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ABSTRACT 

 
Initial investigation into diagnostic breath ammonia monitoring, and the current status of 

technology, indicated that breath analysis would have great potential as a non-invasive 

means of diagnosis. The ideal breath ammonia monitoring device would be one that is 

sensitive to the specific gas and capable of detecting it at the physiologically relevant 

concentrations in the ppb range with (1) good precision and accuracy, (2) insensitivity to 

interferences, (3) is ideally portable for point-of-care use, (4) provides ease-of-use to the 

user, (5) displays real-time measurements, and (6) is of low cost. To begin assessment, the 

normal range of human breath ammonia was defined via photoacoustic laser spectroscopy 

(PALS) which identified baseline concentrations to be from 29 to 688 ppb. Following this, 

a system was developed to simulate breath interferents such as humidity and temperature 

over a human range encompassing normal and abnormal breath ammonia concentrations 

(18 to 2,993 ppb). This instrumentation assisted in evaluating the performance of an 

ammonia sensitive electrode based on print-fabrication technology and polyaniline 

nanoparticles. The electrodes displayed an intra-variability from 0.05 to 1.67%, and 

generated a 0.99 correlation across a range of 40 to 2,175 ppbv ammonia (LOD=6.3 ppbv) 

fulfilling the analytical and biomedical requirements necessary for sensing ammonia in 

exhaled breath. Having optimised the ammonia sensor, a breath sampling system (AmBeR) 

was engineered and optimised which was capable of performing measurement of breath 

ammonia at the point-of-care. Observations of breath from a healthy population 

demonstrated a 0.97 correlation between AmBeR and PALS. Clinical evaluation followed 

in a haemodialysis patient cohort. While the clinical results did not show strong population 

correlations with measures of blood nitrogen (r=0.64 BUN, r=0.62 creatinine, p<0.01), it 

did show strong significant intra-individual correlations (range 0.86 - 0.96 with BUN, 0.78 

- 0.97 with creatinine) which may indicate potential for clinical application. 
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CHAPTER 1 

I	TRODUCTIO	 TO BREATH AMMO	IA A	ALYSIS: 

CLI	ICAL APPLICATIO	 A	D MEASUREME	T 
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1.1 Current status of clinical breath analysis 

 
The diagnostic potential of clinical breath analysis has been recognised for centuries. It is 

said that the original research can be found within the writings of Hippocrates [1]. 

However, the dynamics of oxygen inhalation and absorption via the lungs followed by 

exhalation of carbon dioxide were not pieced together until 1784 when Lavoisier examined 

respiration via calorimetry [2]. By the 1950s, separation of individual gas molecules 

became possible with gas chromatography [3]. Since then, more and more compounds 

found in human breath have been linked to physiological conditions. For example, acetone 

has been linked to diabetes, whereas ammonia is indicative of liver and/or kidney 

dysfunction. Human breath is a highly complex substance with numerous variables that can 

interfere with one another. Each human breath contains over 1,000 trace volatile 

compounds (VCs) [4]. On average, exhaled human breath is a mixture of 78.6% (w/v) 

nitrogen, 16% (w/v) oxygen, 4.5% (w/v) carbon dioxide, and 0.9% (w/v) inert gases and 

VCs [5]. This mixture is exhaled at temperatures between 34oC [6] and 37oC [7] while 

relative humidity may range from 91% to 96% in oral exhalations, and from 82% to 85% in 

nasal exhalations [8]. Human breath cannot have a relative humidity above 99% since 

100% implies that the water has gone from the vapour to the condensed phase [9]. 

Additional respiratory variables such as flow rate and lung volume must also be considered 

when making measurements of trace gases in breath, and these can vary according to an 

individual’s height, weight, age, and body surface area [10]. Essentially, larger volumes 

have the potential for a greater mass of gas. Flow rates are required in order to calculate the 

concentration of gas present. Several parameters are important for exhaled flow rate and 

volume analysis:  

 
• Forced vital capacity is a volume measurement where the full volume of inhaled 

air is added to the full volume of forced exhaled breath [5].  

• Minute volume (or maximum voluntary ventilation - MVV) is a volume-to-rate 

measurement of the litres of breath exhaled over a period of one minute [5].  

• Peak expiratory flow is a rate measurement performed by calculating how fast the 

breath volume can be forced out of the lungs [5].  
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Table 1.1 Concentrations of Gases in Human 

Breath 

 Calculations and values can be found in any number of spirometry related articles such as 

those published by the American Thoracic Society [21], Bass [22], Tomlinson [23], and 

Quanjer [24]. Within the 0.9% (w/v) of breath which constitutes inert gases and VCs, the 

individual gas concentrations can range between parts-per-million (ppm) and parts-per-

trillion (ppt). Some of the gases that 

have been detected so far down to 

parts-per-billion (ppb) levels are 

shown in Table 1.1. Of these gases, 

ammonia has attracted increasing 

interest for clinical diagnostics such 

as in haemodialysis monitoring [16], 

asthma assessment [25], diagnosis 

of hepatic encephalopathy [26], 

detection of Helicobacter pylori 

[27], and analysis of halitosis [28]. 

The physiological range expected 

for human breath ammonia is in the 

region of 50 to 2,000 ppb [27]. To 

be effective, analytical techniques 

for breath ammonia quantification 

must be capable of a limit of 

detection of some 50 ppb. While there are several analytical technologies capable of this, 

they also possess many limitations for application in clinical settings. While it is true that 

these techniques are moving from invasive to non-invasive, most detection methods are still 

extremely complex instrumental systems and require special training to use. Aside from 

breath analysis, other non-invasive techniques based on the analysis of urine, saliva, hair, 

and nails may also offer potential solutions [1]. With regard to breath analysis, however, 

development of breath monitors that are simple and portable for point-of-care use is a 

critical next step. Furthermore, the possibility of performing real-time analysis of breath has 

recently become a reality. Originally, breath analysis depended on collection of exhaled 

breath condensate (EBC) which was placed within the detection region of a device [14]. 

However, by collecting breath samples into containers such as balloons, samples undergo 

Breath gas 

Concentration  

range (ppb) Reference 

Acetaldehyde 2 - 5 [11] 

  6 - 33 [12] 

Acetone 293 - 870 [11] 

  200 - 2,000 [12] 

Ammonia 50 - 2,000 [13] 

  559 - 639 [14] 

  425 - 1,800 [15] 

  422 - 2,389 [11] 

  200 - 2,000 [12] 

(Pre-dialysis) 1,500 - 2,000 [16] 

(Post-dialysis) 200 - 300 [16] 

Carbon dioxide 30 - 40,000,000 [17, 18] 

Ethanol 27 - 153 [11] 

  100 - 3,358 [12] 

Hydrogen cyanide 2 - 12 [12] 

Isoprene 55 - 121 [11] 

Methanol 32 – 1,684 [19] 

Nitric oxide 6 - 31 [6, 20] 

Propanol 0 - 135 [19] 
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significant losses and contamination [29]. Typically, collection of EBC is only 

recommended if pH analysis of breath compounds is necessary [30].  

1.2 Ammonia metabolism and the urea cycle 

When food is ingested, a fine balance of nutritional absorption and toxin removal takes 

place. The body must be specific about how amino acids are processed, or nitrogenous 

compound concentrations could prove fatal. Initially, the stomach and intestines break 

down food into amino acids, nucleotide bases, and other nitrogenous compounds which 

diffuse into the blood [31]. These excess nitrogenous compounds are then absorbed from 

the blood into the liver. The liver converts them into less toxic soluble forms which can be 

safely removed in relatively low volumes of water. In mammals, this less toxic form is 

urea. The urea cycle, as it applies to humans, is the pathway upon which amino acids are 

effectively broken down (Fig. 1.1).  
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Figure 1.1 The urea cycle. Taking place in the liver (yellow box), the urea cycle breaks 

down nitrogenous compounds such as ammonia into the less toxic form of urea. The 

processes of transamination and oxidative deamination also allow for the conversion 

of aspartate into free ammonia [32]. 

Ammonia is first absorbed into the liver and combined with carbon dioxide to form 

carbamoyl phosphate. This enters the urea cycle and combines with ornithine to form 

citrulline. Amino acids are fed into the cycle via their transamination by aspartate which 

combines with citrulline to form argininosuccinate [33]. Aspartate also acts to drive the 

availability of free ammonia which is used in the initial steps with carbon dioxide [32]. 
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Argininosuccinate is then split into fumarate (which is fed into the citric acid cycle) and 

arginine. Arginine then reacts with arginase and water to produce urea and regenerated 

ornithine [31]. As the liver finishes processing, the urea is excreted into the bloodstream 

among excess ammonia and is absorbed by the kidneys via the glomerulus. The typical 

glomerular filtration rate (GFR) is about 0.125 L/min creating 1 to 2 Litres of urine a day 

[32], while excess water is recycled back into the body. However, this rate decreases if the 

concentration of materials is high enough to impede absorption. Kidneys serve the purpose 

of filtering the blood urea and excess ammonia out of the body in the form of urine [33]. 

Normal concentrations of ammonia in blood range between 120 ppb (12 µg/dl) and 660 ppb 

(66 µg/dl) [34]. However, if the liver loses the ability to enzymatically break down 

nitrogenous compounds, or the kidneys can no longer remove them from the blood, then 

complications such as hyperammonaemia [31], hepatic encephalopathy [35], and / or 

uraemia [32] can arise. In order to monitor these levels, current methods depend on 

invasively measuring the nitrogen concentration found within the urea in the blood (i.e. 

blood urea nitrogen, BUN) [16]. 

1.3 Current and potential clinical applications for breath ammonia monitoring  

Clinically, several conditions are related to changes of blood nitrogen levels and 

consequently ammonia levels. These are impairments in relation to the liver, brain, kidneys, 

stomach, duodenum, oral cavity, and lungs. In all cases, if ammonia levels in the blood are 

of a higher concentration than those found in the air, then ammonia can diffuse out of the 

blood and into the lungs [36]. Doing so allows for potential clinical measurements of blood 

ammonia from a non-invasive perspective.  

1.3.1 Hepatic encephalopathy 

With reference to the organs involved in nitrogen metabolism, the liver and kidneys are 

central to the proper removal of ammonia from the body. If there is a problem associated 

with either of these, ammonia levels in the blood may escalate to toxic levels. With liver 

dysfunction, the result is hyperammonaemia (i.e. increased ammonia in blood) which has 

further consequences including damage to brain tissue (i.e. hepatic encephalopathy) [31]. 

Studies have shown a 0.61 correlation between arterial ammonia levels and severity of 

hepatic encephalopathy [37]. Normally, the brain is protected by a blood-brain barrier that 

prevents toxins from entering. However, if there is an obstruction in the synthesis of the 
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urea cycle, components are created that can modify the permeability of the blood-brain 

barrier. An example of a compound that can do this is glutamine. During the transamination 

process of the urea cycle, glutamate is capable of joining with excess ammonia via 

glutamine synthetase to create glutamine. Glutamine in elevated levels is then able to 

change the osmotic tendencies around brain tissue resulting in swelling of the brain [31]. 

This swelling is due to higher concentrations of toxins outside the barrier flowing into the 

lower concentrated area of the brain. Included in this flow would be ammonia if levels in 

the blood were high. By entering the brain, ammonia is capable of modifying the gene 

expression and signal transmission of astrocytes and neurons. Such modifications primarily 

induce type 2 Alzheimer’s disease. Though glutamine production can cause damage to the 

brain, its production may also be able to prevent cell damage. Astrocytes can generate 

glutamine synthetase which catalyses the reaction of ammonia with glutamate so as to 

reduce the ammonia levels. However, this would not reduce the swelling nor assist much 

with the already effected neurons [35]. Methods for analysis involve taking blood 

measurements for ammonia levels and correlating the data against known neuropsychiatric 

standards such as the Trail Making Test (TMT) [38], the West Haven Criteria (WHC), and 

the Glasgow Coma Scale (GCS) [26]. The potential for measuring breath ammonia could 

replace the need for such invasive methods. 

1.3.2 Haemodialysis 

Assuming the liver is functioning properly, kidney failure can also result in harmful 

conditions such as uraemia (i.e. increased urea in the blood) [39], acidosis (i.e. elevated H+ 

levels), and edema (i.e. extreme water retention) [32]. Furthermore, hormones become 

imbalanced, bones lose strength, blood pressure increases, and fewer red blood cells are 

produced [40]. In the case where the filtration rate from the blood into the renal tubules is 

hindered or blocked, solutes that are normally filtered out of the body begin to build up in 

the blood. Urea reaches toxic levels and hydrogen compounds turn the blood acidic. This 

increase in solute concentration forces the body to retain as much water as possible to 

maintain equilibrium [32]. In time, the same consequences arise that result from liver 

dysfunction. Currently, the primary method for assisting renal failure is haemodialysis (Fig. 

1.2). This begins by removing aliquots of blood from the body which then go through a 

dialyser to filter the toxins. Dialysers are re-usable pieces of equipment that must be 

sterilised between uses. Within the dialyser, the blood is filtered by way of thousands of 
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small fibre membranes. Blood passes through the fibres leaving the toxins trapped behind 

[40]. The rate at which toxins are removed from the blood is dependent upon blood flow 

rate due to solute concentrations, mass, and the area of diffusion [41]. To determine the 

individual filtration requirements, toxins are isolated according to Fick’s Law:  

   J = - DA (dc/dx) = - DA (∆c/∆x)              (1) 

where the flux of toxins J flowing over a distance of dx is proportional to the difference in 

concentration dc and the area of diffusion A. Diffusivity D is a constant value with units of 

cm2/sec that results from balancing the rest of the equation at a given temperature [41]. 

Once the toxins are isolated by diffusion, a cleaning solution known as dialysate flushes the 

waste material away from the dialyser fibres [40]. Dialysate is a solution made specific to 

individual needs, and hence the concentrations of solute vary. However, the general 

composition consists of sodium, potassium, calcium, magnesium, chloride, acetate, 

bicarbonate, and glucose [42]. Once the waste material is removed, the dialyser returns the 

clean blood to the body [40]. 

 

Figure 1.2 Haemodialysis. 	itrogenous waste products of the blood are diffusing 

across the dialysis membrane and into the dialyser.  From there, the dialysis fluid 

carries the waste away allowing filtered blood to return to the body [40]. 

This is a time- consuming technique that requires most patients to visit a clinic about three 

times a week for six or more hours at a time [39]. While a patient is undergoing 

haemodialysis, a calculation is performed that shows how well urea is being filtered from 

the body. This is known as the urea reduction ratio (URR): 
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URR = ((BUN before treatment – BUN after treatment) / BUN before treatment) X 100% 

                     (2) 

A URR of at least 65% is necessary for effective haemodialysis [16]. By focusing on blood 

urea nitrogen (BUN) and creatinine levels, a standard of excess nitrogen in the blood can be 

compared. Literature has shown a potential 0.95 correlation between breath ammonia and 

BUN, and 0.83 between breath ammonia and creatinine [16] suggesting that breath 

ammonia analysis has the potential to be an effective surrogate for BUN for monitoring 

haemodialysis efficacy. 

1.3.3 Peptic ulcers 

Aside from liver and kidney dysfunction, ammonia concentrations in breath can also be 

used to diagnose peptic ulcers affecting either the stomach or duodenum. The causal link 

between these ulcers and breath ammonia is a bacterium known as Helicobacter pylori. 

Currently, about 40% of adults are infected with H. pylori [43]. It is assumed that the 

infection is contracted through food or water, but the origin is still unclear. Stomach acids 

have little effect on the bacteria since H. pylori secrete urease enzymes that neutralise acids 

and weaken the surrounding tissue. By weakening the lining of the stomach and/or 

duodenum, H. pylori allows biological acids to deteriorate the tissue and form ulcers [44]. 

The current method of diagnosis is the urea breath test (UBT) which involves measuring 

the urease activity of the organism via the ingestion of 13C or 14C labelled urea [45]. If 

H.pylori is present in the stomach, the high levels of urease excreted by H. pylori are 

detected by monitoring the breakdown of the labelled urea into radioactive carbon dioxide 

and ammonia as follows [46]: 

   (NH2)2CO +  H2O      CO2 + 2NH3                 (3) 

The compounds then pass through the blood, diffuse into the lungs, and can be measured in 

the breath which is detected using a scintillation counter [47]. Since initial ammonia 

baseline levels can vary from individual to individual, the rate of ammonia increase upon 

urea absorption is monitored. It has been shown graphically that the ammonia concentration 

of H. pylori negative individuals increases by approximately 0.12 ppm while H. pylori 

positive individuals increases by approximately 0.40 ppm over the same time range [27]. 

Ammonia breath monitoring has the potential to play a role in measuring urease breakdown 
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without the need for radioactive labels if the low detection limits of breath ammonia 

generated can be reached. 

1.3.4 Halitosis 

H. pylori is a urease positive bacteria which is specific to the stomach and duodenum. 

However, there are bacteria which can generate ammonia in the oral cavity. In the mouth, 

anaerobic bacteria metabolise food debris and create numerous byproducts which are the 

cause of the smells associated with halitosis [28]. About 90% of breath odour originates 

from the oral cavity as a result of orolaryngeal and/or gastrointestinal disorders [48]. 

