that all the 

vesicles are detected and intensity of scattered light is above the detection limit. No 

information on morphology of vesicles from scattering FC is obtained. Information about 

rough biochemical composition and cellular origin can be obtained by correlating FSC with 

SSC. For example, FSC correlates with the volume of the particle and SSC correlates with 

inner structures such as shape of the nucleus. However, light scattered from surface of large 

vesicles masks the light scattered from structures inside the vesicles making it difficult to 

distinguish the vesicles with different cellular origins having different inner structures. 

However this analysis can be improved by analysing the polarization of light scattered 

sideward (Degrooth et al., 1987). Fluorescence based FC (FFC) is more sensitive than 

scattering-based FC as the intensity of the fluorescence is higher than scattered light. Modern 

FFC can detect a single fluorophore by minimizing interfering background fluorescence. 

However, enumeration of the vesicles depends on signal-to-background noise ratio which 

sometimes can give false results. Also the efficient labelling of all the vesicles and low 

background depends on efficiency of antibodies used and the density of the respective 

antigens on individual vesicle’s surface. Lipid-based probes have been proposed but when 

working on a whole fluid or non-purified samples then staining of cells and particularly, 

interference by membrane debris may pose problems. Calcein-AM has also been tested and 

brings advantages as only the intact vesicles are stained and not the debris (Kendall & 
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Macdonald, 1982). FC remains an active area of research for developing size evaluation and 

counting methods for exosomes and other defined shed vesicles. However, exosomes pose 

significant challenge owing to their small size. 

1.2.4 Urinary Exosomes and microvesicles 

Urine contains exosomes secreted by epithelial cells along all nephron segments (Pisitkun, 

Shen & Knepper, 2004) as well as other type of vesicles like podocyte microvilli-derived 

vesicles (Hara et al., 2010). Exosomes are released into urine by fusion of MVB membrane 

with the apical plasma membrane while podocyte-derived vesicles are generated by a process 

called tip vesiculation (Hara et al., 2010). Other type of vesicles, like ectosomes have not 

been studied from the urine although there is no reason to believe they are not present. 

Vesicles have been harvested from urine using the same methodology in multiple studies. 

However, different authors have given them different names leading to a high degree of 

confusion. For example Pistikun et al., describe these vesicles as exosomes (Pisitkun, Shen & 

Knepper, 2004) while Smalley et al., call them microparticles (Slrnalley et al., 2008). 

Exosomes from the urine contain the typical exosomal markers including CD63 and Tsg101 

while podocyte-derived vesicles contain podocalyxin and complement receptor 1 (CR1 or 

CD35) although there is an overlap of some of the marker proteins. Biogenesis of exosomes 

and the pathways and signals involved in protein sorting to exoxomes have already been 

discussed in previous sections (section 1.2.2.1). Urinary exosomes typically contain 

cytoplasmic protein entrapped at the time of inward budding into endosomal membrane. It 

also contains a snapshot of endocytotic proteome of the apical plasma membrane. Moreover, 

exosomes isolated from urine are in fact a mixture of exosomes secreted by all types of renal 

epithelial cells. Therefore, they contain proteins from glomerular podocytes, epithelial cells 

of proximal tubules, thick and thin ascending limbs of Henle, the distal convoluted tubule, the 

collecting duct, the renal papilla, the renal pelvis, the ureter as well as the transitional 
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epithelia of urinary bladder and urethra (see Figure 1.2). These characteristics make urinary 

exosomes an ideal source and starting material for biomarker discovery for diagnosis and 

monitoring of diseases affecting different parts of the nephron. Also, the isolation of urinary 

exosomes enriches for low abundant proteins by removing the higher abundant proteins 

normally present in urine and reduces the complexity of the urinary proteome. Together these 

facts make exosomes ideally suited for biomarker discovery. In a large-scale urinary exosome 

proteomics study, 177 proteins, that are associated with distinct diseases, were identified and 

34 of them were involved in specific kidney pathologies (Gonzales et al., 2009). Some of the 

proteins found in exosomes and those associated with specific renal pathologies or blood 

pressure regulation are shown in Table 1.2. 

 

Table 1.2: Selected proteins identified in urinary vesicles that are associated with kidney 

diseases or hypertension. The table has been taken from  (Pisitkun, Shen & Knepper, 2004) 

 

Kidney diseases or hypertension 

 

Identified proteins 

 

Autosomal dominant and autosomal recessive nephrogenic diabetes 

Insipidus 

Aquaporin-2 

 

Antenatal Bartter syndrome type 1 

 

Sodium potassium chloride 

cotransporter-2 

 

Gitelman’s syndrome 

 

Thiazide-sensitive Na-Cl 

cotransporter 

 

Autosomal recessive pseudohypoaldosteronism type 1 

 

Epithelial sodium channel α, 

β, γ 

 

Liddle syndrome 

 

Epithelial sodium channel β, 

γ 

 

Familial renal hypomagnesemia 

 

FXYD domain-containing 

ion transport regulator-2 
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Autosomal recessive syndrome of osteopetrosis with renal tubular 

acidosis 

Carbonic anhydrase II 

 

Proximal renal tubular acidosis Carbonic anhydrase IV 

Autosomal dominant polycystic kidney disease type 1 Polycystin-1 

Medullary cystic kidney disease 2 and familial juvenile 

hyperuricemicnephropathy 

 

Uromodulin 

 

 

Autosomal recessive steroid–resistant nephrotic syndrome Podocin 

Fechtner syndrome and Epstein syndrome 

 

Nonmuscle myosin heavy 

chain IIA 

 

2,8-Dihydroxyadenine urolithiasis Adenine 

phosphoribosyltransferase 

Hypertension 

 

 

 

 

 

 

Angiotensin I converting 

enzyme isoform-1 

Aminopeptidase A 

Aminopeptidase N 

Aminopeptidase P 

Neprilysin 

Hydroxyprostaglandin 

dehydrogenase 15- (NAD) 

Dimethylarginine 

dimethylaminohydrolase-1 

 

1.2.4.1 Exosomes as biomarkers 

An early example of clinical utility of urinary exosomes was demonstrated by 

immunoblotting analysis of urinary exosomes from two patients with Bartter syndrome type 

I. The patient with this syndrome present with mutations in SLC12A1 gene which codes for 

sodium-potassium-chloride co-transporter protein (NKCC2) and accordingly NKCC2 bands 

were absent in the urine of patients compared with appropriate controls (Gonzales et al., 

2009). Aquaporin-2, an important channel protein in water homeostasis, is delivered into 

urine via exosome secretion and is a well established biomarker of several water-balance 

disorders, such as diabetes insipidus (Kanno et al., 1995; Elliot et al., 1996; Valenti et al., 

2000; Ishikawa & Schrier, 2003). The Na+/H+ exchanger protein isoform 3 is a candidate 

biomarker of kidney tubular damage and could be useful in differential diagnosis between 
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acute tubular necrosis and other causes of acute kidney injury (AKI) (Du Cheyron et al., 

2003). Another study has reported urinary exosomal fetuin-A to be a potential biomarker of 

AKI in a rat model of the disease further verified in immunoblot analysis of human patient 

urine samples (Zhou et al., 2006a). A number of transcription factors were identified in 

urinary exosomes which could reflect a new class of biomarkers of AKI and chronic kidney 

diseases (Hogan et al., 2009) more related to activation of specific genetic pathways. 

Moreover, analysis of urinary exosomes in patients with malignancies of urinary drainage 

tract would be very helpful in diagnosis of the disease and monitoring of therapy. 

Accordingly the proteomic study of urinary microvesicles from individuals with bladder 

cancer revealed eight over-expressed proteins and one downregulated protein compared to 

healthy individuals (Slrnalley et al., 2008). Urinary exosomes also contain mRNA (Valadi et 

al., 2007) and identification of genetic mutations in these would be a lucrative non-invasive 

diagnostic test for genetic diseases.  

1.2.4.2 Isolation methods for urinary exosomes  

The traditional method for urinary exosome isolation has been differential centrifugation 

where a low speed centrifugation (17,000g) is adopted to remove whole cells, tubular casts 

and membrane fragments. This step is followed by ultracentrifugation (200,000g) to pellet 

down urinary exosomes and other similar sized vesicles (Pisitkun, Shen & Knepper, 2004). 

However, it has to be appreciated that direct 17,000g centrifugation pellets down not only 

cells but also larger groups of vesicles like shed vesicles. Furthermore, the 200,000g pellet 

often consists of vesicles other than exosomes such as similar size membrane particles and 

ectosomes. The stepwise centrifugation method yields a heterogenous mixture of vesicles and 

cannot be considered to contain pure exosomes. One additional problem associated with this 

method is contamination of 200,000g pellet with soluble or aggregated high-abundant 

proteins like Tamm-Horsfall glycoprotein (THP) and albumin. Thus, this pellet at best can be 
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considered a crude pellet of exosomes. Furthermore, it was found that entrapped in THP 

polymers, exosomes were also pelleting down at low speed (P18,000g) (Fernandez-Llama et 

al., 2010). To remove contamination of aggregated proteins one solution has been proposed 

which includes treatment of low speed and high speed pellets with dithiothreitol (DTT) 

followed by a second centrifugation at low and high speed.  

 

Figure 1.10: Effect of DTT treatment on THP behaviour of low (17,000g) and high speed 

(200,000g) pellets of urine. The figure has been taken from (Fernandez-Llama et al., 2010) 

DTT treatment largely removes the THP and exosomal markers from low speed pellet which 

now precipitate with the high speed pellet. This procedure increases the exosomal yield 

without any doubt but it creates a new problem as THP is now present in very high amounts 

in the high speed pellet (Figure 1.10). This fact often leads to interference in further analysis 

of the exosomal pellet by masking low abundance proteins. Another method which has been 
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employed is sucrose density gradient centrifugation. This was used to isolate exosomes from 

immune cells and cell culture and also on urinary exosome-like vesicles (Hogan et al., 2009). 

This method is presently the most sensitive one available and yields the purest forms of 

exosomes with minimal contamination with high abundant proteins. It has to be empahsized 

that both these ultracentrifugation methods are very labour intensive and require extensive 

instrumentation and long processing times making them unsuitable for clinical diagnostics. 

Moreover, this would make them impractical where a large number of samples have to be 

handled. Alternatives have been proposed like nanomembrane concentration (pore size 13nm 

and Molecular Weight ‘cut-off’ of 100kDa) to enrich the exosomal fraction from urine 

(Cheruvanky et al., 2007). It was possible in this study to recover membrane vesicles with 

exosomal markers as tested with western blotting (WB) and the yield was found to be similar 

to ultracentrifugation. There was minor loss of vesicles on the filter membrane surface which 

were recovered by 2X pre-heated Laemmli buffer which solubilised those vesicles. 

Advantages of the method include the short ‘processing time’ and the use of inexpensive 

instrumentation, e.g. the table top centrifuge. However, recovery of vesicles from filter 

surface with Laemmli buffer would yield solubilised exosomal proteins which can only be 

analysed by SDS-PAGE or WB and FC or TEM analysis would be rendered impossible. 

Other types of analysis like MS analysis would require additional purification steps. The ‘cut-

off’ at 100 kDa means that high molecular weight proteins and protein complexes not part of 

exosomes will be enriched as well and will interfere with further analysis by masking low 

abundance proteins in exosomes. As many proteins, like THP and albumin, remain in 

polymeric forms they will be enriched with exosomes as well. It has already been shown that 

nanomembrane ultrafiltration enriches soluble proteins like albumin and α-1-antitrypsin along 

with exosomes when applied to nephrotic urine (Rood et al., 2010) and limits the detection of 

microvesicular proteins.  Another alternative method showed that loading the crude 
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ultracentrifugation pellet onto a size exclusion chromatography column yielded three 

fractions (HMW, LMW and >10kDa). The high molecular weight fraction (HMW) showed 

the presence of exosomal markers while the low molecular weight (LMW) fraction had only 

high abundant proteins. The LMW fraction was present only in nephritic urine and absent in 

normal urine suggesting that large amounts of high abundance proteins interfere with the 

isolation and subsequent analysis of exosomes in nephrotic urine. The impact of storage 

conditions and preservation was assessed on yield and stability of the exosomal fraction and 

associated proteins (Zhou et al., 2006b). The study showed that some of the exosomal 

proteins can be susceptible to degradation if protease inhibitors are not added at the time of 

sample collection. However, this was done on two different samples and not on the same 

sample which had been divided into two parts thus it may be subject to sample-to-sample 

variations. Freezing urine samples at -80°C was better for recovery of exosomes by 

ultracentrifugation compared to freezing at –20°C and extensive vortexing improves the 

recovery after freezing. Finally, first and second morning urine is comparable in terms of 

content and recovery of exosomes and associated proteins. Adjustment of pH before freezing 

the samples did not affect protein stability (Miki & Sudo, 1998).  

1.2.4.3 Proteomic analysis of urinary exosomes and other vesicles 

Proteomic analysis is an important tool which helps to annotate and understand the function 

of exosomes as well as presenting avenues for biomarker discovery by enabling differential 

protein analysis between normal and pathologic patient samples. Exosomal composition 

varies according to the cell type of origin but some components appear to be present in all 

exosomes which reflects their secretion pathway and common origin. The presence of 

tetraspanins (CD63, CD9, CD81 and CD82) in exosomes, regardless of their cell of origin, is 

such a typical characteristic. Exosomes also contain heat shock proteins Hsp70 and Hsp90 

which assist loading of peptide onto the major histocompatibility complexes MHCI and 
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MHCII, among other functions. Exosomes are also enriched in proteins involved in vesicle 

formation and trafficking, like Alix and Tsg101 among others. Proteins involved in 

membrane fusion and exosome docking, like Rabs and annexins including I, II, V, VI are also 

present (Mears et al., 2004; Futter & White, 2007) common to most exosomes from various 

cells. A variety of adhesion molecules, like CD146, CD9, CD18, CD11a, b and c, milk-fat-

globule EGF factor-VIII (MFG-E8), intercellular adhesion molecule-1 and CD58, have been 

found in exosomal fractions (Thery et al., 2001; Mears et al., 2004). Proteins involved in 

apoptosis such as 14-3-3, galectin-3 and thioredoxin peroxidise have also been found. 

Metabolic enzymes including enolase-1, pyruvate and lipid kinases and peroxidases are also 

commonly found (Hegmans et al., 2004).  Figure 1.11 is a schematic showing protein 

composition found in exosomes from various sources along with their function for some of 

them. 
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Figure 1.11: Schematic representation of typical proteome content of exosomes derived from 

various types of cells. This figure has been taken from (Schorey & Bhatnagar, 2008) 

There have been a number of proteomic studies of different types of urine vesicles such as 

membrane particles and urinary exosomes. One of the earliest was by Pistikun et al., 

(Pisitkun, Shen & Knepper, 2004) who isolated low density membrane vesicles by 

differential centrifugation followed by DTT treatment to remove interference of THP and 

they termed these vesicles “exosomes”. They identified 295 unique proteins, from which 73 

are known to be involved in membrane trafficking including endosomal traffic. Forty-eight 

proteins were integral membrane proteins, eight were GPI-anchored and twenty three were 

peripheral membrane proteins. All the integral proteins identified were from the apical side of 

plasma membrane and none were from the baso-lateral side suggesting that exocytosis of 
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vesicles found in urine occurs at the apical side of cells. Additionally a number of high-

molecular weight ubiquitin bands were observed in the immunoblot (Figure 1.12) suggesting 

these membranes consist of ubiquitinated proteins.  

 

 

 

Figure 1.12: Instances of identification of ubiquitin and immunoblot using anti-ubiquitin 

antibodies. Part A shows the numbers of different ubiquitin peptides were identified at a 

given molecular weight; x-axis is the number of ubiquitin peptides identified and the y-axis is 

the molecular weight corresponding to the gel segment from where the band was cut. Part B 

is the western blot of high-speed pellet (P200,000g) using anti-ubiquitin antibodies. The 

figure is taken from (Pisitkun, Shen & Knepper, 2004) 

A number of solute and water transporters were also identified. Readers are directed to the 

original study for complete list of the proteins. Polycystin-1, which codes for protein product 

of the gene responsible for autosomal dominant polycystic kidney disease, was also 

identified. Shortly thereafter the same group published a large-scale proteomics and 

phosphoproteomics study on urinary exosomes isolated by the same method as their previous 
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study (Gonzales et al., 2009). The list of phosphoproteins identified and the phosphorylation 

site is provided in the following section about post-translational modifications. They 

identified 1132 proteins unambiguously including 205 proteins from the previous study and 

927 new proteins. A large number of integral membrane proteins, mainly apical solute and 

water transporters were identified from every kidney tubule segment including the proximal 

tubule (sodium-hydrogen exchanger 3, sodium-glucose co-transporter 1 and 2, and 

aquaporin-1 [AQP1]), the thick ascending limb (sodium-potassium-chloride co-transporter 2 

[NKCC2]), the distal convoluted tubule (thiazide-sensitive Na-Cl co-transporter [NCC]), and 

connecting tubule/collecting duct (AQP2, rhesus blood group C glycoprotein [RhCG, an 

ammonia channel], B1 subunit of vacuolar H
+
-ATPase, and pendrin). Twenty two proteins, 

part of the ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III complexes involved in 

multivesicular body formation, were also identified. These proteins cover 75% of total 

ESCRT machinery. This original study was followed by another study published by Hogan et 

al., (Hogan et al., 2009), who isolated a urinary exosomal fraction by a traditional 

centrifugation method and this fraction was subfractionated by density gradient 

ultracentrifugation (5-30% sucrose gradient). This resulted in three fractions representing 

markers aquaporin-2, polycystin-1 (PC-1) and podocin. These PKD vesicles were analysed 

by proteomic methodology and 552 proteins were identified including 232 proteins not 

reported in urinary proteomic databases. They also identified polycystin-2 (PC-2) and 

fibrocystin (FCP) in their PKD vesicle preparations. They identified the in vivo cleavage 

products of PC-1 and FCP which confirmed the previous in vitro studies (Ponting, Hofmann 

& Bork 1999; Qian et al., 2002; Kaimori et al., 2007). They also demonstrated the interaction 

of PKD vesicles with primary cilia of kidney and biliary epithelial cells. In addition to these 

studies, another study has shown isolation of podocyte membrane vesicles from normal and 

pathological (several types of nephropathies) urine by immunoadsorption onto anti-



50 
 

complement receptor-1 (CR-1) antibody-bound magnetic beads (Lescuyer et al., 2008). They 

identified 76 proteins out of which 37 were identified only in pathological urine. 

Interestingly, 55 proteins of the 76 were plasma proteins and one could speculate about 

proteinuric states in these nephropathic samples. Paraoxanase-1 (PON-1) was identified in 

human urine for the first time from a patient with severe lupus nephritis and renal 

insufficiency.  

A comparison of proteins identified in all these proteomic studies of urinary vesicles with the 

most comprehensive urine protoemics study to date (Marimuthu et al., 2011) and with each 

other is presented in Figure 1.13. CR-1 immunopurified vesicles proteomics is marked as 

ectosomes and all other studies are marked with the first author of the studies.  
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Figure 1.13: exosomal proteomics studies (Combined  (Pisitkun, Shen & Knepper, 2004) and 

(Gonzales et al., 2009)), exosome-like vesicles  (Hogan et al., 2009), CR-1 immuno-isolated 

vesicles (ectosomes (Lescuyer et al., 2008)) and whole urine proteomic study (Marimuthu et 

al., 2011) are compared to each other. 

Pistikun and Gonzalez et al., have worked with crude vesicle preparations. Therefore, their 

exosomal fraction is probably a mixture of many different types of vesicles like exosomes, 

ectosome/shed vesicles and membrane particles. Hence, they are likely to have overlaps with 

all other studies which are illustrated in figure 1.13. On the other hand Hogan et al., purified 

vesicles which have a significant fraction of proteins not covered by any of the earlier studies. 

Apart from the highly dynamic nature of exosomes, this suggests that theirs is a novel protein 

set with possible different functions than other exosomal and ectosomal vesicles. 
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1.3 Post-translational modification and proteomic analysis 

The function of a cell is dependent on a multitude of biochemical reaction cycles, going on 

simultaneously in the cell, at various locations. A very high degree of diversity in proteins 

involved in these reactions is needed to temporally and spatially regulate the respective 

activities at different sub-cellular microdomains. Altered and sometimes many different 

localisation of a same protein may be needed for different pathways. The same protein might 

be required, for example, in cytoplasm or plasma membrane to execute the signals 

propagated by different stimuli. This extremely high level of diversity is not possible with 

only approximately 25,000 genes coding for proteins in humans (U.S. Human Genome 

Project, http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml). One of the 

major ways to generate such diversity is through covalent post-translational modifications 

(PTMs) of the proteins at one or more sites (Walsh, Garneau-Tsodikova & Gatto, 2005). 

Because α-carboxy and amino group of an amino acid are involved in bonding to make 

peptide bond in protein backbone, these modifications mainly occur at amino acid side chains 

and/or at the amino- or carboxy-terminus of the proteins. Table 1.3 lists some of the major 

PTMs of the different amino acid side chains.  

Table 1.3: Common post-translational modifications of amino acid side chains. This table 

has been adapted from  (Walsh, Garneau-Tsodikova & Gatto, 2005) 

Residues Reaction  Example 

Multiple residues Proteolysis Signal peptide cleavage, 

activation of proteases 

Asp Phosphorylation Protein tyrosine phosphotases, 

response regulators in two-

component systems 
 Isomerisation to isoAsp 

Glu Methylation  Chemotaxis receptor proteins 

 Carboxylation  Gla residues in blood 

coagulation 

 Polyglycination  Tubulin  

 Polyglutamylation  Tubulin 

Ser Phosphorylation Protein serine kinases and 

phosphotases 
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 O-glycosylation Notch O-glycosylation 

 Phosphopantetheinylation  Fatty acid synthase 

 Autocleavages  Pyruvamidyl enzyme formation 

Thr Phosphorylation  Protein threonine 

kinases/phosphatses  O-glycosylation 

Tyr Phosphorylation Tyrosine kinases/phosphatses 

 Sulfation  CCR5 receptor maturation 

 Ortho-nitration Inflammatory responses 

 TOPA quinine Amine oxidase maturation 

His Phosphorylation Sesnsor protein kinases in two-

cmoponent regulatory systems 

 Aminocarboxypropylation  Dipthamide formation 

 N-methylation Methyl CoM reductase 

Lys N-methylation  

 N-acylation by acetyl, biotinyl, 

lipoyl, ubiquityl groups 

Histone acetylation, swinging-

arm prosthetic gropus, 

ubiquitin, SUMO tagging of 

proteins 

 C-hydroxylation Collagen maturation 

Cys S-hydroxylation (S-OH) Sufenate intermediates 

 Disulfide bond formation Protein in oxidising 

environments 

 Phosphorylation PTPases 

 S-acylation Ras 

 S-prenylation Ras 

 Protein splicing Intein excisions 

Met Oxidation to sulfoxide Met sulfoxide reductase 

Arg N-methylation Histones 

 N-ADP ribosylation Gsα 

Asn N-glycosylation N-glycoproteins 

 N-ADP ribosylation eEF-2 

 Protein splicing Intein excision step 

Gln Transglutamination Protein cross-linking 

Trp C-mannosylation Plasma membrane proteins 

Pro C-hydroxylation Collagen, HIF-1α 

 Cis-trans isomerisation Protein prolyl isomerases 

Gly C-hydroxylation C-terminal amide formation 

 

These PTMs can potentially change the activity and/or localisation of the proteins acting as 

regulators of various biological processes in the cell. Exosomes/microvesicles originate from 

specialised compartments of the cells involved in regulatory and communication processes of 

the various target cells. It is, therefore, extremely important to characterise PTMs of proteins 

found in exosomes/microvesicles because they will reflect upon the functions of these 

vesicles and also provide information about classes of proteins sorted to these vesicles. 
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Protein modifications are not homogenous and a single gene can give rise to many sub-

populations of a protein by alternative splicing of the gene and a single or multiple 

modifications of the protein residues. Usually only a fraction of a protein is modified by 

PTMs. Therefore, the amount of modified protein is often not sufficient for complete 

characterization by MS. As a result, recombinant proteins are often used as a source for such 

studies. However in vitro-modified proteins can be significantly different from the in vivo 

modifications. Two-dimensional electrophoresis (2DE) is often used to separate different 

modification states of a protein population followed by their characterization by MS. For 

example, phosphorylated proteins on 2DE leave a horizontal trail owing to charge differences 

among modified and non-modified forms. N- and C-terminal processing of enolase was 

studied with a combination of 2DE and MS and more than 10 different forms were defined 

(Larsen et al., 2001). Antibody precipitation and chromatographic methods are also used to 

enrich the modified proteins followed by their identification or characterization by MS. The 

isolation method selection mainly depends upon the type of modification in question. Anti-

phosphotyrosine antibody can enrich phosphorylated tyrosine-containing proteins (Pandey et 

al., 2000) while an anti-phosphoamino acid antibody can be used for detection of 

phosphoserine or phosphothreonine (Gronborg et al., 2002). However, 

glycosylphosphatidylinositol (GPI)-anchored proteins are usually released by specific 

enzymes from the cell surfaces and, after removing the cells by centrifugation, proteins in the 

supernatant can be identified. This type of analysis will yield a global identification of GPI-

anchored proteins. Transfection of cells with a tagged version of ubiquitin or SUMO proteins 

and subsequent tag-based purification yields all proteins covalently attached to these 

modifiers (Vertegaal et al., 2006) which can be subsequently identified by MS. If the 

enrichment protocol is designed carefully it eliminates the need for further complex 

characterization by MS and only identification of enriched proteins is often sufficient. There 
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have been very few studies characterising PTM of the exosomal/microvesicle proteins. These 

are discussed according to the type of PTM involved. 

1.3.1 Glycosylation 

One of the most common and important type of PTM is glycosylation in which proteins 

contain one or more heterosaccharides covalently bound to the polypepide backbone. These 

conjugated proteins are called glycoproteins. These proteins are present in all forms of life 

and almost every type of tissues and cells as well as in cell secretion products. These 

heterosachharides conjugated to proteins are called glycans and they make upto 10-60% of 

the weight of glycoproteins. Two major types of glycosylations are N-linked and O-linked 

glycosylation. The N-linked refers to the bond of glycan with a nitrogen atom in the amino 

acid asparagine while O-linked refers to bonding of glycans to oxygen atom in serine or 

threonine. N-linked glycoproteins contains β-glycosidic linkage between a GlcNAc residue 

and the δ amide N of an asparagine (Asn) side chain. The common feature between different 

types of N-linked glycans is a pentasaccharide (Man3 GlcNAc 2) core which reflects common 

precursors to all forms. N-linked glycans fall into three main subclasses as shown in Figure 

1.14. 
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Figure 1.14: Structural varieties in N-glycosylation. 

 Polylactosamine extensions are composed of number of (Galβ1-4GlcNAcβ1-)n disaccharide 

units within one of the antenna.  Alternatively, GlcNAc residue directly attached to the Asn 

residue or on the antennae could be derivatised with the monosaccharide fucose. Despite the 

structural composition of each antenna, all N-linked glycans may be capped with an N-

acetylneuraminic acid- galactose (NeuAc-Gal) disaccharide. The variety of sialic acids, 

containing NeuAc residue, is either α2-3 or α2-6 linked to the penultimate galactose.  A 

summary of the various potential modifications that can occur are shown in Figure 1.15. 
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Figure 1.15: Possible modifications of the N-glycosylation glycan structure. 

O-linked glycans are formed by an α-glycosidic linkage between a GalNAc and the hydroxyl 

group of a Ser or Thr residue.  Following attachment of the GalNAc residue to Ser/Thr, a 

Galβ1-3 attachment to the GalNac forms what is termed a core 1 O-linked glycan.  This is 

either disialyated to complete the core 1 structure or further extended to produce a core 2 O-

linked glycan.  Core 1 and 2 structures may be seen in Figure 1.16. 
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Figure 1.16: various core structures of O-glycosylation. 

Unlike N-glycosylation, there is no preformed core structure that is formed before the final 

glycan structure is established. O-linked glycosylation unlike N-linked glycosylation takes 

place completely in golgi apparatus. O-linked glycans contain non-reducing α-linked sugars 

(sialic acid and fucose) while mannose and glucose are absent. 

Glycosylation is a dynamic PTM and it is believed that it changes upon alterations in 

physiological state of an organism are reflected in altered expression of glycans or a change 

in their type. Several hereditary diseases show alterations in glycosylation associated with 

mutant phenotype. For example, persons with Carbohydrate Deficiency Glycoprotein 

Syndrome (CDGS) exhibit abnormal glycosylation of proteins like α-1 antitrypsin and 

transferrin (Jaeken & Carchon, 1993). For other diseases, increase in sialylation and 

branching of glycans expressed by cancer cells has been widely observed and it correlates 

directly with metastatic capacity of these cells (Troy, 1992). The glycans on Fc region of 
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immunoglobulins (IgG) lacking in galactose have been observed to be increased in 

rheumatoid arthritis (Youings et al., 1996). Incomplete N-glycosylation in cystic fibrosis 

transmembrane conductance regulator (CFTR) protein leads to ER retention of the protein 

and premature degradation (Jilling & Kirk, 1997) and this contributes to symptoms of cystic 

fibrotic. In case of cardiovascular diseases, abnormal glycosylation of fibrinogen in hepatoma 

can lead to dysfibrinogenemia (Gralnick, Givelber & Abrams, 1978) and also impaired fibrin 

polymerization (Maekawa et al., 1992; Ridgway et al., 1997). In case of IgA nephropathy it 

has been found that there is overrepresentation of IgA1 O-glycoforms in serum which are 

poorly galactosylated. It is suggested that these glycoforms either act as autoantigens driving 

the formation of glycan specific antibodies or as antigens for cross reacting antimicrobial 

antibodies and subsequent formation of immune complexes which take part in pathogenesis 

of the disease (Barrett & Feehally, 2011). Efficient and appropriate glycosylation of several 

kidney proteins is essential for their function. For example, altered glycosylation of rat 

thiazide-sensitive Na-Cl cotransporter (rNCC) affects its normal function and cell surface 

expression in rat renal distal convoluted tubule (Hoover et al., 2003). Glycosylation is an 

important PTM to be studied as it can lead to novel biomarkers of various diseases as well as 

enhanced understanding of the pathogenesis. 

1.3.1.1 Glycomic approaches to study glycosylation 

There is an increasing amount of interest in characterizing glycans of various glycoproteins 

coupled with identification of these proteins. There are LC and MS approaches to study of 

glycans either in purified proteins or from a complex mixture like cell lysates or body fluids. 

This, however, requires liberation of glycans from their corresponding proteins followed by 

reducing terminal labelling for detection and separation. Inability of these techniques to 

assign whole cell or body fluid glycans to their corresponding proteins is one major 

drawback. If one protein at a time is analysed, it reduces the throughput and requires purified 
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proteins in sufficient amount because glycans usually are a small but distinctive portion of a 

whole protein’s mass. Moreover, this procedure is not helpful in the case of O-linked glycans 

as protocols for their liberation are based on chemical removal and the reproducibility of such 

techniques is low. In addition, glycans of glycoproteins show high degree of heterogeneity.  

Another approach to glycomic  analysis is the use of carbohydrate binding proteins (anti-

carbohydrate antibodies and lectins) to fractionate the proteins prior to identification with 

MS. Antibodies are not very useful for this prupose as most of the glycans and components 

thereof are evolutionarily conserved and evoke minimal immunogenicity in antibody-

producing host species. A notable exception is the natural antibodies to blood group 

determinants different than the host blood group. Lectins are sugar-binding proteins having 

distinct specificity to one type of sugar conjugate over others. This specificity varies among 

different lectins. Use of lectins also has limitations in identifying the composition of glycans 

attached to target proteins. These limitations include the inability to infer complete glycan 

composition from lectin binding. Lectin microarray is one rapidly emerging technology for 

profiling of total glycans of complex mixtures like cell lysates and differences among 

pathological states compared to the normal physiological state, present an avenue for 

development of highly sensitive glyco-biomarkers. A definite advantage is the possibility for 

high-throughput analysis of glycans by the lectin microarrays. The respective biomarkers 

discovered have an advantage over protein biomarkers as changes in glycan profile e.g. in 

response to a disease course are rapid and early detection of anomalous structures is possible. 

However, there are many challenges associated with technical and biological variabilities. 

Typically lectins are immobilised or printed (using techniques like that of ink-jet printing) on 

a substrate surface or glass slide and pre-labelled glycoprotein, or a mixture thereof, is 

hybridised to them (Hirabayashi, Kuno & Tateno, 2011). Fluorescence intensity can be 

measured to obtain quantitative information about type of glycans present on a purified 
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protein or the whole glycans of a mixture like a cell lysate. Controls can be compared to a test 

population of samples to evaluate differences and similarities among them. Figure 1.17 

presents various schemes that can be implemented in lectin microarray. 

 

Figure 1.17: Various schemes of lectin microarray including direct cell glycan profiling and 

direct and indirect glycoprotein profiling. Lectins are immobilised on a substrate and labelled 

cells (direct cell profiling) or glycoprotein (s) (direct glycoprotein profiling) are added. In 

another approach glycoproteins captured by lectins can be probed further with a specific 

antibody (indirect glycoprotein profiling). The figure has been taken from  (Hirabayashi, 

Kuno & Tateno, 2011) 

Lectin affinity chromatography coupled to MS can also be used to determine the nature of 

glycans along with corresponding glycoproteins. This is important because, once native 

glycosylation of a protein is known; it becomes much easier to develop antibody and lectin-

based hybrid microtitre plate assays to determine rapidly whether glycosylation of target 

protein is changing in a given pathological state. Lectins have affinity for distinct glycan 

epitopes (Sharon & Lis, 1989) and this property can be used to isolate, fractionate and 

analyse complex mixtures of glycoproteins using e.g. lectin-agarose or magnetic beads with 

immobilised lectins (Wiener & vanHoek, 1996; Bundy & Fenselau, 2001). Lectins only 

enrich a selective fraction of glycoproteins and, therefore, broad specificity lectins are 
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generally used (Mechref et al., 2000; Yamamoto, Tsuji & Osawa, 1998). However, to enable 

complete analysis of most glycoproteins present in a complex biological sample like 

biofluids, multi-lectin columns are needed (Yang & Hancock, 2004; Wang, Wu & Hancock, 

2006). Another method based on hydrazide chemistry can also be used which oxidises the 

carbohydrates attached to glycoproteins and enables their subsequent attachment to a 

hydrazide resin. The N-linked proteins or peptides can subsequently be released by peptide 

N-glycosidase F (PNGase F) (Zhang et al., 2003; Tian et al., 2007). Lectin and hydrazide 

chemistry-based enrichment both have their advantages and disadvantages. For example, in a 

comparative study to analyse rat liver membrane proteins, it was found that lectins mostly 

enriched high molecular weight glycoproteins while the hydrazide method enriched mostly 

low molecular weight proteins (Lee et al., 2009). Therefore, both these methods should be 

used in tandem if possible for optimal results. Reaction with boronic acid can also be used to 

enrich glycoproteins and it was applied to enrich low-abundance glycoproteins from human 

blood samples (Sparbier, Wenzel & Kostrzewa, 2006). Coupling of high-resolution MS 

instruments to these enrichment methods can be used for qualitative and/or quantitative 

analysis of glycoproteins (Wang, Wu & Hancock, 2006). 

1.3.1.2 Exosome/Microvesicle glycosylation 

The glycan signature of the exosome/microvesicle reflects the cell secreting them and 

differences among and between cells and between cells and the vesicles, respectively. 

SKOV3 ovarian carcinoma cell-derived exosomes are remarkably enriched in high-mannose 

or NeuAcα2, 3/6-containing proteins compared to parent cells (Escrevente et al., 2011) 

although the full identity of these proteins is not yet known. Exosome uptake by dendritic 

cells can be specifically inhibited by mannose and N-acetylglucosamine where interaction 

between cell and exosome is mediated by a C-type lectin (Hao et al., 2007). Galectin-5 

mediates the uptake of exosomes by macrophages and this process can be inhibited by 
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supplying lactose, the nominal glycan specificity of this lectin, to the medium (Barres et al., 

2010). This suggests that glycosylation affects the uptake of exosome/microvesicles in a cell 

type-dependent manner. Glycosylation is also an important “address code” signal for 

microvesicle cargo. This is supported by the fact that distinct glycoforms of prion protein 

(PrP) are incorporated preferentially over other forms into exosomes (Vella et al., 2007).  

Lectin microarrays were employed to reveal the glycan expression pattern of microvesicles, 

cell membranes and HIV-1 particles from matched cells. Notably, it was found that HIV-1 

particles and microvesicles (MV) share similar glycosylation, different from the parent cells 

(Krishnamoorthy et al., 2009). Microvesicles and HIV-1 particles were enriched in high-

mannose epitopes (Galanthus nivalis lectin {GNA, Narcissus pseudonarcissus lectin {NPA, 

Hippeastrum hybrid lectin {HHL, Concanavalin-A {Con-A, Pisum sativum agglutinin {PSA, 

cyanovirin-N {CVN, scytovirin {SVN} and griffithsin {GRFT) compared to parent H9 cell 

membrane. MV and HIV were also enriched in complex N-linked glycans (Phaseolus 

vulgaris erythroagglutinin {PHA-E} and leukoagglutinin {PHA-L), N-acetyllactosamine 

(Datura stramonium agglutinin {DSA, Maackia amurensis lectin {MAL-I, Ricinus communis 

agglutinin {RCA, Solanum tuberosum lectin {STA, Wheat Germ agglutinin {WGA), sialic 

acid (Sambucus nigra lectin {SNA, MAA, MAL-II), and fucosylated (Ulex europaeus 

agglutinin I {UEA-I, Psophocarpus tetragonolobus lectin II {PTL-II, Aleuria aurantia lectin 

{AAL) epitopes. Moreover blood antigens A/B (Euonymus europaeus lectin {EEA, 

Phaseolus lunatus lectin {LBA) were absent in microvesicles and HIV-1 while being present 

on the cell membrane. These glycan epitopes enriched in MV and HIV-1 colocalized to 

specific membrane microdomains suggesting that MV arise from specific domains on PM 

and HIV-1 hijacks the glycosylation machinery of MV for its advantage. The immune system 

would see HIV-1 glycans as MV and would not attack the viral particles. The glycan 

signatures among different cell lines (all T-cell lines) were similar in MV but some 



64 
 

differences were also present while in the parent cell membrane glycosylation was different 

among cells. It suggests that sorting of glycoproteins to these vesicles is at least in some ways 

glycosylation-specific and may serve as an important mediator of communication between 

cells including that mediated by exosome/microvesicle uptake. Another study by the same 

group, this time using a wide variety of cell line and human breast milk as source of MV, 

reinforced these results showing that MV have a conserved glycan pattern which is different 

from the parent cell membrane (Batista et al., 2011). No other studies have been done on 

glycosignature of exosome/microvesicles or glycoproteomics. Notably these studies did not 

identify the glycoprotein constituents of the vesicles. 

1.3.2 Phosphorylation 

Mammalian phosphoproteome (all the proteins modified by phosphorylation of at least one or 

more amino acids) typically contains phosphoSerine (pS), phosphoThreonine (pT) and 

phosphoTyrosine (pY) residues with the majority being pS and pT (90:10 pS,pT/pY) while 

bacteria and fungi also have phosphoHistidine (pHis) and phosphoAspartic acid (pAsp) 

(Mann et al., 2002). pAsp is also found in some mammalian proteins but it is rare in 

mammals. These phosphorylated amino acids are shown in Figure 1.18.  
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Figure 1.18: Various phosphorylated amino acid structures (Walsh, Garneau-Tsodikova & 

Gatto, 2005). 

One protein can be phosphorylated at multiple residues making the phosphoproteome very 

complex. Over 500 different kinases (Phoshorylating enzymes) are known in the human 

proteome capable of influencing the phosphoprotein outcome, making this network even 

more complex. Introduction of phosphate group(s) to a protein can lead to altered 

conformation and, thus, also protein function  (Johnson & Lewis, 2001) e.g. inducing 

initiation or termination of a signal in a signalling cascade. There has been only one study in 

exosomes which has identified phosphoproteins and their site of modification in urinary 
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exosomes (Gonzales et al., 2009). Gonzalez et al., used mass spectrometric technique of 

neutral loss scanning with high-stringency target-decoy analysis to identify phosphorylation 

sites in urinary exosomal proteins. Nineteen phosphorylation sites corresponding to fourteen 

exosomal proteins were identified in the study. Orphan G-protein coupled receptors 

(GPRC5B and GPRC5C) were among the proteins on which these sites were identified 

including one new site in GPRC5B (T389) and three new sites in GPRC5C (T435, S395 and 

Y426). S811 was identified as a previously unknown phosphorylation site on carboxy 

terminal of thiazide-sentitive co-transporter (NCC) which is proposed to regulate transport. 

S256 was identified in aquaporin-2 (AQP-2) which was further confirmed by immunoblotting 

the exosomal sample with specific anti-AQP-2 antibodies. A list of all the indentified 

phosphorylation sites with corresponding proteins is shown in Table 1.4. 
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Table 1.4: Phosphoproteins identified in urinary exosomes by (Gonzales et al., 2009) 

Ref Seq Protein Name, Sequence Site Gene Novel site 

NP_061123 G protein-coupled receptor family 

C, group 5, member C isoform b  

 GPRC5C  

 R.AEDMYSAQSHQAA 

(T*)PPKDGK.N 

T435  Yes 

 K.VP (S*)EGAYDIILPR.A S395  Yes 

 R.AEDM 

(Y*)SAQSHQAATPPKDGK.N 

Y426  Yes 

NP_001035149 secreted phosphoprotein 1 isoform 

C 

 SPP1  

 K.AIPVAQDLNAPSDWD 

(S*)R.G 

S192  No 

 R.GKD 

(S*)YETSQLDDQSAETHSHK.Q 

S197   

 R.GKDSYETSQLDDQ 

(S*)AETHSHK.Q 

S207   

NP_057319 G protein-coupled receptor family 

C, group 5, member b precursor 

 GPRC5B  

 R.SNVYQPTEMAVVLNGG 

(T*)IPTAPPSHTGR.H 

T389  Yes 

NP_000477 Aquaporin 2  AQP2  

 R.RQ (S*)VELHSPQSLPR.G S256  No 

NP_004860 Vacuolar protein sorting factor 4B  VPS4B  

 K.EGQPSPADEKGND 

(S*)DGEGESDDPEKKK.L 

S102  Yes 

NP_054762 Chromatin modifying protein 2B  CHMP2B  

 K.ATI (S*)DEEIER.Q S199  No 

NP_687033 Proteasome α 3 subunit isoform 2  PSAM3  

 K.ESLKEEDE (S*)DDDNM S243  No 

NP_036382 Related RAS viral (r-ras) 

oncogene homolog 2 

 RRAS2  

 R.KFQEQECPP (S*)PEPTRK.E S186  Yes 

NP_031381 Heat-shock 90-kD protein 1, β  HSP90AB1  

 K.IEDVG 

(S*)DEEDDSGKDKK.K 

S255  No 

NP_612433 Kinesin family member 12  KIF12  

 R.VTTRPQAPK (S*)PVAK.Q S236  Yes 

NP_079119 Cytochrome b reductase 1  CYBRD1  

 R.NLALDEAGQRS (T*)M. T285  Yes 

NP_001037857 Mucin 1 isoform 7 precursor  MUC1  

 R.DTYHPMSEYPTYH 

(T*)HGR.Y 

T118  Yes 

NP_000330 Solute carrier family 12 

(sodium/chloride transporters), 

member 3 

 SLC12A3  

 R.GARP (S*)VSGALDPK.A S811  Yes 

NP_000329 Sodium potassium chloride co-

transporter 2 

 SLC12A1  

 K.IEYYRN (T*)GSISGPK.V T118  No 

 K.IEYYRNTG (S*)ISGPK.V S120  No 
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AIMS OF THE STUDY 

 

The aims of the study were following: 

1. To develop alternative and/or novel methods for isolation and purification of urinary 

membrane vesicles including the search for novel affinity-ligand-based methods for 

urinary membrane vesicles isolation.  

 

2. To characterise urinary membrane vesicles and their content using proteomic ‘gel-

based’ and ‘off-gel’ proteomic analysis. 

 

3. To profile glycoproteins of urinary membrane vesicles. To establish the surface 

glycan signature of urinary membrane vesicles followed by identification of the 

constituent glycoproteins of urinary membrane vesicles. 

 

4. To profile the other post-translational modifications like palmitoylation and 

ubiquitination of protein constituents of urinary membrane vesicles and identification 

of these proteins. 
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2.1 Introduction  

The discovery of exosome vesicles in urine (Pisitkun, Shen & Knepper, 2004) has rapidly 

opened new possibilities for the mechanistic understanding of biological processes and, 

importantly, has served as a source for novel biomarkers (Simpson et al., 2009). 

Consequently, exhaustive proteomic profiling of urinary exosomes has identified more than 

1100 gene products, including 177 disease-related proteins derived from all nephron 

segments (Gonzales et al., 2009) and from the urogenital tract (Mitchell et al., 2009; Welton 

et al., 2010). The identification from urine of distinct exosomal transcription factors (Zhou et 

al., 2008) and nucleic acids encoding proteins native to all nephron segments (Miranda et al., 

2010) is groundbreaking, and highlights the need to precisely understand their biology which 

plausibly reflects new aspects of disease pathways.  

The aim of this study was to optimise the currently-available techniques and remove the 

abundant confounding urinary proteins which seriously interfere with the exosomal vesicle 

recovery, thus influencing the final yield and subsequent analytical power. The treatment of 

the exosomal pellet obtained by the serial centrifugation protocol with dithiothreitol (DTT) 

has previously been proposed as a solution to reduce such interference (Gonzales et al., 

2009). After treatment with DTT, exosomal markers, CD9, Alix and TSG101 pelleted down 

in the high-speed pellet (P200,000g) but not in the low speed pellet (18,000g). Therefore, the 

yield of exosomes increased, however, Tamm-Horsfall protein, which is the most abundant 

protein in urine and a contaminant in urinary exosome isolation, pelleted down at high speed. 

This might interfere in obtaining pure exosomal pellet (200,000g) and complicate further 

proteomic analysis. 

Furthermore, previous proteomic profiling studies have also identified a number of receptor 

proteins whose three-dimensional folding is stabilised by disulfide bridges. Accordingly, 
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sortilin-related receptor, for example, has 33 predicted disulfide bridges and megalin has 159 

predicted disulfide bridges (Westergaard et al., 2004; Bajari et al., 2005) fixing their 

respective molecular structures. Any study attempting to evaluate functions of exosomes 

should optimally follow an isolation protocol which preserves the correct folding and 

therefore, the functionality of the respective proteins.  DTT is a strong reducing agent, 

however, and the exosomal proteins may accordingly be reduced and unable to refold 

properly upon reoxidation, hampering relevant functional studies leading to loss of biomarker 

promise  

Here, we hypothesized that interference of soluble proteins in the exosomal isolation process 

occurs due to aggregation, non-specific interactions as well as their gelling properties (as e.g. 

for Tamm-Horsfall glycoprotein {THP}). Any chemical agent which solubilises these 

aggregates may also reduce contamination of the ultracentrifugation pellet by these proteins. 

For these benefits, we have used 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonic (CHAPS) as mild detergent which is known to solubilise THP (Kobayashi & 

Fukuoka, 2001) to largely exclude this interference. Mild non-ionic or zwitterionic detergents 

can solubilise the polymers of THP which might lead to pelletting down of THP at low speed 

(18,000g). This would be expected to remove contamination of high speed pellet (200,000g) 

with THP. We then compared results after CHAPS treatment with those after the DTT 

treatment. 

Furthermore, we also compared the preservation of two key protease activities, including 

dipeptidyl peptidase IV (DPP IV) and nephrilysin (NEP), both previously shown to be 

associated with urinary exosomes (Pisitkun, Shen & Knepper, 2004; Gonzales et al., 2009). 

These two enzymes are stabilised by 5 and 6 disulfide bonds, respectively (Erdos & Skidgel, 

1989; Busek, Malik & Sedo, 2004). Furthermore, we reveal for the first time the overlapping 

proteome subsets following CHAPS and DTT treatments (SN200,000g). Proteomic profiling 



86 
 

of the SN200,000g would shed light on the types of proteins whose interference will be 

reduced in the P200,000g.  The proteomic profiling revealed that both CHAPS and DTT 

methods result in closely-related protein profiles, fully validating our method while CHAPS 

was found to be superior in maintaining functional protein integrity. Our method should 

greatly improve the exosome functional yield and, thus, possibilities to fully exploit the 

biomarker potential of exosomes. 
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2.2 Materials and Methods 

2.2.1 Urine collection 

Urine samples were collected from ten non-smoking healthy laboratory volunteers (5 female 

and 5 male) whose ages ranged from between 20 to 40 years.  There was no history of renal 

dysfunction in any of the subjects or drug administration during sample collection. The first 

morning urine was processed within 3 hours of collection. At collection, the first 50 mls were 

discarded and the remaining void urine was collected for analysis. Each urine specimen was 

subsequently tested by the Combur 10 Test®D dipstick (Roche Diagnostics; Mannheim, 

Germany). 

2.2.2 Vesicle purification 

All the chemicals were purchased from SIGMA, St. Louis unless otherwise specified. A 

schematic representation of the methodology used to isolate nano vesicles is shown in Figure 

2.1.  In summary, pooled urine samples were initially centrifuged at a relative centrifugal 

force (RCF) of 1,000g for 20 minutes. The resultant supernatant (SN) was retained and split 

into aliquots of 500mL. Upon thawing, these samples presented with cryo-precipitate, which 

was completely dissolved by vortexing the sample at room temperature (RT) until complete 

the solution became clear. Next, 500mL aliquots of SN1 were dialysed at 4ºC against 

deionised water (3 changes of 10L each over 24hours) and the volume was subsequently 

reduced up to 20mL using vacuum concentration (miVac, GeneVac, Suffolk, Ipswich, UK). 

The concentrated SN1 was centrifuged (Avanti®J-26 XP centrifuge, Beckman Coulter, 

Fullerton, CA) at 18,000g for 30 minutes at RT in a fixed angle rotor (Beckman JA-20, 

Fullerton, CA). The 18,000g SN (SN18) fraction was subjected to an ultracentrifugation step 

using the OptimaTM L-90 K preparative ultracentrifuge (Beckman Coulter) at 200,000g for 2 

hours at RT in a fixed-angle rotor (Beckman 70Ti, Beckman). The pellet (P200) was 
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resuspended in 3 mL of deionized water. Aliquots (2mg of total protein) of resolubilised 

crude P18 and P200 were treated with either 1% (w/v) of 3-[ (3-

cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) overnight (ON) with 

end-over-end agitation at 4°C (5mL final volume) or with 200mg/mL of dithiothreitol (DTT), 

independently of one another, for 30 minutes at 37°C in accordance with the 

recommendations of Fernández-Llama et al., (Fernandez-Llama et al., 2010) with vortexing 

every five minutes. Here, a final volume of 5mL was also used. These two solutions (i.e. P18 

and P200, CHAPS and DTT-treated pellet) were subjected to a second series of 

centrifugations at 18,000g followed by an ultracentrifugation at 200,000g as shown in Figure 

1. After the first centrifugation at low-speed (18,000g), the SNs from same treatment were 

pooled together (10mL final volume) and centrifuged at 200,000g. For method 2, 0.5mg of 

crude protein obtained from P18 and P200, respectively, was treated with CHAPS as in 

method 1 without pooling the SN after the first low-speed pellet (18,000g). Instead, they were 

subjected individually to an ultracentrifugation step at 200,000g. 

2.2.3 Protein quantification, SDS-PAGE and Western Blotting 

The protein concentrations in all urine fractions were measured by Coomassie Protein Assay 

(M., Bradford, 1976). SDS-PAGE was carried out according to the recommendations of 

Laemmli (Laemmli, 1970). Gels were either stained by homemade colloidal Coomassie blue 

staining (Candiano et al., 2004) or transferred to a nitrocellulose membrane (Towbin, 

Staehelin & Gordon, 1979). Membranes were blocked overnight (ON) at room temperature 

(RT) with the Odyssey blocking buffer solution (LI-COR Biosciences, Lincoln, NE). All 

incubation steps with antibodies were performed in a 1:1 (v/v) mixture of Odyssey blocking 

buffer and PBS with 0.1% (v/v) Tween 20 (PBST). Antibodies were diluted in accordance 

with supplier’s guidelines for 2 hours at room temperature. Rabbit anti-CD63 (H193) 

sc15363 (Santa Cruz, Santa Cruz, CA), dilution 1:500 (v/v); rabbit anti-TSG101 (Sigma) 
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0.5μg/mL dilution; rabbit anti-MFG-E8/lactadherin (H60); sc-33545v (Santa Cruz) 1:500 

(v/v) dilution; rabbit anti-nephrin (in house) 1:500 (v/v). Secondary antibody goat anti-rabbit 

IRDye-800 (LI-COR Biosciences) was diluted 1:5000 (v/v) in PBS tween 0.1% (v/v) plus 

0.01% (w/v) SDS for 2 hours at room temperature. Western blot images were acquired by 

Odyssey infrared laser scanner (LI-COR Biosciences, Lincoln, NE) 

2.2.4 Negative Transmission Electron Microscopy  

Fifty μg of vesicle preparations were fixed with 1% (v/v) glutaraldehyde (Sigma Aldrich) in 

water. Fixed vesicle preparations were spotted onto a Formvar/Carbon 300 mesh grid (Agar 

Scientific, Stansted, UK) and dried at RT. The grids were washed twice in 0.1M PBS and 

incubated in 1% (w/v) OsO4 in 0.1M PBS for 30 min on ice. After five 5 min washes (3 with 

PBS and 2 with water), exosomes were stained with 5% (w/v) uranyl acetate in water for 10 

min (Mathias et al., 2009). After staining, vesicle populations were monitored by JEM-2100 

transmission electron microscopy (Jeol Ltd, Tokyo, Japan). 

2.2.5 LC-MS/MS analysis 

100μg of protein were reduced by 10mM tris (2-carboxyethyl)phosphine (TCEP) in 100mM 

Tris–HCl,  pH 8.8 , 8M Urea, 0.1mM EDTA and 1% (w/v) sodium deoxycholate (DOC) for 

1.5 h at room temperature (RT) in the dark. Alkylation was carried out by 20mM 

iodoacetamide (IAA) in 100mM Tris–HCl, pH 8.8, 0.1mM EDTA for 1.5 h at RT in the dark. 

Excess of IAA was quenched by 20mM N-acetyl cysteine in 100mM Tris–HCl, pH 8.8, 

0.1mM EDTA for 0.5 h at RT in the dark. Reduced and alkylated samples were 

concentrated/delipidated by chloroform/methanol precipitation according to Wessel and 

Fugge (Wessel & Flugge, 1984) before trypsin digestion. Briefly, to 150µl of sample solution 

were added first 400µl of 100% (v/v) MeOH, and then 200µl of chloroform and after 

vortexing well, 400µl of mQ water was added and then centrifuged at 5,000g for 5 min at RT. 

The upper layer was removed and 600µl of 100% (v/v) MeOH was added to the tube. Finally, 
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protein was recovered by centrifugation at 15,000g for 30 min and the pellet dried by speed 

vac.  Digestion was carried out using trypsin (modified sequencing grade; Promega, Madison, 

WI) at 37°C for 16 h in 50mM Tris-HCL, pH 8.0 and 1% (w/v) DOC which is compatible 

with trypsin activity (Lin et al., 2008). The digested solutions were acidified with 1% (v/v) 

formic acid (up to around pH 2) and centrifuged at 15,000g for 20 min. The supernatant was 

collected and the pellet were washed for with 1% (v/v) formic acid and sonicated for 5 

minutes and centrifuged at 15,000g for 20 min. This was repeated twice (Lin et al., 2010). All 

the SNs were pooled together and were then desalted and concentrated by using reverse phase 

cartridges (Sep-Pak C18) according to the manufacturer's instructions (Waters, Mississauga, 

ON). Briefly, the columns were conditioned and equilibrated with 1mL 100% methanol (v/v) 

and 1mL 80% (v/v) acetonitrile (ACN), respectively, and successively washed with 4 mL of 

0.1% (v/v) formic acid. The sample solution was then loaded onto the column, and the 

columns were washed with 6 mL of 0.1% (v/v) formic acid. The tryptic digestions were 

eluted with 1 mL 80% (v/v) ACN, 0.1% (v/v) formic acid and lyophilized (Thermo). 

Lyophilized samples were rehydrated with 0.1% (v/v) formic acid to give 1μg/μL 

concentration of the equivalent starting protein amount. Nanoflow electrospray ionization 

tandem mass spectrometric analysis of peptide samples was carried out using LTQ-Orbitrap 

Velos (Thermo Scientific, Bremen, Germany) interfaced with the Agilent 1200 Series 

nanoflow LC system. The chromatographic capillary columns were used with a flow rate of 

300nL per min. The peptides were eluted using a linear gradient of 7-30% (v/v in water) 

acetonitrile over 50 min. Mass spectrometry analysis was carried out in a data-dependent 

manner with full scans acquired using the Orbitrap mass analyzer at a mass resolution of 

60,000 at 400 m/z. For each cycle, the twenty most intense precursor ions from a survey scan 

were selected for MS/MS and detected at a mass resolution of 15,000 at m/z 400. The 

fragmentation was carried out using higher-energy collision dissociation as the activation 
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method, with 40% normalized collision energy. The ions selected for fragmentation were 

excluded for 30 seconds. The automatic gain control for full FT MS was set to 1 million ions 

and for FT MS/MS was set to 0.1 million ions with a maximum time of accumulation of 750 

and 100ms, respectively. 

2.2.6 Data Analysis 

The mass spectrometry data was processed using Proteome Discoverer (Version 1.2.0.208) 

software (Thermo Fisher Scientific) and searched using Mascot. The search parameters used 

were: oxidation of methionine, deamidation at N and Q, protein N-terminal acetylation, N-

pyroglutamate for N-terminal Q/N and carbamidomethylation of cysteine residues as variable 

modifications. A maximum of one missed cleavage was allowed for tryptic peptides with a 

minimum length of 7 amino acids. The peptide and protein data were extracted using high 

peptide confidence and top one peptide rank filters. False discovery rate (FDR) was 

calculated by enabling the peptide sequence analysis using the decoy database. A mass error 

window of 20 ppm and 0.1Da were allowed for MS and MS/MS, respectively. FDR was kept 

at 1% to be used as a ‘cut-off’ value for reporting identified peptides. In addition to the 

target-decoy approach, the quality of proteins identified was validated by manually checking 

the spectra of those proteins with at least one unique peptide. 

2.2.7 Determination of Dipeptidyl peptidase (DPP IV) and Nephrilysin (NEP) catalytic 

activity 

DPP IV activity was measured in triplicate by using HGly- pro-β-naphthylamide as substrate, 

following the method of Liu and Hansen (Liu & Hansen, 1995). The NEP assay was carried 

out by incubating samples with N-dansyl-D-Ala-Gly-p-nitro-Phe-Gly ([D]AG (pN)PG, a 

dansyl derivative), following the protocol of Florentin et al., (Florentin, Sassi & Roques, 

1984). 
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2.2.8 THP purification 

THP was purified from resolubilised P1 (Musante et al., 2012) by filtration through a 

diatomaceous earth filter (DEF) (Serafinicessi et al., 1989).  In summary, PBS containing 

NaCl (0.2M) and CaCl2 (1mM) was added to P1 before being transferred to a diatomaceous 

earth layer (5mL) placed on a Büchner funnel.  After washing with 500mLs of 0.02mM 

phosphate buffer (pH 7.5) containing 0.2M NaCl and 1mM CaCl2, the diatomaceous earth 

was retained and transferred into a 50mL centrifugation tube.  This was subsequently washed 

twice with 50mL of 1mM ethylenediaminetetraacetic acid (EDTA) in water.  This facilitated 

the extraction of THP entrapped within the diatomaceous earth.  Non-bound and bound 

fractions were dialysed three times against deionised water (10L) independently of one 

another, and the volumes reduced to 5mL by vacuum drying (MiVac, Mason Technology, 

Suffolk, Ipswich, UK). 

2.2.9 Purification of monomeric HSA 

High-performance liquid chromatography (HPLC) assays were performed on an Agilent 1200 

system (Agilent technologies, Palo Alto, California, USA), and all water selected for use was 

of HPLC grade (18.2 M) and purified using a TKA-Gen-Pure purification system (Mason 

Technologies, Suffolk, Ipswich, UK).  The species composition of human albumin was 

determined by SEC.  Separations were performed using a Bio-Sil-SEC 400-5 stationary phase 

(Bio-Rad, Richmond, CA; 300x7.8mm), with 20mM PBS containing 0.15M NaCl (pH 7.5) 

selected as a mobile phase.  For enhanced resolution of monomeric and dimeric fractions of 

HSA, three stationary phases were inter-connected with steel fittings. All samples were 

assayed at a flow rate of 1.0mL/minute using UV detection at 280nm, with 100µL sample 

volumes (1mg of protein) selected for injection. Species composition was determined through 

the use of a gel filtration standard consisting of thyroglobulin (670kDa), immunoglobulin G 

(158kDa), ovalbumin (44kDa), myoglobin (17kDa) and vitamin B12 (1.35kDa) (Bio-Rad).  
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Monomeric fractions of HSA for use in FLISA and SPR binding analysis (vide infra) were 

retained manually and screened by SDS-PAGE. 

2.2.10 Fluorophore-Linked Immuno Sorbent Assay (FLISA) 

As a preliminary method to ascertain whether HSA was binding to ultracentrifugation pellets 

prior to more rigorous SPR analysis, the P18+200CP200 vesicle fraction (100μg/mL) was 

passively immobilised in triplicate on a 96-well plate (Nunc Maxisorp, Nunc, Roskilde, 

Denmark) in 100μL volumes and incubated overnight at 4°C.  Next, plates were washed five 

times with PBS (pH 7.4) and all wells selected for analysis were subsequently blocked with 

400μL of Odyssey blocking solution diluted 1:1 in PBS (pH 7.4) for 1 hour at room 

temperature.  After washing with PBS as before, monomeric HSA (100µl of a 20µg/mL stock 

solution) was added and wells were incubated for 1 hour at room temperature.  Wells were 

subsequently washed five times with PBS containing 0.1% (v/v) tween (PBST).  For 

detection, monoclonal mouse anti-HSA clone 6501 (100µL of a 10µg/mL stock solution), 

diluted in Odyssey blocking solution (1:1) was added before incubating for 2 hours at room 

temperature.  Wells selected for analysis were washed again in PBST (5x).  Next, 100µL of 

anti-mouse-IRdye 800 secondary antibody, diluted 1:5000 in Odyssey blocking solution, was 

added and allowed to incubate for 1 hour at room temperature.  Non-bound antibody was 

removed by additional washes (5x) in PBST.  Binding was determined through the use of the 

Odyssey infrared imaging system (Li-COR Biosciences, Lincoln, NE). Albumin interaction 

was evaluated at a physiological pH (7.4) and at a pH more representative of that seen in 

urine (pH 6.0).  As a negative control, nano vesicle populations were immobilised as before, 

and subsequently probed with primary and secondary antibodies in the absence of albumin. 

The signal obtained here was then subtracted from that seen for analytical samples at pH 6.0 

and pH 7.4. 
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2.2.11 Immunoprecipitation of membrane vesicles using anti-albumin antibody 

Anti-albumin antibody was immobilised on Dynabeads (Dynal, M270 amine) according to 

manufacturer’s instructions using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) and N-

hydroxysulfosuccinimide (EDC/SNHS) chemistry (Invitrogen, Carlsbad, CA). 100µg of 

antibodies were coupled to 150µL of amine-functionalised Dynabeads (M-270 amine, Dynal, 

Invitrogen) using EDC-Sulfo-NHS. Briefly, antibodies were diluted to a final concentration 

of 1mg/mL antibody in MES buffer (0.1M MES + .9% (w/v) NaCl pH 6.0). EDC/SNHS were 

prepared in MES buffer at concentration of 10/15 mg/mL. EDC/SNHS solution (100µL/1mg 

protein) was added to the antibody and incubated at RT for 15 min. Following antibody 

activation by EDC/SNHS, the antibodies were added to 150µL Dynal M270-amine beads 

(2x10
9 

beads/mL) and mixture was incubated at 4°C overnight while rotating. Next day, the 

beads were washed with PBS to remove non-bound antibodies and incubated with 100mM 

Tris, pH 7.2, for 15 min to quench any remaining active groups. The anti-albumin beads were 

incubated with 1mg of P200CHAPSP200 in binding buffer (phosphate buffer pH 7.2). The 

next day non-bound fraction was collected and beads were washed with binding buffer three 

times. The bound fraction was eluted from the beads by elution with 100mM glycine buffer 

(pH 2.3) for 1 hour while rotating at RT. 

2.2.12 Biacore-based analysis of interactions 

All surface-plasmon resonance (SPR) assays were performed on a Biacore 3000TM 

instrument using a CM5 carboxymethylated dextran sensor chip (GE Healthcare) in 

accordance with the recommendations of Reeves et al., (Reeves et al., 2010).  In summary, 

HEPES-buffered saline (HBS: 10mM 4-2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 3mM EDTA, 150mM NaCl and 0.005% (v/v) Tween 20, pH 7.4 or 6.3), selected 

as a running buffer, was filtered through a 0.2µM filter (Supelco Inc., Bellefonte, PA) and de-

gassed overnight in a sintered glass funnel apparatus (AGB Scientific Apparatus Ltd., 
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Belfast, UK) before use.  Pre-concentration analysis in 10mM sodium acetate was used to 

determine the optimal pH for the capture of 100µg/mL of vesicle preparation on flow cells 

(FC) 2 (P18+170DP170) and 4 (P18+170CP170), respectively.  Subsequent immobilisation 

was permitted by surface activation using standard EDC/NHS coupling.  Here, 70µL of EDC 

(400mM) was mixed with 70µL of NHS (100mM) and 80µL was injected over the sensor 

surface at a flow rate of 10µL/min. A 100µg/mL solution of the relevant ligand was then 

captured on the activated surface for 20 minutes.  Any un-reacted succinimide esters were 

subsequently deactivated by capping for 7 minutes with 1M ethanolamine (pH 8.5).  Flow 

cells 1 and 3 were used for online reference subtraction, and each five-minute injection (50µL 

of analyte at a flow-rate of 10µL/minute) was immediately followed by regeneration using 

conditions optimised through regeneration scouting (see below).  All analyses were 

performed in triplicate on three consecutive days (interday), and binding responses were 

monitored as a function of analyte (e.g. albumin) concentration.  A negative control of HBS 

buffer was included for each assay.  The response units (RU) value obtained here was then 

subtracted from that obtained for each analyte-ligand biomolecular interaction, thereby 

providing an accurate representation of the true binding event.  Biaevaluation software (GE 

Heathcare, Buckinghamshire, UK) was used for all data analysis. 
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2.3 Results 

2.3.1 Vesicle purification 

A schematic representation of the workflow used to isolated urine exosomal vesicles and 

abbreviations used for each product step is shown in Figure 2.1.  For the analysis, pooled 

urine samples were initially centrifuged at a RCF of 1,000g for 20 min. The resultant SN was 

dialysed against deionized water water and sample volume reduced to 1:20 by vacuum 

concentration. The concentrated SN was centrifuged at 18,000g and the resulting supernatant 

at 200,000g. Both pellets (P18 and P200) were resuspended in a minimal volume of 

200mg/mL DTT or 1% (w/v) CHAPS and re-centrifuged again at 18,000g. The two SNs were 

combined and further centrifuged at 200,000g. Alternatively, CHAPS 18,000g SNs were not 

pooled but centrifuged individually at 200,000g to check THP sedimentation behaviour 

following CHAPS treatment. 
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Figure 2.1: Urine vesicle enrichment workflow. a. Dialysis followed by vacuum 

concentration (approx.1:25); b. either 1% (w/v) CHAPS, ON at 4ºC or 200mg/mL DTT, 30 

minutes at 37ºC. The type of treatment is reflected in the sample name: the x is replaced by C 

in case of CHAPS treatment and by D in the case of DTT. SAMPLE NOMENCATURE: P: 

Pellet; SN: Supernatant; x: Detergent used for treatment b C: CHAPS, D: DTT. Generally, 

P/SN are followed by the shortened centrifugational speed (e.g. P1 means pellet of 1,000g; 18 

for 18,000g and 200 for 200,000g), after detergent treatment C/D will be used as prefix of the 

fraction which underwent treatment. If double centrifugation has been performed, the sample 

name will reflect the chronological order of events with the last step first. 
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2.3.2 Transmission electron Microscopy (TEM)  

Transmission electron microscopy was used to verify the presence and to evaluate qualitative 

features of the vesicles present in the crude preparation P18 and P200 (for abbreviations, see 

Fig 2.1) and in CHAPS/DTT-treated fractions (Figure 2.2), as well as to assess the integrity 

of these vesicles following the respective treatments.  

 

Figure 2.2: TEM analysis Transmission electron micrographs of P18 (Panel A) and P200 

(Panel B) at 10,000x and 5,000x magnifications, respectively. High-magnification (50,000x) 

of CHAPS- (Panels C-F) and DTT-treated (Panels G-I) vesicle preparations are represented. 

The bar below the pictures is 500nm for panels A and B and 100nm for panels, C-I. 
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It can be seen in Fig. 2.2A that, the P18 preparation contained a heterogeneous population of 

vesicles ranging in size from 50-100nm in diameter. Furthermore, long polymeric filaments 

closely resembling THP polymers were detected along with associated vesicles (Fernandez-

Llama et al., 2010), despite the fact that dialysis should remove factors favouring the 

tendency of THP to aggregate (McQueen & Engel, 1966). Crude P200 (Fig. 2.2, Panel B) 

showed a heterogeneous population of vesicles whose size distribution (10-300nm) and shape 

are consistent with those of exosomes and ‘exosome-like’ vesicles previously described in 

urine (Pisitkun, Shen & Knepper, 2004; Hogan et al., 2009). TEM images revealed that the 

preparations obtained after CHAPS or DTT treatments in method 1 yielded intact vesicles 

ranging from approximately 20 to 200nm, dimensions which are characteristic for urinary 

exosomes (Pisitkun, Shen & Knepper, 2004), ‘exosome-like’ (Hogan et al., 2009) and 

apically-shed vesicles (Hara et al., 2010). High magnification images (50,000x) after CHAPS 

(Fig. 2.2, panels C, D, E and F) and DTT treatments (Fig. 2.2, panels G, H and I) showed 

closely related morphologies and sizes. Another interesting observation was the detection of 

vesicles sized between 5 and 10 nm enriched in the P200C preparation, further highlighting 

the wide complexity, size distribution and heterogeneity of these fractions (Fig. 2.2, panel C). 

2.3.3 SDS-PAGE analysis 

Figure 3 shows colloidal Coomassie-stained gels of crude fractions (Fig. 2.3, panel A), DTT 

fractions and CHAPS fractions obtained in method 1 (Fig. 2.3, Panel B) and CHAPS 

fractions obtained in method 2 (Fig. 2.3, panel C).  
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Figure 2.3: SDS-PAGE three panels are separated from each other by thick black lines. From 

left to right: Panel A: Gel Acrylamide T 12% Constant. 15µg of protein per lane of crude 

preparation Panel B: Gel Acrylamide T 8% Constant. 10µg of protein per fraction obtained 

in Method 1. Panel C: Gel Acrylamide T 12% constant. 10µg of protein per fraction obtained 

in Method 2. M: Molecular weight markers (in kDa), 1: P1, 2: P18, 3: P200, 4: SN200, 5: 

P18CP18, 6: P18DP18 7: P18CP200, 8: P18DP200, 9: P200C, 10: P200D, 11: SN200C, 12: 

SN200D, 13: SN200CP200, 14: P200CP200, 15: SN200CP18, 16: P200CP18. 

The large band at around 100kDa is the monomeric form of Tamm-Horsfall Protein (THP). It 

abundantly sediments at a low-speed (1000g) and then progressively, in decreasing amount is 

recovered in the following centrifugation steps (P18 and P200), with traces left in the final 

supernatant (SN200) (Figure 2.3 Panel A). After either DTT or CHAPS treatment of the 

crude P18 and P200 sediments, respectively, the pellet recovered again at a relatively low 

RCF (P18CP18, P18DP18, P18CP200 and P18DP200; for abbreviations, see Fig. 2.1) 

showed only traces of THP. Surprisingly, after CHAPS treatment, in method 1 where the SNs 

were combined (Fig. 2.1), all the THP was recovered in the ultracentrifugation pellet (Fig. 

2.3, Panel B P200C) instead of being in the SN (Fig. 2.3, Panel B SN200C) as was observed 

for DTT treatment (Fig. 2.3, Panel B P200D and SN220D). Interestingly, without pooling the 

SNs, THP present in the crude pellet (P18) after CHAPS treatment was no longer recovered 

at 18,000g, but at 200,000g (Fig. 2.3, Panel C P200CP18). CHAPS treatment of crude P200 
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pellet without pooling gave a final sediment (Panel C, P200CP200) in which Tamm-Horsfall 

protein was present at the same amount with respect to the DTT pellet (Panel B P200D). 

Moreover, albumin (~66kDa), found in abundance in the crude pellet (Panel A, P200), was 

instead detectable in the supernatant after CHAPS treatment (Fig. 2.3, Panel C 

SN200CP200), with traces remaining in the 200,000g pellet (Panel C, P200CP200). 

2.3.4 Profiling of urinary markers by Western Blotting  

Figure 2.4 shows the Western blotting of exosomal and podocyte markers.  

2.3.4.1 CD63 

CD63 was abundantly found in P18 and in the corresponding low-speed detergent-treated and 

DTT precipitates (Panel A; Figure 2.4).  
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Figure 2.4: Western blotting analysis. A: Rabbit anti-CD63, B: Rabbit anti-TSG101, C: 

rabbit anti-MGF-E8/Lactaderin and D: rabbit anti-nephrin (Hara et al., 2010). 10µg of protein 

of fractions obtained in Method 1 were loaded on the gels. M: Molecular weight markers (in 

kDa), 1: P18, 2: P18CP18, 3:P18DP18, 4: P18DP200, 5: P18CP200, 6: P200D, 7: P200C, 8: 

P200, 9: SN200 10: SN200C, 11: SN200D. 

The CD63 isoform profiles exhibit a distinct distribution in these vesicle preparations, with 

sizes of approximately 65, 45 and 35kDa, respectively, consistent with a heavy glycosylation 

pattern (Ageberg & Lindmark, 2003). In treated high-speed pellets (P200C and P200D) and 

the crude P200 fraction, CD63 was observed mainly at higher molecular weights (75 to 
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100kDa). The broad band seen in Western blotting is most likely due to the high-degree of 

glycosylation by poly N-acetyl lactosamine, as reported by Engering et al., (Engering et al., 

2003). Heavy glycosylation can cause streaking and smearing of glycoproteins in the SDS-

PAGE system.  

2.3.4.2 TSG101 

TSG101 was detected in the exosome fraction as a single band of approximately 46 kDa in 

P18 and P200 crude preparations but, significantly, after this fraction was treated (CHAPS or 

DTT), the antigen was recovered in the low-speed centrifugation preparations, namely 

P18CP200 and P18DP200. In the latter two samples, in addition to the main band of 

approximately 46kDa, four other lower molecular weight isoforms were also detected. It 

appears that the lower molecular weight bands are a specific feature of these two samples, 

especially of the CHAPS-treated fraction.  

2.3.4.3 LACTADHERIN/MFG-E8 

In the P18 preparation, two main bands were visible with molecular weights of approximately 

48kDa and 35kDa of lactadherin. Interestingly, after CHAPS treatment, only the 35kDa band 

was detected (P18CP18 and P18CP200). Notably, in the corresponding DTT pellet, 

(P18DP18), both the 46 and 35kDa bands were present, in addition to two extra isoforms of 

approximately 77 and 100kDa, specifically enriched in this fraction. The analysis of the crude 

P200 preparation revealed three main bands whose molecular masses were approximately 53, 

62 and 70kDa. Interestingly, the 53 and 70kDa forms were specifically enriched in both DTT 

preparations originating from the P200 samples.  

2.3.4.4 NEPHRIN 

A recent report has described the ability of glomerular podocyte microvilli to secrete non-

exosomal vesicles by tip vesiculation (Hara et al., 2010). This finding led us to explore this 
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podocyte-specific marker of the slit-diaphragm in detail in the vesicle preparations, especially 

in the CHAPS or DTT-treated vesicles, in order to scout for specific functional features 

reflecting the critical elements of the glomerular filtration barrier. The whole array of samples 

was probed with an anti-nephrin antibody raised against the intra-cytoplasmic domain of the 

protein (Ahola et al., 1999). Surprisingly, the bulk of the nephrin-containing vesicles were 

recovered at low RCF, (P18CP18, P18DP18, P18CP200 and P18DP200). In the whole 

sample set, no full-length nephrin was observed, although different nephrin fragments were 

detected in the diverse preparations. This is in line with previous results from our group 

(Patari et al., 2003). In the soluble fractions, nephrin was detectable only in the SN170 

fraction as 75, 65 and 48kDa bands, while in the vesicle preparations, a wider range of bands 

was detected at 75, 65, 48 and 35 and 25kDa.  

2.3.5 Dipeptidyl peptidase IV (DDPIV) and nephrilysin (NEP) activity in CHAPS and 

DTT fractions  

Figure 2.5 shows DPP IV and NEP activities measured in pellet and SN after CHAPS and 

DTT treatments. Before measuring the activity, samples were dialysed with a membrane with 

a molecular weight ‘cut-off’ of 300kDa to remove DTT, CHAPS and potential soluble 

isoforms of these two proteases. Figure 2.5B shows Coomassie staining and the 

immunodetection of DPP IV after dialysis. In DTT 200,000g pellets and SNs (Anti DPP IV, 

Panel B lane 1 and 3), DPP IV is visible at 110 kDa, while in CHAPS fractions two specific 

bands were detected whose molecular weights were approximately 52 and 25kDa  (Anti DPP 

IV, Panel B lane 2 and 4). Activity was recorded as pmol of product/min/mg protein (UP/mg 

protein). When compared, DPP IV activity in DTT and CHAPS fractions were similar despite 

the difference in the respective western blotting patterns as shown in Figure 2.5A.  
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Figure 2.5: Protease activity. Membrane-bound DPP IV (Panel A) and NEP (Panel C) 

peptidase activity profiles recorded in absence and presence of 10 mM DTT. Samples were 

dialysed at a MWCO of 300kDa. DTT pellet 200,000g (sample 1), DTT SN 200,000g 

(sample 3), CHAPS pellet 200,000g (sample 2) and CHAPS SN 200,000g (sample 4) are 

represented. Columns compare DTT vs CHAPS after dialysis with a membrane of MWCO 

300kDa and in the presence of 10mM DTT. Values represent mean ± SD of units of 

peptidase (UP) per milligram of protein per minute. Panel B represents the Coomassie gel 

and DPP-IV immunodetection of the same samples. 10µg of protein per fraction obtained in 

Method 1 were loaded on the gels after 300kDa MWCO dialysis. 

Activity drastically decreased in the presence of DTT, suggesting that, although disulfide 

bond reduction affects the activity, during dialysis DPP IV is able to regain its native 
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conformation with a good recovery of its activity. For NEP, the activity decreased 

significantly (around 4-fold) in the DTT fractions when compared with the corresponding 

CHAPS fraction. This result shows that although DTT was removed by dialysis, there was a 

detrimental and irreversible effect of the reducing agent on the folding of NEP which led to a 

loss of the enzymatic activity. Once again, as a control, in the presence of DTT the activity 

decreased substantially in all the fractions. The activity recorded in the SNs after dialysis 

with a molecular weight ‘cut-off’ membrane of 300kDa, along with CD63 signals detected in 

Western blotting (Figure 2.4) indirectly points to the presence of nano-vesicles in these 

fractions which were not collected in the pellet after the second ultracentrifugation 

(200,000g). 

2.3.6 MS-based identification of proteins released in the supernatant after DTT and 

CHAPS treatments 

The supplemental tables list the proteins identified by the systematic MS analysis of the final 

200,000g supernatant after DTT (Supplementary Table S2.1 and S2.2, 274 unique proteins) 

and CHAPS (Supplementary Table S2.3, 234 unique proteins) treatments. Figure 2.5 shows 

the analysis in comparison to the two published data sets of proteins identified in the 

200,000g pellet (Gonzales et al., 2009) and SN (Kentsis et al., 2009), respectively.  
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Figure 2.6: Protein identification comparisons. Venn diagram showing the distribution of the 

number of identified proteins presents in SN 200,000g after CHAPS and DTT treatments. 

Protein identifications from the current study were compared to two other studies which were 

carried out using high-resolution mass spectrometers in gels on 200,000g pellets after DTT 

treatment (Gonzales et al., (Gonzales et al., 2009)) and 200,000g supernatants (Kentsis et al., 

(Kentsis et al., 2009)). 

The Venn diagram shows that 76.2 % of proteins found in the CHAPS fraction are common 

to the corresponding DTT fraction. This result confirms the close similarity between the two 

methods in respect to the preservation of major protein components. Interestingly, 

approximately 9.7% and 6.9% of protein in CHAPS and DTT supernatants, respectively, are 
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consistent with the observations made by Gonzales (Gonzales et al., 2009), while 33.7% and 

31% of proteins in CHAPS and DTT supernatants, respectively, are common to the Kentsis 

(Kentsis et al., 2009) data-set while 40.9% and 45.6% of the proteins in CHAPS and DTT 

SN, respectively, overlap with the two reference data sets. Finally, around 10% of proteins 

detected in our study are unique for both CHAPS and DTT supernatants. 

The bulk of identified proteins were found to be already annotated in the whole urine, but 

others, like Ig gamma-4 chain, Ig gamma-3 chain C region and Ig alpha-2 chain, have 

specifically been shown to associate with exosomes. Others, including Tumor Necrosis 

Factor receptor superfamily member 19L or palmitoyl-protein thioesterase 1 have all the 

potentiality to be part of the exosome proteome (Table 2.1).  

Table 2.1: Protein identification in DTT and CHAPS supernatants. Fractions in which 

proteins were obtained, Uniprot accession, % sequence coverage, peptides, mascot score, 

protein name description, presence in Exocarta and Adachi et al., (Adachi et al., 2006) and 

Marimuthu et al., (Marimuthu et al., 2011) is indicated in the table. 

Fraction Accession Coverage 

% 

Peptides Mascot 

score 

Descriptions Exocarta Adachi Marimuthu 

CHAPS O95497 10.33 4/4 180.32 Pantetheinas

e  

GN=VNN1 

N Y Y 

CHAPS P50897 9.15 2/2 97.96 Palmitoyl-

protein 

thioesterase 

1 GN=PPT 

N N Y 

CHAPS P01040 30.61 2/2 109.9 Cystatin-A  

GN=CSTA 

N N Y 

CHAPS Q86SR0 45.36 2/2 114.84 Secreted Ly-

6/uPAR-

related 

protein 2 

GN=SLURP

N N N 
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2 

CHAPS Q969Z4 2.56 2/2 109.04 Tumor 

necrosis 

factor 

receptor 

superfamily 

member 19L 

GN=RELT 

N Y Y 

CHAPS P61916 10.60 1/1 66.37 Epididymal 

secretory 

protein E1 

GN=NPC2 

N Y Y 

CHAPS/

DTT 

P01861 18.35 7/4 354.82 Ig gamma-4 

chain C 

region 

GN=IGHG4 

Y N N 

CHAPS/

DTT 

P01877 18.53 7/5 360.53 Ig alpha-2 

chain 

GN=IGHA2 

Y N N 

CHAPS/

DTT 

P37235 6.22 1/1 81.02 Hippocalcin-

like protein 

1 

GN=HPCAL

1 

Y N Y 

CHAPS/

DTT 

P15289 8.09 2/2 123.11 Arylsulfatas

e A  

GN=ARSA 

N N Y 

CHAPS/

DTT 

P41222 24.74 6/4 304.59 Prostaglandi

n-H2 D-

isomerase 

GN=PTGDS 

N Y Y 

CHAPS/

DTT 

Q14508 38.71 4/3 216.44 WAP four-

disulfide 

core domain 

protein 2 

GN=WFDC

2 

N Y Y 

CHAPS/

DTT 

P31949 15.24 1/1 80.02 Protein 

S100-A11 

GN=S100A1

Y Y Y 



110 
 

1 

DTT P02788 6.48 5/4 227.66 Lactotransfe

rrin 

GN=LTF 

Y Y Y 

DTT P19835 16.61 7/7 339.62 Bile salt-

activated 

lipase 

GN=CEL 

Y N Y 

DTT Q9Y646 16.95 6/6 334.27 Plasma 

glutamate 

carboxypepti

dase  

GN=PGCP 

N N Y 

DTT P55259 4.28 2/2 136.92 Pancreatic 

secretory 

granule 

membrane 

major 

glycoprotein 

GP2  

GN=GP2 

N N Y 

DTT P01860 13.79 5/4 256.39 Ig gamma-3 

chain C 

region 

GN=IGHG3 

Y N N 

 

These results suggest that in specific subpopulations of exosome vesicles, unique features can 

still be recovered in the SN after DTT and CHAPS treatments. This finding has practical 

consequences for their use. Figure 2.7 reports the gene ontology distribution per protein class 

of identified proteins by the Panther classification system (www.panther.org) (Thomas et al., 

2003). Once again the distribution of the protein classes is very similar in the 200,000g 

CHAPS and DTT supernatants.  

http://www.panther.org/
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Figure 2.7: Gene ontology based classification (www.panther.org) of proteins identified in 

DTT and CHAPS SN200,000g. 

http://www.panther.org/
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2.3.7 Interaction of abundant proteins like albumin, THP and IgG with nano vesicles 

treated with either DTT or CHAPS 

High-abundance proteins in membrane vesicle fractions were investigated by western blotting 

in various membrane vesicle fractions. The results are shown in Figure 2.8. 

 

Figure 2.8: Western blot analyses of nano vesicle pellets and SN in crude preparations and 

after CHAPS and DTT treatment.  Lane 1 18,000g pellet; lane 2 18,000g pellet CHAPS 

18,000g pellet;  lane 3 18,000g pellet DTT 18,000g pellet; lane 4 200,000g pellet DTT 

18,000g pellet; lane 5 200,000g pellet CHAPS 18,000g pellet; lane 6 SN 18,000g CHAPS 

200,000g pellet; lane 7 SN 18,000g DTT 200,000g pellet; lane 8 200,000g pellet; lane 9 SN 

200,000g;  lane 10 SN 18,000g  CHAPS SN 200,000g; lane 11 SN 18,000g  DTT  SN 

200,000g. Polyclonal anti-HSA and monoclonal anti-HAS clone 6501 and 6502. Polyclonal 

anti-IgG and polyclonal anti-THP diluted 1:1,000 overnight RT. 
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Albumin detection with two separate monoclonal antibodies showed that albumin is 

distributed in all fractions even after CHAPS and DTT treatment. Although the signal is 

present in the SN 18,000g CHAPS/DTT SN 200,000g (lane 9 and 10), signal was still visible 

in the respective pellets (lane 6 and 7). Notably, treatment with CHAPS and DTT could not 

affect the precipitation of albumin into the soluble phase. It is also interesting to note that 

HSA, which co-precipitated in the 18,000g pellet (lane1, 2 and 3) did not reveal a 

fragmentation pattern consistent with that of the 18,000g and 200,000g pellets resulting from 

CHAPS and DTT treatment of the crude 200,000g pellet (lane 4, 5, 6 and 7). This postulates 

that these different fractions of membrane vesicles have different patterns of albumin 

fragmentation which co-precipitate specifically with sub populations of nano vesicles. It 

could be due to a specific protease present in these sub-populations or differential PTMs of 

albumin. Full-length IgG was found to be present in P18,000g (Lane 1-3) while extensive 

fragmentation as well as full length IgG was seen in P200,000g pellets both crude and treated 

(Lane 6 & 8). THP similarly was present to significant levels in the P200,000g (Lane  6-8). 

This prompted us to investigate whether these abundant proteins are present with membrane 

vesicle fractions in a non-specific manner or if there is a specific interaction of these proteins 

with membrane vesicles. 

Our preliminary investigations were focused on verifying whether a biomolecular interaction 

was occurring between both sets of detergent-treated nano vesicle populations (e.g. CHAPS- 

and DTT-treated) and albumin, as suggested by Western blotting analysis (Figure 2.8 anti-

albumin antibodies, polyclonal and monoclonal). For the separation of monomeric and 

dimeric fractions of HSA by SEC, a significant improvement in resolution was seen when 

three inter-connected stationary phases were selected instead of one and, hence, this system 

was implemented during this study.  Dimeric and monomeric species with retention times of 

26.8 and 28.4 minutes, respectively, were readily identified using the gel filtration standard 
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for size determination (Figure 2.9 A), while the ratio of monomer:dimer was estimated to be 

12.4:1 based on the calculation of peak areas (Figure 2.9 B).  Monomeric fractions, estimated 

to be approximately 40-45kDa in size, were manually collected and analysed by SDS-PAGE 

to monitor purity and verify the absence of superfluous albumin fractions (Figure 2.9 C).   

Interaction analysis studies were firstly performed by FLISA before proceeding to more in-

depth SPR analysis.  Here, the CHAPS-treated 200,000g pellet (P18+200CP200) was coated 

in triplicate on individual wells of a 96-well plate and after blocking and washing, was 

subsequently probed with the retained monomeric albumin fraction and detected as described 

in the methods section.  Comparative analysis of binding at pH 6.0 and pH 7.4 revealed that 

more favourable binding was seen at the higher pH (Figure 2.9 D), so subsequent SPR 

interaction studies were performed using a running buffer (HBS) at a physiological pH (7.4). 
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Figure 2.9: Species composition of human albumin and preliminary binding studies. (A) 

Retention times for individual components in the gel filtration standard were as follows: 

bovine thyroglobulin (i; 22.8mins), IgG (ii; 27.9mins), ovalbumin (iii; 29.5mins) myoglobin 

(iv; 31.4mins) and vitamin B12 (v; 33.1mins). (B) Dimeric (vi) and monomeric (vii) species 

of commercial human albumin was readily detected by SEC, and subsequently analysed by 

SDS-PAGE to ascertain purity of retained fractions (40-45kDa). (D) A pilot study using 

CHAPS-treated nano vesicle populations demonstrated more favourable binding at 

physiological pH by FLISA. The background fluorescence signal for the negative control was 

subtracted from those obtained at pH values of 6.0 and 7.4, respectively. 
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Aliquots of DTT- and CHAPS-treated nano vesicle preparations were reconstituted in HPLC-

grade de-ionised water (filter-sterilised) to 980g/mL and 509g/mL, respectively, before 

being diluted to a final concentration of 100g/mL.  Next, pre-concentration studies were 

used to determine the optimal pH for the immobilisation of DTT- (pH3.6) and CHAPS-

treated populations (pH3.8) on flow cells 2 and 4, respectively.  EDC/NHS-based coupling 

and ethanolamine capping resulted in the capture of 15,952.7RU of DTT-treated exosomes, 

while 8,530RU of CHAPS-treated exosomes were captured. Nano vesicle populations were 

previously shown by TEM analysis to be comprised of a panel of entities whose sizes ranged 

from 20-200nm. It suggests that heterogenous surfaces (having vesicles of multiple sizes) 

were therefore presented for interaction analysis with high-abundance proteins.  Regeneration 

scouting was used to verify that 2.5mM NaOH could be selected to ensure a stable baseline 

on both flow cells, with 20 regenerations (5L injections) resulting in a loss of 15RU and 

18RU from FC2 and FC4, respectively.  Hence, these conditions were deemed to be 

appropriate and were selected for albumin binding studies. 

We initially investigated whether the nano vesicle populations isolated by CHAPS- and DTT-

treatments were already coupled to albumin at the time of their immobilisation, which would 

also suggest an interaction prior to cross-linking. To test this hypothesis, a dose-response 

curve with polyclonal anti-albumin antibody at five concentrations, namely 10µg/mL, 

20µg/mL, 50µg/mL, 100µg/mL and 200µg/mL, was tested on both flow cells by interday 

analysis.  The antibody bound to both CHAPS- and DTT-treated populations, with apparent 

saturation seen at the lowest concentration selected (10µg/mL).  In contrast, binding to DTT-

treated populations was in a concentration-dependent manner, with the introduction of 

elevated concentrations of analyte correlating with an increase in RU (Figure 2.10 A). 
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Figure 2.10: Comparative binding analysis of albumin to CHAPS-treated nano vesicle 

populations at two pH values by SPR. Comparative analysis of the binding of anti-albumin 

(A) and albumin (B) to DTT-and CHAPS-treated nano vesicle populations immobilised on 

flow cells 2 and 4, respectively.  Signals shown are for interday analysis, with the signal 

obtained from the HBS negative control (analyte-free) and the reference flow cells (e.g. flow 

cell 1 for DTT-nano vesicles and flow cell 3 for CHAPS) subtracted so as to show true 

binding to immobilised populations. Erros bars represent standard deviation from the mean. 
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These observations suggested that the immobilised nano vesicles were coupled with albumin, 

and that detergent treatment did not effect the removal of this soluble protein from either 

population (DTT and CHAPS trated vesicles). Next, as a further verification of the 

occurrence of a binding event between albumin and both vesicle populations independently 

of one another, the monomeric fraction of human albumin previously selected for FLISA-

based analysis was tested on both flow cells using the same dose-dependence response curve 

as previously used for anti-albumin.  More favourable binding was evident for the CHAPS-

treated population, and apparent saturation was seen at an analyte concentration of 20µg/mL 

for each ligand (Figure 2.10 B). 

Based on these observations, we investigated whether an anti-albumin immunoprecipitation 

(IP) could be performed with the objective of selectively enriching exosomes from the nano 

vesicle population, with polyclonal anti-HSA antibody selected as a biorecognition element 

and a monoclonal anti-HSA antibody implemented for detection purposes. Nano vesicles 

isolated by treatment with CHAPS (P18+170CP170) were selected as an analyte, primarily 

due to the observation in SPR analysis of more favourable binding to albumin.  

Immunoprecipitation of the full-lenght HSA molecule, and not proteolysis-derived fragments, 

was seen when captured fractions were eluted, analysed by SDS-PAGE (Figure 2.11 A) and 

subsequently probed with monoclonal anti-HSA antibody (Figure 2.11 B). However, 

proteolysed fragments of albumin were present in the unbound fraction.  
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Figure 2.11: Immunoprecipitation of urinary nano vesicles using monoclonal anti-albumin 

antibody for biorecognition. Silver staining (A) and Western blotting (B) analysis of non-

bound (Lane 1), wash (Lane 2) and elution fractions (Lane 3), verifying the presence of three 

isoforms of albumin. 

In our previous report, we outlined that in the aforementioned CHAPS-treated nano vesicle 

population (P18+200CP200) CD63, a well-established exosomal marker (Logozzi et al., 

2009; Nilsson et al., 2009), was detected in relatively low intensities by Western blotting 

(Musante et al., 2012). Interday SPR analysis using a single concentration of anti-CD63 

antibody (10µg/mL) was performed to verify this result with respect to binding to both nano 

vesicle populations, and determine whether this antibody could also be selected as an 

alternative to anti-albumin for immunoprecipitation.  Here, it was observed that weak binding 

was occurring between anti-CD63 and DTT-treated exosomes (µ=16.9RU; = 1.34), with 
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comparable results (µ=15.1RU; = 4.31) obtained for vesicles treated with CHAPS.  

Subsequent analysis of immunoprecipitation fractions using anti-CD63 demonstrated a clear 

enrichment of CD63 in the eluate fraction (approximately 50-55kDa), which was not detected 

in the non-bound and washing fractions (Figure 2.12). 

 

Figure 2.12: Immunoprecipitation of urinary nano vesicles (using anti-albumin antibody) and 

detection in a western blot using anti-CD63 antibody. Western blotting analysis of non-bound 

(Lane 1), wash (Lane 2) and elution fractions (Lane 3); CD63 (~55kDa) is present in the 

elution fraction but not in other fractions.  

   

It is well-established that the co-precipitation of THP, with urinary nano vesicles during 

exosome/urinary nano vesicle isolation, is problematic when attempting to isolate populations 

for proteomic, glycomic or transcriptomic analysis.  Moreover, THP polymers are known to 
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interact with urinary nano vesicles (Fernandez-Llama et al., 2010). Furthermore, in our 

previous analysis we demonstrated that sedimentation of this protein in the 1,000g pellet 

significantly reduced the quantity of THP in subsequent fractions, which permitted us to 

obtained improved yields of pure nano vesicles (Figure 2.3).  As a demonstration of the 

ability of this soluble protein to bind to both CHAPS- and DTT-treated populations, DEF-

extracted THP was selected as an analyte and assayed on both nano vesicle populations by 

SPR, using the same dose-response curve as described previously.  For DTT-treated vesicles, 

an increase in analyte concentration correlated with higher RU values.  Notably, for vesicles 

isolated using a CHAPS-treatment, an inverse trend was seen.  Here, binding to THP was 

significantly lower for each concentration selected for analysis.  Furthermore, introducing 

increased concentrations of analyte resulted in reduced binding to surface-immobilised nano 

vesicles (Figure 2.13).  

 

Figure 2.13: Biomolecular interactions with THP. Comparative analysis of the binding of 

DEF-purified THP in solution to DTT- and CHAPS-treated populations by SPR, using a 

dose-dependent response curve and interday analysis. X-axis is the THP concentration and Y-

axis is the response unit obtained upon interaction with vesicles. 



122 
 

This inverse trend of reduced binding seen upon introduction of increasing concentrations of 

THP to the CHAPS-treated fraction could be due to the apparent Hooks effect. Western 

blotting using anti-IgG demonstrated that this immunoglobulin was resident to both CHAPS- 

and DTT-treated nano vesicle populations (Figure 2.8, polyclonal IgG). To verify whether 

IgG could interact with the nano vesicle fractions selected herein for binding studies, human 

IgG was selected as an analyte and assayed using identical conditions to the aforementioned 

interaction analyses.  In contrast to what was observed for THP binding studies, an increase 

in RU as a function of IgG concentration was observed for ligands on flow cells 2 and 4, 

respectively, while no apparent saturation was observed during this analysis (Figure 2.14). 

The reference flow cells 1 and 3 were used as a control by passing equal amounts of IgG over 

them and subtracting their value from the interaction shown here. 

 

Figure 2.14: Biomolecular interactions with IgG. Comparative analysis of the binding of IgG 

in solution to both nano vesicle populations (DTT-treated and CHAPS-treated) by interday 

SPR analysis.   
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2.4 Discussion 

Exosomes found in all biological fluids, including the urine, are emerging as a novel class of 

cell products plausibly revolutionising our views of cell behaviour and processes like 

intercellular communication (Van Niel et al., 2006). While an increasing variety of exosome 

constituents including specific proteins, DNA and RNA species are being identified, little is 

still understood of their precise biological roles. Likewise, the optimal method for exosomal 

isolation and to determine of thier interactions, to appreciate their distinct roles in biology 

remains to be characterised in detail. The aim of this study was to optimize methods which 

increase the recovery of urinary exosomal vesicles and optimise their preservation for 

functionality without notable interference with inherent soluble protein constituents of urine.  

Tamm-Horsfall protein (THP) is the most abundant glycoprotein normally found in urine 

(Tamm & Horsfall, 1952). It is expressed abundantly in the thick ascending limb of the loop 

of Henle and the early distal convoluted tubule (Kumar et al., 1985). THP contains the most 

varied array of linked glycans of any human glycoprotein, which suggests a capacity for 

adhesion to a variety of ligands (Hard et al., 1992). In the urine, THP may precipitate due to 

many factors of the immediate physico-chemical microenvironment and, accordingly, THP is 

the main constituent of hyaline urinary casts (Fairley, Owen & Birch, 1983). More recently, 

Fernández-Llama and colleagues (Fernandez-Llama et al., 2010) demonstrated that abundant 

exosome vesicles are entrapped within urinary THP polymers. In order to overcome such an 

interference in the analysis of the total exosome proteome, a strong denaturation of its 24-

disulfide bridges by DTT have been proposed (Gonzales et al., 2009; Fernandez-Llama et al., 

2010). This leads to defolding of the zona pellucida (ZP) domain responsible for protein 

polymerization (Gonzales et al., 2010). Alternatively, use of ultracentrifugation, 

incorporating a sucrose gradient or a cushion in deuterated buffer, to remove THP has been 

proposed (Mitchell et al., 2009; Hogan et al., 2009). 
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We introduce here distinct modifications, as summarised in Figure 1, to the well-established 

method of exosome isolation which is based on serial differential centrifugations (Gonzales et 

al., 2010). Firstly, a very low-speed centrifugation at 1,000g was introduced to remove 

abundant cells, cell debris, nuclei, bacteria and the bulk of THP which interferes by 

entrapping the exosomes. As evident by SDS-PAGE analysis of this fraction, the approach 

was efficient (Figure 2.3). Although we cannot fully appreciate the fact that a fraction of 

vesicles retained at this point may have been entrapped within THP polymers, the 

introduction of this low-speed centrifugation step avoided a potential contamination resulting 

from intracellular vesicle release as a result of cytolysis following freeze-thaw cycles and 

hypotonic shock during dialysis. Furthermore, a dialysis step was introduced to decrease the 

salt concentration in order to favour the de-polymerization of THP and avoid its precipitation 

during the following centrifugation steps. Nonetheless, THP fibrils were still present in the 

low-speed centrifugation pellet, as shown in Figure 2.2, possibly due to the increased THP 

concentration following the reduction of the starting volume by sppedvac. This step was 

introduced with the double aim of handling a large amount of urine in a small volume and, 

secondly, to mimic a proteinuric condition and, thus, to evaluate the extent of albumin 

interference which is well-represented in the first crude pellets along with THP (section 

2.3.3). To overcome these barriers, our protocol was modified particularly to facilitate the 

release of entrapped vesicles from THP polymers, and simultaneously removing the 

interference of soluble proteins like albumin.  

After systematic trials, we selected two approaches to manage THP interference. The first 

involved the well-established DTT treatment (Pisitkun, Shen & Knepper, 2004; Gonzales et 

al., 2009; Fernandez-Llama et al., 2010; Gonzales et al., 2010) which unfolds the zona 

pellucida (ZP) domain responsible for protein polymerization (Jovine et al., 2002). The 

second method involved the addition of a mild detergent which has previously been shown to 
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solubilise THP efficiently (Kobayashi & Fukuoka, 2001). CHAPS, a non-denaturating 

zwitterionic detergent is ideally suited for the disruption of non-specific protein interactions, 

while also protecting the conformation of the protein (s) of interest (Hjelmeland, 1980).  The 

bulk of THP and albumin were successfully removed from the exosomal pellet and after the 

treatment with CHAPS, were found in the supernatant, as shown in Figure 3. CHAPS is 

known to break protein-protein interactions (Hjelmeland, 1980; Labeta, Fernandez & 

Festenstein, 1988). However, depending on the microenvironment, the strongest protein-

protein interactions, such as those found in the tetraspanin web (Levy & Shoham, 2005), are 

preserved. 

When analysed by electron microscopy, pellets retained after both low and high-speed 

centrifugations treated with CHAPS and/or DTT showed a characteristic spherical 

morphology limited by a bilipidic layer (Figure 2.2) and with diameters ranging from 

between 30 to 150 nm. These characteristics are consistent with the observed size and 

morphology of vesicles previously described in urine (Pisitkun, Shen & Knepper, 2004; 

Cheruvanky et al., 2007; Gonzales et al., 2009; Hogan et al., 2009; Hara et al., 2010; 

Gonzales et al., 2010; Merchant et al., 2010; Rood et al., 2010). Indeed, it is clear that 

urinary vesicles represent a tremendous heterogeneity in size and in the exosomes, marker 

patterns are evident as shown in the Western blot analysis. The concomitant presence of other 

specific markers, like nephrin and lactadherin, complicate the semantic definition of such 

urinary fractions which can include what are generally called microparticles, ectosomes, 

exosomes, ‘exosome-like’ vesicles and shed vesicles. Furthermore, these results clearly 

suggest that the whole vesicle is a structure resistant to treatment with a detergent such as 

CHAPS, which in turn demonstrates that this may be used for vesicle isolation without 

having a deleterious effect on the structural conformation of vesicles.  
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In our analysis, after an ON incubation in 1% (w/v) CHAPS, which is able to solubilise a 

detergent-resistant domain almost completely within one hour of incubation (Garner, Smith 

& Hooper, 2008), we were able to perform comparative analysis of CHAPS- and DTT-

treated vesicle populations by TEM (Figure 2.2). This suggests that urinary vesicles are 

detergent (CHAPS)-resistant. Furthermore, the MS-based proteomic profiling led to the 

identification of 247 unique proteins in CHAPS SN and 274 in DTT SN, respectively. This 

finding indirectly confirms the resistance of these vesicles to detergent solubilisation. The 

Venn diagram in Figure 2.6 shows that around 75% of identifications in CHAPS or DTT are 

shared. This evidence clearly highlights the detergent-resistant features of urinary nano 

vesicles. In fact, if CHAPS had lysed and solubilised the vesicle contents, it would be 

expected to find a protein data set which would be highly biased toward the exosomal 

proteome. Furthermore, the distribution of the protein classes by the Panther classification 

system (Fig. 2.7) was similar between CHAPS and DTT in respect to several exosomal 

proteins. Comparison of our results with the published proteomic data on exosomes and 

exosome free supernatants (Gonzales et al., 2009; Kentsis et al., 2009) showed that more than 

50% -exosomes pellet- and 70% -SN exosome-free of the identified proteins were shared, 

respectively. Interestingly, around 40% of identified proteins are common to the 4 data sets.  

In spite of differences in the methodological approach, the ‘off-gel’ utilized in this study with 

respect to the ‘in-gel’ method utilized in the comparative protein data set (Gonzales et al., 

2009; Kentsis et al., 2009), instrumentation and bioinformatics tools, the 3 data sets showed 

high concordance in the identifications. One of the reasons for it oculd be the stringency of 

MS identification criteria used (described in detail in the original publications on each 

dataset), was reasonably high in each case. Therefore, false-positive identifications should 

represent less than 1% of the entries.  Keeping in mind that these vesicles were found to be 

resistant to harsh treatments, this evidence shows an incomplete recovery of vesicles by the 
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classical ultracentrifugation protocols which may lead to a preferential enrichment of 

vesicular subpopulations which plainly share a common set of proteins (exosomal markers) 

along with some specific ones (inherent to a possible sub-population).  This is of significant 

practical importance as the increased yield of vesicles isolated and the confidence in the MS 

identification and quantification of low-abundant proteins from vesicle pellets could be of 

crucial importance to identify biomarkers represented in very low amounts. Currently, 

modern proteomics aim for the analysis of sub-cellular proteomes for markers discovery. In 

this regard, two special kinds of extracellular vesicles such as exosomes and membrane 

plasma shedding vesicles are emerging as excellent biological sources to be applied in the 

discovery of non-invasive organ-specific disease biomarkers.  

Protease activity of dipeptidyl peptidase (DPP IV) and nephrilysin (NEP) showed that the 

CHAPS method is a useful alternative to DTT when full preservation of biological activity of 

all the disulfide bridge-containing proteins is needed. In particular, the NEP structure consists 

of a short N-terminal cytoplasmic domain, followed by a single trans-membrane helix, and a 

large C-terminal extracellular domain that contains the active site (Lee et al., 1991; Shimada, 

Takahashi & Tanzawa, 1994). The extracellular domain of NEP contains 12 cysteine 

residues, all components of six disulfide bridges. Four of these are located within the catalytic 

domain. A single disulfide bridge is found within the inter-domain linker fragments, and 

another one is present within domain 2. All of these participate in maintaining the structure 

consisting of two multiply-connected folding domains which embrace a large central cavity 

containing the active site (Emoto & Yanagisawa, 1995). Evaluation of NEP proteolytic 

activity after reduction and re-oxidation (DTT treatment and subsequent removal of DTT) of 

disulfide bridges highlights that this may result in a severe misfolding, leading to an 

impairment of NEP activity. NEP activity is better preserved in the CHAPS protocol as 

shown by our results.  
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Western blotting of CHAPS and DTT fractions revealed very similar patterns. Firstly, after 

both treatments, the bulk of the tetraspanin family exosomal marker associated with late 

multivesicular endosomes, CD63 (Kobayashi et al., 2000) was recovered at a low centrifugal 

speed (18,000g) with a broad distribution of isoforms. During urine formation, the final 

product for voiding contains vesicles originating from a wide range of different cellular 

origins and hence, it was not a surprise to find such a heterogeneity which is a reflection of 

specific cell-sorting and trafficking pathways, but also of distinct origin upstream in the 

podocyte by finding fractions of nephrin in exosomes.  Finally, although protease degradation 

cannot be excluded, at the time of its occurrence this activity seemed to be very specific and 

related to all those fractions which were retained at a low-speed centrifugation (18,000g). In 

support of this evidence, immunodetection of cytosolic TSG-101 showed a fragmentation 

pattern in only one fraction P18CP200, which was not seen in other fractions where the 

signal was equally intense for full length protein (Figure 2.4). Furthermore, the ability to 

detect the intra-vesicular localised marker TSG101 (Babst et al., 2000; Thery et al., 2001; 

Khatua et al., 2009) underlines the retained integrity of the vesicles during the whole 

purification methodology. 

Lactadherin (MFG-E8 or SED1) is known to participate in a wide variety of cellular 

interactions (Raymond, Ensslin & Shur, 2009) and was previously shown to be released in 

association with exosomes (Oshima et al., 2002). An interaction was reported between the 

discoidin/C domains and the pellucida zone (Ensslin & Shur, 2003) and one could speculate 

about a possible interaction with THP (ZP domain).  Finally, lactadherin isoforms have been 

previously identified which are reflections of physiological state and distinct cell type origins 

(Veron et al., 2005; Watanabe et al., 2005). MFG-E8 immunodetection (Figure 2.4) reveals a 

wide distribution of bands with specific signatures for each pellet. Proteomic profiling 

(Pisitkun, Shen & Knepper, 2004; Gonzales et al., 2009) has identified potential interacting 
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partners of MFGE-E8 (such as β-integrin) in exosomes. On the other hand, shed vesicles and 

apoptotic bodies have phosphatidyl-serine on the surface and MFG-E8 could mediate 

interactions between these vesicles and exosomes, and as well as THP. However, this remains 

to be fully established. 

Surprisingly, immunodetection with anti-nephrin antibody revealed a comparable distribution 

of fragments to those seen in nephrinuria patients (Patari et al., 2003). Examination of the 

western blot molecular weights and the intracellular location of the specific epitope 

recognised by our antibody led us to propose that this vesicle preparation contains 

membrane-associated nephrin fragments. Whether these fragments were orientated ‘right-

side-out’ (extracellular part on surface) or ‘inside-out’ (cytosolic part on surface) has to be 

confirmed by further analyses. Identification of shed podocytes in the urines of healthy 

subjects and patients affected by glomerular diseases has also been proposed previously 

(Vogelmann et al., 2003; Hara et al., 2005). More recently, it was reported that small 

podocalyxin-positive vesicles which are negative for exosomal markers originate from 

microvilli of podocytes in both healthy samples and those from patients with glomerular 

diseases (Hara et al., 2010).  Detection of nephrin and exosomal markers in the same fraction 

may suggest a protein turnover through clathrin- or raft-mediated endocytosis (Veron et al., 

2005). After internalisation by either mechanism, vesicles are sorted into the endosomal 

pathway which could redirect vesicles to be either degraded or secreted as exosomes. The 

minute amount of nephrin excreted into urine of healthy subjects could reflect a physiological 

turnover of the slit diaphragm. In support to this, nephrin has been detected by immuno-

electron microscopy not solely at the slit diaphragm area but also along lateral podocyte 

membranes and, eventually, in the urine (Patari et al., 2003). The detection of the same 

nephrin fragmentation pattern in the whole urine of diabetic nephropathic patients (Patari et 

al., 2003) suggests that an increase in this dynamic process may accurately reflect worsening 
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podocyte injury. A better understanding of the mechanism (s) which accelerates the turnover 

of this key structure of the glomerular filtration barrier may provide a critical new insight into 

the identification of early markers of glomerular impairment during disease progression.   

It was found that despite the efforts to exclude high-abundant proteins like THP and albumin 

from nano vesicle isolation, these proteins are present in significant quantities in final pellet 

(Musante et al., 2012). DTT and CHAPS treatment seem to get rid of these proteins but only 

to a certain extent. Therefore, the resilient behaviour of these proteins led us to speculate 

whether these proteins could be interacting specifically with the vesicle populations. We 

sought to establish this interaction using FLISA, IP and SPR. Preliminary FLISA and IP 

analysis was performed using CHAPS-treated nano vesicle populations only, and the 

monomeric fraction of commercial human albumin, as purified by SEC and analysed by 

SDS-PAGE (Figures 2.9 and 2.12), which demonstrated more favourable binding to albumin 

at a physiological pH. The demonstration of this biomolecular interaction was one of the 

primary objectives of these analyses. This FLISA and IP study was not repeated for DTT-

populations as a significant amount of effort was required for the isolation of nano vesicles 

and hence, we elected to conserve this material for SPR analysis, using the FLISA and IP as a 

preliminary study to ascertain whether there was a justification for proceeding.   

For our SPR studies, we elected to capture nano vesicles using a carboxymethylated dextran 

surface and EDC/NHS-based coupling through the selection of a CM5 sensor chip.  It is well 

established that L1 sensor chips, supplied by the manufacturer of Biacore technology (GE 

Healthcare), are particularly suited for the capture of lipid-containing ligands (Anderluh et 

al., 2005).   However, our preconcentration and immobilisation studies performed initially on 

the CM5 surface allowed us to capture suitable quantities of analyte for interaction studies, 

with nano vesicles retaining stability on immobilised surfaces when subjected to regeneration 

scouting with NaOH.  We propose that the CHAPS- and DTT-treated vesicles selected as 



131 
 

ligands were coupled to this surface via their associated proteins, which in turn permitted 

covalent capture.  It should also be noted that at the completion of this analysis, only a 4.3% 

loss in captured ligand was observed, which suggested stability. For the purpose of our 

studies, we elected to proceed with comparative binding of a panel of different analytes with 

both nano vesicle populations, which explains why these were immobilised as opposed to e.g. 

albumin or THP. While identical ligand concentrations (100µg/mL) were selected for capture 

using the same immobilisation and capping cycle times, different amounts of ligand were 

captured on flow cells 2 and 4, respectively. It is a challenge to have identical amounts of 

ligand captured on adjacent surfaces. However, the objective of our analysis was simply to 

demonstrate qualitative binding primarily using a dose-dependent response curve of analyte.  

Hence, as the same amount of analyte was passing over both surfaces, it was possible to 

determine relative comparative binding. 

For our studies, the immobilisation of nano vesicles previously shown to be comprised of a 

population of entities with differing sizes (Musante et al., 2012) presented a heterologous 

surface, which would prevent accurate 1:1 interaction analyses to be performed.  In addition 

to this, our objectives were not to obtain comparative affinity measurements between each 

analyte selected for analysis and individual nano vesicle populations, but simply to 

demonstrate the occurrence in nature of this biomolecular interaction and deduce the 

biological importance of this interaction.  Furthermore, if an analyte such as albumin was 

selected for capture, it would not have been possible to perform kinetic analysis due to the 

heterogenous nature of these populations, inferring that is would not be possible to determine 

the size of the analyte.  This could only be performed by isolating individual populations of 

nano vesicles of a defined size, which is problematic given the nature of these analytical 

matrices.  Hence, no kinetic analysis was performed. 
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Preliminary SPR studies were undertaken to demonstrate an interaction between each nano 

vesicle population and albumin.  More specifically, we initially chose to investigate whether 

the nano vesicles immobilised were already coupled with albumin by selecting an anti-

albumin antibody for biorecognition purposes. For CHAPS-treated exosomes, the observation 

of a concentration-dependent increase in RU, taking online reference subtraction and the 

HBS negative control into consideration, suggested that albumin was already present and 

coupled with these vesicles.  In contrast, the introduction of a low analyte concentration 

(10µg/mL) to DTT nano vesicles resulted in favourable binding (µ=76.2RU), albeit without 

an increase in binding as elevated amounts of anti-albumin antibody were subsequently 

introduced (Figure 2.10 A). This suggested that saturation was occurring at this 

concentration. In contrast, when SEC-purified monomeric albumin was tested (Figure 2.10 

B), more favourable binding was observed for CHAPS populations, with signal saturation 

seen for both ligands at an analyte concentration of 50µg/mL. Based on the observations of 

these two interday SPR assays, we postulate that there is an interaction between albumin and 

both nano vesicle populations independent of one another, which is evident at the time of 

isolation from urine. Furthermore, we can speculate that there is a higher amount of albumin 

coupled to the DTT-population, which in turn results in increased binding of anti-albumin 

antibody at the lowest analyte concentration selected for analysis, namely 10µg/mL. 

Notwithstanding the tendency of human serum albumin to aggregate (Lin et al., 2000), this in 

theory would mean that there is limited space available for albumin to bind to these vesicles, 

which is reflected by lower binding and, consequently, reduced RU values. The opposite 

effect appears to be evident for CHAPS-treated nano vesicles, where significantly increased 

albumin binding is observed, presumably to the presence of lower amounts on the 

immobilised vesicles which, in turn, accommodates interaction with free albumin in solution. 

It should also be mentioned that there is approximately twice as much ligand captured on 
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FC2 (DTT) than on the corresponding CHAPS surface (FC4). This may, in theory, mean a 

twofold increase in albumin binding sites availability on this surface which could mean that 

actual albumin interaction with DTT vesicles was even lower than what was observed. 

Finally, it must also be acknowledged that the detergent treatments may have different effects 

on the conformational structure of surface proteins/epitopes which may in turn compromise 

binding. IP, using anti-albumin antibodies, were able to isolate nano vesicles as evidenced by 

detection of CD63 in the elution fraction of IP (Figure 2.12). These results of SPR and IP 

seem to complement each other. 

We and others have already outlined the fact that THP co-precipitation is problematic for 

urinary exosome isolation (Fernandez-Llama et al., 2010; Musante et al., 2012), although we 

present the first direct binding studies using DEF-purified THP. For CHAPS-treated nano 

vesicles, increased concentrations of this soluble protein correlated with an increase in 

binding, as seen previously for albumin.  However, a contrasting binding profile was seen for 

DTT-populations, where analyte concentration was inversely proportional to surface binding. 

DTT-populations have less THP as compared to the CHAPS-populations (Figure 2.8). This 

could be due to the apparent Hooks effect. 

Subsequent profiling using anti-IgG revealed that both populations contained this 

immunoglobulin as an external epitope, as TEM analysis revealed that structural integrity 

was not compromised as a result of detergent treatment (Figure 2.2).  A typical concentration-

dependent increase in binding was observed, albeit with more favourable binding to CHAPS-

treated nano vesicle populations (Figure 2.14). In summary, through the implementation of 

FLISA and IP, as preliminary methodologies, and SPR analysis, through the application of 

the Biacore 3000 analytical platform, we have been able to provide key information on the 

biomolecular interactions that take place between high-abundance proteins such as THP, 

albumin and IgG and nano vesicles.  
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In conclusion, an improved method was developed to exclude most of the interference of 

soluble proteins present in urinary vesicle isolation. CHAPS treatment appears superior in 

preserving the activity of constituent proteins of membrane vesicles while simultaneously 

removing interference of soluble proteins (THP, albumin). Thus, our method offers a new 

protocol to prepare urinary vesicles for –omics, analytical or functional studies. Moreover, 

interactions between high abundant proteins and membrane vesicles were established. This, 

in part, explains why these proteins are so difficult to remove from the nano vesicle 

populations when isolated from whole urine.  
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Supplementary table S2.1: Identification of proteins in (P18+P200) DTT SN200 sample 1. 

Accession of the protein, sequence coverage, PSM (Match between a fragmentation mass 

spectrum and peptide), number of peptides found, number of amino acid in the protein, 

molecular weight, calculated PI and mascot score along with the description of the protein are 

indicated in the table. 

Accession Coverage 
% 

# 
PSMs 

# 
Peptides 

# 
AAs 

MW 
[kDa] 

calc. pI Score Description 

P62258 12.16 2 2 255 29.2 4.74 118.92 14-3-3 protein epsilon OS=Homo 
sapiens GN=YWHAE PE=1 SV=1 - 
[1433E_HUMAN] 

P63104 4.90 1 1 245 27.7 4.79 65.24 14-3-3 protein zeta/delta 
OS=Homo sapiens GN=YWHAZ 
PE=1 SV=1 - [1433Z_HUMAN] 

P08195 4.44 2 2 630 68.0 5.01 76.24 4F2 cell-surface antigen heavy 
chain OS=Homo sapiens 
GN=SLC3A2 PE=1 SV=3 - 
[4F2_HUMAN] 

O95336 6.20 1 1 258 27.5 6.05 98.20 6-phosphogluconolactonase 
OS=Homo sapiens GN=PGLS PE=1 
SV=2 - [6PGL_HUMAN] 

Q13510 26.08 9 8 395 44.6 7.62 555.66 Acid ceramidase OS=Homo sapiens 
GN=ASAH1 PE=1 SV=5 - 
[ASAH1_HUMAN] 

P60709 9.60 3 3 375 41.7 5.48 191.73 Actin, cytoplasmic 1 OS=Homo 
sapiens GN=ACTB PE=1 SV=1 - 
[ACTB_HUMAN] 

P13798 1.64 1 1 732 81.2 5.48 68.22 Acylamino-acid-releasing enzyme 
OS=Homo sapiens GN=APEH PE=1 
SV=4 - [ACPH_HUMAN] 

P02763 30.35 5 5 201 23.5 5.02 279.23 Alpha-1-acid glycoprotein 1 
OS=Homo sapiens GN=ORM1 
PE=1 SV=1 - [A1AG1_HUMAN] 

P19652 16.92 3 3 201 23.6 5.11 131.95 Alpha-1-acid glycoprotein 2 
OS=Homo sapiens GN=ORM2 
PE=1 SV=2 - [A1AG2_HUMAN] 

P01011 17.02 5 5 423 47.6 5.52 326.04 Alpha-1-antichymotrypsin 
OS=Homo sapiens GN=SERPINA3 
PE=1 SV=2 - [AACT_HUMAN] 

P01009 37.80 14 12 418 46.7 5.59 838.83 Alpha-1-antitrypsin OS=Homo 
sapiens GN=SERPINA1 PE=1 SV=3 
- [A1AT_HUMAN] 

P04217 5.86 2 2 495 54.2 5.87 109.18 Alpha-1B-glycoprotein OS=Homo 
sapiens GN=A1BG PE=1 SV=3 - 
[A1BG_HUMAN] 

P02765 5.72 3 2 367 39.3 5.72 179.74 Alpha-2-HS-glycoprotein OS=Homo 
sapiens GN=AHSG PE=1 SV=1 - 
[FETUA_HUMAN] 

P01023 1.97 2 2 1474 163.2 6.42 115.80 Alpha-2-macroglobulin OS=Homo 
sapiens GN=A2M PE=1 SV=2 - 
[A2MG_HUMAN] 

O43707 5.93 5 5 911 104.8 5.44 274.72 Alpha-actinin-4 OS=Homo sapiens 
GN=ACTN4 PE=1 SV=2 - 
[ACTN4_HUMAN] 

P04745 37.77 12 12 511 57.7 6.93 628.87 Alpha-amylase 1 OS=Homo sapiens 
GN=AMY1A PE=1 SV=2 - 
[AMY1_HUMAN] 

P19961 31.51 11 11 511 57.7 7.09 601.37 Alpha-amylase 2B OS=Homo 
sapiens GN=AMY2B PE=1 SV=1 - 
[AMY2B_HUMAN] 

P06733 10.60 3 3 434 47.1 7.39 151.89 Alpha-enolase OS=Homo sapiens 
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GN=ENO1 PE=1 SV=2 - 
[ENOA_HUMAN] 

P54802 32.17 19 16 743 82.1 6.54 1058.5
0 

Alpha-N-acetylglucosaminidase 
OS=Homo sapiens GN=NAGLU 
PE=1 SV=1 - [ANAG_HUMAN] 

P15144 29.16 30 21 967 109.5 5.48 1641.0
3 

Aminopeptidase N OS=Homo 
sapiens GN=ANPEP PE=1 SV=4 - 
[AMPN_HUMAN] 

P12821 1.07 1 1 1306 149.6 6.39 63.12 Angiotensin-converting enzyme 
OS=Homo sapiens GN=ACE PE=1 
SV=1 - [ACE_HUMAN] 

P01019 6.39 3 2 485 53.1 6.32 163.68 Angiotensinogen OS=Homo sapiens 
GN=AGT PE=1 SV=1 - 
[ANGT_HUMAN] 

P04083 8.09 2 2 346 38.7 7.02 70.17 Annexin A1 OS=Homo sapiens 
GN=ANXA1 PE=1 SV=2 - 
[ANXA1_HUMAN] 

P07355 4.13 1 1 339 38.6 7.75 95.63 Annexin A2 OS=Homo sapiens 
GN=ANXA2 PE=1 SV=2 - 
[ANXA2_HUMAN] 

P08758 9.69 2 2 320 35.9 5.05 118.17 Annexin A5 OS=Homo sapiens 
GN=ANXA5 PE=1 SV=2 - 
[ANXA5_HUMAN] 

P01008 2.80 1 1 464 52.6 6.71 72.00 Antithrombin-III OS=Homo sapiens 
GN=SERPINC1 PE=1 SV=1 - 
[ANT3_HUMAN] 

P02647 23.97 5 5 267 30.8 5.76 312.30 Apolipoprotein A-I OS=Homo 
sapiens GN=APOA1 PE=1 SV=1 - 
[APOA1_HUMAN] 

P02652 20.00 1 1 100 11.2 6.62 91.59 Apolipoprotein A-II OS=Homo 
sapiens GN=APOA2 PE=1 SV=1 - 
[APOA2_HUMAN] 

P06727 6.31 2 2 396 45.4 5.38 134.56 Apolipoprotein A-IV OS=Homo 
sapiens GN=APOA4 PE=1 SV=3 - 
[APOA4_HUMAN] 

P05090 35.98 16 8 189 21.3 5.15 831.21 Apolipoprotein D OS=Homo sapiens 
GN=APOD PE=1 SV=1 - 
[APOD_HUMAN] 

P02649 23.34 6 5 317 36.1 5.73 353.72 Apolipoprotein E OS=Homo sapiens 
GN=APOE PE=1 SV=1 - 
[APOE_HUMAN] 

P15289 14.00 5 4 507 53.6 6.07 293.32 Arylsulfatase A OS=Homo sapiens 
GN=ARSA PE=1 SV=3 - 
[ARSA_HUMAN] 

O75882 7.42 10 10 1429 158.4 7.31 500.96 Attractin OS=Homo sapiens 
GN=ATRN PE=1 SV=2 - 
[ATRN_HUMAN] 

P98160 1.34 5 5 4391 468.5 6.51 241.11 Basement membrane-specific 
heparan sulfate proteoglycan core 
protein OS=Homo sapiens 
GN=HSPG2 PE=1 SV=3 - 
[PGBM_HUMAN] 

P02749 4.35 1 1 345 38.3 7.97 77.13 Beta-2-glycoprotein 1 OS=Homo 
sapiens GN=APOH PE=1 SV=3 - 
[APOH_HUMAN] 

P61769 8.40 1 1 119 13.7 6.52 75.04 Beta-2-microglobulin OS=Homo 
sapiens GN=B2M PE=1 SV=1 - 
[B2MG_HUMAN] 

P16278 7.98 4 4 677 76.0 6.57 287.86 Beta-galactosidase OS=Homo 
sapiens GN=GLB1 PE=1 SV=2 - 
[BGAL_HUMAN] 

P08236 11.21 4 4 651 74.7 7.02 279.58 Beta-glucuronidase OS=Homo 
sapiens GN=GUSB PE=1 SV=2 - 
[BGLR_HUMAN] 

Q93088 14.53 4 4 406 45.0 7.03 297.42 Betaine--homocysteine S-
methyltransferase 1 OS=Homo 
sapiens GN=BHMT PE=1 SV=2 - 
[BHMT1_HUMAN] 

P19835 14.61 7 7 753 79.3 5.34 339.62 Bile salt-activated lipase OS=Homo 
sapiens GN=CEL PE=1 SV=3 - 
[CEL_HUMAN] 
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P43251 4.79 2 2 543 61.1 6.25 140.86 Biotinidase OS=Homo sapiens 
GN=BTD PE=1 SV=2 - 
[BTD_HUMAN] 

Q5VW32 3.89 2 1 411 46.4 7.65 80.70 BRO1 domain-containing protein 
BROX OS=Homo sapiens 
GN=BROX PE=1 SV=1 - 
[BROX_HUMAN] 

Q8WVV5 2.10 1 1 523 59.0 6.01 66.10 Butyrophilin subfamily 2 member 
A2 OS=Homo sapiens GN=BTN2A2 
PE=2 SV=2 - [BT2A2_HUMAN] 

P12830 7.94 4 4 882 97.4 4.73 235.86 Cadherin-1 OS=Homo sapiens 
GN=CDH1 PE=1 SV=3 - 
[CADH1_HUMAN] 

P55290 1.68 1 1 713 78.2 4.98 67.16 Cadherin-13 OS=Homo sapiens 
GN=CDH13 PE=1 SV=1 - 
[CAD13_HUMAN] 

P19022 4.08 2 2 906 99.7 4.81 196.12 Cadherin-2 OS=Homo sapiens 
GN=CDH2 PE=1 SV=4 - 
[CADH2_HUMAN] 

Q9BYE9 3.66 4 4 1310 141.5 4.50 183.49 Cadherin-related family member 2 
OS=Homo sapiens GN=CDHR2 
PE=1 SV=2 - [CDHR2_HUMAN] 

Q9HBB8 2.13 1 1 845 88.2 4.93 76.63 Cadherin-related family member 5 
OS=Homo sapiens GN=CDHR5 
PE=1 SV=3 - [CDHR5_HUMAN] 

P05937 4.98 1 1 261 30.0 4.83 78.51 Calbindin OS=Homo sapiens 
GN=CALB1 PE=1 SV=2 - 
[CALB1_HUMAN] 

P22792 3.30 1 1 545 60.6 5.99 128.50 Carboxypeptidase N subunit 2 
OS=Homo sapiens GN=CPN2 PE=1 
SV=2 - [CPN2_HUMAN] 

P31944 5.79 1 1 242 27.7 5.58 64.58 Caspase-14 OS=Homo sapiens 
GN=CASP14 PE=1 SV=2 - 
[CASPE_HUMAN] 

P07339 15.53 4 4 412 44.5 6.54 301.14 Cathepsin D OS=Homo sapiens 
GN=CTSD PE=1 SV=1 - 
[CATD_HUMAN] 

P16070 1.62 1 1 742 81.5 5.33 95.82 CD44 antigen OS=Homo sapiens 
GN=CD44 PE=1 SV=2 - 
[CD44_HUMAN] 

P13987 15.63 3 2 128 14.2 6.48 176.85 CD59 glycoprotein OS=Homo 
sapiens GN=CD59 PE=1 SV=1 - 
[CD59_HUMAN] 

Q8NFZ8 6.19 2 2 388 42.8 6.30 128.19 Cell adhesion molecule 4 OS=Homo 
sapiens GN=CADM4 PE=1 SV=1 - 
[CADM4_HUMAN] 

P00450 13.90 10 10 1065 122.1 5.72 570.61 Ceruloplasmin OS=Homo sapiens 
GN=CP PE=1 SV=1 - 
[CERU_HUMAN] 

Q53GD3 1.97 1 1 710 79.2 8.59 99.06 Choline transporter-like protein 4 
OS=Homo sapiens GN=SLC44A4 
PE=2 SV=1 - [CTL4_HUMAN] 

P10909 19.60 6 6 449 52.5 6.27 452.74 Clusterin OS=Homo sapiens 
GN=CLU PE=1 SV=1 - 
[CLUS_HUMAN] 

Q9UGN4 6.02 1 1 299 33.2 5.49 63.42 CMRF35-like molecule 8 OS=Homo 
sapiens GN=CD300A PE=1 SV=2 - 
[CLM8_HUMAN] 

P12109 5.45 4 4 1028 108.5 5.43 330.05 Collagen alpha-1(VI) chain 
OS=Homo sapiens GN=COL6A1 
PE=1 SV=3 - [CO6A1_HUMAN] 

P39059 0.94 1 1 1388 141.6 5.00 133.46 Collagen alpha-1(XV) chain 
OS=Homo sapiens GN=COL15A1 
PE=1 SV=2 - [COFA1_HUMAN] 

P12111 1.51 3 3 3177 343.5 6.68 260.70 Collagen alpha-3(VI) chain 
OS=Homo sapiens GN=COL6A3 
PE=1 SV=4 - [CO6A3_HUMAN] 

P01024 1.68 2 2 1663 187.0 6.40 120.26 Complement C3 OS=Homo sapiens 
GN=C3 PE=1 SV=2 - 
[CO3_HUMAN] 
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P0C0L4 1.49 2 2 1744 192.7 7.08 122.10 Complement C4-A OS=Homo 
sapiens GN=C4A PE=1 SV=1 - 
[CO4A_HUMAN] 

P08185 3.95 1 1 405 45.1 6.04 75.37 Corticosteroid-binding globulin 
OS=Homo sapiens GN=SERPINA6 
PE=1 SV=1 - [CBG_HUMAN] 

P12277 4.46 1 1 381 42.6 5.59 101.91 Creatine kinase B-type OS=Homo 
sapiens GN=CKB PE=1 SV=1 - 
[KCRB_HUMAN] 

Q86T13 3.47 1 1 490 51.6 6.35 58.87 C-type lectin domain family 14 
member A OS=Homo sapiens 
GN=CLEC14A PE=1 SV=1 - 
[CLC14_HUMAN] 

O60494 9.33 23 23 3623 398.4 5.35 1695.1
4 

Cubilin OS=Homo sapiens 
GN=CUBN PE=1 SV=4 - 
[CUBN_HUMAN] 

P15924 0.49 1 1 2871 331.6 6.81 69.25 Desmoplakin OS=Homo sapiens 
GN=DSP PE=1 SV=3 - 
[DESP_HUMAN] 

P16444 11.19 3 3 411 45.6 6.15 189.46 Dipeptidase 1 OS=Homo sapiens 
GN=DPEP1 PE=1 SV=3 - 
[DPEP1_HUMAN] 

P53634 9.72 3 3 463 51.8 6.99 234.33 Dipeptidyl peptidase 1 OS=Homo 
sapiens GN=CTSC PE=1 SV=1 - 
[CATC_HUMAN] 

Q9UHL4 4.47 2 2 492 54.3 6.32 90.75 Dipeptidyl peptidase 2 OS=Homo 
sapiens GN=DPP7 PE=1 SV=3 - 
[DPP2_HUMAN] 

P27487 13.45 9 8 766 88.2 6.04 625.03 Dipeptidyl peptidase 4 OS=Homo 
sapiens GN=DPP4 PE=1 SV=2 - 
[DPP4_HUMAN] 

Q12805 14.00 5 5 493 54.6 5.07 292.78 EGF-containing fibulin-like 
extracellular matrix protein 1 
OS=Homo sapiens GN=EFEMP1 
PE=1 SV=2 - [FBLN3_HUMAN] 

Q9UNN8 16.81 3 3 238 26.7 7.18 130.75 Endothelial protein C receptor 
OS=Homo sapiens GN=PROCR 
PE=1 SV=1 - [EPCR_HUMAN] 

P08294 16.67 3 3 240 25.8 6.61 176.52 Extracellular superoxide dismutase 
[Cu-Zn] OS=Homo sapiens 
GN=SOD3 PE=1 SV=2 - 
[SODE_HUMAN] 

P15311 7.34 5 4 586 69.4 6.27 228.20 Ezrin OS=Homo sapiens GN=EZR 
PE=1 SV=4 - [EZRI_HUMAN] 

P02671 1.96 1 1 866 94.9 6.01 86.31 Fibrinogen alpha chain OS=Homo 
sapiens GN=FGA PE=1 SV=2 - 
[FIBA_HUMAN] 

Q14314 3.64 1 1 439 50.2 7.39 94.43 Fibroleukin OS=Homo sapiens 
GN=FGL2 PE=1 SV=1 - 
[FGL2_HUMAN] 

P02751 4.86 8 7 2386 262.5 5.71 496.46 Fibronectin OS=Homo sapiens 
GN=FN1 PE=1 SV=4 - 
[FINC_HUMAN] 

Q5D862 0.46 1 1 2391 247.9 8.31 62.00 Filaggrin-2 OS=Homo sapiens 
GN=FLG2 PE=1 SV=1 - 
[FILA2_HUMAN] 

Q14315 0.48 1 1 2725 290.8 5.97 74.24 Filamin-C OS=Homo sapiens 
GN=FLNC PE=1 SV=3 - 
[FLNC_HUMAN] 

P09467 5.03 1 1 338 36.8 6.99 78.68 Fructose-1,6-bisphosphatase 1 
OS=Homo sapiens GN=FBP1 PE=1 
SV=4 - [F16P1_HUMAN] 

P04075 1.92 2 1 364 39.4 8.09 69.67 Fructose-bisphosphate aldolase A 
OS=Homo sapiens GN=ALDOA 
PE=1 SV=2 - [ALDOA_HUMAN] 

Q08380 29.74 26 12 585 65.3 5.27 1515.6
9 

Galectin-3-binding protein 
OS=Homo sapiens GN=LGALS3BP 
PE=1 SV=1 - [LG3BP_HUMAN] 

Q92820 16.35 4 4 318 35.9 7.11 280.60 Gamma-glutamyl hydrolase 
OS=Homo sapiens GN=GGH PE=1 
SV=2 - [GGH_HUMAN] 
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P19440 6.85 3 3 569 61.4 7.12 228.32 Gamma-glutamyltranspeptidase 1 
OS=Homo sapiens GN=GGT1 PE=1 
SV=2 - [GGT1_HUMAN] 

P17900 10.36 1 1 193 20.8 5.31 79.14 Ganglioside GM2 activator 
OS=Homo sapiens GN=GM2A PE=1 
SV=4 - [SAP3_HUMAN] 

P06396 9.72 5 5 782 85.6 6.28 384.59 Gelsolin OS=Homo sapiens 
GN=GSN PE=1 SV=1 - 
[GELS_HUMAN] 

Q16769 26.04 6 6 361 40.9 6.61 419.14 Glutaminyl-peptide cyclotransferase 
OS=Homo sapiens GN=QPCT PE=1 
SV=1 - [QPCT_HUMAN] 

Q07075 5.85 4 4 957 109.2 5.47 216.96 Glutamyl aminopeptidase 
OS=Homo sapiens GN=ENPEP 
PE=1 SV=3 - [AMPE_HUMAN] 

P22352 15.49 3 3 226 25.5 8.13 184.78 Glutathione peroxidase 3 
OS=Homo sapiens GN=GPX3 PE=1 
SV=2 - [GPX3_HUMAN] 

P08263 9.01 2 2 222 25.6 8.88 88.98 Glutathione S-transferase A1 
OS=Homo sapiens GN=GSTA1 
PE=1 SV=3 - [GSTA1_HUMAN] 

P09211 7.62 1 1 210 23.3 5.64 150.04 Glutathione S-transferase P 
OS=Homo sapiens GN=GSTP1 
PE=1 SV=2 - [GSTP1_HUMAN] 

P04406 16.42 3 3 335 36.0 8.46 176.18 Glyceraldehyde-3-phosphate 
dehydrogenase OS=Homo sapiens 
GN=GAPDH PE=1 SV=3 - 
[G3P_HUMAN] 

P28799 2.53 2 1 593 63.5 6.83 151.06 Granulins OS=Homo sapiens 
GN=GRN PE=1 SV=2 - 
[GRN_HUMAN] 

Q8NHV1 2.00 2 1 300 34.5 6.46 65.83 GTPase IMAP family member 7 
OS=Homo sapiens GN=GIMAP7 
PE=2 SV=1 - [GIMA7_HUMAN] 

P00738 8.62 3 3 406 45.2 6.58 202.09 Haptoglobin OS=Homo sapiens 
GN=HP PE=1 SV=1 - 
[HPT_HUMAN] 

P08107 1.25 1 1 641 70.0 5.66 87.09 Heat shock 70 kDa protein 1A/1B 
OS=Homo sapiens GN=HSPA1A 
PE=1 SV=5 - [HSP71_HUMAN] 

P11142 1.70 1 1 646 70.9 5.52 83.24 Heat shock cognate 71 kDa protein 
OS=Homo sapiens GN=HSPA8 
PE=1 SV=1 - [HSP7C_HUMAN] 

P68871 6.80 1 1 147 16.0 7.28 71.11 Hemoglobin subunit beta 
OS=Homo sapiens GN=HBB PE=1 
SV=2 - [HBB_HUMAN] 

P02790 2.38 1 1 462 51.6 7.02 67.77 Hemopexin OS=Homo sapiens 
GN=HPX PE=1 SV=2 - 
[HEMO_HUMAN] 

P04196 5.71 2 2 525 59.5 7.50 137.19 Histidine-rich glycoprotein 
OS=Homo sapiens GN=HRG PE=1 
SV=1 - [HRG_HUMAN] 

Q86YZ3 5.09 4 3 2850 282.2 10.04 203.97 Hornerin OS=Homo sapiens 
GN=HRNR PE=1 SV=2 - 
[HORN_HUMAN] 

Q12794 8.74 2 2 435 48.3 6.77 136.32 Hyaluronidase-1 OS=Homo sapiens 
GN=HYAL1 PE=1 SV=2 - 
[HYAL1_HUMAN] 

O75144 8.61 2 2 302 33.3 5.31 104.86 ICOS ligand OS=Homo sapiens 
GN=ICOSLG PE=1 SV=2 - 
[ICOSL_HUMAN] 

P01876 24.36 8 6 353 37.6 6.51 527.15 Ig alpha-1 chain C region 
OS=Homo sapiens GN=IGHA1 
PE=1 SV=2 - [IGHA1_HUMAN] 

P01877 28.82 7 6 340 36.5 6.10 384.08 Ig alpha-2 chain C region 
OS=Homo sapiens GN=IGHA2 
PE=1 SV=3 - [IGHA2_HUMAN] 

P01857 32.42 8 7 330 36.1 8.19 432.82 Ig gamma-1 chain C region 
OS=Homo sapiens GN=IGHG1 
PE=1 SV=1 - [IGHG1_HUMAN] 
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P01859 7.98 2 2 326 35.9 7.59 204.22 Ig gamma-2 chain C region 
OS=Homo sapiens GN=IGHG2 
PE=1 SV=2 - [IGHG2_HUMAN] 

P01825 13.68 1 1 117 12.8 7.08 67.11 Ig heavy chain V-II region NEWM 
OS=Homo sapiens PE=1 SV=1 - 
[HV207_HUMAN] 

P01781 17.24 2 2 116 12.7 8.48 109.19 Ig heavy chain V-III region GAL 
OS=Homo sapiens PE=1 SV=1 - 
[HV320_HUMAN] 

P01777 15.97 1 1 119 12.8 8.50 103.30 Ig heavy chain V-III region TEI 
OS=Homo sapiens PE=1 SV=1 - 
[HV316_HUMAN] 

P01765 16.52 1 1 115 12.3 9.13 118.42 Ig heavy chain V-III region TIL 
OS=Homo sapiens PE=1 SV=1 - 
[HV304_HUMAN] 

P01764 9.40 1 1 117 12.6 8.28 58.96 Ig heavy chain V-III region VH26 
OS=Homo sapiens PE=1 SV=1 - 
[HV303_HUMAN] 

P01834 80.19 6 5 106 11.6 5.87 417.81 Ig kappa chain C region OS=Homo 
sapiens GN=IGKC PE=1 SV=1 - 
[IGKC_HUMAN] 

P01593 31.48 2 2 108 12.0 5.99 77.87 Ig kappa chain V-I region AG 
OS=Homo sapiens PE=1 SV=1 - 
[KV101_HUMAN] 

P01598 26.85 2 2 108 11.8 8.44 137.52 Ig kappa chain V-I region EU 
OS=Homo sapiens PE=1 SV=1 - 
[KV106_HUMAN] 

P01602 13.68 1 1 117 12.8 6.51 103.59 Ig kappa chain V-I region HK102 
(Fragment) OS=Homo sapiens 
GN=IGKV1-5 PE=4 SV=1 - 
[KV110_HUMAN] 

P01609 27.78 2 2 108 11.8 6.00 78.57 Ig kappa chain V-I region Scw 
OS=Homo sapiens PE=1 SV=1 - 
[KV117_HUMAN] 

P01611 16.67 1 1 108 11.6 7.28 59.70 Ig kappa chain V-I region Wes 
OS=Homo sapiens PE=1 SV=1 - 
[KV119_HUMAN] 

P01617 32.74 2 2 113 12.3 6.00 129.82 Ig kappa chain V-II region TEW 
OS=Homo sapiens PE=1 SV=1 - 
[KV204_HUMAN] 

P01620 31.19 2 2 109 11.8 8.48 159.32 Ig kappa chain V-III region SIE 
OS=Homo sapiens PE=1 SV=1 - 
[KV302_HUMAN] 

P01625 23.68 3 2 114 12.6 7.93 160.18 Ig kappa chain V-IV region Len 
OS=Homo sapiens PE=1 SV=2 - 
[KV402_HUMAN] 

P0CG05 47.17 4 3 106 11.3 7.24 182.41 Ig lambda-2 chain C regions 
OS=Homo sapiens GN=IGLC2 
PE=1 SV=1 - [LAC2_HUMAN] 

P01871 3.54 1 1 452 49.3 6.77 83.13 Ig mu chain C region OS=Homo 
sapiens GN=IGHM PE=1 SV=3 - 
[IGHM_HUMAN] 

Q9Y6R7 2.52 5 5 5405 571.6 5.34 331.41 IgGFc-binding protein OS=Homo 
sapiens GN=FCGBP PE=1 SV=3 - 
[FCGBP_HUMAN] 

P01591 13.84 2 2 159 18.1 5.24 144.29 Immunoglobulin J chain OS=Homo 
sapiens GN=IGJ PE=1 SV=4 - 
[IGJ_HUMAN] 

Q16270 18.44 3 3 282 29.1 7.90 139.57 Insulin-like growth factor-binding 
protein 7 OS=Homo sapiens 
GN=IGFBP7 PE=1 SV=1 - 
[IBP7_HUMAN] 

Q14624 13.12 9 7 930 103.3 6.98 442.57 Inter-alpha-trypsin inhibitor heavy 
chain H4 OS=Homo sapiens 
GN=ITIH4 PE=1 SV=4 - 
[ITIH4_HUMAN] 

O75874 4.11 1 1 414 46.6 7.01 110.66 Isocitrate dehydrogenase [NADP] 
cytoplasmic OS=Homo sapiens 
GN=IDH1 PE=1 SV=2 - 
[IDHC_HUMAN] 
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P53990 7.69 2 2 364 39.7 5.35 133.33 IST1 homolog OS=Homo sapiens 
GN=KIAA0174 PE=1 SV=1 - 
[IST1_HUMAN] 

P06870 14.50 3 3 262 28.9 4.83 177.21 Kallikrein-1 OS=Homo sapiens 
GN=KLK1 PE=1 SV=2 - 
[KLK1_HUMAN] 

P29622 5.62 2 2 427 48.5 7.75 92.82 Kallistatin OS=Homo sapiens 
GN=SERPINA4 PE=1 SV=3 - 
[KAIN_HUMAN] 

P13645 51.20 28 21 584 58.8 5.21 1584.7
7 

Keratin, type I cytoskeletal 10 
OS=Homo sapiens GN=KRT10 
PE=1 SV=6 - [K1C10_HUMAN] 

P13646 10.26 4 4 458 49.6 4.96 307.14 Keratin, type I cytoskeletal 13 
OS=Homo sapiens GN=KRT13 
PE=1 SV=4 - [K1C13_HUMAN] 

P02533 15.89 6 6 472 51.5 5.16 443.14 Keratin, type I cytoskeletal 14 
OS=Homo sapiens GN=KRT14 
PE=1 SV=4 - [K1C14_HUMAN] 

P08779 12.68 5 5 473 51.2 5.05 369.46 Keratin, type I cytoskeletal 16 
OS=Homo sapiens GN=KRT16 
PE=1 SV=4 - [K1C16_HUMAN] 

P35527 38.04 15 12 623 62.0 5.24 1073.3
7 

Keratin, type I cytoskeletal 9 
OS=Homo sapiens GN=KRT9 PE=1 
SV=3 - [K1C9_HUMAN] 

P04264 30.28 22 16 644 66.0 8.12 1362.9
8 

Keratin, type II cytoskeletal 1 
OS=Homo sapiens GN=KRT1 PE=1 
SV=6 - [K2C1_HUMAN] 

P35908 34.12 19 18 639 65.4 8.00 1050.6
2 

Keratin, type II cytoskeletal 2 
epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 

P19013 5.99 3 3 534 57.2 6.61 156.75 Keratin, type II cytoskeletal 4 
OS=Homo sapiens GN=KRT4 PE=1 
SV=4 - [K2C4_HUMAN] 

P13647 13.22 8 7 590 62.3 7.74 381.72 Keratin, type II cytoskeletal 5 
OS=Homo sapiens GN=KRT5 PE=1 
SV=3 - [K2C5_HUMAN] 

P02538 11.52 7 6 564 60.0 8.00 343.84 Keratin, type II cytoskeletal 6A 
OS=Homo sapiens GN=KRT6A 
PE=1 SV=3 - [K2C6A_HUMAN] 

P04259 11.52 7 6 564 60.0 8.00 348.29 Keratin, type II cytoskeletal 6B 
OS=Homo sapiens GN=KRT6B 
PE=1 SV=5 - [K2C6B_HUMAN] 

P01042 20.03 13 11 644 71.9 6.81 644.90 Kininogen-1 OS=Homo sapiens 
GN=KNG1 PE=1 SV=2 - 
[KNG1_HUMAN] 

P02788 6.06 5 4 710 78.1 8.12 228.88 Lactotransferrin OS=Homo sapiens 
GN=LTF PE=1 SV=6 - 
[TRFL_HUMAN] 

Q6GTX8 9.06 2 2 287 31.4 5.63 168.04 Leukocyte-associated 
immunoglobulin-like receptor 1 
OS=Homo sapiens GN=LAIR1 
PE=1 SV=1 - [LAIR1_HUMAN] 

P00338 13.25 3 3 332 36.7 8.27 163.05 L-lactate dehydrogenase A chain 
OS=Homo sapiens GN=LDHA PE=1 
SV=2 - [LDHA_HUMAN] 

P07195 8.08 2 2 334 36.6 6.05 119.54 L-lactate dehydrogenase B chain 
OS=Homo sapiens GN=LDHB PE=1 
SV=2 - [LDHB_HUMAN] 

P98164 8.31 33 28 4655 521.6 5.08 2042.7
1 

Low-density lipoprotein receptor-
related protein 2 OS=Homo sapiens 
GN=LRP2 PE=1 SV=3 - 
[LRP2_HUMAN] 

P11117 4.49 2 2 423 48.3 6.74 134.44 Lysosomal acid phosphatase 
OS=Homo sapiens GN=ACP2 PE=1 
SV=3 - [PPAL_HUMAN] 

P10253 15.65 12 10 952 105.3 5.99 823.12 Lysosomal alpha-glucosidase 
OS=Homo sapiens GN=GAA PE=1 
SV=3 - [LYAG_HUMAN] 

P10619 2.71 1 1 480 54.4 6.61 101.19 Lysosomal protective protein 
OS=Homo sapiens GN=CTSA PE=1 
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SV=2 - [PPGB_HUMAN] 

P42785 10.48 3 3 496 55.8 7.21 245.30 Lysosomal Pro-X carboxypeptidase 
OS=Homo sapiens GN=PRCP PE=1 
SV=1 - [PCP_HUMAN] 

P13473 7.07 3 3 410 44.9 5.63 136.85 Lysosome-associated membrane 
glycoprotein 2 OS=Homo sapiens 
GN=LAMP2 PE=1 SV=2 - 
[LAMP2_HUMAN] 

O43451 17.66 22 22 1857 209.7 5.50 1360.4
2 

Maltase-glucoamylase, intestinal 
OS=Homo sapiens GN=MGAM 
PE=1 SV=5 - [MGA_HUMAN] 

O00187 3.21 2 2 686 75.7 5.77 85.39 Mannan-binding lectin serine 
protease 2 OS=Homo sapiens 
GN=MASP2 PE=1 SV=3 - 
[MASP2_HUMAN] 

P02795 19.67 1 1 61 6.0 7.83 68.63 Metallothionein-2 OS=Homo 
sapiens GN=MT2A PE=1 SV=1 - 
[MT2_HUMAN] 

P26038 3.47 2 2 577 67.8 6.40 150.97 Moesin OS=Homo sapiens 
GN=MSN PE=1 SV=3 - 
[MOES_HUMAN] 

P08571 10.40 3 2 375 40.1 6.23 135.79 Monocyte differentiation antigen 
CD14 OS=Homo sapiens GN=CD14 
PE=1 SV=2 - [CD14_HUMAN] 

P15941 1.75 2 2 1255 122.0 7.47 138.62 Mucin-1 OS=Homo sapiens 
GN=MUC1 PE=1 SV=3 - 
[MUC1_HUMAN] 

Q9HC84 2.03 3 3 5703 590.1 6.67 174.91 Mucin-5B OS=Homo sapiens 
GN=MUC5B PE=1 SV=2 - 
[MUC5B_HUMAN] 

Q9H8L6 2.53 1 1 949 104.3 5.86 167.81 Multimerin-2 OS=Homo sapiens 
GN=MMRN2 PE=1 SV=2 - 
[MMRN2_HUMAN] 

O95865 4.91 1 1 285 29.6 6.01 67.45 N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 2 
OS=Homo sapiens GN=DDAH2 
PE=1 SV=1 - [DDAH2_HUMAN] 

P34059 4.79 2 2 522 58.0 6.74 113.61 N-acetylgalactosamine-6-sulfatase 
OS=Homo sapiens GN=GALNS 
PE=1 SV=1 - [GALNS_HUMAN] 

P15586 1.09 1 1 552 62.0 8.31 61.55 N-acetylglucosamine-6-sulfatase 
OS=Homo sapiens GN=GNS PE=1 
SV=3 - [GNS_HUMAN] 

O96009 9.52 3 3 420 45.4 6.61 154.35 Napsin-A OS=Homo sapiens 
GN=NAPSA PE=1 SV=1 - 
[NAPSA_HUMAN] 

P08473 7.60 4 4 750 85.5 5.73 244.91 Neprilysin OS=Homo sapiens 
GN=MME PE=1 SV=2 - 
[NEP_HUMAN] 

P59665 9.57 1 1 94 10.2 6.99 79.01 Neutrophil defensin 1 OS=Homo 
sapiens GN=DEFA1 PE=1 SV=1 - 
[DEF1_HUMAN] 

Q92542 1.69 1 1 709 78.4 5.99 71.10 Nicastrin OS=Homo sapiens 
GN=NCSTN PE=1 SV=2 - 
[NICA_HUMAN] 

P10153 10.56 2 1 161 18.3 8.73 133.16 Non-secretory ribonuclease 
OS=Homo sapiens GN=RNASE2 
PE=1 SV=2 - [RNAS2_HUMAN] 

P51688 7.37 3 3 502 56.7 6.95 144.60 N-sulphoglucosamine 
sulphohydrolase OS=Homo sapiens 
GN=SGSH PE=1 SV=1 - 
[SPHM_HUMAN] 

P61970 11.02 2 1 127 14.5 5.38 195.33 Nuclear transport factor 2 
OS=Homo sapiens GN=NUTF2 
PE=1 SV=1 - [NTF2_HUMAN] 

Q6UX06 16.27 7 6 510 57.2 5.69 366.99 Olfactomedin-4 OS=Homo sapiens 
GN=OLFM4 PE=1 SV=1 - 
[OLFM4_HUMAN] 

P04746 35.23 11 11 511 57.7 7.05 566.84 Pancreatic alpha-amylase 
OS=Homo sapiens GN=AMY2A 
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PE=1 SV=2 - [AMYP_HUMAN] 

P55259 4.28 2 2 537 59.4 5.24 136.92 Pancreatic secretory granule 
membrane major glycoprotein GP2 
OS=Homo sapiens GN=GP2 PE=2 
SV=3 - [GP2_HUMAN] 

Q9UBV8 7.39 2 2 284 30.4 6.54 130.49 Peflin OS=Homo sapiens GN=PEF1 
PE=1 SV=1 - [PEF1_HUMAN] 

O75594 39.29 7 4 196 21.7 8.59 362.59 Peptidoglycan recognition protein 1 
OS=Homo sapiens GN=PGLYRP1 
PE=1 SV=1 - [PGRP1_HUMAN] 

P62937 16.36 2 2 165 18.0 7.81 82.35 Peptidyl-prolyl cis-trans isomerase 
A OS=Homo sapiens GN=PPIA 
PE=1 SV=2 - [PPIA_HUMAN] 

Q06830 14.57 3 3 199 22.1 8.13 117.57 Peroxiredoxin-1 OS=Homo sapiens 
GN=PRDX1 PE=1 SV=1 - 
[PRDX1_HUMAN] 

P30086 40.11 5 5 187 21.0 7.53 256.82 Phosphatidylethanolamine-binding 
protein 1 OS=Homo sapiens 
GN=PEBP1 PE=1 SV=3 - 
[PEBP1_HUMAN] 

Q9Y646 15.04 5 5 472 51.9 6.18 308.83 Plasma glutamate carboxypeptidase 
OS=Homo sapiens GN=PGCP PE=1 
SV=1 - [PGCP_HUMAN] 

P05155 13.80 8 6 500 55.1 6.55 492.13 Plasma protease C1 inhibitor 
OS=Homo sapiens GN=SERPING1 
PE=1 SV=2 - [IC1_HUMAN] 

P05154 24.63 11 8 406 45.7 9.26 585.42 Plasma serine protease inhibitor 
OS=Homo sapiens GN=SERPINA5 
PE=1 SV=2 - [IPSP_HUMAN] 

P01833 30.24 20 16 764 83.2 5.74 1164.5
0 

Polymeric immunoglobulin receptor 
OS=Homo sapiens GN=PIGR PE=1 
SV=4 - [PIGR_HUMAN] 

P0CG48 21.02 1 1 685 77.0 7.66 107.44 Polyubiquitin-C OS=Homo sapiens 
GN=UBC PE=1 SV=1 - 
[UBC_HUMAN] 

P07602 12.60 7 4 524 58.1 5.17 483.56 Proactivator polypeptide OS=Homo 
sapiens GN=PSAP PE=1 SV=2 - 
[SAP_HUMAN] 

Q9H3G5 3.99 1 1 476 54.1 5.62 88.11 Probable serine carboxypeptidase 
CPVL OS=Homo sapiens GN=CPVL 
PE=1 SV=2 - [CPVL_HUMAN] 

P01133 18.31 18 16 1207 133.9 5.85 1086.3
2 

Pro-epidermal growth factor 
OS=Homo sapiens GN=EGF PE=1 
SV=2 - [EGF_HUMAN] 

Q8WUM4 3.23 2 2 868 96.0 6.52 126.10 Programmed cell death 6-
interacting protein OS=Homo 
sapiens GN=PDCD6IP PE=1 SV=1 - 
[PDC6I_HUMAN] 

O75340 12.04 2 2 191 21.9 5.40 179.17 Programmed cell death protein 6 
OS=Homo sapiens GN=PDCD6 
PE=1 SV=1 - [PDCD6_HUMAN] 

P12273 18.49 2 2 146 16.6 8.05 147.97 Prolactin-inducible protein 
OS=Homo sapiens GN=PIP PE=1 
SV=1 - [PIP_HUMAN] 

O43490 7.86 4 4 865 97.1 7.27 199.21 Prominin-1 OS=Homo sapiens 
GN=PROM1 PE=1 SV=1 - 
[PROM1_HUMAN] 

P41222 21.05 5 3 190 21.0 7.80 309.59 Prostaglandin-H2 D-isomerase 
OS=Homo sapiens GN=PTGDS 
PE=1 SV=1 - [PTGDS_HUMAN] 

Q16651 5.54 1 1 343 36.4 5.85 117.83 Prostasin OS=Homo sapiens 
GN=PRSS8 PE=1 SV=1 - 
[PRSS8_HUMAN] 

O43653 8.13 1 1 123 12.9 5.29 79.41 Prostate stem cell antigen 
OS=Homo sapiens GN=PSCA PE=1 
SV=1 - [PSCA_HUMAN] 

P15309 16.32 7 5 386 44.5 6.24 443.71 Prostatic acid phosphatase 
OS=Homo sapiens GN=ACPP PE=1 
SV=3 - [PPAP_HUMAN] 
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P02760 27.84 16 7 352 39.0 6.25 905.21 Protein AMBP OS=Homo sapiens 
GN=AMBP PE=1 SV=1 - 
[AMBP_HUMAN] 

P31949 15.24 1 1 105 11.7 7.12 95.47 Protein S100-A11 OS=Homo 
sapiens GN=S100A11 PE=1 SV=2 - 
[S10AB_HUMAN] 

P06703 8.89 1 1 90 10.2 5.48 91.52 Protein S100-A6 OS=Homo sapiens 
GN=S100A6 PE=1 SV=1 - 
[S10A6_HUMAN] 

P05109 8.60 1 1 93 10.8 7.03 67.99 Protein S100-A8 OS=Homo sapiens 
GN=S100A8 PE=1 SV=1 - 
[S10A8_HUMAN] 

P06702 26.32 2 2 114 13.2 6.13 144.59 Protein S100-A9 OS=Homo sapiens 
GN=S100A9 PE=1 SV=1 - 
[S10A9_HUMAN] 

P25815 13.68 1 1 95 10.4 4.88 90.65 Protein S100-P OS=Homo sapiens 
GN=S100P PE=1 SV=2 - 
[S100P_HUMAN] 

P00734 6.27 3 3 622 70.0 5.90 236.78 Prothrombin OS=Homo sapiens 
GN=F2 PE=1 SV=2 - 
[THRB_HUMAN] 

A6NIZ1 6.52 1 1 184 20.9 5.48 74.07 Ras-related protein Rap-1b-like 
protein OS=Homo sapiens PE=2 
SV=1 - [RP1BL_HUMAN] 

Q12913 4.26 4 4 1337 145.9 5.58 230.82 Receptor-type tyrosine-protein 
phosphatase eta OS=Homo sapiens 
GN=PTPRJ PE=1 SV=3 - 
[PTPRJ_HUMAN] 

Q13332 0.67 1 1 1948 217.0 6.51 78.02 Receptor-type tyrosine-protein 
phosphatase S OS=Homo sapiens 
GN=PTPRS PE=1 SV=2 - 
[PTPRS_HUMAN] 

O75787 2.57 1 1 350 39.0 6.10 78.18 Renin receptor OS=Homo sapiens 
GN=ATP6AP2 PE=1 SV=2 - 
[RENR_HUMAN] 

Q9HD89 40.74 3 3 108 11.4 6.86 202.08 Resistin OS=Homo sapiens 
GN=RETN PE=2 SV=1 - 
[RETN_HUMAN] 

P00352 2.99 1 1 501 54.8 6.73 96.77 Retinal dehydrogenase 1 OS=Homo 
sapiens GN=ALDH1A1 PE=1 SV=2 
- [AL1A1_HUMAN] 

Q9HB40 5.53 2 2 452 50.8 5.81 124.28 Retinoid-inducible serine 
carboxypeptidase OS=Homo 
sapiens GN=SCPEP1 PE=1 SV=1 - 
[RISC_HUMAN] 

P07998 13.46 1 1 156 17.6 8.79 112.46 Ribonuclease pancreatic OS=Homo 
sapiens GN=RNASE1 PE=1 SV=4 - 
[RNAS1_HUMAN] 

Q8WVN6 14.52 2 2 248 27.0 7.43 147.02 Secreted and transmembrane 
protein 1 OS=Homo sapiens 
GN=SECTM1 PE=1 SV=2 - 
[SCTM1_HUMAN] 

P04279 2.60 1 1 462 52.1 9.29 89.93 Semenogelin-1 OS=Homo sapiens 
GN=SEMG1 PE=1 SV=2 - 
[SEMG1_HUMAN] 

P02787 4.30 2 2 698 77.0 7.12 141.44 Serotransferrin OS=Homo sapiens 
GN=TF PE=1 SV=2 - 
[TRFE_HUMAN] 

P29508 12.56 4 4 390 44.5 6.81 151.58 Serpin B3 OS=Homo sapiens 
GN=SERPINB3 PE=1 SV=2 - 
[SPB3_HUMAN] 

P02768 61.25 47 31 609 69.3 6.28 2263.9
5 

Serum albumin OS=Homo sapiens 
GN=ALB PE=1 SV=2 - 
[ALBU_HUMAN] 

P02743 10.31 2 2 223 25.4 6.54 137.60 Serum amyloid P-component 
OS=Homo sapiens GN=APCS PE=1 
SV=2 - [SAMP_HUMAN] 

Q9HAT2 11.09 5 5 523 58.3 7.33 266.74 Sialate O-acetylesterase OS=Homo 
sapiens GN=SIAE PE=1 SV=1 - 
[SIAE_HUMAN] 



151 
 

P48061 15.05 1 1 93 10.7 9.88 70.33 Stromal cell-derived factor 1 
OS=Homo sapiens GN=CXCL12 
PE=1 SV=1 - [SDF1_HUMAN] 

O00391 5.09 4 3 747 82.5 8.92 210.97 Sulfhydryl oxidase 1 OS=Homo 
sapiens GN=QSOX1 PE=1 SV=3 - 
[QSOX1_HUMAN] 

Q9UGT4 1.70 1 1 822 90.1 6.28 91.80 Sushi domain-containing protein 2 
OS=Homo sapiens GN=SUSD2 
PE=1 SV=1 - [SUSD2_HUMAN] 

O00560 14.09 3 2 298 32.4 7.53 232.53 Syntenin-1 OS=Homo sapiens 
GN=SDCBP PE=1 SV=1 - 
[SDCB1_HUMAN] 

P10599 12.38 1 1 105 11.7 4.92 73.53 Thioredoxin OS=Homo sapiens 
GN=TXN PE=1 SV=3 - 
[THIO_HUMAN] 

P07996 0.94 1 1 1170 129.3 4.94 69.26 Thrombospondin-1 OS=Homo 
sapiens GN=THBS1 PE=1 SV=2 - 
[TSP1_HUMAN] 

Q9UKU6 0.78 1 1 1024 116.9 6.99 63.27 Thyrotropin-releasing hormone-
degrading ectoenzyme OS=Homo 
sapiens GN=TRHDE PE=2 SV=1 - 
[TRHDE_HUMAN] 

P05543 4.58 2 2 415 46.3 6.30 84.27 Thyroxine-binding globulin 
OS=Homo sapiens GN=SERPINA7 
PE=1 SV=2 - [THBG_HUMAN] 

P02766 48.30 6 5 147 15.9 5.76 308.51 Transthyretin OS=Homo sapiens 
GN=TTR PE=1 SV=1 - 
[TTHY_HUMAN] 

P60174 10.44 2 2 249 26.7 6.90 100.56 Triosephosphate isomerase 
OS=Homo sapiens GN=TPI1 PE=1 
SV=2 - [TPIS_HUMAN] 

O14773 9.77 4 3 563 61.2 6.48 231.93 Tripeptidyl-peptidase 1 OS=Homo 
sapiens GN=TPP1 PE=1 SV=2 - 
[TPP1_HUMAN] 

Q99816 2.56 1 1 390 43.9 6.46 77.45 Tumor susceptibility gene 101 
protein OS=Homo sapiens 
GN=TSG101 PE=1 SV=2 - 
[TS101_HUMAN] 

P30530 2.01 1 1 894 98.3 5.43 69.75 Tyrosine-protein kinase receptor 
UFO OS=Homo sapiens GN=AXL 
PE=1 SV=3 - [UFO_HUMAN] 

Q9H1C7 10.31 1 1 97 10.6 4.32 59.38 UPF0467 protein C5orf32 
OS=Homo sapiens GN=C5orf32 
PE=2 SV=1 - [CE032_HUMAN] 

Q6UX73 3.23 1 1 402 45.4 6.19 59.34 UPF0764 protein C16orf89 
OS=Homo sapiens GN=C16orf89 
PE=2 SV=2 - [CP089_HUMAN] 

P00749 11.83 4 4 431 48.5 8.41 248.62 Urokinase-type plasminogen 
activator OS=Homo sapiens 
GN=PLAU PE=1 SV=2 - 
[UROK_HUMAN] 

P07911 39.22 86 18 640 69.7 5.24 5301.6
7 

Uromodulin OS=Homo sapiens 
GN=UMOD PE=1 SV=1 - 
[UROM_HUMAN] 

Q9H9H4 6.32 1 1 285 31.3 7.34 63.69 Vacuolar protein sorting-associated 
protein 37B OS=Homo sapiens 
GN=VPS37B PE=1 SV=1 - 
[VP37B_HUMAN] 

Q9NP79 6.51 1 1 307 33.9 6.29 92.07 Vacuolar protein sorting-associated 
protein VTA1 homolog OS=Homo 
sapiens GN=VTA1 PE=1 SV=1 - 
[VTA1_HUMAN] 

Q6EMK4 12.04 5 5 673 71.7 7.39 290.65 Vasorin OS=Homo sapiens 
GN=VASN PE=1 SV=1 - 
[VASN_HUMAN] 

Q12907 28.37 6 6 356 40.2 6.95 362.95 Vesicular integral-membrane 
protein VIP36 OS=Homo sapiens 
GN=LMAN2 PE=1 SV=1 - 
[LMAN2_HUMAN] 

P22891 12.50 3 3 400 44.7 5.97 221.30 Vitamin K-dependent protein Z 
OS=Homo sapiens GN=PROZ PE=1 
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SV=2 - [PROZ_HUMAN] 

Q7Z5L0 49.50 6 5 202 21.5 5.07 308.24 Vitelline membrane outer layer 
protein 1 homolog OS=Homo 
sapiens GN=VMO1 PE=1 SV=1 - 
[VMO1_HUMAN] 

P04004 5.65 2 2 478 54.3 5.80 157.40 Vitronectin OS=Homo sapiens 
GN=VTN PE=1 SV=1 - 
[VTNC_HUMAN] 

O43895 4.45 2 2 674 75.6 6.04 88.15 Xaa-Pro aminopeptidase 2 
OS=Homo sapiens GN=XPNPEP2 
PE=1 SV=3 - [XPP2_HUMAN] 

P25311 26.51 7 7 298 34.2 6.05 437.07 Zinc-alpha-2-glycoprotein 
OS=Homo sapiens GN=AZGP1 
PE=1 SV=2 - [ZA2G_HUMAN] 

Q96DA0 30.77 5 5 208 22.7 7.39 304.14 Zymogen granule protein 16 
homolog B OS=Homo sapiens 
GN=ZG16B PE=1 SV=3 - 
[ZG16B_HUMAN] 

 

Supplementary table S2.2: Identification of proteins in (P18+P200) DTT SN200 sample 2. 

Accession of the protein, sequence coverage, PSM (Match between a fragmentation mass 

spectrum and peptide), number of peptides found, number of amino acid in the protein, 

molecular weight, calculated PI and mascot score along with the description of the protein are 

indicated in the table. 