Studies show that halitosis is primarily due to volatile sulphur compounds (VSC) in the oral 

cavity causing tissue damage and malodour. VSCs can be measured using a gas 

chromatograph in conjunction with a flame photometric detector system. Of the VSCs that 

develop, methyl mercaptan has been shown to have a correlation with ammonia [28]. 

Furthermore, the relationship between VSCs and ammonia has been shown to have a 0.39 

correlation [49]. Normal concentrations of oral ammonia are usually too low to measure. 

However, as methyl mercaptan levels change, ammonia levels show a proportional change. 

Furthermore, an increase in the bacterial load of the oral region correlates with increase in 

ammonia. Hence, by measuring the ammonia concentration from the bacteria that grow 

within the tongue coating and dental plague, and relating it to the methyl mercaptan levels 

associated with VSC measurements, ammonia in the oral cavity has the potential for 

assessing halitosis and oral hygiene [28].  

1.3.5 Pulmonary dysfunction 

Lung dysfunction or impairment such as asthma also has potential links with breath 

ammonia. It has been shown that individuals with asthma have lower levels of ammonia in 

their breath than healthy individuals. It is speculated that concentrations of ammonia 

produced by glutaminase may be directly affected by the levels of corticosteroids and 

cytokines produced by asthma patients. The methods used for analysis rely on collecting 

exhaled breath condensate in a lamellar condenser followed by measurement with a solid 

state ion selective electrode [50]. However, examining breath in gaseous form may simplify 

this technique. 
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1.4 Techniques for quantifying ammonia gas in breath 

When it comes to quantifying ammonia gas, being able to isolate them from complex 

gaseous mixtures is important. Since the 1950’s, techniques such as chemical ionisation, 

gas chromatography, laser spectroscopy, and chemical detection have emerged as the key 

methods. Their sensitivity, precision and accuracy have proven suitable for selectively 

detecting and identifying low molecular weight species in gaseous form. Furthermore, 

combining these methods with each other in various ways (e.g. with mass spectrometry) 

shows potential for strengthening their detection capabilities. The techniques that follow 

and their detection limits for ammonia are summarised in Table 1.2. 

1.4.1 Techniques based on chemical ionisation 

Chemical ionisation uses the charge of a molecule to control how it reacts with other 

molecules. Under various pressures, the molecular reaction rate can also be controlled [51]. 

By combining atmospheric pressure chemical ionisation with mass spectrometry (APCI-

MS), a spectral image displaying the mass-to-charge ratio can be obtained. APCI-MS was 

first developed as a method for analyzing trace gases in breath. However, due to 

interference problems with breath ammonia, an improvement was devised using protonated 

water clusters formed from ion-molecule reactions (Fig. 1.3) [8]. It was later confirmed that 

the proton transfer reactions of APCI were capable of increasing the sensitivity of the 

detection of compounds by several orders of magnitude [52]. Furthermore, data indicated 

that higher humidity levels decreased fragmentation of ionization gases and, therefore, 

increased overall sensitivity. Since normal human breath has an average relative humidity 

of around 84% from the nose, and 94% from the mouth, this is a variable that must be 

considered [8]. This technique shows strong potential for analysis of ammonia in human 

breath since protonated analyte-water clusters of (H2O)n%H3
+

 have shown stability with 

other techniques [53]. 
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Figure 1.3 Atmospheric Pressure Chemical Ionisation–Mass Spectroscopy (APCI-

MS). By reacting protonated water clusters H
+
(H20)n with analyte T, a proton-

transfer reaction takes place forming protonated analyte-water clusters TH
+
(H20)n of 

varying sizes. From here, unreacted nitrogen 	2 molecules are forced to collide with 

the weakly bound water molecules of the cluster, thereby separating the water 

molecules (H20)n from the cluster and leaving only the protonated analyte TH
+
. The 

structure of the analyte is then analysed by mass spectrometry [54]. 

 

Two chemical ionisation techniques that are capable of ammonia detection are proton 

transfer reaction – mass spectrometry (PTR-MS) and selected ion flow tube – mass 

spectrometry (SIFT-MS). PTR-MS (Fig. 1.4) has been used mostly for air analysis and 

environmental studies where atmospheric ammonia gas can be detected between 90 and 

270 ppt [55]. However, PTR-MS has shown potential for analysing VCs from exhaled 

breath as well [56]. Primarily, the precursor ion H3O
+ is used to initiate proton transfer with 

trace gases (T) such as VCs, because H3O
+ will react with most VCs found in air. The 

majority of VCs have a proton affinity higher than that of water, and will therefore transfer 

protons with almost every interaction [56]. Furthermore, only one ion species (TH
+) will 

emerge from each collision along with the dissociation of water [57]. Using a flow-drift 

tube to control ion movement prevents cluster ions from forming which, in return, results in  
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Figure 1.4 Proton Transfer Reaction – Mass Spectrometry (PTR-MS). The initial 

section known as the “ion production section” collides electrons with carrier gas 

molecules so as to assert an ionic charge upon them.  This ionised carrier gas, known 

as the precursor ion H3O
+
, reacts with trace gases which are added downstream.  

These reactants are carried to the “ion separation section” by gas flow, typically in the 

form of a buffer gas such as helium, to maintain a neutral atmosphere within the tube.  

Since the “ion shutter” only interacts with one ion charge at a time, specificity is high.  

Depending on what factors are being examined in the “drift-reaction section”, the 

shutter can be set to open at pulse intervals or simply remain open continuously.  If 

set to pulse, then drift velocities can be analysed.  In continuous flow, the reaction 

rates can be focused on [58]. 

 

a clear spectrum for analysis [12]. Cluster ions do not form since the ion separation section 

uses an electric field to send negative and positive ions in different directions [58]. 

However, the disadvantage of using an electric field is that ionic-molecular reaction times 

are unpredictable. PTR-MS has the advantage of being able to select for specific molecules 

via precursor ions. However, there is still a problem with separating compounds of similar 

pressure, mass, or density due to the use of H3O
+ precursor ions alone [12]. With SIFT-MS, 

the initial concept was used to investigate the kinetic behaviour of gas phase ion-neutral 

reactions. Since then, thousands of gas reactions ranging from environmental to clinical 

have been studied using the SIFT-MS technique. It can be seen from Fig. 1.5 that SIFT-MS 

is similar to PTR-MS in that it uses helium as the buffer gas at a given flow rate in the flow 

tube. However, unlike PTR-MS, three precursor ions (H3O
+, %O+ and O2

+) are available 

allowing for additional proton transfer reactions [59]. Having more precursor ions allows 

for multiple ion spectra and greater quantification in mixed samples [60]. 
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Figure 1.5 Selected Ion Flow Tube – Mass Spectrometry (SIFT-MS). The ions are 

introduced into the helium flow from an ion source at the beginning of the tube. Upon 

which, a gas sample (e.g. breath) is introduced directly and reactions take place. 

Adding breath samples to the system directly reduces the uncertainties that tend to 

arise with collection methods [11]. Once the protonated analyte flows to the end of the 

tube, the ions are selected by a sampling orifice and directed into the mass 

spectrometer for analysis [61].  

 

With SIFT-MS, analysis of breath VCs (including ammonia) is achieved in about 10 ms 

with a sensitivity as low as 10 ppb [15]. Furthermore, water vapour and metabolite 

condensation are prevented by heating the tubing [12]. With real-time measurements and 

high sensitivities possible for clinical measurement of human breath, the SIFT-MS is being 

modified into a more portable version known as the Profile 3. The key benefits of this 

system are that it is smaller and more sensitive than previous versions [61].  

1.4.2 Gas Chromatography 

Another technique which has been widely used in quantifying breath gases is gas 

chromatography. This has been combined with sampling methods such as solid phase micro 

extraction (SPME) to collect the breath prior to their addition to the chromatographic 

column [4]. As the breath sample flows through the column, the individual gas molecules 

separate by their affinity for either the carrier gas or the liquid coating on the column [62]. 

However, since gas chromatography is reliant on first collecting a sample, quantification is 
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not performed in real-time. Furthermore, SPME provides greater sensitivity, but 

concentration accuracy decreases due to possible loss during the collection process [12]. 

Chromatographic columns can also be damaged by moisture such as that found in humid 

breath. Hence, an additional drying method could be used to remove any water vapour that 

is present or the accuracy of readings could be effected [63]. The rate at which a species 

flows through the column is dependent upon the nature, amount, and surface area of the 

individual molecules being examined at a specific temperature [64]. In conjunction with 

gas chromatography, ion mobility spectrometry (GC-IMS) is capable of analysing the 

concentrations of ammonia found in human breath as low as 14 ppt [65]. Initially termed 

plasma chromatography (PC), the adaptation of IMS to GC first took place in the 1970s 

[53] and is capable of identifying breath gases by their mobility and drift velocity in an 

electric field at atmospheric pressure [4]. To calculate the mobility (K) of ions under the 

conditions of the electric field (E), the following equation can be used: 

     K = (Vd)(E
-1)              (4) 

where Vd is the velocity of the drift ion [53]. The difference in mobility and drift velocity 

are dependent upon the differences in the unique mass and geometry of the specific gas 

particles [12]. However, due to IMS originally being designed for detection of chemical 

warfare agents, explosives and drugs, it relies heavily on known ion-molecular reactions 

[66]. This means GC-IMS spectrometers have limited sensitivity and cannot directly 

analyse breath samples. Hence, the trace gases from breath must be separated by way of 

column chromatography before the ion mobility can be deduced in the drift tube (Fig. 1.6). 

In some cases, the use of multi-capillary columns (MCC) have been recommended over a 

single narrow column because MCCs allow for a higher flow rate and sample capacity [65]. 

Furthermore, results can be obtained from 20 ms to a few minutes depending on the number 

of spectra being studied. Using IMS spectrum peaks to identify differences between the 

breath of patients and healthy people has already been found to provide fast and accurate 

ammonia concentrations [66].  
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Figure 1.6 Gas Chromatography – Ion Mobility Spectrometry (GC-IMS). While 

separation is taking place in the capillary column, reactant ions are being produced in 

the “reaction region”. Once separation is complete, the analytes from the column are 

introduced into the reaction region where protonation takes place. The protonated 

gases then enter the electric field of the drift tube and head towards the detector at a 

constant velocity. Since there is a counter-flow of drift gas, the opposing ions collide 

with each other causing separation based on the individual charges and masses. From 

here, a spectrum based upon unique ion mobility is generated from impact intervals 

with the Faraday plate [67]. 

1.4.3 Laser Spectroscopy 

Laser spectroscopy utilises the characteristic absorption or emission of energy by matter (in 

this case gas particles) at specific wavelengths when excited by a laser energy source [68]. 

Use of laser spectroscopy has shown high selectivity, high sensitivity, and real time 

potential for clinical breath ammonia analysis [25]. Specific techniques used for ammonia 

quantification are laser induced fluorescence (LIF), cavity ring down spectroscopy (CRDS), 

tunable diode laser absorption spectroscopy (TDLAS), photoacoustic spectroscopy (PAS), 

and optical frequency comb cavity – enhanced absorption spectroscopy (OFC-CEAS). With 

LIF, detection of breath molecules as low as 10 ppt has been demonstrated with gases such 

as nitric oxide [69]. Recently, however, LIF has shown the capability for making qualitative 

measurements of ammonia [70]. Ammonia detection is currently qualitative because of the 

typical problem of collisional quenching which results in no radiation from the fluorescing 

state during transition [71]. Using fluorescence techniques, ammonia molecules were 

originally detected at an excited state between 220 and 115 nm by way of a Nd:YAG-based 

dye laser source [70]. However, it has since been discovered that ammonia has multiple 
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excitation states and investigation is underway to define these. Using the LIF technique of 

double-photon excitation, it is possible to excite ammonia molecules between the regions of 

300 and 310 nm. Doing so enables ammonia gas to fluoresce at wavelengths as high as 565 

nm (Fig. 1.7). Furthermore, LIF provides the advantage of being able to detect more than 

one species of gas at a time using a single laser emission. This would enable multiple gases 

to be measured simultaneously [70]. LIF is also considered to be a “background-free” 

technique implying that spectral images are not impeded by overwhelming emission light 

[71]. 

 

Figure 1.7 Laser Induced Fluorescence (LIF). Initially, the laser interacts with the gas 

molecules (e.g. ammonia) at a specific wavelength. The molecules increase in energy 

from their original ground state to an excited level. To get back to the ground state, 

the molecules release the energy (de-excitation). This energy is radiated in the form of 

fluorescence which is detected and analysed by spectroscopy [70]. 

In CRDS, the molecules in breath are quantified according to the absorption rate of pulsed 

light within an optical cavity (Fig. 1.8) [72]. The rate of absorption is directly related to the 

amount of time required for light to leave the cavity. It is expected that the decay rate will 

be shorter if the absorption is larger [71]. This information can then be used to calculate the 

decay rate. The decay rate indicates the amount of photons lost, which in turn, defines the 

species of gases in the cavity [73]. 
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Figure 1.8 Cavity Ring Down Spectroscopy (CRDS). The collected breath sample is 

first placed into the cavity between two mirrors. Once the sample has been added, a 

single laser pulse is transmitted into the cavity at which point it bounces back and 

forth between the two mirrors. With each reflected hit, a fraction of the laser leaks out 

of the cavity and is detected by a photodetector [73]. 

The following equation shows how the decay rate (τ -1) decreases according to the rate at 

which the breath sample absorbs light:  

    τ -1 = (c (1 – R) / d) + cα              (5)(5)(5)(5) 

where c is the speed of light, d is the length of the cavity, R is the reflectivity of the mirrors, 

and α is the absorption coefficient of the medium between the mirrors [73]. With CRDS, 

breath ammonia can be detected as low as 25 ppb over a period of 20 seconds. Using a mid-

IR Quantum Cascade laser at 967.35 cm-1, ammonia coincides with its strongest spectral 

region [74]. This method is highly sensitive, but due to the noisy transmitted intensity 

required from the laser, the accuracy is limited [75]. In the case of TDLAS (Fig. 1.9), its 

typical use has been to provide high-resolution spectra for gases from industrial pollution. 

However, due to its ability to detect various trace gases at low levels with little interference, 

it has also shown potential for clinical breath analysis [76]. TDLAS is capable of detecting 

breath ammonia at concentrations as low as 1 ppm in approximately 10 s [77]. However, 

breath samples must be pre-collected using such techniques as exhaling into a container 

[78] which, in turn, removes the possibility for real-time analysis. 
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Figure 1.9 Tunable Diode Laser Absorption Spectroscopy (TDLAS). The process 

begins with an infrared laser being introduced to the first lens. The lens divides the 

laser light into two beams. One beam is sent through a reference cell that contains the 

gas species that is being searched for in the breath sample. By doing this, an 

absorbance reference is provided to detector one for analysis comparison. The second 

beam is focused into and out of a monochromator by two mirrors. Monochromators 

serve the purpose of characterizing spectrums and wavelength calibrations. This is the 

half point of the laser beams full distance. Beyond the monochromator, the laser 

passes through the breath sampling chamber and intersects with detector two. Using 

the reference of beam one, beam two is then able to lock on to specific sample gases 

according to their unique absorbances [77]. 

The TDLAS gas measurement is based on the Beer-Lambert relationship using an infrared 

laser to measure the transmitted intensity, Iv: 

    Iv = Iv,0 exp[- S(T)g(V-Vo)%L]             (6)  

where Iv,0 is the initial laser intensity, S(T) is the temperature-dependent absorption line 

strength, g(V-Vo) is the frequency dependence of the line strength, % is the target gas 

number density, and L is the optical path length through the gas [79]. PALS (Fig. 1.10) 

differs from other laser-based techniques in that it uses acoustics to measure gas 

concentrations. After a CO2 laser excites a molecule in the photoacoustic chamber, the light 

energy converts to heat [16]. As the molecule de-excites, the vibrational energy is emitted 

and the pressure is monitored by a microphone [25]. This photoacoustic measurement (P) 

can be calculated as follows: 

        P = Poe 
-σ%l   (Po-P) ≈ Poσ%l           (7) 
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where (Po-P) is the absorbed laser intensity which is converted to acoustic energy, σ is the 

area of absorption per molecule, % is the number of absorbing molecules, and l is the 

absorption path length [80]. In the case of breath ammonia, the gas molecules can be 

detected at a wavelength of 1,531.68 nm [81]. PALS is capable of detecting breath 

ammonia at concentrations as low as 10 ppb in approximately 13 s [82]. This technique has 

high sensitivity, but requires a strong power source such as a CO2 laser to accommodate the 

detection requirements [81].  

 
 
Figure 1.10 Photoacoustic Laser Spectroscopy (PALS). The laser enters the chamber 

filled with ammonia gas and excites the molecules. Upon de-excitation, the energy 

released is picked up by the microphone and relayed to the spectroscopic analysis 

system [25]. 

 

OFC-CEAS is a technique capable of monitoring numerous molecules at the same time. To 

do this, a mode-locked fibre laser adjusted to a wide spectrum interacts with the breath 

compounds contained in an enhancement cavity [83]. Doing so allows for an increase in 

detection sensitivity and molecular absorption of light energy [84]. The light reflects in the 

chamber with a large number of round trips so as to ensure the molecules are enhanced to 

levels providing high peak intensities [25]. This makes characterization by way of the 

virtually imaged phase array (VIPA) spectrometer clear enough for a camera (InGaAs) to 

record the spectra (Fig. 1.11) [83]. Breath ammonia concentrations have been detected by 

OFC-CEAS as low as 4.4 ppm. Using the mode-locked fibre laser, ammonia is detected 



 

 20 

between the wavelengths of 1.5 to 1.55µm. However, this range overlaps with that of water 

making the specificity of the spectra difficult [84]. 