Accession Coverage % # 
PSMs 

# 
Peptides 

# 
AAs 

MW 
[kDa] 

calc. 
pI 

Score Description 

P62258 7.45 1 1 255 29.2 4.74 122.69 14-3-3 protein epsilon OS=Homo 
sapiens GN=YWHAE PE=1 SV=1 
- [1433E_HUMAN] 

P63104 4.90 1 1 245 27.7 4.79 74.94 14-3-3 protein zeta/delta 
OS=Homo sapiens GN=YWHAZ 
PE=1 SV=1 - [1433Z_HUMAN] 

P08195 4.44 2 2 630 68.0 5.01 114.93 4F2 cell-surface antigen heavy 
chain OS=Homo sapiens 
GN=SLC3A2 PE=1 SV=3 - 
[4F2_HUMAN] 

O95336 6.20 1 1 258 27.5 6.05 77.20 6-phosphogluconolactonase 
OS=Homo sapiens GN=PGLS 
PE=1 SV=2 - [6PGL_HUMAN] 

Q13510 25.82 7 6 395 44.6 7.62 428.61 Acid ceramidase OS=Homo 
sapiens GN=ASAH1 PE=1 SV=5 - 
[ASAH1_HUMAN] 

P60709 9.87 3 3 375 41.7 5.48 203.53 Actin, cytoplasmic 1 OS=Homo 
sapiens GN=ACTB PE=1 SV=1 - 
[ACTB_HUMAN] 

P02763 26.37 4 4 201 23.5 5.02 176.91 Alpha-1-acid glycoprotein 1 
OS=Homo sapiens GN=ORM1 
PE=1 SV=1 - [A1AG1_HUMAN] 

P19652 4.48 1 1 201 23.6 5.11 86.48 Alpha-1-acid glycoprotein 2 
OS=Homo sapiens GN=ORM2 
PE=1 SV=2 - [A1AG2_HUMAN] 

P01011 17.02 5 5 423 47.6 5.52 284.75 Alpha-1-antichymotrypsin 
OS=Homo sapiens 
GN=SERPINA3 PE=1 SV=2 - 
[AACT_HUMAN] 

P01009 28.95 11 8 418 46.7 5.59 750.55 Alpha-1-antitrypsin OS=Homo 
sapiens GN=SERPINA1 PE=1 
SV=3 - [A1AT_HUMAN] 
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P04217 6.46 2 2 495 54.2 5.87 109.32 Alpha-1B-glycoprotein OS=Homo 
sapiens GN=A1BG PE=1 SV=3 - 
[A1BG_HUMAN] 

P02765 14.99 4 4 367 39.3 5.72 155.29 Alpha-2-HS-glycoprotein 
OS=Homo sapiens GN=AHSG 
PE=1 SV=1 - [FETUA_HUMAN] 

P01023 0.81 1 1 1474 163.2 6.42 91.94 Alpha-2-macroglobulin OS=Homo 
sapiens GN=A2M PE=1 SV=2 - 
[A2MG_HUMAN] 

O43707 4.83 4 4 911 104.8 5.44 221.54 Alpha-actinin-4 OS=Homo 
sapiens GN=ACTN4 PE=1 SV=2 - 
[ACTN4_HUMAN] 

P04745 21.92 9 8 511 57.7 6.93 578.84 Alpha-amylase 1 OS=Homo 
sapiens GN=AMY1A PE=1 SV=2 - 
[AMY1_HUMAN] 

P19961 21.92 9 8 511 57.7 7.09 565.89 Alpha-amylase 2B OS=Homo 
sapiens GN=AMY2B PE=1 SV=1 - 
[AMY2B_HUMAN] 

P06733 9.22 3 3 434 47.1 7.39 149.46 Alpha-enolase OS=Homo sapiens 
GN=ENO1 PE=1 SV=2 - 
[ENOA_HUMAN] 

P54802 28.13 15 14 743 82.1 6.54 855.70 Alpha-N-acetylglucosaminidase 
OS=Homo sapiens GN=NAGLU 
PE=1 SV=1 - [ANAG_HUMAN] 

Q96Q42 0.36 1 1 1657 183.5 6.27 67.00 Alsin OS=Homo sapiens 
GN=ALS2 PE=1 SV=2 - 
[ALS2_HUMAN] 

P15144 28.44 27 20 967 109.5 5.48 1477.51 Aminopeptidase N OS=Homo 
sapiens GN=ANPEP PE=1 SV=4 - 
[AMPN_HUMAN] 

P12821 1.07 1 1 1306 149.6 6.39 67.68 Angiotensin-converting enzyme 
OS=Homo sapiens GN=ACE 
PE=1 SV=1 - [ACE_HUMAN] 

P04083 3.76 1 1 346 38.7 7.02 92.17 Annexin A1 OS=Homo sapiens 
GN=ANXA1 PE=1 SV=2 - 
[ANXA1_HUMAN] 

P07355 8.85 2 2 339 38.6 7.75 95.33 Annexin A2 OS=Homo sapiens 
GN=ANXA2 PE=1 SV=2 - 
[ANXA2_HUMAN] 

P08758 5.00 1 1 320 35.9 5.05 73.02 Annexin A5 OS=Homo sapiens 
GN=ANXA5 PE=1 SV=2 - 
[ANXA5_HUMAN] 

P02647 28.09 6 6 267 30.8 5.76 326.83 Apolipoprotein A-I OS=Homo 
sapiens GN=APOA1 PE=1 SV=1 - 
[APOA1_HUMAN] 

P02652 20.00 1 1 100 11.2 6.62 103.82 Apolipoprotein A-II OS=Homo 
sapiens GN=APOA2 PE=1 SV=1 - 
[APOA2_HUMAN] 

P06727 3.54 1 1 396 45.4 5.38 87.66 Apolipoprotein A-IV OS=Homo 
sapiens GN=APOA4 PE=1 SV=3 - 
[APOA4_HUMAN] 

P05090 34.92 17 7 189 21.3 5.15 781.10 Apolipoprotein D OS=Homo 
sapiens GN=APOD PE=1 SV=1 - 
[APOD_HUMAN] 

P02649 26.50 7 7 317 36.1 5.73 400.82 Apolipoprotein E OS=Homo 
sapiens GN=APOE PE=1 SV=1 - 
[APOE_HUMAN] 

P15289 14.00 4 4 507 53.6 6.07 302.58 Arylsulfatase A OS=Homo 
sapiens GN=ARSA PE=1 SV=3 - 
[ARSA_HUMAN] 

O75882 5.39 6 6 1429 158.4 7.31 405.43 Attractin OS=Homo sapiens 
GN=ATRN PE=1 SV=2 - 
[ATRN_HUMAN] 

P98160 0.91 3 3 4391 468.5 6.51 177.74 Basement membrane-specific 
heparan sulfate proteoglycan 
core protein OS=Homo sapiens 
GN=HSPG2 PE=1 SV=3 - 
[PGBM_HUMAN] 

P16278 8.42 5 5 677 76.0 6.57 257.83 Beta-galactosidase OS=Homo 
sapiens GN=GLB1 PE=1 SV=2 - 
[BGAL_HUMAN] 
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P08236 10.29 4 4 651 74.7 7.02 273.62 Beta-glucuronidase OS=Homo 
sapiens GN=GUSB PE=1 SV=2 - 
[BGLR_HUMAN] 

Q93088 14.53 4 4 406 45.0 7.03 227.22 Betaine--homocysteine S-
methyltransferase 1 OS=Homo 
sapiens GN=BHMT PE=1 SV=2 - 
[BHMT1_HUMAN] 

P19835 10.36 5 5 753 79.3 5.34 284.94 Bile salt-activated lipase 
OS=Homo sapiens GN=CEL PE=1 
SV=3 - [CEL_HUMAN] 

P43251 4.79 2 2 543 61.1 6.25 112.26 Biotinidase OS=Homo sapiens 
GN=BTD PE=1 SV=2 - 
[BTD_HUMAN] 

Q5VW32 3.89 2 1 411 46.4 7.65 112.05 BRO1 domain-containing protein 
BROX OS=Homo sapiens 
GN=BROX PE=1 SV=1 - 
[BROX_HUMAN] 

Q8WVV5 2.10 1 1 523 59.0 6.01 67.62 Butyrophilin subfamily 2 member 
A2 OS=Homo sapiens 
GN=BTN2A2 PE=2 SV=2 - 
[BT2A2_HUMAN] 

P12830 7.94 4 4 882 97.4 4.73 211.52 Cadherin-1 OS=Homo sapiens 
GN=CDH1 PE=1 SV=3 - 
[CADH1_HUMAN] 

P55290 1.68 1 1 713 78.2 4.98 63.42 Cadherin-13 OS=Homo sapiens 
GN=CDH13 PE=1 SV=1 - 
[CAD13_HUMAN] 

P19022 4.08 3 2 906 99.7 4.81 196.74 Cadherin-2 OS=Homo sapiens 
GN=CDH2 PE=1 SV=4 - 
[CADH2_HUMAN] 

Q9BYE9 1.98 2 2 1310 141.5 4.50 165.71 Cadherin-related family member 
2 OS=Homo sapiens GN=CDHR2 
PE=1 SV=2 - [CDHR2_HUMAN] 

Q9HBB8 2.13 1 1 845 88.2 4.93 65.22 Cadherin-related family member 
5 OS=Homo sapiens GN=CDHR5 
PE=1 SV=3 - [CDHR5_HUMAN] 

P05937 4.98 1 1 261 30.0 4.83 81.70 Calbindin OS=Homo sapiens 
GN=CALB1 PE=1 SV=2 - 
[CALB1_HUMAN] 

P22792 3.30 1 1 545 60.6 5.99 98.38 Carboxypeptidase N subunit 2 
OS=Homo sapiens GN=CPN2 
PE=1 SV=2 - [CPN2_HUMAN] 

P07339 18.20 5 5 412 44.5 6.54 249.28 Cathepsin D OS=Homo sapiens 
GN=CTSD PE=1 SV=1 - 
[CATD_HUMAN] 

P16070 1.62 1 1 742 81.5 5.33 101.93 CD44 antigen OS=Homo sapiens 
GN=CD44 PE=1 SV=2 - 
[CD44_HUMAN] 

P13987 25.00 5 3 128 14.2 6.48 225.02 CD59 glycoprotein OS=Homo 
sapiens GN=CD59 PE=1 SV=1 - 
[CD59_HUMAN] 

P08962 4.20 1 1 238 25.6 7.81 63.44 CD63 antigen OS=Homo sapiens 
GN=CD63 PE=1 SV=2 - 
[CD63_HUMAN] 

Q8NFZ8 6.19 2 2 388 42.8 6.30 99.56 Cell adhesion molecule 4 
OS=Homo sapiens GN=CADM4 
PE=1 SV=1 - [CADM4_HUMAN] 

P00450 15.87 11 11 1065 122.1 5.72 563.68 Ceruloplasmin OS=Homo sapiens 
GN=CP PE=1 SV=1 - 
[CERU_HUMAN] 

Q53GD3 1.97 1 1 710 79.2 8.59 105.10 Choline transporter-like protein 4 
OS=Homo sapiens GN=SLC44A4 
PE=2 SV=1 - [CTL4_HUMAN] 

P10909 19.15 7 6 449 52.5 6.27 467.77 Clusterin OS=Homo sapiens 
GN=CLU PE=1 SV=1 - 
[CLUS_HUMAN] 

Q9UGN4 6.02 1 1 299 33.2 5.49 67.94 CMRF35-like molecule 8 
OS=Homo sapiens GN=CD300A 
PE=1 SV=2 - [CLM8_HUMAN] 

P12109 6.23 5 5 1028 108.5 5.43 332.93 Collagen alpha-1(VI) chain 
OS=Homo sapiens GN=COL6A1 
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PE=1 SV=3 - [CO6A1_HUMAN] 

P39059 2.45 3 3 1388 141.6 5.00 125.32 Collagen alpha-1(XV) chain 
OS=Homo sapiens GN=COL15A1 
PE=1 SV=2 - [COFA1_HUMAN] 

P12111 1.51 4 3 3177 343.5 6.68 243.42 Collagen alpha-3(VI) chain 
OS=Homo sapiens GN=COL6A3 
PE=1 SV=4 - [CO6A3_HUMAN] 

P01024 2.29 3 3 1663 187.0 6.40 169.26 Complement C3 OS=Homo 
sapiens GN=C3 PE=1 SV=2 - 
[CO3_HUMAN] 

P0C0L4 1.49 2 2 1744 192.7 7.08 115.04 Complement C4-A OS=Homo 
sapiens GN=C4A PE=1 SV=1 - 
[CO4A_HUMAN] 

Q12860 1.38 1 1 1018 113.2 5.90 59.76 Contactin-1 OS=Homo sapiens 
GN=CNTN1 PE=1 SV=1 - 
[CNTN1_HUMAN] 

Q9UBG3 3.03 1 1 495 53.5 6.10 92.70 Cornulin OS=Homo sapiens 
GN=CRNN PE=1 SV=1 - 
[CRNN_HUMAN] 

P12277 4.46 2 1 381 42.6 5.59 132.34 Creatine kinase B-type OS=Homo 
sapiens GN=CKB PE=1 SV=1 - 
[KCRB_HUMAN] 

O60494 11.15 27 26 3623 398.4 5.35 1549.07 Cubilin OS=Homo sapiens 
GN=CUBN PE=1 SV=4 - 
[CUBN_HUMAN] 

P01034 7.53 1 1 146 15.8 8.75 61.81 Cystatin-C OS=Homo sapiens 
GN=CST3 PE=1 SV=1 - 
[CYTC_HUMAN] 

P16444 2.43 1 1 411 45.6 6.15 141.33 Dipeptidase 1 OS=Homo sapiens 
GN=DPEP1 PE=1 SV=3 - 
[DPEP1_HUMAN] 

P53634 7.99 2 2 463 51.8 6.99 200.96 Dipeptidyl peptidase 1 OS=Homo 
sapiens GN=CTSC PE=1 SV=1 - 
[CATC_HUMAN] 

P27487 8.49 5 5 766 88.2 6.04 465.76 Dipeptidyl peptidase 4 OS=Homo 
sapiens GN=DPP4 PE=1 SV=2 - 
[DPP4_HUMAN] 

Q12805 16.63 6 6 493 54.6 5.07 278.96 EGF-containing fibulin-like 
extracellular matrix protein 1 
OS=Homo sapiens GN=EFEMP1 
PE=1 SV=2 - [FBLN3_HUMAN] 

Q9UNN8 16.81 3 3 238 26.7 7.18 129.82 Endothelial protein C receptor 
OS=Homo sapiens GN=PROCR 
PE=1 SV=1 - [EPCR_HUMAN] 

P08294 14.58 3 3 240 25.8 6.61 163.93 Extracellular superoxide 
dismutase [Cu-Zn] OS=Homo 
sapiens GN=SOD3 PE=1 SV=2 - 
[SODE_HUMAN] 

P15311 6.83 3 3 586 69.4 6.27 195.43 Ezrin OS=Homo sapiens GN=EZR 
PE=1 SV=4 - [EZRI_HUMAN] 

P02792 8.57 1 1 175 20.0 5.78 68.75 Ferritin light chain OS=Homo 
sapiens GN=FTL PE=1 SV=2 - 
[FRIL_HUMAN] 

Q14314 8.66 2 2 439 50.2 7.39 126.25 Fibroleukin OS=Homo sapiens 
GN=FGL2 PE=1 SV=1 - 
[FGL2_HUMAN] 

P02751 5.91 11 9 2386 262.5 5.71 557.56 Fibronectin OS=Homo sapiens 
GN=FN1 PE=1 SV=4 - 
[FINC_HUMAN] 

P09467 5.03 1 1 338 36.8 6.99 73.25 Fructose-1,6-bisphosphatase 1 
OS=Homo sapiens GN=FBP1 
PE=1 SV=4 - [F16P1_HUMAN] 

P05062 5.49 3 2 364 39.4 7.87 126.83 Fructose-bisphosphate aldolase B 
OS=Homo sapiens GN=ALDOB 
PE=1 SV=2 - [ALDOB_HUMAN] 

Q08380 32.48 25 12 585 65.3 5.27 1412.53 Galectin-3-binding protein 
OS=Homo sapiens 
GN=LGALS3BP PE=1 SV=1 - 
[LG3BP_HUMAN] 
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O00182 3.38 1 1 355 39.5 9.17 71.56 Galectin-9 OS=Homo sapiens 
GN=LGALS9 PE=1 SV=2 - 
[LEG9_HUMAN] 

Q92820 20.13 5 5 318 35.9 7.11 274.29 Gamma-glutamyl hydrolase 
OS=Homo sapiens GN=GGH 
PE=1 SV=2 - [GGH_HUMAN] 

Q6P531 4.26 1 1 493 50.5 6.07 68.32 Gamma-glutamyltransferase 6 
OS=Homo sapiens GN=GGT6 
PE=2 SV=2 - [GGT6_HUMAN] 

P19440 6.85 3 3 569 61.4 7.12 186.73 Gamma-glutamyltranspeptidase 1 
OS=Homo sapiens GN=GGT1 
PE=1 SV=2 - [GGT1_HUMAN] 

P06396 9.72 5 5 782 85.6 6.28 322.59 Gelsolin OS=Homo sapiens 
GN=GSN PE=1 SV=1 - 
[GELS_HUMAN] 

Q16769 20.50 6 5 361 40.9 6.61 369.01 Glutaminyl-peptide 
cyclotransferase OS=Homo 
sapiens GN=QPCT PE=1 SV=1 - 
[QPCT_HUMAN] 

Q07075 2.61 2 2 957 109.2 5.47 129.06 Glutamyl aminopeptidase 
OS=Homo sapiens GN=ENPEP 
PE=1 SV=3 - [AMPE_HUMAN] 

P22352 15.49 3 3 226 25.5 8.13 171.85 Glutathione peroxidase 3 
OS=Homo sapiens GN=GPX3 
PE=1 SV=2 - [GPX3_HUMAN] 

P09211 16.67 2 2 210 23.3 5.64 146.27 Glutathione S-transferase P 
OS=Homo sapiens GN=GSTP1 
PE=1 SV=2 - [GSTP1_HUMAN] 

P04406 20.60 4 4 335 36.0 8.46 245.42 Glyceraldehyde-3-phosphate 
dehydrogenase OS=Homo 
sapiens GN=GAPDH PE=1 SV=3 - 
[G3P_HUMAN] 

P28799 2.53 2 1 593 63.5 6.83 133.91 Granulins OS=Homo sapiens 
GN=GRN PE=1 SV=2 - 
[GRN_HUMAN] 

Q99988 5.19 1 1 308 34.1 9.66 64.66 Growth/differentiation factor 15 
OS=Homo sapiens GN=GDF15 
PE=1 SV=2 - [GDF15_HUMAN] 

Q8NHV1 2.00 2 1 300 34.5 6.46 81.04 GTPase IMAP family member 7 
OS=Homo sapiens GN=GIMAP7 
PE=2 SV=1 - [GIMA7_HUMAN] 

P00738 17.73 6 6 406 45.2 6.58 272.41 Haptoglobin OS=Homo sapiens 
GN=HP PE=1 SV=1 - 
[HPT_HUMAN] 

P11142 3.87 2 2 646 70.9 5.52 112.81 Heat shock cognate 71 kDa 
protein OS=Homo sapiens 
GN=HSPA8 PE=1 SV=1 - 
[HSP7C_HUMAN] 

P02790 2.38 1 1 462 51.6 7.02 64.63 Hemopexin OS=Homo sapiens 
GN=HPX PE=1 SV=2 - 
[HEMO_HUMAN] 

P37235 4.15 1 1 193 22.3 5.35 58.38 Hippocalcin-like protein 1 
OS=Homo sapiens GN=HPCAL1 
PE=1 SV=3 - [HPCL1_HUMAN] 

P04196 5.71 2 2 525 59.5 7.50 115.42 Histidine-rich glycoprotein 
OS=Homo sapiens GN=HRG 
PE=1 SV=1 - [HRG_HUMAN] 

Q86YZ3 1.68 1 1 2850 282.2 10.0
4 

94.15 Hornerin OS=Homo sapiens 
GN=HRNR PE=1 SV=2 - 
[HORN_HUMAN] 

Q12794 8.74 2 2 435 48.3 6.77 148.48 Hyaluronidase-1 OS=Homo 
sapiens GN=HYAL1 PE=1 SV=2 - 
[HYAL1_HUMAN] 

O75144 8.61 2 2 302 33.3 5.31 108.54 ICOS ligand OS=Homo sapiens 
GN=ICOSLG PE=1 SV=2 - 
[ICOSL_HUMAN] 

P01876 24.36 6 5 353 37.6 6.51 425.76 Ig alpha-1 chain C region 
OS=Homo sapiens GN=IGHA1 
PE=1 SV=2 - [IGHA1_HUMAN] 

P01877 18.53 4 4 340 36.5 6.10 307.52 Ig alpha-2 chain C region 
OS=Homo sapiens GN=IGHA2 
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PE=1 SV=3 - [IGHA2_HUMAN] 

P01857 28.79 9 6 330 36.1 8.19 470.52 Ig gamma-1 chain C region 
OS=Homo sapiens GN=IGHG1 
PE=1 SV=1 - [IGHG1_HUMAN] 

P01859 16.87 6 4 326 35.9 7.59 296.87 Ig gamma-2 chain C region 
OS=Homo sapiens GN=IGHG2 
PE=1 SV=2 - [IGHG2_HUMAN] 

P01860 13.79 5 4 377 41.3 7.90 256.39 Ig gamma-3 chain C region 
OS=Homo sapiens GN=IGHG3 
PE=1 SV=2 - [IGHG3_HUMAN] 

P01861 18.35 7 4 327 35.9 7.36 354.82 Ig gamma-4 chain C region 
OS=Homo sapiens GN=IGHG4 
PE=1 SV=1 - [IGHG4_HUMAN] 

P01742 10.26 1 1 117 12.5 6.57 79.09 Ig heavy chain V-I region EU 
OS=Homo sapiens PE=1 SV=1 - 
[HV101_HUMAN] 

P01766 25.00 2 2 120 13.2 6.57 117.64 Ig heavy chain V-III region BRO 
OS=Homo sapiens PE=1 SV=1 - 
[HV305_HUMAN] 

P01781 17.24 2 2 116 12.7 8.48 108.38 Ig heavy chain V-III region GAL 
OS=Homo sapiens PE=1 SV=1 - 
[HV320_HUMAN] 

P01765 16.52 2 1 115 12.3 9.13 129.56 Ig heavy chain V-III region TIL 
OS=Homo sapiens PE=1 SV=1 - 
[HV304_HUMAN] 

P01762 15.57 2 1 122 13.5 9.72 115.81 Ig heavy chain V-III region TRO 
OS=Homo sapiens PE=1 SV=1 - 
[HV301_HUMAN] 

P01834 63.21 11 5 106 11.6 5.87 554.19 Ig kappa chain C region 
OS=Homo sapiens GN=IGKC 
PE=1 SV=1 - [IGKC_HUMAN] 

P01593 16.67 2 1 108 12.0 5.99 165.90 Ig kappa chain V-I region AG 
OS=Homo sapiens PE=1 SV=1 - 
[KV101_HUMAN] 

P01596 16.82 1 1 107 11.7 9.41 96.06 Ig kappa chain V-I region CAR 
OS=Homo sapiens PE=1 SV=1 - 
[KV104_HUMAN] 

P01611 16.67 1 1 108 11.6 7.28 61.82 Ig kappa chain V-I region Wes 
OS=Homo sapiens PE=1 SV=1 - 
[KV119_HUMAN] 

P01616 11.61 1 1 112 12.0 9.29 73.34 Ig kappa chain V-II region MIL 
OS=Homo sapiens PE=1 SV=1 - 
[KV203_HUMAN] 

P01617 21.24 1 1 113 12.3 6.00 122.31 Ig kappa chain V-II region TEW 
OS=Homo sapiens PE=1 SV=1 - 
[KV204_HUMAN] 

P01620 14.68 1 1 109 11.8 8.48 78.40 Ig kappa chain V-III region SIE 
OS=Homo sapiens PE=1 SV=1 - 
[KV302_HUMAN] 

P06312 29.75 3 3 121 13.4 5.25 113.02 Ig kappa chain V-IV region 
(Fragment) OS=Homo sapiens 
GN=IGKV4-1 PE=4 SV=1 - 
[KV401_HUMAN] 

P01625 36.84 4 3 114 12.6 7.93 166.81 Ig kappa chain V-IV region Len 
OS=Homo sapiens PE=1 SV=2 - 
[KV402_HUMAN] 

P01702 7.21 1 1 111 11.4 4.89 58.86 Ig lambda chain V-I region NIG-
64 OS=Homo sapiens PE=1 
SV=1 - [LV104_HUMAN] 

P0CG05 50.94 4 3 106 11.3 7.24 249.63 Ig lambda-2 chain C regions 
OS=Homo sapiens GN=IGLC2 
PE=1 SV=1 - [LAC2_HUMAN] 

P01871 3.54 1 1 452 49.3 6.77 65.99 Ig mu chain C region OS=Homo 
sapiens GN=IGHM PE=1 SV=3 - 
[IGHM_HUMAN] 

Q9Y6R7 2.35 5 5 5405 571.6 5.34 256.55 IgGFc-binding protein OS=Homo 
sapiens GN=FCGBP PE=1 SV=3 - 
[FCGBP_HUMAN] 

P01591 23.27 3 3 159 18.1 5.24 188.95 Immunoglobulin J chain 
OS=Homo sapiens GN=IGJ PE=1 
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SV=4 - [IGJ_HUMAN] 

Q16270 17.73 4 3 282 29.1 7.90 205.49 Insulin-like growth factor-binding 
protein 7 OS=Homo sapiens 
GN=IGFBP7 PE=1 SV=1 - 
[IBP7_HUMAN] 

Q9Y287 3.76 1 1 266 30.3 5.14 58.87 Integral membrane protein 2B 
OS=Homo sapiens GN=ITM2B 
PE=1 SV=1 - [ITM2B_HUMAN] 

Q14624 9.89 6 6 930 103.3 6.98 390.41 Inter-alpha-trypsin inhibitor 
heavy chain H4 OS=Homo 
sapiens GN=ITIH4 PE=1 SV=4 - 
[ITIH4_HUMAN] 

P53990 5.22 1 1 364 39.7 5.35 102.01 IST1 homolog OS=Homo sapiens 
GN=KIAA0174 PE=1 SV=1 - 
[IST1_HUMAN] 

P06870 16.03 3 3 262 28.9 4.83 177.69 Kallikrein-1 OS=Homo sapiens 
GN=KLK1 PE=1 SV=2 - 
[KLK1_HUMAN] 

P29622 3.51 1 1 427 48.5 7.75 103.42 Kallistatin OS=Homo sapiens 
GN=SERPINA4 PE=1 SV=3 - 
[KAIN_HUMAN] 

P13645 42.47 24 19 584 58.8 5.21 1250.81 Keratin, type I cytoskeletal 10 
OS=Homo sapiens GN=KRT10 
PE=1 SV=6 - [K1C10_HUMAN] 

P13646 13.54 5 5 458 49.6 4.96 345.59 Keratin, type I cytoskeletal 13 
OS=Homo sapiens GN=KRT13 
PE=1 SV=4 - [K1C13_HUMAN] 

P02533 19.07 7 7 472 51.5 5.16 370.50 Keratin, type I cytoskeletal 14 
OS=Homo sapiens GN=KRT14 
PE=1 SV=4 - [K1C14_HUMAN] 

P08779 14.38 6 6 473 51.2 5.05 311.81 Keratin, type I cytoskeletal 16 
OS=Homo sapiens GN=KRT16 
PE=1 SV=4 - [K1C16_HUMAN] 

P35527 30.18 14 12 623 62.0 5.24 941.86 Keratin, type I cytoskeletal 9 
OS=Homo sapiens GN=KRT9 
PE=1 SV=3 - [K1C9_HUMAN] 

P04264 28.73 23 17 644 66.0 8.12 1050.10 Keratin, type II cytoskeletal 1 
OS=Homo sapiens GN=KRT1 
PE=1 SV=6 - [K2C1_HUMAN] 

P35908 28.64 16 14 639 65.4 8.00 827.60 Keratin, type II cytoskeletal 2 
epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 

P13647 11.86 7 6 590 62.3 7.74 349.88 Keratin, type II cytoskeletal 5 
OS=Homo sapiens GN=KRT5 
PE=1 SV=3 - [K2C5_HUMAN] 

P04259 8.51 5 4 564 60.0 8.00 295.13 Keratin, type II cytoskeletal 6B 
OS=Homo sapiens GN=KRT6B 
PE=1 SV=5 - [K2C6B_HUMAN] 

P01042 14.44 12 7 644 71.9 6.81 617.07 Kininogen-1 OS=Homo sapiens 
GN=KNG1 PE=1 SV=2 - 
[KNG1_HUMAN] 

P02788 6.48 5 4 710 78.1 8.12 227.66 Lactotransferrin OS=Homo 
sapiens GN=LTF PE=1 SV=6 - 
[TRFL_HUMAN] 

P02750 6.63 1 1 347 38.2 6.95 80.58 Leucine-rich alpha-2-glycoprotein 
OS=Homo sapiens GN=LRG1 
PE=1 SV=2 - [A2GL_HUMAN] 

Q6GTX8 9.06 2 2 287 31.4 5.63 120.39 Leukocyte-associated 
immunoglobulin-like receptor 1 
OS=Homo sapiens GN=LAIR1 
PE=1 SV=1 - [LAIR1_HUMAN] 

P00338 9.94 3 3 332 36.7 8.27 144.81 L-lactate dehydrogenase A chain 
OS=Homo sapiens GN=LDHA 
PE=1 SV=2 - [LDHA_HUMAN] 

P98164 7.82 28 27 4655 521.6 5.08 1723.08 Low-density lipoprotein receptor-
related protein 2 OS=Homo 
sapiens GN=LRP2 PE=1 SV=3 - 
[LRP2_HUMAN] 



159 
 

P11117 4.49 2 2 423 48.3 6.74 143.48 Lysosomal acid phosphatase 
OS=Homo sapiens GN=ACP2 
PE=1 SV=3 - [PPAL_HUMAN] 

P10253 18.59 17 11 952 105.3 5.99 898.30 Lysosomal alpha-glucosidase 
OS=Homo sapiens GN=GAA 
PE=1 SV=3 - [LYAG_HUMAN] 

P10619 2.71 1 1 480 54.4 6.61 105.17 Lysosomal protective protein 
OS=Homo sapiens GN=CTSA 
PE=1 SV=2 - [PPGB_HUMAN] 

P42785 10.48 3 3 496 55.8 7.21 200.30 Lysosomal Pro-X 
carboxypeptidase OS=Homo 
sapiens GN=PRCP PE=1 SV=1 - 
[PCP_HUMAN] 

P13473 4.88 2 2 410 44.9 5.63 100.58 Lysosome-associated membrane 
glycoprotein 2 OS=Homo sapiens 
GN=LAMP2 PE=1 SV=2 - 
[LAMP2_HUMAN] 

O43451 15.62 21 20 1857 209.7 5.50 1218.94 Maltase-glucoamylase, intestinal 
OS=Homo sapiens GN=MGAM 
PE=1 SV=5 - [MGA_HUMAN] 

O00187 3.21 2 2 686 75.7 5.77 82.18 Mannan-binding lectin serine 
protease 2 OS=Homo sapiens 
GN=MASP2 PE=1 SV=3 - 
[MASP2_HUMAN] 

Q9NR99 0.99 2 2 2828 312.1 8.32 103.53 Matrix-remodeling-associated 
protein 5 OS=Homo sapiens 
GN=MXRA5 PE=2 SV=2 - 
[MXRA5_HUMAN] 

P26038 1.91 1 1 577 67.8 6.40 108.62 Moesin OS=Homo sapiens 
GN=MSN PE=1 SV=3 - 
[MOES_HUMAN] 

P08571 14.40 3 3 375 40.1 6.23 136.45 Monocyte differentiation antigen 
CD14 OS=Homo sapiens 
GN=CD14 PE=1 SV=2 - 
[CD14_HUMAN] 

P15941 0.88 1 1 1255 122.0 7.47 135.46 Mucin-1 OS=Homo sapiens 
GN=MUC1 PE=1 SV=3 - 
[MUC1_HUMAN] 

Q9HC84 2.03 3 3 5703 590.1 6.67 145.40 Mucin-5B OS=Homo sapiens 
GN=MUC5B PE=1 SV=2 - 
[MUC5B_HUMAN] 

Q9H8L6 4.00 2 2 949 104.3 5.86 196.33 Multimerin-2 OS=Homo sapiens 
GN=MMRN2 PE=1 SV=2 - 
[MMRN2_HUMAN] 

P34059 3.07 1 1 522 58.0 6.74 70.13 N-acetylgalactosamine-6-
sulfatase OS=Homo sapiens 
GN=GALNS PE=1 SV=1 - 
[GALNS_HUMAN] 

O96009 9.52 3 3 420 45.4 6.61 142.51 Napsin-A OS=Homo sapiens 
GN=NAPSA PE=1 SV=1 - 
[NAPSA_HUMAN] 

P08473 5.20 3 3 750 85.5 5.73 221.46 Neprilysin OS=Homo sapiens 
GN=MME PE=1 SV=2 - 
[NEP_HUMAN] 

P80188 7.58 1 1 198 22.6 8.91 119.08 Neutrophil gelatinase-associated 
lipocalin OS=Homo sapiens 
GN=LCN2 PE=1 SV=2 - 
[NGAL_HUMAN] 

Q92542 1.69 1 1 709 78.4 5.99 73.57 Nicastrin OS=Homo sapiens 
GN=NCSTN PE=1 SV=2 - 
[NICA_HUMAN] 

P10153 10.56 2 1 161 18.3 8.73 126.91 Non-secretory ribonuclease 
OS=Homo sapiens GN=RNASE2 
PE=1 SV=2 - [RNAS2_HUMAN] 

P51688 7.37 3 3 502 56.7 6.95 163.74 N-sulphoglucosamine 
sulphohydrolase OS=Homo 
sapiens GN=SGSH PE=1 SV=1 - 
[SPHM_HUMAN] 

P61970 23.62 3 2 127 14.5 5.38 153.41 Nuclear transport factor 2 
OS=Homo sapiens GN=NUTF2 
PE=1 SV=1 - [NTF2_HUMAN] 
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Q6UX06 13.53 5 5 510 57.2 5.69 315.00 Olfactomedin-4 OS=Homo 
sapiens GN=OLFM4 PE=1 SV=1 - 
[OLFM4_HUMAN] 

P04746 19.37 8 7 511 57.7 7.05 560.45 Pancreatic alpha-amylase 
OS=Homo sapiens GN=AMY2A 
PE=1 SV=2 - [AMYP_HUMAN] 

P55259 4.28 2 2 537 59.4 5.24 88.99 Pancreatic secretory granule 
membrane major glycoprotein 
GP2 OS=Homo sapiens GN=GP2 
PE=2 SV=3 - [GP2_HUMAN] 

Q9UBV8 11.97 3 3 284 30.4 6.54 165.56 Peflin OS=Homo sapiens 
GN=PEF1 PE=1 SV=1 - 
[PEF1_HUMAN] 

O75594 39.29 5 4 196 21.7 8.59 301.86 Peptidoglycan recognition protein 
1 OS=Homo sapiens 
GN=PGLYRP1 PE=1 SV=1 - 
[PGRP1_HUMAN] 

Q06830 5.03 1 1 199 22.1 8.13 68.82 Peroxiredoxin-1 OS=Homo 
sapiens GN=PRDX1 PE=1 SV=1 - 
[PRDX1_HUMAN] 

P30086 32.09 4 4 187 21.0 7.53 229.60 Phosphatidylethanolamine-
binding protein 1 OS=Homo 
sapiens GN=PEBP1 PE=1 SV=3 - 
[PEBP1_HUMAN] 

Q9Y646 16.95 6 6 472 51.9 6.18 334.27 Plasma glutamate 
carboxypeptidase OS=Homo 
sapiens GN=PGCP PE=1 SV=1 - 
[PGCP_HUMAN] 

P05155 13.40 7 5 500 55.1 6.55 482.11 Plasma protease C1 inhibitor 
OS=Homo sapiens 
GN=SERPING1 PE=1 SV=2 - 
[IC1_HUMAN] 

P05154 21.43 10 7 406 45.7 9.26 546.80 Plasma serine protease inhibitor 
OS=Homo sapiens 
GN=SERPINA5 PE=1 SV=2 - 
[IPSP_HUMAN] 

P15151 3.12 1 1 417 45.3 6.52 78.42 Poliovirus receptor OS=Homo 
sapiens GN=PVR PE=1 SV=2 - 
[PVR_HUMAN] 

P01833 28.93 22 15 764 83.2 5.74 1225.49 Polymeric immunoglobulin 
receptor OS=Homo sapiens 
GN=PIGR PE=1 SV=4 - 
[PIGR_HUMAN] 

P0CG48 11.82 1 1 685 77.0 7.66 91.36 Polyubiquitin-C OS=Homo 
sapiens GN=UBC PE=1 SV=1 - 
[UBC_HUMAN] 

P07602 14.69 8 5 524 58.1 5.17 489.67 Proactivator polypeptide 
OS=Homo sapiens GN=PSAP 
PE=1 SV=2 - [SAP_HUMAN] 

P01133 16.74 16 14 1207 133.9 5.85 955.71 Pro-epidermal growth factor 
OS=Homo sapiens GN=EGF 
PE=1 SV=2 - [EGF_HUMAN] 

Q8WUM4 3.23 2 2 868 96.0 6.52 145.44 Programmed cell death 6-
interacting protein OS=Homo 
sapiens GN=PDCD6IP PE=1 
SV=1 - [PDC6I_HUMAN] 

O75340 16.75 3 3 191 21.9 5.40 178.08 Programmed cell death protein 6 
OS=Homo sapiens GN=PDCD6 
PE=1 SV=1 - [PDCD6_HUMAN] 

P12273 8.22 1 1 146 16.6 8.05 88.34 Prolactin-inducible protein 
OS=Homo sapiens GN=PIP PE=1 
SV=1 - [PIP_HUMAN] 

O43490 4.05 2 2 865 97.1 7.27 146.25 Prominin-1 OS=Homo sapiens 
GN=PROM1 PE=1 SV=1 - 
[PROM1_HUMAN] 

P41222 17.37 3 2 190 21.0 7.80 262.29 Prostaglandin-H2 D-isomerase 
OS=Homo sapiens GN=PTGDS 
PE=1 SV=1 - [PTGDS_HUMAN] 

Q16651 4.08 1 1 343 36.4 5.85 106.87 Prostasin OS=Homo sapiens 
GN=PRSS8 PE=1 SV=1 - 
[PRSS8_HUMAN] 
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O43653 8.13 1 1 123 12.9 5.29 61.64 Prostate stem cell antigen 
OS=Homo sapiens GN=PSCA 
PE=1 SV=1 - [PSCA_HUMAN] 

P15309 12.18 7 4 386 44.5 6.24 409.77 Prostatic acid phosphatase 
OS=Homo sapiens GN=ACPP 
PE=1 SV=3 - [PPAP_HUMAN] 

P02760 30.11 16 8 352 39.0 6.25 950.65 Protein AMBP OS=Homo sapiens 
GN=AMBP PE=1 SV=1 - 
[AMBP_HUMAN] 

P31949 15.24 1 1 105 11.7 7.12 92.18 Protein S100-A11 OS=Homo 
sapiens GN=S100A11 PE=1 
SV=2 - [S10AB_HUMAN] 

P06703 27.78 2 2 90 10.2 5.48 118.96 Protein S100-A6 OS=Homo 
sapiens GN=S100A6 PE=1 SV=1 
- [S10A6_HUMAN] 

P06702 26.32 2 2 114 13.2 6.13 120.97 Protein S100-A9 OS=Homo 
sapiens GN=S100A9 PE=1 SV=1 
- [S10A9_HUMAN] 

P25815 13.68 1 1 95 10.4 4.88 84.46 Protein S100-P OS=Homo 
sapiens GN=S100P PE=1 SV=2 - 
[S100P_HUMAN] 

P00734 5.95 2 2 622 70.0 5.90 190.38 Prothrombin OS=Homo sapiens 
GN=F2 PE=1 SV=2 - 
[THRB_HUMAN] 

A6NIZ1 6.52 1 1 184 20.9 5.48 74.32 Ras-related protein Rap-1b-like 
protein OS=Homo sapiens PE=2 
SV=1 - [RP1BL_HUMAN] 

Q12913 2.32 2 2 1337 145.9 5.58 182.06 Receptor-type tyrosine-protein 
phosphatase eta OS=Homo 
sapiens GN=PTPRJ PE=1 SV=3 - 
[PTPRJ_HUMAN] 

Q13332 0.67 1 1 1948 217.0 6.51 62.90 Receptor-type tyrosine-protein 
phosphatase S OS=Homo sapiens 
GN=PTPRS PE=1 SV=2 - 
[PTPRS_HUMAN] 

O75787 2.57 1 1 350 39.0 6.10 67.12 Renin receptor OS=Homo sapiens 
GN=ATP6AP2 PE=1 SV=2 - 
[RENR_HUMAN] 

Q9HD89 40.74 3 3 108 11.4 6.86 152.72 Resistin OS=Homo sapiens 
GN=RETN PE=2 SV=1 - 
[RETN_HUMAN] 

P00352 2.99 1 1 501 54.8 6.73 105.59 Retinal dehydrogenase 1 
OS=Homo sapiens GN=ALDH1A1 
PE=1 SV=2 - [AL1A1_HUMAN] 

Q9HB40 5.53 2 2 452 50.8 5.81 127.22 Retinoid-inducible serine 
carboxypeptidase OS=Homo 
sapiens GN=SCPEP1 PE=1 SV=1 
- [RISC_HUMAN] 

P07998 17.95 2 2 156 17.6 8.79 93.48 Ribonuclease pancreatic 
OS=Homo sapiens GN=RNASE1 
PE=1 SV=4 - [RNAS1_HUMAN] 

Q8WVN6 14.52 2 2 248 27.0 7.43 142.17 Secreted and transmembrane 
protein 1 OS=Homo sapiens 
GN=SECTM1 PE=1 SV=2 - 
[SCTM1_HUMAN] 

P04279 7.36 2 2 462 52.1 9.29 97.30 Semenogelin-1 OS=Homo 
sapiens GN=SEMG1 PE=1 SV=2 - 
[SEMG1_HUMAN] 

P02787 8.02 4 4 698 77.0 7.12 159.56 Serotransferrin OS=Homo 
sapiens GN=TF PE=1 SV=2 - 
[TRFE_HUMAN] 

P29508 5.90 2 2 390 44.5 6.81 126.41 Serpin B3 OS=Homo sapiens 
GN=SERPINB3 PE=1 SV=2 - 
[SPB3_HUMAN] 

P02768 49.26 40 23 609 69.3 6.28 2325.90 Serum albumin OS=Homo 
sapiens GN=ALB PE=1 SV=2 - 
[ALBU_HUMAN] 

P02743 20.63 4 4 223 25.4 6.54 178.81 Serum amyloid P-component 
OS=Homo sapiens GN=APCS 
PE=1 SV=2 - [SAMP_HUMAN] 
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Q9HAT2 7.65 3 3 523 58.3 7.33 188.56 Sialate O-acetylesterase 
OS=Homo sapiens GN=SIAE 
PE=1 SV=1 - [SIAE_HUMAN] 

P48061 15.05 1 1 93 10.7 9.88 66.94 Stromal cell-derived factor 1 
OS=Homo sapiens GN=CXCL12 
PE=1 SV=1 - [SDF1_HUMAN] 

P53597 4.34 1 1 346 36.2 8.79 62.08 Succinyl-CoA ligase [GDP-
forming] subunit alpha, 
mitochondrial OS=Homo sapiens 
GN=SUCLG1 PE=1 SV=4 - 
[SUCA_HUMAN] 

O00391 1.87 1 1 747 82.5 8.92 128.99 Sulfhydryl oxidase 1 OS=Homo 
sapiens GN=QSOX1 PE=1 SV=3 - 
[QSOX1_HUMAN] 

Q9UGT4 1.70 1 1 822 90.1 6.28 83.61 Sushi domain-containing protein 
2 OS=Homo sapiens GN=SUSD2 
PE=1 SV=1 - [SUSD2_HUMAN] 

O00560 14.43 3 2 298 32.4 7.53 300.83 Syntenin-1 OS=Homo sapiens 
GN=SDCBP PE=1 SV=1 - 
[SDCB1_HUMAN] 

P10599 12.38 1 1 105 11.7 4.92 85.98 Thioredoxin OS=Homo sapiens 
GN=TXN PE=1 SV=3 - 
[THIO_HUMAN] 

P05543 6.75 3 3 415 46.3 6.30 120.75 Thyroxine-binding globulin 
OS=Homo sapiens 
GN=SERPINA7 PE=1 SV=2 - 
[THBG_HUMAN] 

P02766 48.30 5 5 147 15.9 5.76 247.35 Transthyretin OS=Homo sapiens 
GN=TTR PE=1 SV=1 - 
[TTHY_HUMAN] 

P60174 10.44 2 2 249 26.7 6.90 80.80 Triosephosphate isomerase 
OS=Homo sapiens GN=TPI1 
PE=1 SV=2 - [TPIS_HUMAN] 

O14773 9.77 4 3 563 61.2 6.48 242.71 Tripeptidyl-peptidase 1 
OS=Homo sapiens GN=TPP1 
PE=1 SV=2 - [TPP1_HUMAN] 

P30530 2.01 1 1 894 98.3 5.43 72.45 Tyrosine-protein kinase receptor 
UFO OS=Homo sapiens GN=AXL 
PE=1 SV=3 - [UFO_HUMAN] 

Q9H1C7 10.31 1 1 97 10.6 4.32 59.23 UPF0467 protein C5orf32 
OS=Homo sapiens GN=C5orf32 
PE=2 SV=1 - [CE032_HUMAN] 

Q6UX73 3.23 1 1 402 45.4 6.19 72.46 UPF0764 protein C16orf89 
OS=Homo sapiens GN=C16orf89 
PE=2 SV=2 - [CP089_HUMAN] 

P00749 4.87 2 2 431 48.5 8.41 134.85 Urokinase-type plasminogen 
activator OS=Homo sapiens 
GN=PLAU PE=1 SV=2 - 
[UROK_HUMAN] 

P07911 34.84 84 17 640 69.7 5.24 4820.87 Uromodulin OS=Homo sapiens 
GN=UMOD PE=1 SV=1 - 
[UROM_HUMAN] 

Q9NP79 6.51 1 1 307 33.9 6.29 66.83 Vacuolar protein sorting-
associated protein VTA1 homolog 
OS=Homo sapiens GN=VTA1 
PE=1 SV=1 - [VTA1_HUMAN] 

Q6EMK4 10.10 4 4 673 71.7 7.39 242.73 Vasorin OS=Homo sapiens 
GN=VASN PE=1 SV=1 - 
[VASN_HUMAN] 

Q12907 18.54 4 4 356 40.2 6.95 331.12 Vesicular integral-membrane 
protein VIP36 OS=Homo sapiens 
GN=LMAN2 PE=1 SV=1 - 
[LMAN2_HUMAN] 

P22891 13.50 4 4 400 44.7 5.97 184.28 Vitamin K-dependent protein Z 
OS=Homo sapiens GN=PROZ 
PE=1 SV=2 - [PROZ_HUMAN] 

Q7Z5L0 54.95 8 6 202 21.5 5.07 371.00 Vitelline membrane outer layer 
protein 1 homolog OS=Homo 
sapiens GN=VMO1 PE=1 SV=1 - 
[VMO1_HUMAN] 
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P04004 10.25 3 3 478 54.3 5.80 177.86 Vitronectin OS=Homo sapiens 
GN=VTN PE=1 SV=1 - 
[VTNC_HUMAN] 

Q14508 11.29 2 1 124 13.0 4.84 103.89 WAP four-disulfide core domain 
protein 2 OS=Homo sapiens 
GN=WFDC2 PE=1 SV=2 - 
[WFDC2_HUMAN] 

O43895 4.45 2 2 674 75.6 6.04 97.58 Xaa-Pro aminopeptidase 2 
OS=Homo sapiens GN=XPNPEP2 
PE=1 SV=3 - [XPP2_HUMAN] 

P25311 32.21 8 8 298 34.2 6.05 412.05 Zinc-alpha-2-glycoprotein 
OS=Homo sapiens GN=AZGP1 
PE=1 SV=2 - [ZA2G_HUMAN] 

Q96DA0 30.77 5 5 208 22.7 7.39 270.94 Zymogen granule protein 16 
homolog B OS=Homo sapiens 
GN=ZG16B PE=1 SV=3 - 
[ZG16B_HUMAN] 

 

Supplementary table S2.3: Identification of proteins in (P18+P200) CHAPS SN200 sample 

2. Accession of the protein, sequence coverage, PSM (Match between a fragmentation mass 

spectrum and peptide), number of peptides found, number of amino acids in the protein, 

molecular weight, calculated PI and mascot score along with the description of the protein are 

indicated in the table. 

Accession Coverage % # 
PSMs 

# 
Peptides 

# 
AAs 

MW 
[kDa

] 

calc. 
pI 

Score Description 

P63104 4.90 1 1 245 27.7 4.79 59.74 14-3-3 protein zeta/delta 
OS=Homo sapiens GN=YWHAZ 
PE=1 SV=1 - [1433Z_HUMAN] 

Q13510 30.13 13 9 395 44.6 7.62 679.07 Acid ceramidase OS=Homo 
sapiens GN=ASAH1 PE=1 SV=5 - 
[ASAH1_HUMAN] 

Q92485 2.64 1 1 455 50.8 5.64 68.27 Acid sphingomyelinase-like 
phosphodiesterase 3b OS=Homo 
sapiens GN=SMPDL3B PE=2 
SV=2 - [ASM3B_HUMAN] 

P60709 9.60 3 3 375 41.7 5.48 189.11 Actin, cytoplasmic 1 OS=Homo 
sapiens GN=ACTB PE=1 SV=1 - 
[ACTB_HUMAN] 

P02763 32.34 6 5 201 23.5 5.02 242.57 Alpha-1-acid glycoprotein 1 
OS=Homo sapiens GN=ORM1 
PE=1 SV=1 - [A1AG1_HUMAN] 

P19652 12.94 2 2 201 23.6 5.11 92.87 Alpha-1-acid glycoprotein 2 
OS=Homo sapiens GN=ORM2 
PE=1 SV=2 - [A1AG2_HUMAN] 

P01011 13.71 4 4 423 47.6 5.52 279.42 Alpha-1-antichymotrypsin 
OS=Homo sapiens 
GN=SERPINA3 PE=1 SV=2 - 
[AACT_HUMAN] 

P01009 33.73 17 12 418 46.7 5.59 877.80 Alpha-1-antitrypsin OS=Homo 
sapiens GN=SERPINA1 PE=1 
SV=3 - [A1AT_HUMAN] 

P04217 9.90 4 4 495 54.2 5.87 186.68 Alpha-1B-glycoprotein OS=Homo 
sapiens GN=A1BG PE=1 SV=3 - 
[A1BG_HUMAN] 

P02765 16.62 5 5 367 39.3 5.72 335.80 Alpha-2-HS-glycoprotein 
OS=Homo sapiens GN=AHSG 
PE=1 SV=1 - [FETUA_HUMAN] 
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P12814 1.12 1 1 892 103.
0 

5.41 80.88 Alpha-actinin-1 OS=Homo 
sapiens GN=ACTN1 PE=1 SV=2 - 
[ACTN1_HUMAN] 

P04745 10.37 4 4 511 57.7 6.93 336.72 Alpha-amylase 1 OS=Homo 
sapiens GN=AMY1A PE=1 SV=2 - 
[AMY1_HUMAN] 

P19961 10.37 4 4 511 57.7 7.09 337.82 Alpha-amylase 2B OS=Homo 
sapiens GN=AMY2B PE=1 SV=1 - 
[AMY2B_HUMAN] 

P06733 8.53 2 2 434 47.1 7.39 181.18 Alpha-enolase OS=Homo sapiens 
GN=ENO1 PE=1 SV=2 - 
[ENOA_HUMAN] 

P54802 23.15 12 11 743 82.1 6.54 578.03 Alpha-N-acetylglucosaminidase 
OS=Homo sapiens GN=NAGLU 
PE=1 SV=1 - [ANAG_HUMAN] 

P15144 27.92 31 20 967 109.
5 

5.48 1761.40 Aminopeptidase N OS=Homo 
sapiens GN=ANPEP PE=1 SV=4 - 
[AMPN_HUMAN] 

P01019 10.52 4 3 485 53.1 6.32 177.07 Angiotensinogen OS=Homo 
sapiens GN=AGT PE=1 SV=1 - 
[ANGT_HUMAN] 

P04083 3.76 1 1 346 38.7 7.02 70.05 Annexin A1 OS=Homo sapiens 
GN=ANXA1 PE=1 SV=2 - 
[ANXA1_HUMAN] 

P08758 34.38 7 7 320 35.9 5.05 321.92 Annexin A5 OS=Homo sapiens 
GN=ANXA5 PE=1 SV=2 - 
[ANXA5_HUMAN] 

P02647 15.73 3 3 267 30.8 5.76 220.49 Apolipoprotein A-I OS=Homo 
sapiens GN=APOA1 PE=1 SV=1 - 
[APOA1_HUMAN] 

P02652 20.00 1 1 100 11.2 6.62 70.43 Apolipoprotein A-II OS=Homo 
sapiens GN=APOA2 PE=1 SV=1 - 
[APOA2_HUMAN] 

P05090 24.34 16 6 189 21.3 5.15 840.55 Apolipoprotein D OS=Homo 
sapiens GN=APOD PE=1 SV=1 - 
[APOD_HUMAN] 

P02649 27.13 8 7 317 36.1 5.73 493.24 Apolipoprotein E OS=Homo 
sapiens GN=APOE PE=1 SV=1 - 
[APOE_HUMAN] 

P15289 8.09 2 2 507 53.6 6.07 146.85 Arylsulfatase A OS=Homo 
sapiens GN=ARSA PE=1 SV=3 - 
[ARSA_HUMAN] 

O75882 8.68 10 10 1429 158.
4 

7.31 517.68 Attractin OS=Homo sapiens 
GN=ATRN PE=1 SV=2 - 
[ATRN_HUMAN] 

P98160 1.48 4 4 4391 468.
5 

6.51 261.62 Basement membrane-specific 
heparan sulfate proteoglycan 
core protein OS=Homo sapiens 
GN=HSPG2 PE=1 SV=3 - 
[PGBM_HUMAN] 

P02749 9.28 2 2 345 38.3 7.97 108.24 Beta-2-glycoprotein 1 OS=Homo 
sapiens GN=APOH PE=1 SV=3 - 
[APOH_HUMAN] 

P61769 8.40 1 1 119 13.7 6.52 69.68 Beta-2-microglobulin OS=Homo 
sapiens GN=B2M PE=1 SV=1 - 
[B2MG_HUMAN] 

P16278 5.02 3 3 677 76.0 6.57 196.01 Beta-galactosidase OS=Homo 
sapiens GN=GLB1 PE=1 SV=2 - 
[BGAL_HUMAN] 

P06865 2.08 1 1 529 60.7 5.16 72.45 Beta-hexosaminidase subunit 
alpha OS=Homo sapiens 
GN=HEXA PE=1 SV=1 - 
[HEXA_HUMAN] 

P43251 7.92 3 3 543 61.1 6.25 161.44 Biotinidase OS=Homo sapiens 
GN=BTD PE=1 SV=2 - 
[BTD_HUMAN] 

Q5VW32 3.89 1 1 411 46.4 7.65 65.53 BRO1 domain-containing protein 
BROX OS=Homo sapiens 
GN=BROX PE=1 SV=1 - 
[BROX_HUMAN] 
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P12830 5.44 3 3 882 97.4 4.73 157.63 Cadherin-1 OS=Homo sapiens 
GN=CDH1 PE=1 SV=3 - 
[CADH1_HUMAN] 

P19022 6.18 3 3 906 99.7 4.81 177.43 Cadherin-2 OS=Homo sapiens 
GN=CDH2 PE=1 SV=4 - 
[CADH2_HUMAN] 

Q9BYE9 2.06 2 2 1310 141.
5 

4.50 122.44 Cadherin-related family member 
2 OS=Homo sapiens GN=CDHR2 
PE=1 SV=2 - [CDHR2_HUMAN] 

P14384 4.06 2 2 443 50.5 7.36 91.85 Carboxypeptidase M OS=Homo 
sapiens GN=CPM PE=1 SV=2 - 
[CBPM_HUMAN] 

P22792 17.98 9 7 545 60.6 5.99 464.82 Carboxypeptidase N subunit 2 
OS=Homo sapiens GN=CPN2 
PE=1 SV=2 - [CPN2_HUMAN] 

P07858 5.31 1 1 339 37.8 6.30 88.55 Cathepsin B OS=Homo sapiens 
GN=CTSB PE=1 SV=3 - 
[CATB_HUMAN] 

P07339 21.84 6 6 412 44.5 6.54 345.17 Cathepsin D OS=Homo sapiens 
GN=CTSD PE=1 SV=1 - 
[CATD_HUMAN] 

Q8N6Q3 3.43 1 1 437 46.3 6.29 58.93 CD177 antigen OS=Homo 
sapiens GN=CD177 PE=1 SV=2 - 
[CD177_HUMAN] 

Q9Y5K6 2.19 1 1 639 71.4 6.40 111.79 CD2-associated protein 
OS=Homo sapiens GN=CD2AP 
PE=1 SV=1 - [CD2AP_HUMAN] 

P16070 2.96 3 2 742 81.5 5.33 122.18 CD44 antigen OS=Homo sapiens 
GN=CD44 PE=1 SV=2 - 
[CD44_HUMAN] 

P13987 25.00 5 4 128 14.2 6.48 232.29 CD59 glycoprotein OS=Homo 
sapiens GN=CD59 PE=1 SV=1 - 
[CD59_HUMAN] 

P08962 4.20 1 1 238 25.6 7.81 82.96 CD63 antigen OS=Homo sapiens 
GN=CD63 PE=1 SV=2 - 
[CD63_HUMAN] 

P21926 10.96 1 1 228 25.4 7.15 65.01 CD9 antigen OS=Homo sapiens 
GN=CD9 PE=1 SV=4 - 
[CD9_HUMAN] 

P11597 3.04 1 1 493 54.7 6.09 59.48 Cholesteryl ester transfer protein 
OS=Homo sapiens GN=CETP 
PE=1 SV=2 - [CETP_HUMAN] 

P10909 23.61 10 8 449 52.5 6.27 519.59 Clusterin OS=Homo sapiens 
GN=CLU PE=1 SV=1 - 
[CLUS_HUMAN] 

Q6UXG3 4.82 1 1 332 36.0 5.92 97.17 CMRF35-like molecule 9 
OS=Homo sapiens GN=CD300LG 
PE=1 SV=2 - [CLM9_HUMAN] 

P12109 7.20 6 5 1028 108.
5 

5.43 231.90 Collagen alpha-1(VI) chain 
OS=Homo sapiens GN=COL6A1 
PE=1 SV=3 - [CO6A1_HUMAN] 

P39059 0.94 1 1 1388 141.
6 

5.00 104.31 Collagen alpha-1(XV) chain 
OS=Homo sapiens GN=COL15A1 
PE=1 SV=2 - [COFA1_HUMAN] 

P12111 2.64 8 6 3177 343.
5 

6.68 426.02 Collagen alpha-3(VI) chain 
OS=Homo sapiens GN=COL6A3 
PE=1 SV=4 - [CO6A3_HUMAN] 

P01024 0.96 1 1 1663 187.
0 

6.40 94.26 Complement C3 OS=Homo 
sapiens GN=C3 PE=1 SV=2 - 
[CO3_HUMAN] 

P0C0L4 0.86 1 1 1744 192.
7 

7.08 94.14 Complement C4-A OS=Homo 
sapiens GN=C4A PE=1 SV=1 - 
[CO4A_HUMAN] 

P08174 2.10 1 1 381 41.4 7.59 93.84 Complement decay-accelerating 
factor OS=Homo sapiens 
GN=CD55 PE=1 SV=4 - 
[DAF_HUMAN] 

P05156 4.97 2 2 583 65.7 7.50 110.32 Complement factor I OS=Homo 
sapiens GN=CFI PE=1 SV=1 - 
[CFAI_HUMAN] 
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P08185 8.89 3 3 405 45.1 6.04 121.20 Corticosteroid-binding globulin 
OS=Homo sapiens 
GN=SERPINA6 PE=1 SV=1 - 
[CBG_HUMAN] 

O60494 11.40 26 26 3623 398.
4 

5.35 1386.85 Cubilin OS=Homo sapiens 
GN=CUBN PE=1 SV=4 - 
[CUBN_HUMAN] 

P01040 30.61 2 2 98 11.0 5.50 122.24 Cystatin-A OS=Homo sapiens 
GN=CSTA PE=1 SV=1 - 
[CYTA_HUMAN] 

P01034 7.53 1 1 146 15.8 8.75 85.99 Cystatin-C OS=Homo sapiens 
GN=CST3 PE=1 SV=1 - 
[CYTC_HUMAN] 

Q15828 50.34 5 5 149 16.5 8.09 217.97 Cystatin-M OS=Homo sapiens 
GN=CST6 PE=1 SV=1 - 
[CYTM_HUMAN] 

P24855 7.80 2 2 282 31.4 4.91 131.31 Deoxyribonuclease-1 OS=Homo 
sapiens GN=DNASE1 PE=1 SV=1 
- [DNAS1_HUMAN] 

P81605 12.73 1 1 110 11.3 6.54 89.46 Dermcidin OS=Homo sapiens 
GN=DCD PE=1 SV=2 - 
[DCD_HUMAN] 

P15924 1.32 4 3 2871 331.
6 

6.81 256.24 Desmoplakin OS=Homo sapiens 
GN=DSP PE=1 SV=3 - 
[DESP_HUMAN] 

P16444 43.07 16 13 411 45.6 6.15 791.26 Dipeptidase 1 OS=Homo sapiens 
GN=DPEP1 PE=1 SV=3 - 
[DPEP1_HUMAN] 

P53634 11.23 4 4 463 51.8 6.99 233.92 Dipeptidyl peptidase 1 OS=Homo 
sapiens GN=CTSC PE=1 SV=1 - 
[CATC_HUMAN] 

Q9UHL4 2.44 1 1 492 54.3 6.32 84.87 Dipeptidyl peptidase 2 OS=Homo 
sapiens GN=DPP7 PE=1 SV=3 - 
[DPP2_HUMAN] 

P27487 2.48 2 2 766 88.2 6.04 210.81 Dipeptidyl peptidase 4 OS=Homo 
sapiens GN=DPP4 PE=1 SV=2 - 
[DPP4_HUMAN] 

Q12805 28.60 12 10 493 54.6 5.07 548.10 EGF-containing fibulin-like 
extracellular matrix protein 1 
OS=Homo sapiens GN=EFEMP1 
PE=1 SV=2 - [FBLN3_HUMAN] 

Q9HCU0 1.85 1 1 757 80.8 5.35 127.02 Endosialin OS=Homo sapiens 
GN=CD248 PE=1 SV=1 - 
[CD248_HUMAN] 

Q9UNN8 12.61 2 2 238 26.7 7.18 124.53 Endothelial protein C receptor 
OS=Homo sapiens GN=PROCR 
PE=1 SV=1 - [EPCR_HUMAN] 

P61916 10.60 1 1 151 16.6 7.65 69.34 Epididymal secretory protein E1 
OS=Homo sapiens GN=NPC2 
PE=1 SV=1 - [NPC2_HUMAN] 

P02751 5.74 9 9 2386 262.
5 

5.71 491.06 Fibronectin OS=Homo sapiens 
GN=FN1 PE=1 SV=4 - 
[FINC_HUMAN] 

Q9UBX5 10.04 5 4 448 50.1 4.73 218.41 Fibulin-5 OS=Homo sapiens 
GN=FBLN5 PE=1 SV=1 - 
[FBLN5_HUMAN] 

Q5D862 0.46 1 1 2391 247.
9 

8.31 63.33 Filaggrin-2 OS=Homo sapiens 
GN=FLG2 PE=1 SV=1 - 
[FILA2_HUMAN] 

P15328 4.28 1 1 257 29.8 7.97 64.95 Folate receptor alpha OS=Homo 
sapiens GN=FOLR1 PE=1 SV=3 - 
[FOLR1_HUMAN] 

P09467 5.03 1 1 338 36.8 6.99 66.39 Fructose-1,6-bisphosphatase 1 
OS=Homo sapiens GN=FBP1 
PE=1 SV=4 - [F16P1_HUMAN] 

Q08380 28.38 16 11 585 65.3 5.27 947.38 Galectin-3-binding protein 
OS=Homo sapiens 
GN=LGALS3BP PE=1 SV=1 - 
[LG3BP_HUMAN] 

Q92820 8.18 2 2 318 35.9 7.11 134.49 Gamma-glutamyl hydrolase 
OS=Homo sapiens GN=GGH 
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PE=1 SV=2 - [GGH_HUMAN] 

P19440 12.83 6 5 569 61.4 7.12 342.53 Gamma-glutamyltranspeptidase 1 
OS=Homo sapiens GN=GGT1 
PE=1 SV=2 - [GGT1_HUMAN] 

P17900 15.54 2 2 193 20.8 5.31 97.81 Ganglioside GM2 activator 
OS=Homo sapiens GN=GM2A 
PE=1 SV=4 - [SAP3_HUMAN] 

P06396 7.67 4 4 782 85.6 6.28 269.39 Gelsolin OS=Homo sapiens 
GN=GSN PE=1 SV=1 - 
[GELS_HUMAN] 

Q16769 14.40 3 3 361 40.9 6.61 161.96 Glutaminyl-peptide 
cyclotransferase OS=Homo 
sapiens GN=QPCT PE=1 SV=1 - 
[QPCT_HUMAN] 

P09211 16.67 2 2 210 23.3 5.64 118.20 Glutathione S-transferase P 
OS=Homo sapiens GN=GSTP1 
PE=1 SV=2 - [GSTP1_HUMAN] 

P51654 2.59 2 1 580 65.5 6.37 191.49 Glypican-3 OS=Homo sapiens 
GN=GPC3 PE=1 SV=1 - 
[GPC3_HUMAN] 

Q8NBJ4 2.49 1 1 401 45.3 4.97 60.96 Golgi membrane protein 1 
OS=Homo sapiens GN=GOLM1 
PE=1 SV=1 - [GOLM1_HUMAN] 

P28799 2.53 2 1 593 63.5 6.83 143.36 Granulins OS=Homo sapiens 
GN=GRN PE=1 SV=2 - 
[GRN_HUMAN] 

Q8NHV1 2.00 1 1 300 34.5 6.46 67.91 GTPase IMAP family member 7 
OS=Homo sapiens GN=GIMAP7 
PE=2 SV=1 - [GIMA7_HUMAN] 

P00738 11.08 5 4 406 45.2 6.58 261.27 Haptoglobin OS=Homo sapiens 
GN=HP PE=1 SV=1 - 
[HPT_HUMAN] 

P11142 2.17 1 1 646 70.9 5.52 59.46 Heat shock cognate 71 kDa 
protein OS=Homo sapiens 
GN=HSPA8 PE=1 SV=1 - 
[HSP7C_HUMAN] 

Q96RW7 0.44 2 2 5635 613.
0 

6.49 116.06 Hemicentin-1 OS=Homo sapiens 
GN=HMCN1 PE=1 SV=2 - 
[HMCN1_HUMAN] 

P02790 14.72 5 4 462 51.6 7.02 239.97 Hemopexin OS=Homo sapiens 
GN=HPX PE=1 SV=2 - 
[HEMO_HUMAN] 

P37235 6.22 1 1 193 22.3 5.35 81.02 Hippocalcin-like protein 1 
OS=Homo sapiens GN=HPCAL1 
PE=1 SV=3 - [HPCL1_HUMAN] 

Q86YZ3 2.35 2 2 2850 282.
2 

10.0
4 

159.14 Hornerin OS=Homo sapiens 
GN=HRNR PE=1 SV=2 - 
[HORN_HUMAN] 

Q12794 19.08 4 4 435 48.3 6.77 175.75 Hyaluronidase-1 OS=Homo 
sapiens GN=HYAL1 PE=1 SV=2 - 
[HYAL1_HUMAN] 

O75144 8.61 2 2 302 33.3 5.31 123.06 ICOS ligand OS=Homo sapiens 
GN=ICOSLG PE=1 SV=2 - 
[ICOSL_HUMAN] 

P01876 9.07 3 3 353 37.6 6.51 218.37 Ig alpha-1 chain C region 
OS=Homo sapiens GN=IGHA1 
PE=1 SV=2 - [IGHA1_HUMAN] 

P01877 9.41 3 3 340 36.5 6.10 167.35 Ig alpha-2 chain C region 
OS=Homo sapiens GN=IGHA2 
PE=1 SV=3 - [IGHA2_HUMAN] 

P01857 14.85 3 3 330 36.1 8.19 157.85 Ig gamma-1 chain C region 
OS=Homo sapiens GN=IGHG1 
PE=1 SV=1 - [IGHG1_HUMAN] 

P01861 14.98 3 3 327 35.9 7.36 153.39 Ig gamma-4 chain C region 
OS=Homo sapiens GN=IGHG4 
PE=1 SV=1 - [IGHG4_HUMAN] 

P01777 15.97 1 1 119 12.8 8.50 94.72 Ig heavy chain V-III region TEI 
OS=Homo sapiens PE=1 SV=1 - 
[HV316_HUMAN] 
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P01765 16.52 1 1 115 12.3 9.13 80.98 Ig heavy chain V-III region TIL 
OS=Homo sapiens PE=1 SV=1 - 
[HV304_HUMAN] 

P01834 80.19 7 6 106 11.6 5.87 386.88 Ig kappa chain C region 
OS=Homo sapiens GN=IGKC 
PE=1 SV=1 - [IGKC_HUMAN] 

P01593 31.48 2 2 108 12.0 5.99 102.61 Ig kappa chain V-I region AG 
OS=Homo sapiens PE=1 SV=1 - 
[KV101_HUMAN] 

P01617 32.74 2 2 113 12.3 6.00 119.05 Ig kappa chain V-II region TEW 
OS=Homo sapiens PE=1 SV=1 - 
[KV204_HUMAN] 

P01620 39.45 3 3 109 11.8 8.48 151.14 Ig kappa chain V-III region SIE 
OS=Homo sapiens PE=1 SV=1 - 
[KV302_HUMAN] 

P04434 7.76 1 1 116 12.7 5.94 65.50 Ig kappa chain V-III region VH 
(Fragment) OS=Homo sapiens 
PE=4 SV=1 - [KV310_HUMAN] 

P01625 23.68 3 2 114 12.6 7.93 124.44 Ig kappa chain V-IV region Len 
OS=Homo sapiens PE=1 SV=2 - 
[KV402_HUMAN] 

P0CG05 47.17 4 3 106 11.3 7.24 190.30 Ig lambda-2 chain C regions 
OS=Homo sapiens GN=IGLC2 
PE=1 SV=1 - [LAC2_HUMAN] 

P01591 7.55 1 1 159 18.1 5.24 120.62 Immunoglobulin J chain 
OS=Homo sapiens GN=IGJ PE=1 
SV=4 - [IGJ_HUMAN] 

P18065 3.69 1 1 325 34.8 7.50 63.26 Insulin-like growth factor-binding 
protein 2 OS=Homo sapiens 
GN=IGFBP2 PE=1 SV=2 - 
[IBP2_HUMAN] 

Q16270 17.02 3 3 282 29.1 7.90 167.76 Insulin-like growth factor-binding 
protein 7 OS=Homo sapiens 
GN=IGFBP7 PE=1 SV=1 - 
[IBP7_HUMAN] 

Q14624 6.88 5 4 930 103.
3 

6.98 253.53 Inter-alpha-trypsin inhibitor 
heavy chain H4 OS=Homo 
sapiens GN=ITIH4 PE=1 SV=4 - 
[ITIH4_HUMAN] 

P53990 2.20 1 1 364 39.7 5.35 80.70 IST1 homolog OS=Homo sapiens 
GN=KIAA0174 PE=1 SV=1 - 
[IST1_HUMAN] 

P06870 16.03 3 3 262 28.9 4.83 182.31 Kallikrein-1 OS=Homo sapiens 
GN=KLK1 PE=1 SV=2 - 
[KLK1_HUMAN] 

P13645 50.86 38 23 584 58.8 5.21 1956.71 Keratin, type I cytoskeletal 10 
OS=Homo sapiens GN=KRT10 
PE=1 SV=6 - [K1C10_HUMAN] 

P13646 5.02 2 2 458 49.6 4.96 158.12 Keratin, type I cytoskeletal 13 
OS=Homo sapiens GN=KRT13 
PE=1 SV=4 - [K1C13_HUMAN] 

P02533 33.69 13 12 472 51.5 5.16 680.04 Keratin, type I cytoskeletal 14 
OS=Homo sapiens GN=KRT14 
PE=1 SV=4 - [K1C14_HUMAN] 

P08779 38.27 17 16 473 51.2 5.05 769.78 Keratin, type I cytoskeletal 16 
OS=Homo sapiens GN=KRT16 
PE=1 SV=4 - [K1C16_HUMAN] 

Q04695 16.44 6 6 432 48.1 5.02 364.57 Keratin, type I cytoskeletal 17 
OS=Homo sapiens GN=KRT17 
PE=1 SV=2 - [K1C17_HUMAN] 

P35527 54.90 27 21 623 62.0 5.24 1631.29 Keratin, type I cytoskeletal 9 
OS=Homo sapiens GN=KRT9 
PE=1 SV=3 - [K1C9_HUMAN] 

P04264 46.27 39 26 644 66.0 8.12 1899.51 Keratin, type II cytoskeletal 1 
OS=Homo sapiens GN=KRT1 
PE=1 SV=6 - [K2C1_HUMAN] 

P35908 46.48 26 24 639 65.4 8.00 1556.88 Keratin, type II cytoskeletal 2 
epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 
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P12035 6.20 5 4 629 64.5 6.48 282.40 Keratin, type II cytoskeletal 3 
OS=Homo sapiens GN=KRT3 
PE=1 SV=2 - [K2C3_HUMAN] 

P19013 3.75 3 2 534 57.2 6.61 132.19 Keratin, type II cytoskeletal 4 
OS=Homo sapiens GN=KRT4 
PE=1 SV=4 - [K2C4_HUMAN] 

P13647 29.15 18 17 590 62.3 7.74 794.02 Keratin, type II cytoskeletal 5 
OS=Homo sapiens GN=KRT5 
PE=1 SV=3 - [K2C5_HUMAN] 

P02538 30.67 19 18 564 60.0 8.00 850.05 Keratin, type II cytoskeletal 6A 
OS=Homo sapiens GN=KRT6A 
PE=1 SV=3 - [K2C6A_HUMAN] 

P04259 27.84 19 17 564 60.0 8.00 844.08 Keratin, type II cytoskeletal 6B 
OS=Homo sapiens GN=KRT6B 
PE=1 SV=5 - [K2C6B_HUMAN] 

P48668 30.67 19 18 564 60.0 8.00 843.15 Keratin, type II cytoskeletal 6C 
OS=Homo sapiens GN=KRT6C 
PE=1 SV=3 - [K2C6C_HUMAN] 

Q8N1N4 3.85 2 2 520 56.8 6.02 100.64 Keratin, type II cytoskeletal 78 
OS=Homo sapiens GN=KRT78 
PE=1 SV=2 - [K2C78_HUMAN] 

P01042 18.32 12 10 644 71.9 6.81 670.29 Kininogen-1 OS=Homo sapiens 
GN=KNG1 PE=1 SV=2 - 
[KNG1_HUMAN] 

Q9H756 3.51 1 1 370 42.3 5.12 66.66 Leucine-rich repeat-containing 
protein 19 OS=Homo sapiens 
GN=LRRC19 PE=2 SV=1 - 
[LRC19_HUMAN] 

Q6GTX8 4.53 1 1 287 31.4 5.63 97.51 Leukocyte-associated 
immunoglobulin-like receptor 1 
OS=Homo sapiens GN=LAIR1 
PE=1 SV=1 - [LAIR1_HUMAN] 

P05451 6.02 1 1 166 18.7 5.94 64.64 Lithostathine-1-alpha OS=Homo 
sapiens GN=REG1A PE=1 SV=3 - 
[REG1A_HUMAN] 

P00338 4.52 1 1 332 36.7 8.27 106.81 L-lactate dehydrogenase A chain 
OS=Homo sapiens GN=LDHA 
PE=1 SV=2 - [LDHA_HUMAN] 

P07195 3.29 2 1 334 36.6 6.05 136.07 L-lactate dehydrogenase B chain 
OS=Homo sapiens GN=LDHB 
PE=1 SV=2 - [LDHB_HUMAN] 

P98164 6.51 25 23 4655 521.
6 

5.08 1213.09 Low-density lipoprotein receptor-
related protein 2 OS=Homo 
sapiens GN=LRP2 PE=1 SV=3 - 
[LRP2_HUMAN] 

P11117 11.11 4 4 423 48.3 6.74 230.34 Lysosomal acid phosphatase 
OS=Homo sapiens GN=ACP2 
PE=1 SV=3 - [PPAL_HUMAN] 

P10253 18.49 17 12 952 105.
3 

5.99 788.99 Lysosomal alpha-glucosidase 
OS=Homo sapiens GN=GAA 
PE=1 SV=3 - [LYAG_HUMAN] 

P10619 5.63 2 2 480 54.4 6.61 234.31 Lysosomal protective protein 
OS=Homo sapiens GN=CTSA 
PE=1 SV=2 - [PPGB_HUMAN] 

P42785 7.06 3 3 496 55.8 7.21 117.18 Lysosomal Pro-X 
carboxypeptidase OS=Homo 
sapiens GN=PRCP PE=1 SV=1 - 
[PCP_HUMAN] 

P11279 3.84 1 1 417 44.9 8.75 100.31 Lysosome-associated membrane 
glycoprotein 1 OS=Homo sapiens 
GN=LAMP1 PE=1 SV=3 - 
[LAMP1_HUMAN] 

P13473 9.27 3 3 410 44.9 5.63 166.00 Lysosome-associated membrane 
glycoprotein 2 OS=Homo sapiens 
GN=LAMP2 PE=1 SV=2 - 
[LAMP2_HUMAN] 

P09603 5.78 2 2 554 60.1 5.29 112.68 Macrophage colony-stimulating 
factor 1 OS=Homo sapiens 
GN=CSF1 PE=1 SV=1 - 
[CSF1_HUMAN] 
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P40925 7.78 2 2 334 36.4 7.36 126.16 Malate dehydrogenase, 
cytoplasmic OS=Homo sapiens 
GN=MDH1 PE=1 SV=4 - 
[MDHC_HUMAN] 

O43451 6.41 7 7 1857 209.
7 

5.50 596.95 Maltase-glucoamylase, intestinal 
OS=Homo sapiens GN=MGAM 
PE=1 SV=5 - [MGA_HUMAN] 

O00187 5.39 3 3 686 75.7 5.77 131.45 Mannan-binding lectin serine 
protease 2 OS=Homo sapiens 
GN=MASP2 PE=1 SV=3 - 
[MASP2_HUMAN] 

P33908 1.84 1 1 653 72.9 6.47 58.32 Mannosyl-oligosaccharide 1,2-
alpha-mannosidase IA OS=Homo 
sapiens GN=MAN1A1 PE=1 SV=3 
- [MA1A1_HUMAN] 

P26038 1.56 1 1 577 67.8 6.40 61.39 Moesin OS=Homo sapiens 
GN=MSN PE=1 SV=3 - 
[MOES_HUMAN] 

P15941 3.11 3 3 1255 122.
0 

7.47 129.17 Mucin-1 OS=Homo sapiens 
GN=MUC1 PE=1 SV=3 - 
[MUC1_HUMAN] 

Q9H8L6 5.27 5 3 949 104.
3 

5.86 293.31 Multimerin-2 OS=Homo sapiens 
GN=MMRN2 PE=1 SV=2 - 
[MMRN2_HUMAN] 

Q9UNW1 8.83 3 3 487 55.0 7.81 157.16 Multiple inositol polyphosphate 
phosphatase 1 OS=Homo sapiens 
GN=MINPP1 PE=1 SV=1 - 
[MINP1_HUMAN] 

P34059 7.66 2 2 522 58.0 6.74 109.55 N-acetylgalactosamine-6-
sulfatase OS=Homo sapiens 
GN=GALNS PE=1 SV=1 - 
[GALNS_HUMAN] 

P15586 3.26 2 2 552 62.0 8.31 112.45 N-acetylglucosamine-6-sulfatase 
OS=Homo sapiens GN=GNS 
PE=1 SV=3 - [GNS_HUMAN] 

O96009 13.33 5 4 420 45.4 6.61 246.37 Napsin-A OS=Homo sapiens 
GN=NAPSA PE=1 SV=1 - 
[NAPSA_HUMAN] 

P08473 15.73 8 8 750 85.5 5.73 503.40 Neprilysin OS=Homo sapiens 
GN=MME PE=1 SV=2 - 
[NEP_HUMAN] 

Q99574 2.44 1 1 410 46.4 4.91 79.31 Neuroserpin OS=Homo sapiens 
GN=SERPINI1 PE=1 SV=1 - 
[NEUS_HUMAN] 

P59665 9.57 1 1 94 10.2 6.99 98.17 Neutrophil defensin 1 OS=Homo 
sapiens GN=DEFA1 PE=1 SV=1 - 
[DEF1_HUMAN] 

P10153 10.56 2 1 161 18.3 8.73 167.89 Non-secretory ribonuclease 
OS=Homo sapiens GN=RNASE2 
PE=1 SV=2 - [RNAS2_HUMAN] 

P61970 29.13 2 2 127 14.5 5.38 112.01 Nuclear transport factor 2 
OS=Homo sapiens GN=NUTF2 
PE=1 SV=1 - [NTF2_HUMAN] 

P50897 9.15 2 2 306 34.2 6.52 102.00 Palmitoyl-protein thioesterase 1 
OS=Homo sapiens GN=PPT1 
PE=1 SV=1 - [PPT1_HUMAN] 

P04746 10.37 4 4 511 57.7 7.05 330.28 Pancreatic alpha-amylase 
OS=Homo sapiens GN=AMY2A 
PE=1 SV=2 - [AMYP_HUMAN] 

O95497 10.33 4 4 513 57.0 5.55 197.26 Pantetheinase OS=Homo sapiens 
GN=VNN1 PE=1 SV=2 - 
[VNN1_HUMAN] 

Q9UBV8 3.87 1 1 284 30.4 6.54 115.32 Peflin OS=Homo sapiens 
GN=PEF1 PE=1 SV=1 - 
[PEF1_HUMAN] 

O75594 39.29 6 4 196 21.7 8.59 338.88 Peptidoglycan recognition protein 
1 OS=Homo sapiens 
GN=PGLYRP1 PE=1 SV=1 - 
[PGRP1_HUMAN] 

P30041 11.61 2 2 224 25.0 6.38 99.97 Peroxiredoxin-6 OS=Homo 
sapiens GN=PRDX6 PE=1 SV=3 - 
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[PRDX6_HUMAN] 

P04180 3.18 1 1 440 49.5 6.11 80.92 Phosphatidylcholine-sterol 
acyltransferase OS=Homo 
sapiens GN=LCAT PE=1 SV=1 - 
[LCAT_HUMAN] 

P30086 18.18 2 2 187 21.0 7.53 143.21 Phosphatidylethanolamine-
binding protein 1 OS=Homo 
sapiens GN=PEBP1 PE=1 SV=3 - 
[PEBP1_HUMAN] 

Q96FE7 5.70 1 1 263 28.2 5.01 96.38 Phosphoinositide-3-kinase-
interacting protein 1 OS=Homo 
sapiens GN=PIK3IP1 PE=1 SV=2 
- [P3IP1_HUMAN] 

P05155 15.40 10 6 500 55.1 6.55 434.63 Plasma protease C1 inhibitor 
OS=Homo sapiens 
GN=SERPING1 PE=1 SV=2 - 
[IC1_HUMAN] 

P05154 19.21 9 7 406 45.7 9.26 440.96 Plasma serine protease inhibitor 
OS=Homo sapiens 
GN=SERPINA5 PE=1 SV=2 - 
[IPSP_HUMAN] 

P13796 3.83 2 2 627 70.2 5.33 91.37 Plastin-2 OS=Homo sapiens 
GN=LCP1 PE=1 SV=5 - 
[PLSL_HUMAN] 

P01833 29.45 16 15 764 83.2 5.74 881.01 Polymeric immunoglobulin 
receptor OS=Homo sapiens 
GN=PIGR PE=1 SV=4 - 
[PIGR_HUMAN] 

P0CG48 21.02 1 1 685 77.0 7.66 124.57 Polyubiquitin-C OS=Homo 
sapiens GN=UBC PE=1 SV=1 - 
[UBC_HUMAN] 

P07602 11.64 8 5 524 58.1 5.17 331.77 Proactivator polypeptide 
OS=Homo sapiens GN=PSAP 
PE=1 SV=2 - [SAP_HUMAN] 

Q9H3G5 2.52 1 1 476 54.1 5.62 71.60 Probable serine carboxypeptidase 
CPVL OS=Homo sapiens 
GN=CPVL PE=1 SV=2 - 
[CPVL_HUMAN] 

P01133 20.30 19 17 1207 133.
9 

5.85 1093.64 Pro-epidermal growth factor 
OS=Homo sapiens GN=EGF 
PE=1 SV=2 - [EGF_HUMAN] 

Q8WUM4 3.23 2 2 868 96.0 6.52 136.52 Programmed cell death 6-
interacting protein OS=Homo 
sapiens GN=PDCD6IP PE=1 
SV=1 - [PDC6I_HUMAN] 

O75340 26.18 3 3 191 21.9 5.40 147.99 Programmed cell death protein 6 
OS=Homo sapiens GN=PDCD6 
PE=1 SV=1 - [PDCD6_HUMAN] 

P12273 22.60 4 3 146 16.6 8.05 252.60 Prolactin-inducible protein 
OS=Homo sapiens GN=PIP PE=1 
SV=1 - [PIP_HUMAN] 

P41222 24.74 7 4 190 21.0 7.80 348.74 Prostaglandin-H2 D-isomerase 
OS=Homo sapiens GN=PTGDS 
PE=1 SV=1 - [PTGDS_HUMAN] 

Q16651 11.66 3 3 343 36.4 5.85 103.73 Prostasin OS=Homo sapiens 
GN=PRSS8 PE=1 SV=1 - 
[PRSS8_HUMAN] 

O43653 21.95 2 2 123 12.9 5.29 154.17 Prostate stem cell antigen 
OS=Homo sapiens GN=PSCA 
PE=1 SV=1 - [PSCA_HUMAN] 

P15309 20.47 6 6 386 44.5 6.24 299.53 Prostatic acid phosphatase 
OS=Homo sapiens GN=ACPP 
PE=1 SV=3 - [PPAP_HUMAN] 

Q06323 4.82 1 1 249 28.7 6.02 72.70 Proteasome activator complex 
subunit 1 OS=Homo sapiens 
GN=PSME1 PE=1 SV=1 - 
[PSME1_HUMAN] 

P02760 43.18 22 12 352 39.0 6.25 1147.02 Protein AMBP OS=Homo sapiens 
GN=AMBP PE=1 SV=1 - 
[AMBP_HUMAN] 
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P80370 2.09 1 1 383 41.3 5.67 63.89 Protein delta homolog 1 
OS=Homo sapiens GN=DLK1 
PE=1 SV=3 - [DLK1_HUMAN] 

P31949 15.24 1 1 105 11.7 7.12 90.24 Protein S100-A11 OS=Homo 
sapiens GN=S100A11 PE=1 
SV=2 - [S10AB_HUMAN] 

Q96FQ6 10.68 1 1 103 11.8 6.79 66.20 Protein S100-A16 OS=Homo 
sapiens GN=S100A16 PE=1 
SV=1 - [S10AG_HUMAN] 

P06703 8.89 1 1 90 10.2 5.48 84.12 Protein S100-A6 OS=Homo 
sapiens GN=S100A6 PE=1 SV=1 
- [S10A6_HUMAN] 

P31151 10.89 1 1 101 11.5 6.77 60.94 Protein S100-A7 OS=Homo 
sapiens GN=S100A7 PE=1 SV=4 
- [S10A7_HUMAN] 

P05109 11.83 1 1 93 10.8 7.03 91.60 Protein S100-A8 OS=Homo 
sapiens GN=S100A8 PE=1 SV=1 
- [S10A8_HUMAN] 

P06702 56.14 6 5 114 13.2 6.13 270.52 Protein S100-A9 OS=Homo 
sapiens GN=S100A9 PE=1 SV=1 
- [S10A9_HUMAN] 

P25815 13.68 1 1 95 10.4 4.88 74.10 Protein S100-P OS=Homo 
sapiens GN=S100P PE=1 SV=2 - 
[S100P_HUMAN] 

P00734 11.09 7 5 622 70.0 5.90 343.90 Prothrombin OS=Homo sapiens 
GN=F2 PE=1 SV=2 - 
[THRB_HUMAN] 

Q12913 0.90 1 1 1337 145.
9 

5.58 59.90 Receptor-type tyrosine-protein 
phosphatase eta OS=Homo 
sapiens GN=PTPRJ PE=1 SV=3 - 
[PTPRJ_HUMAN] 

Q13332 1.23 2 2 1948 217.
0 

6.51 73.14 Receptor-type tyrosine-protein 
phosphatase S OS=Homo sapiens 
GN=PTPRS PE=1 SV=2 - 
[PTPRS_HUMAN] 

O75787 2.57 1 1 350 39.0 6.10 84.90 Renin receptor OS=Homo sapiens 
GN=ATP6AP2 PE=1 SV=2 - 
[RENR_HUMAN] 

Q9HD89 24.07 2 2 108 11.4 6.86 108.16 Resistin OS=Homo sapiens 
GN=RETN PE=2 SV=1 - 
[RETN_HUMAN] 

Q9HB40 7.96 4 3 452 50.8 5.81 226.38 Retinoid-inducible serine 
carboxypeptidase OS=Homo 
sapiens GN=SCPEP1 PE=1 SV=1 
- [RISC_HUMAN] 

P02753 11.44 1 1 201 23.0 6.07 68.77 Retinol-binding protein 4 
OS=Homo sapiens GN=RBP4 
PE=1 SV=3 - [RET4_HUMAN] 

P07998 43.59 3 3 156 17.6 8.79 145.18 Ribonuclease pancreatic 
OS=Homo sapiens GN=RNASE1 
PE=1 SV=4 - [RNAS1_HUMAN] 

Q8WVN6 14.52 3 2 248 27.0 7.43 206.16 Secreted and transmembrane 
protein 1 OS=Homo sapiens 
GN=SECTM1 PE=1 SV=2 - 
[SCTM1_HUMAN] 

P55000 24.27 1 1 103 11.2 5.33 83.12 Secreted Ly-6/uPAR-related 
protein 1 OS=Homo sapiens 
GN=SLURP1 PE=1 SV=2 - 
[SLUR1_HUMAN] 

Q86SR0 45.36 2 2 97 10.2 6.62 121.44 Secreted Ly-6/uPAR-related 
protein 2 OS=Homo sapiens 
GN=SLURP2 PE=2 SV=1 - 
[SLUR2_HUMAN] 

P04279 7.36 2 2 462 52.1 9.29 99.57 Semenogelin-1 OS=Homo 
sapiens GN=SEMG1 PE=1 SV=2 - 
[SEMG1_HUMAN] 

P02787 5.73 3 3 698 77.0 7.12 206.86 Serotransferrin OS=Homo 
sapiens GN=TF PE=1 SV=2 - 
[TRFE_HUMAN] 

P02768 62.40 53 33 609 69.3 6.28 2536.79 Serum albumin OS=Homo 
sapiens GN=ALB PE=1 SV=2 - 
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[ALBU_HUMAN] 

Q9HAT2 5.16 2 2 523 58.3 7.33 116.86 Sialate O-acetylesterase 
OS=Homo sapiens GN=SIAE 
PE=1 SV=1 - [SIAE_HUMAN] 

Q99519 3.37 1 1 415 45.4 5.88 72.82 Sialidase-1 OS=Homo sapiens 
GN=NEU1 PE=1 SV=1 - 
[NEUR1_HUMAN] 

P30626 9.09 2 2 198 21.7 5.59 104.80 Sorcin OS=Homo sapiens 
GN=SRI PE=1 SV=1 - 
[SORCN_HUMAN] 

Q9UGT4 8.39 3 3 822 90.1 6.28 140.38 Sushi domain-containing protein 
2 OS=Homo sapiens GN=SUSD2 
PE=1 SV=1 - [SUSD2_HUMAN] 

O60635 5.39 1 1 241 26.3 5.25 70.21 Tetraspanin-1 OS=Homo sapiens 
GN=TSPAN1 PE=1 SV=2 - 
[TSN1_HUMAN] 

P10599 20.95 2 2 105 11.7 4.92 124.20 Thioredoxin OS=Homo sapiens 
GN=TXN PE=1 SV=3 - 
[THIO_HUMAN] 

P07204 3.48 1 1 575 60.3 4.92 77.65 Thrombomodulin OS=Homo 
sapiens GN=THBD PE=1 SV=2 - 
[TRBM_HUMAN] 

P04216 18.01 2 2 161 17.9 8.73 136.44 Thy-1 membrane glycoprotein 
OS=Homo sapiens GN=THY1 
PE=1 SV=2 - [THY1_HUMAN] 

P05543 6.02 2 2 415 46.3 6.30 113.65 Thyroxine-binding globulin 
OS=Homo sapiens 
GN=SERPINA7 PE=1 SV=2 - 
[THBG_HUMAN] 

P20062 3.75 1 1 427 47.5 7.01 89.75 Transcobalamin-2 OS=Homo 
sapiens GN=TCN2 PE=1 SV=3 - 
[TCO2_HUMAN] 

P02766 47.62 4 4 147 15.9 5.76 178.78 Transthyretin OS=Homo sapiens 
GN=TTR PE=1 SV=1 - 
[TTHY_HUMAN] 

O14773 10.48 3 3 563 61.2 6.48 136.25 Tripeptidyl-peptidase 1 
OS=Homo sapiens GN=TPP1 
PE=1 SV=2 - [TPP1_HUMAN] 

Q969Z4 2.56 2 2 430 46.1 8.35 127.20 Tumor necrosis factor receptor 
superfamily member 19L 
OS=Homo sapiens GN=RELT 
PE=1 SV=1 - [TR19L_HUMAN] 

P30530 3.36 2 2 894 98.3 5.43 112.99 Tyrosine-protein kinase receptor 
UFO OS=Homo sapiens GN=AXL 
PE=1 SV=3 - [UFO_HUMAN] 

Q6UX73 11.69 3 3 402 45.4 6.19 113.58 UPF0764 protein C16orf89 
OS=Homo sapiens GN=C16orf89 
PE=2 SV=2 - [CP089_HUMAN] 

P07911 30.16 27 14 640 69.7 5.24 1573.47 Uromodulin OS=Homo sapiens 
GN=UMOD PE=1 SV=1 - 
[UROM_HUMAN] 

P11684 12.09 2 2 91 10.0 5.06 100.09 Uteroglobin OS=Homo sapiens 
GN=SCGB1A1 PE=1 SV=1 - 
[UTER_HUMAN] 

Q9NP79 6.51 1 1 307 33.9 6.29 78.64 Vacuolar protein sorting-
associated protein VTA1 homolog 
OS=Homo sapiens GN=VTA1 
PE=1 SV=1 - [VTA1_HUMAN] 

Q6EMK4 7.88 5 4 673 71.7 7.39 299.15 Vasorin OS=Homo sapiens 
GN=VASN PE=1 SV=1 - 
[VASN_HUMAN] 

Q12907 5.90 2 2 356 40.2 6.95 102.94 Vesicular integral-membrane 
protein VIP36 OS=Homo sapiens 
GN=LMAN2 PE=1 SV=1 - 
[LMAN2_HUMAN] 

P22891 11.25 3 3 400 44.7 5.97 233.11 Vitamin K-dependent protein Z 
OS=Homo sapiens GN=PROZ 
PE=1 SV=2 - [PROZ_HUMAN] 

Q7Z5L0 32.67 4 4 202 21.5 5.07 231.32 Vitelline membrane outer layer 
protein 1 homolog OS=Homo 
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sapiens GN=VMO1 PE=1 SV=1 - 
[VMO1_HUMAN] 

P04004 10.88 4 4 478 54.3 5.80 192.37 Vitronectin OS=Homo sapiens 
GN=VTN PE=1 SV=1 - 
[VTNC_HUMAN] 

Q14508 38.71 4 3 124 13.0 4.84 239.68 WAP four-disulfide core domain 
protein 2 OS=Homo sapiens 
GN=WFDC2 PE=1 SV=2 - 
[WFDC2_HUMAN] 

O43895 19.58 9 9 674 75.6 6.04 592.18 Xaa-Pro aminopeptidase 2 
OS=Homo sapiens GN=XPNPEP2 
PE=1 SV=3 - [XPP2_HUMAN] 

P25311 19.13 5 5 298 34.2 6.05 225.11 Zinc-alpha-2-glycoprotein 
OS=Homo sapiens GN=AZGP1 
PE=1 SV=2 - [ZA2G_HUMAN] 

Q96DA0 25.96 4 4 208 22.7 7.39 271.33 Zymogen granule protein 16 
homolog B OS=Homo sapiens 
GN=ZG16B PE=1 SV=3 - 
[ZG16B_HUMAN] 
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3.1 Introduction 

Building on the previous chapter, it was considered that after defining a method for 

enrichment of urinary membrane vesicles and removal of soluble protein contaminants, the 

obvious next step is the proteomic characterization of the vesicles enriched. Exosomes and 

other types of vesicles present in urine are an important source of potentially valuable 

biomarkers and a thorough knowledge of their proteome is an absolute requirement. There 

was one previous study with large-scale proteomic profiling of the exosomes/membrane 

vesicles isolated from urine using the differential centrifugation method and removal of 

soluble contaminants like THP using DTT treatment followed by a second centrifugation 

(Gonzales et al., 2009). Based on this approach Gonzalez et al., (2009) were able to identify 

1,132 proteins altogether unambiguously, including 14 phosphoproteins. Another very recent 

study published has expanded the proteome coverage of urinary exosomes/membrane 

vesicles with up to 3,280 proteins identified (Wang et al., 2011). This study compared two 

methods of protein digestion one being trifluoroethanol solution phase digestion and the other 

being ‘in-gel’ digestion. It was concluded that both the digestion protocols were not 

susbtantially different from each other in terms of proteins identified. Furthermore, a new 

generation of high efficiency ion-trap instrumentation (LTQ velos, Thermo Fisher Scientific, 

USA) was compared to the older LTQ. It was found that Velos performed better than LTQ in 

increasing proteome coverage. With our method which is efficient in removing high 

contaminant proteins from the exosomes/membrane vesicles, it is hoped that more low 

abundance proteins are identified increasing the proteome coverage of these vesicles from 

urine. However, we did not take a multidimensional separation approach for resolving 

peptides. This would mean a lesser number of identifications compared to some of the other 

studies. However, here, we want to develop an approach which can be applied to a large 

number of samples such as encountered in a clinical setting. A multi-dimensional approach 
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applied to a large number of samples would not work. Our approach has a significantly 

reduced number of steps and it can be expanded in future to include quantitative analysis of 

the membrane vesicular proteome. Here we report the proteomic characterisation of the high-

speed pellet (exosomal fraction, P200,000g) and low speed pellet (urine sediment and 

possibly large size membrane vesicles, P18,000g) prepared using an enrichment protocol 

established in our lab, as discussed in the previous chapter. The high speed pellet proteomic 

identifications are compared to most of the studies reported in the literature and low speed 

pellet identification (due to the lack of proteomic studies on large membrane vesicles which 

pellet down at low speed) is compared between the two methods of enrichment (DTT and 

CHAPS treatment of P18,000g). 
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3.2 Material and methods 

3.2.1 Isolation of CHAPS detergent resistant nano vesicles 

A schematic representation of the methodology used to isolate vesicles is shown in Figure 

3.1. The detailed method used for isolation of membrane vesicles is reported in methods 

section of Chapter 2 (Section 2.2.2). 

 

Figure 3.1: Workflow for isolation of nano vesicles. The samples highlighted in blue were 

high speed pellets (P200,000g) selected for proteomic analysis using mass spectrometry and 

samples highlighted in orange were low speed pellet (P18,000g) selected for proteomic 

analysis. a: Dialysis and concentration, b: DTT/CHAPS treatment, x: DTT/CHAPS. 

3.2.2 LC_MS/MS analysis and Data Analysis 

This was performed as described in methods section of Chapter 2 (Sections 2.2.5 and 2.2.6). 
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3.2.3 Bioinformatic analysis 

Bioinformatic analysis was performed using IPA software (Ingenuity systems, Mountain 

View, CA). Guest trial access to IPA was obtained. All the Tables were made manually and 

gene ontology figures were created in the MS Excel program. David bioinformatic resources 

6.7 (Huang, Sherman & Lempicki, 2009a; Huang, Sherman & Lempicki, 2009b) and 

Blast2Go software (Conesa et al., 2005) were also used for bioinformatic analysis as 

indicated in sections of this chapter (section 3.3.1 and sub-sections therein). 
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3.3 Results  

The workflow used for enrichment of exosomes/microveicles is shown in Figure 3.1 and the 

fractions selected for proteomic analysis using Orbitrap LTQ are highlighted. There are 

mainly two types of vesicles enriched one being in high-speed pellet (Blue in Figure 3.1) and 

other in low speed pellet (Orange in Figure 3.1). High speed pellet contains smaller vesicles 

(exosomes/ectosomes) and low speed pellet most likely consist of bigger sized vesicles 

(membrane vesicles). Although some small vesicles may be trapped in THP polymers and 

pellet down at low speed but, as discussed in the previous chapter, CHAPS or DTT treatment 

helps reduce this problem of interference.  

3.3.1 Large-scale proteomic analysis of the high speed pellet 

We were able to identify 437 proteins unambiguously in the high speed pellet. The proteins 

identified are listed in Supplementary Table S3.1.  

3.3.1.1 Comparison with other exosome/microvesicle and urine proteomics studies 

There have been a few proteomic studies characterising urinary exosomes (Gonzales et al., 

2009) (Wang et al., 2011) and exosome like vesicles (Hogan et al., 2009) for their protein 

content. We compare, here, proteomic identifications of our analysis with that of these studies 

as well as with the largest proteomic study on whole urine (Marimuthu et al., 2011). This 

comparison validates the identification of proteins in our analysis. We also compare our 

identifications with the the largest database of human exosomal proteins purified from any 

source (Exocarta) (Mathivanan et al., 2012).  

Figure 3.2 compares our proteomic identifications (P200,000g) with Pistikun et al., (Pisitkun, 

Shen & Knepper, 2004) and Gonzalez et al., (Gonzales et al., 2009) (both studies have been 

combined here non-redundantly and given the name Knepper), Hogan et al., (Hogan et al., 

2009), and Marimuthu et al., (Marimuthu et al., 2011) The first two studies (combined as 
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Knepper) are on urinary exosomes isolated using the differential centrifugation protocol. The 

second study (Hogan) is on urinary ‘exosome-like’ vesicles which were fractionated further 

by a sucrose density gradient using differential centrifugation-derived exosomal pellets as the 

starting material and segregated based on the prevalence of three biomakers among the 

fractions (aquaporin-2, polycystin-1, and podocin). The last one (Marimuthu) is a large-scale 

proteomic study on whole urine. 

 

Figure 3.2: Comparison of various urinary exosomes (Knepper) (Gonzales et al., 2009; 

Pisitkun, Shen & Knepper, 2004) and ‘exosome-like’ vesicles (Hogan) (Hogan et al., 2009) 

and whole urine (Marimuthu) (Marimuthu et al., 2011) with our protein list. To enable 

comparison the various identifiers reported in the studies (Entrez Id, uniprot accessions, gene 

name, Uniprot Id) were converted to unigene identifiers using a batch retrieval service of 

Uniprot (http://www.uniprot.org/). 



182 
 

Hundred and sixty one proteins are common to all four studies while different numbers come 

up when comparing the two studies, as can be seen in Figure 3.2,. Hogan and Knepper are 

studies of urinary exosomes and ‘exosome-like’ vesicles and, when compared with our study, 

135 proteins (~30%) in our study are new. Out of these 135, 103 have been identified in urine 

previously (Marimuthu) while 32 are reported here for the first time in urine. 

Very recently another study has been published on urinary exosomes which has identified 

3,280 proteins confidently (Wang et al., 2011). Comparison of our protein list to this study is 

shown in Figure 3.3. 

 

Figure 3.3: Venn diagram comparing our protein list to Wang et al., (Wang et al., 2011), 

which is the largest study on urinary exosomes to date.  
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The protein list in our study and Wang et al., (Wang et al., 2011) was directly compared as 

both had Uniprot accession as identifiers so no conversion to other gene identifiers was 

needed. 83 proteins (19%) were unique to our study. 

When our protein list was compared to Exocarta (Mathivanan et al., 2012), which is the 

largest database for exosomal proteins from any cell type or body fluid, 86 proteins (~20%) 

were found to be unique to our study.  

 

Figure 3.4: Comparison between our protein list and that of Exocarta (Mathivanan et al., 

2012). Our protein list was converted to Entrez Id identifiers to enable comparison to 

Exocarta protein list (Exocarta provides Entrez Ids as identifiers of proteins). 

The proteins which are novel in term of urinary membrane vesicles association are shown in 

Table 3.1. 
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Table 3.1: Presents the proteins which have not previously been shown to be part of any type 

of urinary membrane vesicles, including exosomes. 

Gene Name UniGene SwissProt (name) SwissProt 

(acc) 

TUBB4 Hs.110837  TBB4_HUMAN 

RIB2_HUMAN  

P04350 

P04844  

APOB Hs.120759  AGTR2_HUMAN  P50052  

KRT17 Hs.2785      

THOC7 Hs.288151      

LDHAL6B Hs.307052  LDH6B_HUMAN  Q9BYZ2  

DEFB1 Hs.32949  BD01_HUMAN  P60022  

FCN3 Hs.333383  P4HA2_HUMAN 

FCN3_HUMAN  

O15460 

O75636  

SERPINB12 Hs.348541  SPB12_HUMAN  Q96P63  

CFH Hs.363396  CFAH_HUMAN  P08603  

C8B Hs.391835  CO8B_HUMAN  P07358  

CNDP1 Hs.400613  CNDP1_HUMAN  Q96KN2  

ITIH1 Hs.420257  ITIH1_HUMAN  P19827  

KRT6A Hs.433845  K2C6A_HUMAN 

K2C6C_HUMAN  

P02538 

P48666  

HIST1H2BK Hs.437275  H2B1C_HUMAN 

H2B1K_HUMAN  

P62807 

O60814  

PTGDS Hs.446429      

HLA-C Hs.449621  1C07_HUMAN  P10321  

IFITM2 Hs.458414  IFM2_HUMAN  Q01629  

C1QC Hs.467753      

IGHG1 Hs.510635  IGHD_HUMAN  P01880  

GCNT2 Hs.519884  GCNT2_HUMAN  Q06430  

UBC Hs.520348      

ORM2 Hs.522356  A1AG2_HUMAN  P19652  

MUC5B Hs.523395  MUC5B_HUMAN  Q9HC84  

CEL Hs.533258  CEL_HUMAN  P19835  

C4A Hs.534847      

PSMAL Hs.645352  PSMAL_HUMAN  Q9HBA9  

AMY2A Hs.654437  AMYP_HUMAN  P04746  

PRSS3 Hs.654513      

KRT13 Hs.654550  K1C13_HUMAN  P13646  

KRT15 Hs.654570  K1C15_HUMAN  P19012  

KRT4 Hs.654610  K2C4_HUMAN  P19013  

KRT16 Hs.655160  K1C16_HUMAN  P08779  

LRG1 Hs.655559  A2GL_HUMAN  P02750  

KRT72 Hs.662013      

TUBA4B Hs.664469      

HIST1H2BK Hs.689116  H2B1C_HUMAN 

H2B1K_HUMAN  

P62807 

O60814  

CFB Hs.69771  CFAB_HUMAN  P00751  

 Hs.708950      

 Hs.719954      

 Hs.720022      

 Hs.724927      

C7 Hs.78065  CO7_HUMAN  P10643  
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C1QB Hs.8986      

 

Mucin 5B (MUC5B) was shown not to be expressed in normal kidney and renal cell 

carcinoma by histochemistry and northern blot analysis. This becomes the first report 

suggesting that MUC5B might be expressed in kidney by at least some of the cell types. To 

the best of our knowledge MUC5B has not been reported to part of exosomes either (source: 

Exocarta). 

3.3.1.2 Disease associations 

Identified proteins were classified using DAVID Bioinformatics Resources 6.7, National 

Institute of Allergy and Infectious Diseases (NIAID), NIH (Huang, Sherman & Lempicki, 

2009a; Huang, Sherman & Lempicki, 2009b). These 437 proteins mapped to 412 unique 

DAVID Ids and various types of analysis were performed on these proteins using DAVID. 

Out of these 412, 166 proteins are related to human diseases on the basis of their presence in 

OMIM database (Online Mendelian Inheritance in Man, a database of human genes and 

genetic disorders, http://www.ncbi.nlm.nih.gov/omim). These proteins are listed in 

supplemntary Table S3.2. The presence of these proteins suggests that urinary exosomes and 

other membrane vesicles are a rich source of biomarkers and can be applied for clinical 

biomarker analysis. Moreover, our identifications also contain 66 proteins whose gene have 

been found to contain genetic associations with cardiovascular diseases (Supplementary 

Table S3.3) and 23 proteins with genetic association to various renal diseases (Supplementary 

Table S3.4). 

3.3.1.3 Sequence features 

Total proteins identified were run on DAVID Bioinformatics Resources 6.7 for enrichment 

analysis for various sequence features. There were 192 different categories for various 

sequence features including, but not limited to, types of glycosylation, signal peptide, 
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mutagenesis sites, protein variants and many types of repeats. Some of the major ones are 

listed in Table 3.2. 

Table 3.2: Lists the major sequence features found in proteins identified in the high speed 

pellet (P200,000xg). 

Term Count % of 

total 

signal peptide 214 51.94175 

disulfide bond 165 40.04854 

glycosylation site:N-linked (GlcNAc...) 222 53.8835 

glycosylation site:O-linked (GalNAc...) 22 5.339806 

glycosylation site:N-linked (GlcNAc...) (complex) 5 1.213592 

glycosylation site:C-linked (Man) 7 1.699029 

glycosylation site:N-linked (Glc) (glycation) 7 1.699029 

sequence variant 306 74.27184 

mutagenesis site 80 19.41748 

 

Two hundred and fourteen proteins, corresponding to 48.9% of the total proteins identified 

were classified as having signal peptides. Signal peptide is found in proteins which are 

known to be secreted. Forty % of proteins were shown to employ disulfide bonds to generate 

tertiary structure. Fifty three % proteins were found to be N-glycosylated while only 5.3 % 

were reported to be O-glycosylated. This is expected as N-linked glycosylation is much more 

common compared to O-linked glycosylation. Among the O-glycosylated proteins, inter-

alpha (globulin) inhibitor H4 is known to be involved in susceptibility to 

hypercholesterolemia. Among the N-glycosylated proteins, 5 proteins were found to possess 

complex type N-glycans. These proteins were alpha-1-microglobulin/bikunin precursor, 

angiotensin I converting enzyme 1, carboxyl ester lipase and inter-alpha (globulin) inhibitors 

H1 and H2. Another 7 proteins were found which are known to be glycated including 

albumin, CD59, complement factor B, apoliporpoteins A-I and E and haemoglobin alpha and 
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beta chains. 309 proteins were found to have sequence variants and 80 proteins had one or 

more mutagenesis sites. 

3.3.1.4 Gene ontology/annotations 

IPA software (Ingenuity systems, USA) was used for annotating the protein list and graph 

representations were generated manually using Microsoft (MS) Excel program. Figure 3.5 

presents the major categories of proteins annotated using IPA in cellular component analysis. 

This classifies the protein list into sub-categories according to their localization in cell. As 

can be seen in figure 3.5, 36% of proteins belong to extracellular space category. 

Extracellular proteins if associated to the vesicle surface should be removed by DTT/CHAPS 

treatment and accordingly some extracellular proteins were found in CHAPS and DTT 

SN200,000 (Figure 2.7, Chapter 2). However, extracellular proteins which are endocytosed 

by the cells might be released with exosomes entrapped in the lumen. Such proteins would be 

found in the P200,000g regardless of CHAPS/DTT treatment. Thirty eight % proteins are 

cytoplasmic and 23% belong to plasma membrane category. Only 2 % proteins were found to 

be nuclear while 1% proteins were annotated as unknown. When the list of proteins was 

annotated according to the molecular function of proteins (Figure 3.6), 45% of proteins were 

found to be enzymes. Twenty one % and 18% were found to be peptidases and transporters, 

respectively. Four % transmembrane receptors were present while transcription/translation 

regulators and phosphatases were 3% each. Two % each of G-protein coupled-receptors, 

kinases and growth factors were also found. 
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Figure 3.5: Annotation of our protein list using IPA software according to the cellular 

component to which they belong. 
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Figure 3.6: Annotation of our protein list using IPA software according to their molecular 

function. 

Our protein list was annotated according to biological processes, in which these proteins are 

involved, using Blast2GO software (Conesa et al., 2005) and ‘cut-off’ value was kept high 

(70 proteins) so only major biological processes are enriched (Figure 3.7). 
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Figure 3.7: Annotation of our protein list using Blast2Go software (Conesa et al., 2005) 

according to the biological processes in which they are involved. 

As can be seen in Figure 3.7, the most number of proteins present in our list are the 

regulatory proteins regulating cellular processes (135 proteins) with 86 proteins involved in 

positive regulation of biological processes and 80 being the negative regulators of biological 

processes. Another significant biological process is the immune function with 89 proteins 

involved in immune responses being present and 72 proteins involved in defence responses. 

Cellular homeostasis is another important category as 78 proteins involved in response to 

wounding are also present. Seventy two proteins involved in proteolysis also demonstrate the 

importance of these vesicles in homeostasis. One hundred and seven transporters and 87 
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signalling proteins are present suggesting these vesicles have the complete machinery to 

impart functionality to their target cells. 

Blast2go takes protein sequences in FASTA format as its input and there is no option of 

retrieving proteins which are classified into a particular category. For this reason, all the 

identified proteins in the high-speed pellet (437), which mapped to 412 DAVID Id, were 

annotated again using DAVID Bioinformatics Resources 6.7 into three categories: 1. 

Molecular function, 2. Biological process, and 3. Cellular components. Major classes falling 

in these categories were retrieved in the form of gene lists to discuss more about them. Some 

of the lists which seem interesting cast further light on importance of these vesicles are 

presented here. 

Exosomes are released into urine when multivesicular body (MVB) fuse to the apical plasma 

membrane of cells lining the urinary drainage system. Therefore, identification of endosomal 

protein would suggest MVB origin of the vesicles we have identified. DAVID annotation was 

performed on our protein list and proteins belonging to endosomes were retrieved (Table 

3.3). Class E vacuolar protein-sorting (VPS) proteins and some associated proteins were 

found in addition to tumor susceptibility gene 101 (Tsg101) and CD63 which are exosomal 

markers. Cubilin and megalin which are involved in endocytosis of proteins and cofactors 

into the endosomal system and they would be expected in exosomes as well. 

Table 3.3: Proteins identified in our list which according to DAVID annotation belong to 

endosomes.  

ID Gene Name 

Q6UXG3 CD300 molecule-like family member g 

P08962 CD63 molecule 

Q9H223 EH-domain containing 4 

Q9NP79 Vps20-associated 1 homolog (S. cerevisiae) 

P12821 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 
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P07355 annexin A2 pseudogene 3; annexin A2; annexin A2 pseudogene 1 

P04114 apolipoprotein B (including Ag (x) antigen) 

P15289 arylsulfatase A 

Q7LBR1 chromatin modifying protein 1B 

O43633 chromatin modifying protein 2A 

Q9H444 chromatin modifying protein 4B 

O60494 cubilin (intrinsic factor-cobalamin receptor) 

P02649 hypothetical LOC100129500; apolipoprotein E 

P98164 low density lipoprotein-related protein 2 

P11279 lysosomal-associated membrane protein 1 

P13473 lysosomal-associated membrane protein 2 

P02787 Transferring 

Q99816 tumor susceptibility gene 101 

Q9UN37 vacuolar protein sorting 4 homolog A (S. cerevisiae) 

O75351 vacuolar protein sorting 4 homolog B (S. cerevisiae) 

 

Exosomes are thought to be derived from the apical part of plasma membrane in kidney. The 

DAVID annotation classified some proteins as belonging to the apical part. They are 

presented in Table 3.4. These proteins found in the exosomal pellet would agree with the 

theory that exosomes are released from the apical part of the plasma membrane in urinary 

tract. 

Table 3.4: Proteins annotated to be from apical part of the plasma membrane. 

ID Gene Name 

P05026 ATPase, Na+/K+ transporting, beta 1 polypeptide 

Q9UBD6 Rh family, C glycoprotein 

P14550 aldo-keto reductase family 1, member A1 (aldehyde reductase) 

P08133 annexin A6 

P29972 aquaporin 1 (Colton blood group) 

P43251 Biotinidase 

P00918 carbonic anhydrase II 

P07858 cathepsin B 

P60953 cell division cycle 42 (GTP binding protein, 25kDa); cell division cycle 42 pseudogene 2 

O60494 cubilin (intrinsic factor-cobalamin receptor) 

P27487 dipeptidyl-peptidase 4 

P02751 fibronectin 1 

Q07075 glutamyl aminopeptidase (aminopeptidase A) 

P15311 hypothetical protein LOC100129652; ezrin 
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P98164 low density lipoprotein-related protein 2 

P26038 Moesin 

P15941 mucin 1, cell surface associated 

P27105 phosphatidylethanolamine binding protein 1 

O43490 prominin 1 

P35241 Radixin 

P55017 solute carrier family 12 (sodium/chloride transporters), member 3 

Q13621 solute carrier family 12 (sodium/potassium/chloride transporters), member 1 

P07911 Uromodulin 

  

Although some proteins from the basolateral part of the plasma membrane were also found 

(Table 3.5).  

Table 3.5: Proteins annotated by DAVID to be part of basolateral membrane. 

ID Gene Name 

P08183 ATP-binding cassette, sub-family B (MDR/TAP), member 1 

P05026 ATPase, Na+/K+ transporting, beta 1 polypeptide 

Q9UBD6 Rh family, C glycoprotein 

P31151 S100 calcium binding protein A7 

P15291 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 

P12814 actinin, alpha 1 

P04083 annexin A1 

P29972 aquaporin 1 (Colton blood group) 

P00918 carbonic anhydrase II 

P15924 Desmoplakin 

P26038 Moesin 

O00159 myosin IC 

O00560 syndecan binding protein (syntenin) 

P02787 Transferring 

 

The expression of these proteins (Table 3.5) is not restricted to basolateral part so the theory 

of apical generation of exosomes cannot be excluded. For example, Aquaporin 1 is also found 

on the apical side of the plasma membrane (Source: Uniprot). 
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Some proteins of the brush border membrane of proximal tubuli were found in our 

identifications (Table 3.6) suggesting that most if not all parts of the urinary drainage system 

release these vesicles. 

Table 3.6: Proteins annotated to brush border/microvillus by DAVID. 

ID Gene Name 

P15291 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 

O60494 cubilin (intrinsic factor-cobalamin receptor) 

Q7Z4W1 dicarbonyl/L-xylulose reductase 

Q07075 glutamyl aminopeptidase (aminopeptidase A) 

P98164 low density lipoprotein-related protein 2 

O00159 myosin IC 

O43490 prominin 1 

P31639 solute carrier family 5 (sodium/glucose cotransporter), member 2 

P35241 Radixin 

P26038 Moesin 

P00918 carbonic anhydrase II 

P15311 hypothetical protein LOC100129652; ezrin 

 

The whole membrane attack complex subunits of complement system were found in our 

identifications. This raises questions about constitutive secretion over stimulus-mediated 

secretion. 

Table 3.7: Proteins annotated to be complement components by DAVID. 

ID Gene Name 

P10909 Clusterin 

P02746 complement component 1, q subcomponent, B chain 

P02747 complement component 1, q subcomponent, C chain 

Q9NZP8 complement component 1, r subcomponent-like 

P04003 complement component 4 binding protein, alpha 

P0C0L4 complement component 4A (Rodgers blood group) 

P0C0L5 complement component 4B (Chido blood group) 

P01031 complement component 5 

P10643 complement component 7 

P07357 complement component 8, alpha polypeptide 

P07358 complement component 8, beta polypeptide 
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P02748 complement component 9 

P00751 complement factor B 

P08603 complement factor H 

P05156 complement factor I 

Q15485 ficolin (collagen/fibrinogen domain containing lectin) 2 (hucolin) 

O75636 ficolin (collagen/fibrinogen domain containing) 3 (Hakata antigen) 

P04264 keratin 1 

O00187 mannan-binding lectin serine peptidase 2 

P05155 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 

P01024 similar to Complement C3 precursor; complement component 3; hypothetical protein LOC100133511 

 

Another interesting feature of our protein list was some proteins which bind unfolded 

proteins. In other words these proteins act as chaperones aiding protein folding and also 

acting in the clearance of misfolded proteins. These proteins are presented in Table 3.8. 

HSP70 variants and HSP90 are present as well as cyclophilin A, B and C.  

Table 3.8: Unfolded protein binding proteins annotated by DAVID. 

ID Gene Name 

P02743 amyloid P component, serum 

P08107 heat shock 70kDa protein 1A; heat shock 70kDa protein 1B 

P54652 heat shock 70kDa protein 2 

P11142 heat shock 70kDa protein 8 

P08238 heat shock protein 90kDa alpha (cytosolic), class B member 1 

P23284 peptidylprolyl isomerase B (cyclophilin B) 

P45877 peptidylprolyl isomerase C (cyclophilin C) 

P62937 similar to TRIMCyp; peptidylprolyl isomerase A (cyclophilin A); peptidylprolyl isomerase A 

(cyclophilin A)-like 3 

P68371 tubulin, beta 2C 

 

Another important class of proteins were identified in our high speed pellet as having GTPase 

activity. These include many of the G-proteins, RAS oncogene family members and 

translation elongation factor 1. 
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Table 3.9: Proteins annotated as having GTPase activity by DAVID 

ID Gene Name 

Q9H223 EH-domain containing 4 

P63092 GNAS complex locus 

P61224 RAP1B, member of RAS oncogene family 

P60953 cell division cycle 42 (GTP binding protein, 25kDa); cell division cycle 42 pseudogene 2 

P68104 eukaryotic translation elongation factor 1 alpha-like 7; eukaryotic translation elongation factor 1 alpha-like 

3; similar to eukaryotic translation elongation factor 1 alpha 1; eukaryotic translation elongation factor 1 

alpha 1 

P29992 guanine nucleotide binding protein (G protein), alpha 11 (Gq class) 

P63096 guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 

P62873 guanine nucleotide binding protein (G protein), beta polypeptide 1 

P62879 guanine nucleotide binding protein (G protein), beta polypeptide 2 

P50148 guanine nucleotide binding protein (G protein), q polypeptide 

P61586 ras homolog gene family, member A 

Q9BQE3 tubulin, alpha 1c 

P68366 tubulin, alpha 4a 

Q9H853 tubulin, alpha 4b (pseudogene) 

P68371 tubulin, beta 2C 

P04350 tubulin, beta 4 

 

3.3.1.5 Comparison of High speed pellet with HDL and LDL particles 

Lipoprotein particles, particularly the high-density lipoproteins (HDL), share some 

biophysical characteristics with urinary exosomes. For example, HDL have a density of 

1.063-1.125 g/mL although its diameter ranges from 7-12nm (Gordon et al., 2010), which is 

smaller than exosomes. HDL particles have been identified in urine previously (Gomo, 

Henderson & Myrick, 1988). Owing to a similar density, HDL might sediment with 

exosomes when exosomes are prepared from urine using ultracentrifugation. LDL and VLDL 

would be expected to remain in solution due to their lower densities, although the presence of 

dense LDL particles cannot be ruled out. Proteomic studies on HDL particles have to deal 

with the possibility of contamination of lipoprotein preparations with soluble abundant 

proteins. For this reason, one recent HDL proteomics study was selected in which size 

exclusion chromatography and affinity chromatography were used to purify HDLs which 
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were subsequently analysed by MS for their proteomic content (“the HDL proteome”) 

(Gordon et al., 2010). Lipid binding proteins identified in this study were compared to our 

protein list (Figure 3.8). 

 

Figure 3.8: Comparison of HDL-associated proteins (Gordon et al., 2010) with proteins of 

high speed pellet (P200,000g). 

Out of the 12 proteins which were converted to 13 Unigene identifications for comparison, 

apolipoprotein C1 (APOC1), apolipoprotein L1 (APOL1), apolipoprotein A2 (APOA2) and 

serum amyloid A (SAA) were not found in our study. In the Figure 5 proteins are shown but 

only four were absent. This was due to the conversion of proteins to different identification 

Ids for comparison. All other proteins were present in our protein list. APOA1, APOA4, 

APOE, complement C3, PON1, complement C4-B and cholesteryl ester transfer protein 

(CETP), which have been identified previously to be HDL-associated proteins (Vaisar et al., 

2007) are also present in our protein list. The presence of full length APO B-100 was 

suggested by the peptides identified in our analysis (Figure 3.9) which also suggests the 

presence of LDL. 
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EEEMLENVSLVCPKDATRFKHLRKYTYNYEAESSSGVPGTADSRSATRINCKVELEVPQLCSFILKTSQCTLKEVYGFNPEGKALLKKTKNSEEFAAAMSRYELKLAI

PEGKQVFLYPEKDEPTYILNIKRGIISALLVPPETEEAKQVLFLDTVYGNCSTHFTVKTRKGNVATEISTERDLGQCDRFKPIRTGISPLALIKGMTRPLSTLISSSQSCQ

YTLDAKRKHVAEAICKEQHLFLPFSYKNKYGMVAQVTQTLKLEDTPKINSRFFGEGTKKMGLAFESTKSTSPPKQAEAVLKTLQELKKLTISEQNIQRANLFNKLVT

ELRGLSDEAVTSLLPQLIEVSSPITLQALVQCGQPQCSTHILQWLKRVHANPLLIDVVTYLVALIPEPSAQQLREIFNMARDQRSRATLYALSHAVNNYHKTNPTGT

QELLDIANYLMEQIQDDCTGDEDYTYLILRVIGNMGQTMEQLTPELKSSILKCVQSTKPSLMIQKAAIQALRKMEPKDKDQEVLLQTFLDDASPGDKRLAAYLML

MRSPSQADINKIVQILPWEQNEQVKNFVASHIANILNSEELDIQDLKKLVKEALKESQLPTVMDFRKFSRNYQLYKSVSLPSLDPASAKIEGNLIFDPNNYLPKESM

LKTTLTAFGFASADLIEIGLEGKGFEPTLEALFGKQGFFPDSVNKALYWVNGQVPDGVSKVLVDHFGYTKDDKHEQDMVNGIMLSVEKLIKDLKSKEVPEARAYL

RILGEELGFASLHDLQLLGKLLLMGARTLQGIPQMIGEVIRKGSKNDFFLHYIFMENAFELPTGAGLQLQISSSGVIAPGAKAGVKLEVANMQAELVAKPSVSVEFV

TNMGIIIPDFARSGVQMNTNFFHESGLEAHVALKAGKLKFIIPSPKRPVKLLSGGNTLHLVSTTKTEVIPPLIENRQSWSVCKQVFPGLNYCTSGAYSNASSTDSASY

YPLTGDTRLELELRPTGEIEQYSVSATYELQREDRALVDTLKFVTQAEGAKQTEATMTFKYNRQSMTLSSEVQIPDFDVDLGTILRVNDESTEGKTSYRLTLDIQNK

KITEVALMGHLSCDTKEERKIKGVISIPRLQAEARSEILAHWSPAKLLLQMDSSATAYGSTVSKRVAWHYDEEKIEFEWNTGTNVDTKKMTSNFPVDLSDYPKSLH

MYANRLLDHRVPQTDMTFRHVGSKLIVAMSSWLQKASGSLPYTQTLQDHLNSLKEFNLQNMGLPDFHIPENLFLKSDGRVKYTLNKNSLKIEIPLPFGGKSSRDL

KMLETVRTPALHFKSVGFHLPSREFQVPTFTIPKLYQLQVPLLGVLDLSTNVYSNLYNWSASYSGGNTSTDHFSLRARYHMKADSVVDLLSYNVQGSGETTYDHK

NTFTLSYDGSLRHKFLDSNIKFSHVEKLGNNPVSKGLLIFDASSSWGPQMSASVHLDSKKKQHLFVKEVKIDGQFRVSSFYAKGTYGLSCQRDPNTGRLNGESNLR

FNSSYLQGTNQITGRYEDGTLSLTSTSDLQSGIIKNTASLKYENYELTLKSDTNGKYKNFATSNKMDMTFSKQNALLRSEYQADYESLRFFSLLSGSLNSHGLELNAD

ILGTDKINSGAHKATLRIGQDGISTSATTNLKCSLLVLENELNAELGLSGASMKLTTNGRFREHNAKFSLDGKAALTELSLGSAYQAMILGVDSKNIFNFKVSQEGLK

LSNDMMGSYAEMKFDHTNSLNIAGLSLDFSSKLDNIYSSDKFYKQTVNLQLQPYSLVTTLNSDLKYNALDLTNNGKLRLEPLKLHVAGNLKGAYQNNEIKHIYAISS

AALSASYKADTVAKVQGVEFSHRLNTDIAGLASAIDMSTNYNSDSLHFSNVFRSVMAPFTMTIDAHTNGNGKLALWGEHTGQLYSKFLLKAEPLAFTFSHDYKG

STSHHLVSRKSISAALEHKVSALLTPAEQTGTWKLKTQFNNNEYSQDLDAYNTKDKIGVELTGRTLADLTLLDSPIKVPLLLSEPINIIDALEMRDAVEKPQEFTIVAF

VKYDKNQDVHSINLPFFETLQEYFERNRQTIIVVLENVQRNLKHINIDQFVRKYRAALGKLPQQANDYLNSFNWERQVSHAKEKLTALTKKYRITENDIQIALDDA

KINFNEKLSQLQTYMIQFDQYIKDSYDLHDLKIAIANIIDEIIEKLKSLDEHYHIRVNLVKTIHDLHLFIENIDFNKSGSSTASWIQNVDTKYQIRIQIQEKLQQLKRHIQ

NIDIQHLAGKLKQHIEAIDVRVLLDQLGTTISFERINDILEHVKHFVINLIGDFEVAEKINAFRAKVHELIERYEVDQQIQVLMDKLVELAHQYKLKETIQKLSNVLQQ

VKIKDYFEKLVGFIDDAVKKLNELSFKTFIEDVNKFLDMLIKKLKSFDYHQFVDETNDKIREVTQRLNGEIQALELPQKAEALKLFLEETKATVAVYLESLQDTKITLIIN

WLQEALSSASLAHMKAKFRETLEDTRDRMYQMDIQQELQRYLSLVGQVYSTLVTYISDWWTLAAKNLTDFAEQYSIQDWAKRMKALVEQGFTVPEIKTILGTM

PAFEVSLQALQKATFQTPDFIVPLTDLRIPSVQINFKDLKNIKIPSRFSTPEFTILNTFHIPSFTIDFVEMKVKIIRTIDQMLNSELQWPVPDIYLRDLKVEDIPLARITLP

DFRLPEIAIPEFIIPTLNLNDFQVPDLHIPEFQLPHISHTIEVPTFGKLYSILKIQSPLFTLDANADIGNGTTSANEAGIAASITAKGESKLEVLNFDFQANAQLSNPKINP

LALKESVKFSSKYLRTEHGSEMLFFGNAIEGKSNTVASLHTEKNTLELSNGVIVKINNQLTLDSNTKYFHKLNIPKLDFSSQADLRNEIKTLLKAGHIAWTSSGKGSW

KWACPRFSDEGTHESQISFTIEGPLTSFGLSNKINSKHLRVNQNLVYESGSLNFSKLEIQSQVDSQHVGHSVLTAKGMALFGEGKAEFTGRHDAHLNGKVIGTLKN

SLFFSAQPFEITASTNNEGNLKVRFPLRLTGKIDFLNNYALFLSPSAQQASWQVSARFNQYKYNQNFSAGNNENIMEAHVGINGEANLDFLNIPLTIPEMRLPYTII

TTPPLKDFSLWEKTGLKEFLKTTKQSFDLSVKAQYKKNKHRHSITNPLAVLCEFISQSIKSFDRHFEKNRNNALDFVTKSYNETKIKFDKYKAEKSHDELPRTFQIPGY

TVPVVNVEVSPFTIEMSAFGYVFPKAVSMPSFSILGSDVRVPSYTLILPSLELPVLHVPRNLKLSLPDFKELCTISHIFIPAMGNITYDFSFKSSVITLNTNAELFNQSDI

VAHLLSSSSSVIDALQYKLEGTTRLTRKRGLKLATALSLSNKFVEGSHNSTVSLTTKNMEVSVATTTKAQIPILRMNFKQELNGNTKSKPTVSSSMEFKYDFNSSML

YSTAKGAVDHKLSLESLTSYFSIESSTKGDVKGSVLSREYSGTIASEANTYLNSKSTRSSVKLQGTSKIDDIWNLEVKENFAGEATLQRIYSLWEHSTKNHLQLEGLFF

TNGEHTSKATLELSPWQMSALVQVHASQPSSFHDFPDLGQEVALNANTKNQKIRWKNEVRIHSGSFQSQVELSNDQEKAHLDIAGSLEGHLRFLKNIILPVYDKS

LWDFLKLDVTTSIGRRQHLRVSTAFVYTKNPNGYSFSIPVKVLADKFIIPGLKLNDLNSVLVMPTFHVPFTDLQVPSCKLDFREIQIYKKLRTSSFALNLPTLPEVKFPE

VDVLTKYSQPEDSLIPFFEITVPESQLTVSQFTLPKSVSDGIAALDLNAVANKIADFELPTIIVPEQTIEIPSIKFSVPAGIVIPSFQALTARFEVDSPVYNATWSASLKNK

ADYVETVLDSTCSSTVQFLEYELNVLGTHKIEDGTLASKTKGTFAHRDFSAEYEEDGKYEGLQEWEGKAHLNIKSPAFTDLHLRYQKDKKGISTSAASPAVGTVGM

DMDEDDDFSKWNFYYSPQSSPDKKLTIFKTELRVRESDEETQIKVNWEEEAASGLLTSLKDNVPKATGVLYDYVNKYHWEHTGLTLREVSSKLRRNLQNNAEWV

YQGAIRQIDDIDVRFQKAASGTTGTYQEWKDKAQNLYQELLTQEGQASFQGLKDNVFDGLVRVTQEFHMKVKHLIDSLIDFLNFPRFQFPGKPGIYTREELCTM

FIREVGTVLSQVYSKVHNGSEILFSYFQDLVITLPFELRKHKLIDVISMYRELLKDLSKEAQEVFKAIQSLKTTEVLRNLQDLLQFIFQLIEDNIKQLKEMKFTYLINYIQD

EINTIFSDYIPYVFKLLKENLCLNLHKFNEFIQNELQEASQELQQIHQYIMALREEYFDPSIVGWTVKYYELEEKIVSLIKNLLVALKDFHSEYIVSASNFTSQLSSQVEQ

FLHRNIQEYLSILTDPDGKGKEKIAELSATAQEIIKSQAIATKKIISDYHQQFRYKLQDFSDQLSDYYEKFIAESKRLIDLSIQNYHTFLIYITELLKKLQSTTVMNPYMKL

APGELTIILSEAEDASLLSFMQGYMKHATKTAKDALSSVQESQVAQQARGWVTDGFSSLKDYWSTVKDKFSEFWDLDPEVRPTSAVAA 

Figure 3.9: Sequence of full length APO B-100. Amino acids highlighted in green are the 

peptides identified in our study and red amino acids are lipid binding amino acids. 

3.3.2 Low speed pellet proteomic analysis 

Proteins pelleting down at low speed (18,000g) after DTT or CHAPS treatment were also 

identified. It is known from previous studies that some populations of exosomes pellet down 

at low speed pellet owing to their entrapment by THP polymers. However, DTT treatment 

releases these vesicles which then pellet down at high speed (P200,000g) (Fernandez-Llama 
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et al., 2010). Therefore, DTT-treated P18,000g, theoretically, would be expected to have only 

larger vesicles. Seventy five proteins were identified in DTT and CHAPS-treated P18,000g 

(pelleted again after treatment fo the crude pellet P18DTT/CHAPSP18). A complete non-

redundant list of proteins identified in low speed pellet (P18,000g) is presented in 

Supplementary Table S3.5. DTT treatment is the method suggested by some previous studies 

while CHAPS treatment was established by us (Chapter 2). When these two methods were 

compared to each other in terms of protein identifications, our method (CHAPS) yielded 

more proteins while most (66%) of the proteins identified in DTT method were common to 

our method. 

 

Figure 3.10: DTT versus CHAPS treatment in terms of protein identification for low speed 

pellet (18,000g). 

Sixty six % of DTT-treated pellet proteins are common to CHAPS pellet while only 38% of 

CHAPS are common to DTT method (Figure 3.10). This suggests that CHAPS is not only 

better in terms of removing contamination of soluble proteins but this also enriches for 

proteins not otherwise identified in the pellet when it is treated with DTT. 
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Proteins identified in P18,000, after treatment with either DTT or CHAPS separately (DTT 

and CHAPS treated P18,000g; P18DP18 and P18CP18), were combined together non-

redundantly and compared to P200,000g (Figure 3.11). 

 

Figure 3.11: Comparison of total proteins of low speed pellet (P18DTT and P18CHAPS 

combined) with High speed pellet (P200,000g). 

Eighty five % proteins in P18,000g are common to P200,000g as can be seen in Figure 3.11. 

Out of 23 proteins unique to the low speed pellet (P18,000g), 14 have been previously 

identified in a large-scale proteomic study of urinary exosomes (Wang et al., 2011).  
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3.4 Discussion 

Proteomic analyses of the high and low speed pellets were carried out and a large number of 

proteins were identified. Out of the 437 proteins identified in the high-speed pellet 

(P200,000g or exosomal fraction), 86 proteins have never been described in urinary 

exosomes. Exocarta is the largest database of exosomal proteins from any source 

(Mathivanan et al., 2012) and 83 proteins identified in our study are new and not reported in 

Exocarta. However, as compared to the largest proteomics study on whole urine (Marimuthu 

et al., 2011) most of our proteins have been identified in urine except the 32 proteins which 

are new to our study. Thirty nine proteins are, for the first time, shown to be part of urinary 

membrane vesicles and they have not been reported previously in urinary exosomes and 

‘exosome-like’ vesicles study.  

One hundred and sixty-six proteins have been found in the OMIM database associated with 

various diseases with 66 proteins having genetic associations to cardiovascular diseases and 

23 with genetic associations to renal diseases. This highlights the potential importance of 

these vesicles in clinical practise. Two hundred and twenty two proteins in our list were 

found to be N-glycosylated, as annotated by DAVID bioinformatics resources 6.7, and 22 

were O-glycosylated. Glycosylation patterns of proteins are important variables in disease 

processes which most likely reflect the respective pathology in the form of aberrant or altered 

glycosylation. Interestingly, membrane vesicles have a distinct glycan signature which is 

different from the parent cells secreting them (Escrevente et al., 2011). These membrane 

vesicles originate from specialised microdomains of the plasma membrane of the cell 

suggesting that glycosylation plays a part in sorting these proteins to such microdomains. As 

an example, special processing of prion protein is involved in targeting it to membrane 

vesicles and only a certain glycoform is preferentially secreted as part of membrane vesicles 

(Vella et al., 2007) over other forms. This further suggests a role for glycosylation in sorting 
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different proteins to specific membrane vesicle groups. Additionally, 7 proteins including 

albumin and haemoglobin alpha and beta chains which are known to be glycated are present 

in our high-speed pellet protein list. Advanced glycation end (AGE) products are known to be 

formed characteristically in diabetes and diabetic nephropathy. They seem to act as stimuli to 

induce production of extracellular matrix and inhibit its degradation. Furthermore, AGE 

modification of matrix proteins disrupts matrix-matrix and matrix-cell interactions leading to 

a profibrotic state (Silbiger et al., 1993; Krishnamurti et al., 1997; Mott et al., 1997; Raabe et 

al., 1998). It remains to be established if these proteins are secreted in their glycated forms in 

membrane vesicles or not. If glycated forms can be found in membrane vesicles it could work 

as a diagnostic modality to determine concentration of glycated proteins in association with 

progression of various diseases. Twenty two proteins were annotated as O-glycosylated in 

our high-speed pellet protein list. It has been reported that metabolic flux through the 

hexosamine biosynthetic pathway is increased in the presence of high circulating glucose 

levels as in diabetes. Furthermore, it induces the expression of genes necessary for 

development of diabetic nephropathy and O-glycosylation was found to be necessary for the 

expression of these genes (Goldberg et al., 2006). Twenty proteins were annotated to be part 

of endosomes in our high-speed pellet protein list. Class E vacuolar protein-sorting (VPS) 

proteins are involved in MVB biogenesis and Tsg101 and CD63 help sort proteins to MVB. 

This provides evidence that high speed pellets contain mostly vesicles originating in MVB 

which are also known as urinary exosomes. It is believed that exosomes are secreted 

following the fusion of MVB to the apical part of plasma membranes in the urinary drainage 

system (Pisitkun, Shen & Knepper; 2004). Twenty three proteins, which are markers of apical 

part of the plasma membrane, were found in our study confirming this hypothesis. However, 

14 proteins were also annotated to be part of basolateral aspect of the membrane while many 

of these proteins like ATPase Na+/K+ transporting, beta1 polypeptide and Rh family C 
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glycoprotein are common to the apical part as well. The expression of these proteins, 

annotated as basolateral proteins, is not strictly basolateral and typically strict basolateral 

makrer proteins like gp58 and E-cadherin (Manninen et al., 2005) were not found in our 

protein list. Therefore, our results support the hypothesis about generation of exosomes from 

the the apical part of the plasma membrane. 

HDL particles have been identified in urine previously (Gomo, Henderson & Myrick, 1988) 

and they share some biophysical characteristics with exosomes like a similar density range. 

The traditional method of exosome isolation uses ultracentrifugation and membrane vesicles, 

like exosomes, pellet down depending on their density and mass. Therefore, it is not 

unexpected if this method also pellets down HDL particles along with membrane vesicles. A 

number of HDL-associated proteins are present in our identifications but some like APOC1, 

APOL1, APOA2 and SAA are absent as well. However, a point to remember is that CHAPS, 

which is used in our enrichment protocol, has been reported to solubilise HDL and release 

apolipoproteins at roughly 10mM final concentration along with other detergents like cholate 

(Shiflett et al., 2005). We have used 1% (w/v) CHAPS which is roughly equivalent to 16mM 

suggesting that HDL, if present, may be solubilised to release apolipoproteins. Identification 

of these apolipoproteins in our high speed pellet would then mean that either these proteins 

are secreted as part of membrane vesicles, or, upon their release from HDL, they bind to 

exosome or other membrane vesicles. Alternatively, CHAPS, without the presence of other 

detergents, may not have any solubilisation effect on HDL and thus these particles would be 

present in our nano vesicle fraction. The presence of dense LDL particle can also not be ruled 

out as peptides covering the full length of APO B-100 are present in our identifications. 

Exosomes are thought to be secreted constitutively from various cells as part of routine 

cellular transport processes, whereas ectosomes are mostly released upon receipt of a 

stimulus such as complement attack (Morgan, Dankert & Esser, 1987). Complement attack 
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leads to the formation of a membrane attack complex (MAC) on the cell surface which, if not 

disposed of, can lead to cell death (Mayer 1961). Cells dispose of MAC by either releasing 

ectosomes consisiting of MAC (Morgan, Dankert & Esser, 1987) or by internalising MAC 

into MVBs and then secreting it as part of exosomes, as shown in glomerular epithelial cells 

in kidney (Kerjaschki et al., 1989). Our protein list in the high-speed pellet (P200,000g) 

contains all subunits of MAC and it can only be speculated as to whether it is exosomes or 

ectosomes which delivered them to urine. However, HDL has also been found previously to 

be associated with MAC (Choimiura et al., 1993) and presence of HDL in our vesicle 

fraction carrying MAC cannot be ruled out. 

Our protein list also consisted of a number of proteins having chaperone activity which bind 

to unfolded proteins including Hsp70, 90 and clycophilin A, B and C. This suggests that 

target cells taking up exosomes (and these chaperones with them), would be better equipped 

to deal with stress induced by unfolded proteins although it remains to be determined in 

detail. Moreover, cyclophilin A is known to be packaged in HIV-1 virion (Gitti et al., 1996) 

and it has been suggested that HIV-1 uses the same machinery as membrane vesicles for 

budding (Krishnamoorthy et al., 2009). 

The low speed pellet (P18,000g) of urine has never been subjected to proteomic analysis 

before. For the first time we have processed the pellet using two methods described in 

Chapter one namely, DTT and CHAPS treatment. It was clear that CHAPS treatment helped 

us to identify more proteins in the low speed pellet compared to DTT treatment (130 as 

compared to 75 proteins identified). This is possibly due to the more efficient removal of 

interference of the highly abundant protein THP. However, when we combined the proteins 

recovered with these two methods and compared it to the high-speed pellet (P200,000g) only 

23 proteins were found to be unique to the low speed pellet. Out of these 23, 14 have been 

previously identified in the high speed pellet (P200,000g) (Wang et al., 2011). This suggests 
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that due to either THP entrapment of membrane vesicles (Fernandez-Llama et al., 2010) or 

other physicochemical factors, a population of exosomes, and other vesicles of low density, 

pellet down at low speed (P18,000g). Therefore, complete recovery of all the vesciles, 

present in urine with sizes similar to exosomes, at high-speed pellet (P200,000g) was 

obtained even following both treatment methods (DTT and CHAPS), although it can 

definitely be improved using these two methods. 
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Supplementary table S3.1: Complete non-redundant list of proteins identified in the high 

speed pellet (P200,000g). Uniprot accession and gene names are given. 

UNIPROT_AC
CESSION 

Gene name 

P07339 cathepsin D 

P19440 gamma-glutamyltransferase light chain 3; gamma-glutamyltransferase 4 pseudogene; gamma-
glutamyltransferase 2; gamma-glutamyltransferase 1; gamma-glutamyltransferase light chain 5 pseudogene 

P63104 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide 

P04279 semenogelin I 

O00560 syndecan binding protein (syntenin) 

Q9NR99 matrix-remodelling associated 5 

P15941 mucin 1, cell surface associated 

Q14624 inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein) 

P33908 mannosidase, alpha, class 1A, member 1 

P02766 Transthyretin 

Q9H6S3 EPS8-like 2 

P01011 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 

P50148 guanine nucleotide binding protein (G protein), q polypeptide 

P05546 serpin peptidase inhibitor, clade D (heparin cofactor), member 1 

O14773 tripeptidyl peptidase I 

Q9H444 chromatin modifying protein 4B 

O00391 quiescin Q6 sulfhydryl oxidase 1 

Q9NQ84 G protein-coupled receptor, family C, group 5, member C 

Q92896 golgi apparatus protein 1 

Q9Y287 integral membrane protein 2B 

Q8TCD5 5', 3'-nucleotidase, cytosolic 

Q99816 tumor susceptibility gene 101 

Q8IV08 phospholipase D family, member 3 

P05543 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 7 

Q8WWI5 solute carrier family 44, member 1 

Q9UBD6 Rh family, C glycoprotein 

P31949 S100 calcium binding protein A11; S100 calcium binding protein A11 pseudogene 

P08582 antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5 

P69905 hemoglobin, alpha 2; hemoglobin, alpha 1 

P62937 similar to TRIMCyp; peptidylprolyl isomerase A (cyclophilin A); peptidylprolyl isomerase A (cyclophilin A)-like 3 

Q9HAT2 sialic acid acetylesterase 

Q96DG6 carboxymethylenebutenolidase homolog (Pseudomonas) 

P02675 fibrinogen beta chain 

Q6V0I7 FAT tumor suppressor homolog 4 (Drosophila) 

P53990 similar to CG10103; KIAA0174 

Q03154 aminoacylase 1 

P13987 CD59 molecule, complement regulatory protein 

P34896 serine hydroxymethyltransferase 1 (soluble) 

Q96KP4 CNDP dipeptidase 2 (metallopeptidase M20 family) 
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P19827 inter-alpha (globulin) inhibitor H1 

Q9UI12 ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H 

Q5D862 filaggrin family member 2 

Q13510 N-acylsphingosine amidohydrolase (acid ceramidase) 1 

P68371 tubulin, beta 2C 

P22732 solute carrier family 2 (facilitated glucose/fructose transporter), member 5 

P01008 serpin peptidase inhibitor, clade C (antithrombin), member 1 

P30039 phenazine biosynthesis-like protein domain containing 

P07998 ribonuclease, RNase A family, 1 (pancreatic) 

P29622 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 4 

O00159 myosin IC 

Q12913 protein tyrosine phosphatase, receptor type, J 

O43866 CD5 molecule-like 

O15162 phospholipid scramblase 1 

P01024 similar to Complement C3 precursor; complement component 3; hypothetical protein LOC100133511 

P35030 protease, serine, 3 

Q00610 clathrin, heavy chain (Hc) 

P61224 RAP1B, member of RAS oncogene family 

Q9Y644 RFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 

P29508 serpin peptidase inhibitor, clade B (ovalbumin), member 3 

P29992 guanine nucleotide binding protein (G protein), alpha 11 (Gq class) 

Q9UHL4 dipeptidyl-peptidase 7 

Q12805 EGF-containing fibulin-like extracellular matrix protein 1 

P11597 cholesteryl ester transfer protein, plasma 

Q9H3G5 carboxypeptidase, vitellogenic-like 

P98160 heparan sulfate proteoglycan 2 

Q96IU4 abhydrolase domain containing 14B 

P10253 glucosidase, alpha; acid 

P41222 prostaglandin D2 synthase, hematopoietic; prostaglandin D2 synthase 21kDa (brain) 

Q12907 lectin, mannose-binding 2 

P21810 Biglycan 

P25815 S100 calcium binding protein P 

P07858 cathepsin B 

P12277 creatine kinase, brain 

Q7LBR1 chromatin modifying protein 1B 

P01861 immunoglobulin heavy constant gamma 4 (G4m marker) 

P10909 Clusterin 

P50395 GDP dissociation inhibitor 2 

P20073 annexin A7 

P08183 ATP-binding cassette, sub-family B (MDR/TAP), member 1 

P31946 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide 

P10153 ribonuclease, RNase A family, 2 (liver, eosinophil-derived neurotoxin) 

P01857 immunoglobulin heavy constant gamma 1 (G1m marker); immunoglobulin heavy constant mu; 
immunoglobulin heavy variable 3-7; immunoglobulin heavy constant gamma 3 (G3m marker); 
immunoglobulin heavy variable 3-11 (gene/pseudogene); immunoglobulin heavy variable 4-31; 
immunoglobulin heavy locus 
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P01871 immunoglobulin heavy constant gamma 1 (G1m marker); immunoglobulin heavy constant mu; 
immunoglobulin heavy variable 3-7; immunoglobulin heavy constant gamma 3 (G3m marker); 
immunoglobulin heavy variable 3-11 (gene/pseudogene); immunoglobulin heavy variable 4-31; 
immunoglobulin heavy locus 

P01860 immunoglobulin heavy constant gamma 1 (G1m marker); immunoglobulin heavy constant mu; 
immunoglobulin heavy variable 3-7; immunoglobulin heavy constant gamma 3 (G3m marker); 
immunoglobulin heavy variable 3-11 (gene/pseudogene); immunoglobulin heavy variable 4-31; 
immunoglobulin heavy locus 

P51654 glypican 3 

O96009 napsin A aspartic peptidase 

P12109 collagen, type VI, alpha 1 

P17174 glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1) 

P09525 annexin A4 

P08236 glucuronidase, beta 

P01133 epidermal growth factor (beta-urogastrone) 

P19801 amiloride binding protein 1 (amine oxidase (copper-containing)) 

P12035 keratin 3 

P02748 complement component 9 

P49721 proteasome (prosome, macropain) subunit, beta type, 2 

P05026 ATPase, Na+/K+ transporting, beta 1 polypeptide 

P15311 hypothetical protein LOC100129652; ezrin 

P15924 Desmoplakin 

P68104 eukaryotic translation elongation factor 1 alpha-like 7; eukaryotic translation elongation factor 1 alpha-like 3; 
similar to eukaryotic translation elongation factor 1 alpha 1; eukaryotic translation elongation factor 1 alpha 1 

P11279 lysosomal-associated membrane protein 1 

P35527 keratin 9 

P02765 alpha-2-HS-glycoprotein 

Q5SZK8 FRAS1 related extracellular matrix protein 2 

Q7Z7M0 multiple EGF-like-domains 8 

P04406 glyceraldehyde-3-phosphate dehydrogenase-like 6; hypothetical protein LOC100133042; glyceraldehyde-3-
phosphate dehydrogenase 

P36955 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1 

P05154 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 5 

Q99519 sialidase 1 (lysosomal sialidase) 

O75636 ficolin (collagen/fibrinogen domain containing) 3 (Hakata antigen) 

Q8WW52 family with sequence similarity 151, member A 

Q86YZ3 Hornerin 

P05109 S100 calcium binding protein A8 

P30041 peroxiredoxin 6 

P15289 arylsulfatase A 

Q9HBJ8 transmembrane protein 27 

P23526 Adenosylhomocysteinase 

P14618 similar to Pyruvate kinase, isozymes M1/M2 (Pyruvate kinase muscle isozyme) (Cytosolic thyroid hormone-
binding protein) (CTHBP) (THBP1); pyruvate kinase, muscle 

P63261 actin, gamma 1 

P01042 kininogen 1 

P01764 immunoglobulin heavy variable 3-23; immunoglobulin heavy variable group 

P04196 histidine-rich glycoprotein 

P16278 galactosidase, beta 1 

O75340 aryl-hydrocarbon receptor repressor; programmed cell death 6 
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Q9C0H2 tweety homolog 3 (Drosophila) 

Q8N0V5 glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group) 

P09467 fructose-1,6-bisphosphatase 1 

P21266 glutathione S-transferase mu 3 (brain) 

Q53GD3 solute carrier family 44, member 4 

P68871 hemoglobin, beta 

O95865 dimethylarginine dimethylaminohydrolase 2 

P60022 defensin, beta 1 

P01593 similar to hCG1642538 

P00966 argininosuccinate synthetase 1 

P08962 CD63 molecule 

P00751 complement factor B 

P12273 prolactin-induced protein 

P61626 lysozyme (renal amyloidosis) 

P04746 amylase, alpha 2A (pancreatic) 

P01023 alpha-2-macroglobulin 

P23284 peptidylprolyl isomerase B (cyclophilin B) 

P39059 collagen, type XV, alpha 1 

P24855 deoxyribonuclease I 

Q6EMK4 Vasorin 

P11117 acid phosphatase 2, lysosomal 

Q9Y6W3 calpain 7 

P34059 galactosamine (N-acetyl)-6-sulfate sulfatase 

P19835 carboxyl ester lipase (bile salt-stimulated lipase) 

Q9Y6R7 Fc fragment of IgG binding protein; similar to IgGFc-binding protein precursor (FcgammaBP) (Fcgamma-
binding protein antigen) 

P02753 retinol binding protein 4, plasma 

Q7Z4W1 dicarbonyl/L-xylulose reductase 

P60033 CD81 molecule 

Q08380 lectin, galactoside-binding, soluble, 3 binding protein 

P08603 complement factor H 

Q7Z794 keratin 77 

Q9H1C7 chromosome 5 open reading frame 32 

P35858 insulin-like growth factor binding protein, acid labile subunit 

P01876 immunoglobulin heavy constant alpha 1 

P02649 hypothetical LOC100129500; apolipoprotein E 

Q04695 keratin 17; keratin 17 pseudogene 3 

P02774 group-specific component (vitamin D binding protein) 

P14384 carboxypeptidase M 

O60814 histone cluster 1, H2bk 

P04350 tubulin, beta 4 

O95336 6-phosphogluconolactonase 

P01880 immunoglobulin heavy constant delta 

P12821 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 

P00747 Plasminogen 
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P02746 complement component 1, q subcomponent, B chain 

Q6UXG3 CD300 molecule-like family member g 

P00450 ceruloplasmin (ferroxidase) 

P06280 galactosidase, alpha 

Q96FQ6 S100 calcium binding protein A16 

Q9H853 tubulin, alpha 4b (pseudogene) 

P00558 phosphoglycerate kinase 1 

P15309 acid phosphatase, prostate 

P35908 keratin 2 

O00322 uroplakin 1A 

P00918 carbonic anhydrase II 

P04264 keratin 1 

P02533 keratin 14 

Q8IWA5 solute carrier family 44, member 2 

P08294 superoxide dismutase 3, extracellular 

P02788 Lactotransferrin 

P62805 histone cluster 1, H4l; histone cluster 1, H4k; histone cluster 4, H4; histone cluster 1, H4h; histone cluster 1, 
H4j; histone cluster 1, H4i; histone cluster 1, H4d; histone cluster 1, H4c; histone cluster 1, H4f; histone 
cluster 1, H4e; histone cluster 1, H4b; histone cluster 1, H4a; histone cluster 2, H4a; histone cluster 2, H4b 

P60709 actin, beta 

Q8N271 prominin 2 

P48061 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 

P05156 complement factor I 

P02751 fibronectin 1 

P08238 heat shock protein 90kDa alpha (cytosolic), class B member 1 

P06396 gelsolin (amyloidosis, Finnish type) 

P54802 N-acetylglucosaminidase, alpha- 

P00749 plasminogen activator, urokinase 

Q5VW32 chromosome 1 open reading frame 58 

Q99835 smoothened homolog (Drosophila) 

P60953 cell division cycle 42 (GTP binding protein, 25kDa); cell division cycle 42 pseudogene 2 

Q9NS93 transmembrane 7 superfamily member 3 

Q86UD1 OAF homolog (Drosophila) 

Q6UX06 olfactomedin 4 

Q6UX73 chromosome 16 open reading frame 89 

P01031 complement component 5 

P19823 inter-alpha (globulin) inhibitor H2 

P05155 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 

P55083 microfibrillar-associated protein 4 

P42785 prolylcarboxypeptidase (angiotensinase C) 

O75882 Attractin 

P62879 guanine nucleotide binding protein (G protein), beta polypeptide 2 

P02749 apolipoprotein H (beta-2-glycoprotein I) 

Q9NP79 Vps20-associated 1 homolog (S. cerevisiae) 

P05090 apolipoprotein D 

P22352 glutathione peroxidase 3 (plasma) 
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P00734 coagulation factor II (thrombin) 

P04217 alpha-1-B glycoprotein 

P19652 orosomucoid 2 

P02760 alpha-1-microglobulin/bikunin precursor 

P29972 aquaporin 1 (Colton blood group) 

P02679 fibrinogen gamma chain 

P08195 solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2 

P01009 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 

P08185 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 6 

P50995 annexin A11 

P03951 coagulation factor XI 

P06312 immunoglobulin kappa variable 4-1 

P08133 annexin A6 

P51884 Lumican 

Q9Y646 plasma glutamate carboxypeptidase 

P15291 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 

Q99988 growth differentiation factor 15 

P08779 keratin 16; keratin type 16-like 

Q12794 hyaluronoglucosaminidase 1 

O75594 peptidoglycan recognition protein 1 

P07357 complement component 8, alpha polypeptide 

P08697 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 2 

P07996 thrombospondin 1 

P07195 lactate dehydrogenase B 

Q93088 betaine-homocysteine methyltransferase 

Q9BQE3 tubulin, alpha 1c 

O43895 X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound 

P01877 immunoglobulin heavy constant alpha 2 (A2m marker) 

P35241 Radixin 

O75787 ATPase, H+ transporting, lysosomal accessory protein 2 

P06870 kallikrein 1 

P11142 heat shock 70kDa protein 8 

P10599 Thioredoxin 

P21399 aconitase 1, soluble 

O75351 vacuolar protein sorting 4 homolog B (S. cerevisiae) 

P55017 solute carrier family 12 (sodium/chloride transporters), member 3 

P04083 annexin A1 

Q9HC84 mucin 5B, oligomeric mucus/gel-forming 

Q96FN5 kinesin family member 12 

P02763 orosomucoid 1 

P16444 dipeptidase 1 (renal) 

P13647 keratin 5 

P53634 cathepsin C 

O75955 flotillin 1 
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P02750 leucine-rich alpha-2-glycoprotein 1 

Q86T13 C-type lectin domain family 14, member A 

P68366 tubulin, alpha 4a 

P07355 annexin A2 pseudogene 3; annexin A2; annexin A2 pseudogene 1 

P02743 amyloid P component, serum 

Q96RW7 hemicentin 1 

P04003 complement component 4 binding protein, alpha 

P22891 protein Z, vitamin K-dependent plasma glycoprotein 

Q92673 sortilin-related receptor, L(DLR class) A repeats-containing 

P00738 haptoglobin-related protein; haptoglobin 

Q14393 similar to growth arrest-specific 6; growth arrest-specific 6 

P14923 junction plakoglobin 

P02790 Hemopexin 

P27487 dipeptidyl-peptidase 4 

P0C0L4 complement component 4A (Rodgers blood group) 

Q14CN4 keratin 72 

Q3LXA3 dihydroxyacetone kinase 2 homolog (S. cerevisiae) 

P62258 similar to 14-3-3 protein epsilon (14-3-3E) (Mitochondrial import stimulation factor L subunit) (MSF L); 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide 

Q9BYF1 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 

O43653 prostate stem cell antigen 

P09211 glutathione S-transferase pi 1 

P61970 nuclear transport factor 2 

P27105 Stomatin 

P01591 immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides 

Q9UBV8 penta-EF-hand domain containing 1 

Q8WVN6 secreted and transmembrane 1 

P31639 solute carrier family 5 (sodium/glucose cotransporter), member 2 

Q9UN37 vacuolar protein sorting 4 homolog A (S. cerevisiae) 

P61026 RAB10, member RAS oncogene family 

P06744 glucose phosphate isomerise 

P06733 enolase 1, (alpha) 

Q92820 gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) 

P12429 annexin A3 

Q02383 semenogelin II 

P0C0L5 complement component 4B (Chido blood group) 

P10643 complement component 7 

P02792 similar to ferritin, light polypeptide; ferritin, light polypeptide 

P01034 cystatin C 

P12814 actinin, alpha 1 

Q02413 desmoglein 1 

P06727 apolipoprotein A-IV 

P12111 collagen, type VI, alpha 3 

Q14314 fibrinogen-like 2 

Q14019 coactosin-like 1 (Dictyostelium) 
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P01833 polymeric immunoglobulin receptor 

P08758 annexin A5 

Q15485 ficolin (collagen/fibrinogen domain containing lectin) 2 (hucolin) 

O43451 maltase-glucoamylase (alpha-glucosidase) 

Q14108 scavenger receptor class B, member 2 

P04114 apolipoprotein B (including Ag(x) antigen) 

Q6W4X9 mucin 6, oligomeric mucus/gel-forming 

O00187 mannan-binding lectin serine peptidase 2 

Q8TF66 leucine rich repeat containing 15 

P02747 complement component 1, q subcomponent, C chain 

P06702 S100 calcium binding protein A9 

P18428 lipopolysaccharide binding protein 

Q7Z5L0 vitelline membrane outer layer 1 homolog (chicken) 

P07358 complement component 8, beta polypeptide 

P21926 CD9 molecule 

O60637 tetraspanin 3 

P54652 heat shock 70kDa protein 2 

P04004 Vitronectin 

P08107 heat shock 70kDa protein 1A; heat shock 70kDa protein 1B 

P21796 voltage-dependent anion channel 1; similar to voltage-dependent anion channel 1 

P14550 aldo-keto reductase family 1, member A1 (aldehyde reductase) 

P10619 cathepsin A 

Q7RTS7 keratin 74 

O43490 prominin 1 

P09543 2',3'-cyclic nucleotide 3' phosphodiesterase 

P40925 malate dehydrogenase 1, NAD (soluble) 

O60494 cubilin (intrinsic factor-cobalamin receptor) 

Q9UGT4 sushi domain containing 2 

Q8NFJ5 G protein-coupled receptor, family C, group 5, member A 

P81605 Dermcidin 

P05164 Myeloperoxidase 

Q8N1N4 keratin 78 

P31944 caspase 14, apoptosis-related cysteine peptidase 

Q96SA4 serine incorporator 2 

P04066 fucosidase, alpha-L- 1, tissue 

P22792 carboxypeptidase N, polypeptide 2 

P02671 fibrinogen alpha chain 

Q07075 glutamyl aminopeptidase (aminopeptidase A) 

P19961 amylase, alpha 2B (pancreatic) 

O43633 chromatin modifying protein 2A 

P13164 interferon induced transmembrane protein 1 (9-27) 

Q96DA0 zymogen granule protein 16 homolog B (rat) 

Q495M3 solute carrier family 36 (proton/amino acid symporter), member 2 

Q96KN2 carnosine dipeptidase 1 (metallopeptidase M20 family) 
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P02768 Albumin 

P01859 immunoglobulin heavy constant gamma 2 (G2m marker) 

Q9HB40 serine carboxypeptidase 1 

Q8WUM4 programmed cell death 6 interacting protein 

P07911 Uromodulin 

P15144 alanyl (membrane) aminopeptidase 

Q16706 mannosidase, alpha, class 2A, member 1 

P01834 similar to hCG26659; immunoglobulin kappa constant; similar to Ig kappa chain V-I region HK102 precursor 

P19971 thymidine phosphorylase 

Q9H223 EH-domain containing 4 

Q16769 glutaminyl-peptide cyclotransferase 

P07288 kallikrein-related peptidase 3 

Q9HBA9 folate hydrolase 1B 

P45877 peptidylprolyl isomerase C (cyclophilin C) 

P13646 keratin 13 

P02647 apolipoprotein A-I 

P13473 lysosomal-associated membrane protein 2 

Q9Y2S2 crystallin, lambda 1 

P25787 proteasome (prosome, macropain) subunit, alpha type, 2 

Q9UKU6 thyrotropin-releasing hormone degrading enzyme 

P59665 defensin, alpha 1 

P16152 carbonyl reductase 1 

Q9UIQ6 leucyl/cystinyl aminopeptidase 

P08571 CD14 molecule 

P19012 keratin 15 

P43251 Biotinidase 

P01019 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

P52209 phosphogluconate dehydrogenase 

P60174 TPI1 pseudogene; triosephosphate isomerase 1 

P00338 lactate dehydrogenase A 

P61586 ras homolog gene family, member A 

P63092 GNAS complex locus 

P02538 keratin 6A 

P53801 pituitary tumor-transforming 1 interacting protein 

P27169 paraoxonase 1 

P54793 arylsulfatase F 

P31151 S100 calcium binding protein A7 

Q6I9Y2 THO complex 7 homolog (Drosophila) 

P63096 guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 

Q16270 insulin-like growth factor binding protein 7 

P51688 N-sulfoglucosamine sulfohydrolase 

P14543 nidogen 1 

P08473 membrane metallo-endopeptidase 

P01617 hypothetical LOC440786 
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P04745 amylase, alpha 1A (salivary); amylase, alpha 1B (salivary); amylase, alpha 1C (salivary) 

P27105 phosphatidylethanolamine binding protein 1 

P13645 keratin 10 

Q6UWR7 ectonucleotide pyrophosphatase/phosphodiesterase 6 

P62873 guanine nucleotide binding protein (G protein), beta polypeptide 1 

O00182 lectin, galactoside-binding, soluble, 9 

P26038 Moesin 

P49221 transglutaminase 4 (prostate) 

P17050 N-acetylgalactosaminidase, alpha- 

Q9BRK3 matrix-remodelling associated 8 

P05062 aldolase B, fructose-bisphosphate 

Q9HD89 Resistin 

Q96P63 serpin peptidase inhibitor, clade B (ovalbumin), member 12 

P08263 glutathione S-transferase alpha 1 

P19013 keratin 4 

P02787 Transferring 

P04259 keratin 6B 

Q9NZP8 complement component 1, r subcomponent-like 

Q8WZ75 roundabout homolog 4, magic roundabout (Drosophila) 

P02794 ferritin, heavy polypeptide 1; ferritin, heavy polypeptide-like 16; similar to ferritin, heavy polypeptide 1; 
ferritin, heavy polypeptide-like 3 pseudogene 

Q9H8L6 multimerin 2 

P25311 alpha-2-glycoprotein 1, zinc-binding pseudogene 1; alpha-2-glycoprotein 1, zinc-binding 

Q9UKU9 angiopoietin-like 2 

Q13621 solute carrier family 12 (sodium/potassium/chloride transporters), member 1 

Q9BYZ2 lactate dehydrogenase A-like 6B 

O00468 Agrin 

P98164 low density lipoprotein-related protein 2 

P01768 Ig heavy chain V-III region CAM 

P0CG04 Ig lambda-1 chain C regions 

P04220 Ig mu heavy chain disease protein 

P01613 Ig kappa chain V-I region Ni 

P01770 Ig heavy chain V-III region NIE 

P01779 Ig heavy chain V-III region TUR 

P01621 Ig kappa chain V-III region NG9 (Fragment) 

P04208 Ig lambda chain V-I region WAH 

P01769 Ig heavy chain V-III region GA 

P01620 Ig kappa chain V-III region SIE 

P01598 Ig kappa chain V-I region EU 

P01714 Ig lambda chain V-III region SH 

P0CG05 Ig lambda-2 chain C regions 

P80748 Ig lambda chain V-III region LOI 

P01777 Ig heavy chain V-III region TEI 

P01766 Ig heavy chain V-III region BRO 

P0CG48 Polyubiquitin-C 
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P01762 Ig heavy chain V-III region TRO 

P01765 Ig heavy chain V-III region TIL 

P04207 Ig kappa chain V-III region CLL (Rheumatoid factor) 

P01781 Ig heavy chain V-III region GAL 

P01619 Ig kappa chain V-III region B6 

P01616 Ig kappa chain V-II region MIL 

P01625 Ig kappa chain V-IV region Len 

 

Supplementary table S3.2: The following genes were annotated and classified as being 

related to human diseases as evidenced by their OMIM IDs mapped using DAVID 

Bioinformatics Resources 6.7, National Institute of Allergy and Infectious Diseases (NIAID), 

NIH. Uniprot Id, gene name and OMIM disease names are given in the table. 

ID Gene Name OMIM_DISEASE 

P08183 ATP-binding cassette, sub-family B (MDR/TAP), 
member 1 

Colchicine resistance,Inflammatory bowel disease 13, 
susceptibility to, 

O75787 ATPase, H+ transporting, lysosomal accessory 
protein 2 

Mental retardation, X-linked, with epilepsy, 

P05026 ATPase, Na+/K+ transporting, beta 1 
polypeptide 

Blood pressure regulation QTL, 

P13987 CD59 molecule, complement regulatory protein CD59 deficiency, 

Q12805 EGF-containing fibulin-like extracellular matrix 
protein 1 

Doyne honeycomb degeneration of retina,Genome-wide 
association analysis identifies 20 loci that influence adult 
height,Many sequence variants affecting diversity of adult 
human height, 

Q5SZK8 FRAS1 related extracellular matrix protein 2 Fraser syndrome, 

P63092 GNAS complex locus Acromegaly,McCune-Albright syndrome,Osseous heteroplasia, 
progressive,Pituitary ACTH secreting adenoma,Pituitary ACTH 
secreting adenoma, somatic,Pituitary ACTH secreting 
adenoma, somatic 219090,Prolonged bleeding time, 
brachydactyly and mental 
retardation,Pseudohypoparathyroidism 
Ia,Pseudohypoparathyroidism Ib,Pseudohypoparathyroidism, 
type Ia,Pseudohypoparathyroidism, type 
Ib,Pseudopseudohypoparathyroidism,Somatotrophinoma, 

P17050 N-acetylgalactosaminidase, alpha- Kanzaki disease,Schindler disease, type I,Schindler disease, 
type III, 

P54802 N-acetylglucosaminidase, alpha- mucopolysaccharidosis type IIIB,Sanfilippo syndrome, type B, 

Q13510 N-acylsphingosine amidohydrolase (acid 
ceramidase) 1 

Farber lipogranulomatosis, 

P51688 N-sulfoglucosamine sulfohydrolase Sanfilippo syndrome, type A, 

P60174 TPI1 pseudogene; triosephosphate isomerase 1 Hemolytic anemia due to triosephosphate isomerase 
deficiency, 

P15291 UDP-Gal:betaGlcNAc beta 1,4- 
galactosyltransferase, polypeptide 1 

Congenital disorder of glycosylation, type IId, 

O43895 X-prolyl aminopeptidase (aminopeptidase P) 2, 
membrane-bound 

Angioedema induced by ACE inhibitors, susceptibility to, 

P60709 actin, beta Dystonia, juvenile-onset, 

P63261 actin, gamma 1 Deafness, autosomal dominant 20/26, 

P23526 Adenosylhomocysteinase Hypermethioninemia with deficiency of S-
adenosylhomocysteine hydrolase, 

P02768 Albumin Analbuminemia,Dysalbuminemic 
hyperthyroxinemia,Dysalbuminemic hyperzincemia, 

P05062 aldolase B, fructose-bisphosphate Fructose intolerance, 

P01023 alpha-2-macroglobulin Alzheimer disease, susceptibility to,Emphysema due to alpha-
2-macroglobulin deficiency, 
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Q03154 aminoacylase 1 Aminoacylase 1 deficiency, 

P02743 amyloid P component, serum ?Amyloidosis, secondary, susceptibility to, 

P12821 angiotensin I converting enzyme (peptidyl-
dipeptidase A) 1 

Alzheimer disease, susceptibility to,Angiotensin I-converting 
enzyme, benign serum increase,Diabetic nephropathy, 
susceptibility to,Microvascular complications of diabetes 
3,Myocardial infarction, susceptibility to,Renal tubular 
dysgenesis,SARS, progression of, 

P01019 angiotensinogen (serpin peptidase inhibitor, 
clade A, member 8) 

Hypertension, essential, susceptibility to,Preeclampsia, 
susceptibility to,Renal tubular dysgenesis, 

P02647 apolipoprotein A-I A null mutation in human APOC3 confers a favorable plasma 
lipid profile and apparent cardioprotection,Amyloidosis, 3 or 
more types,ApoA-I and apoC-III deficiency, 
combined,Common variants at 30 loci contribute to polygenic 
dyslipidemia,Corneal clouding, autosomal recessive,Genome-
wide association study identifies genes for biomarkers of 
cardiovascular disease: serum urate and 
dyslipidemia,Genome-wide scan identifies variation in MLXIPL 
associated with plasma triglycerides,Hypertriglyceridemia, 
one form,Hypoalphalipoproteinemia,Loci influencing lipid 
levels and coronary heart disease risk in 16 European 
population cohorts,Newly identified loci that influence lipid 
concentrations and risk of coronary artery disease,Six new 
loci associated with blood low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol or triglycerides in 
humans, 

P06727 apolipoprotein A-IV A null mutation in human APOC3 confers a favorable plasma 
lipid profile and apparent cardioprotection,Common variants 
at 30 loci contribute to polygenic dyslipidemia,Loci influencing 
lipid levels and coronary heart disease risk in 16 European 
population cohorts,Newly identified loci that influence lipid 
concentrations and risk of coronary artery disease,Six new 
loci associated with blood low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol or triglycerides in 
humans, 

P04114 apolipoprotein B (including Ag(x) antigen) Common variants at 30 loci contribute to polygenic 
dyslipidemia,Genome-wide association analysis of metabolic 
traits in a birth cohort from a founder 
population,Hypercholesterolemia, due to ligand-defective apo 
B,Hypobetalipoproteinemia,Hypobetalipoproteinemia, 
normotriglyceridemic,LDL-cholesterol concentrations: a 
genome-wide association study,Loci influencing lipid levels 
and coronary heart disease risk in 16 European population 
cohorts,Newly identified loci that influence lipid 
concentrations and risk of coronary artery disease,Six new 
loci associated with blood low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol or triglycerides in 
humans, 

P02749 apolipoprotein H (beta-2-glycoprotein I) Apolipoprotein H deficiency, 

P29972 aquaporin 1 (Colton blood group) Aquaporin-1 deficiency,Blood group, Colton, 

P00966 argininosuccinate synthetase 1 Citrullinemia, 

P15289 arylsulfatase A Metachromatic leukodystrophy, 

P43251 Biotinidase Biotinidase deficiency, 

P00918 carbonic anhydrase II Osteopetrosis, autosomal recessive 3, with renal tubular 
acidosis,Renal tubular acidosis-osteopetrosis syndrome, 

P19835 carboxyl ester lipase (bile salt-stimulated lipase) Maturity-onset diabetes of the young, type VIII, 

Q9H3G5 carboxypeptidase, vitellogenic-like Genome-wide association with diabetes-related traits in the 
Framingham Heart Study, 

P10619 cathepsin A Galactosialidosis, 

P53634 cathepsin C Haim-Munk syndrome,Papillon-Lefevre 
syndrome,Periodontitis, juvenile, 

P07339 cathepsin D Ceroid lipofuscinosis, neuronal, 10, 

P00450 ceruloplasmin (ferroxidase) Cerebellar ataxia,Hemosiderosis, systemic, due to 
aceruloplasminemia,Hypoceruloplasminemia, hereditary, 

P48061 chemokine (C-X-C motif) ligand 12 (stromal cell-
derived factor 1) 

AIDS, resistance to,Genomewide association analysis of 
coronary artery disease, 
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P11597 cholesteryl ester transfer protein, plasma CETP deficiency,Common genetic variation near MC4R is 
associated with waist circumference and insulin 
resistance,Common variants at 30 loci contribute to polygenic 
dyslipidemia,Genome-wide association analysis of metabolic 
traits in a birth cohort from a founder population,High density 
lipoprotein cholesterol level QTL 
10,Hyperalphalipoproteinemia,Loci influencing lipid levels and 
coronary heart disease risk in 16 European population 
cohorts,Longevity, exceptional,Newly identified loci that 
influence lipid concentrations and risk of coronary artery 
disease,Six new loci associated with blood low-density 
lipoprotein cholesterol, high-density lipoprotein cholesterol or 
triglycerides in humans, 

Q9H444 chromatin modifying protein 4B Cataract, posterior polar, 3,Cataract, posterior polar-3, 

P00734 coagulation factor II (thrombin) Dysprothrombinemia,Hyperprothrombinemia,Hypoprothrombi
nemia, 

P03951 coagulation factor XI Factor XI deficiency, autosomal dominant,Factor XI 
deficiency, autosomal recessive, 

P12109 collagen, type VI, alpha 1 Bethlem myopathy,Ossification of the posterior longitudinal 
spinal ligaments,Ullrich congenital muscular dystrophy, 

P12111 collagen, type VI, alpha 3 Bethlem myopathy,Ullrich congenital muscular dystrophy, 

P02746 complement component 1, q subcomponent, B 
chain 

C1q deficiency, type B, 

P02747 complement component 1, q subcomponent, C 
chain 

C1q deficiency, type C, 

P0C0L4 complement component 4A (Rodgers blood 
group) 

Blood group, Rodgers,C4 deficiency,Systemic lupus 
erythematosus, susceptibility to or protection against, 

P0C0L5 complement component 4B (Chido blood group) C4 deficiency, 

P01031 complement component 5 C5 deficiency,Liver fibrosis, susceptibility to, 

P10643 complement component 7 C7 deficiency, 

P07357 complement component 8, alpha polypeptide C8 deficiency, type I, 

P07358 complement component 8, beta polypeptide C8 deficiency, type II, 

P02748 complement component 9 C9 deficiency,C9 deficiency with dermatomyositis, 

P00751 complement factor B Macular degeneration, age-related, reduced risk of, 

P08603 complement factor H Basal laminar drusen,Complement factor H 
deficiency,Complement factor H polymorphism in age-related 
macular degeneration,Factor H and factor H-like 1,Hemolytic-
uremic syndrome,Macular degeneration, age-related, 
4,Membranoproliferative glomerulonephritis with CFH 
deficiency,Myocardial infarction, susceptibility to, 

P05156 complement factor I C3b inactivator deficiency,Complement factor I deficiency, 

O60494 cubilin (intrinsic factor-cobalamin receptor) Megaloblastic anemia-1, Finnish type, 

P01034 cystatin C A genome-wide association for kidney function and 
endocrine-related traits in the NHLBI's Framingham Heart 
Study,Cerebral amyloid angiopathy,Macular degeneration, 
age-related, 11, 

P24855 deoxyribonuclease I Systemic lupus erythematosus, susceptibility to, 

P81605 Dermcidin Meta-analysis of genome-wide association data and large-
scale replication identifies additional susceptibility loci for type 
2 diabetes, 

Q02413 desmoglein 1 Keratosis palmoplantaris striata I, 

P15924 Desmoplakin Arrhythmogenic right ventricular dysplasia 8,Dilated 
cardiomyopathy with woolly hair and 
keratoderma,Epidermolysis bullosa, lethal 
acantholytic,Keratosis palmoplantaris striata II,Skin fragility-
woolly hair syndrome, 

P06733 enolase 1, (alpha) Enolase deficiency, 

P01133 epidermal growth factor (beta-urogastrone) Hypomagnesemia 4, renal, 

P02794 ferritin, heavy polypeptide 1; ferritin, heavy 
polypeptide-like 16; similar to ferritin, heavy 
polypeptide 1; ferritin, heavy polypeptide-like 3 
pseudogene 

Iron overload, autosomal dominant, 
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P02671 fibrinogen alpha chain Afibrinogenemia, congenital,Amyloidosis, hereditary 
renal,Dysfibrinogenemia, alpha type, causing bleeding 
diathesis,Dysfibrinogenemia, alpha type, causing recurrent 
thrombosis, 

P02675 fibrinogen beta chain Afibrinogenemia, congenital,Dysfibrinogenemia, beta 
type,Thrombophilia, dysfibrinogenemic, 

P02679 fibrinogen gamma chain Dysfibrinogenemia, gamma type,Hypofibrinogenemia, gamma 
type,Thrombophilia, dysfibrinogenemic, 

P02751 fibronectin 1 Glomerulopathy with fibronectin deposits 2,Glomerulopathy, 
fibronectin, 

P09467 fructose-1,6-bisphosphatase 1 Fructose-1,6-bidphosphatase deficiency,Fructose-
bisphosphatase deficiency, 

P04066 fucosidase, alpha-L- 1, tissue Fucosidosis, 

P34059 galactosamine (N-acetyl)-6-sulfate sulfatase Mucopolysaccharidosis IVA, 

P06280 galactosidase, alpha Fabry disease,Fabry disease, cardiac variant, 

P16278 galactosidase, beta 1 GM1-gangliosidosis,GM1-gangliosidosis, type I,GM1-
gangliosidosis, type II,GM1-gangliosidosis, type III,Morquio 
syndrome B,Mucopolysaccharidosis IVB, 

P19440 gamma-glutamyltransferase light chain 3; 
gamma-glutamyltransferase 4 pseudogene; 
gamma-glutamyltransferase 2; gamma-
glutamyltransferase 1; gamma-
glutamyltransferase light chain 5 pseudogene 

A Genome-Wide Association Study Identifies Protein 
Quantitative Trait Loci (pQTLs),Gamma-glutamyltransferase, 
familial high serum,Glutathionuria,Population-based genome-
wide association studies reveal six loci influencing plasma 
levels of liver enzymes, 

P06396 gelsolin (amyloidosis, Finnish type) Amyloidosis, Finnish type, 

Q8N0V5 glucosaminyl (N-acetyl) transferase 2, I-
branching enzyme (I blood group) 

Adult i phenotype with congenital cataract,Adult i phenotype 
without cataract,Blood group, Ii,Juvenile congenital cataract, 

P06744 glucose phosphate isomerise Hemolytic anemia due to glucosephosphate isomerase 
deficiency,Hydrops fetalis, one form, 

P10253 glucosidase, alpha; acid Glycogen storage disease II, 

P08236 glucuronidase, beta Mucopolysaccharidosis VII, 

Q07075 glutamyl aminopeptidase (aminopeptidase A) Variants conferring risk of atrial fibrillation on chromosome 
4q25, 

P51654 glypican 3 Simpson-Golabi-Behmel syndrome, type 1,Wilms tumor, 
somatic, 

Q92896 golgi apparatus protein 1 A pilot genome-wide association study of early-onset breast 
cancer, 

P02774 group-specific component (vitamin D binding 
protein) 

Graves disease, susceptibility to, 3, 

P50148 guanine nucleotide binding protein (G protein), q 
polypeptide 

Bleeding diathesis due to GNAQ deficiency, 

P00738 haptoglobin-related protein; haptoglobin Anhaptoglobinemia,Hypohaptoglobinemia, 

Q96RW7 hemicentin 1 Macular degeneration, age-related, 1, 

P69905 hemoglobin, alpha 2; hemoglobin, alpha 1 Erythremias, alpha-,Erythrocytosis,Heinz body anemia,Heinz 
body anemias, alpha-,Hemoglobin H disease,Hypochromic 
microcytic anemia,Methemoglobinemias, alpha-,Thalassemia, 
alpha-,Thalassemias, alpha-, 

P68871 hemoglobin, beta A QTL influencing F cell production maps to a gene encoding 
a zinc-finger protein on chromosome 2p15,Erythremias, beta-
,Genome-wide association study shows BCL11A associated 
with persistent fetal hemoglobin and amelioration of the 
phenotype of beta-thalassemia,Heinz body anemias, beta-
,Hereditary persistence of fetal hemoglobin,HPFH, deletion 
type,Methemoglobinemias, beta-,Sickle cell 
anemia,Thalassemia-beta, dominant inclusion-
body,Thalassemias, beta-, 

P98160 heparan sulfate proteoglycan 2 Dyssegmental dysplasia, Silverman-Handmaker 
type,Schwartz-Jampel syndrome, type 1, 

P04196 histidine-rich glycoprotein ?Thrombophilia due to elevated HRG,Thrombophilia due to 
HRG deficiency, 

Q12794 hyaluronoglucosaminidase 1 Mucopolysaccharidosis type IX, 

P02649 hypothetical LOC100129500; apolipoprotein E A genome-wide association study for late-onset al.,zheimer's 
disease using DNA pooling,A high-density whole-genome 
association study reveals that APOE is the major susceptibility 
gene for sporadic late-onset al.,zheimer's disease,Alzheimer 
disease-2,Candidate single-nucleotide polymorphisms from a 
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genomewide association study of Alzheimer disease,Common 
SNPs in HMGCR in Micronesians and Whites Associated With 
LDL-Cholesterol Levels Affect Alternative Splicing of 
Exon13,Common variants at 30 loci contribute to polygenic 
dyslipidemia,Hyperlipoproteinemia, type III,Lipoprotein 
glomerulopathy,Loci influencing lipid levels and coronary 
heart disease risk in 16 European population cohorts,Loci 
Related to Metabolic-Syndrome Pathways Including LEPR, 
HNF1A, IL6R, and GCKR Associate with Plasma C-Reactive 
Protein: The Women's Genome Health Study,Macular 
degeneration, age-related,Myocardial infarction 
susceptibility,Newly identified loci that influence lipid 
concentrations and risk of coronary artery 
disease,Polymorphisms of the HNF1A Gene Encoding 
Hepatocyte Nuclear Factor-1 Alpha are Associated with C-
Reactive Protein,Sea-blue histiocyte disease,Six new loci 
associated with blood low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol or triglycerides in 
humans,Sorl1 as an Alzheimer's disease predisposition gene?, 

P01857, 
P01871, 
P01860 

immunoglobulin heavy constant gamma 1 (G1m 
marker); immunoglobulin heavy constant mu; 
immunoglobulin heavy variable 3-7; 
immunoglobulin heavy constant gamma 3 (G3m 
marker); immunoglobulin heavy variable 3-11 
(gene/pseudogene); immunoglobulin heavy 
variable 4-31; immunoglobulin heavy locus 

Agammaglobulinemia, 

P01859 immunoglobulin heavy constant gamma 2 (G2m 
marker) 

IgG2 deficiency, selective, 

P35858 insulin-like growth factor binding protein, acid 
labile subunit 

Acid-labile subunit, deficiency of, 

Q9Y287 integral membrane protein 2B Dementia, familial British,Dementia, familial Danish, 

Q14624 inter-alpha (globulin) inhibitor H4 (plasma 
Kallikrein-sensitive glycoprotein) 

Hypercholesterolemia, susceptibility to, 

P14923 junction plakoglobin Arrhythmogenic right ventricular dysplasia, familial, 12,Naxos 
disease, 

P06870 kallikrein 1 Kallikrein, decreased urinary activity of, 

P07288 kallikrein-related peptidase 3 Multiple newly identified loci associated with prostate cancer 
susceptibility, 

P04264 keratin 1 Cyclic ichthyosis with epidermolytic 
hyperkeratosis,Epidermolytic hyperkeratosis,Ichthyosis histrix, 
Curth-Macklin type,Keratosis palmoplantaria striata,Keratosis 
palmoplantaris striata III,Unna-Thost disease, 
nonepidermolytic, 

P13645 keratin 10 Epidermolytic hyperkeratosis,Ichthyosis, cyclic, with 
epidermolytic hyperkeratosis,Keratosis palmaris et 
plantaris,Nevus, epidermal, epidermolytic hyperkeratotic type, 

P13646 keratin 13 White sponge nevus, 

P02533 keratin 14 Dermatopathia pigmentosa reticularis,Epidermolysis bullosa 
simplex, Dowling-Meara type,Epidermolysis bullosa simplex, 
Koebner type,Epidermolysis bullosa simplex, Koebner, 
Dowling-Meara, and Weber-Cockayne types, 131900, 
131760,Epidermolysis bullosa simplex, 
recessive,Epidermolysis bullosa simplex, Weber-Cockayne 
type,Naegeli-Franceschetti-Jadassohn syndrome, 

P08779 keratin 16; keratin type 16-like Pachyonychia congenita, Jadassohn-Lewandowsky 
type,Palmoplantar keratoderma, 
nonepidermolytic,Palmoplantar verrucous nevus, unilateral, 

Q04695 keratin 17; keratin 17 pseudogene 3 Pachyonychia congenita, Jackson-Lawler type,Steatocystoma 
multiplex, 

P35908 keratin 2 Ichthyosis bullosa of Siemens, 

P12035 keratin 3 Meesmann corneal dystrophy, 

P19013 keratin 4 White sponge nevus, 

P13647 keratin 5 Dowling-Degos disease,Epidermolysis bullosa simplex with 
migratory circinate erythema,Epidermolysis bullosa simplex 
with mottled pigmentation,Epidermolysis bullosa simplex, 
Dowling-Meara type,Epidermolysis bullosa simplex, Koebner 
type,Epidermolysis bullosa simplex, Koebner, Dowling-Meara, 
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and Weber-Cockayne types, 131900, 131760,Epidermolysis 
bullosa simplex, Weber-Cockayne type, 

P02538 keratin 6A Pachyonychia congenita, Jadassohn-Lewandowsky type, 

P04259 keratin 6B Pachyonychia congenita, Jackson-Lawler type, 

P35527 keratin 9 Epidermolytic palmoplantar keratoderma, 

P01042 kininogen 1 Fitzgerald factor deficiency,High molecular weight kininogen 
deficiency,High-molecular-weight kininogen 
deficiency,Kininogen deficiency, 

P00338 lactate dehydrogenase A Exertional myoglobinuria due to deficiency of LDH-A, 

P07195 lactate dehydrogenase B Lactate dehydrogenase-B deficiency, 

P98164 low density lipoprotein-related protein 2 Donnai-Barrow syndrome, 

P13473 lysosomal-associated membrane protein 2 Glycogen storage disease IIb, 

P61626 lysozyme (renal amyloidosis) Amyloidosis, renal,Genomic association analysis suggests 
chromosome 12 locus influencing antihypertensive response 
to thiazide diuretic,Many sequence variants affecting diversity 
of adult human height, 

O00187 mannan-binding lectin serine peptidase 2 MASP2 deficiency, 

P08473 membrane metallo-endopeptidase Membranous glomerulonephritis, antenatal,Neutral 
endopeptidase deficiency, 

P05164 Myeloperoxidase Alzheimer disease, susceptibility to,Lung cancer, protection 
against, in smokers,Myeloperoxidase deficiency, 

P27169 paraoxonase 1 Coronary artery disease, susceptibility to,Coronary artery 
spasm, susceptibility to,Genome-wide association scan 
identifies candidate polymorphisms associated with 
differential response to anti-TNF treatment in Rheumatoid 
Arthritis,Organophosphate poisoning, sensitivity to, 

P00558 phosphoglycerate kinase 1 Myoglobinuria/hemolysis due to PGK 
deficiency,Phosphoglycerate kinase 1 deficiency, 

P00747 Plasminogen Conjunctivitis, ligneous,Plasminogen deficiency, types I and 
II,Plasminogen Tochigi disease,Thrombophilia, 
dysplasminogenemic, 

P00749 plasminogen activator, urokinase Alzheimer disease, late-onset, susceptibility to, 

P01833 polymeric immunoglobulin receptor IgA nephropathy, susceptibility to, 

O43490 prominin 1 Cone-rod dystrophy 12,Macular dystrophy 2, Bull's 
eye,Macular dystrophy, retinal, 2,Retinal degeneration, 
autosomal recessive, prominin-related,Retinitis pigmentosa-
41,Stargardt disease 4, 

P22891 protein Z, vitamin K-dependent plasma 
glycoprotein 

Genome-wide association and linkage analyses of hemostatic 
factors and hematological phenotypes in the Framingham 
Heart Study, 

Q12913 protein tyrosine phosphatase, receptor type, J Colon cancer, somatic, 

P35241 Radixin Deafness, autosomal recessive, 24, 

Q9HD89 Resistin Diabetes mellitus, noninsulin-dependent, susceptibility 
to,Hypertension, insulin resistance-related, susceptibility to, 

P02753 retinol binding protein 4, plasma Retinol binding protein, deficiency of, 

Q14108 scavenger receptor class B, member 2 Action myoclonus-renal failure syndrome, 

P01009 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 1 

Emphysema,Emphysema-cirrhosis,Hemorrhagic diathesis due 
to 'antithrombin' Pittsburgh,Hemorrhagic diathesis due to 
`antithrombin' Pittsburgh,Pulmonary disease, chronic 
obstructive, susceptibility to, 

P01011 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 3 

Alpha-1-antichymotrypsin deficiency,Cerebrovascular disease, 
occlusive, 

P05154 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 5 

Protein C inhibitor deficiency, 

P08185 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 6 

Corticosteroid-binding globulin deficiency,Transcortin 
deficiency, 

P05543 serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 7 

Thyroxine-binding globulin deficiency, 

P01008 serpin peptidase inhibitor, clade C 
(antithrombin), member 1 

Antithrombin III deficiency, 

P05546 serpin peptidase inhibitor, clade D (heparin 
cofactor), member 1 

Thrombophilia due to heparin cofactor II deficiency, 
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P08697 serpin peptidase inhibitor, clade F (alpha-2 
antiplasmin, pigment epithelium derived factor), 
member 2 

Plasmin inhibitor deficiency, 

P05155 serpin peptidase inhibitor, clade G (C1 inhibitor), 
member 1 

Angioedema, hereditary,Angioedema, hereditary, types I and 
II,Complement component 4, partial deficiency of, 

Q99519 sialidase 1 (lysosomal sialidase) Sialidosis, type I,Sialidosis, type II, 

P62258 similar to 14-3-3 protein epsilon (14-3-3E) 
(Mitochondrial import stimulation factor L 
subunit) (MSF L); tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase 
activation protein, epsilon polypeptide 

Miller-Dieker lissencephaly, 

P53990 similar to CG10103; KIAA0174 Conduct disorder and ADHD: Evaluation of conduct problems 
as a categorical and quantitative trait in the international 
multicentre ADHD genetics study, 

P01024 similar to Complement C3 precursor; 
complement component 3; hypothetical protein 
LOC100133511 

C3 deficiency,Macular degeneration, age-related, 9, 

P02792 similar to ferritin, light polypeptide; ferritin, light 
polypeptide 

Basal ganglia disease, adult-onset,Hyperferritinemia-cataract 
syndrome, 

P01834 similar to hCG26659; immunoglobulin kappa 
constant; similar to Ig kappa chain V-I region 
HK102 precursor 

Kappa light chain deficiency, 

Q99835 smoothened homolog (Drosophila) Basal cell carcinoma, somatic, 

P55017 solute carrier family 12 (sodium/chloride 
transporters), member 3 

Gitelman syndrome, 

Q13621 solute carrier family 12 
(sodium/potassium/chloride transporters), 
member 1 

Bartter syndrome, type 1, 

P31639 solute carrier family 5 (sodium/glucose 
cotransporter), member 2 

Renal glucosuria, 

Q92673 sortilin-related receptor, L(DLR class) A repeats-
containing 

Alzheimer disease, pathogenesis, association with, 

P08294 superoxide dismutase 3, extracellular Superoxide dismutase, elevated extracellular, 

P19971 thymidine phosphorylase Mitochondrial neurogastrointestinal encephalomyopathy 
syndrome, 

P02787 Transferring Atransferrinemia,Iron deficiency anemia, susceptibility 
to,Variants in TF and HFE explain approximately 40% of 
genetic variation in serum-transferrin levels, 

P02766 Transthyretin Amyloid neuropathy, familial, several allelic types,Amyloid 
polyneuropathy, several types,Amyloidosis, senile 
systemic,Carpal tunnel syndrome, 
familial,Dystransthyretinemic hyperthyroxinemia, 

O14773 tripeptidyl peptidase I Ceroid-lipofuscinosis, neuronal 2, classic late infantile, 

P68366 tubulin, alpha 4a Many sequence variants affecting diversity of adult human 
height, 

Q99816 tumor susceptibility gene 101 Breast cancer, 

P63104 tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta 
polypeptide 

Conduct disorder and ADHD: Evaluation of conduct problems 
as a categorical and quantitative trait in the international 
multicentre ADHD genetics study, 

P07911 Uromodulin Glomerulocystic kidney disease with hyperuricemia and 
isosthenuria,Hyperuricemic nephropathy, familial 
juvenile,Medullary cystic kidney disease 2,Medullary cystic 
kidney disease 2 (autosomal dominant), 
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Supplementary table S3.3: The following genes were annotated and classified as having 

genetic association to cardiovascular diseases using DAVID Bioinformatics resources 6.7, 

National Institute of Allergy and Infectious Diseases (NIAID), NIH. Uniprot Ids and gene 

names are given. 