 

Figure 1.11  Optical Frequency Comb - Cavity Enhanced Absorption Spectroscopy 

(OFC-CEAS). A laser source excites the ammonia molecules to high peak levels so as 

to ensure that a clear spectra can be seen within the VIPA spectrometer [84]. 

1.4.4 Chemical Sensors 

Since the 1980s, chemical sensors have evolved from being monitors in the food industry to 

analysers of breath gases [4]. Among these, the electronic nose has been given primary 

recognition for clinical breath monitoring research. Electronic noses focus on the variations 

in surface conductivity when a material is introduced to different gas compounds. Since 

these devices have to be “trained” to recognize a range of specific odours, they are more 

qualitative than quantitative. Hence, current devices would have difficulty with analyzing 

concentrations of complex mixtures such as moist human breath [12]. Some chemical 

sensors that are in development for potential breath ammonia monitoring are the quartz 

crystal microbalance (QCM) and the liquid-film conductivity sensor. In a comparison with 

photoacoustic techniques, studies have shown that QCM (Fig. 1.12) with a zirconium 

phosphate coating is capable of measuring breath ammonia concentrations as low as 0.1 to 

10 ppm with an accuracy of +/- 0.1 ppm [82]. 
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Figure 1.12 Quartz Crystal Microbalance (QCM). A gold electrode is attached to a 

quartz crystal. The quartz is coated with a chemical that is made sensitive to analytes 

flowing through the system. When an analyte appears, it is bound to the quartz by 

way of the chemical coating. Furthermore, the gold electrode gives off a current that 

causes the quartz to fluctuate at specific frequencies. Changes in frequency are 

proportional to the mass of the deposited analyte providing distinction between gases 

[85]. 

Assuming that the film coating on the quartz crystal is homogeneous, the change in 

frequency (∆f ) can be calculated as follows: 

    ∆f = (-2.3 x 106 )(f 2
o)(∆Ms/A)             (8) 

where f 2
o is the frequency of quartz crystal, ∆Ms is the mass of the analyte being bound, 

and A is the area being coated [85]. However, build up of condensed water vapour in the 

sampling tube from exhaled breath may absorb some of the ammonia. This could reduce 

the accuracy of the actual ammonia be collected [82]. Similarly, the liquid-film 

conductivity sensor (Fig. 1.13) has proven to be capable of measuring breath gas responses 

of ammonia as low as 18 ppb [86]. Using a film consisting of dilute sulphuric acid, a 

conductimetric measurement is monitored as breath ammonia is titrated into the liquid. As 

ammonia is absorbed, the conductivity decreases proportionally. Hence, the rate of decrease 

is directly related to ammonia concentration.  
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Figure 1.13 Liquid-Film Conductivity Sensor. The device consists of an internal and 

external steel tube that sandwich a polytetrafluoroethylene (PTFE) membrane 

between them. At the location of film excretion, an acidic film consisting of H2SO4 is 

created. The external area of the tube is coated with a hydrophilic solution in order to 

prevent the film from spilling over the sides [86]. Figure reproduced from reference 

[86]. 

As the acidity is completely neutralized by ammonia, the time taken for full neutralization 

(Tnutr) can be directly calculated:  

     Tnutr = 2vx / I               (9) 

where the initial titratable acidity (2vx) is divided by the rate of ammonia absorption (I) 

[86]. As the humidity of breath can cause problems where ammonia absorbs into condensed 

water, use of a dehumidifying agent such as NaOH was recommended. 

1.4.5 Techniques with the potential for breath ammonia detection 

Additional techniques that may prove useful for breath ammonia detection are absorption 

spectroscopy and micro-plasmas. Absorption techniques have been used to detect breath 

acetone at 14 ppb via reaction with alkaline salicylaldehyde to form a coloured product. 
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The reaction can be detected using GaN-based light emitting diodes for excitation of the 

molecule, with detection at 465 nm in blue absorption. Though ammonia has not yet been 

analysed, the potential for detection of other specific compounds found in breath could be 

possible as well. However, absorption spectroscopy is limited by its ability to monitor only 

one compound at a time [87]. The concept of using micro-plasmas (i.e. microdischarges), is 

also being considered as a means of detection enhancement for gases. A micro-plasma is a 

highly energetic gas capable of increasing the energy levels of other molecules [4]. These 

charged particles can be produced by three-body collisions, and their energy can be 

modified by using pulsed excitation over a microsecond scale [88]. When using techniques 

such as Penning ionization and energy transfer, the micro-plasma can excite species in a 

way that provides unique spectra for each compound. With various spectra available, 

unknown samples can be analysed without the need for separating them by methods such as 

chromatography. Currently, breath acetone has been detected at sub-ppb levels by 

comparing micro-plasma enhanced emission peaks against those of industrial grade acetone 

[4]. This research is still in the early stages, but shows that the detection limit of breath 

gases could be increased for adaptation to other technologies. 

1.5 Conclusions 

 

Breath analysis is attracting increasing interest as a non-invasive means of diagnosis. In 

particular, detection of ammonia in human breath has the potential to probe several 

processes including those involving the kidneys, liver, and bacterial infection of either the 

stomach or mouth. Several instrumental and non-instrumental methods exist which are 

capable of measuring breath ammonia. However, most of these systems were originally 

developed for environmental monitoring applications. The ideal breath ammonia 

monitoring device is one that is sensitive to the specific gas and capable of detecting it at 

the physiologically relevant concentrations in the ppb range with good precision and 

accuracy, insensitivity to interference (particularly temperature and humidity effects), is 

ideally portable for point-of-care use, provides ease-of-use to the user, displays real-time 

measurements, and is of low cost. These demanding set of criteria mean that no ideal 

technique yet exists for effectively measuring breath ammonia in the clinical setting. In the 

case of several techniques, these are still not yet capable of reaching the necessary limit of 

detection of 50 ppb to make them applicable for diagnostic application. For some of those 
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that can reach the ppb range, a collection or pre-concentration method is often required 

which removes the possibility for real-time measurements. Furthermore, these pre-

analytical steps are likely to introduce errors in the measurement. Devices based on laser 

spectroscopy can provide real-time measurements, but are still too complex to be 

considered low cost or portable point-of-care technologies. Chemical sensors are also 

capable of generating real-time data, but may also have reduced precision and accuracy 

compared to instrumental techniques. In conclusion, there still remains a challenge to 

develop simple devices that are capable of the real-time analysis of human breath ammonia 

for diagnostic applications. 
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THESIS AIMS A	D OBJECTIVES 

• Investigate the background of diagnostic breath ammonia monitoring and the 
challenges associated with current technology 

• Establish the normal range of human breath ammonia by way of currently 
established technology to define baseline analytical requirements 

• Develop a system to simulate potential breath interferents such as humidity and 
temperature over the known human range for controlled ammonia sensor 
characterisation studies 

• Evaluate the performance of the ammonia sensing element (nanoPANI 
interdigitated electrode) to ensure that it fulfils the analytical requirements for 
sensing ammonia in exhaled breath over the range necessary for biomedical 
applications  

• Engineer and optimise a breath sampling system (AmBeR) compatible with the 
requirements of breath ammonia monitoring while satisfying the needs for (1) non-
invasive analysis, (2) point-of-care testing, (3) real-time data acquisition, (4) 
increased ease of use for patient comfort and safety, (5) low cost production, and (6) 
mass manufacturability 

• Perform clinical assessment of the AmBeR prototype with haemodialysis patients, 
and define relationship between breath ammonia and blood metabolites (e.g. urea 
and creatinine) 
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2.1 Introduction 

The focus of this chapter was to determine the concentration range of the common breath 

metabolite ammonia from the exhaled breath of a healthy human cohort. In previous work 

with healthy volunteers, Diskin et al [1], Endre et al [2], and Smith et al [3] performed 

studies with either five or six volunteers. To obtain a larger concentration range per 

population, 30 volunteers assisted with the current research. Identification of the normal 

ranges of ammonia in exhaled breath allows for recognition of abnormally high 

concentrations related to states of physiological dysfunction. Furthermore, this recognition 

will allow for proper assessment of the sensor performance during the development stages 

of AmBeR. The found ammonia concentrations were further correlated against biometric 

data including gender, age, body mass index (BMI), and breath carbon dioxide levels since 

previous studies have suggested that a relationship may exist among healthy people. The 

effects of daily routine were also investigated followed by a quick comparison of nasal and 

oral sampling routes. The short study of nasal exhalations was performed to see if it may 

bear potential for future works, but oral exhalations were examined more extensively in this 

preliminary work since they have shown a strong correlation with blood urea levels in 

previous literature [4].  

This chapter outlines the application of a photoacoustic laser spectroscopy (PALS) device 

known as the NephroluxTM to quantify the ammonia metabolites in breath. By removing the 

need for sample collection into bags, PALS provides real-time analysis.  Photoacoustic 

spectroscopy is a well-known technique that has the advantage of being relatively simple 

while still capable of high sensitivity detection. Previous literature has explained the 

process of PALS in depth [5][6]. To summarise, as ammonia (NH3) and carbon dioxide 

(CO2) breath gases enter the photoacoustic chamber of the NephroluxTM, the tunable CO2-

laser [7] excites the gas molecules. The light energy used for absorption is then converted 

to heat [4]. Pressure from this temperature change is detected by the chamber microphone 

during the de-excitation process [8]. The photoacoustic signal, S, provided a magnitude in 

arbitrary units displayed as: 

     S = SmPCα                           (1) 

where Sm is the sensitivity of the microphone (in units volts per pascal), P is the power of 

incident laser radiation (in units of watts), C is a constant for the cell-geometry, 

measurement conditions, and modulation frequency (in units of pascal centimetres per 
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watt), and α is the absorption cross-section of the transition being interrogated (in units of 

inverse centimetres) [9]. The CO2-laser used by PALS is tuneable for gas selectivity 

allowing for ammonia detection as low as 1 ppb ±10% and carbon dioxide down to 0.1% 

±5% (of reading) to generate results within 120 seconds. Once the breath is analysed by the 

signal processor, the data is transmitted through the single-board computer system of the 

NephroluxTM and saved to an external lap-top (Fig. 2.1). 
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Figure 2.1 Ammonia gas molecule measurement using photoacoustic spectroscopy. 

Schematic of the PALS
 
system. The CO2 laser enters the photoacoustic chamber and 

excites the gas molecules. As de-excitation occurs, the pressure is released and 

detected by the microphone where it is transmitted to the signal processor [8]. Figure 

reproduced from reference [10]. 

2.2 Materials and methods 

2.2.1 Instrumentation 

The PALS (NephroluxTM, Pranalytica Inc., CA, USA) (Fig. 2.2) underwent a multipoint 

ammonia calibration during development at Pranalytica which generated a strong R2 of 

0.99.  
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Figure 2.2 Breath ammonia measurement using photoacoustic spectroscopy. The 

typical procedure for volunteer breath collection using PALS. 

2.2.2 Oral breath ammonia and biometric parameters 

A cohort of 30 normal healthy human volunteers was locally recruited following 

institutional ethical approval (Appendix 1). Following a questionnaire, only those with no 

breathing abnormalities or related medical conditions were entered into the study 

population. Breath ammonia, breath carbon dioxide, gender, ethnicity, age and BMI were 

recorded. For breath sampling, volunteers were asked to sit in a relaxed position while 

breathing into a face mask which was connected to a breath delivery tube. All volunteers 

were asked to breathe using either oral or nasal respiration. A breath sample was defined as 

a relaxed full exhalation from the volunteer after a relaxed full inhalation. Over a period of 

10 minutes, breath measurements were pulled into the photoacoustic chamber every 41 

seconds by way of a vacuum flow. For the purpose of clinical analysis, it was useful to 

define whether whole breath averaged concentrations or peak alveolar concentrations were 

being observed. When focusing specifically on the alveolar concentrations, the compounds 

exclusively from within the lungs are monitored. With this study, however, whole breath 
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examination took place which provided samples consisting of both the alveolar region and 

dead space (e.g. trachea) within the respiratory system [11]. Furthermore, previous 

literature has described ammonia as being a sticky substance which could potentially 

adhere to the walls of the system [9]. To prevent this adsorption, the tubing of the 

NephroluxTM was constantly heated while breath consistently flowed into the system. Each 

sample was an average of five breath measurements. 

2.2.3 Daily variation in oral breath ammonia concentrations 

A single male and female volunteer from the 30 healthy volunteers were studied for five 

consecutive days to observe daily variation in their oral ammonia breath concentrations. 

Using PALS, the sampling technique was the same as previously specified. The volunteers 

fasted from midnight to 10:00 am at which point they were sampled. They were again 

sampled at 13:00 pm (post-prandial), and at 16:00 pm following a normal daily routine. 

Food intake by the volunteers was recorded in a diary in case cross-examination was found 

to be necessary. 

2.2.4 Oral breath ammonia and nasal breath ammonia 

Three comparisons were made between the mean oral and mean nasal breath ammonia 

concentrations of two volunteers. The comparisons were made following a similar timeline 

to the previous daily variation section, and the sampling technique was the same as 

discussed previously using PALS. 

2.3 Results and discussion 

2.3.1 Oral breath ammonia and statistical confidence 

The survey population had a mean age of 34 years. There were 19 female and 11 male 

volunteers, and the average body mass index was 25.18 kg/m2. Of these volunteers, 20 

identified themselves as ethnically Irish, with several Europeans, two Americans and one 

Asian. The biometric data, mean oral breath ammonia, and mean oral breath carbon dioxide 

concentrations from the 30 volunteers are compiled in Table 2.1. The mean breath 

ammonia range was calculated by averaging five breath samples per individual. The mean 

oral breath ammonia of the 30 volunteers was 264.9 ppb with a standard deviation of 
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±182.8 ppb while the intra-individual (i.e. averaged five breath samples) deviation was ±43 

ppb.   

Table 2.1 Compilation of biometrics, mean oral breath ammonia, and mean oral 

breath carbon dioxide concentrations for 30 volunteers (mean = average of five breath 

samples per person). 

Volunteer Gender Age Body Mass Index Mean NH3 Mean CO2 

(number) (M/F) (years) (kg/m
2
) (ppb) (%) 

1 Female 23 24.08 157 ±11 3.1 ±0.2 

2 Male 29 23.10 458 ±84 3.1 ±0.5 

3 Female 27 17.51 397 ±24 2.8 ±0.3 

4 Male 33 25.83 308 ±35 3.2 ±0.9 

5 Female 30 20.81 59 ±4 3.2 ±0.2 

6 Female 58 28.38 194 ±9 3.7 ±0.3 

7 Female 54 23.83 283 ±43 3.2 ±0.4 

8 Male 41 28.96 264 ±44 2.1 ±0.2 

9 Female 33 N/A 688 ±42 2.9 ±0.5 

10 Male 25 29.35 237 ±27 2.9 ±0.5 

11 Female 46 35.02 503 ±111 2.4 ±0.1 

12 Male 33 31.08 356 ±68 3.5 ±0.9 

13 Female 26 35.15 326 ±28 3.2 ±0.3 

14 Female 27 24.38 89 ±10 3.3 ±0.4 

15 Female 43 36.23 442 ±99 2.7 ±1.2 

16 Female 51 28.47 244 ±61 2.4 ±0.5 

17 Female N/A 21.97 57 ±6 2.5 ±0.4 

18 Male 36 20.33 327 ±29 2.1 ±0.5 

19 Female 26 20.81 118 ±22 2.5 ±0.8 

20 Female 30 21.22 421 ±47 2.3 ±0.5 

21 Female 38 26.49 99 ±16 3.5 ±0.5 

22 Female 44 18.28 104 ±13 2.9 ±1.2 

23 Female 45 20.38 467 ±52 2.8 ±1.0 

24 Male 38 20.76 84 ±24 3.4 ±0.6 

25 Male 25 22.86 81 ±41 2.2 ±0.9 

26 Male 23 22.86 448 ±238 2.6 ±1.1 

27 Male 24 24.17 598 ±58 2.3 ±0.5 

28 Male 27 30.93 29 ±21 3.8 ±0.2 

29 Female 30 24.42 45 ±6 2.8 ±0.2 

30 Female 28 22.68 67 ±8 2.6 ±0.5 
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Mean oral breath ammonia concentrations recorded from this test population ranged from 

approximately 29 to 688 ppb. Previous literature has shown that oral breath ammonia 

ranges for healthy populations of different sample sizes can vary. Research using selected 

ion flow mass spectrometry (SIFT-MS) observed oral breath ammonia concentrations of 

220 to 550 ppb from a population of five healthy volunteers [2], and 200 ppb to 1,800 ppb 

from a separate cohort of six volunteers [3] whereas, a larger group of 30 volunteers 

produced an oral breath ammonia range of 248 to 2,935 ppb [12], and another of 200 

volunteers gave 112 to 2,865 ppb [13]. Understanding the significance of the sample size is 

helpful in relating the resulting breath ammonia ranges to the rest of the human population. 