ID Gene Name 

P09543 2',3'-cyclic nucleotide 3' phosphodiesterase 

P08183 ATP-binding cassette, sub-family B (MDR/TAP), member 1 

P08571 CD14 molecule 

P63092 GNAS complex locus 

O43895 X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound 

P23526 Adenosylhomocysteinase 

P02765 alpha-2-HS-glycoprotein 

P01023 alpha-2-macroglobulin 

P12821 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 

Q9BYF1 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 

P01019 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

P08758 annexin A5 

P02647 apolipoprotein A-I 

P06727 apolipoprotein A-IV 

P04114 apolipoprotein B (including Ag(x) antigen) 

P02749 apolipoprotein H (beta-2-glycoprotein I) 

Q93088 betaine-homocysteine methyltransferase 

Q96KN2 carnosine dipeptidase 1 (metallopeptidase M20 family) 

P53634 cathepsin C 

P48061 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 

P11597 cholesteryl ester transfer protein, plasma 

P10909 Clusterin 

P00734 coagulation factor II (thrombin) 

P03951 coagulation factor XI 

P0C0L4 complement component 4A (Rodgers blood group) 

P0C0L5 complement component 4B (Chido blood group) 

P08603 complement factor H 

P01034 cystatin C 

P24855 deoxyribonuclease I 

O95865 dimethylarginine dimethylaminohydrolase 2 

P01133 epidermal growth factor (beta-urogastrone) 

P02671 fibrinogen alpha chain 

P02675 fibrinogen beta chain 

P02679 fibrinogen gamma chain 

P02751 fibronectin 1 

P06280 galactosidase, alpha 

Q16769 glutaminyl-peptide cyclotransferase 

P08263 glutathione S-transferase alpha 1 

P09211 glutathione S-transferase pi 1 
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P22352 glutathione peroxidase 3 (plasma) 

P00738 haptoglobin-related protein; haptoglobin 

P08107 heat shock 70kDa protein 1A; heat shock 70kDa protein 1B 

P68871 hemoglobin, beta 

P98160 heparan sulfate proteoglycan 2 

P02649 hypothetical LOC100129500; apolipoprotein E 

P06870 kallikrein 1 

P18428 lipopolysaccharide binding protein 

P05164 Myeloperoxidase 

P27169 paraoxonase 1 

P00747 Plasminogen 

P00749 plasminogen activator, urokinase 

P41222 prostaglandin D2 synthase, hematopoietic; prostaglandin D2 synthase 21kDa (brain) 

P22891 protein Z, vitamin K-dependent plasma glycoprotein 

Q9HD89 Resistin 

P34896 serine hydroxymethyltransferase 1 (soluble) 

P01009 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 

P01011 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 

P01008 serpin peptidase inhibitor, clade C (antithrombin), member 1 

Q14393 similar to growth arrest-specific 6; growth arrest-specific 6 

P55017 solute carrier family 12 (sodium/chloride transporters), member 3 

Q13621 solute carrier family 12 (sodium/potassium/chloride transporters), member 1 

P08294 superoxide dismutase 3, extracellular 

P07996 thrombospondin 1 

P02787 Transferring 

P02766 Transthyretin 

P07911 Uromodulin 

 

Supplementary table S3.4: The following genes were annotated and classified as having 

genetic association to renal diseases using DAVID Bioinformatics resources 6.7, National 

Institute of Allergy and Infectious Diseases (NIAID), NIH. Uniprot Ids and gene names are 

given. 

ID Gene Name 

P08183 ATP-binding cassette, sub-family B (MDR/TAP), member 1 

P08571 CD14 molecule 

P12821 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 

Q9BYF1 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 

P01019 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

P04114 apolipoprotein B (including Ag(x) antigen) 

Q96KN2 carnosine dipeptidase 1 (metallopeptidase M20 family) 

P11597 cholesteryl ester transfer protein, plasma 

P08603 complement factor H 
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P02675 fibrinogen beta chain 

P00738 haptoglobin-related protein; haptoglobin 

P08107 heat shock 70kDa protein 1A; heat shock 70kDa protein 1B 

P11142 heat shock 70kDa protein 8 

P02649 hypothetical LOC100129500; apolipoprotein E 

P01042 kininogen 1 

P02788 Lactotransferrin 

P05164 Myeloperoxidase 

P27169 paraoxonase 1 

P01833 polymeric immunoglobulin receptor 

P01009 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 

Q99519 sialidase 1 (lysosomal sialidase) 

P55017 solute carrier family 12 (sodium/chloride transporters), member 3 

P08294 superoxide dismutase 3, extracellular 

 

Supplementary table S3.5: Complete non-redundant list of proteins identified in the low 

speed pellet (P18,000g) using both DTT and CHAPS treatment methods. Uniprot accessions 

and gene names are given. 

UNIPROT_ACCESSION Gene name 

Q6UX06 olfactomedin 4 

P63104 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide 

O76031 ClpX caseinolytic peptidase X homolog (E. coli) 

P04114 apolipoprotein B (including Ag(x) antigen) 

P04279 semenogelin I 

P05109 S100 calcium binding protein A8 

Q86YZ3 Hornerin 

O00560 syndecan binding protein (syntenin) 

P23526 Adenosylhomocysteinase 

O95837 guanine nucleotide binding protein (G protein), alpha 14 

P02747 complement component 1, q subcomponent, C chain 

P06702 S100 calcium binding protein A9 

P15941 mucin 1, cell surface associated 

P63261 actin, gamma 1 

P01042 kininogen 1 

Q14624 inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein) 

P62879 guanine nucleotide binding protein (G protein), beta polypeptide 2 

P53675 clathrin, heavy chain-like 1 

P13929 enolase 3 (beta, muscle) 

P04196 histidine-rich glycoprotein 

P05090 apolipoprotein D 

P01011 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 

P00734 coagulation factor II (thrombin) 
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Q7Z5L0 vitelline membrane outer layer 1 homolog (chicken) 

P16278 galactosidase, beta 1 

Q9C0H2 tweety homolog 3 (Drosophila) 

P02760 alpha-1-microglobulin/bikunin precursor 

P50148 guanine nucleotide binding protein (G protein), q polypeptide 

P29972 aquaporin 1 (Colton blood group) 

P02652 apolipoprotein A-II 

P02679 fibrinogen gamma chain 

P04004 Vitronectin 

P36543 ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1 

P01009 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 

P21796 voltage-dependent anion channel 1; similar to voltage-dependent anion channel 1 

P50995 annexin A11 

P11678 eosinophil peroxidise 

P08133 annexin A6 

P21266 glutathione S-transferase mu 3 (brain) 

O43490 prominin 1 

Q53GD3 solute carrier family 44, member 4 

P68871 hemoglobin, beta 

Q8N2U0 chromosome 17 open reading frame 61 

Q9HCY8 S100 calcium binding protein A14 

P31949 S100 calcium binding protein A11; S100 calcium binding protein A11 pseudogene 

O00299 chloride intracellular channel 1 

P08779 keratin 16; keratin type 16-like 

P01593 similar to hCG1642538 

P62937 similar to TRIMCyp; peptidylprolyl isomerase A (cyclophilin A); peptidylprolyl isomerase A 
(cyclophilin A)-like 3 

O75594 peptidoglycan recognition protein 1 

Q9NSB4 keratin 82 

P07195 lactate dehydrogenase B 

Q8N474 secreted frizzled-related protein 1 

P02768 Albumin 

Q9HB40 serine carboxypeptidase 1 

Q9BQE3 tubulin, alpha 1c 

Q8WUM4 programmed cell death 6 interacting protein 

P07911 Uromodulin 

O43895 X-prolyl aminopeptidase (aminopeptidase P) 2, membrane-bound 

P15144 alanyl (membrane) aminopeptidase 

P01834 similar to hCG26659; immunoglobulin kappa constant; similar to Ig kappa chain V-I region 
HK102 precursor 

P35241 Radixin 

P13987 CD59 molecule, complement regulatory protein 

P39059 collagen, type XV, alpha 1 

Q6EMK4 Vasorin 

P55017 solute carrier family 12 (sodium/chloride transporters), member 3 

P04083 annexin A1 
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P13646 keratin 13 

Q5D862 filaggrin family member 2 

Q9Y277 voltage-dependent anion channel 3 

Q13510 N-acylsphingosine amidohydrolase (acid ceramidase) 1 

P16444 dipeptidase 1 (renal) 

P13647 keratin 5 

P02647 apolipoprotein A-I 

O00159 myosin IC 

P07355 annexin A2 pseudogene 3; annexin A2; annexin A2 pseudogene 1 

Q14390 gamma-glutamyltransferase light chain 2 

P02743 amyloid P component, serum 

Q08380 lectin, galactoside-binding, soluble, 3 binding protein 

P04003 complement component 4 binding protein, alpha 

Q7Z794 keratin 77 

Q9H1C7 chromosome 5 open reading frame 32 

P01024 similar to Complement C3 precursor; complement component 3; hypothetical protein 
LOC100133511 

P19012 keratin 15 

P01876 immunoglobulin heavy constant alpha 1 

P02649 hypothetical LOC100129500; apolipoprotein E 

P00338 lactate dehydrogenase A 

P08727 keratin 19 

P02538 keratin 6A 

P36873 protein phosphatase 1, catalytic subunit, gamma isoform 

O60814 histone cluster 1, H2bk 

P04350 tubulin, beta 4 

O60635 tetraspanin 1 

P54793 arylsulfatase F 

Q9Y512 sorting and assembly machinery component 50 homolog (S. cerevisiae) 

O43653 prostate stem cell antigen 

P09211 glutathione S-transferase pi 1 

P01591 immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides 

P12277 creatine kinase, brain 

Q96FQ6 S100 calcium binding protein A16 

P08473 membrane metallo-endopeptidase 

Q8WVN6 secreted and transmembrane 1 

Q9H853 tubulin, alpha 4b (pseudogene) 

P10909 Clusterin 

P00558 phosphoglycerate kinase 1 

P15309 acid phosphatase, prostate 

P13645 keratin 10 

P20073 annexin A7 

P10153 ribonuclease, RNase A family, 2 (liver, eosinophil-derived neurotoxin) 

Q6UWR7 ectonucleotide pyrophosphatase/phosphodiesterase 6 

P31946 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide 
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P61026 RAB10, member RAS oncogene family 

P01857 immunoglobulin heavy constant gamma 1 (G1m marker); immunoglobulin heavy constant 
mu; immunoglobulin heavy variable 3-7; immunoglobulin heavy constant gamma 3 (G3m 
marker); immunoglobulin heavy variable 3-11 (gene/pseudogene); immunoglobulin heavy 
variable 4-31; immunoglobulin heavy locus 

P62873 guanine nucleotide binding protein (G protein), beta polypeptide 1 

P35908 keratin 2 

P26038 Moesin 

O96009 napsin A aspartic peptidase 

P12109 collagen, type VI, alpha 1 

P09525 annexin A4 

Q92820 gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) 

P01133 epidermal growth factor (beta-urogastrone) 

Q02383 semenogelin II 

P00918 carbonic anhydrase II 

P00748 coagulation factor XII (Hageman factor) 

P12035 keratin 3 

P04264 keratin 1 

Q9HD89 Resistin 

P02533 keratin 14 

P02788 Lactotransferrin 

P15924 Desmoplakin 

P15311 hypothetical protein LOC100129652; ezrin 

P60709 actin, beta 

P48061 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 

P02751 fibronectin 1 

P35527 keratin 9 

P02787 Transferring 

P19013 keratin 4 

Q6ZVX7 non-specific cytotoxic cell receptor protein 1 homolog (zebrafish) 

P06727 apolipoprotein A-IV 

P04259 keratin 6B 

P54802 N-acetylglucosaminidase, alpha- 

P04406 glyceraldehyde-3-phosphate dehydrogenase-like 6; hypothetical protein LOC100133042; 
glyceraldehyde-3-phosphate dehydrogenase 

P00749 plasminogen activator, urokinase 

P01833 polymeric immunoglobulin receptor 

P08758 annexin A5 

P05154 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 5 

Q12931 TNF receptor-associated protein 1 

P60953 cell division cycle 42 (GTP binding protein, 25kDa); cell division cycle 42 pseudogene 2 

Q13621 solute carrier family 12 (sodium/potassium/chloride transporters), member 1 

A6NIZ1 Ras-related protein Rap-1b-like protein 

A6NGU5 Putative gamma-glutamyltranspeptidase 3 

P01620 Ig kappa chain V-III region SIE 

P0CG04 Ig lambda-1 chain C regions 

P0CG05 Ig lambda-2 chain C regions 
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P04220 Ig mu heavy chain disease protein (BOT) 
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A Lipid affinity-based novel method 

for isolation of urinary membrane 

vesicles and their subsequent 
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4.1 Introduction 

Human urine contains various types of vesicles including exosomes (40-100nm) (Pisitkun, 

Shen & Knepper 2004) and bigger vesicles (66-187nm) which reportedly contain polycystin-

1, aquaporin-2 and podocin (Hogan et al., 2009) as well as podocalyxin-positive 125nm 

membrane particles (Hara et al., 2010). These vesicles can potentially provide information 

about the pathophysiological state of the entire urinary tract. The traditional method for 

urinary exosome isolation was the differential centrifugation where a low speed 

centrifugation (17,000g) was adopted to remove whole cells, tubular casts and membrane 

fragments. This is followed by ultracentrifugation (200,000g) to pellet down urinary 

exosomes and other similar sized vesicles (Pisitkun, Shen & Knepper, 2004). However, the 

problem associated with this method is contamination of the 200,000g pellet with soluble or 

aggregated high-abundance proteins like Tamm-Horsfall glycoprotein (THP) and albumin. It 

was found that, entrapped in THP polymers, exosomes were also precipitating with low speed 

pellet (P17,000g) (Fernandez-Llama et al., 2010). To remove contamination of aggregated 

proteins one solution has been proposed which includes treatment of low speed (P17,000g) 

and high speed pellets (P200,000g) with DTT followed by a second centrifugation at low and 

high speed as above. This procedure increases the exosomal yield but it creates a new 

problem as THP is now present in high amounts in the high speed pellet. This may interfere 

with the further analysis of exosomal pellet by masking low abundance proteins. Moreover, 

the random re-oxidation subsequent to DTT treatment would result in multiple proteins losing 

their activity (See Chapter 2). If an activity-based analysis is the ultimate aim of the 

membrane vesicle isolation, this loss in activity would render it unsuccessful. 

Another method which can be employed for vesicle isolation is sucrose density gradient 

centrifugation which has been used mainly to isolate exosomes from immune cells and cell 

culture but also on urinary exosome separations (Welton et al., 2010; Keller et al., 2011). The 
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sucrose density gradient ultracentrifugation method is more sensitive and yields the purest 

form of exosomes with minimal contamination with high abundance proteins. It is recognised 

that both these ultracentrifugation-based methods are very labour intensive and require 

extensive instrumentation and long processing times making them unsuitable for clinical 

settings. The fact that these isolation methods are labour intensive involving manual 

techniques makes them impractical when a large number of samples have to be handled. 

Alternatives have been proposed including the use of a nanomembrane concentrator (pore 

size 13nm and MWCO 100kDa) to enrich for the exosomal fraction from urine (Cheruvanky 

et al., 2007). Advantages of the method are the short processing time and the use of 

inexpensive instrumentation like a table-top centrifuge. The 100 kDa ‘cut-off’ would mean 

that high molecular weight proteins and protein complexes not part of exosomes would be 

enriched as well and would interfere with further analysis masking low abundance proteins in 

exosomes. Many proteins, like THP and albumin, remain in polymeric forms (Atmeh, 

Shabsoug 1997; Fernandez-Llama et al., 2010) that would be enriched with exosomes as 

well. It was already shown that nanomembrane ultrafiltration enriched soluble proteins, like 

albumin and α-1-antitrypsin in large amounts along with exosomes, when applied on 

nephrotic urine (Rood et al., 2010) which limited the detection of microvesicular proteins. 

This study also used an alternative method which showed that loading crude 

ultracentrifugation pellet onto a size exclusion chromatography columns yielded three 

fractions (HMW, LMW and >10kDa). The high molecular weight fraction (HMW) showed 

the presence of exosomal markers while the low molecular weight (LMW) fraction had only 

high abundance proteins (Rood et al., 2010). The LMW fraction was present only in 

nephrotic urine and absent in normal urine suggesting that large amounts of high abundance 

proteins interfere with the isolation and subsequent analysis of exosomes in nephrotic urine. 

Another method has been proposed involving the commercial reagent ExoQuick-TC (System 
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biosciences, Mountain view, CA) (Alvarez et al., 2012). This method is simple and easy to 

perform and involves precipitatation of the exosomes from minimally processed urine. 

However, it was found in the study that this reagent also precipitates the THP with the 

exosomal fraction making it no different from other methods. 

Taken together, most of the methods used in various studies are either labour intensive, 

require sophisticated instrumentation or they result in high abundance protein contamination 

in the vesicular fraction. Most of the methods mentioned above rely on biophysical 

parameters to separate membrane vesicles from urine which are shared by some of the 

contaminants as well. Therefore, there is need and scope for development of membrane 

vesicle isolation methods from the urine which are simple, robust and can be applied to a 

large number of samples without the need for additional sophisticated instrumentation. We 

hypothesized that a method based on affinity or biomolecular recognition should lead to a 

higher purity vesicle-containing fraction. The obvious choice for affinity, namely using 

immuno-affinity chromatography requires antibodies which are often expensive and, due to 

sensitivity to harsh elution conditions, their re-use is problematic if not completely 

impossible. Here we have developed a lipid affinity-based method for isolation of urinary 

microvesicles. Based on available information we have selected five peptides which bind to 

various lipids (phosphatidylserine, phosphatidylcholine, cholesterol, galactosylceramide and 

sphingomyelin) and immobilized synthetic biotinylated peptides on streptavidin agarose 

which was applied to ‘cell-free’ urine to enrich for microvesicles from urine. 
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4.2 Material and methods 

Urine collection has been described in chapter 2. 

4.2.1 Peptide-affinity chromatography 

Peptides were appropriately designed and thereafter obtained from Genscript USA Inc, NJ. 

Five peptides were selected based on their physicochemical properties (Table 4.1). Three of 

them showed strong affinity to phosphatidylserine (PS), cholesterol (CL) and sphingomyelin 

(SM) while two others bind phosphatidylcholine (PC). Two peptides binding PC were 

inserted in a single sequence separated by three glycine residues. This would be expected to 

increase avidity of the resulting peptides having two binding sites for PC. 

Table 4.1: List of all five peptides employed in the study. Amino acids in red denote glycine 

which was employed as a spacer to reduce steric hindrance because of the proximity of the 

peptide with the agarose beads. N-terminal glycine was biotinylated for capturing the peptide 

on streptavidin-agarose which was subsequently employed for affinity chromatography to 

isolate membrane vesicles from urine. 

Peptide Sequence Lipid binder Comments Reference 

P1 Biotin-

GGGGGFNFRLKAGQKIRFG 

 

Phosphatidylserine 

(PS) 

Naturally Found 

in PS-

decarboxylase, 

protein kinase C 

 (Igarashi 

et al., 

1995) 

P2 Biotin-GGGGGKRESGGGFREL 

 

Phoshpatidylcholine Synthetic 

peptides; Can 

bind HDL 

 (Navab et 

al., 2005) 

P3 Biotin-

GGGGATVLNYYVWRDNS 

 

Cholesterol Naturally found 

in Peripheral-

type 

benzodiazepine 

receptor 

 (Li et al., 

2001) 

P4 Biotin-

GGGGKQHTVTTTTKGENFTE

TDVKMMER 

 

Galactosylceramide, 

sphingomyelin 

Naturally found 

in Prion protein, 

can potentially 

bind Lipid rafts 

 (Mahfoud 

et al., 

2002) 
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Four or five glycines were added at the N-terminal and the first glycine in all the peptides 

was biotinylated. This biotin was used for immobilising the peptides on streptavidin-agarose 

(Genscript). 1mL of streptavidin-agarose resin was mixed with 3mg of the respective 

peptides (P1 and P2 dissolved in water while P3 and P4 dissolved in DMSO) diluted in 

phosphate buffer saline (PBS, pH 7.4) and left on a rotating mixer overnight. On the 

following day the resin was washed with PBS to remove non-bound peptide. The P200,000g 

fraction obtained from the traditional ultracentrifugation method was incubated with P1-

agarose overnight. The next day, after washing with 10mM phosphate buffer (20 column 

volumes) the bound vesicles were eluted with 100mM glycine buffer (pH 2.4). For affinity 

chromatography on whole urine, 50mL urine (SN2000g) was concentrated to 2mL using a 

Vivaspin (MWCO 5 or 300kDa, Sartorius, Goettingen). This reduction in volume was 

performed to reduce urine to manageable volumes without reaching high ionic strength or 

changing pH which would happen if dialysis and vacuum concentration was used. This 2mL 

volume was diluted to 4mL with 20mM phosphate buffer without salt and incubated with 

peptide-agarose on rotation overnight at 4°C. The non-bound fraction from peptide-agarose 

was collected the following day and resin was washed with phosphate buffer (20 column 

volumes). For elution 100mM glycine buffer (pH 2.4) was incubated with resin for 2 hours at 

+4
o
C while rotating. The eluate was dialysed in a membrane with 3.5 kDa ‘cut-off’ against 

water and concentrated in a speed vac concentrator. This concentrated eluate was used for 

SDS-PAGE and WB, as described in Chapter 2. It was found that reproducible results were 

obtained for these peptide columns up to 15-20 intermittent runs. 

Reduction, alkylation, trypsin digestion and mass spectrometric analysis were performed as 

described in Chapter 3.  
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4.3 Results  

4.3.1 Selection of peptides 

A number of studies have reported the typical lipid composition of exosomes derived from 

various sources. Interestingly, the phospholipid composition of the reticulocyte-derived 

exosomes is quite similar to the plasma memebrane of the cell (Vidal et al., 1989). 

Phosphatidylcholine (PC) is the major phospholipid followed by phosphatidylethanolamine 

(PE) and then phosphatidylserine (PS) and phosphatidylinositol (PI) while sphingomyelin 

(SM) is similar to combined PS+PI. In case of mast cell and dendritic cell-derived exosomes, 

SM is enriched in exosomes compared to parent cell (Laulagnier et al., 2004). Cholesterol 

(CL) is much more enriched in MHC II-bearing exosomes from B lymphocytes compared to 

the parent cell (Wubbolts et al., 2003) while in case of exosomes from erythrocytes and mast 

cells CL amount is highly similar to parent cell plasma membrane (Vidal et al., 1989; 

Laulagnier et al., 2004).  

Here, we sought to develop a lipid affinity-based method for isolation of urinary membrane 

vesicles from whole urine. Notably, our approach appears theoretically important as short 

peptides displaying binding to any of the above-mentioned lipids would be suitable for the 

task to isolate vesicles. For this purpose, we did a thorough literature search for short peptides 

and their binding properties to various lipids and five peptides with high affinity to various 

lipids were selected. The peptides selected are presented in Table 4.1. 

4.3.2 Peptide affinity chromatography 

Five peptides which bind various lipids (Table 4.1) were selected and 4-5 glycines were 

added to their N-terminal domain as a spacer to reduce steric hindrance resulting from 

proximity to the bead attached. These peptides with N-terminal glycine biotinylated allowing 

immobilisation to streptavidin-agarose, were obtained by peptide synthesis as supplied 
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commercially. To confirm if this approach using a lipid-binding peptide will work to isolate 

membrane vesicles, we first incubated P200,000g with P1-agarose and eluted the bound 

fraction.  

4.3.3 PS binding peptide binding to exosomal pellet from urine and MS analysis 

A small fraction of exosomes and the majority of ectosomes expose phosphatidylserine on 

their surface. Therefore, a crude pellet of exosomes (P200) was applied to P1-agarose to 

isolate only this fraction. This fraction was reduced, alkylated and trypsin digested and all 

proteins identified using LC-MS/MS. This served as positive control that this peptide (P1) 

actually is able to bind to membrane vesicles. 

A complete list of the proteins identified in P1-peptide enriched fraction of P200,000g is 

given in Appendix 4.A. A total of 295 proteins were identified unambiguously. These 

proteins were compared to previously published datasets of urinary exosomes and ‘exosome-

like’ vesicles. A comparison of P1-peptide-enriched proteins with two previous urine 

exosomal studies combined together (Pistikun et al.,. and Gonzalez et al., combined as 

Knepper) (Pisitkun, Shen & Knepper, 2004, Gonzales et al., 2009) and one study on urinary 

‘exosome-like’ vesicles (Hogan et al.,) (Hogan et al., 2009) is shown in Figure 4.1. 
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Figure 4.1: Comparison of P1-peptide enriched vesicle proteins with urinary exosomes (two 

studies combined as Knepper) (Pisitkun, Shen & Knepper, 2004) (Gonzales et al., 2009) and 

exosome-like vesicles (Hogan) (Hogan et al., 2009). For comparison, all the identifiers were 

converted to Unigene identifiers. 

Eighty-five proteins (28% of our identifications) were found to be shared among all three 

studies while other than these, P1-peptide-enriched proteins are more in common with 

urinary exosomes (Knepper, 63% of P1 identifications common with this set) than with 

‘exosome-like’ vesicles (Hogan, 31% of P1 proteins common with Hogan). However, very 

recently a study was published which has identified the highest number of proteins in urinary 

exosomes (3,280 proteins) to date (Wang et al., 2011). This study has used the same isolation 
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protocol for urinary exosomes as that of previous studies (Pisitkun, Shen & Knepper, 2004, 

Gonzales et al., 2009). Figure 4.2 shows the comparison of our protein list to the proteins 

they identified.  

 Figure 4.2: Comparison of P1-peptide-enriched vesicles with that of the largest protein 

identification study of urinary exosomes (Wang et al.,) (Wang et al., 2011). Gene identifiers 

were converted to Unigene for comparison. 

As can be seen in Figure 4.2, most of the proteins (93%) identified in our study are common 

to that of the largest previous study of urinary exosomes. This suggests that what we have 

enriched as vesicles is in common to the traditional protocol (ultracentrifugation-based 

isolation) used for urinary exosomes. It is to be noted that the differential centrifugation 

method will isolate a heterogenous mixture of different types of vesicles present in urine. 

Another study has previously been published which used complement receptor-1 (CR-1) 
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antibodies to enrich membrane vesicles from the urine of various patients having different 

types of kidney diseases (Lescuyer et al., 2008). CR-1 is an ectosomal marker which is 

known to be expressed by the glomerular visceral epithelial cells, podocytes, in the kidney 

(Pascual et al., 1994). When anti-CR-1 antibody-mediated enrichment of vesicles was used, 

76 proteins from different patient samples were identified. To establish whether this is a 

different population of vesicles than our P1-peptide-enriched vesicles (other urinary exosome 

studies), we compared these proteins with that of largest urinary exosome proteome study and 

our protein list (Figure 4.3). 

 

Figure 4.3: Comparison of anti-CR-1 immunopurified vesicles (Lescuyer et al., 2008) 

proteome with that of largest urinary exosome proteome (Wang et al.,) (Wang et al., 2011), 

our protein list (P1 peptide) and whole proteome identifications from Chapter 3 (CP200). 
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It can be seen in Figure 4.3 that all the proteins from CR-1 study, bar 9, have been identified 

in urinary exosome previously and a large proportion (60%) were found in our study (P1-

peptide) as well. Another 30% were identified in the whole proteome study reported in 

Chapter 3.  

Our protein list was annotated using IPA software (Redwood city, CA) and Blast2Go 

software (Conesa et al., 2005) and graphics were generated for cellular component-based, 

molecular function and biological process-based categories. Figure 4.4 shows the annotation 

of our protein list according to the cellular component group. 

 

Figure 4.4: Annotation of our protein list according to the cellular component to which they 

belong, using IPA software. For comparison, the total proteome list from Chapter 3 is also 

shown (CP200). 

Thirty-two% proteins belong to extracellular space while 37% were identified as cytosolic 

proteins. There are a large proportion of membrane proteins with 26% proteins belonging to 

membrane fraction. Only 1% proteins belong to nucleus. It can be seen in the Figure that by 

comparison all categories are similarly represented in total proteome of P200,000g  from 
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Chapter 3. This suggests that what we have enriched using P1-peptides are similar to vesicles 

present in P200,000g isolated using differential centrifugation. The annotation of the protein 

list according to molecular function is shown in Figure 4.5. 

 

Figure 4.5: Annotation of our protein list according to their molecular functions using 

Blast2Go. 

Forty-two percent proteins were annotated as ‘other’, which is comparable to those found in 

total proteome from chapter 3. Enzymes comprise 25 % of the proteins while peptidases and 

transporters make 11 % each. One % each of growth factors, G-protein coupled receptors, 

kinases and ion channels were found. Two % each of transmembrane receptor, 

transcription/translation regulators and phosphatases were found as well. Again, all the 

categories are similarly represented. The G-protein coupled receptor (GPCRC5C) was found 

in both the CP200 from Chapter 3 and P1-peptide-enriched vesicles here. However, 

smoothened, frizzled family receptor and frizzled family receptor 4 were unique to CP200 
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and P1-peptide, respectively. Similarly, in kinases, phosphoglycerate kinase 1 was common 

to both datasets. However, creatine kinase (brain) and phosphofrucokinase (liver) were 

unique to CP200 and P1-peptide, respectively. 

Figure 4.6 shows the annotation of our protein list using Blast2Go software (Conesa et al., 

2005) according to biological processes in which they are involved. Seventy transport 

proteins were identified in our list followed by 64 proteins involved in regulation of 

biological quality and 62 involved in cellular component organization. Forty-two proteins are 

involved in the defense response while 61 proteins take part in immune response. 

 

Figure 4.6: Annotation of our protein list according to biological processes in which these 

proteins are involved using Blast2Go software (Conesa et al., 2005). 
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Forty-six proteins involved in proteolysis while 40 and 42 proteins involved in positive and 

negative regulation of cellular processes respectively were found in our list. Notably, 41 

proteins involved in signalling pathways and 48 proteins involved in signal transmission were 

also identified. 

4.3.4 Isolation of membrane vesicles from minimally processed urine 

After confirming that our peptide-agarose matrix is able to bind membrane vesicles as 

evidenced by proteins identified in the elution of P1-agarose from P200,000g, all four 

peptide-agarose columns were applied to purify membrane vesicles from whole urine cleared 

of cells (Supernatant 2000xg). Phosphate buffer (10mM, pH 7.2) was chosen as binding 

buffer and concentrated urine (50mL was reduced to 2mL by Vivaspin MWCO 300kDa; 

5kDa filter also works fine) was incubated with peptide-agarose overnight at rotation at +4
o
C. 

After washing with binding buffer, elution was performed with reduced pH (100mM glycine, 

pH 2.4). The flow chart of the whole method is shown in Figure 4.7. 
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Figure 4.7: The workflow for peptide-affinity chromatography. 

The same chromatography was performed on all four peptides separately. In another 

experiment, the non-bound fraction of P1-agarose was applied to P2-agarose to recover 

vesicles which are left in the urine. The obtained elution was dialysed to remove glycine and 

SDS-PAGE was performed after reducing the volume by speed vacuum centrifugation.  

Figure 4.8 shows the SDS-PAGE of elution of all four peptides and P2 elution of P1 non-

bound. 
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Figure 4.8: Shows the silver stained SDS-PAGE of elutions of all four peptide-agarose 

columns (P1-P4) in non-reducing conditions. P2-P1 means that non-bound of P1 was applied 

to P2-agarose. P200 is the crude exosomal fraction obtained using the traditional differential 

centrifugation method (Pisitkun, Shen & Knepper, 2004). P1-P4 her means the vesicles 

eluted from these peptides were loaded onto the gel.  

It can be seen in Figure 4.8 that all four peptides enrich proteins which resemble a complex 

pattern from low to high molecular weight suggesting presence of membrane vesicles. Whole 

urine also has proteins in the same range as these peptide elution fraction but THP and 

albumin are more abundant in the urine and break the pattern of multiple proteins present in 

similar intensity. This is not the case here suggesting peptide-eluted fraction is a sub-fraction 

of urine. Approximately, the same amount of protein (3µg by the Bradford assay) was loaded 
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onto every lane. It can be clearly seen that in the crude exosomal fraction, obtained by 

traditional differential centrifugation method, the major proteins are Tamm-Horsfall 

glycoprotein (THP) at ~80kDa and albumin at ~65kDa. All other proteins are not clearly 

resolved and are present in low amounts. This is not the case with all four peptide-agarose 

elutions which show a complex pattern with least interference of THP and albumin. P2-P1 

shows two bands above 250kDa which are not present in other peptide elutions even in P2-

agarose elutions when applied to whole urine. Apart from this the, major pattern of proteins is 

similar in all four peptide elutions although difference can be found such as presence of 

several proteins which can be seen to be less or more enriched among four peptides. 

4.3.4.1 Western blotting with exosomal markers and abundant proteins 

All four peptide-agarose elutions were immunoblotted for exosomal marker CD63 (Figures 

4.9). CD63 (Figure 4.9) is present as 48kDa band in P1, P2 and P2-P1 elutions in high 

intensity band while less intense in P3 and P4. This 48kDa band appears to be enriched in 

peptide-agarose elutions compared to P200 (crude exosomal fraction).  
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Figure 4.9: Western blot of all four peptide-agarose elutions using anti-CD63 antibodies in 

reducing conditions. P200 is the crude vesicular pellet obtained from urine using differential 

centrifugation method. P1 to P4 are elution fractions of peptide-agaroses when urine to 

applied to these peptide columns. P2-P1 means that non-bound fraction of P1-peptide-agarose 

was applied to P2 peptide-agarose and bound fraction of P2 was eluted. 

There is another band at 65kDa which is most intense in P1 compared to P200 while less so 

in other peptide elutions. P1 and P2-P1 elutions have a band at 100kDa while another band at 

75kDa is present in all elutions of P1 and P2 but not in P3 and P4. Looking at the overall 

pattern, P1 is similar to P2 and P3 is similar to P4. P2-P1 although a bit similar to P1 and P2, 

seems to be different from all other peptides. CD63 is a tetraspanin protein which is 

considered as a marker of exosomal membrane vesicles. The pattern found here for CD63 has 

some similarity with DTT, and CHAPS-treated P200,000g and P18,000g as reported in 



252 
 

Chapter 2 (Figure 2.4, Panel  A). However, multiple low molecular weight bands are present 

here which were not visible in those fractions. In comparison with crude pellet P18,000g 

(Figure 2.4, Chapter 2) the band at 50 and 25 kDa  is common however the band at ~65kDa 

found here in P1 and P2 peptide is not present in crude P18,000g.  

Using the traditional method of isolation of membrane vesicles, a high interference of THP 

and albumin is observed in the exosomal fraction. We immuno-blotted all peptide eluates and 

non-bound fractions for THP and all eluates for albumin and observed the efficiency of 

peptide-affinity chromatography in enriching vesicles without interference by these proteins.  
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Figure 4.10: Western blot of peptide-agarose non-bound and elution using anti-THP 

antibodies. P200 is the crude vesicular pellet obtained from urine using differential 

centrifugation method. P1 to P4 are elution fractions of peptide-agaroses when urine to 

applied to these peptide columns. P2-P1 means that non-bound fraction of P1-peptide-agarose 

was applied to P2 peptide-agarose and bound fraction of P2 was eluted. 

The non-bound fraction of peptide-agarose chromatography has significant amount of THP, 

as can be seen in Figure 4.10. However, in eluates, THP is present in negligible amounts 

when compared to crude P200 (exosomal fraction) obtained by traditional centrifugation 

although very small fragments (~12kDa) can be seen in all peptide elutions. P2 elution has 

more THP compared to P1 and P3 elutions but when P1 non-bound is applied to P2 THP is 

absent in the elution fraction. Peptide 4 elution also has almost undetectable levels of THP. 
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Figure 4.11 shows that full length albumin (~66kDa) is present in large amounts in crude 

exosomal pellets obtained by the traditional centrifugation method. Higher order aggregates 

of albumin and smaller fragments are also present in significant amounts in this pellet. 

However, all the peptide elutions are essentially free of fragments and aggregates of albumin 

while full-length albumin (whole protein ~66kDa) is present in a trace amount. Once again a 

similar pattern to THP is observed here with slightly more albumin (although non-significant 

amounts) being present in the P2 elution and when non-bound of P1 is applied to P2-agarose 

the eluate of P2 becomes free of it. 

 

Figure 4.11: All peptide-agarose elutions were immunoblotted for albumin using a 

monoclonal anti-albumin antibody. P200 is the crude vesicular pellet obtained from urine 

using differential centrifugation method. P1 to P4 are elution fractions of peptide-agaroses 

when urine to applied to these peptide columns. P2-P1 means that non-bound fraction of P1-

peptide-agarose was applied to P2 peptide-agarose and bound fraction of P2 was eluted. 
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Finally, to validate that the isolation of membrane vesicles is due to the lipid binding ability 

of the peptide and not due to the non-specific adsorption to stationary phase matrix, the whole 

procedure was repeated on streptavidin-agarose alone without the immobilised peptides. 

Figure 4.12 shows the SDS-PAGE of our negative control and the P1 peptide-agarose eluate. 

 

Figure 4.12: Silver stained SDS-PAGE of negative control (Streptavidin agarose) and P1-

peptide eluate. N: streptavidin agarose (without any peptide immobilised) and P1: P1 peptide 

agarose. 

There are three proteins which are common to the negative control and to P1-peptide agarose, 

as can be seen in Figure 4.12,. One is approximately 80kDa which could be THP and the 

other two being 60kDa and 12kDa proteins. These three proteins might be becoming enriched 

with elution non-specifically owing to their interaction with the stationary phase matrix or 
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streptavidin. The overall pattern of P1-peptide agarose is similar to one shown in Figure 4.8. 

To exclude binding of these peptides to any exosomal or membrane vesicle proteins, we 

probed the P200,000g, P18,000g and SN200,000g with these peptides by western blotting 

using a previously published protocol (Melrose, Ghosh & Patel, 1995). No bands were 

observed suggesting these peptides are enriching vesicles through lipid affinity only.  

4.3.4.2 Transmission electron microscopy (TEM) of vesicles isolated from minimally 

processed urine using P1 and P2 

Peptide P3 and P4 had lower levels of CD63. Therefore, they were excluded from further 

analysis. Elutions from P1 and P2 were further analysed by TEM to assess the morphology 

and size of the vesicles enriched. Figure 4.13 shows the representative vesicles enriched by 

peptide P1. 

 

Figure 4.13: TEM analyses of vesicles enriched by PS binding peptide (P1). The scale bar in 

both the panels of figures is 500nm and direct magnification in panel A is 6000x while in 

panel B, it is 5000x. The bars shown below the picture are 500nm. 

The figure 4.14 shows the representative TEM picture of vesicles enriched by PC binding 

peptide (P2). 
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Figure 4.14: TEM analyses of vesicles enriched by PC binding peptide (P2). The scale bar 

shown below the picture in is 2000nm and direct magnification is 2500x. 

Multiple pictures were obtained for both the peptides and size of all the vesicles calculated 

using ImageJ software. A graph was created for size distribution of vesicles enriched by both 

the peptides (Figure 4.15). 
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Figure 4.15: Size distribution of vesicles enriched by both the peptides (P1 and P2). X-axis is 

the size of vesicles in nanometers (nm) and Y-axis is the percent vesicles in any given size 

range. 

The majority of the vesicles in the both the peptides were from 200-550nm (72% for P1 and 

77% for P2) while lesser number of vesicles were found in 550-700nm range (18% for P1 

and 11% for P2). There were approximately 10% of vesicles which were bigger than 700 and 

lesser than 1µm for both the peptides. This clearly shows that, although P1 can bind to 

vesicles in the exosomal fraction (section 4.3.3), both the peptides (P1 and P2) when applied 
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to minimally processed whole urine, enrich vesicles (200-1000nm) which have been given 

the name microvesicles or microparticles in the literature. The published procedure for 

vesicle counting from TEM pictures employs 20 image fields (Fernandez-Llama et al., 2010). 

We have captured 7 fields for P1 peptide and 5 fields for P2 peptides. Therefore the size 

distribution presented in figure 4.15 has a limitation for extrapolation to the whole sample. 

This size distribution is crude and only provides a rough idea about the percentage of vesicles 

having a given size.  
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4.4 Discussion 

A novel method to enrich membrane vesicles from urine was developed. Five peptides were 

designed based on the published literature, which show binding to PS, PC, CL and SM. Three 

of these peptides are naturally present in various proteins which bind the cognate lipids listed 

in Table1, while two peptides (KRES and FREL) are synthetic which have been shown to 

bind to PC (Navab et al., 2005). These 2 PC binding peptides were joined together in a single 

sequence separated by 3 glycine residues while 5 glycines were used to separate them from 

the agarose bead. All of the other three peptides were similarly inserted in a sequence. 

phosphate buffer saline (PBS pH 7.4) was initially chosen as binding buffer because lipid-

binding proteins (parent proteins of these peptides) bind the respective lipids intracellularly 

(pH 7.2) and the synthetic peptides has been shown to bind to PC at this pH (Navab et al., 

2005). However, urine has THP which precipitates at 150mM salt concentration (Kobayashi 

& Fukuoka, 2001), and therefore, NaCl was removed from the buffer. Finally only 10mM 

phosphate buffer (pH 7.2) was used as the binding buffer. Urine was centrifuged at 2000xg 

and the pellet containing cells was discarded because shed or dead cells present in urine 

would bind to these lipid-binding columns.  

The traditional method of urinary exosome isolation was differential centrifugation (Pisitkun, 

Shen & Knepper, 2004; Gonzales et al., 2009; Wang et al., 2011). However, this method 

enriches for soluble proteins like THP and albumin in large quantities which are known to 

interfere with the subsequent analysis of vesicles and mask low abundance proteins. THP also 

causes a lot of membrane vesicles to pellet down at low speed by entrapping them in its fibers 

(Fernandez-Llama et al., 2010). DTT treatment has been proposed to resolve this problem 

and it does increase the yield but causes a lot of THP to precipitate with the high speed 

exosomal fraction (P200,000g) instead of low speed (P18,000g) (Fernandez-Llama et al., 

2010). Other methods like density-gradient ultracentrifugation have less interference from 
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soluble protein but they are labour-intensive and not suitable for clinical applications. Our 

method, as shown in the results section, does not enrich for soluble proteins like THP and 

albumin while enriching CD63, which is a membrane vesicle marker. CD63, a tetraspanin, is 

traditionally an exosomal marker (exosomes are 40-100nm in size) but, as can be seen in the 

TEM picture of P1 and P2 peptide elution, only vesicles bigger than 200nm are present. 

These results question the specificity of CD63 as a stringent exosomal marker. CD63 has 

been shown to float in high density regions (1.26-1.29 g/ml) of a sucrose gradient. Although 

density floatation has not been determined for larger microvesicles or microparticles, a 

density of 1.26-1.29g/mL would be expected for vesicles much larger than exosomes. In 

another study, CD63 was detected in bigger microvesicles (100-1000nm) secreted by 

platelets although it was more enriched in exosomes. This evidence from other studies, as 

well as our study, present a picture in which CD63, although enriched in exosomal fractions 

from various sources, is also present on bigger microvesicles. 

Only a fraction of exosomes, and most of the ectosomes and microvesicles (100-1000nm), 

are expected to expose PS while all vesicles would be expected to expose PC. We have 

fractionated the traditional high speed pellet (200,000g) known to isolate exosomes using a 

PS binding peptide. In the PS-exposing fraction of exosomal pellet enriched by P1-peptide 

agarose, CD63, CD82 and CD9 were identified but TSG101 and alix, which reflect the 

endosomal origin of the exosomes, were absent. CD133 or prominin-1, which is a marker of 

membrane particles (Marzesco et al., 2005), was also identified in our PS-binding peptide-

enriched fraction. Recently it was shown that hematopoietic stem cells release CD133-

positive vesicles upon differentiation and CD63 inside the cell co-localises with CD133 

(Bauer et al., 2011). Therefore, distinct populations of membrane vesicles are all present in 

the high speed pellet from the traditional centrifugation method. This leads us to suggest that 

the high speed pellet generated using the traditional differential centrifugation method is a 
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heterogeneous mixture of different types of vesicles derived from different pathways of 

trafficking in cells. This view is also supported by our finding that, PS exposing vesicles, 

from the high speed pellet, have the majority of the proteins common to the largest urinary 

exosomes proteomic study (Wang et al., 2011). The relevance of PS exposure only on a small 

fraction of exosomes is not clear; therefore a method to fractionate and purify only the PS-

exposing exosomes from other populations of exosomes will help future functional studies on 

these vesicles. Moreover, MFG-E8 or lactadherin was identified to be present in crude as well 

as CHAPS and DTT-treated P18,000g and P200,000g pellets (Figure 2.4 Panel C, Chapter 2). 

This protein can bind integrins present on exosomes (Taylor et al., 1997) as well as PS which 

might be present on surface of different types of vesicles. This protein could potentially 

cross-link various populations of vesicles and cause them to pellet down at a given 

centrifugal force (e.g. 18,000g or 200,000g). 

The vivaspin filtration column was used in our protocol because it can reduce the volume of 

urine to a manageable volume and maintain the same ionic strength at the same time. 

Therefore vivaspin-concentrated samples will be free of high ionic strength (typically seen in 

other concentration methods such as vacuum concentration) which might interfere with 

peptide vesicle binding. When P1 and P2 peptides are employed to isolate membrane vesicles 

from minimally processed whole urine, these peptides enrich mostly bigger vesicles (200-

1000nm). However, P1 peptide can bind to exosomal fractions enriching a sub-population of 

exosomes (Section 4.3.3) or ‘exosome-like’ vesicles. There could be two reasons for this 

discrepancy:  

1. Microvesicles (100-1000nm) expose a greater amount of PS on their surface and, 

therefore, smaller vesicles are not enriched which expose only small amounts of PS. 

This was shown to be true in case for platelet microvesicles and exosomes where only 

18% of exosomes expose PS on their surface while most microvesicles expose PS.  
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2. There are a much higher number of microvesicles present in urine and small sub-

populations of exosomes exposing PS lose out in competition with microvesicles for 

binding to P1 peptide resin. Although crude information about numbers of smaller 

exosome and ‘exosome-like’ vesicles has been reported (Fernandez-Llama et al., 

2010), there is no data about numbers of bigger microvesicles in urine. Therefore, no 

comparisons can be made and this remains only a hypothesis. 

There is no data for PC exposure on membrane vesicles in the literature and we propose the 

above same two arguments for explaining the lack of presence of smaller exosomes and 

‘exosome-like’ vesicles in P2 elution fractions. Bigger microvesicles (100-1000nm) having 

procoagulant activity in the urine of rabbits has been described (Wiggins et al., 1987). These 

vesicles are thought to bud from glomerular epithelial cells and are also visible in the 

proximal tubular lumen. The procoagulant activity was ‘tissue factor/Factor VII-like’ which 

was associated with microvesicles (100-1000nm). No report of such vesicles exists in human 

urine samples therefore we are the first to show the presence of microvesicles in urine which 

expose PS on their surface and might contain procoagulant activity. 

This method is very simple and can be performed in any laboratory without the need for 

expensive instrumentation or trained professionals. In the future, an automated method for 

membrane vesicles isolation from urine using these peptides bound to stationary phase can be 

envisaged. Moreover, most of the proteins identified in urinary vesicles from patients of 

various types of nephropathies (CR-1) are common with our study (60% overlap between 

both the studies) and this suggests the clinical utility of our method of isolation of membrane 

vesicles. 
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Supplementary table S4.1: Total proteins identified in the membrane vesicles enriched from 

P200,000g using P1-Peptide agarose. Uniprot accessions, sequence coverage, PSM, peptides 

found, number of amino acid in the proteins, molecular weight, calculated PI, mascot score 

and description of the proteins is given. 

Accession Coverage 
% 

# PSMs # 
Peptides 

# 
AAs 

MW 
[kDa] 

calc. 
pI 

Score Description 

P62258 12.16 2 2 255 29.2 4.74 135.78 14-3-3 protein epsilon OS=Homo 
sapiens GN=YWHAE PE=1 SV=1 - 
[1433E_HUMAN] 

P63104 4.90 1 1 245 27.7 4.79 64.56 14-3-3 protein zeta/delta OS=Homo 
sapiens GN=YWHAZ PE=1 SV=1 - 
[1433Z_HUMAN] 

Q9BUT1 4.90 1 1 245 26.7 7.65 82.20 3-hydroxybutyrate dehydrogenase 
type 2 OS=Homo sapiens GN=BDH2 
PE=1 SV=2 - [BDH2_HUMAN] 

Q8TCD5 8.96 1 1 201 23.4 6.64 80.01 5'(3')-deoxyribonucleotidase, 
cytosolic type OS=Homo sapiens 
GN=NT5C PE=1 SV=2 - 
[NT5C_HUMAN] 

P17858 1.92 1 1 780 85.0 7.50 65.71 6-phosphofructokinase, liver type 
OS=Homo sapiens GN=PFKL PE=1 
SV=6 - [K6PL_HUMAN] 

Q96IU4 16.19 3 3 210 22.3 6.40 108.53 Abhydrolase domain-containing 
protein 14B OS=Homo sapiens 
GN=ABHD14B PE=1 SV=1 - 
[ABHEB_HUMAN] 

Q13510 25.57 12 7 395 44.6 7.62 474.76 Acid ceramidase OS=Homo sapiens 
GN=ASAH1 PE=1 SV=5 - 
[ASAH1_HUMAN] 

P60709 17.87 6 5 375 41.7 5.48 325.20 Actin, cytoplasmic 1 OS=Homo 
sapiens GN=ACTB PE=1 SV=1 - 
[ACTB_HUMAN] 

P23526 6.71 3 3 432 47.7 6.34 122.91 Adenosylhomocysteinase OS=Homo 
sapiens GN=AHCY PE=1 SV=4 - 
[SAHH_HUMAN] 

Q06278 1.20 1 1 1338 147.8 7.17 66.61 Aldehyde oxidase OS=Homo sapiens 
GN=AOX1 PE=2 SV=2 - 
[ADO_HUMAN] 

P01011 19.86 6 6 423 47.6 5.52 343.23 Alpha-1-antichymotrypsin OS=Homo 
sapiens GN=SERPINA3 PE=1 SV=2 - 
[AACT_HUMAN] 

P01009 33.25 15 11 418 46.7 5.59 702.93 Alpha-1-antitrypsin OS=Homo 
sapiens GN=SERPINA1 PE=1 SV=3 - 
[A1AT_HUMAN] 

P08697 15.27 5 5 491 54.5 6.29 209.54 Alpha-2-antiplasmin OS=Homo 
sapiens GN=SERPINF2 PE=1 SV=3 - 
[A2AP_HUMAN] 

P02765 3.81 1 1 367 39.3 5.72 60.41 Alpha-2-HS-glycoprotein OS=Homo 
sapiens GN=AHSG PE=1 SV=1 - 
[FETUA_HUMAN] 

P04745 20.16 6 6 511 57.7 6.93 301.99 Alpha-amylase 1 OS=Homo sapiens 
GN=AMY1A PE=1 SV=2 - 
[AMY1_HUMAN] 

P19961 16.05 6 6 511 57.7 7.09 321.43 Alpha-amylase 2B OS=Homo sapiens 
GN=AMY2B PE=1 SV=1 - 
[AMY2B_HUMAN] 

P06733 8.53 2 2 434 47.1 7.39 131.52 Alpha-enolase OS=Homo sapiens 
GN=ENO1 PE=1 SV=2 - 
[ENOA_HUMAN] 

P06280 6.76 2 2 429 48.7 5.60 138.47 Alpha-galactosidase A OS=Homo 
sapiens GN=GLA PE=1 SV=1 - 
[AGAL_HUMAN] 
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P17050 6.57 2 2 411 46.5 5.19 105.96 Alpha-N-acetylgalactosaminidase 
OS=Homo sapiens GN=NAGA PE=1 
SV=2 - [NAGAB_HUMAN] 

P54802 23.69 14 12 743 82.1 6.54 686.14 Alpha-N-acetylglucosaminidase 
OS=Homo sapiens GN=NAGLU PE=1 
SV=1 - [ANAG_HUMAN] 

P19801 3.73 2 2 751 85.3 7.09 92.58 Amiloride-sensitive amine oxidase 
[copper-containing] OS=Homo 
sapiens GN=ABP1 PE=1 SV=4 - 
[ABP1_HUMAN] 

P15144 28.23 24 18 967 109.5 5.48 1093.36 Aminopeptidase N OS=Homo sapiens 
GN=ANPEP PE=1 SV=4 - 
[AMPN_HUMAN] 

Q9UBD6 2.71 1 1 479 53.1 6.39 76.92 Ammonium transporter Rh type C 
OS=Homo sapiens GN=RHCG PE=1 
SV=1 - [RHCG_HUMAN] 

Q9UKU9 5.88 3 3 493 57.1 7.53 118.68 Angiopoietin-related protein 2 
OS=Homo sapiens GN=ANGPTL2 
PE=2 SV=1 - [ANGL2_HUMAN] 

P12821 1.07 1 1 1306 149.6 6.39 71.25 Angiotensin-converting enzyme 
OS=Homo sapiens GN=ACE PE=1 
SV=1 - [ACE_HUMAN] 

P50995 5.35 2 2 505 54.4 7.65 120.56 Annexin A11 OS=Homo sapiens 
GN=ANXA11 PE=1 SV=1 - 
[ANX11_HUMAN] 

P01008 13.58 4 4 464 52.6 6.71 200.24 Antithrombin-III OS=Homo sapiens 
GN=SERPINC1 PE=1 SV=1 - 
[ANT3_HUMAN] 

P05090 38.10 16 10 189 21.3 5.15 548.73 Apolipoprotein D OS=Homo sapiens 
GN=APOD PE=1 SV=1 - 
[APOD_HUMAN] 

P02649 21.14 6 5 317 36.1 5.73 319.65 Apolipoprotein E OS=Homo sapiens 
GN=APOE PE=1 SV=1 - 
[APOE_HUMAN] 

P29972 5.58 1 1 269 28.5 7.42 110.95 Aquaporin-1 OS=Homo sapiens 
GN=AQP1 PE=1 SV=3 - 
[AQP1_HUMAN] 

P00966 10.19 3 3 412 46.5 8.02 165.18 Argininosuccinate synthase 
OS=Homo sapiens GN=ASS1 PE=1 
SV=2 - [ASSY_HUMAN] 

P15289 3.35 1 1 507 53.6 6.07 88.12 Arylsulfatase A OS=Homo sapiens 
GN=ARSA PE=1 SV=3 - 
[ARSA_HUMAN] 

P25705 2.35 1 1 553 59.7 9.13 60.23 ATP synthase subunit alpha, 
mitochondrial OS=Homo sapiens 
GN=ATP5A1 PE=1 SV=1 - 
[ATPA_HUMAN] 

P06576 2.46 1 1 529 56.5 5.40 88.64 ATP synthase subunit beta, 
mitochondrial OS=Homo sapiens 
GN=ATP5B PE=1 SV=3 - 
[ATPB_HUMAN] 

O75882 7.35 9 8 1429 158.4 7.31 385.18 Attractin OS=Homo sapiens 
GN=ATRN PE=1 SV=2 - 
[ATRN_HUMAN] 

P98160 1.62 5 5 4391 468.5 6.51 227.69 Basement membrane-specific 
heparan sulfate proteoglycan core 
protein OS=Homo sapiens 
GN=HSPG2 PE=1 SV=3 - 
[PGBM_HUMAN] 

P15291 5.03 1 1 398 43.9 8.65 96.50 Beta-1,4-galactosyltransferase 1 
OS=Homo sapiens GN=B4GALT1 
PE=1 SV=5 - [B4GT1_HUMAN] 

P16278 24.08 15 14 677 76.0 6.57 595.22 Beta-galactosidase OS=Homo sapiens 
GN=GLB1 PE=1 SV=2 - 
[BGAL_HUMAN] 

P08236 4.30 2 2 651 74.7 7.02 104.80 Beta-glucuronidase OS=Homo 
sapiens GN=GUSB PE=1 SV=2 - 
[BGLR_HUMAN] 

P06865 5.86 2 2 529 60.7 5.16 115.60 Beta-hexosaminidase subunit alpha 
OS=Homo sapiens GN=HEXA PE=1 
SV=1 - [HEXA_HUMAN] 
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P07686 1.80 1 1 556 63.1 6.76 62.70 Beta-hexosaminidase subunit beta 
OS=Homo sapiens GN=HEXB PE=1 
SV=3 - [HEXB_HUMAN] 

Q93088 19.95 6 6 406 45.0 7.03 332.85 Betaine--homocysteine S-
methyltransferase 1 OS=Homo 
sapiens GN=BHMT PE=1 SV=2 - 
[BHMT1_HUMAN] 

O00462 1.48 1 1 879 100.8 5.52 79.44 Beta-mannosidase OS=Homo sapiens 
GN=MANBA PE=1 SV=3 - 
[MANBA_HUMAN] 

P52848 0.79 1 1 882 100.8 7.97 62.44 Bifunctional heparan sulfate N-
deacetylase/N-sulfotransferase 1 
OS=Homo sapiens GN=NDST1 PE=1 
SV=1 - [NDST1_HUMAN] 

P21810 2.99 1 1 368 41.6 7.52 68.04 Biglycan OS=Homo sapiens GN=BGN 
PE=1 SV=2 - [PGS1_HUMAN] 

Q5VW32 6.33 2 2 411 46.4 7.65 98.65 BRO1 domain-containing protein 
BROX OS=Homo sapiens GN=BROX 
PE=1 SV=1 - [BROX_HUMAN] 

P12830 2.61 3 2 882 97.4 4.73 133.91 Cadherin-1 OS=Homo sapiens 
GN=CDH1 PE=1 SV=3 - 
[CADH1_HUMAN] 

Q9BYE9 6.49 6 6 1310 141.5 4.50 251.84 Cadherin-related family member 2 
OS=Homo sapiens GN=CDHR2 PE=1 
SV=2 - [CDHR2_HUMAN] 

Q9HBB8 4.50 2 2 845 88.2 4.93 86.73 Cadherin-related family member 5 
OS=Homo sapiens GN=CDHR5 PE=1 
SV=3 - [CDHR5_HUMAN] 

P00918 6.15 1 1 260 29.2 7.40 69.24 Carbonic anhydrase 2 OS=Homo 
sapiens GN=CA2 PE=1 SV=2 - 
[CAH2_HUMAN] 

P22792 8.81 4 3 545 60.6 5.99 201.13 Carboxypeptidase N subunit 2 
OS=Homo sapiens GN=CPN2 PE=1 
SV=2 - [CPN2_HUMAN] 

P07858 12.68 4 3 339 37.8 6.30 222.70 Cathepsin B OS=Homo sapiens 
GN=CTSB PE=1 SV=3 - 
[CATB_HUMAN] 

P07339 5.10 2 2 412 44.5 6.54 115.82 Cathepsin D OS=Homo sapiens 
GN=CTSD PE=1 SV=1 - 
[CATD_HUMAN] 

P09668 12.54 3 2 335 37.4 8.07 195.04 Cathepsin H OS=Homo sapiens 
GN=CTSH PE=1 SV=4 - 
[CATH_HUMAN] 

P11717 3.17 5 5 2491 274.1 5.91 167.49 Cation-independent mannose-6-
phosphate receptor OS=Homo 
sapiens GN=IGF2R PE=1 SV=2 - 
[MPRI_HUMAN] 

P13987 15.63 3 2 128 14.2 6.48 154.26 CD59 glycoprotein OS=Homo sapiens 
GN=CD59 PE=1 SV=1 - 
[CD59_HUMAN] 

P08962 7.56 4 3 238 25.6 7.81 153.86 CD63 antigen OS=Homo sapiens 
GN=CD63 PE=1 SV=2 - 
[CD63_HUMAN] 

P27701 3.75 1 1 267 29.6 5.24 61.76 CD82 antigen OS=Homo sapiens 
GN=CD82 PE=1 SV=1 - 
[CD82_HUMAN] 

P21926 15.35 2 2 228 25.4 7.15 138.54 CD9 antigen OS=Homo sapiens 
GN=CD9 PE=1 SV=4 - 
[CD9_HUMAN] 

P00450 27.98 20 18 1065 122.1 5.72 809.80 Ceruloplasmin OS=Homo sapiens 
GN=CP PE=1 SV=1 - 
[CERU_HUMAN] 

P11597 25.15 11 11 493 54.7 6.09 406.75 Cholesteryl ester transfer protein 
OS=Homo sapiens GN=CETP PE=1 
SV=2 - [CETP_HUMAN] 

Q8WWI5 6.09 3 3 657 73.3 8.60 98.54 Choline transporter-like protein 1 
OS=Homo sapiens GN=SLC44A1 
PE=1 SV=1 - [CTL1_HUMAN] 

Q8IWA5 14.02 7 7 706 80.1 8.62 270.76 Choline transporter-like protein 2 
OS=Homo sapiens GN=SLC44A2 
PE=1 SV=2 - [CTL2_HUMAN] 
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Q53GD3 7.61 10 6 710 79.2 8.59 361.93 Choline transporter-like protein 4 
OS=Homo sapiens GN=SLC44A4 
PE=2 SV=1 - [CTL4_HUMAN] 

P10909 26.95 13 10 449 52.5 6.27 565.78 Clusterin OS=Homo sapiens GN=CLU 
PE=1 SV=1 - [CLUS_HUMAN] 

P12109 5.06 3 3 1028 108.5 5.43 141.93 Collagen alpha-1(VI) chain OS=Homo 
sapiens GN=COL6A1 PE=1 SV=3 - 
[CO6A1_HUMAN] 

P39059 1.95 2 2 1388 141.6 5.00 99.58 Collagen alpha-1(XV) chain 
OS=Homo sapiens GN=COL15A1 
PE=1 SV=2 - [COFA1_HUMAN] 

Q9HBJ8 5.86 1 1 222 25.2 5.63 58.38 Collectrin OS=Homo sapiens 
GN=TMEM27 PE=1 SV=1 - 
[TMM27_HUMAN] 

Q9NZP8 6.37 4 2 487 53.5 7.20 191.48 Complement C1r subcomponent-like 
protein OS=Homo sapiens GN=C1RL 
PE=1 SV=2 - [C1RL_HUMAN] 

P01024 12.69 17 16 1663 187.0 6.40 765.93 Complement C3 OS=Homo sapiens 
GN=C3 PE=1 SV=2 - [CO3_HUMAN] 

P0C0L4 5.85 5 5 1744 192.7 7.08 248.32 Complement C4-A OS=Homo sapiens 
GN=C4A PE=1 SV=1 - 
[CO4A_HUMAN] 

P02748 3.94 2 2 559 63.1 5.59 81.66 Complement component C9 
OS=Homo sapiens GN=C9 PE=1 
SV=2 - [CO9_HUMAN] 

Q2VPA4 2.11 1 1 569 62.7 7.23 59.58 Complement component receptor 1-
like protein OS=Homo sapiens 
GN=CR1L PE=1 SV=3 - 
[CR1L_HUMAN] 

P08603 1.06 1 1 1231 139.0 6.61 75.96 Complement factor H OS=Homo 
sapiens GN=CFH PE=1 SV=4 - 
[CFAH_HUMAN] 

Q12860 1.87 2 2 1018 113.2 5.90 74.32 Contactin-1 OS=Homo sapiens 
GN=CNTN1 PE=1 SV=1 - 
[CNTN1_HUMAN] 

O60494 22.77 77 55 3623 398.4 5.35 3521.98 Cubilin OS=Homo sapiens GN=CUBN 
PE=1 SV=4 - [CUBN_HUMAN] 

P01034 10.96 1 1 146 15.8 8.75 91.29 Cystatin-C OS=Homo sapiens 
GN=CST3 PE=1 SV=1 - 
[CYTC_HUMAN] 

Q96KP4 7.37 2 2 475 52.8 5.97 131.04 Cytosolic non-specific dipeptidase 
OS=Homo sapiens GN=CNDP2 PE=1 
SV=2 - [CNDP2_HUMAN] 

P24855 6.74 2 2 282 31.4 4.91 105.13 Deoxyribonuclease-1 OS=Homo 
sapiens GN=DNASE1 PE=1 SV=1 - 
[DNAS1_HUMAN] 

P81605 22.73 2 2 110 11.3 6.54 118.08 Dermcidin OS=Homo sapiens 
GN=DCD PE=1 SV=2 - 
[DCD_HUMAN] 

P15924 0.91 2 2 2871 331.6 6.81 121.81 Desmoplakin OS=Homo sapiens 
GN=DSP PE=1 SV=3 - 
[DESP_HUMAN] 

P16444 19.95 6 5 411 45.6 6.15 272.09 Dipeptidase 1 OS=Homo sapiens 
GN=DPEP1 PE=1 SV=3 - 
[DPEP1_HUMAN] 

P53634 24.19 10 8 463 51.8 6.99 360.09 Dipeptidyl peptidase 1 OS=Homo 
sapiens GN=CTSC PE=1 SV=1 - 
[CATC_HUMAN] 

Q9UHL4 17.48 9 6 492 54.3 6.32 387.29 Dipeptidyl peptidase 2 OS=Homo 
sapiens GN=DPP7 PE=1 SV=3 - 
[DPP2_HUMAN] 

P27487 12.01 8 8 766 88.2 6.04 392.73 Dipeptidyl peptidase 4 OS=Homo 
sapiens GN=DPP4 PE=1 SV=2 - 
[DPP4_HUMAN] 

Q12805 27.99 12 9 493 54.6 5.07 549.25 EGF-containing fibulin-like 
extracellular matrix protein 1 
OS=Homo sapiens GN=EFEMP1 
PE=1 SV=2 - [FBLN3_HUMAN] 

P68104 8.87 2 2 462 50.1 9.01 89.82 Elongation factor 1-alpha 1 
OS=Homo sapiens GN=EEF1A1 PE=1 
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SV=1 - [EF1A1_HUMAN] 

Q9Y2E5 3.77 3 3 1009 113.9 7.24 150.15 Epididymis-specific alpha-
mannosidase OS=Homo sapiens 
GN=MAN2B2 PE=1 SV=4 - 
[MA2B2_HUMAN] 

P33947 10.38 2 2 212 24.4 8.72 112.87 ER lumen protein retaining receptor 2 
OS=Homo sapiens GN=KDELR2 PE=1 
SV=1 - [ERD22_HUMAN] 

P56537 7.35 1 1 245 26.6 4.68 70.15 Eukaryotic translation initiation factor 
6 OS=Homo sapiens GN=EIF6 PE=1 
SV=1 - [IF6_HUMAN] 

P43005 3.44 1 1 524 57.1 5.71 77.44 Excitatory amino acid transporter 3 
OS=Homo sapiens GN=SLC1A1 PE=1 
SV=2 - [EAA3_HUMAN] 

P15311 2.90 1 1 586 69.4 6.27 88.81 Ezrin OS=Homo sapiens GN=EZR 
PE=1 SV=4 - [EZRI_HUMAN] 

P35555 0.45 1 1 2871 312.1 4.93 64.99 Fibrillin-1 OS=Homo sapiens 
GN=FBN1 PE=1 SV=2 - 
[FBN1_HUMAN] 

P02671 12.70 12 6 866 94.9 6.01 558.20 Fibrinogen alpha chain OS=Homo 
sapiens GN=FGA PE=1 SV=2 - 
[FIBA_HUMAN] 

Q14314 12.30 5 4 439 50.2 7.39 264.28 Fibroleukin OS=Homo sapiens 
GN=FGL2 PE=1 SV=1 - 
[FGL2_HUMAN] 

P02751 12.57 19 17 2386 262.5 5.71 843.15 Fibronectin OS=Homo sapiens 
GN=FN1 PE=1 SV=4 - 
[FINC_HUMAN] 

P23142 7.54 5 5 703 77.2 5.22 207.01 Fibulin-1 OS=Homo sapiens 
GN=FBLN1 PE=1 SV=4 - 
[FBLN1_HUMAN] 

Q5D862 2.55 2 2 2391 247.9 8.31 75.61 Filaggrin-2 OS=Homo sapiens 
GN=FLG2 PE=1 SV=1 - 
[FILA2_HUMAN] 

P15328 7.39 2 2 257 29.8 7.97 89.55 Folate receptor alpha OS=Homo 
sapiens GN=FOLR1 PE=1 SV=3 - 
[FOLR1_HUMAN] 

Q5SZK8 2.02 5 5 3169 350.9 5.03 167.96 FRAS1-related extracellular matrix 
protein 2 OS=Homo sapiens 
GN=FREM2 PE=1 SV=2 - 
[FREM2_HUMAN] 

Q9ULV1 2.98 1 1 537 59.8 7.27 71.30 Frizzled-4 OS=Homo sapiens 
GN=FZD4 PE=1 SV=2 - 
[FZD4_HUMAN] 

P05062 5.49 2 2 364 39.4 7.87 76.62 Fructose-bisphosphate aldolase B 
OS=Homo sapiens GN=ALDOB PE=1 
SV=2 - [ALDOB_HUMAN] 

P54803 2.19 1 1 685 77.0 6.64 85.96 Galactocerebrosidase OS=Homo 
sapiens GN=GALC PE=1 SV=2 - 
[GALC_HUMAN] 

Q08380 30.94 20 13 585 65.3 5.27 1039.17 Galectin-3-binding protein OS=Homo 
sapiens GN=LGALS3BP PE=1 SV=1 - 
[LG3BP_HUMAN] 

O00182 4.51 1 1 355 39.5 9.17 88.46 Galectin-9 OS=Homo sapiens 
GN=LGALS9 PE=1 SV=2 - 
[LEG9_HUMAN] 

Q92820 20.13 6 5 318 35.9 7.11 242.07 Gamma-glutamyl hydrolase 
OS=Homo sapiens GN=GGH PE=1 
SV=2 - [GGH_HUMAN] 

P19440 4.75 2 2 569 61.4 7.12 120.62 Gamma-glutamyltranspeptidase 1 
OS=Homo sapiens GN=GGT1 PE=1 
SV=2 - [GGT1_HUMAN] 

P13284 4.21 1 1 261 29.1 4.98 83.20 Gamma-interferon-inducible 
lysosomal thiol reductase OS=Homo 
sapiens GN=IFI30 PE=1 SV=2 - 
[GILT_HUMAN] 

P17900 15.54 2 2 193 20.8 5.31 86.43 Ganglioside GM2 activator OS=Homo 
sapiens GN=GM2A PE=1 SV=4 - 
[SAP3_HUMAN] 
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P07093 7.54 2 2 398 44.0 9.29 79.58 Glia-derived nexin OS=Homo sapiens 
GN=SERPINE2 PE=1 SV=1 - 
[GDN_HUMAN] 

P06744 3.05 1 1 558 63.1 8.32 63.37 Glucose-6-phosphate isomerase 
OS=Homo sapiens GN=GPI PE=1 
SV=4 - [G6PI_HUMAN] 

Q16769 11.08 3 3 361 40.9 6.61 135.96 Glutaminyl-peptide cyclotransferase 
OS=Homo sapiens GN=QPCT PE=1 
SV=1 - [QPCT_HUMAN] 

Q07075 5.75 4 3 957 109.2 5.47 206.36 Glutamyl aminopeptidase OS=Homo 
sapiens GN=ENPEP PE=1 SV=3 - 
[AMPE_HUMAN] 

P21266 25.78 5 5 225 26.5 5.54 276.42 Glutathione S-transferase Mu 3 
OS=Homo sapiens GN=GSTM3 PE=1 
SV=3 - [GSTM3_HUMAN] 

P04406 33.43 8 7 335 36.0 8.46 336.18 Glyceraldehyde-3-phosphate 
dehydrogenase OS=Homo sapiens 
GN=GAPDH PE=1 SV=3 - 
[G3P_HUMAN] 

P51654 5.17 2 2 580 65.5 6.37 128.15 Glypican-3 OS=Homo sapiens 
GN=GPC3 PE=1 SV=1 - 
[GPC3_HUMAN] 

Q92896 1.44 2 2 1179 134.5 6.90 93.01 Golgi apparatus protein 1 OS=Homo 
sapiens GN=GLG1 PE=1 SV=2 - 
[GSLG1_HUMAN] 

Q8NBJ4 5.74 2 2 401 45.3 4.97 108.52 Golgi membrane protein 1 OS=Homo 
sapiens GN=GOLM1 PE=1 SV=1 - 
[GOLM1_HUMAN] 

Q9NQ84 18.82 6 5 441 48.2 8.43 303.35 G-protein coupled receptor family C 
group 5 member C OS=Homo 
sapiens GN=GPRC5C PE=1 SV=2 - 
[GPC5C_HUMAN] 

P63096 6.21 2 2 354 40.3 5.97 78.40 Guanine nucleotide-binding protein 
G(i) subunit alpha-1 OS=Homo 
sapiens GN=GNAI1 PE=1 SV=2 - 
[GNAI1_HUMAN] 

Q9UBI6 15.28 1 1 72 8.0 8.97 73.78 Guanine nucleotide-binding protein 
G(I)/G(S)/G(O) subunit gamma-12 
OS=Homo sapiens GN=GNG12 PE=1 
SV=3 - [GBG12_HUMAN] 

P62873 11.47 3 3 340 37.4 6.00 140.70 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-1 
OS=Homo sapiens GN=GNB1 PE=1 
SV=3 - [GBB1_HUMAN] 

P62879 11.47 3 3 340 37.3 6.00 159.26 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-2 
OS=Homo sapiens GN=GNB2 PE=1 
SV=3 - [GBB2_HUMAN] 

P54652 2.50 1 1 639 70.0 5.74 75.89 Heat shock-related 70 kDa protein 2 
OS=Homo sapiens GN=HSPA2 PE=1 
SV=1 - [HSP72_HUMAN] 

P69905 10.56 1 1 142 15.2 8.68 70.76 Hemoglobin subunit alpha OS=Homo 
sapiens GN=HBA1 PE=1 SV=2 - 
[HBA_HUMAN] 

P68871 53.74 7 6 147 16.0 7.28 276.73 Hemoglobin subunit beta OS=Homo 
sapiens GN=HBB PE=1 SV=2 - 
[HBB_HUMAN] 

Q93099 2.25 1 1 445 49.9 6.96 62.23 Homogentisate 1,2-dioxygenase 
OS=Homo sapiens GN=HGD PE=1 
SV=2 - [HGD_HUMAN] 

Q86YZ3 9.23 6 6 2850 282.2 10.0
4 

284.89 Hornerin OS=Homo sapiens 
GN=HRNR PE=1 SV=2 - 
[HORN_HUMAN] 

P01876 37.68 17 12 353 37.6 6.51 687.77 Ig alpha-1 chain C region OS=Homo 
sapiens GN=IGHA1 PE=1 SV=2 - 
[IGHA1_HUMAN] 

P01877 29.12 11 8 340 36.5 6.10 431.51 Ig alpha-2 chain C region OS=Homo 
sapiens GN=IGHA2 PE=1 SV=3 - 
[IGHA2_HUMAN] 

P01857 28.79 6 6 330 36.1 8.19 249.68 Ig gamma-1 chain C region 
OS=Homo sapiens GN=IGHG1 PE=1 
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SV=1 - [IGHG1_HUMAN] 

P01859 7.98 2 2 326 35.9 7.59 176.29 Ig gamma-2 chain C region 
OS=Homo sapiens GN=IGHG2 PE=1 
SV=2 - [IGHG2_HUMAN] 

P01742 10.26 4 1 117 12.5 6.57 113.67 Ig heavy chain V-I region EU 
OS=Homo sapiens PE=1 SV=1 - 
[HV101_HUMAN] 

P01743 22.22 2 2 117 12.9 8.92 90.03 Ig heavy chain V-I region HG3 
OS=Homo sapiens PE=4 SV=1 - 
[HV102_HUMAN] 

P06331 10.96 1 1 146 16.2 8.28 80.27 Ig heavy chain V-II region ARH-77 
OS=Homo sapiens PE=4 SV=1 - 
[HV209_HUMAN] 

P01766 25.00 4 2 120 13.2 6.57 213.66 Ig heavy chain V-III region BRO 
OS=Homo sapiens PE=1 SV=1 - 
[HV305_HUMAN] 

P01781 18.97 2 2 116 12.7 8.48 110.43 Ig heavy chain V-III region GAL 
OS=Homo sapiens PE=1 SV=1 - 
[HV320_HUMAN] 

P01771 9.09 1 1 121 13.6 9.36 67.49 Ig heavy chain V-III region HIL 
OS=Homo sapiens PE=1 SV=1 - 
[HV310_HUMAN] 

P01765 26.09 3 2 115 12.3 9.13 171.68 Ig heavy chain V-III region TIL 
OS=Homo sapiens PE=1 SV=1 - 
[HV304_HUMAN] 

P01762 15.57 3 1 122 13.5 9.72 142.18 Ig heavy chain V-III region TRO 
OS=Homo sapiens PE=1 SV=1 - 
[HV301_HUMAN] 

P01779 26.72 2 2 116 12.4 9.73 121.71 Ig heavy chain V-III region TUR 
OS=Homo sapiens PE=1 SV=1 - 
[HV318_HUMAN] 

P01764 18.80 3 2 117 12.6 8.28 164.88 Ig heavy chain V-III region VH26 
OS=Homo sapiens PE=1 SV=1 - 
[HV303_HUMAN] 

P01834 80.19 13 6 106 11.6 5.87 685.01 Ig kappa chain C region OS=Homo 
sapiens GN=IGKC PE=1 SV=1 - 
[IGKC_HUMAN] 

P01593 31.48 4 2 108 12.0 5.99 218.14 Ig kappa chain V-I region AG 
OS=Homo sapiens PE=1 SV=1 - 
[KV101_HUMAN] 

P01596 16.82 1 1 107 11.7 9.41 102.63 Ig kappa chain V-I region CAR 
OS=Homo sapiens PE=1 SV=1 - 
[KV104_HUMAN] 

P01597 16.67 12 1 108 11.7 9.36 186.48 Ig kappa chain V-I region DEE 
OS=Homo sapiens PE=1 SV=1 - 
[KV105_HUMAN] 

P01613 30.36 2 2 112 12.2 5.36 108.29 Ig kappa chain V-I region Ni 
OS=Homo sapiens PE=1 SV=1 - 
[KV121_HUMAN] 

P01611 16.67 1 1 108 11.6 7.28 77.26 Ig kappa chain V-I region Wes 
OS=Homo sapiens PE=1 SV=1 - 
[KV119_HUMAN] 

P01616 11.61 1 1 112 12.0 9.29 86.34 Ig kappa chain V-II region MIL 
OS=Homo sapiens PE=1 SV=1 - 
[KV203_HUMAN] 

P01617 21.24 1 1 113 12.3 6.00 117.46 Ig kappa chain V-II region TEW 
OS=Homo sapiens PE=1 SV=1 - 
[KV204_HUMAN] 

P01620 31.19 2 2 109 11.8 8.48 119.81 Ig kappa chain V-III region SIE 
OS=Homo sapiens PE=1 SV=1 - 
[KV302_HUMAN] 

P06312 29.75 3 3 121 13.4 5.25 96.97 Ig kappa chain V-IV region 
(Fragment) OS=Homo sapiens 
GN=IGKV4-1 PE=4 SV=1 - 
[KV401_HUMAN] 

P01625 36.84 4 3 114 12.6 7.93 148.67 Ig kappa chain V-IV region Len 
OS=Homo sapiens PE=1 SV=2 - 
[KV402_HUMAN] 

P04208 11.93 1 1 109 11.7 6.54 109.57 Ig lambda chain V-I region WAH 
OS=Homo sapiens PE=1 SV=1 - 
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[LV106_HUMAN] 

P80748 21.62 2 2 111 11.9 5.08 114.11 Ig lambda chain V-III region LOI 
OS=Homo sapiens PE=1 SV=1 - 
[LV302_HUMAN] 

P01714 25.00 2 2 108 11.4 6.52 116.26 Ig lambda chain V-III region SH 
OS=Homo sapiens PE=1 SV=1 - 
[LV301_HUMAN] 

P0CG04 77.36 10 6 106 11.3 7.87 493.61 Ig lambda-1 chain C regions 
OS=Homo sapiens GN=IGLC1 PE=1 
SV=1 - [LAC1_HUMAN] 

P0CG05 75.47 10 6 106 11.3 7.24 514.52 Ig lambda-2 chain C regions 
OS=Homo sapiens GN=IGLC2 PE=1 
SV=1 - [LAC2_HUMAN] 

P01871 9.29 3 3 452 49.3 6.77 162.54 Ig mu chain C region OS=Homo 
sapiens GN=IGHM PE=1 SV=3 - 
[IGHM_HUMAN] 

Q9Y6R7 7.25 14 11 5405 571.6 5.34 607.42 IgGFc-binding protein OS=Homo 
sapiens GN=FCGBP PE=1 SV=3 - 
[FCGBP_HUMAN] 

P01591 16.98 2 2 159 18.1 5.24 103.02 Immunoglobulin J chain OS=Homo 
sapiens GN=IGJ PE=1 SV=4 - 
[IGJ_HUMAN] 

Q969P0 1.63 1 1 613 65.0 8.00 65.85 Immunoglobulin superfamily member 
8 OS=Homo sapiens GN=IGSF8 
PE=1 SV=1 - [IGSF8_HUMAN] 

P18065 3.69 1 1 325 34.8 7.50 68.44 Insulin-like growth factor-binding 
protein 2 OS=Homo sapiens 
GN=IGFBP2 PE=1 SV=2 - 
[IBP2_HUMAN] 

Q16270 15.25 3 3 282 29.1 7.90 129.74 Insulin-like growth factor-binding 
protein 7 OS=Homo sapiens 
GN=IGFBP7 PE=1 SV=1 - 
[IBP7_HUMAN] 

P35858 2.64 1 1 605 66.0 6.79 79.36 Insulin-like growth factor-binding 
protein complex acid labile subunit 
OS=Homo sapiens GN=IGFALS PE=1 
SV=1 - [ALS_HUMAN] 

Q9Y287 7.89 2 2 266 30.3 5.14 99.50 Integral membrane protein 2B 
OS=Homo sapiens GN=ITM2B PE=1 
SV=1 - [ITM2B_HUMAN] 

Q14624 13.76 8 8 930 103.3 6.98 332.69 Inter-alpha-trypsin inhibitor heavy 
chain H4 OS=Homo sapiens 
GN=ITIH4 PE=1 SV=4 - 
[ITIH4_HUMAN] 

P53990 11.54 5 5 364 39.7 5.35 184.03 IST1 homolog OS=Homo sapiens 
GN=KIAA0174 PE=1 SV=1 - 
[IST1_HUMAN] 

P06870 18.32 4 3 262 28.9 4.83 192.89 Kallikrein-1 OS=Homo sapiens 
GN=KLK1 PE=1 SV=2 - 
[KLK1_HUMAN] 

P29622 21.08 7 7 427 48.5 7.75 265.06 Kallistatin OS=Homo sapiens 
GN=SERPINA4 PE=1 SV=3 - 
[KAIN_HUMAN] 

P13645 50.68 45 23 584 58.8 5.21 2028.78 Keratin, type I cytoskeletal 10 
OS=Homo sapiens GN=KRT10 PE=1 
SV=6 - [K1C10_HUMAN] 

P13646 10.92 6 5 458 49.6 4.96 261.83 Keratin, type I cytoskeletal 13 
OS=Homo sapiens GN=KRT13 PE=1 
SV=4 - [K1C13_HUMAN] 

P02533 48.73 18 18 472 51.5 5.16 808.54 Keratin, type I cytoskeletal 14 
OS=Homo sapiens GN=KRT14 PE=1 
SV=4 - [K1C14_HUMAN] 

P19012 10.53 5 5 456 49.2 4.77 266.13 Keratin, type I cytoskeletal 15 
OS=Homo sapiens GN=KRT15 PE=1 
SV=2 - [K1C15_HUMAN] 

P08779 39.96 17 15 473 51.2 5.05 722.80 Keratin, type I cytoskeletal 16 
OS=Homo sapiens GN=KRT16 PE=1 
SV=4 - [K1C16_HUMAN] 

P35527 63.24 40 25 623 62.0 5.24 1805.64 Keratin, type I cytoskeletal 9 
OS=Homo sapiens GN=KRT9 PE=1 
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SV=3 - [K1C9_HUMAN] 

P04264 51.09 48 30 644 66.0 8.12 1995.10 Keratin, type II cytoskeletal 1 
OS=Homo sapiens GN=KRT1 PE=1 
SV=6 - [K2C1_HUMAN] 

Q7Z794 3.82 3 2 576 61.7 5.85 113.44 Keratin, type II cytoskeletal 1b 
OS=Homo sapiens GN=KRT77 PE=1 
SV=2 - [K2C1B_HUMAN] 

P35908 61.97 33 29 639 65.4 8.00 1621.97 Keratin, type II cytoskeletal 2 
epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 

P12035 6.36 4 4 629 64.5 6.48 203.80 Keratin, type II cytoskeletal 3 
OS=Homo sapiens GN=KRT3 PE=1 
SV=2 - [K2C3_HUMAN] 

P19013 3.75 3 2 534 57.2 6.61 114.19 Keratin, type II cytoskeletal 4 
OS=Homo sapiens GN=KRT4 PE=1 
SV=4 - [K2C4_HUMAN] 

P13647 28.47 19 16 590 62.3 7.74 735.76 Keratin, type II cytoskeletal 5 
OS=Homo sapiens GN=KRT5 PE=1 
SV=3 - [K2C5_HUMAN] 

P02538 32.27 20 17 564 60.0 8.00 731.15 Keratin, type II cytoskeletal 6A 
OS=Homo sapiens GN=KRT6A PE=1 
SV=3 - [K2C6A_HUMAN] 

P04259 27.48 19 15 564 60.0 8.00 677.45 Keratin, type II cytoskeletal 6B 
OS=Homo sapiens GN=KRT6B PE=1 
SV=5 - [K2C6B_HUMAN] 

Q14CN4 4.11 3 2 511 55.8 6.89 139.87 Keratin, type II cytoskeletal 72 
OS=Homo sapiens GN=KRT72 PE=1 
SV=2 - [K2C72_HUMAN] 

Q7RTS7 3.97 3 3 529 57.8 7.71 127.60 Keratin, type II cytoskeletal 74 
OS=Homo sapiens GN=KRT74 PE=1 
SV=2 - [K2C74_HUMAN] 

P01042 18.79 12 9 644 71.9 6.81 537.37 Kininogen-1 OS=Homo sapiens 
GN=KNG1 PE=1 SV=2 - 
[KNG1_HUMAN] 

Q9Y2S2 13.79 3 3 319 35.4 6.18 144.67 Lambda-crystallin homolog OS=Homo 
sapiens GN=CRYL1 PE=1 SV=3 - 
[CRYL1_HUMAN] 

P18428 19.75 9 7 481 53.3 6.70 378.83 Lipopolysaccharide-binding protein 
OS=Homo sapiens GN=LBP PE=1 
SV=3 - [LBP_HUMAN] 

P00338 18.37 6 5 332 36.7 8.27 275.52 L-lactate dehydrogenase A chain 
OS=Homo sapiens GN=LDHA PE=1 
SV=2 - [LDHA_HUMAN] 

P07195 26.65 8 6 334 36.6 6.05 335.02 L-lactate dehydrogenase B chain 
OS=Homo sapiens GN=LDHB PE=1 
SV=2 - [LDHB_HUMAN] 

P98164 27.78 132 86 4655 521.6 5.08 5205.16 Low-density lipoprotein receptor-
related protein 2 OS=Homo sapiens 
GN=LRP2 PE=1 SV=3 - 
[LRP2_HUMAN] 

P11117 7.09 3 3 423 48.3 6.74 130.41 Lysosomal acid phosphatase 
OS=Homo sapiens GN=ACP2 PE=1 
SV=3 - [PPAL_HUMAN] 

P10253 7.46 6 6 952 105.3 5.99 264.77 Lysosomal alpha-glucosidase 
OS=Homo sapiens GN=GAA PE=1 
SV=3 - [LYAG_HUMAN] 

P10619 5.63 2 2 480 54.4 6.61 138.23 Lysosomal protective protein 
OS=Homo sapiens GN=CTSA PE=1 
SV=2 - [PPGB_HUMAN] 

P42785 1.81 1 1 496 55.8 7.21 78.21 Lysosomal Pro-X carboxypeptidase 
OS=Homo sapiens GN=PRCP PE=1 
SV=1 - [PCP_HUMAN] 

P11279 6.47 2 2 417 44.9 8.75 128.58 Lysosome-associated membrane 
glycoprotein 1 OS=Homo sapiens 
GN=LAMP1 PE=1 SV=3 - 
[LAMP1_HUMAN] 

P13473 6.34 2 2 410 44.9 5.63 125.07 Lysosome-associated membrane 
glycoprotein 2 OS=Homo sapiens 
GN=LAMP2 PE=1 SV=2 - 
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[LAMP2_HUMAN] 

P61626 8.11 1 1 148 16.5 9.16 65.16 Lysozyme C OS=Homo sapiens 
GN=LYZ PE=1 SV=1 - 
[LYSC_HUMAN] 

P14174 7.83 1 1 115 12.5 7.88 58.96 Macrophage migration inhibitory 
factor OS=Homo sapiens GN=MIF 
PE=1 SV=4 - [MIF_HUMAN] 

O43451 3.88 4 4 1857 209.7 5.50 226.10 Maltase-glucoamylase, intestinal 
OS=Homo sapiens GN=MGAM PE=1 
SV=5 - [MGA_HUMAN] 

O00187 7.73 6 4 686 75.7 5.77 319.05 Mannan-binding lectin serine 
protease 2 OS=Homo sapiens 
GN=MASP2 PE=1 SV=3 - 
[MASP2_HUMAN] 

P33908 19.45 14 9 653 72.9 6.47 636.82 Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IA OS=Homo sapiens 
GN=MAN1A1 PE=1 SV=3 - 
[MA1A1_HUMAN] 

Q9NR34 2.86 1 1 630 70.9 7.46 120.17 Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IC OS=Homo sapiens 
GN=MAN1C1 PE=1 SV=1 - 
[MA1C1_HUMAN] 

P02795 19.67 1 1 61 6.0 7.83 71.21 Metallothionein-2 OS=Homo sapiens 
GN=MT2A PE=1 SV=1 - 
[MT2_HUMAN] 

P08571 4.80 1 1 375 40.1 6.23 58.33 Monocyte differentiation antigen 
CD14 OS=Homo sapiens GN=CD14 
PE=1 SV=2 - [CD14_HUMAN] 

P15941 2.23 2 2 1255 122.0 7.47 84.01 Mucin-1 OS=Homo sapiens 
GN=MUC1 PE=1 SV=3 - 
[MUC1_HUMAN] 

Q9HC84 3.58 5 5 5703 590.1 6.67 193.26 Mucin-5B OS=Homo sapiens 
GN=MUC5B PE=1 SV=2 - 
[MUC5B_HUMAN] 

Q9H8L6 5.27 3 3 949 104.3 5.86 235.00 Multimerin-2 OS=Homo sapiens 
GN=MMRN2 PE=1 SV=2 - 
[MMRN2_HUMAN] 

Q7Z7M0 5.69 11 10 2845 302.9 6.87 443.30 Multiple epidermal growth factor-like 
domains protein 8 OS=Homo sapiens 
GN=MEGF8 PE=1 SV=2 - 
[MEGF8_HUMAN] 

O95865 7.37 1 1 285 29.6 6.01 74.60 N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 2 OS=Homo 
sapiens GN=DDAH2 PE=1 SV=1 - 
[DDAH2_HUMAN] 

O96009 16.90 4 4 420 45.4 6.61 209.00 Napsin-A OS=Homo sapiens 
GN=NAPSA PE=1 SV=1 - 
[NAPSA_HUMAN] 

P08473 20.40 11 11 750 85.5 5.73 628.52 Neprilysin OS=Homo sapiens 
GN=MME PE=1 SV=2 - 
[NEP_HUMAN] 

P59665 19.15 2 2 94 10.2 6.99 88.97 Neutrophil defensin 1 OS=Homo 
sapiens GN=DEFA1 PE=1 SV=1 - 
[DEF1_HUMAN] 

Q5JS37 3.46 1 1 347 38.3 6.43 66.13 NHL repeat-containing protein 3 
OS=Homo sapiens GN=NHLRC3 
PE=2 SV=1 - [NHLC3_HUMAN] 

P14543 1.68 1 1 1247 136.3 5.29 95.14 Nidogen-1 OS=Homo sapiens 
GN=NID1 PE=1 SV=3 - 
[NID1_HUMAN] 

P61970 29.13 2 2 127 14.5 5.38 155.79 Nuclear transport factor 2 OS=Homo 
sapiens GN=NUTF2 PE=1 SV=1 - 
[NTF2_HUMAN] 

Q6UX06 16.27 6 6 510 57.2 5.69 281.54 Olfactomedin-4 OS=Homo sapiens 
GN=OLFM4 PE=1 SV=1 - 
[OLFM4_HUMAN] 

P78380 12.82 2 2 273 30.9 7.28 119.08 Oxidized low-density lipoprotein 
receptor 1 OS=Homo sapiens 
GN=OLR1 PE=1 SV=1 - 
[OLR1_HUMAN] 
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P00558 4.08 1 1 417 44.6 8.10 76.65 Phosphoglycerate kinase 1 OS=Homo 
sapiens GN=PGK1 PE=1 SV=3 - 
[PGK1_HUMAN] 

O15162 6.29 1 1 318 35.0 4.94 68.00 Phospholipid scramblase 1 OS=Homo 
sapiens GN=PLSCR1 PE=1 SV=1 - 
[PLS1_HUMAN] 

Q9BTY2 3.21 1 1 467 54.0 6.25 65.49 Plasma alpha-L-fucosidase OS=Homo 
sapiens GN=FUCA2 PE=1 SV=2 - 
[FUCO2_HUMAN] 

P05155 17.20 7 7 500 55.1 6.55 431.29 Plasma protease C1 inhibitor 
OS=Homo sapiens GN=SERPING1 
PE=1 SV=2 - [IC1_HUMAN] 

P05154 42.12 28 15 406 45.7 9.26 1070.79 Plasma serine protease inhibitor 
OS=Homo sapiens GN=SERPINA5 
PE=1 SV=2 - [IPSP_HUMAN] 

P00747 3.83 1 1 810 90.5 7.24 92.68 Plasminogen OS=Homo sapiens 
GN=PLG PE=1 SV=2 - 
[PLMN_HUMAN] 

P01833 29.97 23 17 764 83.2 5.74 1007.64 Polymeric immunoglobulin receptor 
OS=Homo sapiens GN=PIGR PE=1 
SV=4 - [PIGR_HUMAN] 

P0CG48 23.65 2 2 685 77.0 7.66 117.31 Polyubiquitin-C OS=Homo sapiens 
GN=UBC PE=1 SV=1 - 
[UBC_HUMAN] 

Q9UHG3 3.96 2 2 505 56.6 6.18 104.25 Prenylcysteine oxidase 1 OS=Homo 
sapiens GN=PCYOX1 PE=1 SV=3 - 
[PCYOX_HUMAN] 

P07602 10.31 7 4 524 58.1 5.17 219.10 Proactivator polypeptide OS=Homo 
sapiens GN=PSAP PE=1 SV=2 - 
[SAP_HUMAN] 

Q9H3G5 24.16 11 9 476 54.1 5.62 421.42 Probable serine carboxypeptidase 
CPVL OS=Homo sapiens GN=CPVL 
PE=1 SV=2 - [CPVL_HUMAN] 

P01133 41.92 66 35 1207 133.9 5.85 2644.30 Pro-epidermal growth factor 
OS=Homo sapiens GN=EGF PE=1 
SV=2 - [EGF_HUMAN] 

Q8WUM4 5.65 4 4 868 96.0 6.52 159.24 Programmed cell death 6-interacting 
protein OS=Homo sapiens 
GN=PDCD6IP PE=1 SV=1 - 
[PDC6I_HUMAN] 

P12273 18.49 2 2 146 16.6 8.05 102.59 Prolactin-inducible protein OS=Homo 
sapiens GN=PIP PE=1 SV=1 - 
[PIP_HUMAN] 

O43490 11.45 8 7 865 97.1 7.27 345.73 Prominin-1 OS=Homo sapiens 
GN=PROM1 PE=1 SV=1 - 
[PROM1_HUMAN] 

Q14914 3.04 1 1 329 35.8 8.29 59.44 Prostaglandin reductase 1 OS=Homo 
sapiens GN=PTGR1 PE=1 SV=2 - 
[PTGR1_HUMAN] 

P41222 36.32 5 4 190 21.0 7.80 265.73 Prostaglandin-H2 D-isomerase 
OS=Homo sapiens GN=PTGDS PE=1 
SV=1 - [PTGDS_HUMAN] 

O43653 23.58 3 3 123 12.9 5.29 170.58 Prostate stem cell antigen OS=Homo 
sapiens GN=PSCA PE=1 SV=1 - 
[PSCA_HUMAN] 

P15309 2.59 1 1 386 44.5 6.24 73.09 Prostatic acid phosphatase OS=Homo 
sapiens GN=ACPP PE=1 SV=3 - 
[PPAP_HUMAN] 

P02760 40.06 17 10 352 39.0 6.25 736.61 Protein AMBP OS=Homo sapiens 
GN=AMBP PE=1 SV=1 - 
[AMBP_HUMAN] 

P31151 21.78 2 2 101 11.5 6.77 71.62 Protein S100-A7 OS=Homo sapiens 
GN=S100A7 PE=1 SV=4 - 
[S10A7_HUMAN] 

P06702 11.40 2 1 114 13.2 6.13 159.64 Protein S100-A9 OS=Homo sapiens 
GN=S100A9 PE=1 SV=1 - 
[S10A9_HUMAN] 

Q9C0H2 9.94 6 3 523 57.5 5.39 291.27 Protein tweety homolog 3 OS=Homo 
sapiens GN=TTYH3 PE=1 SV=3 - 
[TTYH3_HUMAN] 
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P00734 4.34 2 2 622 70.0 5.90 119.25 Prothrombin OS=Homo sapiens 
GN=F2 PE=1 SV=2 - [THRB_HUMAN] 

Q6V0I7 2.21 9 8 4981 542.4 4.94 407.50 Protocadherin Fat 4 OS=Homo 
sapiens GN=FAT4 PE=2 SV=2 - 
[FAT4_HUMAN] 

Q9UN70 1.61 1 1 934 101.0 5.21 79.15 Protocadherin gamma-C3 OS=Homo 
sapiens GN=PCDHGC3 PE=1 SV=1 - 
[PCDGK_HUMAN] 

Q495M3 5.80 2 2 483 53.2 8.12 101.50 Proton-coupled amino acid 
transporter 2 OS=Homo sapiens 
GN=SLC36A2 PE=2 SV=1 - 
[S36A2_HUMAN] 

P00491 3.46 1 1 289 32.1 6.95 63.37 Purine nucleoside phosphorylase 
OS=Homo sapiens GN=PNP PE=1 
SV=2 - [PNPH_HUMAN] 

Q8NHP8 5.09 2 2 589 65.4 6.80 73.61 Putative phospholipase B-like 2 
OS=Homo sapiens GN=PLBD2 PE=1 
SV=2 - [PLBL2_HUMAN] 

Q9H853 5.81 2 1 241 27.5 7.83 91.42 Putative tubulin-like protein alpha-4B 
OS=Homo sapiens GN=TUBA4B 
PE=5 SV=2 - [TBA4B_HUMAN] 

P61026 16.50 3 3 200 22.5 8.38 94.69 Ras-related protein Rab-10 
OS=Homo sapiens GN=RAB10 PE=1 
SV=1 - [RAB10_HUMAN] 

A6NIZ1 8.15 1 1 184 20.9 5.48 82.14 Ras-related protein Rap-1b-like 
protein OS=Homo sapiens PE=2 
SV=1 - [RP1BL_HUMAN] 

Q12913 2.32 2 2 1337 145.9 5.58 127.14 Receptor-type tyrosine-protein 
phosphatase eta OS=Homo sapiens 
GN=PTPRJ PE=1 SV=3 - 
[PTPRJ_HUMAN] 

Q9HD89 51.85 8 4 108 11.4 6.86 376.55 Resistin OS=Homo sapiens GN=RETN 
PE=2 SV=1 - [RETN_HUMAN] 

Q9HB40 5.53 5 2 452 50.8 5.81 323.19 Retinoid-inducible serine 
carboxypeptidase OS=Homo sapiens 
GN=SCPEP1 PE=1 SV=1 - 
[RISC_HUMAN] 

P02753 20.40 2 2 201 23.0 6.07 164.73 Retinol-binding protein 4 OS=Homo 
sapiens GN=RBP4 PE=1 SV=3 - 
[RET4_HUMAN] 

Q8WVN6 14.52 4 2 248 27.0 7.43 325.97 Secreted and transmembrane protein 
1 OS=Homo sapiens GN=SECTM1 
PE=1 SV=2 - [SCTM1_HUMAN] 

Q13591 1.02 1 1 1074 120.5 7.21 63.70 Semaphorin-5A OS=Homo sapiens 
GN=SEMA5A PE=1 SV=3 - 
[SEM5A_HUMAN] 

P34896 2.28 1 1 483 53.0 7.71 60.55 Serine hydroxymethyltransferase, 
cytosolic OS=Homo sapiens 
GN=SHMT1 PE=1 SV=1 - 
[GLYC_HUMAN] 

Q96SA4 8.55 2 2 456 50.8 6.19 93.68 Serine incorporator 2 OS=Homo 
sapiens GN=SERINC2 PE=2 SV=2 - 
[SERC2_HUMAN] 

P02787 37.97 34 17 698 77.0 7.12 1585.18 Serotransferrin OS=Homo sapiens 
GN=TF PE=1 SV=2 - [TRFE_HUMAN] 

Q96P63 4.20 1 1 405 46.2 5.53 77.37 Serpin B12 OS=Homo sapiens 
GN=SERPINB12 PE=1 SV=1 - 
[SPB12_HUMAN] 

P29508 12.56 4 4 390 44.5 6.81 135.85 Serpin B3 OS=Homo sapiens 
GN=SERPINB3 PE=1 SV=2 - 
[SPB3_HUMAN] 

P02768 50.08 48 26 609 69.3 6.28 1979.24 Serum albumin OS=Homo sapiens 
GN=ALB PE=1 SV=2 - 
[ALBU_HUMAN] 

Q9HAT2 2.29 1 1 523 58.3 7.33 85.37 Sialate O-acetylesterase OS=Homo 
sapiens GN=SIAE PE=1 SV=1 - 
[SIAE_HUMAN] 

P31639 2.23 1 1 672 72.8 7.47 62.08 Sodium/glucose cotransporter 2 
OS=Homo sapiens GN=SLC5A2 PE=1 
SV=1 - [SC5A2_HUMAN] 
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Q13621 4.09 3 3 1099 121.4 7.39 130.61 Solute carrier family 12 member 1 
OS=Homo sapiens GN=SLC12A1 
PE=1 SV=2 - [S12A1_HUMAN] 

P22732 5.39 3 3 501 54.9 6.04 140.45 Solute carrier family 2, facilitated 
glucose transporter member 5 
OS=Homo sapiens GN=SLC2A5 PE=1 
SV=1 - [GTR5_HUMAN] 

Q4U2R8 2.13 1 1 563 61.8 8.76 74.41 Solute carrier family 22 member 6 
OS=Homo sapiens GN=SLC22A6 
PE=1 SV=1 - [S22A6_HUMAN] 

Q14515 3.16 1 1 664 75.2 4.81 85.54 SPARC-like protein 1 OS=Homo 
sapiens GN=SPARCL1 PE=1 SV=2 - 
[SPRL1_HUMAN] 

P17405 1.75 1 1 629 69.7 7.28 69.10 Sphingomyelin phosphodiesterase 
OS=Homo sapiens GN=SMPD1 PE=1 
SV=4 - [ASM_HUMAN] 

P52823 9.31 2 2 247 27.6 7.99 111.17 Stanniocalcin-1 OS=Homo sapiens 
GN=STC1 PE=1 SV=1 - 
[STC1_HUMAN] 

Q9UGT4 3.04 2 2 822 90.1 6.28 131.08 Sushi domain-containing protein 2 
OS=Homo sapiens GN=SUSD2 PE=1 
SV=1 - [SUSD2_HUMAN] 

O00560 17.79 4 3 298 32.4 7.53 219.36 Syntenin-1 OS=Homo sapiens 
GN=SDCBP PE=1 SV=1 - 
[SDCB1_HUMAN] 

Q8TB96 2.29 1 1 612 68.1 5.39 64.06 T-cell immunomodulatory protein 
OS=Homo sapiens GN=ITFG1 PE=1 
SV=1 - [TIP_HUMAN] 

O60635 5.39 2 1 241 26.3 5.25 78.20 Tetraspanin-1 OS=Homo sapiens 
GN=TSPAN1 PE=1 SV=2 - 
[TSN1_HUMAN] 

O43657 5.31 1 1 245 27.5 8.10 95.09 Tetraspanin-6 OS=Homo sapiens 
GN=TSPAN6 PE=1 SV=1 - 
[TSN6_HUMAN] 

P07996 0.94 1 1 1170 129.3 4.94 101.45 Thrombospondin-1 OS=Homo 
sapiens GN=THBS1 PE=1 SV=2 - 
[TSP1_HUMAN] 

Q9UKU6 14.06 12 12 1024 116.9 6.99 464.27 Thyrotropin-releasing hormone-
degrading ectoenzyme OS=Homo 
sapiens GN=TRHDE PE=2 SV=1 - 
[TRHDE_HUMAN] 

P05543 15.66 5 5 415 46.3 6.30 289.98 Thyroxine-binding globulin OS=Homo 
sapiens GN=SERPINA7 PE=1 SV=2 - 
[THBG_HUMAN] 

P61586 13.47 3 2 193 21.8 6.10 204.58 Transforming protein RhoA 
OS=Homo sapiens GN=RHOA PE=1 
SV=1 - [RHOA_HUMAN] 

Q14956 3.15 1 1 572 63.9 6.64 71.63 Transmembrane glycoprotein NMB 
OS=Homo sapiens GN=GPNMB PE=1 
SV=2 - [GPNMB_HUMAN] 

O43280 1.89 1 1 583 66.5 5.68 60.93 Trehalase OS=Homo sapiens 
GN=TREH PE=1 SV=2 - 
[TREA_HUMAN] 

O14773 14.21 4 4 563 61.2 6.48 246.57 Tripeptidyl-peptidase 1 OS=Homo 
sapiens GN=TPP1 PE=1 SV=2 - 
[TPP1_HUMAN] 

Q9H1C7 10.31 1 1 97 10.6 4.32 67.31 UPF0467 protein C5orf32 OS=Homo 
sapiens GN=C5orf32 PE=2 SV=1 - 
[CE032_HUMAN] 

P00749 16.94 7 7 431 48.5 8.41 315.08 Urokinase-type plasminogen activator 
OS=Homo sapiens GN=PLAU PE=1 
SV=2 - [UROK_HUMAN] 

P07911 30.47 21 14 640 69.7 5.24 964.49 Uromodulin OS=Homo sapiens 
GN=UMOD PE=1 SV=1 - 
[UROM_HUMAN] 

Q6EMK4 12.33 6 5 673 71.7 7.39 257.62 Vasorin OS=Homo sapiens GN=VASN 
PE=1 SV=1 - [VASN_HUMAN] 

Q12907 19.66 5 5 356 40.2 6.95 258.74 Vesicular integral-membrane protein 
VIP36 OS=Homo sapiens GN=LMAN2 
PE=1 SV=1 - [LMAN2_HUMAN] 
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P22891 8.25 2 2 400 44.7 5.97 79.33 Vitamin K-dependent protein Z 
OS=Homo sapiens GN=PROZ PE=1 
SV=2 - [PROZ_HUMAN] 

P04004 10.67 3 3 478 54.3 5.80 118.49 Vitronectin OS=Homo sapiens 
GN=VTN PE=1 SV=1 - 
[VTNC_HUMAN] 

P21796 23.67 5 5 283 30.8 8.54 214.46 Voltage-dependent anion-selective 
channel protein 1 OS=Homo sapiens 
GN=VDAC1 PE=1 SV=2 - 
[VDAC1_HUMAN] 

P38606 2.92 1 1 617 68.3 5.52 96.78 V-type proton ATPase catalytic 
subunit A OS=Homo sapiens 
GN=ATP6V1A PE=1 SV=2 - 
[VATA_HUMAN] 

Q9UI12 3.31 1 1 483 55.8 6.48 70.12 V-type proton ATPase subunit H 
OS=Homo sapiens GN=ATP6V1H 
PE=1 SV=1 - [VATH_HUMAN] 

O43895 13.20 6 6 674 75.6 6.04 241.89 Xaa-Pro aminopeptidase 2 OS=Homo 
sapiens GN=XPNPEP2 PE=1 SV=3 - 
[XPP2_HUMAN] 

Q96DA0 25.96 4 4 208 22.7 7.39 223.46 Zymogen granule protein 16 homolog 
B OS=Homo sapiens GN=ZG16B 
PE=1 SV=3 - [ZG16B_HUMAN] 
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CHAPTER 5 
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5.1 Introduction 

The urinary proteome may serve as a rich source of biomarkers for uro-genital and systemic 

diseases which have been reviewed previously (Pisitkun, Johnstone & Knepper, 2006). 

Notably, urine collection is a non-invasive procedure which makes it an ideal source for 

biomarker discovery. Due to their complex structure and functions, the analysis of glycans of 

cellular glycoproteins and glycolipids is rapidly emerging as an important aspect of novel 

biomarkers either directly from tissue/cellular samples or as analyzed from body fluids 

(Nilsson et al., 2009; Halim et al., 2012). However, up to now, there have been only a few 

large-scale studies on urine glycoproteome analysis (Adachi et al., 2006; Wang et al., 2006). 

For this purpose, the membrane vesicles, including exosomes as secreted by many cell types 

along the uro genital tract are attractive sources of glycoanalytics. Notably, the exosomes 

display functions like antigen-presentation, cell to cell communication and immuno-

modulation (Nieuwland & Sturk, 2010). These are specialised compartment of cells and not 

only do they mirror the physiological state of cells secreting them but also provide 

information about the environment into which they are secreted; i.e., immunosuppressive and 

pro-angiogenic environment of cancer may be mediated in part by exosomes (Nieuwland & 

Sturk, 2010).  

Exosomes and other types of membrane vesicles have been discovered in urine and known to 

be secreted by epithelial cells lining the genitourinary system (Pisitkun, Shen & Knepper, 

2004). Glycosylation is an important modality of post-translational modification which plays 

many roles including but not limited to cell adhesion, cell to cell communication, immune 

response etc (Bhatia & Mukhopadhyay, 1999). Glycosylation has also been shown to be very 

important for targeting of proteins to various compartments inside the cells. Glycans (the 

complex carbohydrate chains linked to proteins or lipids) present on glycoproteins are 
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important in sorting these proteins to membrane microdomains and have been shown to 

influence their intracellular trafficking (Huet et al., 2003). Interestingly, it has been recently 

found that membrane vesicles may have a glycan signature which is distinct from the parent 

cell itself, suggesting that they originate from specialised membrane microdomains. This 

implies a role of glycosylation in membrane vesicle protein sorting (Batista et al., 2011; 

Escrevente et al., 2011). For example, HIV-1 particles were found to have a glycome 

common to membrane vesicles which was cell-specific implying that virus hijacks the 

machinery of infected cells and uses it to infect other cells (Krishnamoorthy et al., 2009).   

Exosome uptake in various cell types was shown to occur through clathrin-mediated 

endocytosis, phagocytosis and macropinocytosis (Hao et al., 2007; Barres et al., 2010). The 

uptake of exosomes, particularly by dendritic cells and macrophages, was shown to be 

inhibited by mannose, N-acetylglucosamine and lactose, respectively. An important mediator 

of this uptake turned out to be a C-type lectin in dendritic cells and galectin-5 in macrophages 

(Hao et al., 2007; Barres et al., 2010). All this points towards a system, in which, the 

exosomal glycosylation pattern is maintained as a specific feature of the cells or sub-cellular 

organelles secreting them. Consequently, the tagged exosomes appear fitted for a specific 

target cell uptake pathway and distinct downstream functions. Taken together, these finding 

suggest that better understanding of surface glycosylation patterns as well as the whole 

glycoproteome of exosome may help define the biology of exosome uptake by target cells 

e.g.  the pathways involved. Glycoproteome of urinary membrane vesicles, therefore, will 

provide information about both the functional state of constituent proteins and also highlight 

the special signatures of proteins which are specifically targeted to membrane vesicles. On 

the other hand it appears that lectins provide useful tools for glycan profiling from complex 

samples and have been applied in many assay and array formats for dynamic glycan profiling 

(Pilcibello, Slawek & Mahal, 2007; Hsu & Mahal, 2006).  
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Here we have devised a fluorophore-linked lectin assay (FLLA) for glycan profiling of 

purified membrane vesicles and other fractions from urine obtained using the traditional 

differential centrifugation method. Eighteen lectins, falling into 7 broad classes based on their 

nominal glycan binding specificities, were chosen for this study. All these lectins were 

further used for verification in lectin blots of membrane vesicles and other urinary fractions 

to reveal consitituent glycoproteins bearing the respective nominal glycans. Based on the 

analysis of these results we were able to use lectin affinity chromatography, to enrich urinary 

membrane vesicles directly from whole urine. This is a novel application area of lectins 

which is simple and avoids the use of specialised techniques like ultracentrifugation and 

setting up density gradients. Furthermore, to gain functional information about classes of 

proteins sorted to distinct membrane vesicle classes and to broaden the membrane vesicle 

glycoproteome coverage, we also perfomed multiple lectin-affinity chromatography (LAC) 

using 9 different lectins from 7 different nominal specificity classes of lectins on membrane 

vesicle extracts and proceeded to subsequent identification of these proteins. To complement 

the LAC method, hydrazide chemistry was also applied to P18,000g and P200,000g pellets to 

enrich and subsequently identify the glycoproteins. Two hundred and eighty-two proteins in 

total were identified and classified according to their sub-cellular localization and functions.   
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5.2 Material and methods 

5.2.1 Preparation of nano vesicle and other fractions of urine 

Vesicle preparation has been described in detail in methods section of Chapter 2. A schematic 

representation of the methodology used to isolated vesicles is shown in Figure 5.1.  

P200,000g is a heterogeneous mixture of different types of vesicles and the method 

developed in Chapter 2 using CHAPS treatment might select for specific populations of 

vesicles. DTT and CHAPS treatment methods are complementary which is also evident by 

the large overlap between DTT and CHAPS SN200,000g (76%, Chapter 2). However, 

activity of proteins is better preserved in the CHAPS treatment method (Figure 2.5, chapter 

2). But here, the aim is not to perform activity based proteomics therefore any of these two 

methods can be used. We have used DTT-treated pellet (P18DTTP18 and P200DTTP200) for 

lectin affinity chromatography and crude pellet (P18,000g and P200,000g) for FLLA and 

hydrazide  enrichment. 
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Figure 5.1: Schematic of vesicle purification from urine. Box highlighted in blue were used 

for lectin affinity chromatography. P18,000g, P200,000g crude and SN200,000g (Purple box) 

were used for FLLA and hydrazide enrichment. 

5.2.2 THP Purification 

THP was purified as described in methods section of Chapter 2.  

5.2.3 Protein quantification, SDS-PAGE and Western Blotting 

It was carried out as described in methods section of Chapter 2 (Musante et al., 2012). 

5.2.4 Fluorophore-linked lectin assay (FLLA) 

Microtitre plate wells were coated overnight with 100µl/well of 100µg/mL different urine 

fractions at +37°C. All the subsequent steps were carried out at room temperature. Wells 

DTT 
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were washed with PBS (pH 7.4) five times between each step. Wells were blocked with 

odyssey blocking buffer (LI-COR biosciences, Lincoln, NE) (diluted 1:1 with PBS) for 1 

hour on agitation at room temperature. Biotinylated lectins (Vector laboratories, Burlingame, 

CA) were applied (100µl of 1:2000 dilutions from stocks of 2mg/mL) to the wells and 

incubated for 1 hour on agitation. Streptavidin conjugated to IRDye-800 (100µl of 1:5000 

dilutions of company stock) was added to the wells and incubated on agitation for 1 hour. 

Finally wells were washed five times with PBS (pH 7.4) and image was acquired on Odyssey 

Infrared Laser Scanner (LI-COR Biosciences, Lincoln, NE) in 800nm channel at highest 

intensity. Intensities of fluorescence of wells were calculated using the Odyssey V3.0 

software and imported into a text file. For the control (streptavidin fractions control) triplicate 

measurements were taken in which biotinylated lectins were substituted with PBS while rest 

of the procedure remained same. To be more stringent, additional controls were taken; (1) 

empty wells were blocked and lectin and streptavidin were added subsequently as per the 

protocol described (lectin blocking control) (2) only streptavidin was added to blocked wells 

(streptavidin blocking control). Streptavidin fraction control was subtracted from the final 

intensity of different fractions and streptavidin blocking control was subtracted from the 

lectin blocking control. This gave the values of lectin non-specific adsorption on blocking 

and lectin specific binding to different urine fractions. Finally lectin non-specific adsorption 

was subtracted from different fraction intensity to get specific lectin binding to different 

fractions. 

5.2.5 Lectin blotting 

SDS-PAGE was carried out as described in Chapter 2. Proteins were transferred to a 

nitrocellulose membrane using iBlot (Invitrogen, Life technologies, NY). Membranes were 

blocked for 1 hour at RT with the Odyssey blocking buffer solution (LI-COR Biosciences). 

All incubation steps with biotinylated lectins (1:2000, 1 hour) were performed in a 1:1 (v/v) 
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mixture of Odyssey blocking buffer and PBS with 0.1 % (v/v) Tween 20 (PBST). Blots were 

washed with PBST 6 times 10 minutes each. Finally streptavidin conjugated to IRDye-800 

was prepared (1:5000) and incubated with blots for 1 hour and subsequently blots were 

washed 5 times with PBST and once with PBS. Images were acquired with Odyssey Infrared 

Laser Scanner (LI-COR Biosciences). 

5.2.6 Hydrazide chemistry for enriching surface and other glycoproteins of P18,000g 

and P200,000g 

A hydrazide chemistry-based approach was used to enrich glycoproteins from P18,000g and 

P200,000g (Crude pellets) as described previously (McDonald et al., 2009). Briefly, 

P18,000g and P200,000g was suspended in 50mM Tris buffer, pH 7.4 and incubated with 

10mM sodium metaperiodate for 1 hour at room temperature on rotation. Immediately after, 

the mixture was incubated with hydrazide resin (Sigma, St. Louis, MO) overnight at room 

temperature on rotation. Non-bound material was removed by washing with Tris buffer (pH 

7.4). Here, the membrane vesicles in these two pellets were bound to the resin through 

surface glycoproteins. The resin was incubated with 1% (w/v) beta-octyl glucoside to lyse the 

vesicles. Non-bound material recovered was re-oxidised with 10mM sodium metaperiodate 

and incubated with hydrazide resin as described. These two resins thus generated will have 

surface glycoproteins bound to the resin in one and all other glycoproteins bound to the other. 

Then both resins were processed simultaneously. The resin was washed with 8M urea in Tris 

buffer (TU buffer, pH 7.4) to remove the non-bound material. The resins were then incubated 

with 50mM DTT in 50mM Tris buffer (pH7.4) for one hour at 37°C. DTT was removed by 

washing with TU buffer and resin was incubated with 65mM iodoacetamide in dark for 30 

minutes. The resin was then washed with TU buffer and 1.5M NaCl in Tris buffer (pH 7.4) 

three alternate times to remove all the non-glycoproteins from the resin. The immobilised 

proteins were digested ‘on-column’ with 40ng/µL of sequencing grade trypsin (Promega, 
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Madison, WI) overnight at 37°C. The tryptic peptides were recovered the next day and 

enriched by Sep-Pak solid phase extraction columns (Waters, Milford, MA) as described in 

methods sections of Chapter 2. These enriched peptides were analysed by LC-MS/MS as 

described ahead. 

5.2.7 Lectin affinity chromatography 

Eight biotinylated lectins (Con-A, LCA, UEA, SNA, MAL-II, PHA-E, WGA, RCA120 and 

Jacalin, from Vector laboratories; refer to Table 5.1 for full names of these lectins) were 

immobilised on streptavidin agarose. Lectins (500µg each in PBS) were incubated with the 

agarose slurry overnight at +4°C on rotation. Next day the non-bound lectins were removed 

by washing with PBS. RCA120 already coupled to agarose was bought commercially (Vector 

laboratories). Six hundred microgram of P200,000g and P18,000g (DTT treated, see blue 

boxes in Figure 5.1) extract (prepared in 1% beta-octyl glucoside) was diluted in HEPES 

buffered-saline (100mM HEPES + .15M NaCl) to a 2mL final volume and incubated 

overnight with lectin-agarose at +4°C on rotation. For Con-A, 50mM tris buffer with .5M 

NaCl was used as a binding buffer. Some of these lectins (Con-A, LCA, PHA-E) require 

calcium and manganese ions for their binding ability to glycoproteins and 1mM of these 

divalent cations were added to the binding buffer of respective lectins. These cations were not 

used in FLLA and lectin blotting because phosphate in PBS might precipitate with calcium as 

calcium phosphate. Next day, the non-bound fraction was collected and lectin-agarose was 

incubated with respective elution buffers for 2 hours at +4°C on rotation and elution was 

recovered. Elution buffers were made by adding inhibiting/eluting sugars to binding buffers: 

200mM galactose + 200mM lactose for RCA120, 200mM α-methyl mannoside + 200mM α-

methyl glucoside for Con-A and LCA, 800mM galactose for Jacalin, 100mM L-fucose for 

UEA and 200mM lactose for MAL-II. SNA-agarose-bound proteins were eluted by 500mM 

lactose in binding buffer followed by 500mM lactose in 100mM acetic acid. PHA-E-bound 
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proteins were eluted by 100mM acetic acid. WGA-bound glycoproteins were eluted with 

500mM N-acetylglucosamine. All the eluates were dialysed against water for further 

processing required for MS analysis.   

5.2.8 Jacalin affinity chromatography for isoltion of membrane vesicles from minimally 

processed urine. 

Five hundred microgram of biotinylated Jacalin was incubated with 1mL of streptavidin-

agarose (SIGMA) overnight in PBS buffer on rotation. Non-bound material was removed the 

next day and newly generated Jacalin agarose was incubated with 4mL (50mL of SN2000g 

concentrated to 2mL with Vivaspin ‘cut-off’ 5 or 300 kDa (Sartorius) and diluted to 4mL 

with either 200mM HEPES buffer saline {HBS, 2X} or only 20mM phosphate buffer, pH 

7.4) concentrated urine. After overnight incubation at +4°C on rotation, the non-bound 

fraction was removed and the Jacalin-agarose was washed with 20 column volumes (20mL) 

of 1X HEPES buffer saline or 10mM phosphate buffer. The bound fraction was eluted by 

incubating the resin with 800mM galactose in HBS or phosphate buffer for 2 hours. 

5.2.9 MS analysis of proteins and database searching 

Sample preparation for MS analysis was carried out as described in Chapter 3. Nano LC–

MS/MS analysis was carried out using an Ultimate 3000 nanoLC system (Dionex, Sunnyvale, 

CA) coupled to a hybrid linear ion trap/Orbitrap mass spectrometer (LTQ Orbitrap XL; 

Thermo Fisher Scientific, Somerset, NJ). Five microlitres of digest were loaded onto a C18 

trap column (C18 PepMap, 300μm ID × 5mm, 5μm particle size, 100Å pore size; Dionex) 

and desalted for 10 min using a flow rate of 25μL/min in 0.1% TFA. The trap column was 

then switched online with the analytical column (PepMap C18, 75μm ID × 250mm, 3μm 

particle and 100Å pore size; (Dionex)) and peptides were eluted with the following binary 

gradients of solvent A and B: 0–25% solvent B in 120min and 25–50% solvent B in a further 

60min, where solvent A consisted of 2% acetonitrile (ACN) and 0.1% (v/v) formic acid in 
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water and solvent B consisted of 80% (v/v in water) ACN and 0.08% (v/v in water) formic 

acid. Column flow rate was set to 350nL/min. 

Data were acquired with Xcalibur software, version 2.0.7 (Thermo Fisher Scientific). The 

mass spectrometer was operated in data-dependent mode and externally calibrated. Survey 

MS scans were acquired in the Orbitrap in the 400–1800 m/z range with the resolution set to 

a value of 60,000 at m/z 400. Lock mass was set at 445.120025u (protonated (Si (CH3)2O)6). 

Up to seven of the most intense ions (1+, 2+ and 3+) per scan were CID fragmented in the 

linear ion trap. A dynamic exclusion window was applied within 40s. All tandem mass 

spectra were collected using normalised collision energy of 35%, an isolation window of 3 

m/z, and one microscan. 

Proteins were identified using BioWorks 3.2 from Thermo Fisher Scientific using the HUPO 

criteria with XC scores of 1.8, 2.2, 3.75 for single, double and triple charged ions. A peptide 

probability score of 0.05 was also used. The database used was Human UniProt-SwissProt 

downloaded January 2012. Carboxymethylation of cysteine was set as fixed and oxidation of 

methionine as a variable modification. Two missed cleavages were allowed. The mass 

tolerance for precursor ions was 20ppm and the mass tolerance for fragment ions was 0.5Da. 

For some sample’s spectra, that was searched using Mascot the protein score ‘cut-off’ was 

kept at 40. 

5.2.10 Transmission electron microscopy 

TEM was performed as described in the methods section of Chapter 2 (Musante et al., 2012). 

5.2.11 Bioinformatic analysis 

Bioinformatic analysis was performed as described in Chapter 3. Additionally I2D 

(http://ophid.utoronto.ca/ophidv2.201/ppi.jsp) and iRefWeb (Turner et al., 2010) databases 

were used to search for protein-protein interactions of proteins present in the dataset. SOSUI 



292 
 

(Hirokawa, Boon-Chieng & Mitaku, 1998) was used for classification of proteins according 

to the presence of transmembrane domains. 
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5.3 Results 

5.3.1 Glycan profile of urinary membrane vesicles surface and other fraction of urine 

FLLA was performed on isolated nano vesicle fraction (P200,000g), low speed pellet 

(P18,000g), ‘nano vesicle-free’ urine (SN 200,000g) and purified Tamm-Horsfall 

glycoprotein (THP). FLLA was performed with crude fractions because we wanted to 

develop a method with least number of steps and the ultimate aim is to develop a method 

which can be performed rapidly on minimally-processed urine. A list of all the lectins used in 

this study in different techniques can be found in Table 5.1. These lectins were specifically 

chosen because they cover the widest range of glycan binding specificities. Therefore, they 

are suited to profile the surface glycans of membrane vesicles.  

Table 5.1: Lectins used in FLLA and their binding specificities along with their source 

organisms. Binding of lectin to various fractions of urine in FLLA is given (Please refer to 

Figure 5.2). 

Abbreviations Origin Nominal sugar binding 

specificity (Gabius & Gabius, 

1997;  Liener, Sharon & 

Goldstein, 1986; Debray et al., 

1981)  

P18 P200 SN200 THP 

LCA/LcH Lens culinaris Fucα1-6GlcNAc ; α-Man ; α-Glc - - - - 

PSA Pisum sativum Fucα1-6GlcNAc ; α-Man  - + - - 

UEA-I Ulex europeus Fucα1-2LacNAc ; α-Fuc - - - - 

SNA Sambucus nigra Siaα2-6Gal ; GalNAc +++ +++ - + 

MAL/ MAA I Maakia 

amurensis 

Galβ1-4GlcNAc ++ + - + 

MAL II   Siaα2-3Gal - - - - 

RCA
120

 Ricinus communis Lac ; LacNAc +++ ++++++ +++ + 

PHA (L) Phaseolus 

vulgaris 

Tetraantennary complex 

oligosaccharides 

++ ++ - + 

PHA (E) Phaseolus 

vulgaris 

NA2 ; bisecting GlcNAc ++ ++++ - ++ 

ConA Canavalia 

ensiformis 

α-Man branched and terminal; 

terminal GlcNAc 

+++ +++ + + 

WGA Triticum vulgaris  (GlcNAc)n ; multivalent Sia ; β-

GlcNAc, GalNAc 

++ ++ - + 

succ WGA  GlcNAc - - - - 

PNA Arachis hypogeal Galβ1-3GalNAcα-Thr/Ser (T) ; 

terminal Galβ-OR 

- - - - 



294 
 

JAC/ Jacalin Artocarpus 

integrifolia 

Galβ1-3GalNAcα-Thr/Ser (T) ; 

GalNAcα-Thr/Ser (Tn) 

+++ +++ + - 

GSL-I/ GSI Griffonia 

smplicifolia 

α-GalNAc ; GalNAcα-Thr/Ser 

(Tn) ; α –Gal 

+ - - + 

DBA Dolichos biflorus GalNAc α -Thr/Ser (Tn) ; 

GalNAc α 1-3GalNAc 

++ + - + 

SBA Glycine max Terminal GalNAc (especially 

GalNAc α 1-3Gal) 

+ + - - 

SJA Sophora japonica β-GalNac ; β-Gal - - - - 

 

THP is the most abundant protein in normal human urine. As THP is present in all fractions 

of urine (Figure 2.3 from Chapter 2) and consists of a wide variety of glycans (Wu et al., 

2008) which make up 30% of total mass, we included THP in our FLLA study as a positive 

control. The same concentration of all the fractions was used in the study. The membrane 

vesicle fraction (P200,000g) consists of many different proteins (and potentially 

glycoproteins) in addition to THP (Panel A Figure 2.3 in Chapter 2) so FLLA signal in 

membrane vesicle fractions cannot be directly correlated and concluded to be because of 

THP. P18,000g as judged by SDS-PAGE (Panel A Figure 2.3 in Chapter 2) consisting more 

amount of THP, so any lectin binding to low speed pellet more than the purified THP fraction 

was considered to be due to other constituents. Multiple stringent process controls were also 

taken other than the normal background control as described in the methods section. Surface 

glycan profile of urinary membrane vesicles can be seen in Figure 5.2. 
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Figure 5.2: Fluorophore linked lectin assay (FLLA) was employed on membrane vesicles 

and other urine fractions. Fluorescence signal with standard deviation (based on triplicate 

measurements) is provided in the Figure. For every lectin, the bars from left to right are 

P200,000g, P18,000g, SN200,000g and purified THP which are also indicated by colour code 

in the legends on the right side of the figure. 

Moreover, to confirm that signal generated from FLLA was due to the lectin-glycan 

interaction, four lectins were selected and the same procedure was repeated with the 

difference that inhibiting sugars of the respective lectins were added to the lectin solution. No 

significant signal above background was expected from this assay and results confirmed the 

specificity of the lectin binding (Figure 5.3).  
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Figure 5.3: FLLA signal with P200,000g in presence and absence of inhibiting sugars (Con-

A: 200 mM α-methyl mannoside, SNA: 500 mM lactose, JAC: 500 mM galactose, WGA: 

500 mM N-acetylglucosamine) to demonstrate specificity of lectin binding to sugars in 

various fractions. 

Some of the lectins having highest signal in the nano vesicle fraction representing surface 

glycan profile are indicated in Table 5.1. Briefly, tetrantennary complex oligosaccharides 

(PHA-L), bisecting GlcNAc complex structures (PHA-E), Sia α 2-6Gal ; GalNAc (SNA), Lac 

; LacNAc (RCA120), α-Man branched and terminal; terminal GlcNAc (Con-A), (GlcNAc)n ; 

multivalent Sia ; β-GlcNAc, GalNAc (WGA), Gal β 1-3GalNAca-Thr/Ser (T) ; GalNAca-

Thr/Ser (Tn) (JAC), GalNAcaThr/Ser (Tn) ; GalNAca1-3GalNAc (DBA) were enriched in 

the nano vesicles fraction. On the other hand, MAL-II, GSA, SWGA, SBA and PNA bound 

to much lesser degree to this fraction while SJA and UEA did not show any binding.  
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5.3.2 Lectin blotting 

All the 18 lectins used in FLLA were also used in lectin blotting to reveal more information 

about constituent proteins of all these fractions. Only some of the lectins showing major 

binding to either membrane vesicle fraction (P200,000g) or P18,000g or SN 200,000g are 

shown in Figure 4. Lectin blotting results (Figure 5.4) are categorized according to the 

binding specificities of lectins.  

 

Figure 5.4: Lectin blloting using 14 lectins is shown. Lectins with shared binding specificity 

are grouped together horizontally except for MAL-II and SNA which are grouped together 

vertically. M: molecular weight markers; 1: P18,000g; 2: P200,000g; 3: SN 200,000g; 4: 

Purified THP. 

As THP is present in all of the fractions and it is recognised by most lectins, any band of 

~80kDa is considered to be due to THP. Notably, this is only an assumption and lectin 

blotting alone does not provide any proof for it and there may be more than one protein 

present in the same band. From top left, first panel comprising two lectins (PHA-E, PHA-L) 
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will display glycoproteins with tetrantennary complex oligosaccharides (PHA-L) and 

bisecting GlcNAc complex structures (PHA-E). PHA-E binding proteins in P200,000g are 

mainly present as a smear from 60kDa to 120kDa while in P18,000g the main band is that of 

THP (which can be compared to purified THP; Lane 4). In P18,000g, apart from THP, one 

weak band at 150kDa can be easily seen while in SN200,000g bands of 28, 40 and 60 kDa 

can be found apart from a usual band at molecular weight corresponding to THP. In blot of 

PHA-L there is a clear band of THP in P200,000g and equally intense band of 70kDa of 

unknown identity. In P18,000g there is no other band than that of THP while, in SN200,000g, 

bands of 20, 35 and 60kDa can be seen. This result can be compared to FLLA signal 

(Figure5.2) where intense signal in P200,000g can be seen for PHA-E and PHA-L while less 

so in P18,000g. No signal in FLLA is present for SN200,000 for PHA-L which is similar in 

lectin blotting. However, there are some bands present in lectin blot of SN200,000g of PHA-

E while signal in FLLA for this fraction is absent (PHA-E in Fiigure 5.2). This can be 

explained if these proteins seen in lectin blot are present in the vesicle lumen and not on 

surface.  

The second panel of three lectins (JAC, MAL-I and RCA120) show nominal specificity to 

galactose bearing structures although their binding specificities can be markedly different. All 

the precise binding specificity of lectins used in this study can be compared in Table 5.1. 

Jacalin showed binding to three proteins between 100kDa and 160kDa and three proteins 

between 50kDa and 75 kDa in P200,000g while in P18,000g showed a smear between 15kDa 

and 37kDa. In SN200,000g many bands were visible between 28 to 40kDa, one major band at 

55kDa and a smear between 75 to 200kDa while there was no binding with THP (lane 4). 

Signal in FLLA for Jacalin is similar to lectin blotting for purified THP (No signal in both the 

techniques). P18,000g and P200,000, show good signal in FLLA for Jacalin while less so in 

lectin blotting. The converse is true for SN200,000g which shows some bands in lectin 
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blotting while FLLA signal is very low. MAL-I mainly showed two bands of 70kDa and 

80kDa in P200,000g which can be directly compared to bands seen in PHA-L. In the 

SN200,000g, the usual THP band can be seen apart from the two very weak bands of 40kDa 

and 22 kDa. In the case of RCA
120

 with nominal glycan specificity to terminal galactose and 

N-acetylgalactosamine (similar to JAC), there is a huge smear of signal from 37kDa to 

250kDa and above in both P200,000g and SN200,000g suggesting that majority of 

glycoproteins in urine in this range have this type of glycosylation. This is directly 

comparable with FLLA signal for RCA
120

. In P18,000g many bands between 10kDa and 

20kDa were visible apart from 2 bands at approximately 37kDa, one at 70kDa and one band 

at 150 kDa.  

SJA and SBA binds to terminal N-acetylgalactosamine and galactose with the difference 

being that SJA prefers β-anomers. SJA showed a smear in P200,000g from very low 

molecular weight to ~80kDa where the band of THP was visible while some bands in the 

smear could be seen at 10, 20 and 35 kDa. In SN200,000g, one band at 20kDa, one at 37kDa 

and one at 65kDa and three bands below 15kDa could be seen. In SBA blots one band at 18 

and one at 35 kDa could be seen in P200,000g while in SN200,000g three bands at 20, 37 and 

50kDa could be seen. SBA and SJA did not have good signal in FLLA for any of the 

fractions which can be compared to lectin blots where signal is not intense, although present.   

Con-A, LCA and PSA have been grouped together due to their shared nominal binding 

specificity to α-linked mannose although Con-A additionally recognises terminal and 

branched α-linked mannose and N-acetyl glucosamine residues while LCA and PSA also 

recognise fucose α1-6N-acetylglucosamine moieties and only LCA recognises α-linked 

glucose. In LCA P18,000g there is mainly the band of THP while one weak band at 50kDa 

can also be seen. In P200,000g bands at 160, 100, 60 and 37 kDa can also be seen while in 

SN200,000g many bands from between 25kDa to 250kDa are observed. In the case of Con-A 
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in all the fractions (P18,000g, P200,000g and SN200,000g) there was a smear from low to 

high molecular weight with many visible bands suggesting a number of proteins having α-

mannose type of glycosylation which was expected.  

In the PSA blot, bands of 37, 60, 80 and 100 could be seen in P200,000g while in P18000g 

THP was the major band recognised apart from a weak and at 37kDa. In SN200,000g bands 

of proteins with mol wt 25, 37, 45, 50 and 72 could be seen with considerable intensity. Con-

A had good signal in FLLA for P18,000g and P200,000g fraction (which is comparable in 

lectin blots), less so for pure THP (similar in blotting comapred to P18,000g  and P200,000g 

fractions) and poor signal for SN200,000g (same in lectin blot). In case of PSA, the best 

signal in FLLA was for P200,000g while other fractions did not have good signal. Multiple 

bands in P200,000g can be seen in the lectin blot for PSA. However signal intensity is better 

for P18,000g and pure THP which is  in contrast with FLLA signal for these fractions.  

LCA had no signal in FLLA in any of the fractions if we consider the standard deviation. 

However, in lectin blotting SN200,000g fraction has a  lot of signal. This discrepancy in 

FLLA and lectin blotting signals for PSA and LCA can be partly explained by the fact that 

FLLA would show only surface glycan signal while lectin blotting can show all proteins 

regardless of their location inside or outside of the vesicles. WGA mainly binds glycan 

structures ending in single or multiple N-acetylglucosamine and even binds multivalent sialic 

acid residues. In P200,000g there was a smear from 35 to 75kDa and, apart from the distinct 

THP-specific band, there was a visible band at 120 kDa. There was not appreciable binding 

in P18,000g pellet apart from THP band while in SN200,000g there were multiple bands at 

28, 40, 50, 55, 60 kDa and one band at 170kDa. In FLLA, WGA had similar signal in 

P18,000g and P200,000g while the half of that signal was for pure THP. However, in lectin 

blotting, WGA signal for P18,000g (THP band) and pure THP was  visibly more than 

P200,000g which is in contrast with FLLA. For SN200,000g the signal of WGA in FLLA 



301 
 

was absent while multiple bands can be seen in this fraction in lectin blotting. Again these 

proteins might be present in the lumen of vesicles.  

UEA1 binds to α-linked fucose residues and in P18,000g there was minute binding with THP 

while one intense band at 70kDa could be seen along with a doublet band at 37kDa, one band 

at 25kDa and an intense smear from 10kDa to 20kDa. MAL-II binds preferentially to α-2, 3 

linked sialic acid while SNA binds to α-2, 6 linked sialic acid. In MAL-II blot pattern in 

P18,000g looked quite similar to UEA1 and accordingly glycan structures with fucose and α-

2, 3 linked sialic acid have been reported (Wang et al., 1990). The same was true of 

P200,000g but it could be concluded by the differential intensity of the THP bands that this 

similarity was not due to the non-specific binding of lectins to similar targets. Moreover in 

P200,000g there was a band at 40kDa in MAL-II which seemed to be absent in UEA1 blot. 

While, the pattern in SNA blot was quite different in P200,000g and apart from a more 

intense band of THP, a smear from 37 to 70kDa could be seen. In P18,000g, 22 and 27kDa 

bands were visible along with a smear from 40 to 80kDa. The signal in FLLA for UEA1 and 

MAL-II was comparable for all fractions other than P18,000g which has considerably more 

signal in lectin blotting. We have discussed previously that this could be due to the intra-

vesicular proteins.  

In the case of SNA lectin blotting had much more signal for SN200,000g compared to FLLA 

while P18,000g and P200,000g signal was much more in FLLA. In the case of THP the 

signal in the lectin blot was much more than P18,000g while the reverse was the case in 

FLLA. Speculatively, this could be due to the fact that denaturing treatment during SDS-

PAGE could expose some glycans of THP which are otherwise hidden in native conditions of 

FLLA. 
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5.3.3 Lectin-affinity chromatography and hydrazide enrichment of glycoproteins 

from P18,000 and P200,000 extracts: glycoproteome of membrane vesicles 

5.3.3.1 Hydrazide chemistry and surface glycome of urinary exosome and ‘exosome-

like’ vesicles 

To investigate which glycoproteins are present on the surface of the urinary exosome and 

‘exosome-like’ vesicles, we employed hydrazide chemistry to enrich glycoproteins on surface 

of intact vesicles. The workflow for the technique is presented in Figure 5.12. 

 

Figure 5.5: Workflow of the hydrazide chemistry methodology used in our anlysis. Crude 

pellets (P18,000g and P200,000g) were used as starting material. 
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This approach works by oxidising the diol moiety of the glycans to aldehyde which can bind 

covalently to the hydrazide resin. Non-bound and non-specifically reacting proteins were 

removed by three alternate washes with 8M urea and 1.5 M NaCl. This would result in almost 

complete removal of protein non-specifically bound to the resin matrix as well as proteins 

being retained due to their specific interactions with glycoproteins. This approach should 

result in identification of mostly glycosylated as well as non-enzymatically glycated proteins 

(Yaylayan, 2003; Mirzaei & Regnier, 2007; Zhang et al., 2007). The surface proteins would 

be identified in the first part of the approach (Called P18S and P200S) while all other proteins 

would be identified in the second part after lysis of the vesicles and re-oxidation of the non-

bound proteins (Called P18W and P200W). Although glycoproteins which would be binding 

to the surface of these vesicles by protein—protein, protein-glycan and protein-lipid 

interactions or by adsorption would also bind to the resin upon oxidation of the intact 

vesicles. Various numbers of proteins excluding keratins were identified in different samples 

(P200S: 92 and P200W: 41; P18S: 58 and P18W: 36). All these proteins are shown in 

supplementary table S5.1 in CD-ROM provided with the thesis. Comparison of all these 

proteins is presented in Figure 5.13. 
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Figure 5.6: Comparison of proteins identified in various fractions of hydrazide chemistry 

analysis of P18 and P200. S means surface proteins (Intact vesicles used) W (Non-bound 

proteins from hydrazide resin after lysis of the vesicles).  

Only 21 proteins were unique to P18S and 3 in P18W when compared to P200 

identifications. These 24 proteins are indicated in the appendix at the end of this chapter. Out 

of these 24 proteins, 10 proteins are known to be glycosylated including 6 membrane 

proteins. These 6 membrane proteins are interesting and they are putative olfactory receptor 

51H1, olfactomedin-4, solute carrier family 12 member 1, prostaglandin H2 D-isomerase, 

semenogelin-2, phosphoinositide-3-kinase interacting protein 1 and folate receptor alpha. The 

reason why these proteins were identified only in P18,000g remains to be proven but they are 
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clearly part of the surface of membrane vesicles. Ninety two proteins were identified in the 

P200S and 41 in P200W. However, only 7 proteins were unique to P200W. Out of these 7 

proteins 3 are known glycoproteins namely angiotensinogen, serotransferrin and prostate 

specific antigen. All of these 3 are soluble secreted proteins and they probably end up in 

endosomes after endocytosis from where they can be secreted as part of membrane vesicles. 

Out of 92 proteins identified in P200S 61 proteins are annotated as known or potential 

glycoproteins (66% of the total). To establish the surface glycoproteins of the exosome and 

‘exosome-like’ vesicles we classified these 61 proteins by SOSUI (Hirokawa, Boon-Chieng 

& Mitaku, 1998) (http://bp.nuap.nagoya-u.ac.jp/sosui/sosuiG/sosuigsubmit.html) and we 

found that 35 of these proteins are membrane proteins. Uniprot annotation was also used and 

it was found that 2 additional proteins are membrane-associated other than these 35. These 

are sulfhydryl oxidase 1 and CD14 molecule. These 37 proteins (60% of known 

glycoproteins identified in P200S) constitute the urinary membrane vesicles surface glycome.  

Twenty four other proteins which are known to be glycosylated are present in P200S 

probably due to their interaction with vesicular surface or lysis of some vesicles upon freeze-

thawing. However, there could be other reasons as well. For example, Napsin A, which is 

among these 24 proteins, is known to localise to MVB membranes and process pulmonary 

surfactant protein B into mature form (Ueno et al., 2004). A number of proteins among these 

24 proteins are protease inhibitors such as alpha-2-macroglobulins, alpha-1-antichymotrypsin 

and plasma serine protease inhibitor. Plasma serine protease inhibitor is associated with 

membrane of cells and microvesicles (Nishioka et al., 1998). These reasons explain the 

presence of these proteins on surface of membrane vesicles. Other than these 24 proteins, 

thirty seven surface glycoproteins (known membrane proteins) are presented in Table 5.2. 
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Table 5.2: Presents the glycoproteins which are classified by either SOSUI and/or Uniprot as 

membrane associated or transmembrane proteins. These proteins were annotated by IPA 

(Ingenuity systems, Redwood city, CA). Uniprot accession, gene symbol Entrez gene name, 

location of the protein and type of molecule is indicated in the table. 

Uniprot 
accession 

Symbol Entrez Gene Name Location Type (s) 

P11117 ACP2 acid phosphatase 2, lysosomal Cytoplasm Phosphatise 

P15144 ANPEP alanyl (membrane) aminopeptidase Plasma 
Membrane 

Peptidase 

P02649 APOE apolipoprotein E Extracellular 
Space 

Transporter 

P01024 C3 complement component 3 Extracellular 
Space 

Peptidase 

P08571 CD14 CD14 molecule Plasma 
membrane 

transmembrane 
receptor 

P19835 CEL carboxyl ester lipase (bile salt-
stimulated lipase) 

Extracellular 
Space 

Enzyme 

Q12860 CNTN1 contactin 1 Plasma 
Membrane 

Enzyme 

Q6UVK1 CSPG4 chondroitin sulfate proteoglycan 4 Plasma 
Membrane 

Other 

O60494 CUBN cubilin (intrinsic factor-cobalamin 
receptor) 

Plasma 
Membrane 

transmembrane 
receptor 

Q53TN4 CYBRD1 cytochrome b reductase 1 Cytoplasm Enzyme 

P27487 DPP4 dipeptidyl-peptidase 4 Plasma 
Membrane 

Peptidase 

P01133 EGF epidermal growth factor Extracellular 
Space 

growth factor 

O15197 EPHB6 EPH receptor B6 Plasma 
Membrane 

Kinase 

Q9NQ84 GPRC5C G protein-coupled receptor, family C, 
group 5, member C 

Plasma 
Membrane 

G-protein 
coupled receptor 

P98160 HSPG2 heparan sulfate proteoglycan 2 Plasma 
Membrane 

Enzyme 

P01591 IGJ immunoglobulin J polypeptide, linker 
protein for immunoglobulin alpha 
and mu polypeptides 

Extracellular 
Space 

Other 

P01042 KNG1 kininogen 1 Extracellular 
Space 

Other 

Q7L985 LINGO2 leucine rich repeat and Ig domain 
containing 2 

Extracellular 
Space 

Other 

P98164 LRP2 low density lipoprotein receptor-
related protein 2 

Plasma 
Membrane 

Transporter 

P02788 LTF Lactotransferrin Extracellular 
Space 

Peptidase 
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O43451 MGAM maltase-glucoamylase (alpha-
glucosidase) 

Plasma 
Membrane 

Enzyme 

P08473 MME membrane metallo-endopeptidase Plasma 
Membrane 

Peptidase 

P15941 MUC1 mucin 1, cell surface associated Plasma 
Membrane 

transcription 
regulator 

Q9BRK3 MXRA8 matrix-remodelling associated 8 unknown Other 

P54802 NAGLU N-acetylglucosaminidase, alpha Cytoplasm Enzyme 

P01833 PIGR polymeric immunoglobulin receptor Plasma 
Membrane 

Transporter 

O00592 PODXL podocalyxin-like Plasma 
Membrane 

Kinase 

O43490 PROM1 prominin 1 Plasma 
Membrane 

Other 

P00391 QSOX1 Quiescin Q6 sulfhydryl oxidase 1 Cytoplasm Enzyme 

Q86UN3 RTN4RL2 reticulon 4 receptor-like 2 Plasma 
Membrane 

Other 

P01009 SERPINA1 serpin peptidase inhibitor, clade A 
(alpha-1 antiproteinase, antitrypsin), 
member 1 

Extracellular 
Space 

Other 

P05543 SERPINA7 serpin peptidase inhibitor, clade A 
(alpha-1 antiproteinase, antitrypsin), 
member 7 

Extracellular 
Space 

Transporter 

P55017 SLC12A3 solute carrier family 12 
(sodium/chloride transporters), 
member 3 

Plasma 
Membrane 

Transporter 

Q9UGT4 SUSD2 sushi domain containing 2 Extracellular 
Space 

Other 

P07911 UMOD Uromodulin Extracellular 
Space 

Other 

Q6EMK4 VASN Vasorin Plasma 
Membrane 

Other 

O43895 XPNPEP2 X-prolyl aminopeptidase 
(aminopeptidase P) 2, membrane-
bound 

Plasma 
Membrane 

Peptidase 

 

These 37 proteins were analysed by IPA software (Ingenuity systems, USA.) and some of the 

enriched bio-functions annotation are presented in the Table 5.3. 

 

 



308 
 

Table 5.3: Membrane glycoproteins of exosomal and exosome-like vesicles were enriched 

for some of the biological functions presented in the table. Category of functions, annotated 

function, p-Value of enrichement, molecules involved in the category and total number of 

molecules in the category is indicated in the table. 

Category Functions 
Annotation 

p-Value Molecules # 
Molecules 

Organ Morphology morphology of 
kidney 

1.68E-05 APOE,LRP2,NAGLU,PODXL,
SLC12A3,UMOD 

6 

Renal and Urological 
System Development 
and Function 

morphology of 
kidney 

1.68E-05 APOE,LRP2,NAGLU,PODXL,
SLC12A3,UMOD 

6 

Renal and Urological 
System Development 
and Function 

proliferation of 
mesangial cells 

9.76E-05 APOE,EGF,HSPG2 3 

Cellular Development proliferation of 
mesangial cells 

9.76E-05 APOE,EGF,HSPG2 3 

Cellular Growth and 
Proliferation 

proliferation of 
mesangial cells 

9.76E-05 APOE,EGF,HSPG2 3 

Organ Morphology morphology of 
kidney cells 

8.19E-04 NAGLU,PODXL 2 

Renal and Urological 
System Development 
and Function 

morphology of 
kidney cells 

8.19E-04 NAGLU,PODXL 2 

Cell Morphology morphology of 
kidney cells 

8.19E-04 NAGLU,PODXL 2 

Organ Morphology abnormal 
morphology of 
renal tubule 

2.04E-03 LRP2,SLC12A3,UMOD 3 

Renal and Urological 
System Development 
and Function 

abnormal 
morphology of 
renal tubule 

2.04E-03 LRP2,SLC12A3,UMOD 3 

Organismal Injury and 
Abnormalities 

Fibrosis 3.48E-03 EGF,UMOD 2 

Organ Morphology abnormal 
morphology of 
nephrin 

8.14E-03 LRP2,PODXL 2 

Renal and Urological 
System Development 
and Function 

abnormal 
morphology of 
nephrin 

8.14E-03 LRP2,PODXL 2 

Organ Morphology mass of kidney 9.34E-03 APOE,EGF 2 

Renal and Urological 
System Development 
and Function 

mass of kidney 9.34E-03 APOE,EGF 2 

Organ Development mass of kidney 9.34E-03 APOE,EGF 2 

Tissue Development mass of kidney 9.34E-03 APOE,EGF 2 
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Embryonic 
Development 

mass of kidney 9.34E-03 APOE,EGF 2 

Organismal 
Development 

mass of kidney 9.34E-03 APOE,EGF 2 

Cell Death and Survival apoptosis of kidney 
cells 

1.16E-02 APOE,EGF 2 

Renal and Urological 
System Development 
and Function 

kidney 
development 

1.38E-02 APOE,EGF,PODXL 3 

Organ Development kidney 
development 

1.38E-02 APOE,EGF,PODXL 3 

Tissue Development kidney 
development 

1.38E-02 APOE,EGF,PODXL 3 

Embryonic 
Development 

kidney 
development 

1.38E-02 APOE,EGF,PODXL 3 

Organismal 
Development 

kidney 
development 

1.38E-02 APOE,EGF,PODXL 3 

Cell Death and Survival cell viability 1.85E-02 EGF,UMOD 2 

Cellular Development proliferation of B-
lymphocyte 
derived cell lines 

2.38E-02 EGF,HSPG2 2 

Cellular Growth and 
Proliferation 

proliferation of B-
lymphocyte 
derived cell lines 

2.38E-02 EGF,HSPG2 2 

Hematological System 
Development and 
Function 

proliferation of B-
lymphocyte 
derived cell lines 

2.38E-02 EGF,HSPG2 2 

 

Enrichment of one network was found by IPA among these 37 membrane glycoproteins. This 

network is regulation of some of these proteins by LIM homeobox 1 (LHX1) transcription 

factor. This network is shown in Figure 5.7.  
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Figure 5.7: Presents the network enriched in membrane glycoproteins by IPA. LHX1: LIM 

homeobox 1 regulated proteins present in membrane glycoprotein identifications. Gene 

symbols have been used. The expression of all of these proteins is regulated by LHX1 

transcription factor. 

LHX1 has an important role in kidney field area specification during kidney development by 

mesoderm (Cirio et al., 2011). These regulated proteins play important roles in kidney 

development as well as maintenance. These regulated proteins including cubulin and megalin 

maintain endocytic pathways in kidney to clear the lumen of nephrons. Dipeptidylpeptidase 4 

(DPP4) and aminopeptidase N (ANPEP) control the processing of regulatory peptides in 
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tubular epithelial cells by regulating the cellular response to peptide hormones (Shipp & 

Look, 1993).  

The protocol we have used for capturing glycoproteins from P200 is very stringent. After the 

oxidised proteins bound to hydrazide resin we washed the columns thrice with alternate 8M 

urea and 1.5M NaCl. This washing should get rid of all the non-specifically adsorbing 

proteins from the column and only the bound proteins should remain which would be 

expected to either be glycsylated or non-enzymatically glycated. These 31 candidate proteins 

are indicated in the appendix at the end of this chapter. Among these proteins, there are 4 

membrane proteins; Sodium/potassium-transporting ATPase subunit alpha-1, gelsolin, 

nephrocystin-3 and stomatin. The presence of these 31 proteins in hydrazide-bound fraction 

could be explained in two ways with one being the interaction of these proteins with the 

glcosylated proteins found. We explored this option and using I2D 

(http://ophid.utoronto.ca/ophidv2.201/ppi.jsp) and iRefWeb (Turner et al., 2010) 

(http://wodaklab.org/iRefWeb/search) databases we found interacting partners of these 

candidate proteins in the glycosylated protein list. We present the network that emerged in 

Figure 5.8. 
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Figure 5.8: Interaction network was manually created between the glycosylated and non-

glycosylated proteins using data from I2D and iRefWeb (Turner et al., 2010) databases. The 

proteins in blue outlines are non-glycosylated proteins and proteins in orange outlines are 

glycosylated proteins found in hydrazide-enriched fractions. Interacting proteins are 

connected with thick black lines. 

This theory explains the presence of 6 proteins and although they are not glycosylated, they 

might be bound to the hydrazide column through their glycosylated partners. However, it is 

surprising that, even after washing the column three times alternatively with 8M urea and 

1.5M NaCl, these proteins maintained their association with their interacting partner. The 

second possibility is that amino acids in non-glycosylated proteins gets oxidised by sodium 

metaperiodate and subsequently coupled to hydrazide column. Oxidation of proteins and 

subsequent reaction with hydrazide has been previously reported (Mirzaei & Regnier, 2007). 

Moreover, in the same study the presence of cross-linked proteins upon oxidation was also 
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discovered. Cross-linked proteins and reaction of oxidised proteins with hydrazide can 

explain presence of these 31 proteins in hydrazide-bound fraction. These proteins need not be 

glycosyated to be present in this fraction. 

5.3.3.2 Lectin affinity chromatography for enrichment of glycoproteins from P200,000g 

and P18,000g 

Nine lectins were used for lectin affinity chromatography (LAC) of P18,000g and P200,000g 

extract (Table 5.4). Extract was prepared using 1% beta-octyl glucoside (because it 

solubilises lipid rafts (Garner, Smith & Hooper, 2008) and is compatible with LAC) to 

disrupt the vesicles for efficient enrichment of glycoproteins from both the pellets. Elution 

was performed on each lectin as described in methods (see elution conditions in Table 5.4). 

Most of these lectins were chosen because they showed high signal in FLLA (Figure 5.2). 

While, others like LCA, UEA and MAL-II were chosen because they recognised multiple 

proteins in the P18,000g and P200,000g in lectin blotting (Figure 5.3). 

Table 5.4: Presents nine lectins used in LAC along with their origin and specificity. 

Abbreviation Origin Nominal sugar binding specificity Elution 

conditions 

LCA/LcH Lens culinaris Fucα1-6GlcNAc ; α-Man ; α-Glc 200mM α-

methyl 

mannoside + 

200mM α-

methyl glucoside 

UEA-I Ulex europeus Fucα1-2LacNAc ; α-Fuc 100mM L-fucose 

SNA Sambucus nigra Siaα2-6Gal ; GalNAc 500mM lactose  

followed by 

500mM lactose 

in 100mM acetic 

acid 

MAL II  Maakia amurensis Siaα2-3Gal 200mM lactose 

RCA
120

 Ricinus communis Lac ; LacNAc 200mM 

galactose + 

200mM lactose 

PHA (E) Phaseolus vulgaris Bisecting GlcNAc 100mM acetic 

acid 

ConA Canavalia ensiformis α-Man branched and terminal; terminal GlcNAc 200mM α-

methyl 

mannoside + 

200mM α-
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methyl glucoside 

WGA Triticum vulgaris  (GlcNAc)n ; multivalent Sia ; β-GlcNAc, 

GalNAc 

 

JAC/ Jacalin Artocarpus 

integrifolia 

Gal β 1-3GalNAcα-Thr/Ser (T) ; GalNAcα-

Thr/Ser (Tn) 

800mM 

galactose 

 

Based on the total proteins enriched by these lectins, one tenth of the proteins in elution was 

resolved by SDS-PAGE. This reflects the proteins enriched by corresponding lectins in LAC.  

 

Figure 5.9: Silver stained SDS-PAGE (10%T) profile of proteins enriched by different 

lectins. Panel (A) (P200,000g): M. Molecular weight marker in kDa. 1. LCA 2. PHA-E 3. 

RCA 4. WGA 5. MAL-II 6. SNA 7. JAC 8. Con-A; Panel (B) (P18,000g): M. Molecular 

weight marker in kDa. 1. PHA-E 2. Con-A 3. WGA  4. RCA 5. JAC 6. SNA 7. MAL-II 8. 

LCA. 

We used fixed amount of LAC elutions to run in the gel. Although starting amount of total 

protein used for each lectin in the LAC was same, but each lectin enriched variable amount of 

proteins therefore there is discrepancy in the number and amount of proteins shown in Figure 

5.9. In LCA gel (Figure 5.9, Panel A, Lane 1) it can be seen that the major protein is THP 

(~100kDa) as is the case with RCA, WGA, SNA JAC and Con-A. In LCA, some low 
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molecular weight proteins below the THP band can be faintly seen and two proteins around 

200-250 kDa are visible as well. These proteins can also be seen in lectin blot of LCA (Figure 

5.4). In P18,000g elution of  LCA (Figure 5.9, Panel B, lane 8), multiple proteins and a 

complex pattern of proteins from low to high molecular weights can be seen. This is however 

in contrast with FLLA (Figure 5.2) and lectin blot of LCA (Figure 5.4).  

In PHA-E and MAL-II (Figure 5.9, Panel A, Lane 2 & 5) the faint band of THP can be seen 

however there are not many proteins shown in these two lectin elutions. The reason for this 

could be that amount (in µg) of proteins binding to this lectin was too low to be shown on the 

gel. Although the signal in FLLA for PHA-E was high (Figure 5.2), it could be seen in Figure 

5.4 that the number of proteins recognised by PHA-E is less compared to other lectins. The 

same is true of PHA-E elution of P18,000g (Figure 5.9, Panel B, Lane 1). MAL-II recognised 

multiple proteins in P200,000g in lectin blot (Figure 5.4) but the intensity  of signal was low. 

In P18,000g  elution  of MAL-II (Figure 5.9, Panel B, lane 7) there is a complex pattern of 

proteins across the range of molecular weight  from low to high and it is similar  to the lectin 

blot of MAL-II (Figure 5.4). However, signal in FLLA for MAL-II of P18,000g was low 

which is in contrast to lectin blot and SDS-PAGE of the elutions.  

In case of RCA120 the number of proteins seen in the elution of both P18,000g and 

P2000,000g is high (Figure 5.9, Panel A, lane  3 and Panel B, lane 4). This is comparable 

with lectin blotting (Figure 5.4) and FLLA of RCA120 (Figure 5.2) for both these fractions. 

The number of proteins in P18,000g lectin blot of RCA120 is  considerably less compared to 

elution shown here. In WGA elution  of P200,000g (Figure 5.9, Panel A, lane 4) the number 

of proteins are more compared to P18,000g (Figure 5.9, Panel B, lane 3) which shows 

negligible signal. THP is the main band in elution of WGA of P200,000g which can be 

compared to THP signal in FLLA for WGA (Figure 5.2). The signal for Jacalin in elution of 

P200,000g is mainly a band which could be THP however,  in FLLA and lectin blot of 
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Jacalin the signal for THP is absent. It could be argued that THP here is getting enriched non-

specfically. For SNA, the major band seen in elution of P2000,000 (Figure 5.9, Panel A, lane 

6) and P18,000g (Figure 5.9, Panel  B, lane 6) is THP which  could also be seen in lectin blot 

(Figure 5.4) and the signal for THP in FLLA (Figure 5.2).  

For Con-A elution of P200,000g (Figure 5.9, Panel A, lane 8)  there are a number of proteins 

from low to high molecular weight however the major protein is THP which is comparable to 

THP signal in FLLA (Figure  5.2). In P18,000g of Con-A elution (Figure 5.9, Panel B, Lane 

2) there are multiple proteins and THP is not the major protein. This is comparable to signal 

of Con-A  in the P18,000g, seen in FLLA (Figure 5.2). UEA-I elution is not shown in the 

Figure 5.9 because the amount of protein enriched was visibly small (Size of the dry pellet) 

which was processed directly to be analysed by LC-MS/MS.  

To confirm whether or not all the proteins have been eluted from the lectin columns by our 

elution buffers, we boiled 50µL beads from lectin columns with SDS-PAGE loading buffer 

for 15 minutes and loaded the released proteins on the gel.  
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Figure 5.10: Silver stained SDS-PAGE (10%) of the proteins released by beads from lectin 

affinity columns. 1. UEA-I (31, 32 kDa), 2. PHA-E (33 kDa), 3. Con-A (26,52 kDa), 4. RCA 

(27, 33, 60 kDa), 5. LCA (8, 17 kDa), 6. SNA (36, 38 kDa), 7. JAC (10, 16 kDa), 8. MAL-II 

(34, 36 kDa), 9. WGA (18 kDa), M: Molecular weight markers in kDa. 

The beads boiled in loading buffer mostly revealed the lectins and their subunits at their 

molecular weights with the exception of THP. THP was found abundantly in PHA-E, RCA, 

SNA and WGA columns while in only minor amounts in other lectins. No other major 

protein was present in the beads suggesting a majority of proteins bound to lectins had been 

eluted by the elution buffers used in our study. Elution was dialysed and concentrated using 

speed vacuum and processed by reduction, alkylation and trypsin digestions. Peptides were 

enriched using Sep-Pak solid phase extraction columns and analysed by LC-MS/MS.  
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5.3.3.3 Identification of proteins enriched by Lectin affinity chromatography 

The nine lectins were used in LAC to enrich various subpopulations of glycoproteins 

displaying diverse glycan epitopes on their surface. Multiple proteins were identified in 

elution of every lectin. Excluding keratins, varying number of proteins were identified from 

LAC of P200,000g with 35 in RCA, 53 in WGA, 78 in JAC, 68 in LCA, 58 in SNA, 66 in 

PHA-E, 59 in Con-A, 44 in MAL-II and 48 in UEA. In LAC of P18,000g varying number of 

proteins, with 10 in RCA, 45 in WGA, 13 in MAL-II, 28 in JAC, 20 in LCA, 45 in SNA, 34 

in PHA-E, 21 in Con-A and 49 in UEA were identified. All these proteins are shown in 

supplementary table S5.1 in CD-ROM provided with the thesis. Multiple proteins were 

common to many lectins. In total 172 non-redundant unique proteins were identified in 

P200,000g and 97 in P18,000g. A majority of the proteins (73% of total) identified in 

P18,000g were common to P200,000g (Figure 5.11). 

  

Figure 5.11: Comparison of the proteins identified by LAC in P200,000g and P18,000g.  
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Our objective was to identify the major glycoprotein population in the exosomal and low 

speed pellet. We did not take a serial LAC approach (Non-bound of one lectin bound to 

another one) which could yield a greater number of identifications by removing high 

abundance proteins in the first few lectin columns. But such an approach would miss out on 

giving information about type of glycan epitope present on these proteins. We have incubated 

both the pellet (600µg each) separately with each of these lectins and subsequently identified 

the bound proteins. Some proteins which are heavily glycosylated at multiple sites with 

diverse glycans would be expected to be present in high amount in each LAC fraction. By 

comparing proteins identified in 9 LAC fractions we can identify the proteins which bind to 

multiple lectins. Crude information about type of glycans present on these proteins would be 

revealed in the process. Out of 172 proteins identified in P200,000g, 64 proteins (37% of 

total) were known glycosylated proteins, as annotated by SwissProt. These 64 proteins were 

distributed in a complex manner among 9 LAC fractions. All of the 9 LAC were compared 

with each other and the results are presented in table 5.5. 

Table 5.5: All the known glycoproteins identified in P200,000 by LAC using 9 lectins are 

presented. Note that multiple proteins were bound to many different lectins. 

UNIPROT 
ACCESSION 

Gene Name Lectin binding 

O43653 
P05090 

prostate stem cell antigen, Apolipoprotein D WGA, JAC,  LCA, 
SNA, PHA-E, Con-A, 
UEA 

O75594 peptidoglycan recognition protein 1 WGA, SNA, PHA-
E,Con-A, UEA 

P00734 coagulation factor II (thrombin) MAL-II 

P00738 haptoglobin-related protein; haptoglobin WGA, LCA, SNA, 
MAL-II, UEA 

P01009 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 
antitrypsin), member 1 

WGA, JAC,  LCA, 
SNA, MAL-II, Con-
A, UEA 

P01011 
P0C0L4 

serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 
antitrypsin), member 3; Complement  component 4A (Rodgers 
blood group) 

JAC, LCA, UEA 

P01023 alpha-2-macroglobulin WGA, JAC, LCA, 
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Con-A, UEA 

P01042 kininogen 1 JAC 

P01596 
Q12907 
P04114 
P00450 
P16278 

Ig kappa chain V-I region CAR; lectin, mannose-binding 2; 
apolipoprotein B (including Ag (x) antigen); ceruloplasmin 
(ferroxidase); galactosidase, beta 1 

LCA 

P01833 polymeric immunoglobulin receptor JAC, LCA, Con-A, 
MAL-II, UEA 

P01857 
P01024 
P02787 

immunoglobulin heavy constant gamma 1; Complement 
component 3; transferring 

WGA, JAC,  LCA, 
SNA, MAL-II, PHA-
E, Con-A, UEA 

P01859 immunoglobulin heavy constant gamma 2 (G2m marker) WGA, JAC, LCA, 
SNA, PHA-E, Con-A 

P01876 immunoglobulin heavy constant alpha 1 WGA, JAC,  LCA, 
SNA, MAL-II, RCA, 
Con-A, UEA 

P02649 
Q14624 

apolipoprotein E; inter-alpha (globulin) inhibitor H4 JAC, Con-A 

P02671 fibrinogen alpha chain JAC, UEA 

P02675 
P02679 
P01871 

fibrinogen beta chain; fibrinogen gamma chain; 
immunoglobulin heavy constant gamma 1 (G1m marker) 

WGA, JAC, 
LCA,SNA, Con-A, 
MAL-II, UEA 

P02743 
P01860 
P04004 
O60494 
P01861 

amyloid P component, serum; immunoglobulin heavy constant 
gamma 1 (G1m marker); vitronectin; cubilin; immunoglobulin 
heavy constant gamma 4 (G4m marker) 

UEA 

P02760 alpha-1-microglobulin/bikunin precursor WGA, JAC, LCA 

P02768 
P07911 

albumin; uromodulin WGA, JAC,  LCA, 
SNA, MAL-II, PHA-
E, RCA, Con-A, UEA 

P02790 Hemopexin JAC, LCA, SNA, 
Con-A 

P04196 histidine-rich glycoprotein JAC, SNA 

P04745 Alpha-amylase 1 WGA, JAC, LCA, 
PHA-E, RCA, MAL-II 

P05155 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 LCA, UEA 

P07339 cathepsin D PHA-E 

P07858 cathepsin B WGA 

P08603 
Q8N2E2 
P27487 

complement factor H; von Willebrand factor D and EGF 
domains; dipeptidyl-peptidase 4 

RCA 

P08962 
O96009 
P01763 

CD63 molecule; napsin A aspartic peptidase; Ig heavy chain V-III 
region WEA 

JAC, LCA, Con-A 

P09668 cathepsin H LCA, SNA, PHA-E, 
Con-A 

P12273 prolactin-induced protein Con-A, MAL-II 
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P25311 Zinc-alpha-2-glycoprotein WGA, JAC,  LCA, 
SNA, MAL-II, RCA, 
Con-A, PHA-E 

P41222 prostaglandin D2 synthase WGA, JAC 

P51688 N-sulfoglucosamine sulfohydrolase LCA, Con-A 

P78509 Reelin SNA 

P80188 lipocalin 2 PHA_E, RCA 

P98164 low density lipoprotein-related protein 2 JAC, LCA 

Q02413 desmoglein 1 WGA, JAC, SNA, 
PHA-E, RCA, MAL-II 

Q08380 lectin, galactoside-binding, soluble, 3 binding protein WGA, JAC, LCA, 
SNA, Con-A, UEA 

Q08554 desmocollin 1 WG, JAC, LCA, 
PHA-E 

Q12805 
P21926 
P02763 
P02751 

EGF-containing fibulin-like extracellular matrix protein 1; CD9 
molecule; orosomucoid 1; fibronectin 1 

Con-A 

Q14574 desmocollin 3 JAC, PHA-E 

Q15517 Corneodesmosin WGA, SNA, PHA-E, 
Con-A 

 

Most of the proteins supposedly bound specifically to many different lectins and these 

proteins would be expected to have multiple glycosylation sites with a diverse array of 

glycans attached to them. For example, prostate stem cell antigen (PSCA), which is a GPI 

anchored protein, has 4 predicted N-glycosylation sites and it was shown in a study that 

treatment with PNGase F resulted in only one band of PSCA at 12 kDa. However, protein not 

treated with PNGase F had three isoforms at 12, 16 and 24 kDa (Reiter et al., 1998). This 

demonstrates that as much as 40% weight of this protein can be glycan moieties. Thirty seven 

known glycoproteins were identified in P18,000g LAC with similar pattern in which some 

proteins were bound to multiple lectins. We compared this 37 known glycoproteins from 

P18,000g with 64 glycoproteins from P200,000g (Figure 5.12). 
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Figure 5.12: Compares the glycoproteins identified in P18,000g and P200,000g by LAC. 

As seen in Figure 5.12, only 5 glycoproteins were unique to P18,000g (86% proteins 

common to P200,000 glycoproteins) therefore proteins identified in P18,000g will not be 

discussed further and we will focus only on glycoproteins identified in P200,000g.  

5.3.3.2 Sialylome of urinary nano-vesicles 

Three sialic acid-binding lectins were used in LAC (WGA, SNA, MAL-II). These lectins 

have different glycan binding specificities. Although WGA can bind to sialic acid in any 

linkage, it also binds N-acetylglucosamine. However, SNA and MAL-II are linkage-specific 

and bind α2-6 and α2-3 linked sialic acids respectively. Therefore comparison of proteins 

identified by LAC using these 3 lectins can reveal the nature of sialic acid linkage on 

identified proteins. WGA binding can confirm the presence of sialic acids on proteins 

identified by SNA and MAL-II. A comparison of known glycoproteins identified in LAC of 

these three lectins is shown in Figure 5.13. 
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Figure 5.13: Venn diagram showing the comparison of the proteins identified in WGA, SNA 

and MAL-II LAC. 

As can be seen in the Figure 5.13, 10 proteins are common to the three lectins which suggests 

that these glycoproteins are not only sialylated but also contain both α2-6 and α2-3 linkages 

of sialic acid. Ten other glycoproteins are present in SNA elution (6 common with WGA and 

4 unique to SNA) which would be expected to have only α2-6 linked sialic acid. Seven 

different proteins are present in MAL-II elution (4 common with WGA and 3 unique to 

MAL-II) which would be expected to have only α2-3 linked sialic acid (See Table 5.5). We 

have also described results of glycoproteins identified by hydrazide chemistry in previous 

section. Periodate oxidation also oxidises sialic acids (Larsen et al., 2007) and the resulting 

aldehyde is coupled to hydrazide resin. Therefore we compared the 27 non-redundant 

glycoproteins identified by MAL-II and SNA to proteins identified by hydrazide chemistry 

(Figure 5.14). 
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Figure 5.14: Presents comparison of sialylated proteins (identified in LAC using SNA and 

MAL-II) with proteins identified by hydrazide chemistry. 

Thirteen of the 27 proteins (48%) were also identified by hydrazide chemistry method 

validating the results of LAC. These 27 sialylated proteins are presented in Table 5.5. 

Table 5.5: The sialylated proteins identified in our study. Lectin binding and accordingly 

type of sialic acid linkage, presence of proteins in hydrazide chemistry based enrichment and 

confirmed sialylation in another study done with human plasma and saliva (Larsen et al., 

2007) is indicated in the table. 