In other words, larger sample sizes are more likely to generate results that are closely 

related to the target population as well as produce a smaller margin of error [14]. In 

population statistics in which a sample is used, a measure of confidence is needed in order 

to know if the sample results can be related to the larger population. Assuming that the 

sample studied here was not statistically abnormal, it is safe to claim that the results of a 

confidence interval calculation for the sample will be true 95% of the time [15]. In 

calculation of the confidence interval for the given sample size and oral breath ammonia 

concentrations, it can be claimed that there is 95% confidence that the interval of 196.7 ppb 

to 333.2 ppb contains the true mean of the local population. There was a standard error of 

33.3 ppb as well as a skewness of 0.48 and a kurtosis of -0.70. It should be recognised that 

the population sample (n=30) examined in this study was of a small group where metabolic 

ammonia concentrations could be related to local factors such as ethnicity, diet and 

localised environmental factors, and may result in a mean and range distinct from those of 

other research. 

2.3.2 Oral breath ammonia and gender 

The 19 female volunteers ranged from a mean minimum of 45 ppb to a mean maximum of 

688 ppb, with an average of 250 ±189 ppb. The 11 male volunteers had a mean minimum 

of 29 ppb and a mean maximum of 598 ppb, with an average of 290 ±177ppb showing that 

the female standard deviation was slightly higher than that of the males. To compare the 

breath ammonia levels of females against males, a box plot analysis was used (Fig. 2.3). 

From the box plot, the oral breath ammonia of females and males combined gave a median 

of 254 ppb where the upper quartile (Q3) was 415 ppb and the lower quartile (Q1) was 91 



 

 41 

ppb. The upper quartile represents the median of the top half of the data set. Hence, the 

upper 25% of the total ammonia concentrations exist between Q3 and the Max Limit. The  

 

Figure 2.3 Box plot comparison of mean oral breath ammonia levels from female and 

male populations. Centre line shows median, box shows upper and lower quartiles, 

and whiskers give maximum and minimum range. Total sample population, n=30 

total; n=ll male, n=19 female. 

lower quartile is indicated by the median of the bottom half of the box data. This area 

between Q1 and the Min Limit contains the lower 25% of the total concentrations. The 

breath ammonia of the females was skewed towards a lower median of 194 ppb (Q1 = 94 

ppb, Q3 = 409 ppb) while the males leaned more towards a higher median concentration of 

308 ppb (Q1 = 160 ppb, Q3 = 402 ppb). Further comparison of the ammonia levels between 

females and males via a t-test indicated a p-value of 0.57. For the t-test, a null hypothesis 

was used stating that the two populations will produce similar breath ammonia, and any 

differences were due to chance. With no predictions or expectations of a difference being 

made, a two-tailed p-value was sought. Furthermore, since the two variables were 

independent of each other and a slightly different standard deviation was observed, an 

unequal type-2 measurement took place. Since the resulting p-value was greater than 0.05, 

there was no significant difference between the female and male breath ammonia 

concentrations of this cohort. Two other studies from literature using selected ion flow tube 

mass spectrometry (SIFT-MS) also provided comparisons between oral breath ammonia 
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and gender. In one, 95 females were compared against 105 males. The concentrations of 

breath ammonia were found to be significantly different (p<0.01) between the two genders 

[13]. In contrast, the other study involving 11 female and 19 male subjects showed no 

significant difference (p>0.05) among the genders [12].  The fact that the cohort sizes of 

these studies were quite different from each other must be acknowledged. Such differences 

make comparisons difficult and imply that more research is necessary in this area. 

2.3.3 Oral breath ammonia and oral breath carbon dioxide 

The relationship between oral breath ammonia and oral breath carbon dioxide was also 

studied (Fig. 2.4). Mean CO2 levels were recorded as being between 2.1% and 3.8% among 

the 30 volunteers with an average of 2.9 ±0.5%. Literature has shown that the approximate 

amount of CO2 found in exhaled oral breath can reach as high as 4.5% [16], but this 

concentration can differ from individual to individual resulting in a high level of variation 

[17]. A correlation coefficient of 0.08 indicated an absence of a correlation (p>0.05). With 

a lack of literature comparing human oral breath ammonia against oral breath carbon 

dioxide, comparisons with previous breath ammonia work could not be made. 

0

100

200

300

400

500

600

700

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Breath Carbon Dioxide (%)

B
re
a
th
 A
m
m
o
n
ia
 (
p
p
b
)

 

Figure 2.4 Relationship between mean oral breath carbon dioxide (n=5) and mean 

oral breath ammonia (n=5) in a population of 30 normal healthy human volunteers. 

However, similar comparisons based on the blood work of 17 volunteers with hepatic 

cirrhosis have shown that inhalation of CO2 up to five percent led to a decrease in blood 

NH3 [18]. When CO2 concentrations in blood decrease, the blood’s pH increases possibly 
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indicating that metabolic alkalosis has taken place. In such instances of lower CO2, renal 

venous blood NH3 concentrations are expected to increase as well [19]. Since it has been 

stated in previous works that high concentrations of blood NH3 are capable of diffusing into 

the lungs [20], perhaps future work could be performed comparing the link between 

exhaled NH3 and CO2 respiration. 

2.3.4 Oral breath ammonia and age 

The correlation between mean oral breath ammonia and age was examined (Fig. 2.5). The 

sample age range was between 23 and 58 years with an average of 34 ±10 years. It is 

believed that liver volume and portal blood flow decrease in function with increasing age 

[21]. The correlation was found to be insignificant given an R2 of 0.004 (p>0.05), 

suggesting that no link between breath ammonia and age could be determined from this 

population. Several volunteers with ages between the 20’s and 40’s appear to have above 

average ammonia levels while those over 50 years all had ammonia levels close to or below 

the mean level. 
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Figure 2.5 Relationship between age and mean oral breath ammonia (n=5) among a 

population of 29 volunteers. 

Previous literature based on SIFT-MS have shown the coefficient of determination (R2) 

between oral breath ammonia and age to be 0.18 over an age range of 7 to 18 years (n=200) 

[13], approximately 0.25 for an age range of 24 to 59 years (n=30) [12], and 0.50 among an 

age range between 4 and 83 years (n=17) [22] indicating that a small relationship may exist 
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for those populations. Other techniques focusing on spectrophotometric examination of 

exhaled breath condensate (ages 23 to 79 years) gave results similar to ours which indicated 

that age has no effect on ammonia levels [23].   

2.3.5 Oral breath ammonia and body mass index 

Mean oral breath ammonia levels were compared against body mass index (Fig. 2.6). 

Volunteer BMIs ranged between 17.51 kg/m2 and 36.23 kg/m2 with an average of 25.18 ±5 

kg/m2. The correlation was insignificant given an R2 of 0.04 (p>0.05), suggesting that no 

link between breath ammonia and body mass index could be determined from this 

population. Previous publications using SIFT-MS technology have shown the coefficient of 

determination (R2) between oral breath ammonia and BMI to be 0.004 for a range of 18.4 

Kg/m2 to 30.6 Kg/m2 (n=30) [12], and 0.08 for a range from approximately 13 Kg/m2 to 33 

Kg/m2 (n=200) [13] further emphasising the lack of significance between the two variables. 
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Figure 2.6 Relationship between body mass index and mean oral breath ammonia 

(n=5) from a population of 29 volunteers. 

2.3.6 Daily variation in oral breath ammonia concentrations 

The variation in oral breath ammonia levels were monitored over an eight hour working 

day for five consecutive days. As stated previously in Section 2.2.3, only two samples (one 

male and one female) were observed on each of the five days. Ammonia levels were 

measured at 10:00 h, 13:00 h (post-prandial) and 16:00 h. In both studies, there was a drop 
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in breath ammonia from the morning measurement to the mid-day measurement and then a 

progressive increase as the day continued (Fig. 2.7). Over the period of five days, the 

female volunteer expressed a mean breath ammonia of 205 ±12 ppb in the morning, 74 ±41 

ppb at 13:00 h, and 202 ±152 ppb by the afternoon. The male volunteer generated a mean 

breath ammonia of 414 ±35 ppb in the morning, 275 ±95 ppb at 13:00 h, and exhaled 702 

±110 ppb by the afternoon. At 13:00 h, the ammonia level of the male decreased by 119 

ppb while the female breath ammonia dropped by 111 ppb. Previous literature states that 

this decrease in ammonia may be a result of ingestion of food since the liver has a tendency 

to increase portal blood flow when eating [3]. As for the increase in ammonia afterwards, 

the male showed a difference of 439 ppb and the female changed by 140 ppb. This shows a 

significant increase, but the absolute value is still low. Literature has also proposed that 

such an increase may have been a result of purine nucleotide deamination and amino acid 

catabolism that occur during the physical processes that take place over the day [24]. 
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Figure 2.7 Comparison of the daily variation in oral breath ammonia for a male and 

female volunteer averaged over a period of 5 days. Volunteers fasted for 12 h until 

10:00 h, and were tested again at 13:00 h, post-prandial. At 16:00 h, the volunteers 

gave further breath samples following their regular daily routine. 

Furthermore, both gut bacteria and dietary contributions may demonstrate influential 

effects on ammonia production. Literature has stated that ammonia in the intestines could 

result from hydrolysis of urea via bacterial urease, or deamination of digested proteins and 

other nitrogenous substrates [25]. Some notable urease-producing intestinal organisms 
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mentioned by Vince et al include bacteroides, bifidobacteria, clostridia, Proteus spp, and 

Klebsiella spp. With proportion of these factors unique to the individual, logic would 

dictate that concentration of ammonia produced would either increase or decrease in 

relation. 

2.3.7 Oral breath ammonia and nasal breath ammonia 

Oral breath ammonia concentrations were consistently higher than those of nasal from both 

volunteers. For volunteer one, morning nasal exhalations (Fig. 2.8) gave a mean ammonia 

concentration of 38 ±9 ppb while oral exhalations were 210 ±24 ppb. Towards mid-day 

(post-prandial), the mean nasal breath ammonia level decreased to 26 ±2 ppb and the mean 

oral breath ammonia dropped to 64 ±4 ppb. Measurements taken in the afternoon displayed 

an increased mean nasal ammonia concentration of 57 ±6 ppb and mean oral ammonia at 

553 ±75 ppb. 
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Figure 2.8 Comparison between the mean oral and mean nasal breath ammonia 

concentrations from volunteer one (n=5). Breath samples were taken in the morning 

(11:00 h), post-prandial (14:00 h), and in the afternoon (16:00 h). 

 

From volunteer two (Fig. 2.9), the mean nasal breath ammonia concentration in the 

morning was 47 ±17 ppb along with an oral concentration of 246 ±25 ppb. By mid-day 

(post-prandial), the ammonia concentrations did not vary as much as those of volunteer 

one. The mean nasal breath ammonia recorded was 68 ±9 ppb while the mean oral 

ammonia was 253 ±29 ppb. Similar to volunteer one, measurements from the latter part of 

the day were higher. By the evening, volunteer two emitted a nasal ammonia concentration 
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of 65 ±9 ppb and an oral of 420 ±36 ppb. This display of nasal breath ammonia 

concentrations being lower than oral is similar to the results in other studies where 

measurement from nasal exhalations was shown to be preferable over oral. It was stated 

that a possible reason for the higher oral ammonia levels was due to bacteria and other 

compounds that reside there since bacteria are known to produce ammonia and are readily 

found in the saliva [26]. Furthermore, this may provide some reasoning as to why the 

standard deviation of the oral ammonia is so much larger than that of the nasal. 
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Figure 2.9 Comparison between the mean oral and mean nasal breath ammonia 

concentrations from volunteer two (n=5). Breath samples were taken in the morning 

(10:00 h), post-prandial (14:00 h), and in the evening (18:00 h). 

2.4 Conclusions 

Photoacoustic laser spectroscopy has the potential to be a viable tool for monitoring real-

time concentrations of ammonia in human breath. Being able to extract an ammonia signal 

from flowing breath samples provided the advantage of collecting large amounts of data in 

a short period of time. Furthermore, the sensitivity and accuracy were highly supportive of 

the results found in previous literature. In a small cohort of 30 healthy human volunteers, 

breath ammonia concentrations were found to range from 29 ppb to 688 ppb which was 

broadly in line with other studies. However, no correlation between oral breath ammonia 

and oral breath carbon dioxide, gender, age or BMI was established. While monitoring 

daily routines, breath ammonia levels were shown to decrease until mid-day (post-

prandial), but were followed by a large increase into the afternoon. The large variation in 

baseline levels was originally believed to be a result of a number of confounding factors 
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such as diurnal variation, inter-individual variation, food intake and metabolic activity, and 

the presence of significant levels of ammonia in oral breath from bacterial sources which 

would serve to obscure more subtle relationships. However, a comparison between nasal 

and oral breath ammonia appeared to imply that confounding factors may mostly exist in 

oral breath. Oral ammonia was consistently and significantly higher than nasal which may 

be pointing to the significance of oral bacterial contributions of ammonia as mentioned by 

Smith et al. [26] in previous literature. If so, this suggests that more appropriate ways of 

sampling are needed to avoid this unwanted contribution. Nasal breath sampling may assist 

with this. However, if monitoring of patients is the goal, issues of nasal congestion and 

comfort will need to be explored as well. More extensive studies with larger patient cohorts 

using nasal monitoring may add clarity to this preliminary study. 
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CHAPTER 3 

A SYSTEM FOR THE CO	TI	UOUS GE	ERATIO	 OF  

SIMULATED HUMA	 BREATH SUPPLEME	TED 

WITH TRACE GASES 
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3.1 Introduction 

Human breath is a complicated matrix where potential factors of interfering breath gases, 

temperature, and relative humidity (RH) levels can differ from individual to individual. As 

the study of human breath continues to increase in relevance for trace gas analysis, the 

development of a system capable of producing the necessary analyte gas concentrations 

combined with other breath elements (e.g. temperature and relative humidity) would prove 

to be a highly beneficial lab tool. There are numerous systems which have been developed 

for the purpose of breath simulation. However, most of these systems tend to focus on 

breathing patterns rather than actual exhalation of a humidified breath-simulating matrix 

containing trace gases indicative of a physiological function. They can serve the purpose of 

analysing gas exchange between blood and the tissue membrane of lungs [1], helping to 

instruct and provide practice for medical procedures [2], testing ventilatory devices [3], or 

demonstrating how respiration works in general [4]. However, such devices would not 

provide the variables needed for comparison of interferents in human breath. Alternatively, 

another option for breath simulation could be to examine the constituents of breath under 

controlled conditions in a static chamber. However, this would not simulate genuine 

physiological conditions of volume and flow rate. A current technology known as the Gas 

Calibration Unit (Ionimed Analytik GmbH, Austria) has shown potential for producing 

volatile organic compounds among humidified conditions [5], but the complexity of this 

technology makes it expensive by comparison to the system discussed in the present work 

and the use of ammonia gas in such a method was not previously observed.  

In this chapter, a low-cost in-house system was developed to investigate the measurement 

and detection of trace gases and interferents commonly found in human breath during the 

sensor development stages. The device is composed of a number of integrated components 

which can facilitate the reproducible and measurable dilution of gaseous ammonia within a 

human breath analogue. It comprises a clinical respiratory humidifier to generate air at a 

fixed and continuous flow rate, temperature, and relative humidity comparable with normal 

human breath exhalate in combination with micro flow controllers for the supplementation 

of additional gases such as ammonia at physiologically relevant concentrations. Continuous 

flow allows the researcher to obtain as much sample as they require. In addition, the system 

was supplemented with sensors to monitor temperature, relative humidity, and volume flow 

rate. Gas concentrations were cross-validated using photoacoustic spectroscopic analysis of 
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the ammonia concentration correlated with gas concentrations calculated from first 

principles.  

3.2 Materials and methods 

3.2.1 Materials 

A continuous air pump (SleepStyleTM200 Series air flow system, Fisher and Paykel 

Healthcare, Auckland, NZ) was used to push air through the system and was monitored by 

way of a spirometer (EasyOne Model 2001, Fisher Biomedical Incorporated, FL, USA). 

Using a 56 cm extension of plastic tubing (Fisher and Paykel Healthcare, Auckland, NZ) 

with a diameter of 22 mm, the air pump was connected to the respiratory humidifier. The 

respiratory humidifier was composed of two components; the MR290 Autofeed 

humidification chamber (Fisher and Paykel Healthcare, Auckland, NZ) and the MR850 

humidifier (Fisher and Paykel Healthcare, Auckland, NZ). An external 1 Litre sterile bag 

(Respicare Ltd, Dublin, Ireland) was the source of the 18.2 MΩ.cm-1 water (Millipore, MA, 

USA) entering the humidifier. From the humidifier is a 156 cm length of coil-heated plastic 

tubing (Fisher and Paykel Healthcare, Auckland, NZ). Attached to the tubing is an adaptor 

(Sigma-Aldrich Co., Ireland) connected to a fixed stainless the steel flow control regulator 

(0.3 or 0.5 L/min) (Specialty Gases Ltd, Kent, UK) of a 58 L ammonia cylinder (5 to 400 

ppm) (Specialty Gases Ltd, Kent, UK) by way of a 45 cm length of 5 mm diameter nitrile 

tubing (Sigma-Aldrich Co., Ireland). Adapted to the end of the coil-heated tubing is a 

holding cap fabricated using ABSplus 3D printing (Dimension Inc, MN, USA). This cap 

holds a humidity sensor (HIH-4000 series, RS Components Ltd, Honeywell, UK) and a 

thermistor (NTC 198-927 series, RS Components Ltd, UK). A laptop (Sony, Ireland), data 

acquisition card (NI USB-6009, National Instruments, Berkshire, UK), and LabVIEW 8.6 

software (National Instruments, Berkshire, U.K.) were used to acquire the humidity and 

temperature data. A schematic of the simulated breath system is shown in Fig. 3.1a and a 

photograph of the actual system in 3.1b. 