Uniprot 

accession 

Gene/Protein Name Lectin 

Binding 

α2-3 or 

α2-6 

linkage 

Present in 

Hydrazide 

chemistry 

identificat

ions 

Known 

sialoprotein 

in Plasma or 

saliva 

(Larsen et 

al., 2007) 

P00734 Coagulation factor II (thrombin) MAL-II α2-3  Yes Yes 

P01833 Polymeric immunoglobulin 

receptor 

MAL-II α2-3  Yes Yes 

P12273 Prolactin-induced protein MAL-II α2-3  No Yes 

P02790 Hemopexin SNA α2-6 No Yes 
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P04196 Histidine-rich glycoprotein SNA α2-6 Yes Yes 

P09668 Cathepsin H SNA α2-6 No No 

P78509 Reelin SNA α2-6 No No 

P01871 Ig mu chain C region WGA, MAL-

II  

α2-3  Yes Yes 

P02675 Fibrinogen beta chain WGA, MAL-

II  

α2-3  No Yes 

P02679 Fibrinogen gamma chain WGA, MAL-

II  

α2-3  No Yes 

P04745 Amylase, alpha 1 (salivary) WGA, MAL-

II  

α2-3  Yes Yes 

P00738 Haptoglobin WGA, MAL-

II, SNA 

Both No Yes 

P01009 Serpin peptidase inhibitor, clade 

A (alpha-1 antiproteinase, 

antitrypsin), member 1 

WGA, MAL-

II, SNA 

Both Yes No 

P01024 Complement component 3 WGA, MAL-

II, SNA 

Both Yes Yes 

P01857 Immunoglobulin heavy constant 

gamma 1 (G1m marker) 

WGA, MAL-

II, SNA 

Both No No 

P01876 Immunoglobulin heavy constant 

alpha 1 

WGA, MAL-

II, SNA 

Both Yes Yes 

P02768 Albumin WGA, MAL-

II, SNA 

Both Yes Depleted 

before 

sialylated 

protein 

enrichment 

P02787 Transferrin WGA, MAL-

II, SNA 

Both Yes Yes 

P07911 Uromodulin WGA, MAL-

II, SNA 

Both Yes No 

P25311 Zinc -alpha-2-glycoprotein  WGA, MAL-

II, SNA 

Both No Yes 

Q02413 Desmoglein 1 WGA, MAL-

II, SNA 

Both No No 

O43653 Prostate stem cell antigen WGA, SNA α2-6 No No 

O75594 Peptidoglycan recognition protein 

1 

WGA, SNA α2-6 No No 

P01859 Immunoglobulin heavy constant 

gamma 2 (G2m marker) 

WGA, SNA α2-6 No Yes 

P05090 Apolipoprotein D WGA, SNA α2-6 Yes Yes 

Q08380 Galectin-3-binding protein WGA, SNA α2-6 Yes Yes 

Q15517 Corneodesmosin WGA, SNA α2-6 No No 

 

A majority of the proteins (63%) present in the table have been previously confirmed as 

sialoproteins in human plasma and saliva (Larsen et al., 2007). 
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5.3.3.4 α1-2 and α1-6 (Core) fucosylated proteins in exosomal pellet 

Two different lectins LCA and UEA-I were used in LAC for identifying fucosylated proteins. 

While LCA recognises α1-6 linked L-fucose otherwise known as core fucosylation, UEA-I 

binds to α1-2 linked L-fucose. Con-A binds biantennary glycans and some of these will have 

core fucosylation therefore such glycans will be bound by LCA as well. Most glycans which 

have α1-2 linked fucose on the outer arm (bound by UEA-I) also contain α1-6 core 

fucosylation (a1-2, 1-6 on one protein). Therefore multiple proteins should be common 

between Con-A, LCA and UEA-I although some of them would contain only one type of 

fucosylation either α1-2 or α1-6. The comparison between proteins identified in these three 

lectins is shown in Figure 5.15. 

 

Figure 5.15: Comparison between proteins identified in Con-A, LCA and UEA-I lectin 

(Panel A) and comparison of total fucosylated proteins with hydrazide method protein 

identifications (Panel B). 
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High-mannose type glycans are not known to be a substrate for α1,6-Fucosyltransferase, 

therefore, the proteins found in Con-A common with LCA should be biantennary hybrid or 

complex. Seventeen proteins in LCA (9 unique and 8 common with Con-A) are expected to 

possess only core fucosylation and not α1-2 type (See Table 5.6). Seven proteins (6 Unique to 

UEA-I and 1 common with Con-A) should contain only α1-2 type fucosylation which is 

usually found on outer arm of the glycan. However, 19 proteins common between LCA and 

UEA-I should have both types (α1-6 and α1-2) of fucosylation. These 43 potentially 

fucosylated proteins are present in table 5.6.  

Table 5.6: Potentially fucosylated proteins in urinary membrane vesicles. Uniprot accession, 

protein name, binding to either LCA or UEA-I and comparison with Con-A identified 

proteins, potential sialic acid found on same same protein, and identification in Hydrazide 

method are indicated in the table. 

Uniprot Gene/Protein Name Lectin 

binding 

Type of glycan Found in 

Sialic acid 

binding 

Lectins 

Present in 

Hydrazide 

method 

O96009 Napsin A aspartic peptidase Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

No Yes 

P01763 Ig heavy chain V-III region WEA Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

No No 

P01859 Immunoglobulin heavy constant 

gamma 2 (G2m marker) 

Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

Yes No 

P02790 Hemopexin Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

Yes No 

P08962 CD63 molecule Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

No No 

P09668 Cathepsin H Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

Yes No 

P25311 Alpha-2-glycoprotein 1, zinc-

binding pseudogene 1; alpha-2-

glycoprotein 1, zinc-binding 

Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

Yes No 

P51688 N-sulfoglucosamine 

sulfohydrolase 

Con-A, 

LCA  

Biantennary, 

α1-6 Fucose 

No No 

O43653 Prostate stem cell antigen Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes No 

P01009 Serpin peptidase inhibitor, clade 

A (alpha-1 antiproteinase, 

Con-A, 

LCA, 

Biantennary, 

α1-2, α1-6 

Yes Yes 
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antitrypsin), member 1 UEA-I Fucose 

P01023 Alpha-2-macroglobulin Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

No Yes 

P01024 complement component 3 Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P01833 Polymeric immunoglobulin 

receptor 

Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P01857 Ig gamma-1 chain C region Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes No 

P01871 Ig mu chain C region Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P01876 Immunoglobulin heavy constant 

alpha 1 

Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P02675 Fibrinogen beta chain Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes No 

P02679 Fibrinogen gamma chain Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes No 

P02768 Albumin Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P02787 Transferrin Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P05090 Apolipoprotein D Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

P07911 Uromodulin Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

Q08380 Galectin-3 binding protein Con-A, 

LCA, 

UEA-I 

Biantennary, 

α1-2, α1-6 

Fucose 

Yes Yes 

O75594 Peptidoglycan recognition protein 

1 

Con-A, 

UEA-I 

Biantennary, 

α1-2 Fucose 

Yes No 

P00450 Ceruloplasmin (ferroxidase) LCA  α1-6 Fucose No No 

P01596 Ig kappa chain V-I region CAR LCA  α1-6 Fucose No No 

P02760 Alpha-1-microglobulin/bikunin 

precursor 

LCA  α1-6 Fucose No Yes 

P04114 Apolipoprotein B (including Ag 

(x) antigen) 

LCA  α1-6 Fucose No No 

P04745 Amylase, alpha 1 (salivary) LCA  α1-6 Fucose Yes Yes 

P16278 Galactosidase, beta 1 LCA  α1-6 Fucose No No 

P98164 low density lipoprotein-related 

protein 2 

LCA  α1-6 Fucose No Yes 

Q08554 Desmocollin 1 LCA  α1-6 Fucose No No 
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Q12907 Lectin, mannose-binding 2 LCA  α1-6 Fucose No No 

P00738 Haptoglobin LCA, 

UEA-I 

α1-2, α1-6 

Fucose 

Yes No 

P01011 Serpin peptidase inhibitor, clade 

A (alpha-1 antiproteinase, 

antitrypsin), member 3 

LCA, 

UEA-I 

α1-2, α1-6 

Fucose 

No Yes 

P05155 Serpin peptidase inhibitor, clade 

G (C1 inhibitor), member 1 

LCA, 

UEA-I 

α1-2, α1-6 

Fucose 

No Yes 

P0C0L4 Complement component 4A 

(Rodgers blood group) 

LCA, 

UEA-I 

α1-2, α1-6 

Fucose 

No No 

O60494 Cubilin (intrinsic factor-

cobalamin receptor) 

UEA-I α1-2 Fucose No Yes 

P01860 Ig gamma-3 chain C region UEA-I α1-2 Fucose No No 

P01861 Immunoglobulin heavy constant 

gamma 4 (G4m marker) 

UEA-I α1-2 Fucose No No 

P02671 Fibrinogen alpha chain UEA-I α1-2 Fucose No No 

P02743 Amyloid P component, serum UEA-I α1-2 Fucose No No 

P04004 Vitronectin UEA-I α1-2 Fucose No No 

 

Many of these proteins like transferrin, haptoglobin, immunoglobulin G and A and polymeric 

immunoglobulin receptor have been previously identified in other studies to be α1-6 core 

fucosylated (Dai et al., 2007; Muinelo-Romay et al., 2011). 

5.3.3.5 Galactose bearing, high-mannose type and Complex glycan containing 

glycoproteins 

As described in Table 5.1, Jacalin binds ‘T antigen’ mostly, on O-glycosylated proteins. 

However, another study has shown that JAC can also bind oligomannose type glycans 

(Bourne et al., 2002). This population of proteins should also bind Con-A. Therefore, 

glycoproteins identified in Jac LAC were compared to those identified in Con-A. The 

common proteins should bear oligomannose type glycans and those unique to JAC should 

contain ‘T antigen’ type of glycan. Moreover, Con-A also binds biantennary types of glycans 

and it should have some proteins common with PHA-E. RCA, on the other hand binds 

galactose in N-acetyllactosamine. Some gaalctose-bearing proteins will be bound by JAC as 

well. For these reasons we compared the proteins identified in these four lectins (JAC, PHA-

E, RCA, Con-A) and common and unique proteins are presented in Table 5.7. 
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Table 5.7: The comparison of proteins identified in JAC, PHA-E, RCA and Con-A LAC. 

Uniprot accessions, Number of proteins common and unique among different lectins, lectin 

binding and information inferred from this comparison about type of glycans present in these 

proteins are indicated in the table. 

Uniprot accessions Number 

of 

proteins 

Gene/Protein Name Lectin 

binding 

Type of glycans 

P25311 P07911 2 Zinc-alpha-2-glycoprotein; 

Uromodulin 

JAC, PHA-

E, RCA, 

Con-A 

Oligomannose, 

Galactose bearing, 

complex 

Q02413 P04745 2 Desmoglien-1; Alpha-

amylase 1 

JAC, PHA-

E, RCA 

Galactose bearing, 

Complex 

P01857 O43653 

P01024 P01859 

P05090 P02787 

6 Immunoglobulin heavy 

constant gamma 1 (G1m 

marker); Apolipoprotein D; 

Immunoglobulin heavy 

constant gamma 2 (G2m 

marker); Transferrin; 

Prostate stem cell antigen; 

Complement C3  

JAC, PHA-

E, Con-A 

Oligomannose, 

complex 

P01876 1 Ig alpha-1 chain C region JAC, RCA, 

Con-A 

Galactose bearing, 

Oligomannose 

Q08554 Q14574 2 Desmocollin-1; 

Desmocollin-3 

JAC, PHA-E Oligomannose, 

complex 

P02790 P02675 

Q08380 P02649 

P01023 Q14624 

P01833 P01009 

P02679 P08962 

P01871 O96009 

P01763 

13 Immunoglobulin heavy 

constant mu; Alpha-1-

antitrypsin; Hemopexin; 

Apolipoprotein E; Polymeric 

immunoglobulin receptor; 

Fibrinogen beta chain; Inter-

alpha inhibitor H4;Glaectin-3 

binding protein; Napsin A; 

CD63; Alpha-2 

macroglobulin; fibrinogen 

gamma chain; Ig heavy chain 

V-III region WEA 

JAC, Con-A Oligomannose 

P80188 1 Neutrophil gelatinase-

associated lipocalin 

PHA-E, 

RCA 

Galactose bearing, 

Complex 

O75594 Q15517 

P09668 

3 Peptidoglycan recognition 

protein 1; Corneodesmosin; 

Pro-cathepsin H 

PHA-E, Con-

A 

Biantennary 

complex 

P01042 P01011 

P41222 P98164 

P02671 P0C0L4 

P02760 P04196 

8 Alpha-1-antichymotrypsin; 

Kininogen 1; Fibrinogen 

alpha chain; Alpha-1-

microglobulin; Histidine rich 

glycoprotein; Complement 

component 4A; 

Prostaglandin D2 sysnthase; 

Megalin 

JAC T antigen 
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P07339 1 Cathepsin D PHA-E Complex 

P08603 Q8N2E2 

P27487 

3 Complement factor H; von 

Willebrand factor D and EGF 

domain-containing protein; 

Dipeptidyl peptidase 4 

RCA Galactose bearing 

P12273 P51688 

Q12805 P21926 

P02763 P02751 

6 Prolactin-inducible protein; 

N-sulphoglucosamine 

sulphohydrolas; EGF-

containing fibulin-like 

extracellular matrix protein 

1; CD9 antigen; Alpha-1-

acid glycoprotein 1; 

Fibronectin 

Con-A Alpha-mannose 

  

5.3.3.6 Non-glycosylation proteins identified in our analysis 

We have identified 172 proteins in LAC of P200,000g out of which 64 (37%) are 

glycosylated. Sixty-three percent (63%) of total proteins identified are non-glycosylated. In a 

previous report, 70% of proteins identified in LAC using M. amurensis lectin were found to 

be non-glycosylated (McDonald et al., 2009). In the same paper it was shown that in the 

hydrazide chemistry protocol only 30% of the total identified proteins were glycosylated. 

compared to that study we have an improved identification of glycosylated proteins (66% 

glycoproteins in hydrazide method compared to 30% in the previous study and 37% 

glycoproteins in LAC compared to 30% in the previous study). However, a large number of 

non-glycosylated proteins are still present. In the same study, the authors had identified the 

proteins non-specifically adsorbing to the stationary phase matrix. When we compared our 

identification with the non-specifically adsorbing proteins of HeLa cells we found that 

although, the two samples are completely different, 14 proteins are present in our 

identifications as well. These 14 proteins are not known to be glycosylated and must be 

getting enriched by other means such as non-specific adsorption. These proteins are annexin 

A1 and A2, actin beta and alpha2, alpha enolase 1, glyceraldehyde 3-phosphate 

dehydrogenase, phosphogluconate dehydrogenase, histones H2A type 1-A and H4, 

elongation factor 1-alpha 1, 14-3-3 protein eta, pyruvate kinase isozymes M1/M2 and 
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peroxiredoxin 1 and 2. These proteins in cellular context are very abundant proteins in HeLa 

cells. However, quantitative data on their amount in exosomes is missing. Notably six of 

these are nucleotide binding proteins. The ability of these 14 proteins, adsorbing non-

specifically to the stationary phase even when they are present in different samples, could be 

due  to their sticky nature (aggregation) or high amounts. However, a clear answer is not 

known.  

Leaving these proteins apart, there are still a number of non-glycosylated proteins (94 

proteins) which were detected in LAC. We hypothesized that a majority of these proteins 

might be interacting with the glycosylated proteins. For this purpose we screened these non-

glycosylated proteins for interactions with the glycosylated proteins identified in our sample 

using protein-protein ineteraction databases I2D and iRefWeb (Turner et al., 2010). If these 

proteins form a complex with glycosylated proteins they would be detected in the LAC as 

well. Forty seven unique interactions were found and it was revealed 34 non-glycosyated 

proteins identified in LAC of P200,000g are known interacting partners of 18 glycoproteins 

identified in LAC. These interactions are presented in Table 5.8. 

 

Table 5.8: The non-glycosylated proteins identified in LAC which interact with 

glycoproteins identified in LAC. Protein name and the source of interaction are given in the 

table. 

Non-glycosylated proteins Glycosylated interacting 

partner 

Source 

CystatinA Cathepsin B I2D 

Ig kappa chain V-II region Cum Ig Mu chain I2D 

Ig kappa chain V-III region SIE Ig alpha-1 chain C 

region 

I2D 

Ig lambda chain V-I region HA Ig alpha-1 chain C 

region 

I2D 

Ig heavy chain V-III region VH26; Ig gamma-1 chain C I2D 



333 
 

Precursor region 

Ig kappa chain C region Ig gamma-1 chain C 

region 

I2D 

Cytokeratin-14 Ig gamma-1 chain C 

region 

I2D 

Cytokeratin-6A Ig gamma-1 chain C 

region 

I2D 

Apolipoprotein A-I Ig gamma-1 chain C 

region 

I2D 

Apolipoprotein A2 Serum albumin; 

Precursor 

I2D 

Apolipoprotein C1 Serum albumin; 

Precursor 

I2D 

Cystatin-B Cathepsin D I2D 

Cytokeratin-6B Serum albumin; 

Precursor 

I2D 

Apolipoprotein A-IV Serum albumin; 

Precursor 

I2D 

Annexin A2 Cathepsin B I2D 

Cytokeratin-16 Ig gamma-1 chain C 

region 

I2D 

Cytokeratin-13 Serum albumin; 

Precursor 

I2D 

Cytokeratin-5 Serum albumin; 

Precursor 

I2D 

Glial fibrillary acidic protein Serum albumin; 

Precursor 

I2D 

Junction plakoglobin Desmoglein-1 I2D 

Desmoplakin Desmocollin-1 I2D 

Cornifin-B Prolactin-inducible 

protein 

I2D 

Trypsin-3 Alpha-1-antitrypsin I2D 

Beta-catenin Megalin I2D 

Cytokeratin-9 Ig gamma-1 chain C 

region 

I2D 

Lysozyme C Alpha-2-macroglobulin I2D 

Hemoglobin beta chain Ig Mu chain I2D 

Hemoglobin alpha chain Cathepsin D I2D 

Dermcidin Serum albumin; 

Precursor 

I2D 

Plakophilin-1 Desmoglein-1 I2D 

Trypsinogen C Serum albumin; 

Precursor 

I2D 

Apolipoprotein A2 Apolipoprotein D iRefWeb 

Apolipoprotein A2 Complement C4-A iRefWeb 

Apolipoprotein A1 Apolipoprotein B iRefWeb 

Desmoplakin Desmocollin-1 iRefWeb 

Junction plakoglobin Desmocollin-1 iRefWeb 

Ig kappa chain C region Ig gamma-1 chain C 

region 

iRefWeb 
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Cystatin-B Cathepsin D iRefWeb 

Cystatin-A Cathepsin B iRefWeb 

Cystatin-A Pro-cathepsin H iRefWeb 

Junction plakoglobin Desmoglein-1 iRefWeb 

Apolipoprotein A1 Haptoglobin iRefWeb 

Cystatin-B Pro-cathepsin H iRefWeb 

Cystatin-B Cathepsin B iRefWeb 

Haptoglobin-related protein Ig mu chain C region iRefWeb 

Junction plakoglobin Desmocollin-3 iRefWeb 

Glyceraldehyde-3-phosphate 

dehydrogenase 

Cathepsin D iRefWeb 

 

Using above two approaches, we were able to account for the presence of 44% of the total 

non-glycosylated proteins detected in LAC. The remaining proteins, we speculate, could be 

present in our identification due to either new protein-protein interactions (not previously 

documented) or non-specific adsorption to stationary phase matrix. 

5.3.3.7 Gene ontology and bioinformatic analysis of total glycoproteins identified by 

LAC and hydrazide chemistry 

Combined total proteins from LAC and hydrazide method identifications (108 unique 

glycproteins) were submitted for analysis by IPA software. Proteins were annotated for sub-

cellular location and molecular function. Four proteins were not mapped by IPA and they 

were manually classified into sub-cellular localisation and molecular functions categories. 

Sub-cellular localisation of these 108 glycoproteins is presented in Figure 5.16. For 

comparison, the total proteome of P200,000g (Presented in Chapter 3) is shown side-by-side. 

This comparison gives an idea about which categories are represented heavily in 

glycoproteins compared to total proteome.  
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Figure 5.16: Sub-cellular localisation of glycoproteins of exosome and ‘exosome-like’ 

vesicles as annotated by IPA software. 

The biggest category enriched in the membrane vesicular glycoproteins is extracellular space 

(53%) and then plasma membrane (29%) and cytoplasm (13%). Extracellular proteins and 

proteins associated to plasma membrane are over-represented in glycoproteins of membrane 

vesicles compared to full proteome. However, cytoplasmic proteins in membrane vesicles are 

heavily under-represented compared to full proteome. This could be due to the fact that 

intracellular proteins are mostly O-glycosylated which is a small fraction of total 

glycoproteome where N-glycosylation is the predominant type. Further classification of 

glycoproteins by molecular functions of the proteins is presented in Figure 5.17.  
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Figure 5.17: The classification of glycoproteins for molecular function categories by IPA. 

The biggest category of molecular function is peptidase (26%) followed by transporters 

(17%). Transmembrane receptors make up 6% of the glycoproteins while enzymes make up 

another 15%. Compared to total proteome, peptidases (26% compared to 12 in total 

proteome) and transporter proteins (17% compared to 10% in total proteome) are heavily 

over-represented in glycoproteins. For example neutrophil gelatinase-associated lipocalin 

(NGAL) was identified only in glycoprotein study here and not in total proteome in Chapter 

3. NGAL is an iron-trafficking protein involved in apoptosis, innate immunity and renal 

development (Source: Uniprot, accession: P80188). NGAL is also an early biomarker for 

diabetic nephropathy which appears much earlier than albuminuria (Alter et al., 2012). 

However, enzymes are under-represented compared to total proteome. Further IPA analysis 

revealed a set of proteins which are involved in kidney failure and are presented in table 5.9. 
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Table 5.9: IPA bio-functions analysis revealed a category Kidney failure. Functions 

annotation, p-Value of enrichment, molecules involved (Gene symbol) and total molecules in 

the category are indicated. 

Category Functions annotation p-Value Molecules Total 

molecules 

Kidney 

Failure  

Renal failure 1.27 E-05 AGT, ALB, C3, DPP4, F2, 

IGHG1, KNG1, LCN2, PTGDS 

9 

Kidney 

Failure  

Chronic renal failure 7.02 E-06 AGT, ALB, C3, DPP4, F2, 

KNG1 

6 

Kidney 

Failure  

Failure of kidney 1.58 E-04 AGT, C3, DNASE1, PODXL 4 

Kidney 

Failure  

End stage renal disease 2.07 E-04 AGT, ALB, C3, F2, KNG1 5 

Kidney 

Failure  

Interstitial fibrosis of 

kidney 

6.53 E-03 AGT, C3, KNG1 3 

Kidney 

Failure  

Septic acute kidney 

injury 

2.40 E-03 LCN2 1 

Kidney 

Failure  

Acute tubular necrosis 3.85 E-02 LCN2 1 

Kidney 

Failure  

End stage renal disease 

of kidney 

3.85 E-02 C3 1 

Kidney 

Failure  

Acute renal failure 4.06 E-02 ALB,LCN2 2 

Kidney 

Failure  

Ischemic acute renal 

failure 

6.34 E-02 LCN2 1 

Kidney 

Failure  

Hepatorenal syndrome 6.95 E-02 ALB  1 

 

Network generation function in the core analysis feature of the IPA generated a network 

enriched in our glycoprotein identifications. This network enriched in our analysis is involved 

in neurological diseases, cancer and gastrointestinal diseases. This network is shown in 

Figure 5.18. 
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Figure 5.18: Network generated by IPA analysis of exosomal and exosome-like vesicular 

glycoproteins. Gene symbol of glycoproteins have been used. Proteins in grey shapes are the 

ones found in our analysis while the ones in white shape are associated with the network but 

not found in our analysis. 

This network shows the proteins which are connected by brown dotted and solid lines are the 

ones which decrease the phosphorylation of ERK1/2. While the proteins connected by blue 

lines to the HDL are components of HDL. HDL component proteins are involed in cross-talk 

with the ERK pathway. It was previously shown that isolated biliary exosomes were able to 
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induce a decrease of phosphorylated-total ERK1/2 ratio and, subsequently, cholangiocyte 

proliferation (Masyuk et al., 2010). Therefore, this network enrichment in our dataset could 

be a platform for future studies validating these targets to establish crosstalk of given 

exosomal components with the ERK pathway in the recipient cells. 

5.3.3.8 Comparison with previous studies on exosome and exosome-like vesicles 

We compared our identifications with the previous largest proteomic study on urinary 

exosomes and exosome-like vesicles (Wang et al., 2011) (Wang). We also combined our 

identifications from Chapter 2 with Wang and then compared it to the total proteins we 

identified in glycoprotein analysis. 

 

Figure 5.19: Panel A: Comparison of proteins identified in glycoprotein analysis with 

combined identifications from our Chapter 2 and largest study on exosome and exosome-like 

vesicles (Wang et al., 2011) (Wang). Panel B: the unique proteins in glycoprotein analysis 

were compared with Exocarta (Mathivanan et al., 2012) (The biggest database of exosomal 

proteins from any source, a filter was applied and only human proteins were extracted from 

Exocarta). 



340 
 

Fifty-one proteins were not found in either our proteomic identifications from chapter 2 or in 

the Wang et. al. study. These 51 proteins were converted from Uniprot accessions to Entrez 

gene ids which mapped to 39 Ids. These 39 Ids were compared to exocarta human proteins 

which are in the form of Entrez gene ids. Twenty-seven proteins were found to be unique to 

our glycoprotein analysis, which have never been described as part of exosomes or ‘exosome-

like’ vesicles. These 27 proteins are presented in Table 5.10. 

Table 5.10: The proteins shown for the first time to be part of exosome/’exosome-like’ 

vesicles. Uniprot accessions and gene/protein names are given. 

UNIPROT 

ACCESSION 

GENE/PROTEIN NAME Known/potential 

glycosylation in 

Uniprot 

P02654 apolipoprotein C-I No 

Q9NZT1 calmodulin-like 5 No 

P09668 cathepsin H Yes 

Q9UBR2 cathepsin Z Yes 

Q15517 Corneodesmosin Yes 

P09228 cystatin SA No 

P01037 cystatin SN No 

Q6E0U4 Dermokine No 

P59894 doublecortin domain containing 1 No 

O00472 elongation factor, RNA polymerase II, 2 No 

P14136 glial fibrillary acidic protein No 

Q68CZ6 HAUS augmin-like complex, subunit 3 No 

Q96QV6 histone cluster 1, H2aa No 

B9A064 Immunoglobulin lambda-like polypeptide 5 No 

P09914 interferon-induced protein with tetratricopeptide 

repeats 1 

No 

Q3SY84 keratin 71 No 

Q6ZMR3 lactate dehydrogenase A-like 6A No 

Q7L985 leucine rich repeat and Ig domain containing 2 Yes 

Q86SR0 Ly6/neurotoxin 1 No 

O60237 protein phosphatase 1, regulatory (inhibitor) subunit 

12B 

No 

Q86SG5 S100 calcium binding protein A7A No 

Q9NQ38 serine peptidase inhibitor, Kazal type 5 No 

P22528 small proline-rich protein 1B (cornifin) No 

P35325 small proline-rich protein 2B No 

P22531 small proline-rich protein 2E No 
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O94901 unc-84 homolog A (C. elegans) No 

Q8N2E2 von Willebrand factor D and EGF domains Yes 

 

None of these 27 proteins have been described in exosome or other membrane vesicles to the 

best of our knowledge. Five proteins out of these 27 are known to be glycosylated which are 

indicated in the Table 5.10. These proteins, however, could be potential targets to identify 

their glycosylation status. 

5.3.4 Lectin affinity chromatography for isolation of nano-vesicles from urine 

If a lectin affinity-based method for enrichment of membrane vesicles from urine is 

envisaged, one has to assume the possibility of contamination with high abundance proteins 

and avoid their enrichment. Two major proteins of urine are THP and albumin and THP is 

highly glycosylated (30% of total weight are glycans) while albumin is usually not 

glycosylated. Although some glycosylated variants of albumin are known, it can be assumed 

that albumin should not be enriched in elution of lectin affinity chromatography, as the 

frequency of glycosylated variants is very low. However, glycosylated variants of human 

serum albumin such as redhill have been reported (Kragh-Hansen, Donaldson & Jensen, 

2001). Based on the FLLA (Figure 5.2) and lectin blotting results (Figure 5.4), it was decided 

that Jacalin would be used for lectin-affinity isolation of membrane vesicles as THP did not 

bind to the Jacalin and P200,000g and P18,000g bound strongly to it. Moreover, in MS 

analysis of P200,000g extract 50% of total glycoproteins identified were membrane proteins 

as annotated by SOSUI web server (Hirokawa, Boon-Chieng & Mitaku, 1998). Also, the 

signal in lectin blot and FLLA for SN200,000g was much lower. Biotinylated Jacalin was 

immobilised on streptavidin agarose and subsequently Jacalin-agarose was used for lectin 

affinity chromatography (LAC). It was found that THP was still a major protein in the elution 
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of LAC (Figure 5.20 B). To remove THP, diatomaceous earth filter (DEF) was used to filter 

urine.  

 

 

Figure 5.20: SDS-PAGE of non-bound, washing and elution profile of Jacalin affinity 

chromatography of A) Negative control, B) whole urine, C) DEF non-bound, and Western 

blot D) of DEF non-bound using anti-CD63 antibodies. M: Molecular weight marker in kDa; 

N: Negative control, chromatography performed on only streptavidin-agarose without 

immobilised-Jacalin; U: Non-bound; W: Washing; E: Elution; EP200: Pellet 200,000g of 

elution of Jacalin-agarose. 

DEF non-bound material, mostly free of THP was applied to Jacalin-agarose and eluate was 

checked for membrane vesicles/exosomal marker CD63. Eluate from Jacalin-agarose was 

centrifuged at 200,000g to pellet down any membrane vesicles if any in the elution. Whole 

eluate and P200,000g of eluate had CD63 much more enriched when compared to non-bound 

fraction. It suggests that Jacalin chromatography of DEF filtered urine can enrich membrane 

vesicles without much contamination of soluble proteins like THP. To confirm that Jacalin-
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agarose enriches membrane vesicles by specific interaction with glycans and to establish a 

negative control, streptavidin-agarose without immboilised Jacalin was used for 

chromatography with whole urine. The same protocol as Jacalin-agarose chromatography 

was followed and the eluate was run on SDS-PAGE. Negative control, when compared to the 

SDS-PAGE pattern of the Jacalin-agarose chromatography eluate (Figure 5.20, N in Panel A 

versus E of Panel B & C), demonstrates that enrichment of vesicles is specific to Jacalin 

binding to the glycans on the surface of membrane vesicles.  

However, DEF filtration is a lengthy procedure and THP can entrap membrane vesicles 

(Fernandez-Llama et al., 2010) resulting in loss of vesicles in the subsequent chromatography 

step. To avoid this shortcoming and develop a method which is simple with less number of 

steps, we tried to change the binding buffer of the Jacalin chromatography. HEPES buffer 

saline was originally used and it can be seen in LAC elution as well that THP is present in the 

elution (Figure 5.9, Panel A, lane 7). THP is known to polymerise at high ionic strength 

therefore we changed the binding buffer to 10mM phosphate buffer (pH 7.4) withoutany salt. 

Polymerisation of THP might be the reason why it was getting enriched in high amounts with 

Jacalin elution. We were able to eliminate excess THP becoming enriched with fraction 

eluted from Jacalin-agarose (Figure 5.21). 
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Figure 5.21: SDS-PAGE (Panel A) of Jacalin chromatography using phosphate buffer as the  

binding buffer without any salt. 1: Jacalin elution M: molecular weight markers in kDa. 

Western blot of Jacalin elution (Panel B) using anti-CD63 antibodies. 1: Jacalin elution M: 

molecular weight markers in kDa. Western blot of Jacalin elution (Panel C) using anti-

TSG101 antibodies. 1: Elution fraction (vesicles) from the Jacalin-agarose M: molecular 

weight markers in kDa. 

It can be seen in Figure 5.21 that THP (~100 kDa) is not a major contaminant anymore in the 

Jacalin elution (Panel A) without having any effect on CD63 enrichment (Panel B). TSG101 

(intra-vesicular exosomal marker) was also found in Jacalin elution although in very low 

amounts as the image had to be acquired at high intensity to visualise the band. This elution 

was further characterised by transmission electron microscopy (TEM) to conclusively prove 
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that it contains membrane vesicles. Moreover, TEM analysis would also reveal the size and 

morphology of vesicles enriched by Jacalin from minimally processed urine. 

 

 

Figure 5.22: TEM analysis of vesicles eluted from Jacalin-agarose. Some representative 

pictures are presented here. Size of the scale bar and direct magnification is given on top of 

each panel. 

Figure 5.22 panel A shows mainly vesicles which are 50-70 nm while panel B shows bigger 

vesicles which are 378 and 389nm. Panel C shows a 126nm vesicle while panel D shows a 

639nm vesicle. We acquired multiple TEM images and size of the vesicles was calculated by 



346 
 

ImageJ software. We present a size distribution of vesicles present in 16 representative 

vesicles pictures. 

 

Figure 5.23: Presents the size-distribution of vesicles found in vesicle eluted from Jacalin-

agarose. 16 images were analysed by ImageJ software and size of all the vesicles were 

calculated. X-axis is the size of vesicles in nm and Y-axis is % vesicles in a given size range. 

We mostly found vesicles from 50 to 550 nm size but vesicles bigger than 550 were few. It 

can be said that Jacalin enriched vesicles are mixtures of exosomes and bigger microvesicles. 
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5.4 Discussion 

The purpose of our study was to use robust and exhaustively described methods for novel 

characterization of urinary vesicles for their glycoconjugates profile. Additionally this 

information was used to devise a new method to rapidly isolate urinary membrane vesicles. 

FLLA results showed that urinary membrane vesicles (P200,000g) are enriched in multiple 

glycan epitopes including complex N-linked glycans (PHA-E, PHA-L), high mannose 

structures (Con-A, PSA), Sia α 2-6Gal ; GalNAc and multivalent Sia (SNA, WGA), LacNAc 

(RCA120), GalNAcα-Thr/Ser (Tn) (JAC) and GalNAcαThr/Ser (Tn) ; GalNAcα1-3GalNAc 

(DBA). The WGA signal, compared to SWGA, was much higher indicating that WGA was 

binding mostly to sialic acids and not to N-acetylglucosamine. sWGA, as reported by the 

Vector labs datasheet,  binds only  to N-acetylglucosamine and not to sialic acids. This is 

complemented by high signal of SNA which binds Sia α 2-6Gal. The signal for MAL-II was 

very low suggesting that sialic acids on membrane vesicle surfaces are mainly conjugated by 

α 2-6.  

Many of these glycan epitopes have been previously recorded to be present on membrane 

vesicles from H9 T-cell line as evidenced by binding of their corresponding lectins (Con-A, 

PSA, PHA-E, PHA-L, RCA, WGA, SNA) (Krishnamoorthy et al., 2009). It was also shown 

in the study that these epitopes are enriched in membrane vesicles as compared to parent cell 

plasma membrane. Another study using a wide variety of cell lines (SkMel-5, HT29, HCT-

15, H9, SupT1 and Jurkat-Tat-CCR5 cell lines) and human breast milk as source of 

membrane vesicles confirmed most of these epitopes to be common to membrane vesicles 

from different sources (Batista et al., 2011). This suggests that membrane vesicles originate 

from specialised compartments of cells and glycosylation may play an important role in 

sorting glycoproteins to these compartments. Accordingly, it is known that, specific 

glycoforms of prion protein are sorted into exosomes over other forms (Vella et al., 2007). 
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Our study appears to be the first one undertaken on glycosylation of urinary membrane 

vesicles. FLLA could be employed to discover disease-specific differences in membrane 

vesicles glycosylation among different well defined patient samples.  

Taking the study further, nine lectins belonging to seven different classes based on their 

binding specificity were employed on P200,000g and P18,000g extract (prepared using beta-

octyl glucoside{BOG) to enrich constituent glycoproteins and identify them using MS 

analysis. BOG was used to prepare the extract as it dissolves the lipid-rafts (Garner, Smith & 

Hooper, 2008). One hundred and seventy two proteins excluding keratin were identified in 

P200,000 and 97 proteins in P18,000g. Out of these 172 proteins in P200,000g, 64 proteins 

are known glycoproteins (37%). When these 64 proteins were compared with 37 known 

glycoproteins identified in P18,000g only 5 proteins were unique to P18,000g (13%). High 

number of proteins common to both pellets suggest that P18,000g also consists of membrane 

vesicles which due to physico-chemical factors or entrapment in THP fibrils pellet down at 

low speed. It is to be noted that a similar trend was also noted in Chapter 2 in proteomic 

analysis of both these pellets. These 5 proteins unique to P18,000g are non-secretory 

ribonuclease (EDN), clusterin, CD59, mucin 1 and inter-alpha inhibitor H1. EDN was 

previously found to be present in urine and according to Uniprot, it is N-linked glycosylated 

at 5 locations and C-type glycosylated at one site. EDN is an anti-microbial proteins present 

in eosinophil granules and is chemotactic for dendritic cells (Yang et al., 2003). The role of 

extensive glycosylation of this protein in its biological functions is not known.  

Four of these 5 proteins have previously been shown to be secreted with exosomes in urine 

(Pisitkun, Shen & Knepper, 2004). However, Inter-alpha-trypsin inhibitor heavy chain H1 is 

not reported be part of exosomes from any source to the best of our knowledge (Absent in 

Exocarta (Mathivanan et al., 2012)). This protein was also identified in our total proteome 

analysis in Chapter 3. Total 64 known glycoproteins identified in P200,000g were compared 
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with each other and a crude information about glycans carried by these proteins was revealed 

(Table 5.4). When results from the hydrazide method were combined with LAC 

identifications, a total of 108 known glycoproteins were found. This study would serve as a 

platform for future studies on glycosylation of exosomal proteins. A number of sialic acid 

containing glycoproteins and core and α1-2 fucosylated proteins were also identified which 

are presented in results sections. Changes in sialic acid content in the glomerular capillary 

walls of the diabetic nephropathy patients compared to healthy tissues were observed 

previously (Tomino et al., 1988). In this study the binding of WGA decreased with 

neuraminidase treatment suggesting glycan epitopes contained sialic acids. As previously 

discussed, WGA signal in FLLA of P200,000 is mainly because of sialic acid content 

(SWGA signal is much less ruling out N-aceyltglucosamine).  

The changes in glycan content or amount in kindey can be reflected on membrane vesicle 

surface glycosylation which could be detected using FLLA. This is only a hypothesis until 

confirmed with patient samples. However, if this comes true, it can be further expanded to 

plate based hybrid lectin-antibody assays after recognising the glycproteins carrying these 

glycans which might change with disease in kidney and reflected in membrane vesicles. 

Identification of exosomal surface glycome is a first step towards that which we have 

performed using hydrazide chemistry as detailed in results section. Thirty-seven membrane 

glycoproteins including podocalyxcin, GPCR, and solute carrier transporters were identified. 

These proteins reflect the majority of exosomal surface glycome.  

The major category of gene ontology of glycoproteins in cellular component category was 

extracellular proteins followed by plasma membrane and then cytoplasm. Extracellular 

proteins peripherally or transiently attach with plasma membrane and many of them are 

expected to end up in endosomes which might prime them up for secretion with exosomes. 

Twenty seven proteins were identified to be part of exosome/exosome-like vesicles for the 
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first time out of which 5 are known glycoproteins. This suggests that lectin enrichment is 

efficient and can be used to enrich low abundance proteins from urinary membrane vesicles 

for more thorough proteomic characterization. Lectin affinity chromatography, although an 

efficient method of glycoprotein enrichment, sometimes catches non-glycosylated proteins 

which may be enriched as an artefact. For example serum albumin was also identified in our 

list and this could be due to the fact that albumin, being a transporter, is associated with 

multiple proteins. However, glycosylated variants of albumin have been reported (Kragh-

Hansen, Donaldson & Jensen, 2001). Moreover, albumin was also found in all samples from 

hydrazide chemistry method to enrich glycproteins. We have used a stringent method using 

hydrazide chemistry which included washing with 8M urea and 1.5M NaCl three times after 

the oxidised glycoproteins had bound to the hydrazide resin. This should result in all the non-

glycosylated or non-glycated proteins to be washed out. On-column trypsin digestion would 

result in release of peptides of only glycoproteins. Therefore, a possibility of albumin being 

either glycosylated or glycated can not be excluded. However, oxidised proteins could bind to 

hydrazide resin as well (Mirzaei & Regnier, 2007) and these proteins could be non-

glycoyslated. Albumin is known to be prone to oxidation at multiple sites and this could be 

the reason why it may bind to hydrazide resin. Moreover oxidation induced cross-linking of 

proteins has also been reported and this could present another mechanism by which albumin 

and other non-glycosylated proteins could be retained on hydrazide resin despite 8M Urea 

and 1.5M  NaCl washes. 

Deducing from the FLLA results, we noticed that Jacalin bound strongly to P200,000g and 

P18,000g but very little to SN200,000g and not at all to purified THP (Figure 2). Also, in 

lectin blotting Jacalin did not bind much to SN200,000g however some  bands in P200,000 

were apparent (Figure 5.4). This led us to test whether Jacalin chromatography can be used as 

a simple method to enrich urinary membrane vesicles. This would not require any 
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sophisticated instruments like an ultracentrifuge and would also save the labour of setting up 

tedious density gradient procedures. For such a purpose the method appears to work well. To 

achieve the results we first centrifuged whole human urine (50 mL) at 2000g and supernatant 

(SN2000g) was concentrated (using speed vacuum concentrator to 2-3 mL or Vivaspin 

300kDa MWCO) and used for the chromatography step. We are aware that while using the 

Vivaspin, we might lose some membrane vesicles on the filter surface or entrapped in THP 

polymers sticking to the filter. For removing the interference of THP poylmerisation at this 

step, no buffer was added and whole urine was concentrated. This would minimise the THP 

polymerization. And low speed used in the centrifugation for Vivapsin concentration 

(5000rpm) would mean most vesicles would not pellet down at this speed and remain in 

solution. Introduction of Vivaspin at this step was done to minimise 50mL urine to a 

manageable amount as the resin volume was small (1mL). Centrifugation (2000g) before 

Vivaspin concentration would be expected to get rid of any dead or shed cells which may be 

present in urine.  

It was found that, although Jacalin did not show any binding to THP in FLLA, THP was still 

a major protein in the Jacalin elution. It could be due to the reason that THP polymerises in 

the binding buffer and these polymers interact non-specifically with the agarose beads. THP 

polymerization has been previously reported (SERAFINICESSI et al., 1989). To remove 

contamination of THP, SN2000g was filtered using DEF. DEF removed the majority of THP 

from the urine and non-bound of DEF was applied to chromatography with Jacalin-agarose. 

This removed the problem of THP contamination and enrichment of the membrane vesicles 

marker CD63 was observed in elution fraction compared to non-bound fraction where it was 

almost undetectable. Presence of membrane vesicles in the elution of Jacalin was confirmed 

by centrifuging elution fraction of Jacalin at 200,000g and membrane vesicles/exosomal 

marker CD63 was noticed to be pelleting down at this speed. However, DEF filtration is a 
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lengthy procedure and impractical for clinical settings. Moreover, the DEF filtration method 

relies on polymerization of THP and it has been reported that membrane vesicles are 

entrapped in THP polymers (Fernandez-Llama et al., 2010). This would result in potential 

loss of vesicles during filtration on DEF. We looked at other ways of removing THP 

contamination and it was found that getting rid of the salt from binding buffer (changed from 

HEPES buffer saline to phosphate buffer {pH7.4) solves this problem and THP was not 

found in elution anymore. TSG101 in small amounts was also found in the elution. TEM 

analysis revealed that Jacalin enriches a mixture of vesicles including smaller vesicles (same 

size as exosomes) and bigger microvesicles. This vesicle population might be carrying 

specific glycan epitopes on their surface. In the future a use for this specific fraction of 

membrane vesicles can be found. This method can be performed with inexpensive laboratory 

instruments.  

Finally, 108 glycoproteins were identified in this study including the surface glycoproteins of 

exosomes and microvesicles. IPA analysis revealed that multiple proteins are involved in 

kidney size and morphology maintenance as well as some involved in kidney failure and 

other pathologies. Secretion of such clinically important proteins with membrane vesicles is 

of interest. This suggests the potential clinical application of FLLA method as well as 

glycoprotein enrichment protocols although much further work would be needed for such an 

application. Moreover, a simple method for microvesicle enrichment was also developed 

which does not require expensive instrumentation or specialised skills. 
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6.1 Introduction 

Post-translational modification (PTM) of proteins can dictate their localization or function or 

both (Walsh, Garneau-Tsodikova & Gatto, 2005). Lipidation of cysteine residues has 

emerged as previously less appreciated but recently found to be a widespread PTM. 

Arguably, the most widespread of the lipidation PTM is palmitoylation of specific cysteine 

residues. This requires C16 fatty-acyl CoA as donors for acyltransferases which transfer the 

C16 to the Cys residue (S-palmitoylation)  (Bijlmakers & Marsh, 2003). The identity of 

enzymes responsible for S-palmitoylation has not been fully defined in contrast to the N-

myristoylation machinery. Non-enzyme dependent palmitoylation has also been found. 

Palmitoylated proteins such as Src family kinases, eNOS and Gα subunits have also been 

observed to be enriched in caveolae (Shenoyscaria et al., 1994; Robbins, Quintrell & Bishop, 

1995). It was recently shown that blocking the protein palmitoylation in a murine model of 

vascular injury results in inhibition of platelet aggregation and decreased incorporation into 

thrombi (Sim, Dilks & Flaumenhaft, 2007). Following this study, 215 proteins were 

identified in another study as candidate palmitoylated proteins in platelets and 51 of them 

were previously known while 103 were new putative palmitoylated proteins (Dowal et al., 

2011). Realising the importance of this PTM, several studies on various cell and tissue types 

have been conducted and hundreds of palmitoylated proteins have been identified (Kang et 

al., 2008; Yang et al., 2010; Dowal et al., 2011; Martin et al., 2012). A picture which has 

emerged for roles of S-palmitoylation is that it can influence and regulate the localisation of 

modified proteins (membrane tethering or lipid raft targetting) and therefore affect their 

function spatially. Moreover palmitoylation can be reversible and dynamic (Kang et al., 

2008) therefore can affect protein’s functions and temporal signal transmission as well.  

It has previously been shown that plasma membrane association can target a highly 

oligomerized cytoplasmic protein to endosome-like domains and into the membrane vesicles 
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like exosomes and microvesicles (Fang et al., 2007). This targeting is independent of class E 

vacuolar protein sorting (VPS) pathways of sorting cargo to multivesicular body (MVB). 

Building on this study it was recently found that plasma membrane anchors like, N-

myristoylation and S-palmitoylation, can target oligomeric proteins to the site of vesicle 

budding and into the exosomes and microvesicles (Shen et al., 2011). The biogenesis of 

MVB and the mechanism of protein sorting to the exosomes/microvesicles are incompletely 

understood. Therefore, we proposed to identify the S-palmitoylated proteins present in 

exosomes isolated from the urine of healthy individuals using traditional ultracentrifugation 

based method. This will help increase our understanding of the protein sorting into these 

exosomes and shed light on the acylome of exosome/microvesicles. For enrichment of S-

palmitoylated proteins we have used the biotin-acyl exchange method which has proven very 

effective in the recent past for identifying palmitoylated proteins (Kang et al., 2008). 

Following purification/enrichment we have identified all the proteins using MudPIT analysis. 
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6.2 Materials and methods 

6.2.1 Exosome/microvesicle isolation from human urine 

Exosomal fraction from urine was purified as described in methods section of Chapter 2. 

Crude P200,000g pellet was used here as  starting  material. 

6.2.2 Biotin-acyl exchange method for enrichment of S-palmitoylated proteins 

All materials, unless specified otherwise were purchased from Sigma Chemical Company, St. 

Louis, MO, USA. For acyl-biotinyl exchange a previously published protocol was followed 

(Roth et al., 2006) with some modifications. Briefly, P200,000g (2mg) extract (prepared by 

incubating with 1% beta-octylglucoside overnight at +4°C) was adjusted to buffer A (Tris 

50mM pH 7.4, 5mM EDTA 4% SDS) and 2mM N-ethyl maleimide (NEM)  was added 

followed by the incubation at +4°C with rotation. The following day, sample was dialysed 

(MWCO 3500 Da) to remove the NEM. Then 1M hydroxylamine (HA) was added with 1mM 

N-[6- (Biotinamido)hexyl]-3'- (2'-pyridyldithio)propionamide biotin (HPDP-biotin) and 

incubated for 1 hour at +25°C (HA+ fraction). For the minus hydroxylamine fraction (HA- 

fraction) same volume of Tris 50mM pH 7.4 was added instead of HA. HA was removed 

from HA+ fraction by dialysis and samples were adjusted to buffer A with 1mM HPDP-

biotin and incubated at +25°C for 1 hour. HPDP-biotin was removed by dialysis (MWCO 

3500 Da). Samples were adjusted to tris pH7.4 and incubated with 100ul streptavididn 

agarose at +25°C for 90 Minutes. Non-bound proteins were removed by washing with tris 

buffer (50mM, pH7.4) 4 times and finally bound proteins were eluted by incubating the resin 

with 1% (v/v) beta-mercaptoethanol at 37C for 20 minutes. Eluate was dialysed (MWCO 

3500 Da) to remove beta-mercaptoethanol and converted to a dry pellet using speed-vacuum 

centrifugation. 
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6.2.3 SDS-PAGE 

SDS-PAGE was carried out as described in methods section of Chapter 2. The gels were 

stained with silver staining for protein detection, as previously described (Shevchenko et al., 

1996). 

6.2.4 Bioinformatic analysis and Gene ontology 

The HA+ protein list was analysed with IPA software (Ingenuity systems, Redwood city, 

CA.) and DAVID Bioinformatics resources 6.7 (Huang, Sherman & Lempicki, 2009a; 

Huang, Sherman & Lempicki, 2009b) (NIH, USA). The graph for biological processes was 

generated with Blast2Go software (Conesa et al., 2005). The CSS PALM 3.0 server 

(http://csspalm.biocuckoo.org/online.php) was used for high stringent prediction of 

palmitoylation of given proteins (Ren et al., 2008). 

6.2.5 LC-MS/MS analysis 

It was carried out as described in the methods section of Chapter 5.  
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6.3 Results 

6.3.1 Purification of S-palmitoylated proteins 

The membrane vesicle pellet (P200,000g) was obtained as described in Chapter 2. This pellet, 

which is enriched in exosomal markers and contains mainly 40-100 nm vesicles (Chapter 2 

Figure 2.2), was used for this study. The acyl-biotin exchange method was used for enriching 

the palmitoylated proteins from membrane vesicle fractions. This method is schematically 

presented in Figure 6.1.  

 

 

Figure 6.1: Schematic representation for purification of palmitoylated proteins using acyl-

biotin exchange chemistry. 

After blocking the free thiol groups of cysteine which may be present in the sample, HA was 

used to cleave the thioester bond of Cys-palmitate. This newly generated free thiol was then 



363 
 

biotinylated with HPDP-biotin. Two mg of total protein was divided into two parts and 

processed in parallell. One was treated with HA and the other was just incubated in buffer 

without HA. These two samples HA+ and HA- were then enriched with streptavidin-agarose 

following biotinylation. HPDP-biotin can be cleaved with reducing agents. Therefore, β-

mercaptoethanol was used for eluting the proteins bound to streptavidin-agarose.  This 

method yields a complex mixture of proteins in both the samples as shown in Figure 6.2.  

 

Figure 6.2: SDS-PAGE (T, 10%) of HA+ and HA- fractions enriched by acyl-biotin 

exchange method. 1: HA- 2. HA+ M. Molecular weight marker (in kDa). 

However, the pattern looks similar but there is a visible enrichment of multiple proteins in 

HA+ fraction. Proteins in both the samples were identified by in solution LC-MS/MS.  
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6.3.2 Protein identification by LC-MS/MS 

Excluding keratins, hundred and seventy two (172) proteins were identified in HA+ fraction 

(Supplementary Table 6.1) while 57 proteins were identified in HA- fraction (Supplementary 

Table 6.2). Out of this, 128 proteins were unique to HA+ fraction and 13 were unique to HA- 

fraction while 44 proteins were common (Figure 6.3).  

 

Figure 6.3: Comparison of proteins identified in the fraction HA+ vs HA-. 

The HA- fraction is mainly composed of contaminant proteins getting enriched non-

specifically and/or endogenously biotinylated proteins. These 128 unique proteins in HA+ 

fraction were taken as candidate palmitoylated proteins for further analysis. These 128 

proteins will be referred to as HA+ proteins from here on. Sequences of these proteins were 

retrieved from Batch retrieval-Uniprot service (http://www.uniprot.org/) and submitted to 

CSS Palm 3.0 web server (Ren et al., 2008) (http://csspalm.biocuckoo.org/online.php) which 
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predicts the potential palmitoylated proteins. The threshold was set to high which returned 78 

potentially palmitoylated proteins. These proteins are listed in Supplementary Table 6.A.  

6.3.3 Comparison with previous studies 

There have been a number of studies identifying candidate palmitoylated proteins (High and 

medium confidence) on various tissue and cell-line types. Proteins from yeast, human 

platelets, rat neurons and DU145 cell lines have been identified (Roth et al., 2006; Kang et 

al., 2008; Yang et al., 2010; Dowal et al., 2011; Martin et al., 2012). Table 6.1 presents 12 

proteins from our dataset which have previously been identified as palmitoylated proteins. 

These 12 proteins were part of 78 proteins predicted by CSS Palm3.0 to be palmitoylated. 

These include a number of RAS family members, stomatin and tetraspanin CD9. 

Table 6.1: The known palmitoylated proteins (platelet palm and S-acylation MCP) identified 

in our study. Sub-cellular location, function or type of molecule and biomarker applications 

(IPA, Ingenuity systems), if any, are indicated.  

Serial 

No 

Uniprot 

Accession 

Symbol Entrez 

gene 

name 

Location Functio

n/type 

Biomark

er 

applicati

on 

Reference for 

Biormaker 

Referen

ce 

1 P04746 AMY2A Amylase, 

alpha 2A 

(Pancreat

ic) 

Extra-

cellular 

space 

Enzym

e 

N/A N/A Human 

Platelet 

(Dowal 

et al., 

2011)  

2 Q13510 ASAH1 N-

acylsphin

gosine 

amidohy

drolase 

(acid 

ceramida

se) 1 

Cytoplasm Enzym

e 

Diagnosi

s, Cancer 

http://www.iq

ac.csic.es/ima

ges/stories/IQ

AC-

KT/leaflet%2

0im_002.pdf 

Human 

Platelet 

(Dowal 

et al., 

2011), 

DU145 

cells 

(Yang et 

al., 

2010)  

3 P15291 B4GALT

1 

UDP-

GAL:Bet

aGlcNAc 

beta 1,4 

galactosy

ltransfera

se, 

Cytoplasm Enzym

e 

Diagnosi

s, Cancer 

IPA, 

Ingenuity 

DU145 

cells, 

human 

(Yang et 

al., 

2010) 
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polypepti

de 1 

4 P21926 CD9 CD9 

molecule 

Plasma 

membrane 

Other Efficacy, 

GEFITI

NIB 

IPA, 

Ingenuity 

DU145 

cells, 

human 

(Yang et 

al., 

2010) 

5 P25325 MPST Mercapto

pyruvate 

sulfurtran

sferase 

Cytoplasm Enzym

e 

N/A N/A  (Martin 

et al., 

2012) 

6 P60900 PSMA6 Proteaso

me 

(prosome

, 

macropai

n) 

subunit, 

alpha 

type, 6 

Cytoplasm Peptida

se 

N/A N/A DU145 

cells, 

human 

(Yang et 

al., 

2010) 

7 P61026 RAB10 RAB10, 

member 

RAS 

oncogene 

family 

Cytoplasm Enzym

e 

N/A N/A DU145 

cells, 

human 

(Yang et 

al., 

2010) 

8 Q9NRW1 RAB6B RAB6B, 

member 

RAS 

oncogene 

family 

Cytoplasm Enzym

e 

N/A N/A DU145 

cells, 

human 

(Yang et 

al., 

2010) 

9 P62979 RPS27A Ribosom

al protein 

S27a 

Cytoplasm Enzym

e 

N/A N/A DU145 

cells, 

human 

(Yang et 

al., 

2010) 

10 P62070 RRAS2 Related 

RAS 

viral (r-

ras) 

oncogene 

homolog 

2 

Plasma 

membrane 

Enzym

e 

N/A N/A BW514

7-

derived 

mouse 

T-cell 

hybrido

ma 

(Martin 

et al., 

2012) 

 

11 P27105 STOM Stomatin Plasma 

membrane 

Other N/A N/A Human 

Platelet 

(Dowal 

et al., 

2011), 

DU145 

cells 
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(Yang et 

al., 

2010)  

12 P27348 YWHAQ Tyrosine 

3-

monooxe

genase/tr

yptophan 

5-

monooxe

genase 

activatio

n protein, 

theta 

Cytoplasm Other N/A N/A Human 

Platelet 

(Dowal 

et al., 

2011), 

DU145 

cells 

(Yang et 

al., 

2010)  

 

Most of these proteins’s subcellular location is cytoplasm while stomatin and RRAS2 localise 

to plasma membrane. It is to be noted that most of the known palmitoylated proteins fall into 

the enzyme category which is expected because membrane localization is essential for correct 

functions of many enzymes. ASAH1 activity and B4GALT1 expression has previously been 

used as a biomarker for diagnosis of various types of cancers. CD9 has been used as a 

biomarker for efficacy of Gefitinib which is a selective inhibitor of epidermal growth factor 

receptor’s tyrosine kinase domain. This drug has been developed for non-small cell lung 

cancer. CD9, a tetraspanin, is an exosomal marker proteins and in a previous study it has 

been shown that palmitoylation of CD9 was not necessary for its sorting into exosomes in 

vitro (Abache et al., 2007). It suggests another mechanism is at play for CD9 sorting into 

exosomes. 

Other than these 12 known palmitoylated proteins, 66 proteins from our dataset were also 

predicted to be palmitoylated by CSS PALM 3.0. These proteins were classified by SOSUI 

web server (Hirokawa, Boon-Chieng & Mitaku, 1998) and 28 proteins (42%) were found to 

be membrane proteins. Some of these transmembrane proteins are presented in Table 6.2 
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Table 6.2: Transmembrane proteins found in candidate palmitoylated proteins from our 

dataset. These proteins were predicted to be palmitoylated by CSS PALM 3.0. Uniprot 

accession, gene name and number of transmembrane domains are indicated in the table. 

Uniprot 

accession 

Gene/Protein Name Transmembrane 

domains 

Q15375 Ephrin type-A receptor 7 2 

Q9NZH0 G-protein coupled receptor family C group 5 member B 7 

Q9NQ84 G-protein coupled receptor family C group 5 member C 8 

Q969X1 Protein lifeguard 3 7 

Q13621 Solute carrier family 12 member 1 11 

P22732 Solute carrier family 2, facilitated glucose transporter member 

5 

6 

Q92673 Sortilin-related receptor 2 

O60635 Tetraspanin-1 5 

O75264 Transmembrane protein C19orf77 2 

O00322 Uroplakin-1a 4 

 

Palmitoylation sites are frequently found in cytoplasmic regions flanking transmembrane 

domains or within these domains (Salaun, Greaves & Chamberlain, 2010). Among the 

transmembrane proteins present in our dataset there are two G-protein coupled receptors, 

GPRC5B and GPRC5C. These GPCRs have not been reported to be palmitoylated in the 

literature. However, palmitoylation of GPCR and their cognate G-proteins has emerged as a 

general feature of this family of proteins and multiple GPCRs are already known to be 

palmitoylated (Qanbar & Bouvier 2003; Zheng et al., 2012) and the list is growing by the 

day. GPRC5B and GPRC5C identified in our dataset are potential candidates for 

palmitoylation among other candidate proteins. 

HA+ proteins were also compared to Exocarta database (Mathivanan et al., 2012) and 

previous published studies on urinary exosomes and exosome-like vesicles ( (Pisitkun, Shen 

& Knepper, 2004; Gonzales et al., 2009; Hogan et al., 2009; Wang et al., 2011) Knepper, 

Hogan, Wang). As biotin-acyl exchange is an enrichment method for palmitoylated proteins 
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it might lead to identification of some low-abundance proteins which are part of exosomes 

but not otherwise identified in other studies because of the abundant proteins. All protein 

identifiers were converted to Unigene identifiers to facilitate the comparison.  

 

 

Figure 6.4: Our protein list from Chapter 2 (CP200) and other studies on membrane vesicles 

(Knepper, Hogan and Wang (Pisitkun, Shen & Knepper, 2004; Gonzales et al., 2009; Hogan 

et al., 2009; Wang et al., 2011)) were compared to proteins Unique to HA+ fraction. Unigene 

identifiers were used for all of these studies.  
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Nine proteins were found to be unique to our dataset which were subsequently compared with 

Exocarta (Mathivanan et al., 2012), the biggest database for membrane vesicle proteins and 

mRNA. Three proteins were returned which are unique to our analysis. These proteins 

include plasma membrane proteins like EPH receptor A7 and Copine-9 and are shown in 

Table 6.3. They could potentially be a part of exosomes and exosome-like vesicles. 

Table 6.3: Some of the proteins identified for the first time as being part of exosomes. Gene 

name for the proteins, presence in HA+ or HA- fraction, sub-cellular location, Mascot score 

of their identification and number of protein matches are indicated in the table.  

Uniprot 

accession 

Gene Name Found in 

fraction 

Sub-

cellular 

location 

Mascot 

score 

Protein 

Matches 

Q8IYJ1 Copine-9 HA+ only Plasma 

membrane 

40 1 

Q9UBR2 Cathepsin Z HA+ only Extracellular 

space 

60 1 

Q15375 EPH receptor A7 HA+ only Plasma 

membrane 

86 1 

 

6.3.4 Bioinformatic analysis and gene ontology 

IPA software from Ingenuity systems, DAVID bioinformatics resources (Huang, Sherman & 

Lempicki, 2009a; Huang, Sherman & Lempicki, 2009b) (NIH, USA) and Blast2Go software 

(Conesa et al., 2005) were used for detailed bioinfomatic analysis of the HA+ proteins. An 

annotated list from IPA software produced 111mapped Ids, classified according to their sub-

cellular location and function/type. From this data figures were generated using MS Excel for 

the percentage of proteins localised to various sub-cellular compartments or their functional 

category. Figure 6.5 presents proteins classified according to their sub-cellular localisation. 
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Figure 6.5: Sub-cellular localisation of proteins unique to HA+ fraction. The annotation was 

done with IPA software from Ingenuity systems, USA. 

The biggest category in localisation is cytoplasmic proteins forming 44% of the total 

palmitoyled candidate proteins. This is expected as many cytoplasmic proteins are 

palmitoyled sub-cellularly which changes their location to the membrane where they exert 

their functions (Shenoyscaria et al., 1994). The cytoplasmic proteins are over-represented in 

HA+ fraction compared to total proteome. The next biggest category is extracellular space 

followed by plasma membrane proteins.  Only two nuclear proteins, cofillin-2 and nuclear 

transport factor 2 were identified and 6 proteins were classified as of unknown location. Four 

of these proteins of unknown location are annotated by Uniprot as membrane proteins or 

involved in membrane trafficking (Copine family member IX, Matrix-remodeling-associated 

protein 8, Chromosome 19 open reading frame 77 and Tetraspanin 1) while one is a 

cytoplasmic protein (5'-nucleotidase, cytosolic III-like) and another being signalling protein 

of unknown location (POTE ankyrin domain family, member I).  

Cytoplasm 

Extracellular Space 

Plasma membrane 

Nucleus  

Unknown  

44 

27 

22 

2 

5 

38 

36 

23 

2 

1 

GeneOntology: Sub-cellular location 

CP200 total proteome HA+ Unique 
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Figure 6.6: Protiens unique to HA+ fraction classified according to molecular function. The 

annotation was done with IPA software from Ingenuity systems, USA.  

On classifying the HA+ proteins by molecular function/type (Figure 6.6) the biggest category 

is enzymes (33%). This trend of discovering enzymes as being palmitoylated has been seen in 

previous studies as well. The trafficking of enzyme to membrane domains where their 

activities are needed for normal cell signalling is important and palmitoylation is one of the 

signals for membrane localisation (Shenoyscaria et al., 1994). When compared to total 

proteins, the enzyme category is over-represented in HA+ fraction. Proteases and protease 

inhibitors form another 18% of the list while G-protein coupled receptors (GPRC5B and 

GPRC5C) and kinases, including pyruvate kinase, are also present.  
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Peptidase 
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Kinase  

Transmembrane receptor 

Other  
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Gene ontology: Molecular function 
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Figure 6.7: Blast2Go software was used to annotate proteins according to the biological 

processes they are involved in. The ‘cut-off’ was kept at 10 sequences and only those 

categories having at least 10 proteins in it were considered. 

Blast2Go software was used for classifying proteins according to the biological processes 

they are involved in (Figure 6.7). The biggest categories involving multiple proteins were 

signalling, cellular response to stimulus and its regulation and metabolic processes. 

Palmitoylation seems to selectively target proteins involved in cell signalling and regulation. 

DAVID bioniformatics resources found some proteins in the HA+ fraction which are 

transporters of proteins and small molecules. These proteins are listed in Table 6.4.  
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Table  6.4:  Proteins annotated by DAVID as being involved in protein and small molecules 

transport. 

ID Gene Name 

P54920 N-ethylmaleimide-sensitive factor attachment protein, alpha 

P61026 RAB10, member RAS oncogene family 

P59190 RAB15, member RAS onocogene family 

Q9H082 RAB33B, member RAS oncogene family 

Q9NRW1 RAB6B, member RAS oncogene family 

P00450 ceruloplasmin (ferroxidase) 

P68871 hemoglobin, beta 

P02790 Hemopexin 

P02649 hypothetical LOC100129500; apolipoprotein E 

P61970 nuclear transport factor 2 

Q8WUM4 programmed cell death 6 interacting protein 

P41222 prostaglandin D2 synthase, hematopoietic; prostaglandin D2 synthase 21kDa (brain) 

Q13621 solute carrier family 12 (sodium/potassium/chloride transporters), member 1 

P22732 solute carrier family 2 (facilitated glucose/fructose transporter), member 5 

Q92673 sortilin-related receptor, L (DLR class) A repeats-containing 

Q9UK41 vacuolar protein sorting 28 homolog (S. cerevisiae) 

Q9UN37 vacuolar protein sorting 4 homolog A (S. cerevisiae) 

 

Among these transport proteins RAB10 and RAB6B are already known to be palimotylated 

(Yang et al., 2010) while RAB15 and RAB33B are very promising candidates. This class 

also includes programmed cell death 6 interacting proteins (Alix) and VPS family proteins 

which are members of endosomal sorting complex required for transport (ESCRT) that is 

involved in sorting proteins into exosomes (Babst et al., 2002a; Babst et al., 2002b; 

Katzmann, Babst & Emr, 2001).  

For further analysis of HA+ proteins, IPA was used in biomarker analysis and 29 proteins 

were returned among the list which has been used as biomarkers of various diseases (Table 

6.5). Different types of cancers and cardiovascular diseases were among the top diseases in 

which these biomarkers are used. 
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Table 6.5: IPA software was used for biomarker analysis of the HA+ proteins. These 

biomarkers are listed according to their applications. 

Symbol Entrez Gene Name Drug (s) GenPept

/UniProt

/Swiss-

Prot 

Accessi

on 

Plas

ma/S

erum 

Ur

ine 

Biomarker 

Application 

(s) 

ACE angiotensin I converting 

enzyme (peptidyl-

dipeptidase A) 1 

pentopril, perindoprilat, 

amlodipine/benazepril, 

lisinopril/hydrochlorothi

azide, benazepril, 

enalapril, perindopril, 

captopril, 

enalapril/felodipine, 

hydrochlorothiazide/mo

exipril, 

benazepril/hydrochlorot

hiazide, 

hydrochlorothiazide/qui

napril, 

fosinopril/hydrochloroth

iazide, 

captopril/hydrochlorothi

azide, 

enalapril/hydrochlorothi

azide, ramipril, 

moexipril, quinapril, 

lisinopril, enalaprilat, 

trandolapril, 

trandolapril/verapamil, 

diltiazem/enalapril, 

fosinopril 

P12821 X x Diagnosis,

Efficacy,Pr

ognosis,Saf

ety 

AGT angiotensinogen (serpin 

peptidase inhibitor, 

clade A, member 8) 

  P01019 X X Efficacy 

ANXA

1 

annexin A1   P04083 X X Diagnosis,

Prognosis,

Unspecifie

d 

Application 

ANXA

5 

annexin A5   P08758 X X Diagnosis 

APOE apolipoprotein E   P02649 X X Diagnosis,

Efficacy,Pr

ognosis,Un

specified 

Application 

B4GAL

T1 

UDP-Gal:betaGlcNAc 

beta 1,4- 

galactosyltransferase, 

  P15291   X Diagnosis 
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polypeptide 1 

CD9 CD9 molecule   P21926   X Efficacy 

CLU Clusterin   P10909 X x Diagnosis,

Efficacy,U

nspecified 

Application 

CP ceruloplasmin 

(ferroxidase) 

  P00450 X X Disease 

Progression

,Efficacy 

CTSD cathepsin D   P07339 X X Diagnosis,

Unspecifie

d 

Application 

DPP4 dipeptidyl-peptidase 4 saxagliptin, talabostat, 

SYR-322, sitagliptin, 

linagliptin, 

metformin/saxagliptin, 

simvastatin/sitagliptin, 

metformin/sitagliptin, 

linagliptin/metformin 

P27487 X X Prognosis 

EZR Ezrin   P15311 X X Prognosis 

FGA fibrinogen alpha chain F2 P02671 X X Diagnosis 

FUCA1 fucosidase, alpha-L- 1, 

tissue 

  P04066   X Diagnosis 

GSN Gelsolin   P06396 X X Disease 

Progression

,Efficacy 

GSTM3 glutathione S-

transferase mu 3 (brain) 

  P21266 X X Diagnosis,

Disease 

Progression

,Prognosis 

GSTP1 glutathione S-

transferase pi 1 

  P09211 X X Diagnosis,

Efficacy,Pr

ognosis,Re

sponse to 

Therapy,Sa

fety,Unspe

cified 

Application 

HSPB1 heat shock 27kDa 

protein 1 

  P04792   X Diagnosis 

KLK3 kallikrein-related 

peptidase 3 

  P07288 X X Diagnosis,

Disease 

Progression

,Efficacy,S

afety,Unsp

ecified 

Application 

LGALS

3BP 

lectin, galactoside-

binding, soluble, 3 

binding protein 

  Q08380 X x Prognosis 

MME membrane metallo-

endopeptidase 

  P08473   X Diagnosis,

Efficacy,U
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nspecified 

Application 

PKM2 pyruvate kinase, muscle   P14618 X X Diagnosis,

Unspecifie

d 

Application 

PLAU plasminogen activator, 

urokinase 

  P00749 X X Disease 

Progression

,Efficacy,P

rognosis,Re

sponse to 

Therapy 

PRDX1 peroxiredoxin 1   Q06830 X X Diagnosis 

PTGDS prostaglandin D2 

synthase 21kDa (brain) 

  P41222 X X Efficacy 

SERPI

NA1 

serpin peptidase 

inhibitor, clade A 

(alpha-1 antiproteinase, 

antitrypsin), member 1 

  P01009 X X Diagnosis,

Disease 

Progression

,Unspecifie

d 

Application 

THBS1 thrombospondin 1   P07996 X X Diagnosis,

Efficacy,Pr

ognosis 

TPI1 triosephosphate 

isomerase 1 

  P60174 X X Diagnosis,

Unspecifie

d 

Application 

YWHA

Z 

tyrosine 3-

monooxygenase/tryptop

han 5-monooxygenase 

activation protein, zeta 

polypeptide 

  P63104   X Diagnosis 

 

Renal toxicity analysis was also carried out and multiple proteins involved in renal failure 

and renal injury etc. were found. These proteins and the diseases they are involved in are 

listed in Table 6.6. 
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Table 6.6: Toxicity function analysis of HA+ proteins by IPA software. Various diseases and 

the proteins involved in these diseases are listed along with p-value for their enrichment. 

Category Functions Annotation p-Value Molecules 

Glomerular Injury Glomerulosclerosis 1.54E-03 AGT,APOE,CLU,GAS6 

Glomerular Injury lipoprotein 

glomerulopathy 

6.71E-03 APOE 

Glomerular Injury renal fibrosis 8.39E-02 AGT 

Glomerular Injury focal segmental 

glomerulosclerosis 

1.02E-01 CLU 

Increased Levels of 

Albumin 

increases flux of albumin 1.34E-02 THBS1 

Increased Levels of 

Albumin 

increases excretion of 

albumin 

3.31E-02 AGT 

Increased Levels of 

Creatinine 

increases clearance of 

creatinine 

9.00E-02 AGT 

Increased Levels of 

Creatinine 

increases quantity of 

creatinine 

1.66E-01 AGT 

Increased Levels of 

Potassium 

increases quantity of K+ 6.51E-02 SLC12A1 

Increased Levels of 

Potassium 

increases excretion of K+ 9.61E-02 AGT 

Kidney Failure renal failure 6.98E-05 ACE,AGT,AMY2A,GSTP1,PTG

DS,SLC12A1,THBS1 

Kidney Failure acute renal failure 2.25E-03 ACE,GSTP1,SLC12A1 

Kidney Failure failure of kidney 3.23E-02 AGT,SLC12A1 

Kidney Failure end stage renal disease 9.86E-02 ACE,AGT 

Kidney Failure tubulo-interstitial fibrosis 2.36E-01 AGT 

Nephrosis minimal change nephrotic 

syndrome 

5.88E-02 CLU 

Renal Atrophy atrophy of kidney 3.58E-04 ACE,AGT,EFEMP1 

Renal Damage damage of 

tubulointerstitium 

3.32E-03 ACE,APOE 

Renal Damage damage of kidney 3.40E-03 ACE,AGT,HPX,THBS1 

Renal Damage injury of kidney 6.88E-02 AGT,THBS1 

Renal Damage injury of renal glomerulus 9.00E-02 AGT 

Renal Damage reperfusion injury of 

kidney 

1.02E-01 THBS1 

Renal Damage damage of renal tubule 1.44E-01 THBS1 

Renal Degeneration degeneration of kidney 7.14E-02 CLU 

Renal Dilation vasodilation of kidney 1.34E-02 AGT 

Renal Dysfunction dysfunction of kidney 1.08E-01 AGT 

Renal Necrosis/Cell 

Death 

cell death of kidney cells 1.70E-03 AGT,APOE,CLU,GSTP1,HSPB

1,PTGDS,VTN,YWHAQ 

Renal Necrosis/Cell 

Death 

cell death of kidney cell 

lines 

1.18E-02 AGT,GSTP1,HSPB1,PTGDS,V

TN,YWHAQ 

Renal Necrosis/Cell 

Death 

necrosis of renal 

glomerulus 

2.00E-02 PLAU 
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Renal Nephritis membranous 

glomerulonephritis 

9.00E-02 CLU 

Renal Nephritis focal glomerulonephritis 9.61E-02 ACE 

Renal Nephritis Nephritis 1.04E-01 ACE,AGT,APCS,CLU 

Renal Nephritis Glomerulonephritis 1.64E-01 ACE,APCS,CLU 

Renal Tubule Injury proximal tubular toxicity 3.75E-05 CP,FGA,FGB (includes 

EG:110135),GSTP1,HPX,HSPB

1 

Renal Tubule Injury damage of 

tubulointerstitium 

3.32E-03 ACE,APOE 

Renal Tubule Injury damage of renal tubule 1.44E-01 THBS1 

 

These proteins listed in Table 6.6 are involved in signalling processes in various kidney 

pathologies. These would make good drug targets and biomarker candidates for these 

diseases. Another interesting analysis carried out by IPA was finding the upstream regulators 

of HA+ proteins. This will likely shed light on what pathways these proteins are involved in. 

These upstream regulators are GPCRs, growth factors and cytokines among others. Selected 

parts of this analysis are presented in table 6.7. 

Table 6.7: Upstream regulators of the HA+ proteins. Multiple proteins are regulated by these 

regulators listed in column 1.  

Upstream 

Regulator 

Molecule 

Type 

p-value 

of 

overlap 

Target molecules in dataset 

P2RY2 G-protein 

coupled 

receptor 

1.17E-03 SLC12A1,VTN 

CXCR4 G-protein 

coupled 

receptor 

1.57E-02 CD9,DPP4 

AGTR1 G-protein 

coupled 

receptor 

1.66E-02 AGT,CP 

CCR5 G-protein 

coupled 

receptor 

1.75E-02 CD9,SERPINA1 

GPR39 G-protein 

coupled 

receptor 

2.30E-02 CLU 

ADORA2A G-protein 

coupled 

2.68E-02 COL6A1,NAPA (includes EG:108124),VPS4A 
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receptor 

NFkB 

(complex) 

Complex 8.54E-06 AGT,APOE,B4GALT1,CLU,FTH1 (includes 

EG:14319),FUCA1,GAS6,HSPB1,IGHG3,IGKC 

IL6 cytokine 3.63E-06 AGT,ANPEP,ANXA1,APCS,APOE,CLU,CP,FGA,F

GB (includes EG:110135),KLK3 

IFNG 

(includes 

EG:15978) 

Cytokine 3.81E-06 AGRN,AGT,AZGP1,CP,CTSC,CTSD,CTSZ,DPP4,F

TH1 (includes EG:14319),GAS6 

IL1B Cytokine 1.24E-05 ANXA1,APCS,APOE,CP,CTSZ,DPP4,FGB (includes 

EG:110135),GAS6,GSTA1,GUSB 

TNF Cytokine 3.12E-05 ACE,AGT,ANPEP,APCS,APOE,B4GALT1,CLU,CP,

CTSC,CTSZ 

GH1 Cytokine 4.85E-05 AGT,APOE,CLU,FTH1 (includes 

EG:14319),GSTP1,HBB,PRDX1,YWHAZ 

OSM Cytokine 6.26E-04 ACE,ANXA1,ASAH1,COL6A1,FGA,FGB (includes 

EG:110135),PLAU,QSOX1,SERPINA1,UPK1A 

IL13 Cytokine 6.77E-04 CTSC,EZR,GAS6,GSN,PLAU,QSOX1,SERPINA1,T

HBS1 

EDN1 Cytokine 2.34E-03 ANXA1,ANXA5,EZR,PLAU,THBS1 

CSF2 Cytokine 2.94E-03 ABP1 (includes 

EG:26),ACE,CTSC,HBB,MME,QSOX1 

IL5 Cytokine 3.51E-03 ABP1 (includes 

EG:26),CTSC,PKM2,QSOX1,RRAS2,TPI1 

PRL Cytokine 5.12E-03 ANXA5,CLU,CTSA,CTSD,MME 

IL1A Cytokine 2.39E-02 DPP4,FTH1 (includes EG:14319),PLAU,SERPINA1 

IL4 (includes 

EG:16189) 

Cytokine 3.51E-02 APOE,CTSC,DPP4,IGHG3,KLK3,LGALS3BP,PLAU

,PSMA6 

IL8 Cytokine 3.53E-02 ANXA1,KLK3 

EGF (includes 

EG:13645) 

growth factor 3.04E-06 ANPEP,B4GALT1,CLU,CTSD,DPP4,EZR,GSTP1,ID

H1,KLK3,PLAU 

FGF19 growth factor 5.20E-06 AMY2A,APOE,MME,PTGDS,SERPINA1,SLC2A5 

AGT growth factor 5.06E-04 ACE,AGT,COL6A1,CP,EFEMP1,HSPB1,IDH1,PLA

U,SOD3 

TGFB1 

(includes 

EG:21803) 

growth factor 5.50E-03 ACE,ANPEP,APOE,CLU,COL6A1,CTSC,CTSD,FT

H1 (includes EG:14319),GSN,GUSB 

FGF2 growth factor 6.78E-03 ACE,ANPEP,FTH1 (includes 

EG:14319),PLAU,THBS1,YWHAZ 

VEGFA growth factor 7.01E-03 ACE,ANPEP,CSTB,PLAU,THBS1 

KITLG growth factor 9.18E-03 FTH1 (includes EG:14319),GAS6,HBB,MME,PKM2 

IGF1 growth factor 9.84E-03 ANPEP,CLU,CTSD,HBB,PLAU,THBS1 
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6.4 Discussion 

Palmitoylation is a PTM which is reversible and dynamically regulated (Kang et al., 2008; 

Martin et al., 2012) although mechanisms involved in the turnover of palmitoylated proteins 

are not clearly understood. While protein acyltransferases and protein acylthioesterases are 

known to regulated enzymatic recycling of palmitoylation in many proteins (Resh, 2006; 

Smotrys & Linder, 2004) controlling membrane association in a reversible manner, many 

palmitoylated proteins are not regulated by them (Resh, 2006; Linder & Deschenes, 2007). 

Palmitoylation of proteins was not understood better for many years mainly because of the 

lack of method available to detect the palmitoylation and identification of modified proteins. 

The traditional method for detecting palmitoylation was 
3
H palmitate labelling of cells 

(Drisdel et al., 2006). Following the labelling the proteins can be purified and analysed by 

SDS-PAGE. However other than the disadvantage of radioactive material handling, it has two 

distinct disadvantages. First, the method usually requires very long labelling and exposure 

times and second, it is limited to the analysis of live cells. Another method is the metabolic 

labelling of cells with 17-Octadecayonic acid (17-ODYA) (Martin et al., 2012) but this too is 

limited for analysing living cells.  

Recently a new method has been described which exchanges the acyl group with biotin in 

three simple steps (Roth et al., 2006). This method is called acyl-biotin exchange (ABE). 

Biotinylated proteins can then be purified using streptavidin-agarose and identified by LC-

MS/MS. This is the only method which can be applied to any type of samples to detect and 

identify palmitoylated proteins. We have used the ABE method here and purified candidate 

palmitoylated proteins from urinary exosomes and identified them by LC-MS/MS. The 

method is described in Figure 6.1. The two fractions HA+ and HA- allowed identification of 

172 and 57 proteins, respectively. Multiple proteins are shared among the two fractions. 

Theoretically there should be no overlap between the two fractions but endogenously 
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biotinylated proteins, incomplete blocking of free thiols by NEM, non-specific biotinylation 

and non-specific binding of proteins to streptavidin-agarose matrix lead to a significant 

number of overlaps between the two groups. For example the maleimide group, although 

specific to thiols at low concentration is known to react with non-thiol goups at high 

concentrations (Tyagarajan, Pretzer & Wiktorowicz, 2003).  

Therefore we have only considered proteins which are unique to HA+ fraction as candidate 

palmitoylated proteins and proteins found in HA- fractions are not considered. Of the 128 

proteins unique to HA+ fraction we have identified 12 proteins which were previously 

identified as being biotinylated in other studies (Dowal et al., 2011; Yang et al., 2010; Martin 

et al., 2012). These proteins include RAS family members RAB10, RAB6B and RRAS2, 

tetraspanin CD9 and proteasome subunit PSMA6. RAS family members RABs are involved 

in membrane trafficking and proteins containing ciliary targeting signals are transported to 

preicentriolar recycling endosomes with the aid of RAB10 (Nachury, Seeley & Jin, 2010). 

The endosomal system trafficking including exosome release is controlled by RAB proteins 

(Hendrix & Hume, 2011). Palmitoylation of RAB proteins therefore seems logical and it 

would be expected to control their membrane association in a reversible manner. R-RAS2, on 

the other hand can transform cells if its activity is aletred (Graham et al., 1994) and its 

overexpression may contribute to development of human breast cancers (Clark et al., 1996). 

This protein may contribute to the effect of exosomes uptake by recipient cells. Tetraspanin 

CD9 is a part of tetraspanin web domains on plasma membrane and takes part in cell 

adhesion, cell motility and tumor metastasis (Ikeyama et al., 1993; Masellissmith & Shaw, 

1994). Acylation of this protein will help in its association with specialised plasma membrane 

domains.  

Another protein identified in the current study and known to be palmitoylated is Stomatin 

(Snyers, Umlauf & Prohaska, 1999) which is known to be enriched in lipid-rafts (Mairhofer 
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et al., 2002). Raft-like domains are known to be enriched in exosomes and palmitoylation of 

this protein will help its association with rafts and subsequent incorporation into exosomes. 

Proteasome subunit alpha type-6 was also detected in our analysis and it is previously known 

to be a candidate palmitoylated protein (Yang et al., 2010). All 7 alpha and 7 beta chains of 

20S proteasomes have been previously detected in mesenchymal exosomes and it was also 

shown that a functional 20S proteasome co-purifies with exosomes in blood (Lai et al., 

2012). This has implications for recipient cells of these exosomes as proteasome acquisition 

will help degrade misfolded and oxidised proteins. It is to be noted that the ABE method will 

also result in enrichment of proteins which uses thioester linkages for attachment of other 

groups like lipoic acid. Currently no method exists to differentiate between the two but not 

many lipoic acid-modified proteins are known. Moreover, many of the known palmitoylated 

proteins detected by ABE have been validated in many studies by metabolic labelling which 

is specific for palmitoylation (Martin et al., 2012) confirming that ABE mostly detects 

palmitoylated proteins. 

ABE enrichment also helped identify some of the low-abundance proteins which were 

previously not known to be part of exosomes. These 18 proteins were not found in Exocarta 

which is the biggest database of exosomal proteins and RNA species. But when compared to 

our list from chapter 2 and other membrane vesicles studies, three  proteins were found to be 

unique  to our dataset (Table 6.3). One of these proteins is Ephrin type-A receptor 7 which is 

a receptor tyrosine kinase which binds GPI-anchored ephrin-A family ligands and modulates 

cell-cell adhesion and repulsion. It is typically a brain protein but it is also expressed in 

kidney cells (Genecards.org). These are new candidate exosomal proteins and expand the 

coverage of exosomal proteins.  

Annotation of HA+ proteins by DAVID returned a category of proteins which are involved in 

transport of proteins and small molecules (Table 6.3). It is previously known that palmitoyl-
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CoA which is a lipid palmitate donor supports budding and fusion of vesicles thereby 

inducing golgi transport assay. This effect is thought to be due to resulting palmitoylation of a 

protein upon supply of palmitoyl-CoA (Glick & Rothman, 1987; Pfanner et al., 1990). 

Therefore these transporters are good candidate for palmitoylation with many of them being 

intracellular transporters. 

IPA revealed 29 biomarkers present in HA+ fractions as well as multiple proteins involved in 

pathogenesis of various kidney pathologies (Table 6.4 & 6.5). These findings demonstrate the 

power of urinary exosome analysis for understanding pathologies and finding sensitive 

biomarkers of various diseases. Another analysis performed by IPA was the finding of 

upstream regulators for multiple proteins form the HA+ fractions (Table 6.6). Two of these 

regulators are interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) which regulate 

multiple proteins found in our analysis in the HA+ fractions. It is previously known that IL-6 

and TNF- α may contribute to Th cell imbalance, cardiovascular disease and wasting in 

patients with end stage kidney disease (ESRD) in uremic millieu (Stenvinkel et al., 2005). Il-

6 is elevated in most of the ESRD patients and reduced renal function affects TNF- α 

clearance in rats (Bemelmans, Gouma & Buurman, 1993). Anti-cytokine therapies have been 

proposed for ESRD patients (Ridker et al., 1999; Huang et al., 2003; Zhao & Zhang, 2003; 

Stenvinkel et al., 2005) and the downstream targets of these cytokines would be excellent 

candidates for monitoring biomarkers of such therapies. 

In conclusion, we have identified 128 proteins which are unique to HA+ fractions. Seventy 

nine proteins from these 128 were predicted as high-confidence palmitoylated proteins by 

CSS-PALM 3.0 online server. Twelve previously known palmitoylated proteins were 

detected which confirmed their PTM status in urinary exosomes. Sixty six candidate 

palmitoylated proteins were established by their presence in only HA+ fraction. This study 

serves as a platform for the future studies on human urinary exosome and exosome-like 
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vesicles to verify the presence of palmitoylated proteins and further validate these results. 

IPA analysis and DAVID annotation detected the presence of several biomarker candidates as 

well as molecular targets for diseases.    
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Supplementary Table 6.1: Proteins identified in HA+ fraction. Uniprot accession, protein 

description, score, molecular weight (in Dalton), number of protein matches and prediction of 

palmitoylation or known status are indictaed in the table. 