3.2.2 Instrumentation 

The PALS (NephroluxTM, Pranalytica Inc., CA, USA) discussed in Chapter 2 was utilised 

to quantify the ammonia concentrations during the calibration process. All flow rates were 
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correlated against ultrasound transit-time measurements using the EasyOne Model 2001 

Spirometer (ndd Medical Technologies, MA). 

 

 

Figure 3.1 (a) Schematic and (b) photo of the simulated breath system. Atmospheric 

air is introduced via the respiratory air pump and mixed with water to create 

humidified air at a defined temperature. Ammonia gas is mixed with the turbulent 

flow of air to generate a controlled breath sample. 

(a) 

(b) 
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3.2.3 Air flow parameters 

A continuous air pump supplies atmospheric air at a flow rate appropriate for human 

ventilation. It is typically used in attachment to continuous positive airway pressure 

(CPAP) machines to assist with obstructive sleep apnea [6]. This is capable of supplying 

flow rates of between 62.0 ±0.67 L/min and 83.9 ±0.47 L/min, depending on pressure 

settings and altitude and, for our application was set to supply air at a fixed flow rate of 

62.0 ±0.67 L/min. Flow rates were independently monitored using a spirometer (Table 3.1). 

3.2.4 Temperature and relative humidity measurements 

The air pump connected to the respiratory humidifier pushed air through the system. The 

MR290 Autofeed humidification chamber introduced water into the air flow and the 

MR850 humidifier heated it. Combined together, these output warmed, humidified air in 

which the atmospheric air was heated to between 35 and 40oC ±0.3oC and humidified to 

approximately 98% RH. It is specified to create a humid environment in less than 30 

minutes while maintaining a constant temperature. Internal temperature monitoring was 

monitored via the internal temperature probe, and an alarm was initiated when temperature 

levels exceeded the pre-set range [7]. The filtered water in the humidifier chamber was 

refilled using 18.2 MΩ.cm-1 water. The warmed, humidified air was then passed down the 

coil-heated plastic tubing. This was designed to reduce the build up of condensation within 

the tubing. While the internal temperature of the system was monitored by the temperature 

probes of the MR850 respiratory humidifier, the relative humidity and temperature of the 

expelled air were also monitored by way of a humidity sensor and a thermistor (Fig. 3.2a) 

which were placed in a flowing stream of the simulated breath at the end of the tubing 

using a holding cap (Fig. 3.2b). These were interfaced to a laptop via a data acquisition card 

and programmed using LabVIEW 8.6 software. The humidity sensor was capable of 

operating at temperatures between -40 and 85oC whilst recording relative humidity from 0 

to 100% with an accuracy of ±2.5% [8], and the thermistor performs over a temperature 

range of -55 to 250oC [9]. It should be noted that ammonia is a corrosive substance and 

prolonged exposure to it might require regular replacement of the humidity sensor and 

thermistor. 
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Figure 3.2 External humidity-temperature sensor: (a) Combining the HIH-4000 

humidity sensor (black) and 	TC 198-927 thermistor (red); (b) Attachment of the 

sensors within the ABSplus 3D cap. 

3.2.5 Calibrations of ammonia gas 

At the point at which the humidified air enters the plastic tubing, an adaptation piece 

allowed the injection of ammonia gas to join the flow of warmed, humidified air. To 

facilitate variation of the volume of ammonia applied to the system, and thus its 

concentration, fixed stainless steel flow control regulators (0.3 or 0.5 L/min) were used. 

Ammonia gas was supplied at concentrations between 5 and 400 ppm. The cylinders were 

connected to the connection piece via nitrile tubing. Beyond this intersection, the length of 

plastic tubing allowed for turbulent flow conditions that mix the added ammonia with the 

humidified air. The fluid dynamics of the humidified air with gaseous ammonia in the 

system were calculated to have a Reynolds number in excess of 11,000 (Appendix 2), 

indicating turbulent flow and, therefore, good mixing.  

3.3 Results and discussion 

3.3.1 Air flow parameters 

This spirometer was capable of measuring with an accuracy of ±2% (volume), ±2% (flow), 

±5% (maximum voluntary ventilation) and a resistance of approximately 18 cmH2O/L/min 

[10]. Maximum voluntary ventilation (MVV) was the key lung flow measurement used. 

(a) (b) 
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The MVV is a display of the maximum volume over a period of one minute and was used 

in comparisons between known human flow rates and the simulated system flow rates. 

Previous literature has shown the MVV in healthy human adults in the range between 29 

and 190 L/min with a mean of 111 ±35 L/min (n=95) [11]. In a larger study, 2,247 

volunteers categorized by age generated a low mean of 46 ±0 to a high mean of 120 ±25 

L/min [12]. Since the relaxed MVV from the simulated breath system (i.e. 62.0 ±0.67 

L/min) was within range of both studies, it was chosen for this preliminary study. By 

controlling the pressure and altitude settings of the SleepStyleTM200 Series air flow system, 

the MVV could be adjusted accordingly with little deviation (Table 3.1). The flow rates of 

the simulated system were found to be comparable to the flow rates of human breath 

indicating that the flow rates produced are appropriate for the simulation of human breath 

flow, albeit of a constant flow rate. 

Table 3.1 Flow rates from the simulated breath system (n = 3) as determined from 

spirometry measurements at a temperature of 38 ±0.3
o
C and relative humidity of 96 

±1% (n = 216). 

Pressure (cmH2O) Altitude (m) MVV (L/min) 

4 0 62.0 ±0.67 
4 500 63.9 ±0.29 
4 1,000 65.6 ±0.40 
4 1,500 67.1 ±0.30 
4 2,000 68.5 ±0.55 
5 0 69.5 ±0.60 
5 500 72.0 ±0.60 
5 1,000 73.2 ±0.29 
5 1,500 74.7 ±0.76 
5 2,000 77.8 ±0.49 
6 0 76.0 ±0.64 
6 500 78.1 ±0.91 
6 1,000 80.5 ±0.67 
6 1,500 82.0 ±0.67 
6 2,000 83.9 ±0.47 

 

3.3.2 Temperature and relative humidity measurements 

Previous literature has shown that human breath is exhaled at temperatures from 

approximately 32oC to 37oC [13][14]. Using its own internal temperature sensor, the 

MR850 monitors the internal environment in an attempt to maintain the air flow at a 
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constant temperature of 37oC. Under typical room temperature (approximately 21oC), the 

MR850 can maintain 37oC within ±0.5oC, but may vary more significantly under more 

extreme atmospheric conditions. At body temperature (i.e. 37oC), the relative humidity of 

human breath has been shown to range from approximately 91 to 96% [15]. The relative 

humidity of breath cannot reach 100% since this becomes the point at which it is no longer 

vapour, but is instead a condensate [16].  

Humidity and temperature measurements were recorded at a flow rate of 62.0 ±0.67 L/min 

(n=3). Fig. 3.3 shows the averages of these three sets of readings. The initial humidity and 

temperature values generated by the simulated system were 51 ±7% RH and 21 ±1oC. From 

switch on, measurements from the external humidity sensor showed that the simulated 

breath system went from 51 ±7% RH to 91 ±3% RH in 530 seconds, then to 96 ±3% RH in 

2,140 seconds, and the maximum pre-condensation point of 99 ±1% in 2,930 seconds. 

Temperature increased from 21 ±1oC to 32 ±1oC in 170 seconds, then to 37 ±1oC in 770 

seconds, and reached a maximum of 38 ±1oC at 890 seconds which was maintained through 

3,600 seconds. Condensation began to develop within the heated tubing after about 2,970 

seconds which was corroborated by the humidity sensor reading above 99%. Due to the 

claims from previous literature, an equilibrium range from 91 to 96% relative humidity, and 

temperatures of 32 to 37oC were sought in the development of this simulated breath system. 

Thus, the purpose was to determine the time period over which the system would be 

operational within these parameters. Between 520 and 880 seconds, the system was at both 

the desired temperature (i.e. 32 to 37oC) and relative humidity (i.e. 91 to 96%). However, 

from 520 to 2,930 seconds, the system operated between 32 and 38 ±1oC and between 91 

and 99 ±1% RH. This time could potentially be extended if the heating coils were increased 

to a temperature that could fully prevent condensation within the tubing without 

overheating the humidified air. Assuming that these maxima were suitable for simulated 

breath testing, the analytical measurements were performed within this window. If 

condensation did build up in the system, the system was switched off and the tubing 

cleaned and blow dried before reuse to remove condensate and prevent any trace gas build 

up in the condensate or on the tubing surfaces. Not doing so could result in contamination 

of future measurements by residual gases. 
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Figure 3.3 Measured operational temperature (dotted line) and relative humidity 

(solid line) of the simulated breath system from switch on (n = 3). Humidifier 

temperature setting: 37
o
C; Pressure and flow rate: 4 cmH2O (measured MVV of 62 

±0.67 L/min); Initial system temperature: 21
o
C; Initial system humidity: 51% RH. 

Horizontal dotted and solid lines show lower and upper operational specification 

limits of temperature (32 to 39
o
C) and humidity (91 to 99% RH), respectively. 

3.3.3 Calibrations of ammonia gas 

The PALS instrument was developed for the quantification of ammonia in human breath. It 

is specified to detect ammonia as low as 1 ppb ±10% within 120 seconds [17]. A recent 

study using photoacoustic laser spectroscopy has shown that the ammonia breath values in 

a population of 30 normal human volunteers was in broad agreement with earlier studies 

using techniques such as SIFT-MS [18]. Exhaled breath from a healthy human adult 

contains ammonia concentrations from 50 to 2,000 ppb [19]. To produce and validate the 

concentrations of ammonia being delivered from the simulated breath system, a correlation 

was performed between calculated values and measured values using PALS. A total of 15 

minutes per flowing sample was recorded. The first 10 minutes were used to ensure the 
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system had stabilized. Over the next five minutes, five samples were taken and averaged as 

the actual sample concentration. The calculated values were determined by way of 

introducing a known concentration of ammonia at a fixed flow rate into the known flow of 

humidified air (Appendix 3). For example, introduction of 50,000 ppb ammonia (v/v) at a 

flow rate of 0.3 L/min into the turbulent flow of simulated breath was calculated to generate 

a final concentration of 240.77 ppbv ammonia: 

((0.3 L/min / (62 L/min humidified air + 0.3 L/min %H3 flow)) * 50,000 ppb %H3 cylinder = 

240.77 ppbv %H3 expected (Sample #7 in Table 3.2; Fig. 3.4)             (1) 

The measured concentrations obtained from PALS yielded a 0.9978 correlation with the 

calculated values over the measured range of approximately 0 to 3,000 ppbv (Table 3.2; 

Fig. 3.4), with a slope of 0.9374 and an intercept of 19 ppbv.  

Table 3.2 Concentrations of calculated and measured ammonia (n = 5) in Fig. 3.4. 

Calculated (	H3 / ppbv) Measured (	H3 / ppbv) 

0 0 ±0 
24 18 ±1 
40 40 ±2 
80 92 ±3 
120 121 ±15 
200 218 ±2 
241 245 ±8 
400 392 ±6 
482 460 ±10 
800 755 ±7 
963 984 ±21 

1,445 1,368 ±11 
1,600 1,576 ±7 
1,926 1,919 ±20 
2,400 2,175 ±26 
3,200 2,993 ±10 
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Figure 3.4 Calibration plot of ammonia concentrations. The calculated concentrations 

of ammonia compared against the measured concentrations (n=5) displayed by PALS 

(R
2
 = 0.99). A slope and intercept of 0.9374 ppbv

-1
 and 19.09 were generated. 

This data suggests that, at low concentrations, there was a slight underestimation of the 

calculated value with respect to the measured value, whereas at higher concentrations, there 

appears to be an overestimation of the calculated value with respect to the measured value. 

This deviation from an ideal relationship may be due, either to discrepancies in the 

theoretical model of calculation and the system which does not derive the ideal ammonia 

concentrations calculated, or with analytical errors associated with the measurements 

determined from the photoacoustic spectrometer. Notwithstanding this, however, the two 

methodologies showed excellent correlation and comparability, cross-validating the two 

methods and demonstrating that the simulated breath system can be used to produce a 

continuous flow of simulated human breath, supplemented with known concentrations of 

trace gases, over a clinically useful range. 

3.4 Conclusions 

A system was developed which was capable of simulating human breath variables such as a 

flow rate with defined temperature and humidity. The system could be supplemented with 

known concentrations of a trace gas (i.e. ammonia) across the clinically relevant range for 

this gas in human breath from 18 to 2,993 ppbv which was corroborated using 

photoacoustic laser spectroscopy. The system can be used for controlled laboratory 

experiments which require observation of trace gas measurements among human breath 

interferents. 
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CHAPTER 4 

DEVELOPME	T OF A METHOD FOR THE MEASUREME	T OF 

AMMO	IA I	 HUMA	 BREATH USI	G I	K-JET PRI	TED 

POLYA	ILI	E ELECTRODES 
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4.1 Introduction 

Chapters 2 and 3 have managed to define the normal parameters of breath ammonia as well 

as create a system that produces ammonia within a breath-like matrix of commonly known 

physiological interferents. Using these as a control, assessment to define the behaviour and 

performance of in-house developed conducting polymer-based electrodes took place. Some 

conducting polymers which have demonstrated an affinity for gas sensing include 

polyaniline, polypyrrole, and polythiophene. The chemical structures (scheme 1) of these 

polymers are: 
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where (a) is polyaniline, (b) is polypyrrole, and (c) is polythiophene. Previous literature 

which utilised these polymers as films for gas-sensing electrodes indicated that detection of 

ammonia gas was possible via a change in resistance [1]. To isolate gaseous ammonia and 

quantify the concentration from breath in this chapter, polyaniline was the chosen sensing 

element. Polyaniline is a conducting polymer that has proven on numerous occasions to be 

effective in the detection and quantification of ammonia. The research of Wu et al observed 

the change in resistance resulting from interactions of ammonia concentrations from 10 to 

1,000 ppm with polyaniline upon gold electrodes [2]. Using an optical approach, Jin et al 

observed changes in the absorption spectra as ammonia concentrations from 180 to 18,000 

ppm flowed across a polyaniline film within a spectrometer system [3]. The reason 

polyaniline works so well is because the emeraldine state can be produced as either a salt or 

a base where the salt form is highly conductive due to its delocalised positive charge. When 

interaction takes place between analytes such as gaseous ammonia and protonated 

polyaniline, the polyaniline deprotonates to the base form [4] as shown in the following 

reaction diagram (scheme 2):  
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It is this deprotonation that causes changes in the observable conductive behaviour. 

Though polyaniline exhibits the preferable conductive characteristics, it lacks the desired 

solubility in common solvents [5] that would be preferable for application to electrode-

based analysis. However, the research of Li et al demonstrated how a colloidal suspension 

of polyaniline of nano-scale could be utilised for the purpose of deposition onto various 

substrates [6]. Among the more common methods of high resolution dispersion are micro-

contact printing (µCP), ink-jet printing, screen printing, and offset printing. Each of these 

could be used in conjunction with substrates such as plastic, glass, laminates, and metal 

which provides the benefit of low cost production [7]. Of the printing techniques, ink-jet 

printing by way of piezoelectric drop-on-demand has displayed great promise. The picolitre 

volumes enable particularly thin layer production, and the multichannel assembly can be 

used to create simultaneous prints. Furthermore, since the printing method does not require 

direct contact with the substrate, damage to the dispersed polyaniline is prevented [8]. The 

combination of conducting polymers such as polyaniline with ink-jet printing for the 

purpose of sensor development is beginning to arise in reports, but research into 

applications for such areas as chemical sensing, biosensing, and other electronic devices 

still holds a challenge [5]. 

The Nanoparticle Technology Handbook defines a nanoparticle as being a particle between 

the range of 1 nm and 1 µm [9]. By this definition and the three-digit nanometre diameters 
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generated upon synthesis of the aforementioned polyaniline, the particles in this chapter 

have been termed polyaniline nanoparticles (nanoPANI). The nanoPANI was synthesised 

as an aqueous dispersion and piezoelectrically ink-jet printed onto the interdigitated silver 

electrode of a polyethylene terephthalate (PET) plastic substrate. It was previously verified 

that by observing the change in current from nanoPANI dispersion, analytes of interest such 

as ammonia could be detected between a range of 1 and 100 ppm [10]. Since the 

emeraldine salt form of polyaniline has proven to be conductive [11], detection and 

quantification by way of impedance, Z, (in units of ohms, Ω) was chosen to monitor the 

interaction between ammonia and nanoPANI. Polyaniline has been well studied using 

impedance spectroscopy. Research has shown the effects of utilising various electrode 

compositions [12], frequency analysis with focus on capacitive and inductive distortions 

[13], and the results of alternating current [14] and direct current [15]. However, the goal 

now is to isolate the signal specific to ammonia from the common physiological 

interferences that can arise in the stream of breath. By using a combination of nanoPANI-

based silver electrodes and AC impedance, isolation and quantification of an ammonia gas 

signal in the necessary range of parts-per-billion (ppb) is shown to be possible among the 

matrix of human breath. 

4.2 Materials and methods 

4.2.1 Materials 

Polyethylene terephthalate plastic (HiFi Industrial Film Ltd., UK) and Electrodag PF-410 

silver ink (Acheson, Henkel Ireland Ltd., Ireland) were purchased and used as received. 

The nanoPANI consisted of deionised water (Veolia Water Solutions and Technologies, 

Ireland), dodecylbenzene sulphonic acid (Tokyo Chemical Industry UK Ltd., UK), 

ammonium persulfate (Sigma-Aldrich Co., Ireland), distilled aniline (Sigma-Aldrich Co., 

Ireland), and sodium dodecyl sulfate (Sigma-Aldrich Co., Ireland). Oxygen was provided 

by Air Products Ireland Ltd (Dublin, Ireland). Nitrogen was produced from in-house 

generators (DCU, Ireland). Carbon dioxide, ammonia, nitric oxide and hydrogen sulphide 

gases were supplied by Specialty Gases Ltd (Kent, UK). 
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4.2.2 Instrumentation 

A DEK-248 screen printer (DEK International, Ireland) was used to print the silver ink onto 

the polyethylene terephthalate (PET) substrate. All ink-jet printing was performed using the 

Dimatix Drop Manager Ink-jet printer (FUJIFILM Dimatix Inc., Santa Clara, CA). 

Impedance measurements were conducted using a model 660C Series Electrochemical 

Analyser Workstation (CH Instruments Inc., Austin, TX). Simulated breath samples were 

generated using an in-house developed simulated breath system (Chapter 3, DCU, Ireland). 

Scanning electron microscopy (SEM) images were obtained with a Hitachi S3400 scanning 

electron microscope (Hitachi High Technologies America, Inc., U.S.A.) equipped with 

energy-dispersive X-ray spectroscopy (Oxford Inca EDX, Oxford Instruments, UK). 

Particle size distribution was performed using ImageJ software (ImageJ, NIH, USA). The 

UV-vis results were observed using a Lambda 900 UV/VIS/NIR spectrometer 

(PerkinElmer Inc., U.S.A.). 

4.2.3 Electrode fabrication via screen printing 

Using a DEK-248 screen printer consisting of a polyester screen with mesh thickness of 

77T (filaments per cm) at 45o to the print stroke, the silver electrodes were printed in-house 

via the method discussed in Crowley et al [16]. The commercial conductive silver ink was 

printed onto a 175 µm thick polyethylene terephthalate (PET) plastic substrate. Afterwards, 

the print was heat-treated at 150oC for 30 minutes.  

4.2.4 Polyaniline nanoparticle synthesis 

Details of the polyaniline synthesis have been discussed previously [8][17]. In summary, 

nanoPANI was synthesised by adding 3.6 g of 0.25 M 90% dodecylbenzene sulfonic acid 

(DBSA) to 40 mL of deionised water. This was stirred at room temperature (20oC) until the 

DBSA fully dissolved. To the DBSA solution, 0.36 g of ammonium persulfate (APS) was 

added and stirred until fully dissolved. This was followed by 0.6 mL of distilled aniline and 

allowed to mix for 150 min. After 150 min, 20 mL of 0.05 M sodium dodecyl sulphate 

(SDS) was added to the DBSA/APS/aniline solution which appeared thick and dark green 

in colour. The DBSA/APS/aniline/SDS solution was then centrifuged at 5,000 rpm for 30 

minutes. The supernatant from the centrifuged solution was then poured into dialysis tubing 
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and dialysed against 0.05 M SDS for 2,880 min producing an aqueous ink-jet printable 

material.  

4.2.5 Printing of nanoPA%I via ink-jet 

Previous work by Crowley et al [10] details the technique of ink-jet printed nanoPANI and 

the potential for detection of gaseous ammonia. In brief, preparation of the printer involved 

using a Norm-Jet Syringe combined with an Acrodisc polyvinylidene fluoride (PVDF) 

Syringe Filter (0.45 µm) and needle to inject nanoPANI into a Fuji Dimatix ink cartridge. 

The cartridge was placed into the Dimatix ink-jet printer where 10 nanoPANI layers were 

printed onto the silver electrodes. After printing 10 nanoPANI layers, the sheets of dry 

sensors were lightly rinsed with deionised water to remove any excess SDS that may reside. 

To ensure that the deionised water was fully removed, they were placed in a dry-heat oven 

at 70oC for 30 minutes. Afterwards, the electrodes were cut from the PET sheet, and used 

for impedimetric analysis (Fig. 4.1). 

Silver Electrode
Polyaniline Layer

13.94 mm

1
3

.9
4
 m

m

Interdigitated

Electrode

51 mm

4
.4

4
 m

m

Silver Electrode
Polyaniline Layer

13.94 mm

1
3

.9
4
 m

m

Interdigitated

Electrode

51 mm

4
.4

4
 m

m

 
Figure 4.1 Design of interdigitated nanoPA	I-based electrode. 

4.2.6 Dispersion of nanoPA%I upon electrodes 

Observation of nanoPANI dispersal took place using SEM at 20 kV. The images were 

taken from between the interdigitated portion of a printed electrode that had been gold 

sputtered. Particle size distribution was obtained using ImageJ software. 

4.2.7 Analysis of polyaniline formulation using energy-dispersive X-ray spectroscopy 

Using EDX at 20 kV and x5k magnification, the formulation of polyaniline was assessed 

where a sample was added directly to an aluminium stub (with no carbon tab) and coated 

with chromium. 
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4.2.8 Electrode characterisation 

The UV-vis spectrum was obtained from an aqueous dispersion made in our lab (1:50 

dilution polyaniline in water) by way of monitoring the absorbance over a wavelength 

range from 300 nm to 1,300 nm. Using the spectra, distinctions were made between 

properly and improperly synthesised polyaniline. Resistive and capacitive characteristics of 

the nanoPANI modified IDEs were analysed over a frequency range of 1 to 100,000 Hz (5 

mV rms) with and without ammonia exposure (n=3). Interdigitated electrodes (n=30) were 

then examined for their inter- and intra- electrode variability with reference to pure resistor 

stability and drift. Of these, 10 randomly chosen electrodes possessing different initial 

resistances were compared for reproducibility of the electrode behaviour. 

4.2.9 Evaluation of the effect of pH 

Solutions of pH 4, 6, 8, and 9 were used. The pH levels were indicated via universal litmus 

strips placed into the stream of exhaust from the simulated breath system during the first 

1.6 min baseline period (before ammonia gas was turned on). With all parameters of 

humidity, temperature, flow rate, and sample length being the same as for previous 

protocols, the experiments were conducted where the electrodes were in the open 

environment in a fume hood. A concentration of 755 ppb ammonia was used for the 

measurements. The humidification chamber of the simulated breath system was changed 

for each of the four pH levels so as to reduce cross-contamination of solutions, and the 

water bags were changed for acid and base. 

4.2.10 Interferent gases 

Response of the electrodes to the percentile gases of breath (nitrogen, oxygen, carbon 

dioxide), as well as a few well-known volatile trace gases (nitric oxide, hydrogen sulphide, 

ammonia) was  investigated for potential interferent effects. These potentially interferent 

gases were used at room temperature and contained no moisture. The first five minutes 

were used as a baseline with no exposure to the gases. Repeated exposure to the gas at flow 

rates of 0.3 L/min for 0.06 min intervals was followed by a rest of one minute until ten 

minutes were reached. 
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4.2.11 Temperature, humidity, and humidified ammonia 

Using the simulated breath system discussed in Chapter 3, tests were performed to evaluate 

the effects of atmospheric air at room temperature (21 ±1oC), atmospheric air (room 

humidity) at human breath temperature (37 ±1oC), atmospheric air (with induced increase 

in humidity) at human breath temperature (37 ±1oC, ≥90% RH), and atmospheric air (with 

induced increase in humidity) at human breath temperature containing ammonia (37 ±1oC, 

≥90% RH, 245 ±8 ppbv) on the ratio-metric impedimetric response of the nanoPANI-

modified electrodes. Over a time span of 10 min, the first 1.67 min were used as a baseline 

with no exposure. At 1.68 min, the electrodes were exposed to a 62 ±0.67 L/min sample for 

repeated periods of 0.06 min every 1.67 min. 

4.2.12 Quantification of ammonia 

Using the simulated breath system discussed in Chapter 3, nanoPANI electrodes were 

exposed to samples (≥90% RH, 37 ±1oC, 62 ±0.67 L/min) containing ammonia at 

concentrations from 40 ±2 ppbv to 2,175 ±26 ppbv (n=3) to observe the quantifiable ratio-

metric impedance response (Z/Z0) profile at 962 Hz. The initial 1.67 min were the baseline 

with no exposure to the gas. Beginning at 1.68 min, the electrodes were exposed to 0.06 

min intervals of sample breath gas. This was repeated after the combined 0.25 min decrease 

in Z/Z0 (humidity effect) and 0.25 min post-peak stabilisation resulting in one breath 

measurement every 0.5 min until 10 min was reached (~16 breaths). 

4.3 Results and discussion 

The current work is based upon the effective replication of a previously established 

formulation of polyaniline. The prior formulation which led to the current formulation was 

discussed in detail in the collaborative works of Ngamna et al [8] and Crowley et al [10], 

and correct replication of the formulation has been explained by way of comparable 

characteristic UV-visible spectra. 

4.3.1 Reaction mechanism 

The reaction that is expected to take place when gaseous ammonia interacts with the 

nanoPANI on the electrodes is: 

  1PAH+DBSA- + 1NH3                     1PA + 1DBSA- NH4
+             
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where PAH+ is protonated (emeraldine) nanoPANI, PA is deprotonated (emeraldine) 

nanoPANI, NH3 is gaseous ammonia, and NH4
+ is ammonium [4]. Dodecylbenzene 

sulfonic acid (DBSA-) provides the counter ion to balance the exchange of protons between 

nanoPANI and ammonia. As ammonia interacts with nanoPANI, the available protons on 

the nanoPANI are taken by the ammonia molecule. In doing so, ammonia converts to the 

more energetically favourable ammonium molecule [2]. This deprotonation of the 

nanoPANI causes a disturbance in the electrochemical signal displayed as an increase in 

impedance directly proportional to the concentration of ammonia. When the source of 

ammonia desists, the ammonium molecule reverts back to ammonia and protons which 

potentially returns the nanoPANI to its original status.  

4.3.2 Dispersion of nanoPA%I upon electrodes 

When using ink-jet printing as the method of dispersion, it is necessary to use particles that 

are several orders of magnitude smaller than the diameter of the cartridge nozzle so as to 

prevent blockage [5]. Typically, the particles found in ink-jet inks range between 

approximately 100 nm to 400 nm [18], and the diameter of the nozzles in the Dimatix ink-

jet printer were reported to be 20 µm [19]. Studies have shown that the size of the 

nanoparticles can increase or decrease depending on the ratio of aniline to either APS or 

DBSA [8]. This is an important observation, because the size can often affect dispersion as 

well as the conductive behaviour of the nanoparticles. For example, when the concentration 

of APS is increased in proportion to the aniline, secondary growth of the polymer particles 

takes place resulting in increased size. Along with the increased size, there would be an 

increase in overall conductivity. However, the increased size carries with it the difficulty of 

dispersing properly through the diameter of the cartridge nozzle. Inverse to the results of 

increased APS, an increase in DBSA with regard to aniline results in smaller particle sizes 

due to its ability to stabilise the dispersion. A decrease in particle size is favoured when 

using ink-jet printing, but the level of resistance tends to increase [8]. Hence, a balance 

must be found in order to generate a nanoparticle formulation which disperses easily by 

way of ink-jet printing while upholding a useable level of conductivity. 

Shown via SEM (Fig. 4.2), the samples clearly consist of a continuous conductive printed 

film of polyaniline where some of the particles appear distinctly on top. By isolating the 
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more distinct particles, size distribution could be conducted which displayed a mean 

particle diameter of 382 ±33 nm (Table 4.1, n=23). 

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

 

Figure 4.2 SEM images of printed polyaniline film obtained at magnifications of (a) 

x5K, (b) x5K, (c) x7K, (d) x10K, (e) x20K, (f) x25K.  
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Table 4.1 Size distribution of particles in Fig. 4.2 

Particle Diameter (nm) Particle Diameter (nm) Particle Diameter (nm) 

a1 376 b1 395 c1 356 
a2 397 b2 335 c2 397 
a3 396 b3 373 c3 369 
a4 436 b4 397 d1 364 
a5 357 b5 432 e1 424 
a6 395 b6 375 e2 350 
  b7 452 e3 358 
  b8 334 f1 387 
  b9 335   

 

4.3.3 Analysis of polyaniline formulation using energy-dispersive X-ray spectroscopy 

Use of EDX displayed the key elements which exist in the polyaniline formulation (Table 

4.2; Figure 4.3). The spectrum of existing elements was measured at three locations of the 

polyaniline sample. It is expected to find contributions from the elements of the formulating 

components of deionised water (H2O), dodecylbenzene sulphonic acid (C18H30O3S), 

ammonium persulfate ((NH4)2S2O8), distilled aniline (C6H5NH2), and sodium dodecyl 

sulfate (CH3(CH2)11OSO3Na). Of the components which were observed, contributions of 

carbon, oxygen, sodium, and sulphur were easily identified. The aluminium and trace 

amounts of copper were from the stub used to hold the sample. Silicon is s byproduct of the 

inner housing of the EDX system. Phosphorus was at such a low trace level that it is 

believed to be a false measure of the peek at that region of the spectrum more indicative of 

noise. Nitrogen is not indicated due to the limited range of sensitivity in EDX. Nitrogen can 

be absorbed by the matrix especially if large amounts of carbon are in the formulation. In 

other words, carbon’s transmission absorbs that of nitrogen. It has also been indicated that 

the polymer film window on the detector would strongly absorb the nitrogen line acting as 

an interferent for that element (EDX user manual, DCU).  

Table 4.2 EDX percentages of elements obtained from polyaniline formulation 

Carbon (%) 60.86 ±3.7 Silicon (%) 0.07 ±0.0 
Oxygen (%) 24.90 ±1.2 Phosphorus (%) 0.03 ±0.0 
Sodium (%) 0.57 ±0.1 Sulphur (%) 11.03 ±2.6 
Aluminium (%) 2.32 ±0.3 Copper (%) 0.25 ±0.0 
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Figure 4.3 EDX spectrum of elements found in polyaniline formulation 

4.3.4 Electrode characterisation 

UV-visible spectra’s were obtained for six different nanoPANI dispersions (Fig. 4.4) so as 

to demonstrate the difference between formulations which are effectively replicates of the 

previously established formulation [8] and those which are not. The nanoPANI labelled 

Batch 1 was a nano-dispersion created in our lab from the recipe described in this chapter. 

Batches 2 and 3 were also nano-dispersions from that same recipe by separate individuals 

in other labs at DCU. Batch 4 was from a dispersion made in our lab that was not uniform 

throughout and displayed obvious physical inconsistencies. Batches 5 and 6 were 

dispersions from other labs that also lacked uniformity. From this, the initial expectation 

was that Batches 1 - 3 would present similar spectra of useable nanoPANI while Batches 4 

- 6 would display a significant difference indicative of a solution that would be discarded. 

In the case of the emeraldine salt form of polyaniline, it is characteristic of the energy 

transitional π – π* band to appear between 320 nm and 360 nm [20]. Hence, the six batches 

were normalised with respect to their individual maximas of this band between 344 nm and 

351 nm. Following this, the π - polaron bands which were expected between 400 nm and 

420 nm [20] were all seen at approximately 420 nm. The localised polaron bands should 

have been between 740 nm and 800 nm [20], but Batches 4 - 6 emerged between 757 nm 

and 818 nm which is a range falling outside the preferred limits. Batches 1 - 3 peaked 

between 756 nm and 766 nm providing similar results to those obtained in previous 

research [5, 8]. The higher intensity of the π - polaron bands seen in Batches 4 – 6 at 430 

nm in addition to the decreased intensity of the localised polaron bands beginning at 

approximately 750 nm have been reported to be a result of doping level and formation of 
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polaron [20]. In this case, increased concentrations of APS in relation to aniline [8] are the 

likely reason, which would also explain the lack of uniformity seen in the dispersions of 

Batches 4 - 6. 
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Figure 4.4 UV-vis spectra of nanoPA	I aqueous dispersions. Batches 1 – 3 display the 

responses from properly synthesised nanoPA	I. Batches 4 – 6 were the result of 

nanoPA	I that was improperly synthesised.  