Accession Description score Mol wt. Prot 
matches 

Known palmitoylated or 
predicted (CSS 
PALM3.0) 

P27348 14-3-3 protein theta OS=Homo sapiens 
GN=YWHAQ PE=1 SV=1 

52 28032 1 Known & Predicted 

P63104 14-3-3 protein zeta/delta OS=Homo sapiens 
GN=YWHAZ PE=1 SV=1 

87 27899 2 None 

Q9BUT1 3-hydroxybutyrate dehydrogenase type 2 
OS=Homo sapiens GN=BDH2 PE=1 SV=2 

58 27049 1 Predicted 

P25325 3-mercaptopyruvate sulfurtransferase 
OS=Homo sapiens GN=MPST PE=1 SV=3 

41 33443 1 Known & Predicted 

Q13510 Acid ceramidase OS=Homo sapiens 
GN=ASAH1 PE=1 SV=5 

73 45087 2 Known & Predicted 

O00468 Agrin OS=Homo sapiens GN=AGRN PE=1 
SV=4 

104 222861 2 Predicted 

P01009 Alpha-1-antitrypsin OS=Homo sapiens 
GN=SERPINA1 PE=1 SV=3 

101 46878 2 Predicted 

P02765 Alpha-2-HS-glycoprotein OS=Homo sapiens 
GN=AHSG PE=1 SV=1 

51 40098 1 Predicted 

P54802 Alpha-N-acetylglucosaminidase OS=Homo 
sapiens GN=NAGLU PE=1 SV=2 

213 82670 5 Common with HA- 

P54920 Alpha-soluble NSF attachment protein 
OS=Homo sapiens GN=NAPA PE=1 SV=3 

56 33667 1 None 

P19801 Amiloride-sensitive amine oxidase [copper-
containing] OS=Homo sapiens GN=ABP1 
PE=1 SV=4 

45 85723 1 None 

P15144 Aminopeptidase N OS=Homo sapiens 
GN=ANPEP PE=1 SV=4 

335 109870 10 None 

P12821 Angiotensin-converting enzyme OS=Homo 
sapiens GN=ACE PE=1 SV=1 

45 150418 1 None 

P01019 Angiotensinogen OS=Homo sapiens 
GN=AGT PE=1 SV=1 

54 53406 1 None 

P04083 Annexin A1 OS=Homo sapiens GN=ANXA1 
PE=1 SV=2 

143 38918 2 Predicted 

P08758 Annexin A5 OS=Homo sapiens GN=ANXA5 
PE=1 SV=2 

109 35971 3 Predicted 

P05090 Apolipoprotein D OS=Homo sapiens 
GN=APOD PE=1 SV=1 

134 21547 3 Common with HA- 

P02649 Apolipoprotein E OS=Homo sapiens 
GN=APOE PE=1 SV=1 

225 36246 6 Predicted 

P15291 Beta-1,4-galactosyltransferase 1 OS=Homo 
sapiens GN=B4GALT1 PE=1 SV=5 

42 44291 1 Known & Predicted 

P16278 Beta-galactosidase OS=Homo sapiens 
GN=GLB1 PE=1 SV=2 

128 76483 4 None 

P08236 Beta-glucuronidase OS=Homo sapiens 
GN=GUSB PE=1 SV=2 

53 75027 1 Predicted 

Q93088 Betaine--homocysteine S-methyltransferase 
1 OS=Homo sapiens GN=BHMT PE=1 SV=2 

44 45426 1 Predicted 

Q9Y6W3 Calpain-7 OS=Homo sapiens GN=CAPN7 
PE=1 SV=1 

41 93335 1 Predicted 

P31944 Caspase-14 OS=Homo sapiens GN=CASP14 
PE=1 SV=2 

80 27947 2 Common with HA- 

P07339 Cathepsin D OS=Homo sapiens GN=CTSD 
PE=1 SV=1 

46 45037 1 Predicted 

Q9UBR2 Cathepsin Z OS=Homo sapiens GN=CTSZ 
PE=1 SV=1 

60 34530 1 None 

P21926 CD9 antigen OS=Homo sapiens GN=CD9 
PE=1 SV=4 

47 25969 1 Known & Predicted 

P00450 Ceruloplasmin OS=Homo sapiens GN=CP 
PE=1 SV=1 

68 122983 2 None 
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P10909 Clusterin OS=Homo sapiens GN=CLU PE=1 
SV=1 

88 53031 2 None 

Q9Y281 Cofilin-2 OS=Homo sapiens GN=CFL2 PE=1 
SV=1 

63 18839 1 None 

P12109 Collagen alpha-1(VI) chain OS=Homo 
sapiens GN=COL6A1 PE=1 SV=3 

71 109602 2 Predicted 

P39059 Collagen alpha-1(XV) chain OS=Homo 
sapiens GN=COL15A1 PE=1 SV=2 

79 142202 2 Common with HA- 

P01024 Complement C3 OS=Homo sapiens GN=C3 
PE=1 SV=2 

113 188569 3 Common with HA- 

Q8IYJ1 Copine-9 OS=Homo sapiens GN=CPNE9 
PE=1 SV=3 

40 62281 1 None 

O60494 Cubilin OS=Homo sapiens GN=CUBN PE=1 
SV=5 

610 407262 17 Common with HA- 

P04080 Cystatin-B OS=Homo sapiens GN=CSTB 
PE=1 SV=2 

72 11190 2 Predicted 

Q969T7 Cytosolic 5~-nucleotidase III-like protein 
OS=Homo sapiens GN=NT5C3L PE=1 SV=3 

41 33792 1 Predicted 

P81605 Dermcidin OS=Homo sapiens GN=DCD 
PE=1 SV=2 

71 11391 1 Common with HA- 

Q08554 Desmocollin-1 OS=Homo sapiens GN=DSC1 
PE=1 SV=2 

116 101406 3 Common with HA- 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 
PE=1 SV=2 

272 114702 7 Common with HA- 

P15924 Desmoplakin OS=Homo sapiens GN=DSP 
PE=1 SV=3 

210 334021 5 Common with HA- 

P16444 Dipeptidase 1 OS=Homo sapiens GN=DPEP1 
PE=1 SV=3 

141 46101 4 Predicted 

P53634 Dipeptidyl peptidase 1 OS=Homo sapiens 
GN=CTSC PE=1 SV=2 

48 52619 1 None 

P27487 Dipeptidyl peptidase 4 OS=Homo sapiens 
GN=DPP4 PE=1 SV=2 

94 88907 4 Predicted 

Q03001 Dystonin OS=Homo sapiens GN=DST PE=1 
SV=4 

42 865259 1 Predicted 

Q12805 EGF-containing fibulin-like extracellular 
matrix protein 1 OS=Homo sapiens 
GN=EFEMP1 PE=1 SV=2 

242 56885 4 Predicted 

Q9H223 EH domain-containing protein 4 OS=Homo 
sapiens GN=EHD4 PE=1 SV=1 

46 61365 1 None 

Q15375 Ephrin type-A receptor 7 OS=Homo sapiens 
GN=EPHA7 PE=1 SV=3 

86 113735 1 Predicted 

P27105 Erythrocyte band 7 integral membrane 
protein OS=Homo sapiens GN=STOM PE=1 
SV=3 

119 31882 2 Known & Predicted 

P08294 Extracellular superoxide dismutase [Cu-Zn] 
OS=Homo sapiens GN=SOD3 PE=1 SV=2 

53 26291 1 Predicted 

P15311 Ezrin OS=Homo sapiens GN=EZR PE=1 
SV=4 

79 69484 2 None 

Q01469 Fatty acid-binding protein, epidermal 
OS=Homo sapiens GN=FABP5 PE=1 SV=3 

45 15497 1 Common with HA- 

P02794 Ferritin heavy chain OS=Homo sapiens 
GN=FTH1 PE=1 SV=2 

48 21383 1 None 

P02671 Fibrinogen alpha chain OS=Homo sapiens 
GN=FGA PE=1 SV=2 

58 95656 1 Predicted 

P02675 Fibrinogen beta chain OS=Homo sapiens 
GN=FGB PE=1 SV=2 

47 56577 1 Predicted 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 
PE=1 SV=1 

67 249296 1 Common with HA- 

P05062 Fructose-bisphosphate aldolase B OS=Homo 
sapiens GN=ALDOB PE=1 SV=2 

81 39961 2 Predicted 

Q08380 Galectin-3-binding protein OS=Homo 
sapiens GN=LGALS3BP PE=1 SV=1 

96 66202 3 None 

Q92820 Gamma-glutamyl hydrolase OS=Homo 
sapiens GN=GGH PE=1 SV=2 

77 36340 2 Predicted 

P06396 Gelsolin OS=Homo sapiens GN=GSN PE=1 
SV=1 

79 86043 2 Common with HA- 

P08263 Glutathione S-transferase A1 OS=Homo 
sapiens GN=GSTA1 PE=1 SV=3 

83 25672 2 None 

P21266 Glutathione S-transferase Mu 3 OS=Homo 
sapiens GN=GSTM3 PE=1 SV=3 

104 26998 3 Predicted 
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P09211 Glutathione S-transferase P OS=Homo 
sapiens GN=GSTP1 PE=1 SV=2 

79 23569 1 Predicted 

Q9NZH0 G-protein coupled receptor family C group 5 
member B OS=Homo sapiens GN=GPRC5B 
PE=2 SV=2 

53 45279 1 Predicted 

Q9NQ84 G-protein coupled receptor family C group 5 
member C OS=Homo sapiens GN=GPRC5C 
PE=1 SV=2 

96 48732 2 Predicted 

Q14393 Growth arrest-specific protein 6 OS=Homo 
sapiens GN=GAS6 PE=1 SV=2 

114 81678 2 Predicted 

P62873 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-1 OS=Homo 
sapiens GN=GNB1 PE=1 SV=3 

55 38151 1 Predicted 

P00738 Haptoglobin OS=Homo sapiens GN=HP 
PE=1 SV=1 

246 45861 7 Common with HA- 

P08107 Heat shock 70 kDa protein 1A/1B OS=Homo 
sapiens GN=HSPA1A PE=1 SV=5 

67 70294 2 Predicted 

P04792 Heat shock protein beta-1 OS=Homo 
sapiens GN=HSPB1 PE=1 SV=2 

42 22826 1 None 

P68871 Hemoglobin subunit beta OS=Homo sapiens 
GN=HBB PE=1 SV=2 

53 16102 1 None 

P02790 Hemopexin OS=Homo sapiens GN=HPX 
PE=1 SV=2 

45 52385 1 Predicted 

P04196 Histidine-rich glycoprotein OS=Homo 
sapiens GN=HRG PE=1 SV=1 

41 60510 1 Predicted 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR 
PE=1 SV=2 

75 283140 2 Common with HA- 

P01876 Ig alpha-1 chain C region OS=Homo sapiens 
GN=IGHA1 PE=1 SV=2 

141 38486 3 Common with HA- 

P01859 Ig gamma-2 chain C region OS=Homo 
sapiens GN=IGHG2 PE=1 SV=2 

98 36505 3 Common with HA- 

P01860 Ig gamma-3 chain C region OS=Homo 
sapiens GN=IGHG3 PE=1 SV=2 

184 42287 5 None 

P01825 Ig heavy chain V-II region NEWM OS=Homo 
sapiens PE=1 SV=1 

43 12953 1 None 

P01767 Ig heavy chain V-III region BUT OS=Homo 
sapiens PE=1 SV=1 

96 12485 3 None 

P01768 Ig heavy chain V-III region CAM OS=Homo 
sapiens PE=1 SV=1 

95 13773 2 None 

P01781 Ig heavy chain V-III region GAL OS=Homo 
sapiens PE=1 SV=1 

84 12836 2 None 

P01765 Ig heavy chain V-III region TIL OS=Homo 
sapiens PE=1 SV=1 

85 12462 2 None 

P01779 Ig heavy chain V-III region TUR OS=Homo 
sapiens PE=1 SV=1 

90 12537 2 None 

P01764 Ig heavy chain V-III region VH26 OS=Homo 
sapiens PE=1 SV=1 

87 12745 2 None 

P01834 Ig kappa chain C region OS=Homo sapiens 
GN=IGKC PE=1 SV=1 

73 11773 1 None 

P01593 Ig kappa chain V-I region AG OS=Homo 
sapiens PE=1 SV=1 

96 12099 1 None 

P01598 Ig kappa chain V-I region EU OS=Homo 
sapiens PE=1 SV=1 

169 11895 3 Predicted 

P01613 Ig kappa chain V-I region Ni OS=Homo 
sapiens PE=1 SV=1 

48 12352 1 Predicted 

P01611 Ig kappa chain V-I region Wes OS=Homo 
sapiens PE=1 SV=1 

65 11715 1 Predicted 

P01614 Ig kappa chain V-II region Cum OS=Homo 
sapiens PE=1 SV=1 

81 12782 1 Common with HA- 

P01620 Ig kappa chain V-III region SIE OS=Homo 
sapiens PE=1 SV=1 

89 11882 1 Predicted 

P01625 Ig kappa chain V-IV region Len OS=Homo 
sapiens PE=1 SV=2 

47 12746 1 Predicted 

P80748 Ig lambda chain V-III region LOI OS=Homo 
sapiens PE=1 SV=1 

96 12042 1 None 

P01717 Ig lambda chain V-IV region Hil OS=Homo 
sapiens PE=1 SV=1 

94 11624 2 None 

P0CG05 Ig lambda-2 chain C regions OS=Homo 
sapiens GN=IGLC2 PE=1 SV=1 

41 11458 1 None 
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P01871 Ig mu chain C region OS=Homo sapiens 
GN=IGHM PE=1 SV=3 

115 49960 3 Common with HA- 

Q9Y6R7 IgGFc-binding protein OS=Homo sapiens 
GN=FCGBP PE=1 SV=3 

315 596443 9 Predicted 

P01591 Immunoglobulin J chain OS=Homo sapiens 
GN=IGJ PE=1 SV=4 

142 18543 4 Common with HA- 

Q14624 Inter-alpha-trypsin inhibitor heavy chain H4 
OS=Homo sapiens GN=ITIH4 PE=1 SV=4 

229 103521 7 Common with HA- 

O75874 Isocitrate dehydrogenase [NADP] 
cytoplasmic OS=Homo sapiens GN=IDH1 
PE=1 SV=2 

63 46915 1 None 

P53990 IST1 homolog OS=Homo sapiens GN=IST1 
PE=1 SV=1 

79 39897 2 None 

P14923 Junction plakoglobin OS=Homo sapiens 
GN=JUP PE=1 SV=3 

97 82434 3 Common with HA- 

P13645 Keratin, type I cytoskeletal 10 OS=Homo 
sapiens GN=KRT10 PE=1 SV=6 

746 59020 17 Common with HA- 

P13646 Keratin, type I cytoskeletal 13 OS=Homo 
sapiens GN=KRT13 PE=1 SV=4 

344 49900 10 Common with HA- 

P02533 Keratin, type I cytoskeletal 14 OS=Homo 
sapiens GN=KRT14 PE=1 SV=4 

533 51872 14 Common with HA- 

P19012 Keratin, type I cytoskeletal 15 OS=Homo 
sapiens GN=KRT15 PE=1 SV=3 

202 49409 6 Common with HA- 

P08779 Keratin, type I cytoskeletal 16 OS=Homo 
sapiens GN=KRT16 PE=1 SV=4 

491 51578 14 Common with HA- 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo 
sapiens GN=KRT17 PE=1 SV=2 

215 48361 7 Common with HA- 

P08727 Keratin, type I cytoskeletal 19 OS=Homo 
sapiens GN=KRT19 PE=1 SV=4 

97 44079 3 Common with HA- 

P35527 Keratin, type I cytoskeletal 9 OS=Homo 
sapiens GN=KRT9 PE=1 SV=3 

348 62255 9 Common with HA- 

P04264 Keratin, type II cytoskeletal 1 OS=Homo 
sapiens GN=KRT1 PE=1 SV=6 

938 66170 25 Common with HA- 

P35908 Keratin, type II cytoskeletal 2 epidermal 
OS=Homo sapiens GN=KRT2 PE=1 SV=2 

727 65678 20 Common with HA- 

P19013 Keratin, type II cytoskeletal 4 OS=Homo 
sapiens GN=KRT4 PE=1 SV=4 

116 57649 3 Common with HA- 

P13647 Keratin, type II cytoskeletal 5 OS=Homo 
sapiens GN=KRT5 PE=1 SV=3 

361 62568 12 Common with HA- 

P02538 Keratin, type II cytoskeletal 6A OS=Homo 
sapiens GN=KRT6A PE=1 SV=3 

482 60293 15 Common with HA- 

P04259 Keratin, type II cytoskeletal 6B OS=Homo 
sapiens GN=KRT6B PE=1 SV=5 

397 60315 14 Common with HA- 

P48668 Keratin, type II cytoskeletal 6C OS=Homo 
sapiens GN=KRT6C PE=1 SV=3 

478 60273 15 Common with HA- 

Q8N1N4 Keratin, type II cytoskeletal 78 OS=Homo 
sapiens GN=KRT78 PE=2 SV=2 

65 57629 2 Common with HA- 

P05787 Keratin, type II cytoskeletal 8 OS=Homo 
sapiens GN=KRT8 PE=1 SV=7 

99 53671 3 Common with HA- 

P01042 Kininogen-1 OS=Homo sapiens GN=KNG1 
PE=1 SV=2 

157 72996 5 Common with HA- 

P07195 L-lactate dehydrogenase B chain OS=Homo 
sapiens GN=LDHB PE=1 SV=2 

126 36900 4 None 

P98164 Low-density lipoprotein receptor-related 
protein 2 OS=Homo sapiens GN=LRP2 PE=1 
SV=3 

756 540376 21 Common with HA- 

P10619 Lysosomal protective protein OS=Homo 
sapiens GN=CTSA PE=1 SV=2 

77 54944 1 Predicted 

O43451 Maltase-glucoamylase, intestinal OS=Homo 
sapiens GN=MGAM PE=1 SV=5 

195 211031 6 Common with HA- 

O00187 Mannan-binding lectin serine protease 2 
OS=Homo sapiens GN=MASP2 PE=1 SV=4 

129 77193 3 None 

P33908 Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IA OS=Homo sapiens 
GN=MAN1A1 PE=1 SV=3 

69 73150 2 None 

Q9BRK3 Matrix-remodeling-associated protein 8 
OS=Homo sapiens GN=MXRA8 PE=1 SV=1 

75 49500 2 None 

Q6W4X9 Mucin-6 OS=Homo sapiens GN=MUC6 PE=1 
SV=3 

47 263159 1 Predicted 
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Q9H8L6 Multimerin-2 OS=Homo sapiens GN=MMRN2 
PE=1 SV=2 

70 105028 1 Predicted 

O96009 Napsin-A OS=Homo sapiens GN=NAPSA 
PE=1 SV=1 

74 45700 2 Common with HA- 

P08473 Neprilysin OS=Homo sapiens GN=MME 
PE=1 SV=2 

198 86144 5 Predicted 

P59665 Neutrophil defensin 1 OS=Homo sapiens 
GN=DEFA1 PE=1 SV=1 

92 10536 2 Common with HA- 

P61970 Nuclear transport factor 2 OS=Homo sapiens 
GN=NUTF2 PE=1 SV=1 

94 14640 2 Predicted 

Q6UX06 Olfactomedin-4 OS=Homo sapiens 
GN=OLFM4 PE=1 SV=1 

261 57529 5 Common with HA- 

P04746 Pancreatic alpha-amylase OS=Homo sapiens 
GN=AMY2A PE=1 SV=2 

178 58354 4 Known & Predicted 

Q06830 Peroxiredoxin-1 OS=Homo sapiens 
GN=PRDX1 PE=1 SV=1 

51 22324 1 None 

P30041 Peroxiredoxin-6 OS=Homo sapiens 
GN=PRDX6 PE=1 SV=3 

69 25133 2 None 

P30086 Phosphatidylethanolamine-binding protein 1 
OS=Homo sapiens GN=PEBP1 PE=1 SV=3 

126 21158 2 None 

P05154 Plasma serine protease inhibitor OS=Homo 
sapiens GN=SERPINA5 PE=1 SV=3 

201 45760 6 Common with HA- 

P01833 Polymeric immunoglobulin receptor 
OS=Homo sapiens GN=PIGR PE=1 SV=4 

235 84429 5 Common with HA- 

P0CG38 POTE ankyrin domain family member I 
OS=Homo sapiens GN=POTEI PE=3 SV=1 

50 122858 1 Predicted 

P01133 Pro-epidermal growth factor OS=Homo 
sapiens GN=EGF PE=1 SV=2 

398 137613 11 Common with HA- 

Q8WUM4 Programmed cell death 6-interacting protein 
OS=Homo sapiens GN=PDCD6IP PE=1 
SV=1 

199 96590 6 None 

P12273 Prolactin-inducible protein OS=Homo 
sapiens GN=PIP PE=1 SV=1 

57 16847 1 Common with HA- 

P41222 Prostaglandin-H2 D-isomerase OS=Homo 
sapiens GN=PTGDS PE=1 SV=1 

49 21243 1 Predicted 

P07288 Prostate-specific antigen OS=Homo sapiens 
GN=KLK3 PE=1 SV=2 

48 29293 1 None 

P15309 Prostatic acid phosphatase OS=Homo 
sapiens GN=ACPP PE=1 SV=3 

41 44880 1 Common with HA- 

P60900 Proteasome subunit alpha type-6 OS=Homo 
sapiens GN=PSMA6 PE=1 SV=1 

47 27838 1 Known & Predicted 

P02760 Protein AMBP OS=Homo sapiens GN=AMBP 
PE=1 SV=1 

165 39886 3 Common with HA- 

Q969X1 Protein lifeguard 3 OS=Homo sapiens 
GN=TMBIM1 PE=1 SV=2 

67 34927 1 Predicted 

Q8WVV4 Protein POF1B OS=Homo sapiens 
GN=POF1B PE=1 SV=3 

49 68878 1 Predicted 

P31151 Protein S100-A7 OS=Homo sapiens 
GN=S100A7 PE=1 SV=4 

54 11578 1 Common with HA- 

P05109 Protein S100-A8 OS=Homo sapiens 
GN=S100A8 PE=1 SV=1 

143 10885 4 Common with HA- 

P06702 Protein S100-A9 OS=Homo sapiens 
GN=S100A9 PE=1 SV=1 

124 13291 2 Common with HA- 

P49221 Protein-glutamine gamma-
glutamyltransferase 4 OS=Homo sapiens 
GN=TGM4 PE=1 SV=2 

134 77951 3 Predicted 

A6NMY6 Putative annexin A2-like protein OS=Homo 
sapiens GN=ANXA2P2 PE=5 SV=2 

128 38806 3 None 

Q5VTE0 Putative elongation factor 1-alpha-like 3 
OS=Homo sapiens GN=EEF1A1P5 PE=5 
SV=1 

66 50495 2 Predicted 

P14618 Pyruvate kinase isozymes M1/M2 OS=Homo 
sapiens GN=PKM2 PE=1 SV=4 

92 58470 2 Predicted 

P61026 Ras-related protein Rab-10 OS=Homo 
sapiens GN=RAB10 PE=1 SV=1 

71 22755 2 Known & Predicted 

P59190 Ras-related protein Rab-15 OS=Homo 
sapiens GN=RAB15 PE=1 SV=1 

51 24660 1 None 

Q9H082 Ras-related protein Rab-33B OS=Homo 
sapiens GN=RAB33B PE=1 SV=1 

51 26043 1 Predicted 
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Q9NRW1 Ras-related protein Rab-6B OS=Homo 
sapiens GN=RAB6B PE=1 SV=1 

51 23561 1 Known & Predicted 

P62070 Ras-related protein R-Ras2 OS=Homo 
sapiens GN=RRAS2 PE=1 SV=1 

56 23613 1 Known & Predicted 

P04279 Semenogelin-1 OS=Homo sapiens 
GN=SEMG1 PE=1 SV=2 

138 52157 3 Common with HA- 

P02787 Serotransferrin OS=Homo sapiens GN=TF 
PE=1 SV=3 

486 79294 16 Common with HA- 

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 
PE=1 SV=2 

83 44594 2 Common with HA- 

P02768 Serum albumin OS=Homo sapiens GN=ALB 
PE=1 SV=2 

446 71317 13 Common with HA- 

P02743 Serum amyloid P-component OS=Homo 
sapiens GN=APCS PE=1 SV=2 

56 25485 1 None 

Q13621 Solute carrier family 12 member 1 
OS=Homo sapiens GN=SLC12A1 PE=1 SV=2 

53 122627 1 Predicted 

P22732 Solute carrier family 2, facilitated glucose 
transporter member 5 OS=Homo sapiens 
GN=SLC2A5 PE=1 SV=1 

83 55394 2 Predicted 

Q92673 Sortilin-related receptor OS=Homo sapiens 
GN=SORL1 PE=1 SV=2 

59 253798 1 Predicted 

O00391 Sulfhydryl oxidase 1 OS=Homo sapiens 
GN=QSOX1 PE=1 SV=3 

41 83324 1 Predicted 

O60635 Tetraspanin-1 OS=Homo sapiens 
GN=TSPAN1 PE=1 SV=2 

47 26910 1 Predicted 

P10599 Thioredoxin OS=Homo sapiens GN=TXN 
PE=1 SV=3 

79 12015 1 Common with HA- 

P07996 Thrombospondin-1 OS=Homo sapiens 
GN=THBS1 PE=1 SV=2 

184 133291 5 Predicted 

Q9UKU6 Thyrotropin-releasing hormone-degrading 
ectoenzyme OS=Homo sapiens GN=TRHDE 
PE=2 SV=1 

76 117439 2 Predicted 

P04066 Tissue alpha-L-fucosidase OS=Homo sapiens 
GN=FUCA1 PE=1 SV=4 

76 53940 1 None 

O75264 Transmembrane protein C19orf77 OS=Homo 
sapiens GN=C19orf77 PE=2 SV=2 

59 15012 1 Predicted 

P60174 Triosephosphate isomerase OS=Homo 
sapiens GN=TPI1 PE=1 SV=3 

50 31057 1 Predicted 

O14773 Tripeptidyl-peptidase 1 OS=Homo sapiens 
GN=TPP1 PE=1 SV=2 

108 61723 2 Predicted 

P62979 Ubiquitin-40S ribosomal protein S27a 
OS=Homo sapiens GN=RPS27A PE=1 SV=2 

70 18296 1 Known & Predicted 

Q8IX04 Ubiquitin-conjugating enzyme E2 variant 3 
OS=Homo sapiens GN=UEVLD PE=1 SV=2 

50 52516 1 Predicted 

P00749 Urokinase-type plasminogen activator 
OS=Homo sapiens GN=PLAU PE=1 SV=2 

141 49901 4 Predicted 

P07911 Uromodulin OS=Homo sapiens GN=UMOD 
PE=1 SV=1 

330 72451 8 Common with HA- 

O00322 Uroplakin-1a OS=Homo sapiens GN=UPK1A 
PE=2 SV=1 

44 29429 1 Predicted 

Q9UK41 Vacuolar protein sorting-associated protein 
28 homolog OS=Homo sapiens GN=VPS28 
PE=1 SV=1 

52 25694 1 None 

Q9UN37 Vacuolar protein sorting-associated protein 
4A OS=Homo sapiens GN=VPS4A PE=1 
SV=1 

63 49152 1 None 

Q12907 Vesicular integral-membrane protein VIP36 
OS=Homo sapiens GN=LMAN2 PE=1 SV=1 

190 40545 5 Common with HA- 

Q7Z5L0 Vitelline membrane outer layer protein 1 
homolog OS=Homo sapiens GN=VMO1 
PE=1 SV=1 

178 22034 3 Common with HA- 

P04004 Vitronectin OS=Homo sapiens GN=VTN 
PE=1 SV=1 

66 55069 1 Predicted 

P25311 Zinc-alpha-2-glycoprotein OS=Homo sapiens 
GN=AZGP1 PE=1 SV=2 

54 34465 1 None 
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Supplementary Table 6.2: Proteins identified in HA- fraction. Uniprot accession, protein 

description, score, molecular weight (in Dalton), number of protein matches and prediction of 

palmitoylation or known status are indictaed in the table. 

Accession  Description Score Mol wt. prot_matches 

P54802 Alpha-N-acetylglucosaminidase OS=Homo sapiens GN=NAGLU PE=1 
SV=2 

138 82670 2 

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 119 21547 3 

Q9NZT1 Calmodulin-like protein 5 OS=Homo sapiens GN=CALML5 PE=1 
SV=2 

45 15883 1 

P31944 Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2 67 27947 1 

Q8IWA5 Choline transporter-like protein 2 OS=Homo sapiens GN=SLC44A2 
PE=1 SV=3 

40 81610 1 

P39059 Collagen alpha-1(XV) chain OS=Homo sapiens GN=COL15A1 PE=1 
SV=2 

63 142202 1 

P01024 Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 45 188569 1 

O60494 Cubilin OS=Homo sapiens GN=CUBN PE=1 SV=5 200 407262 3 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 68 11391 1 

Q6E0U4 Dermokine OS=Homo sapiens GN=DMKN PE=1 SV=3 60 47282 1 

Q08554 Desmocollin-1 OS=Homo sapiens GN=DSC1 PE=1 SV=2 74 101406 2 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 120 114702 3 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 122 334021 3 

Q01469 Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 
PE=1 SV=3 

50 15497 1 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 78 249296 1 

O75223 Gamma-glutamylcyclotransferase OS=Homo sapiens GN=GGCT 
PE=1 SV=1 

53 21222 1 

P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens 
GN=GAPDH PE=1 SV=3 

68 36201 1 

P00738 Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 104 45861 2 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 162 283140 4 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 132 38486 3 

P01877 Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 SV=3 46 37301 1 

P01857 Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 PE=1 
SV=1 

146 36596 2 

P01859 Ig gamma-2 chain C region OS=Homo sapiens GN=IGHG2 PE=1 
SV=2 

76 36505 1 

P01614 Ig kappa chain V-II region Cum OS=Homo sapiens PE=1 SV=1 69 12782 1 

P0CF74 Ig lambda-6 chain C region OS=Homo sapiens GN=IGLC6 PE=4 
SV=1 

57 11441 1 

P01871 Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 59 49960 1 

P01591 Immunoglobulin J chain OS=Homo sapiens GN=IGJ PE=1 SV=4 102 18543 2 

Q14624 Inter-alpha-trypsin inhibitor heavy chain H4 OS=Homo sapiens 
GN=ITIH4 PE=1 SV=4 

104 103521 2 

P14923 Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 118 82434 3 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 

731 59020 16 

P13646 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 
SV=4 

188 49900 5 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 
SV=4 

557 51872 12 

P19012 Keratin, type I cytoskeletal 15 OS=Homo sapiens GN=KRT15 PE=1 
SV=3 

166 49409 5 
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P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 
SV=4 

514 51578 12 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 
SV=2 

345 48361 9 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 
SV=4 

139 44079 4 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 
SV=3 

732 62255 16 

P04264 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 
SV=6 

1202 66170 27 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 

1020 65678 25 

P12035 Keratin, type II cytoskeletal 3 OS=Homo sapiens GN=KRT3 PE=1 
SV=3 

144 64549 3 

P19013 Keratin, type II cytoskeletal 4 OS=Homo sapiens GN=KRT4 PE=1 
SV=4 

143 57649 4 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 
SV=3 

615 62568 16 

P02538 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 
SV=3 

546 60293 17 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 
SV=5 

472 60315 15 

Q14CN4 Keratin, type II cytoskeletal 72 OS=Homo sapiens GN=KRT72 PE=1 
SV=2 

78 56470 2 

Q7RTS7 Keratin, type II cytoskeletal 74 OS=Homo sapiens GN=KRT74 PE=1 
SV=2 

111 58229 3 

Q8N1N4 Keratin, type II cytoskeletal 78 OS=Homo sapiens GN=KRT78 PE=2 
SV=2 

128 57629 4 

P05787 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 
SV=7 

45 53671 1 

P01042 Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2 49 72996 1 

P98164 Low-density lipoprotein receptor-related protein 2 OS=Homo sapiens 
GN=LRP2 PE=1 SV=3 

163 540376 4 

O43451 Maltase-glucoamylase, intestinal OS=Homo sapiens GN=MGAM 
PE=1 SV=5 

51 211031 1 

O00187 Mannan-binding lectin serine protease 2 OS=Homo sapiens 
GN=MASP2 PE=1 SV=4 

102 77193 1 

O96009 Napsin-A OS=Homo sapiens GN=NAPSA PE=1 SV=1 53 45700 1 

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 97 10536 2 

Q6UX06 Olfactomedin-4 OS=Homo sapiens GN=OLFM4 PE=1 SV=1 100 57529 2 

P05154 Plasma serine protease inhibitor OS=Homo sapiens GN=SERPINA5 
PE=1 SV=3 

148 45760 2 

P01833 Polymeric immunoglobulin receptor OS=Homo sapiens GN=PIGR 
PE=1 SV=4 

140 84429 2 

P01133 Pro-epidermal growth factor OS=Homo sapiens GN=EGF PE=1 SV=2 286 137613 8 

P12273 Prolactin-inducible protein OS=Homo sapiens GN=PIP PE=1 SV=1 80 16847 1 

P15309 Prostatic acid phosphatase OS=Homo sapiens GN=ACPP PE=1 SV=3 100 44880 2 

P02760 Protein AMBP OS=Homo sapiens GN=AMBP PE=1 SV=1 128 39886 3 

P31151 Protein S100-A7 OS=Homo sapiens GN=S100A7 PE=1 SV=4 52 11578 1 

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 95 10885 2 

P06702 Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 134 13291 3 

A6NMY6 Putative annexin A2-like protein OS=Homo sapiens GN=ANXA2P2 
PE=5 SV=2 

94 38806 2 

A8MT79 Putative zinc-alpha-2-glycoprotein-like 1 OS=Homo sapiens PE=5 
SV=2 

46 23080 1 

P04279 Semenogelin-1 OS=Homo sapiens GN=SEMG1 PE=1 SV=2 47 52157 1 

P02787 Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 145 79294 3 

Q96P63 Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1 SV=1 49 46646 1 

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 58 44594 1 

P02768 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 277 71317 7 
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Q9H2G4 Testis-specific Y-encoded-like protein 2 OS=Homo sapiens 
GN=TSPYL2 PE=1 SV=1 

46 79615 1 

P10599 Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 78 12015 1 

P07911 Uromodulin OS=Homo sapiens GN=UMOD PE=1 SV=1 467 72451 10 

Q12907 Vesicular integral-membrane protein VIP36 OS=Homo sapiens 
GN=LMAN2 PE=1 SV=1 

128 40545 2 

Q7Z5L0 Vitelline membrane outer layer protein 1 homolog OS=Homo sapiens 
GN=VMO1 PE=1 SV=1 

73 22034 1 
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CONCLUSIONS AND FUTURE WORK 

 

This thesis presented an alternative method for removing contamination of high-abundance 

proteins while isolating urinary membrane vesicles (40-100nm). Although they have been 

called exosomes in the literature, multiple studies have emphasised that the differential 

centrifugation method enriches vesicles of various types and not only exosomes. The 

alternative method we have developed for removing contamination with high-abundance 

proteins while isolating urinary membrane vesicles involved a mild detergent (CHAPS) 

treatment. This method is also better at preserving the biological activity of protein 

constituents of urinary membrane vesicles, as demonstrated in case of DPP-IV and 

nephrilysin. This method would be superior to the methods published by previous workers 

(employing DTT) if an activity-based assay or biomarkers is to be developed. Building on 

this method proteomic analysis of the isolated urinary membrane vesicles was carried out. 

The methodology used was developed with minimum number of steps possible and 437 

proteins in the high-speed pellet and 155 proteins in the low speed pellet were identified. 

Twenty % of the proteins identified in the high-speed pellet were previously not described as 

being part of exosomes which validates our method. This method is relatively easy to 

perform and less time and labor-consuming. Therefore, this method can be applied to large 

number of samples for qualitative and quantitative proteomic analysis of these vesicles. This 

can also be applied on clinical samples for quantitative studies for biomarker discovery.  

Most of the studies in urine have been focussed on smaller vesicles (Exosomes and 

‘exosome-like’ vesicles) and bigger vesicles like microvesicles and microparticles have been 

largely ignored. Microvesicles also have the potential to provide a different set of biomarkers 

for various diseases because they are mainly released upon cell stimulation. In a diseased 

state, abnormal cell stimulation can occur and microvesicles can provide a non-invasive way 
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of detecting and monitoring these changes. However, to the best of our knowledge, there are 

no methods available to specifically isolate microvesicles from urine. This is also supported 

by the fact that in the differential centrifugation method exosomes are present in low speed 

pellet. We have developed a lipid affinity-based method to isolate bigger membrane vesicles 

(mainly 200-750nm). No smaller vesicles were found in the isolated fraction using this 

method. It is for the first time that such a method has been developed. The fraction isolated 

using this method was also largely free of high-abundant proteins like albumin and Tamm-

Horsfall protein. This method is very easy to perform and requires no sophisticated 

instrument or specialised training. It can be applied to a large number of samples with ease. It 

would open up an area of investigation to further characterise microvesicles from urine. 

Building on this method, similar methods to isolate microvesicles from other body fluid can 

also be developed in the future.  

For further characterization of the membrane vesicles (high-speed pellet), glycoproteome of 

these vesicles was established using various glycobiological tools and techniques. One 

hundred and eight glycoproteins were identified unambiguously. The surface glycan profile 

of these vesicles was characterised and surface membrane glycoproteins were also identified. 

This study is a first attempt on characterising and identifying glycoprotein constituents of 

urinary membrane vesicles. This would greatly aid future studies on identifying glyco-

biomarkers of renal and cardiovascular diseases. A plate-based FLLA assay was developed 

which can be expanded in the future to screen patient urine samples. If differences in surface 

glycosylation are found among healthy and disease samples a diagnostic test can be 

developed, building on this study, in the future.  

Other PTMs, like ubiquitination and palmitoylation, were also profiled and a number of 

candidate modified proteins were identified. Ubiquitination and palmitoylation play a role in 

sorting proteins to membrane vesicles. Future studies can build upon this study to identify the 
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mechanism of sorting of proteins into membrane vesicles as well as validate the PTM status 

of these proteins. Both these modifications are dynamic and tightly controlled and differences 

in profile of these PTMs can likely be found among healthy and disease state which could 

identify new biomarkers or shed light upon molecular mechanism of disease progression. 
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conjugated proteins in urinary 
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A.1 Introduction 

‘Ubiquitin-like’ proteins (Ubl) comprises of a family of compounds which are structurally 

and functionally similar to a significant extent (Welchman, Gordon & Mayer, 2005; 

Kerscher, Felberbaum & Hochstrasser, 2006). The C-terminus of this class of proteins can be 

ligated to lysine side chain amino group of the substrate proteins by the action of three 

enzymes namely activating enzyme (E1), conjugating enzyme (E2) and a ligase (E3) (Pickart, 

2001; Weissman, 2001). The substrates can be singly or multiply monoubiquitinated 

implying the addition of a single ubiquitin moiety to one or several lysine at a time. 

Alternatively, they can be polyubiquitinated implying the addition of a chain of ubiquitin 

proteins to a single lysine residue in the substrate (Wilkinson, 1995). Unlike other Ubls, 

ubiquitination might utilise hundreds of E1, E2 and E3 enzymes and sometimes an E4 

ubiquitin elongation factor may be needed (Koegl et al., 1999; Hoppe, 2005; Welchman, 

Gordon & Mayer, 2005; Chiu, Sun & Chen, 2007; Jin et al., 2007). Lys48 linked ubiquitin 

chains target the substrate proteins for degradation by proteasome system while Lys63 linked 

chains is implied in DNA damage repair, cellcular signalling, intracellular trafficking and 

ribosomal biogenesis. All these functions have been reviewed extensively in previous reports 

(Hochstrasser, 2004; Pickart & Eddins, 2004; Chen, 2005; Welchman, Gordon & Mayer, 

2005; Kerscher, Felberbaum & Hochstrasser, 2006; Mukhopadhyay & Riezman, 2007).  

Another important function of monoubiquitination has been reported to be in the sorting of 

proteins at the multivesicular bodies (MVB) into the luminal vesicles which may later be 

released as exosomes (Katzmann, Odorizzi & Emr, 2002; Raiborg, Rusten & Stenmark, 

2003; Babst, 2005). Mono-ubiquitinated membrane proteins are engaged with endosomal 

sorting machinery with the help of ubiquitin-interaction motifs (UIMs) found e.g. in the 

hepatocyte-growth-factor-regulated tyrosine-kinase substrate (Hrs or Vps27 in yeast) and in 

the signal transduction adapter molecule (STAM) (Clague, 2002). Hrs recruits endosomal 
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sorting complex required for transport-I (ESCRT-I) to the endosomes by interacting with 

ESCRT-I subunit tumour suppressor gene-101 (TSG101) (Pornillos et al., 2003). This is 

followed by assembly of ESCRT-II and III complexes on the endosomes and subsequent 

concentration of cargo of ubiquitinated receptors (Katzmann, Babst & Emr, 2001; Babst et 

al., 2002b). After the sorting, recruitment of Doa4 by ESCRT-III results in deubiquitination 

of sorted membrane proteins before they can be incorporated into MVB vesicles (Amerik et 

al., 2000). Deubiquitination of cargo and sorting complex subunits before they can be 

incorporated into MVB vesicles implies that ubiquitinated proteins should not be present in 

exosomes. However, it has been reported that dendritic cell and human B-cell derived 

exosomes contain ubiquitinated proteins (Buschow et al., 2005). It was also found in the 

same study that majority of these proteins were not integral membrane proteins. These 

cytoplasmic proteins were polyubiquinated although it could not be ruled out if 

monoubiquitinated proteins were present as well. In this paper it was suggested that 

polyubiquitinated proteins were involved in regulation of MVB protein sorting. However, the 

identity of these proteins as well as the relevance of their presence in exosomes remains 

unclear.  

To identify the target proteins to be modified by ‘ubiquitin-like’ modifiers, the main approach 

has been the expression of tagged version of these modifiers in cell lines and subsequent 

enrichment of these modifier-conjugated proteins by affinity chromatography (Vertegaal et 

al., 2006). This is followed by their identification or quantification by mass spectrometric 

(MS) analysis. However, this approach can not be applied to human body fluids or tissues. 

Therefore, we have performed multiple immuno-affinity chromatography on extracts of 

exosomes isolated from human urine. This enrichment of ubiquitin conjugated proteins was 

followed by identification of these proteins by MS. 
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A.2 Material and methods 

A.2.1 Isolation of exosomes from urine 

Membrane vesicle fraction of urine (P200, 000g) was isolated form urine of healthy human 

volunteers as described in Chapter 2. 

A.2.2 Immunoaffinity chromatography (IAC) 

Extract of exosomes was prepared by incubating 1mg of exosomal pellet (P200,000g) with 

1% (w/v) beta-octyl glucoside (BOG) overnight at 4°C. The extract was diluted 1.5 times to 

reach .66% (w/v) BOG and 10mM phosphate (Buffer A, pH 7.2). Two different antibodies 

were used for IAC. One was clone FK-1 (Enzo life sciences, Famingdale, NY) which 

reocgnises only poly-ubiquitinated proteins while the other was anti-ubiquitin antibody 

(Dako, Carpentaria, CA). A negative control was taken by performing IAC using an unrelated 

rabbit IgG antibody. Antibodies were coupled to Dynabeads (M270, amine, Dynal, 

Inviteogen, Carlsbad, CA) as described for anti-albumin antibodies in methods section 2.2.11 

in Chapter 2. Buffer A was used for binding of antibody-beads and proteins in extract. After 

overnight incubation at 4°C (on rotation) the beads were washed five times with phosphate 

buffered saline (PBS) and bound proteins were eluted by incubating beads with 100mM 

glycine (pH 2.3) for 2 hours at room temperature. The eluate was dialysed and the proteins 

were reduced, alkylated and trypsin digested (as described in Chapter 2) followed by their 

identification by LC-MS/MS. 

A.2.3 SDS-PAGE and western blotting 

SDS-PAGE and subsequent transfer of proteins to PVDF membrane was done as described in 

methods section of Chapter 2. Anti-ubiquitin antibody from Dako was rabbit IgG and it was 

used in dilutions of 1:1,000 and incubated with blots overnight at +4°C on rotation. The 

secondary antibody anti-rabbit IgG-IRDye 800 (Li-Cor biosciences) was used in dilutions of 
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1:5,000 for one hour at room temperature (RT). Anti-polyubiquitin antibody (Fk-1, Enzo life 

sciences) was an IgM. Therefore, it was biotinylated using Biotin N-hydroxysuccinimide 

ester (NHS-Biotin, Sigma, St Louis, MO). Briefly, freshly prepared NHS-biotin in 

dimethylsulfoxide (DMSO) was added to 100µg of antibody at final NHS-biotin 

concentration of 10mM. The solution was incubated at RT for 2 hours. Hundred mM Tris 

buffer (Final concentration) was added to the antibody solution to quench remaining NHS-

biotin for 30 minutes. The resulting solution was directly incubated with blots at dilution of 

1:500 overnight at +4°C on rotation. The next day, blot was developed with streaptavidin-

IRDye 800 for 1 hour at RT and images were acquired with Odyssey imaging system (Li-Cor 

biosciences, Lincoln, NE). 

A.2.4 LC-MS/MS identification of bound proteins  

LC-MS/MS analysis was carried out as described in Chapter 5. 

A.2.5 Bioinformatic analysis and gene ontology 

Proteins identified in immuno-precipitations of both the antibodies were analysed by IPA 

(Ingenuity systems, Redwood City, CA), DAVID bioinformatics resources 6.7 (Huang, 

Sherman & Lempicki, 2009a; Huang, Sherman & Lempicki, 2009b) (NIH, USA) and 

Blast2Go software (Conesa et al., 2005). They were classified into various categories based 

on biological processes they are involved in, their sub-cellular localisation and molecular 

functions.  
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A.3 Results 

A.3.1 Immuno-affinity chomatography 

In a previous report it was shown that exosomes contain mostly poly-ubiquitinated, soluble 

proteins and very few membrane proteins (Buschow et al., 2005). Moreover, in our analysis 

of membrane vesicle proteome in Chapter 3, we have found polyubiquitin. Membrane vesicle 

fraction (P200,000g) as well as P18,000g and SN200,000 were probed with both the 

antibodies for  presence of ubiquitinated proteins (Figure A.1). 
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Figure A.1: This figure present western blotting of various fractions of human urine obtained 

by differential centrifugation method, as described in Chapter 2. Ub is the anti-ubiquitin 

antibody from Dako and FK-1 antibody is from Enzo Life sciences, which recognises only 

poly-ubiquitinated proteins. Molecular weight markers (in kDa) are shown in panel A and B 

at left and right to the picture, respectively. Lane 1: P18,000g, Lane2: P200,000g, Lane3: 

SN200,000g. 

As can be seen in the Figure A.1 panel A, the ubiquitin antibody from Dako recognises 

multiple proteins (8-10 clearly visible as well as other faint bands) in various fractions. 

P200,000g presents a band at proximately 10kDa which could be free ubiquitin (Mol wt. 

approximately 8kDa). Then there are multiple proteins from 12-18kDa which should be 

ubiquitinated proteins. There are other high molecular weight bands present at very low 

intensity. In FK-1 blot of P200,000g (Lane2, Panel B) there are multiple bands from 37 to 

180kDa. There is a smear of high intensity from approximately 120 to 180kDa. In 

SN200,000g, there is a big smear from 150 to 180kDa and multiple proteins below this 
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molecular  weight up to 40kDa. There are multiple ubiquitinated proteins present in 

P200,000g as seen in Figure A.1. Therefore, we have employed immuno-affinity 

chromatography (on P200,000g) using two different antibodies. One of which is FK-1 which 

recognises only poly-ubiquitinated proteins. The second antibody (Anti-ubiquitin from Dako) 

was raised against cow erythrocyte ubiquitin and cross-reacts strongly with human ubiquitin. 

The resulting antibody has been previously shown to detect presence of ubiquitinated 

filamentous inclusions in human chronic, neurodegenerative disorders like Alzheimer’s 

disease (Lowe et al., 2001). This antibody most likely recognises both mono- and poly-

ubiquitinated proteins as well as free ubiquitin (the band at ~50kDa is common to both 

antibodies).  

A.3.2 Identification of enriched proteins by LC-MS/MS 

Excluding keratins, 47 proteins were identified from FK-1 IAC (Supplementary Tables A.1 & 

A.2) and 47 from Ub IAC (Supplementary Tables A.3 & A.4). Seventy one unique proteins 

were identified in total while 23 proteins were shared among the elutions of these two 

antibodies (Figure A.2).  
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Figure A.2: Comparison between the proteins identified in Fk-1 and Ub immunoprecipitates. 

 

An unrelated antibody (Rabbit IgG) immobilised to the dynabeads and performed the IAC 

with exosomal extract using the same protocol as the one used for anti-ubiquitin antibodies. 

As a control, all the proteins identified in this manner serve as our negative control (56 

proteins, Supplementary Table A.5). In total 16 proteins from negative control were common 

with proteins identified in FK-1 and Ub IAC. The remaining 55 proteins are candidate 

proteins as being ubiquitinated proteins. 
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A.3.3 Comparison with previous studies 

There have been multiple studies identifying the substrate for ubiquitin conjugation although 

our approach to identify ubiquitin-conjugated proteins in exosomes is the first one. We 

compare 71 non-redundant proteins identified in our study to all previous studies which have 

identified ubiquitin substrates. Out of 71 proteins, 39 proteins have been identified as being 

ubiquitinated in previous studies with many of them identified in multiple studies. These 

proteins are presented in Table A.1. Out of these 39 proteins, 14 proteins were also found in 

the negative control. After removing these 14 proteins from consideration, 25 potentially 

ubiquitinated proteins in urinary exosomes can be found in Table A.1. 

Table A.1: Proteins previously known to be ubiquitinated in various studies. Uniprot 

accession, entrez gene name, sub-cellular localisation, type of proteins, presence of protein in 

Fk-1 and Ub dako  antibody elutions and reference of the previous studies are given in the 

Table. Rows highlighted in light blue colour are the proteins which were also identified in 

negative control. Sub-cellular localisation and type of proteins is presented as annotated by 

IPA (Ingenuity systems). 

Uniprot 

accession 

Symbol Entrez Gene Name Location Type 

 (s) 

Present in 

IP 

References 

A6NDJ8 RAB43L RAB43 like protein   Ub Dako  (Lopitz-

Otsoa et al., 

2012) 

O43633 CHMP2A charged 

multivesicular body 

protein 2A 

Cytoplasm Other Ub Dako  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

P01834 IGKC immunoglobulin 

kappa constant 

Extracellular 

Space 

Other Both  (Danielsen 

et al., 2011) 

P01857 IGHG1 immunoglobulin 

heavy constant 

gamma 1 (G1m 

marker) 

Extracellular 

Space 

Other Fk-1 hUbiqiotome 

P01877 IGHA2 immunoglobulin 

heavy constant alpha 

2 (A2m marker) 

Extracellular 

Space 

Other Fk-1  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

P02788 LTF lactotransferrin Extracellular Peptid both  (Lopitz-
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Space ase Otsoa et al., 

2012) 

P04279 SEMG1 semenogelin I Extracellular 

Space 

Other Ub Dako  (Vanderwerf 

et al., 2009),  

(Altun et al., 

2011) 

P06576 ATP5B ATP synthase, H+ 

transporting, 

mitochondrial F1 

complex, beta 

polypeptide 

Cytoplasm Transp

orter 

Ub Dako  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

P08236 GUSB glucuronidase, beta Cytoplasm Enzym

e 

Fk-1  (Wagner et 

al., 2011) 

P14923 JUP junction plakoglobin Plasma 

Membrane 

Other Fk-1 UbiProt,  

(Lopitz-

Otsoa et al., 

2012) 

P35573 AGL amylo-alpha-1, 6-

glucosidase, 4-alpha-

glucanotransferase 

Cytoplasm Enzym

e 

Fk-1 hUbiqiotome 

P53990 IST1 increased sodium 

tolerance 1 homolog 

(yeast) 

Cytoplasm other Ub Dako  (Kim et al., 

2011),  

(Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

P59190 RAB15 RAB15, member 

RAS oncogene 

family 

Cytoplasm Enzym

e 

Ub Dako  (Lopitz-

Otsoa et al., 

2012) 

P60709 ACTB actin, beta Cytoplasm Other Fk-1  (Lopitz-

Otsoa et al., 

2012),  

(Danielsen et 

al., 2011) 

P61626 LYZ Lysozyme Extracellular 

Space 

Enzym

e 

Both  (Altun et al., 

2011),  

(Danielsen et 

al., 2011) 

Q13510 ASAH1 N-acylsphingosine 

amidohydrolase (acid 

ceramidase) 1 

Cytoplasm Enzym

e 

Fk-1  (Wagner et 

al., 2011) 

Q15678 PTPN14 protein tyrosine 

phosphatase, non-

receptor type 14 

Cytoplasm Phosp

hatase 

Ub Dako  (Altun et al., 

2011) 

Q7LBR1 CHMP1B charged 

multivesicular body 

protein 1B 

Plasma 

Membrane 

Enzym

e 

Ub Dako  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

Q92820 GGH gamma-glutamyl 

hydrolase 

(conjugase, 

folylpolygammagluta

myl hydrolase) 

Cytoplasm Peptid

ase 

Fk-1  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

Q9BY43 CHMP4A charged Cytoplasm Other Ub Dako  (Danielsen 
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multivesicular body 

protein 4A 

et al., 2011) 

Q9H082 RAB33B RAB33B, member 

RAS oncogene 

family 

Cytoplasm Enzym

e 

Ub Dako  (Lopitz-

Otsoa et al., 

2012),   

(Danielsen et 

al., 2011) 

Q9H444 CHMP4B charged 

multivesicular body 

protein 4B 

Cytoplasm Other Both  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

Q9NRW

1 

RAB6B RAB6B, member 

RAS oncogene 

family 

Cytoplasm Enzym

e 

Ub Dako  (Lopitz-

Otsoa et al., 

2012),  

(Danielsen et 

al., 2011) 

Q9NZZ3 CHMP5 charged 

multivesicular body 

protein 5 

Cytoplasm Other Both  (Wagner et 

al., 2011),  

(Danielsen et 

al., 2011) 

P10909 CLU Clusterin Cytoplasm Chaper

on 

Fk-1  (Rizzi et al., 

2009) 

 

These known ubiquitinated proteins contain multiple families and types of proteins. There are 

charged multivesicular body proteins (CHMP 1B, 2A, 4A, 4B and 5), RAS oncogene family 

members (RAB 6B, 15, 33B and RAB43 like), enzymes like acid ceramidase and gamma-

glutamyl hydrolase and a tyrosine phosphatase PTPN14. CHMP proteins are part of 

endosomal sorting complex required for transport-III (ESCRT-III). A map of their interaction 

was drawn with ConsensusPathDB-human (Kamburov et al., 2011) which is presented in 

Figure A.3. 
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Figure A.3: Components of ESCRT-III complex. Boxes with red outline are the ones found 

in our study. 

These proteins interact physically with each other to form ESCRT-III complex which is 

required for budding and scission of ILVs into the MVB endosomes (Wollert et al., 2009). 

Their presence is expected as they are known to be secreted with exosomes although their 

status in exosomes as potentially ubiquitinated proteins is a new finding. 

Proteins identified in our analysis were compared to previous studies published on proteomic 

analysis of urinary exosomes and exosome-like vesicles (Pisitkun, Shen & Knepper, 2004; 

Gonzales et al., 2009; Wang et al., 2011) (Knepper, Wang) as well as our dataset from 

Chpater 3. 
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Figure A.4: Comparison of identified proteins with proteomic studies of urinary exosome 

and ‘exosome-like’ vesicle studies (Pisitkun, Shen & Knepper, 2004; Gonzales et al., 2009; 

Wang et al., 2011) (Knepper and Wang) and dataset from Chapter 3.  

Seven proteins were found to be unique to our study. These proteins are identified for the first 

time as being part of urinary membrane vesicles. Two of these proteins are previously known 

to be associated with exosomes from other sources (Exocarta (Mathivanan et al., 2012)). 

These proteins are indicated in the table A.2. 
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Table A.2: Proteins identified in urinary membrane vesicle pellet (P200,000g) for the first 

time. 

Uniprot 

accesssion 

Gene/protein Name Known 

ubiquitinated 

or candidate 

Found in 

Exocarta 

(Mathivanan 

et al., 2012) 

Mascot 

score  

Protein 

matches 

A6NDJ8 Putative Rab-43-like protein Known  No 54 1 

A6NMY6 Putative annexin A2-like 

protein 

Candidate Yes 71 2 

P01596 Ig kappa chain V-I region 

CAR 

Candidate No 69 1 

P01597 Ig kappa chain V-I region 

DEE 

Candidate No 45 1 

P01614 Ig kappa chain V-II region 

Cum 

Candidate No 68 1 

P01700 Ig lambda chain V-I region 

HA 

Candidate No 46 1 

Q9NRW1 Ras-related protein Rab-6B Known Yes 54 1 

  

Out of these 7 proteins presented in table A.2, two proteins putative Rab-43-like protein and 

RAS related protein Rab-6B are previously known to be ubquitinated (Table A.1). While 5 

others are candidate ubiquitinated protein identified only in IAC. Other than 38 known 

ubiquitinated proteins, we also identified 30 candidate proteins which could be ubiquitinated. 

In this list of 30 proteins, we have excluded proteins which were also identified in our 

negative control. These 30 proteins are indicated in supplementary tables at the end of the 

text.  

A.3.4 Bioinformatic analysis and Gene ontology 

After removing the proteins also found in negative control, 55 proteins containing unique 

known and candidate ubiquitinated proteins were submitted to analysis by IPA (Ingnuity 

systems), DAVID bioinformatics resources (Huang, Sherman & Lempicki, 2009a; Huang, 

Sherman & Lempicki, 2009b) (NIH, USA) and Blast2Go software (Conesa et al., 2005). 

These proteins were classified according to the cellular component to which they belong, 

their molecular functions and biological processes in which they are involved. Figure A.5 

presents the sub-cellular localisation of these proteins and the biggest category is extra-
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cellular space (44%) followed by cytoplasm (39%) and then plasma membrane (15%). 

Extracellular space proteins are over-represented in ubiquitin known and candidate 

identifications while plasma membrane proteins are under-represented. 

 

Figure A.5: Sub-cellular localisation of the proteins as annotated by IPA software (Ingenuity 

systems, USA). 

Proteins present in extracellular space would be expected to endocytosed and reach endosome 

compartment where they could be target of ubiquitination. Cytoplasmic and plasma 

membrane associated proteins are already known targets of ubiquitination. However, plasma 

membrane proteins are under-represented compared to whole proteome of urinary membrane 

vesicles. It suggests that only a fraction of membrane proteins sorted to membrane vesicles 

are subjected to ubiquitination. 

Cytoplasm 

Extracellular Space 

Nucleus 

Plasma Membrane 

Unknown 

38 

36 

2 

23 

1 

39 

44 

14 

2 

Gene ontology: Sub-cellular distribution 

Ubiquitin total CP200 total Proteome 
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Figure A.6: Molecular functions of the proteins as annotated by IPA software (Ingenuity 

systems, USA). 

When these proteins were classified according to molecular functions (Figure A.6), the 

biggest annotated category (38% were not annotated) was enzymes (17%) followed by 

proteases and protease inhibitors (13% and 8%, respectively) and then transporter proteins 

(10%). Proteins involved in vesicular transport (like RABs) and cargos sorting into ILVs (like 

CHMP proteins) are already known targets of ubiquitination. Compared to the total proteome 

(Chapter 3), peptidase and transporter were similarly represented while enzymes were under-

represented in ubiquitinated protein identification. It suggests that among the enzymes sorted 

to membrane vesicles, only a subset is subject to ubiquitination. However, we have to also 

keep in mind that Chapter 3 is not the most exhaustive of datasets of membrane vesicles and 

many more proteins make up parts of these vesicles.  

Cytokine 

Enzyme 

G-protein coupled receptor 

Growth factor 

Ion channel 

Kinase 

Transmembrane receptor 

Peptidase 

Transcription/translation regulator 

Phosphatase 

Transporter 

Other  

Endopeptidase inhibitor 

Antigen binding 

1 

25 

1 

1 

1 

1 

2 

12 

1 

1 

10 

44 

17 

2 

2 

12 

2 

10 

37 

8 

8 

Gene Ontology: Molecular function 

Ubiquitin total CP200 Total proteome 
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Figure A.7: Presents the annotation of the proteins according to the biological processes in 

which they are involved. This figure was generated by Blast2Go software and threshold for 

inclusion of a category put at minimum 15 sequences per category.  

Biological processes, in which these proteins are involved, are shown in Figure A.7. Vesicle-

mediated transport, cellular component organisation and macromolecule localisation are 

some of the major categories. Categories also enriched include those for metabolic process, 

regulation of cellular processes and immune and defense responses.  

Proteins identified in our analysis (subtracting the negative control proteins) were subjected 

to biomarker filter analysis by IPA using cardiovascular and renal diseases, human species, 
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detection in blood/plasma and urine as various parameters. Biomarkers found in this analysis 

are presented in table A.3.  

Table A.3: Biomarkers found in the proteins present in our identifications upon IPA 

biomarker filter analysis. Symbols, gene name, sub-cellular  localisation, family of proteins, 

Uniprot Id, presence in plasma/urine, and type of bioarmker applications along with the one 

representative disease is indicated in the table. Cardiovascular disease and endocrine 

disorders were top disease in which these proteins have been sued as biomarkers. 

Symbol Entrez Gene 

Name 

Location Family GenPept

/UniProt

/Swiss-

Prot 

Accessi

on 

Pla

sm

a/S

eru

m 

Uri

ne 

Biomarker 

Application 

(s) 

Diseas

es 

APOE Apolipoprote

in E 

Extracellular 

Space 

Transpo

rter 

P02649 X X Diagnosis, 

Efficacy, 

Prognosis, 

Unspecified 

Application 

Cardio

vascula

r 

disease 

CLU Clusterin Extracellular 

Space 

Other P10909 X X Diagnosis, 

Efficacy, 

Unspecified 

Application 

Cardio

vascula

r 

disease 

EGF 

(include

s 

EG:136

45) 

Epidermal 

growth factor 

Extracellular 

Space 

growth 

factor 

P01133 X X Diagnosis, 

Efficacy, 

Prognosis, 

Response to 

Therapy, 

Unspecified 

Application 

Endocr

ine 

system 

dosord

ers 

F2 Coagulation 

factor II 

(thrombin) 

Extracellular 

Space 

Peptidas

e 

P00734 X X Diagnosis Cardio

vascula

r 

disease 

JUP Junction 

plakoglobin 

Plasma 

Membrane 

Other P14923 X X Diagnosis Cardio

vascula

r 

disease 

KNG1 Kininogen 1 Extracellular 

Space 

Other P01042 x X Efficacy Cardio

vascula

r 

disease 

LRP2 Low density 

lipoprotein 

receptor-

Plasma 

Membrane 

Transpo

rter 

P98164 X X Diagnosis Endocr

ine 

system 
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related 

protein 2 

dosord

ers 

PLG Plasminogen Extracellular 

Space 

Peptidas

e 

P00747 X X Diagnosis Cardio

vascula

r 

disease 

RETN Resistin Extracellular 

Space 

Other Q9HD8

9 

X X Diagnosis, 

Disease 

Progression, 

Efficacy 

Cardio

vascula

r 

disease 

SERPI

NA5 

Serpin 

peptidase 

inhibitor, 

clade A 

(alpha-1 

antiproteinas

e, 

antitrypsin), 

member 5 

Extracellular 

Space 

Other P05154 X X Diagnosis Cardio

vascula

r 

disease 

SLPI Secretory 

leukocyte 

peptidase 

inhibitor 

Cytoplasm Other P03973 X X Diagnosis, 

Prognosis 

Cardio

vascula

r 

disease 

 

Upon further analysis of the protein list with IPA some proteins involved in glomerular injury 

were also identified which are presented in table A.4. 

Table A.4: Presents the molecules involved in glomerular injury. Type of injury, name of 

molecules found and p-value of their enrichment is indicated in the table.  

Category Functions Annotation p-Value Molecules # 

Molecules 

Glomerular 

Injury 

Glomerulosclerosis 6.07E-

05 

APOE,C3,CLU,IGHG1 4 

Glomerular 

Injury 

lipoprotein glomerulopathy 2.90E-

03 

APOE 1 

Glomerular 

Injury 

focal segmental 

glomerulosclerosis 

4.54E-

02 

CLU 1 

 

These proteins not only are good targets to verify their ubiquitination status in urinary 

exosomes but also to investigate if their status changes in animal model systems for 

glomerular injury. Upon annotation with DAVID, in our 30 new candidate proteins for 
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ubiquitination we found 3 proteins which are annotated as being part of cytoplasmic vesicles 

(Table A.5).  

Table A.5: Proteins among the candidate ubiquitinated proteins annotated by DAVID as 

being part of cytoplasmic vesicles.  

Serial 

Number 

ID Gene Name 

1 789717 Epidermal growth factor (beta-

urogastrone) 

2 774646 Low density lipoprotein-related protein 2 

3 774379 Polymeric immunoglobulin receptor 

   

These proteins are strong candidates for ubiquitination as they end up in endosome 

compartments. Megalin, for example, is a multi-ligand receptor which acts with cubulin and 

is inetrnalised upon ligand binding. We searched for megalin ligands among our 

identifications and Figure A.8 shows the megalin interaction network that we found within 

our identifications.  

 

Figure A.8: Interacting proteins of Megalin that were found in our analysis. This figure was 

manually generated. Data from BioGRID
3.1

 was used to search for Megalin interacting 

partners. 
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Clusterin, apolipoprotein-E, immunoglobulins (Ig) light chains and albumin are the megalin 

ligands identified in our study. While albumin and clusterin have been identified as 

ubiquitinated in a previous study (Lopitz-Otsoa et al., 2012; Rizzi et al., 2009), Ig light 

chains and apolipoprotein-E are novel candidates found in our study. However albumin was 

also found in negative control therefore left out of consideration. Immune and inflammation 

signalling proteins are also targets of ubiquitination (Chen, 2005) therefore we looked for 

such proteins in our list. We found a category of proteins in our list which were annotated as 

being involved in inflammatory response (Table A.6). 

Table A.6: Proteins found in our identifications which are annotated by DAVID as being 

involved in inflammatory response. 

ID Gene Name 

P02743 amyloid P component, serum 

P10909 Clusterin 

P00734 coagulation factor II (thrombin) 

P01042 kininogen 1 

P61626 lysozyme (renal amyloidosis) 

O00187 mannan-binding lectin serine peptidase 2 

P01024 similar to Complement C3 precursor; complement component 3; hypothetical protein 

LOC100133511 

 

Analysis of proteins identified in our study, by IPA, identified two pathways enriched among 

the proteins identified. First one is a pathway which involves ubiquitin targets and ubiquitin 

specific protease 54 (USP54) binding partners. The pathway is shown in Figure A.9.  
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Figure A.9:  A pathway found in our data by IPA. The picture was generated using Path 

Designer tool in the IPA. Proteins shown in red or blue are the ones which are present in our 

identifications.  

This pathway was annotated by IPA as being involved in infectious diseases, cellular 

assembly and organization as well as DNA recombination, replication and repair. USP54, 

although inactive as a deubiquitinating protease (Quesada et al., 2004), contains microtubule 

interacting and transport (MIT) domain which interacts with CHMP proteins (Rigden et al., 

2009). This domain is found in proteins involved in intracellular transport and this pathway 

fits well in context of exosomal secretion machinery.  
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Another pathway which was enriched in our identification (by IPA analysis) is related to 

nuclear factor kappa B (NFkB) activation. This pathway is shown in figure A.10. 

 

Figure A.10:  A pathway found in our data by IPA. The picture was generated using Path 

Designer tool in the IPA. The proteins in pink or grey circles are the ones present in our 

identifications. Pink circles are the proteins which directly influence the nuclear localisation 

of NFkB.  

The proteins shown in Figure A.10 are mostly either extracellular or part of plasma 

membrane and increase or decrease the nuclear localisation of NFkB. Previously  it is known 

that NFkB activation in B-cells regulate HLA secretion with exosomes (Arita et al., 2008). 
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Another study has also shown that exosome treatment of cells activate the NFkB pathway and 

lead to inflammation (Anand et al., 2010). 
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A.4 Discussion 

IAC was carried out on urinary exosomal extract and proteins were identified by LC-MS/MS. 

A number of proteins get enriched in the immunoprecipitations not only because of their 

specific affinity but also due to non-specific interaction with matrix stationary phase, protein-

protein interactions and protein aggregation. To avoid the consideration of such proteins as 

ubiquitinated in our study an unrelated rabbit IgG was immobilised to the Dynabeads and 

IAC was carried out with same protocol as the anti-ubiquitin (Ub) antibody and all the 

proteins found in this way were considered as a negative control. We identified 71 proteins in 

total using two different antibodies, clone FK-1 which recognises only poly-ubiquitinated 

proteins and anti-ubiquitin (Dako) which is not so well characterised but may recognise both 

mono- and poly-ubiquitinated proteins. Thirty-nine previously known ubiquitinated proteins 

were identified but 14 of these proteins were present in negative control as well so they were 

not considered as potential Ub substrate. We prepared a membrane vesicle extract by 

incubating the exosomal pellet (P200,000g) with 1% (w/v) beta-octyl glucoside (BOG) 

overnight at 4°C. There are two reasons for that; one being that exosomes are enriched in 

‘lipid raft-like’ domains and BOG can solubilise these rafts (Garner, Smith & Hooper, 2008) 

and second is that BOG has previously been shown to increase the specificity of immuno-

precipitation (IP) (Zhang & Neubert, 2006). It was shown in the study that BOG, when 

present above its critical micelle concentration (.7%) in the IP buffer, increases both the 

sensitivity and selectivity of immuno-capture. This objective was achieved as 55% of the 

total proteins identified in our analysis are previously known to be ubiquitinated. 

Among the proteins identified one interesting category was CHMP family proteins. We 

identified 5 of the 10 CHMP proteins known to constitute the ESCRT-III complex. This 

complex is required for ILV formation and scission (Wollert et al., 2009). ESCRT-III 

interacts with the endosomal membrane (Whitley et al., 2003) and recruits cargo to be 
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included in MVB pathway (Babst et al., 2002a). ESCRT-III recruits Doa4 which 

deubiquitinates the cargo before it is included in MVB ILVs (Babst et al., 2002a). However, 

this sequence of events is incomplete as according to this scenarios exosomes, which are 

derived from MVB later in the pathway, should be free of ubiquitinated proteins. But 

ubiquitinated proteins are present in exosomes as shown previously (Buschow et al., 2005) 

and by our study. This means that ubiquitination plays as yet unknown role in MVB cargo 

sorting. The presence of ESCRT-III complex proteins in ubiquitinated form in exosomes also 

raises question about recycling of this complex as well as maintaining the free ubiquitin pool 

of the cells. Further studies will be required to answer these aspects of MVB sorting. It has 

been suggested that Ub dependent sorting of cell surface receptors into MVB might regulate 

their stability as well as turnover of misfolded proteins (Babst et al., 2002a). Clusterin which 

was identified in our study is known to bind to unfolded proteins and chaperon-client 

complex is internalised and targeted for lysosomal degradation (Kounnas et al., 1995). It is 

possible that subsequent to the ubiquitination of inetrnalised proteins a decision is taken to 

either degrade it in lysosome or secrete ILVs as exosome by fusing MVB with plasma 

membrane. 

Endocytosis of receptor ligand complexes leads them into endosomes and ubiquitination of 

endocytic cargo is a constitutive process (Katzmann, Odorizzi & Emr, 2002). In our 

candidate ubiquitinated proteins list at least 3 proteins EGF, megalin and polymeric 

immunoglobulin receptor were found which end up in endosomes upon endocytosis. These 

receptors need to be either recycled or degraded in the cell and Ub plays an important role in 

these two decisions. Decision of degradation further leads to another choice in which either 

MVB fuse with lysosomes or with plasma membrane releasing these proteins as part of 

exosomes. Therefore these 3 proteins are very strong candidate for ubiquitination and further 

studies will be needed to confirm this. Moreover, surface expression and ectodomain 
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shedding of EGF family member pro-amphiregulin is already known to be tightly controlled 

by ubiquitination (Fukuda et al., 2012). There is no reason to believe that this can not be the 

case for EGF. Megalin is involved in internalisation of Ig light chains by proximal tubule (Li 

et al., 2008) and can also lead to light chain induced nephrotoxicity in pathological conditions 

(Basnayake et al., 2010). Ig light chains and megalin, both were also found in our study. IgA, 

IgM and their receptor, polymeric immunoglobulin receptor, all were identified. However, it 

remains to be established whether these interacting proteins were present as complexes and 

were enriched indirectly with only one or few of them being ubiquitinated or all of them are 

secreted as part of exosomes in ubiquitinated form. 

NFkB is implicated in inductions and resolution of inflammations upon stimulation by a 

variety of molecules and ligands (Belen Sanz et al., 2010). Both the classical and alternative 

pathways have been shown to be activated in kidney diseases and injury (Belen Sanz et al., 

2010). Moreover, NFkB activation is known to be upregulated in experimental renal disease 

(Guijarro & Egido, 2001). We have found a number of proteins in our identifications which 

affect the nuclear localisation of NFkB including Ig light chains as discussed previously. 

Exosomal localisation of NFkB effectors in ubiquitinated form raises questions whether 

exosomes serve as a dumping ground for this class of proteins? And whether their secretion 

with exosomes serves as a homeostatic mechanism which controls cellular levels of NFkB 

effectors? Further studies will be needed to establish the connection of exosomal proteins 

with NFkB pathway.   

Another family of proteins known to be ubiquitinated and present in our analysis is RAB, 

RAS oncogene family members. RAB6B and RAB33B are involved in retrograde transport 

of cargo from early endosomes to trans-Golgi network (TGN)  (Starr et al., 2010) while 

RAB15 is involved in recycling of internalised receptors from recycling endosomes (Strick & 

Elferink, 2005). Receptors which are recycled might include polymeric immunoglobulin 
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receptor and megalin, as previously discussed. A picture emerges in which distinct steps in 

vesicle mediated transport from golgi to endosomes and vice versa, endosome to lysosome 

and endosome to plasma membrane is tightly regulated by ubiquitination of not only effector 

transport proteins but also of the cargo itself. While the  exact reasons why only some of the 

ubiquitinated proteins and transporters end up in exosomes and not other components of the 

system remains to be answered in detail, this study provides the target molecules which can 

be studied further.  
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Supplementary Table A.1: Proteins identified in Fk-1 IAC sample 1. Uniprot accession, 

protein description, score, molecular weight (in Dalton) and number of protein matches are 

indicated in the table. 

Accession Description Score Mol Wt. prot_matches 

Q13510 Acid ceramidase OS=Homo sapiens GN=ASAH1 PE=1 SV=5 60 45095 1 

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 78 21552 3 

P02649 Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1 50 36248 1 

P08236 Beta-glucuronidase OS=Homo sapiens GN=GUSB PE=1 SV=2 41 75033 1 

P31944 Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2 82 27952 2 

Q9NZZ3 Charged multivesicular body protein 5 OS=Homo sapiens GN=CHMP5 
PE=1 SV=1 

42 24613 1 

P10909 Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 45 53041 1 

P01024 Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 57 188596 1 

P01040 Cystatin-A OS=Homo sapiens GN=CSTA PE=1 SV=1 41 11000 1 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 108 11393 4 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 138 114720 5 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 258 334063 9 

Q92820 Gamma-glutamyl hydrolase OS=Homo sapiens GN=GGH PE=1 SV=2 46 36347 1 

P35573 Glycogen debranching enzyme OS=Homo sapiens GN=AGL PE=1 
SV=3 

46 176856 1 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 133 283156 3 

P01877 Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 SV=3 128 37315 4 

P01857 Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 PE=1 SV=1 132 36605 4 

P01766 Ig heavy chain V-III region BRO OS=Homo sapiens PE=1 SV=1 41 13334 1 

P01762 Ig heavy chain V-III region TRO OS=Homo sapiens PE=1 SV=1 41 13580 1 

P01764 Ig heavy chain V-III region VH26 OS=Homo sapiens PE=1 SV=1 40 12748 1 

P01834 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 139 11776 3 

P01596 Ig kappa chain V-I region CAR OS=Homo sapiens PE=1 SV=1 69 11812 1 

P01597 Ig kappa chain V-I region DEE OS=Homo sapiens PE=1 SV=1 148 11770 2 

P01614 Ig kappa chain V-II region Cum OS=Homo sapiens PE=1 SV=1 68 12784 1 

P01616 Ig kappa chain V-II region MIL OS=Homo sapiens PE=1 SV=1 70 12164 1 

P01620 Ig kappa chain V-III region SIE OS=Homo sapiens PE=1 SV=1 71 11884 2 

P01700 Ig lambda chain V-I region HA OS=Homo sapiens PE=1 SV=1 46 12005 1 

P0CG05 Ig lambda-2 chain C regions OS=Homo sapiens GN=IGLC2 PE=1 
SV=1 

51 11461 1 

P01871 Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 49972 1 

P01591 Immunoglobulin J chain OS=Homo sapiens GN=IGJ PE=1 SV=4 62 18551 1 

P14923 Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 84 82447 2 

Q14525 Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B PE=2 
SV=3 

87 47345 3 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 

1187 59024 31 

P13646 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 
SV=4 

191 49905 7 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 
SV=4 

619 51877 19 

P19012 Keratin, type I cytoskeletal 15 OS=Homo sapiens GN=KRT15 PE=1 212 49413 8 
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SV=3 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 
SV=4 

569 51584 18 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 
SV=2 

289 48366 9 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 
SV=4 

161 44079 6 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 1611 62259 42 

Q9NSB4 Keratin, type II cuticular Hb2 OS=Homo sapiens GN=KRT82 PE=1 
SV=3 

49 58008 1 

P04264 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 
SV=6 

2188 66173 61 

Q7Z794 Keratin, type II cytoskeletal 1b OS=Homo sapiens GN=KRT77 PE=1 
SV=3 

481 62154 12 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 
PE=1 SV=2 

788 65683 22 

P12035 Keratin, type II cytoskeletal 3 OS=Homo sapiens GN=KRT3 PE=1 
SV=3 

113 64552 3 

P19013 Keratin, type II cytoskeletal 4 OS=Homo sapiens GN=KRT4 PE=1 
SV=4 

207 57656 6 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 
SV=3 

425 62572 14 

P02538 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 
SV=3 

454 60298 15 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 
SV=5 

516 60320 16 

Q3SY84 Keratin, type II cytoskeletal 71 OS=Homo sapiens GN=KRT71 PE=1 
SV=3 

113 57778 3 

Q14CN4 Keratin, type II cytoskeletal 72 OS=Homo sapiens GN=KRT72 PE=1 
SV=2 

97 56481 3 

P05787 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 
SV=7 

107 53671 3 

Q6KB66 Keratin, type II cytoskeletal 80 OS=Homo sapiens GN=KRT80 PE=1 
SV=2 

93 51016 2 

P02788 Lactotransferrin OS=Homo sapiens GN=LTF PE=1 SV=6 125 80046 3 

P98164 Low-density lipoprotein receptor-related protein 2 OS=Homo sapiens 
GN=LRP2 PE=1 SV=3 

67 540699 1 

P61626 Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1 42 16990 1 

Q13835 Plakophilin-1 OS=Homo sapiens GN=PKP1 PE=1 SV=2 58 84142 1 

P01833 Polymeric immunoglobulin receptor OS=Homo sapiens GN=PIGR PE=1 
SV=4 

78 84450 1 

P01133 Pro-epidermal growth factor OS=Homo sapiens GN=EGF PE=1 SV=2 46 137677 1 

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 42 10886 1 

P06702 Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 77 13292 2 

A6NMY6 Putative annexin A2-like protein OS=Homo sapiens GN=ANXA2P2 
PE=5 SV=2 

71 38809 2 

P02768 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 106 71352 3 

P02743 Serum amyloid P-component OS=Homo sapiens GN=APCS PE=1 SV=2 86 25487 2 

Q9P2P6 StAR-related lipid transfer protein 9 OS=Homo sapiens GN=STARD9 
PE=1 SV=3 

48 521940 1 
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Supplementary Table A.2: Proteins identified in Fk-1 IAC sample 2. Uniprot accession, 

protein description, score, molecular weight (in Dalton) and number of protein matches are 

indicated in the table. 

Accession Description Score  Mol Wt. prot_matches 

P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 40 42052 1 

Q9H444 Charged multivesicular body protein 4b OS=Homo sapiens 
GN=CHMP4B PE=1 SV=1 

83 24935 3 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 77 11391 2 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 85 38486 3 

P01834 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 134 11773 4 

P01591 Immunoglobulin J chain OS=Homo sapiens GN=IGJ PE=1 SV=4 129 18543 6 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 

1469 59020 70 

P13646 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 
SV=4 

204 49900 8 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 
SV=4 

1038 51872 45 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 
SV=4 

660 51578 36 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 
SV=2 

259 48361 10 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 
SV=3 

1057 62255 35 

P04264 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 
SV=6 

1528 66170 75 

Q7Z794 Keratin, type II cytoskeletal 1b OS=Homo sapiens GN=KRT77 PE=1 
SV=3 

528 62149 27 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 

751 65678 36 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 
SV=3 

97 62568 4 

P02538 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 
SV=3 

368 60293 19 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 
SV=5 

298 60315 12 

P48668 Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 
SV=3 

302 60273 8 

Q3SY84 Keratin, type II cytoskeletal 71 OS=Homo sapiens GN=KRT71 PE=1 
SV=3 

107 57769 11 

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 52 10536 1 

P01133 Pro-epidermal growth factor OS=Homo sapiens GN=EGF PE=1 SV=2 42 137613 1 

P07911 Uromodulin OS=Homo sapiens GN=UMOD PE=1 SV=1 758 72451 25 
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Supplementary Table A.3: Proteins identified in Ub IAC sample 1. Uniprot accession, 

protein description, score, molecular weight (in Dalton) and number of protein matches are 

indicated in the table. 

Accession Description Score  Mol Wt. prot_matches 

P03973 Antileukoproteinase OS=Homo sapiens GN=SLPI PE=1 SV=2 59 15228 2 

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 96 21547 2 

P06576 ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 
SV=3 

80 56525 1 

P31944 Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2 77 27947 1 

P01040 Cystatin-A OS=Homo sapiens GN=CSTA PE=1 SV=1 52 11000 1 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 62 114702 1 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 90 334021 3 

Q01469 Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 PE=1 SV=3 43 15497 1 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 56 249296 1 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 42 283140 1 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 117 38486 4 

P01834 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 88 11773 1 

P01593 Ig kappa chain V-I region AG OS=Homo sapiens PE=1 SV=1 45 12099 1 

P01597 Ig kappa chain V-I region DEE OS=Homo sapiens PE=1 SV=1 45 11768 1 

P01620 Ig kappa chain V-III region SIE OS=Homo sapiens PE=1 SV=1 66 11882 1 

Q15323 Keratin, type I cuticular Ha1 OS=Homo sapiens GN=KRT31 PE=2 SV=3 139 48633 6 

Q14525 Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B PE=2 SV=3 157 47325 6 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 809 59020 27 

P13646 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 SV=4 213 49900 7 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 526 51872 19 

P19012 Keratin, type I cytoskeletal 15 OS=Homo sapiens GN=KRT15 PE=1 SV=3 205 49409 8 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 393 51578 14 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2 312 48361 12 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4 194 44079 10 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 1295 62255 36 

P04264 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6 1758 66170 46 

Q7Z794 Keratin, type II cytoskeletal 1b OS=Homo sapiens GN=KRT77 PE=1 SV=3 370 62149 10 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 
SV=2 

639 65678 21 

P19013 Keratin, type II cytoskeletal 4 OS=Homo sapiens GN=KRT4 PE=1 SV=4 102 57649 2 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3 327 62568 10 

P02538 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 SV=3 255 60293 9 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 312 60315 11 

P48668 Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 SV=3 242 60273 9 

P08729 Keratin, type II cytoskeletal 7 OS=Homo sapiens GN=KRT7 PE=1 SV=5 89 51411 2 

Q3SY84 Keratin, type II cytoskeletal 71 OS=Homo sapiens GN=KRT71 PE=1 SV=3 99 57769 2 

A6NCN2 Keratin-81-like protein OS=Homo sapiens PE=2 SV=3 52 54972 1 

P01042 Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2 59 72996 1 
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P61626 Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1 41 16982 1 

O00187 Mannan-binding lectin serine protease 2 OS=Homo sapiens GN=MASP2 PE=1 
SV=4 

63 77193 1 

P05154 Plasma serine protease inhibitor OS=Homo sapiens GN=SERPINA5 PE=1 SV=3 94 45760 2 

P00747 Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 44 93247 1 

P01133 Pro-epidermal growth factor OS=Homo sapiens GN=EGF PE=1 SV=2 100 137613 2 

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 60 10885 1 

P06702 Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 88 13291 1 

P00734 Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2 48 71475 1 

A6NDJ8 Putative Rab-43-like protein ENSP00000330714 OS=Homo sapiens PE=5 SV=3 54 20425 1 

P59190 Ras-related protein Rab-15 OS=Homo sapiens GN=RAB15 PE=1 SV=1 54 24660 1 

Q9H082 Ras-related protein Rab-33B OS=Homo sapiens GN=RAB33B PE=1 SV=1 54 26043 1 

Q9NRW1 Ras-related protein Rab-6B OS=Homo sapiens GN=RAB6B PE=1 SV=1 54 23561 1 

Q9HD89 Resistin OS=Homo sapiens GN=RETN PE=2 SV=1 105 12096 3 

Q96P63 Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1 SV=1 48 46646 1 

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 47 44594 1 

P02768 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 45 71317 1 

P07911 Uromodulin OS=Homo sapiens GN=UMOD PE=1 SV=1 335 72451 10 

 

Supplementary Table A.4: Proteins identified in Ub IAC sample 2. Uniprot accession, 

protein description, score, molecular weight (in Dalton) and number of protein matches are 

indicated in the table. 

Accession Description Score  Mol Wt. prot_matches 

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 42 21547 1 

Q7LBR1 Charged multivesicular body protein 1b OS=Homo sapiens 
GN=CHMP1B PE=1 SV=1 

50 22152 2 

O43633 Charged multivesicular body protein 2a OS=Homo sapiens 
GN=CHMP2A PE=1 SV=1 

41 25088 1 

Q9BY43 Charged multivesicular body protein 4a OS=Homo sapiens 
GN=CHMP4A PE=1 SV=3 

56 25083 1 

Q9H444 Charged multivesicular body protein 4b OS=Homo sapiens 
GN=CHMP4B PE=1 SV=1 

93 24935 3 

Q9NZZ3 Charged multivesicular body protein 5 OS=Homo sapiens GN=CHMP5 
PE=1 SV=1 

116 24612 4 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 149 11391 6 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 121 38486 6 

P01834 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 233 11773 5 

P01614 Ig kappa chain V-II region Cum OS=Homo sapiens PE=1 SV=1 48 12782 1 

P01591 Immunoglobulin J chain OS=Homo sapiens GN=IGJ PE=1 SV=4 166 18543 9 

P53990 IST1 homolog OS=Homo sapiens GN=IST1 PE=1 SV=1 131 39897 8 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 

1349 59020 59 

P13646 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 
SV=4 

176 49900 8 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 
SV=4 

627 51872 30 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 
SV=4 

590 51578 31 
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Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 
SV=2 

80 48361 4 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 1509 62255 50 

P04264 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 
SV=6 

1569 66170 68 

Q7Z794 Keratin, type II cytoskeletal 1b OS=Homo sapiens GN=KRT77 PE=1 
SV=3 

593 62149 26 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 
PE=1 SV=2 

836 65678 35 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 
SV=3 

129 62568 6 

P02538 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 
SV=3 

155 60293 12 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 
SV=5 

341 60315 14 

P48668 Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 
SV=3 

137 60273 5 

Q7RTS7 Keratin, type II cytoskeletal 74 OS=Homo sapiens GN=KRT74 PE=1 
SV=2 

66 58229 7 

P02788 Lactotransferrin OS=Homo sapiens GN=LTF PE=1 SV=6 92 80014 3 

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 78 10536 3 

P05154 Plasma serine protease inhibitor OS=Homo sapiens GN=SERPINA5 
PE=1 SV=3 

53 45760 1 

Q9HD89 Resistin OS=Homo sapiens GN=RETN PE=2 SV=1 47 12096 1 

P04279 Semenogelin-1 OS=Homo sapiens GN=SEMG1 PE=1 SV=2 74 52157 2 

Q15678 Tyrosine-protein phosphatase non-receptor type 14 OS=Homo sapiens 
GN=PTPN14 PE=1 SV=2 

40 136031 1 

P07911 Uromodulin OS=Homo sapiens GN=UMOD PE=1 SV=1 992 72451 40 

 

Supplementary Table A.5: Proteins identified in rabbit IgG IAC (negative control). Uniprot 

accession, protein description, score, molecular weight (in Dalton) and number of protein 

matches are indicated in the table. 

Accession Description Score  Mol Wt. prot_matches 

P04745 Alpha-amylase 1 OS=Homo sapiens GN=AMY1A PE=1 SV=2 78 58415 1 

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 84 21547 3 

P31944 Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2 117 27947 3 

P01040 Cystatin-A OS=Homo sapiens GN=CSTA PE=1 SV=1 132 11000 3 

P01036 Cystatin-S OS=Homo sapiens GN=CST4 PE=1 SV=3 44 16489 1 

P01037 Cystatin-SN OS=Homo sapiens GN=CST1 PE=1 SV=3 44 16605 1 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 146 11391 4 

Q08554 Desmocollin-1 OS=Homo sapiens GN=DSC1 PE=1 SV=2 68 101406 1 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 146 114702 4 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 128 334021 3 

P14625 Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 61 92696 1 

Q01469 Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 
PE=1 SV=3 

40 15497 1 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 84 249296 1 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 150 283140 4 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 41 38486 1 
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Q15323 Keratin, type I cuticular Ha1 OS=Homo sapiens GN=KRT31 PE=2 
SV=3 

307 48633 9 

Q14525 Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B 
PE=2 SV=3 

214 47325 7 

O76011 Keratin, type I cuticular Ha4 OS=Homo sapiens GN=KRT34 PE=2 
SV=2 

187 50818 6 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 

826 59020 17 

P13646 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 
SV=4 

323 49900 10 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 
SV=4 

585 51872 14 

P19012 Keratin, type I cytoskeletal 15 OS=Homo sapiens GN=KRT15 PE=1 
SV=3 

268 49409 8 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 
SV=4 

544 51578 14 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 
SV=2 

375 48361 9 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 
SV=4 

149 44079 4 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 
SV=3 

713 62255 17 

P78386 Keratin, type II cuticular Hb5 OS=Homo sapiens GN=KRT85 PE=1 
SV=1 

237 57306 9 

O43790 Keratin, type II cuticular Hb6 OS=Homo sapiens GN=KRT86 PE=1 
SV=1 

375 55120 14 

P04264 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 
SV=6 

1151 66170 30 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 

1033 65678 27 

Q01546 Keratin, type II cytoskeletal 2 oral OS=Homo sapiens GN=KRT76 
PE=1 SV=2 

163 66370 6 

P12035 Keratin, type II cytoskeletal 3 OS=Homo sapiens GN=KRT3 PE=1 
SV=3 

185 64549 5 

P19013 Keratin, type II cytoskeletal 4 OS=Homo sapiens GN=KRT4 PE=1 
SV=4 

136 57649 5 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 
SV=3 

612 62568 18 

P02538 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 
SV=3 

715 60293 20 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 
SV=5 

647 60315 19 

P48668 Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 
SV=3 

643 60273 18 

Q14CN4 Keratin, type II cytoskeletal 72 OS=Homo sapiens GN=KRT72 PE=1 
SV=2 

127 56470 4 

Q86Y46 Keratin, type II cytoskeletal 73 OS=Homo sapiens GN=KRT73 PE=1 
SV=1 

131 59457 5 

O95678 Keratin, type II cytoskeletal 75 OS=Homo sapiens GN=KRT75 PE=1 
SV=2 

236 59809 8 

A6NCN2 Keratin-81-like protein OS=Homo sapiens PE=2 SV=3 321 54972 12 

Q52LG2 Keratin-associated protein 13-2 OS=Homo sapiens GN=KRTAP13-2 
PE=1 SV=1 

47 19912 1 

P07195 L-lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB PE=1 
SV=2 

66 36900 1 

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 46 10536 1 

P12273 Prolactin-inducible protein OS=Homo sapiens GN=PIP PE=1 SV=1 43 16847 1 

P31151 Protein S100-A7 OS=Homo sapiens GN=S100A7 PE=1 SV=4 45 11578 1 

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 115 10885 3 

P06702 Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 108 13291 2 

P14618 Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM2 
PE=1 SV=4 

113 58470 1 

Q96P63 Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1 SV=1 46 46646 1 

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 42 44594 1 

P02768 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 71 71317 2 
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Q9H2G4 Testis-specific Y-encoded-like protein 2 OS=Homo sapiens 
GN=TSPYL2 PE=1 SV=1 

43 79615 1 

P10599 Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 66 12015 1 

Q9BQE3 Tubulin alpha-1C chain OS=Homo sapiens GN=TUBA1C PE=1 SV=1 51 50548 1 

P62979 Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens 
GN=RPS27A PE=1 SV=2 

71 18296 1 
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