To select a suitable frequency at which to operate the electrodes, the capacitive and 

resistive effects were observed over a range from 1 to 100,000 Hz (Fig. 4.5).  
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Figure 4.5 Impedimetric and phase behaviour of electrodes before (filled diamonds) 

and after (empty diamonds) exposure to 25 ppm ammonia. Results over the frequency 

range of 1 to 100,000 Hz were indicated by (a) Bode / phase and (b) 	yquist plots. 
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Bode plot data indicated that there was no significant change (955 ±1.33 Ω; n=3) in mean 

absolute impedance, |Z|, over the range of frequencies when no ammonia exposure took 

place (Fig. 4.5a). However, a noticeable capacitive effect did arise once the frequency went 

above 962 Hz. This was indicated by a slight decrease in impedance from 956 to 951 Ω, 

and a change in phase of -1.8o. Using the same three electrodes, direct exposure to 25 ppm 

ammonia took place until a stable baseline was formed. Once stable, the frequency 

spectrum was recorded. The newly formed baseline displayed a higher mean |Z| and 

deviation than without ammonia (2,166 ±17.8 Ω; n=3). As with the results without 

ammonia, a capacitive effect occurred after 962 Hz. The impedance decreased from 2,167 

to 2,124 Ω, and phase displayed a change of -2.3o. The Nyquist plot showed that once a 

frequency of 967 Hz was reached, a capacitive change occurred in the electrodes regardless 

of whether or not there was ammonia exposure (Fig. 4.5b). However, exposure to ammonia 

resulted in a larger change in capacitance as the frequency increased. The increase in 

capacitance seen beyond 962 Hz would not be favourable since it could essentially short-

circuit the electrodes [21]. Hence, the critical frequency of 962 Hz was used for analysis in 

all subsequent measurements to ensure that the optimum resistive effects of the 

impedimetric measurements were still observed during ammonia interaction. 

Using a sample of 30 electrodes printed from the same nanoPANI solution, examination of 

their baseline variability and drift at 962 Hz, 5 mV rms was performed. Measurements were 

taken over a 10 min period to reflect an adequate breath sampling period. The recorded 

baseline consisted of 121 data points which were averaged to create the intra-variable mean 

absolute impedance |Z| and drift of that electrode’s baseline. The drift was expressed as the 

deviation and absolute coefficient of variation of this mean over that time period. Of the 30 

electrodes, the mean baseline ranged from 815 to 2,401 Ω with an inter-electrode baseline 

mean and standard deviation of 1,443.7 Ω and 478.2 Ω; 33% RSD. Over the 10 min, the 

intra-electrode drift varied from 1 to 33 Ω; 0.05% to 1.67% RSD. To compensate for the 

initial variation in baseline, 10 electrodes were analysed ratio-metrically based on their 

initial baseline impedance (Zo) and then exposed to simulated breath ammonia (Z). 

Electrodes were repeatedly exposed to 0.06 min of simulated human breath (≥90% RH, 37 

±1oC, 62 ±0.67 L/min) containing 245 ±8 ppbv ammonia as determined by photoacoustic 

laser spectroscopy (Chapter 3), followed by a gap of 0.25 min, and the difference between 

Z/Z0 at 1.67 min and 10 min was evaluated which was determined to be 2.69 ±0.12 (4.46% 
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RSD, n=10). This suggested that the electrodes could be used without the need for 

extensive individual calibration other than initial ratio-metric baseline correction. Further 

measurements on the electrodes applied this methodology. 

4.3.5 Evaluation of the effect of pH 

The signal response as a result of pH is shown in Table 4.3 and Fig. 4.6. Of the solutions, 

the basic solutions initiate higher primary response signals and decreased quickly while the 

acidic demonstrated lower primary response signals. The behaviour has been demonstrated 

in previous literature where electrodes consisting of PANI films displayed an increase in 

resistance [22] or decrease in current [23] as deprotonation of the film takes place with 

increasing pH. However, the signals in Fig. 4.5 appear to decrease over time similar to the 

effect of increased water vapour. In addition, the closer the pH levels are to neutral, the 

more they stay around the baseline. The overall increase or decrease in pH constitutes less 

than ±0.1 change in Z/Zo, and though this will introduce a small error into the 

measurements, the error is towards the lower end of the measurement range. 

Table 4.3 Signal response as a result of exposure to pH level. 

 

pH Z/Zo at 430 s Z/Zo at 800 s 

9 -0.06 -0.11 

8 -0.02 -0.03 

6 -0.01 -0.01 

4 -0.07 -0.05 

 

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0 100 200 300 400 500 600 700 800

Time (s)

p
H
 R
e
s
p
o
n
s
e
 (
Z
/Z
o
)

pH 9

pH 8

pH 6

pH 4

 

Figure 4.6 Response of electrodes to exposure of individual pH levels. The increase or 

decrease in pH constitutes a change of less than ±0.1 Z/Zo. 
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4.3.6 Evaluation of the effect of interferent gases 

Carbon dioxide (99%), nitrogen (99%), hydrogen sulphide (25 ppm) and nitric oxide (25 

ppm) showed no significant change in Z/Z0 or phase responses from the electrodes despite 

the concentrations being well above those that would be realistically found in a human 

breath sample (Fig. 4.7). Oxygen (99%) displayed a negligible response in Z/Z0 with no 

significant phase response. Ammonia (25 ppm) exhibited its well-established impedimetric 

response with an insignificant change in phase. 
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Figure 4.7 Ratio-metric impedance and phase (inset) responses to potential interferent 

gases in human breath: (a) 99% carbon dioxide, (b) 99% nitrogen, (c) 99% oxygen, 

(d) 25 ppm hydrogen sulphide, (e) 25 ppm nitric oxide, (f) 25 ppm ammonia. 

The use of polyaniline in sensors for the detection of these gases has displayed varied 

results in other literature indicating that further research is still necessary. Previous 

literature has indicated that pure carbon dioxide caused an increase in conductivity when 

using the emeraldine base form of polyaniline [24]. The increased conductivity was shown 
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to be proportional to the increase in carbon dioxide. It was stated that the conversion of 

polyaniline from the base to the salt form resulting from the hydrolytic formation of 

carbonate ions during carbon dioxide’s interaction with the base was the cause. However, 

this method was contradicted in other findings where the procedure led to poor sensing 

characteristics such as severe drift, shorter range of detection, and slower response time 

[25]. Research into the effects of gaseous nitrogen and oxygen on polyaniline was lacking, 

but studies using polyaniline as the conducting polymer of batteries displayed relevant 

comparisons [26]. In this work of Wu et al, it was demonstrated using a polyaniline-based 

battery that introduction of pure nitrogen gas caused a decrease in conductivity while 

oxygen increased conductivity. Though the results displayed were significant by 

comparison to the current work, they were the result of consistent flow and a signal only 

appearing after five minutes. Work with hydrogen sulphide in previous literature had 

shown significant increases or decreases in conductivity depending on the composition of 

the polyaniline [11]. The emeraldine salt form of polyaniline consistently showed weak 

responses to 100 ppm hydrogen sulphide. However, it was noticed that both base-treated 

polyaniline and copper chloride composite polyaniline displayed significant increases in 

conductivity. This behaviour was similar to previously discussed base-treated polyaniline 

and indicated that the polyaniline had been protonated to the salt form. Previous 

observations of 20 ppm nitric oxide on polyaniline films had shown an increase in 

resistance [27]. However, the response on their nine-layer film did not emerge until after a 

continuous flow of 20 s which was five times longer than that which was necessary for the 

research carried out on the 10-layer films assessed in this chapter. In observation of 

ammonia, there was a display of increased Z/Z0 which was similar to the behaviour seen in 

other articles where polyaniline films were used. Using flows of ammonia gas on PANI 

films in a chamber headspace, research from Sengupta et al provided evidence of increased 

resistivity where concentrations of ammonia increased from 100 ppm to 750 ppm. [28]. The 

work of Du et al demonstrated how PANI films doped with 4-toluenesulfonic acid (TSA) 

display consistent increases in resistance where 50 ppm ammonia was observed as well as a 

progressive linear response from 5 ppm to 200 ppm [29]. In an article by Virji et al, a flow 

of 100 ppm ammonia onto a PANI film over 1,500 s also resulted in increased resistance 

[30]. From this, it was deduced that ammonia was the only major volatile compound of the 

tested common breath gases that would have a significant effect on the nanoPANI 

electrodes. 
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4.3.7 Evaluation of the effect of temperature, humidity, and humidified ammonia 

Exposure of atmospheric air, warmed atmospheric air, warmed atmospheric air with 

induced humidity, and warmed atmospheric air with induced humidity and ammonia to the 

nanoPANI electrodes were examined to assess their potential interferent effects and 

characteristic behaviour (Fig. 4.8).  
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Figure 4.8 Interdigitated nanoPA	I electrode response of ratio-metric impedance, 

Z/Z0, and inset phase angle, φφφφ, to 62 ±0.67 L/min of (a) room temperature atmospheric 

air, 21 ±1
o
C, (b) warmed atmospheric air, 37 ±1

o
C, (c) warmed humidified 

atmospheric air, 37 ±1
o
C, ≥90% RH, and (d) warmed humidified air with ammonia, 

37 ±1
o
C, ≥90% RH, 245 ±8 ppbv. 

Introduction of atmospheric air at room temperature to the electrodes resulted in no 

significant change in ratio-metric impedance, Z/Z0, or phase angle, φ. Warmed atmospheric 

air comparable to human breath temperature was detected by the sensor with a very 

negligible and transient response to Z/Z0, but no observable change in φ. These findings are 

similar to those produced in previous literature claiming slight changes in conductivity 

between the ranges of room temperature to approximately 60oC [10]. Warmed humidified 

air resulted in a significant transient decrease in Z/Z0. Furthermore, there was a significant 

negative phase shift indicating a capacitive effect due to water vapour. As the water 

evaporated from the electrode after sampling, Z/Z0 and the phase returned to their original 
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baselines in a characteristic, time-dependent manner. These effects were expected as it has 

been noted in published literature that both humidity and temperature can interfere with the 

conductivity of polyaniline electrodes [31]. The research of Wang et al went on to show 

how observations of the change in conductivity in a ratio-metrical manner (R/R0), the 

effects of humidity and temperature could be isolated from those of gases such as ammonia. 

In humidified air at human breath temperature containing 245 ±8 ppbv of ammonia, the 

interaction of humidity with the electrodes again caused a negative phase shift and an initial 

decrease in Z/Z0, similar to Fig. 4.8c, despite the simultaneous interaction of ammonia. 

However, upon recovery of the electrode from temperature and humidity fluctuation, an 

increase in the Z/Z0 baseline could be observed, whereas an insignificant change in the 

phase angle was apparent. The insignificant change in the phase angle indicated that 

ammonia caused a resistive effect on the electrodes, and the capacitive effects were specific 

to water vapour. This suggested that the impedimetric response signature of ammonia on 

the electrodes could be differentiated from temperature and humidity components by time-

dependent control of the sampling methodology, or through differential analysis of the 

changes in impedance and phase. For further work, a time-controlled breath sampling 

method was employed. 

4.3.8 Quantification of ammonia in the presence of simulated human breath interferents 

It was mentioned in the previous sections that literature has demonstrated how polyaniline 

could be used to detect gaseous ammonia and potentially quantify it. For the purpose of 

developing a quantitative measurement, the work of Kukla et al demonstrated that exposure 

of 100 ppm, 300 ppm, and 600 ppm ammonia to polyaniline films resulted in proportional 

increases in resistance [4]. This proportional increase in resistance could also be seen in the 

work of Liu et al where gaseous ammonia between 1 ppm and 50 ppm displayed 

proportional increases in resistivity [32]. Though the ranges shown in these articles were as 

low as parts-per-million, application for human breath would be insufficient since the 

necessary detection range is in parts-per-billion. Other studies have achieved detection and 

quantification in the parts-per-billion range by combining polyaniline with nanocomposites. 

Chang et al used polyaniline in combination with multi wall carbon nanotubes (MWCNTs) 

to see the effects of ammonia concentration on changes in current. It was noticed that 

gaseous ammonia over the range of 200 ppb to 25 ppm produced quantifiable readings 

where increases in concentration provided equal changes in the observed current [33]. 
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Zhang et al showed how polyaniline in combination with single wall carbon nanotubes 

(SWCNTs) could be used to see a change in resistance proportional to ammonia 

concentrations between 50 ppb and 15 ppm [34]. In more recent literature, there have also 

been demonstrations that used composites such as titanium dioxide [35]. By combining 

polyaniline with titanium dioxide, Li et al were able to measure proportional changes in 

current to ammonia concentration from 25 ppb to 200 ppb. Assurance of higher sensitivity 

is a beneficial attribute of such nanocomposites, but there are also disadvantages. Synthesis 

of such materials as carbon nanotubes is a complex process which makes control of the 

chemical and electrical properties difficult [36].  This process also has a high tendency to 

generate composites with defects and impurities that are not easy to overcome. 

Furthermore, due to their hydrophobic attributes, they are difficult to disperse in most 

common solvents. The effort required to manufacture composites with the required 

characteristics also increases the production costs. The PANI films discussed in these other 

research were both capable of detecting ammonia at low concentrations as well as showing 

potential for quantification, but the gases studied were not immersed in matrices of 

interferents commonly found in breath. Hence, the effects of potential breath interferents 

were unknown. In the following work, using the nanoPANI electrodes allowed for low-

concentration quantification of ammonia from among the simulated breath interferences 

discussed in the previous sections.  
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In Fig. 4.9, the response of the nanoPANI electrodes to simulated breath was observed.  
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Figure 4.9 Ratio-metric impedance response (Z/Z0) profile of simulated breath 

samples on nanoPA	I electrode measured at 962 Hz. 	o exposure to the gas for 100 s 

formed the initial baseline. Beginning at 101 s, a 62 ±0.67 L/min exhalation of four 

seconds from the simulated breath system flowed onto the electrode. This was 

repeated after the combined 15 s decrease in Z/Z0 due to humidity and 15 s post-peak 

stabilisation resulting in approximately one breath measurement every 30 s until 600 s 

was reached. 

The behaviour was similar to that which was observed in Fig. 4.8d. There was an initial 

decrease in Z/Z0 in response to temperature and humidity. This was followed by recovery of 

the electrode (indicated by an increase in Z/Z0) upon return to atmospheric conditions. 

During this recovery, the response appeared to be cumulative because with each successive 

addition, there was a proportional increase in Z/Z0. In other words, with each simulated 

breath, the specific number of expelled ammonia molecules interacted with the 

proportionally available number of protonated nanoPANI sites. Hence, a change-consistent 

step-like increase in Z/Z0 with each exposure was observed. This also implied that there 

were more sites available for the next breath exposure since a lack of increase in Z/Z0 

would have been indicative of complete nanoPANI saturation. Thus, after a specified 

number of simulated breaths per cumulative sample time, the change in Z/Z0 could be 

interpreted as a level which was proportional to the ammonia concentration. The 

concentrations observed were quantifiable over the tested range of 40 ±2 ppbv to 2,175 ±26 
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ppbv. Peak responses were then extracted from the data in Fig. 4.9 and plotted to determine 

the effect of breath number over the sampling time on range and linearity (Fig. 4.10).  
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Figure 4.10 Change in Z/Z0 observed on nanoPA	I electrodes (n=3) for each ammonia 

concentration at 0.5 min increments where breath one was at 2.16 min and breath 17 

was from the post-peak stabilisation at 10 min. 

Immediately noticeable in Fig. 4.10 is that the standard deviation of Z/Z0 increases with 

increasing ammonia concentration. This was exptected since with an increasing number of 

ammonia molecules, there would be increased competition for the remaining available 

protonated nanoPANI sites. Using the changes in Z/Z0 observed for each concentration, 

calibration curves were obtained every 0.5 min from 2.16 min (breath 1) to 10 min (breath 

17) to demonstrate the effect of increasing sample numbers on the correlative response 

(Table 4.4; Fig. 4.11). For the range from 40 ±2 ppbv to 2,175 ±26 ppbv, the response of 

Z/Z0 to ammonia was found to increase in linearity with an increased number of breath 

samples. The correlation coefficient was found to be 0.5583 for the first breath, but showed 

improvement by breath 17 with a correlation of 0.9963. 
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Table 4.4 Correlations of the relationship between the impedance response ratio 

(Z/Z0) and breath ammonia concentrations (Fig. 4.10) with respect to breath sample 

number. 

Breath 	umber Correlation (R
2
) Breath 	umber Correlation (R

2
) 

1 0.5584 9 0.9698 
2 0.6475 10 0.9788 
3 0.7102 11 0.9837 
4 0.8083 12 0.9882 
5 0.9257 13 0.9901 
6 0.9529 14 0.9942 
7 0.9604 15 0.9920 
8 0.9694 16 0.9923 
  17 0.9963 
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Figure 4.11 Relationship between the impedance response ratio (Z/Z0) and simulated 

breath ammonia concentrations demonstrating an increase in linearity with increased 

sample number. 

The ratio-metric responses at breath 17 (10 min) (Table 4.5; Fig. 4.12) generated a slope 

and intercept of 0.0079 ppbv-1 and -0.28, respectively. Based on this data and the maximum 

intra-electrode baseline drift variability determined earlier (1.67%), a theoretical limit of 

detection of approximately 6.3 ppbv could be determined (S/N=3), and a linear dynamic 

range was observed from 40 ±2 ppbv to 2,175 ±26 ppbv. As discussed in Chapter 1, the 

physiological range of human breath ammonia is approximately 50 ppb to 2,000 ppb which 

conveys that the electrode detection limits encompass the relevent range for expected 

human breath measurements. 
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Table 4.5 Ammonia concentrations and ratio-metric (Z/Z0) results from breath 17 

(600 s). *Concentration determined by correlation with PALS (Chapter 3, Section 

3.3.3). 

*	H3 / ppbv (n=5) Z/Z0 (n=3) Z/Z0 RSD (%) 

40 ±2 0.20 ±0.01 3.72 
121 ±15 0.30 ±0.02 6.60 
245 ±8 1.86 ±0.21 11.22 
392 ±6 2.42 ±0.21 8.55 
755 ±7 6.06 ±0.17 2.77 
984 ±21 7.51 ±0.40 5.30 

1,368 ±11 10.89 ±0.31 2.84 
1,576 ±7 12.05 ±0.27 2.20 
1,919 ±20 14.19 ±0.17 1.17 
2,175 ±26 17.20 ±1.10 6.41 
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Figure 4.12 Relationship between ammonia concentration and change in Z/Z0 after 17 

breath samples (R
2
 = 0.9963). A slope and intercept of 0.0079 ppbv

-1
 and -0.2852 were 

generated. 

4.4 Conclusions 

An electrode based on an inkjet-printed film of a previously established nanoPANI 

formulation was used as the basis of an ammonia breath sensor. Physical characterisation of 

the nanoPANI displayed nanoparticles with a mean particle diameter of 382 ±33 nm that 

generated a UV-vis spectrum similar to those of previous works. Bode and Nyquist analysis 

identified the optimum frequency for measurements to be 962 Hz, 5 mV rms. Variability 

and drift of the electrodes was demonstrated to be low with an intra-variability of 0.05 to 

1.67% RSD. From this, an impedimetric method of detection based on ratio-metric 
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impedance (Z/Z0) measurements was established. Additionally, pH levels between 5 and 9 

resulted in a change of signal behaviour less than ±0.1 Z/Zo. Observations of potential 

interferent gases as well as effects of temperature and humidity conveyed that the only 

significant factors were ammonia gas and humidity. Ammonia gas induced an increase in 

Z/Z0 while humidity caused a decrease. An analytical technique utilising cumulative 

sampling of breaths over a particular duration of time was chosen for detection and 

quantification of ammonia from among the simulated breath interferents. Using this method 

generated a 0.9963 correlation across the analytical range of 40 ±2 ppbv to 2,175 ±26 ppbv 

(LOD=6.3 ppbv) which was appropriate for diagnostic applications of breath monitoring 

technology. 
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CHAPTER 5 

DEVELOPME	T OF A DEVICE FOR MEASURI	G  

BREATH AMMO	IA (AmBeR) 
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5.1 Introduction 

The provision of real-time point-of-care diagnostics in a non-invasive manner is a major 

goal of modern biomedical diagnostics. There are several routes to non-invasive or 

minimally invasive measurements, and among the most attractive is exhaled breath. The 

sample size of human breath is typically a few hundred millilitres where the concentration 

of ammonia can be in the low parts-per-billion. This concentration is much lower than other 

common breath gases such as carbon dioxide and oxygen which means the method of 

ammonia detection must be highly sensitive and selective [1]. Furthermore, devising a 

system that can assist with processing and control of the breath ammonia sample to 

facilitate effective measurement would be necessary to achieve this goal. 

Over the years, there have been several methods and devices developed for the purpose of 

breath ammonia detection. Some of the most sensitive devices for selectively detecting and 

quantifying ammonia have relied upon techniques such as mass spectrometry which would 

not be suitable for miniaturisation or integration and, therefore, have proven unsuitable for 

point-of-care instrumentation that would be easily portable for clinical use. An example 

would be devices based on selected ion flow tube mass spectrometry (SIFT-MS) such as 

the Profile 3 [2] which at 120 kg and £130,000 would not be useful as a point of care 

system. Melker et al utilised the concept of the electronic nose which was capable of 

detecting gases based on pattern recognition [3]. However, using electronic nose 

technology tends to utilise sensors that are only capable of recognition, but are not capable 

of quantifying breath ammonia. Boga et al developed a method whereby a tube was lined 

with Michler’s hydrol which would react with exhaled breath [4]. Michler’s hydrol is an 

indicating agent that utilises a visible change in colour upon the presence of exhaled 

ammonia. This method could be used as an indicator, but also lacked the ability to quantify 

breath ammonia. Furthermore, the use of an indicating agent so close to the mouth could 

raise issues of toxicity in a clinical setting. Suslick et al discussed a different device that 

also relied on a visual method of detection where an indicator dye was used [5]. Techniques 

which have attempted to simplify the method of detection by removing interferences such 

as breath humidity have also been attempted. Hamilton et al created a device which used 

sodium hydroxide to remove the water vapour from the breath as it passed through the 

system [6]. The dehydrated sample containing ammonia would then interact with a sensor. 

However, use of desiccants is not ideal for clinical development as the potential for 
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exposure to the patient would be too high. Furthermore, a desiccant would add complexity 

to the technology whereby it would need to be regenerated on a regular basis. Stepping 

away from attempts to segregate ammonia from the other constituents of breath, others 

have proposed merely collecting the alveolar portion of breath with the assumption that the 

sample will contain the highest concentration of breath ammonia. The work of 

Baghdassarian demonstrated a breath sampling device which utilised an internal monitor 

for detection of CO2 concentrations within breath samples [7]. The purpose of monitoring 

CO2 was to indicate when alveolar breath emerged, and with it the gaseous metabolites 

from blood (e.g. ammonia). The concentration of CO2 varies from person to person, but 

previous research has suggested that approximately 3.3 ±0.9 % (v/v) would be an 

appropriate value to indicate when a sample contained alveolar breath [8]. While the device 

was good for isolation of alveolar breath, it did not demonstrate the ability to quantify 

ammonia concentrations in real-time. Furthermore, the system demonstrated no means of 

reducing effects from humidity which is a well-known interferent in gas measurements [9]. 

Olthuis et al showed a device that could not only detect ammonia, but also quantify it by 

combining a sample volume of the gas with purified water to form ammonium ions [10]. 

The concentration of ammonium ions formed in the water was quantified using an 

electrolyte conductivity sensor [11] providing an indication of the original ammonia 

concentration. The advantage of using such a technique was that a sample of gas could be 

concentrated into a smaller volume of liquid suitable for miniaturised devices [1]. However, 

whether or not the structure of the technology was simple enough to be suitable as a re-

usable point-of-care device used in real-time monitoring of patients was not demonstrated. 

Although these examples demonstrate a number of methods which show potential for 

development into breath gas monitoring devices, there is currently still no suitable analyser 

for use in clinical analysis [1]. The requirements of being non-invasive, point-of-care, low 

cost, easy to use, and providing real-time results have not been fulfilled. The ammonia 

sensor demonstrated in Chapter 4 has the potential to form the basis of a system for 

measuring breath ammonia. However, to achieve this, it too must interact with the breath 

sample in a defined and appropriate fashion to account for, or prevent interference from a 

number of variables such as sample flow rate, volume, temperature and humidity. Thus, a 

breath monitoring system was developed based on the ammonia sensor to achieve this 
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control for the purpose of developing a non-invasive real-time point-of-care clinical 

monitoring device for breath ammonia. 

5.2 Materials and methods 

5.2.1 Materials 

Disposable spirettes (831204A) were provided by NDD Medical Technologies, MA. 

Bacterial / viral filter mouthpiece (02129 NS, DEAS Breathing Solutions, Italy), T-junction 

valves fitted with one-way directional flow passive valve diaphragms (4476, Respironics 

Respiratory Drug Delivery UK Ltd., UK), and 22 mm internal diameter ethyl vinyl acetate 

(EVA) corrugated flexible tubing (001405, Cardinal Health, USA) were all approved with 

CE0123 certification. The air-cushioned face masks were sourced from Pranalytica, CA, 

U.S.A. as an accessory of their breath analysing photoacoustic laser system, the 

NephroluxTM. A manually operated two-way valve (651160, 25 mm I.D.) was purchased 

from Yamitsu, UK. A custom-built electrode housing was fabricated by Parsec Ltd., 

Ireland. A model SG40281B1-0000-Q99 DC12 V fan (4934354) was purchased from 

Sunonwealth Electric Machine Industry Co., Ltd., Taiwan. A 12 V universal power supply 

(EA-PS 1501 T) was purchased from Elektro-Automatik GmbH and Co., Germany. The 

power supply was later modified so as to have the speed controls integrated within the 

system enclosure and was connected to the mains. Axial fan finger guard (5440374), power 

supply chassis socket (505-1637), potentiometer P16A (118-413), panel mounted switch 

(710-9299), SRBP strip board (433-832), PVC equipment wire (356-527), ceramic 

capacitors (653-0024), and carbon resistors (707-7745 and 707-7760) were all purchased 

from Radionics, Ltd. The interdigitated electrodes were fabricated according to Chapter 4, 

Section 4.2. 

5.2.2 Instrumentation 

Impedance measurements were performed using a model 660C Series Electrochemical 

Analyser Workstation (CH Instruments Inc., TX, USA). Human breath ammonia 

measurements were performed with a NephroluxTM photoacoustic laser spectrometer 

system (Pranalytica, USA). Air flow measurements were made using a spirometer 

(EasyOne Model 2001, Fisher Biomedical Incorporated, FL, USA). 
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5.2.3 Generation of simulated breath samples 

Ammonia sensor baseline measurements were taken in atmospheric air (21 ±1oC and 51 

±7% RH) prior to the application of simulated and human breath samples. Simulated breath 

samples (62 ±0.7 L/min air flow at a temperature of 37 ±1oC and relative humidity ≥ 90%, 

with or without ammonia) were generated using the system described in Chapter 3.  

5.2.4 Measurement of ammonia 

A new ammonia electrode (fabricated according to Chapter 4) was used for each set of 

measurements and subsequently disposed of. Electrodes were exposed to simulated breath 

for defined periods. Experiments were performed to investigate the impact of breath 

interferences (e.g. temperature and humidity) and the nature of the breath sampling 

interface on the sensor response to ammonia. These included investigations of the 

configuration of the sample collection measurement chamber, the orientation to the sensor, 

and the control of sample flow rate and volume across the sensor (Sections 5.2.5 through 

5.2.8). Ammonia was measured impedimetrically at 962 Hz, 0 V initial bias, 5 mV 

amplitude, and a 5 s sampling rate, as established in Chapter 4. 

5.2.5 Effect of the measurement chamber design on sensor impedance response 

characteristics 

Plastic spirettes (22 mm internal diameter and 152 mm length) were used as the tubing 

through which the simulated breath samples were supplied to the sensor. A variety of 

tubing designs were evaluated for their effect on the sensor response to simulated breath 

containing ammonia (see Section 5.3.1). 

5.2.6 Effect of sensor orientation in the measurement chamber on impedance response 

characteristics 

The response characteristics of the sensor with regard to its configuration within the sample 

measurement chamber were investigated. The sensor was oriented in a number of 

configurations with respect to the chamber and impedance responses to ammonia were 

measured. 
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5.2.7 Evaluation of a three-stage sampling methodology 

A preliminary breath measurement prototype was designed consisting of two parts. The 

first was a breath sample collection chamber of defined volume (79 to 225 ml) with passive 

inlet and outlet T-junction diaphragm valves. The inlet valve was connected to a face mask 

or anti-bacterial / viral mouthpiece. The outlet was connected to a second passive T-

junction valve. The second part was a measurement chamber consisting of a length of 

tubing housing the ammonia sensor and the fan. 

Simulated breath samples were first collected in the sample collection chamber for 4 

seconds during sensor baseline measurement. Following collection, samples were drawn 

from the sample collection chamber through the measurement chamber containing the 

sensor at a flow rate of approximately 110.8 ±0.7 L/min using the miniaturised fan by 

manually connecting the two sections together. Fresh atmospheric air was allowed to pass 

across the electrode through the measurement chamber before and after breath sampling. 

5.2.8 Effect of flow-rate and volume on electrode signal behaviour 

The effect of the flow rate of breath and atmospheric air across the electrode assembly on 

the electrode signal behaviour was investigated. Rates from approximately 90 to 128 L/min 

were mediated by controlling the applied voltage to a miniaturised fan and recording the 

flow rates through the measurement chamber using a spirometer. Sample collection 

chambers of varying volumes from approximately 79 to 225 ml were employed to evaluate 

the impact of sample volume on sensor responses. 

5.2.9 Final prototype assembly 

A prototype breath ammonia measurement system (AmBeR) was assembled based on the 

outcomes of earlier experimental work. This consisted of the breath sample collection 

chamber with passive inlet and outlet T-junction valves, and face mask. This was connected 

to a custom-built electrode holder and fan assembly (measurement chamber) via a manually 

operated two-way valve to alternate flow across the electrode between the sample 

collection chamber, and atmospheric air, as required. 
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5.2.10 Calibration using simulated breath ammonia 

Calibration of the system was performed by sequential application of eight simulated breath 

samples for each of the ammonia concentrations ranging from 40 ±2 to 2,993 ±10 ppbv 

(n=3). From this data, comparisons with human breath measurements were made. 

5.2.11 Evaluation of the AmBeR system in normal human breath samples 

A cohort of 10 healthy human volunteers was locally recruited following institutional 

ethical approval (Appendix 4). The method of breath analysis was the same as that 

previously described in Chapter 2. To summarise, volunteers who claimed to have no 

breathing abnormalities answered a questionnaire to provide biometric information such as 

their gender, ethnicity, age and BMI. The volunteers then provided oral breath samples via 

PALS and the AmBeR system. One individual provided multiple breath samples (n=7) for 

an intra-individual variability study. 

5.2.12 Retrospect on sensor lifetime and robustness 

Using AmBeR, electrode stability was observed over six-months using data from six 

individuals who displayed similar breath ammonia concentrations (651 ±36 ppbv). Stability 

and robustness of the electrodes at month six were compared to month. This included 

assessment of baseline drift, and overall signal response to similar breath ammonia 

concentrations. 

5.3 Results and discussion 

The development of the sensor in Chapter 4 for measuring ammonia in simulated breath 

samples at clinically relevant concentrations indicated that the sensor had the appropriate 

measurement capabilities to make it useful in a diagnostic application. However, many 

challenges in measuring real breath samples such as how to control the interaction of a 

breath sample with the sensor in such a way as to provide responses from the electrode that 

were not influenced by other factors still had to be addressed. Some of these known factors 

were issues such as the volume and flow rate profile of the breath sample, and constituents 

of the breath sample such as temperature and humidity. Research focussed on investigating 

these issues and establishing appropriate solutions to bring about a viable breath sampling 

methodology and an associated sampling system. 
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5.3.1 Effect of the measurement chamber design on sensor impedance response 

characteristics 

As demonstrated in Chapter 4, Section 4.3.5, humidity had the effect of causing a decrease 

in Z/Z0, while ammonia resulted in an increased Z/Z0 response. However, that study was 

performed in a ‘ventilated’ environment in which the humidified sample was able to 

quickly dissipate and mix with atmospheric air. In that case, the increase in Z/Z0 from 

ammonia only occurred upon cessation of flow of the humidified sample which, in turn, 

allowed for the moisture to disperse from the electrode surface. This would appear to 

indicate that if a stagnant layer of moisture were to build up on the electrode surface, the 

resulting decrease in Z/Z0 could potentially block or reduce the characteristic increase in 

Z/Z0 from ammonia. Hence, the more ‘enclosed’ the environment around the sensor, the 

greater the interference that might be expected from the trapped humidity. Thus, it was 

critical to evaluate this aspect of the breath measurement process on the behaviour of the 

sensor. 

To enable breath samples to be passed over the surface of the electrode, an appropriate 

form of tubing was required. To avoid any further complicated variations in pressure and 

linear flow velocities of the breath samples, the diameter of the flow tubing used for the 

samples was kept as constant as possible. In this regard, spirette tubes are widely used in 

medical technology to sample breath for lung capacity measurements, or to allow the 

administration of therapeutic agents such as gases or nebulised drugs [12]. Therefore, 

disposable spirettes were selected as an excellent human-to-device interface as they have 

already been developed and optimised for this purpose. The spirettes were of a cylindrical 

configuration with dimensions of 22 mm diameter and 152 mm length [13]. A diameter of 

22 mm is the minimum diameter commonly observed in spirometry. Initially, electrodes 

were positioned horizontally within the end of the spirette at the mid-point between the top 

and bottom of the chamber. The spirette inlet and outlet were either left entirely open to the 

atmosphere (ventilated) or were sealed by passive diaphragm valves (non-ventilated) (Fig. 

5.1), and their impact on the impedimetric response from simulated breath ammonia 

samples was evaluated. The passive flow valves consisted of flexible diaphragms that 

would allow air to pass through the system until the flow of air ceased, at which point, the 

valves would close and trap a sample of the simulated breath within the chamber. 
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Figure 5.1 Diagram of ventilated and non-ventilated measurement chambers used to 

compare effects of simulated breath on the electrodes. 

The ventilated set-up, however, contained no valves to close off the flow of air. In doing so, 

the simulated breath would pass across the electrode followed by dissipation of the sample 

into the open atmosphere once the flow had ceased. Fig. 5.2 shows the response from 

warmed, humidified air containing 245 ±8 ppbv of ammonia. The non-ventilated system 

resulted in a permanent decrease in Z/Z0 where neither a recovery to the original baseline, 

nor a quantifiable reading from ammonia was evident. The lack of a significant flow 

through resulted in flow stagnation and vapour condensation which was observed on the 

walls of the non-ventilated chamber, and by a thin film of liquid on the sensor. With the 

ventilated system, however, the characteristic initial decrease in Z/Z0 due to humidity was 

seen, followed by a subsequent increase in Z/Z0 above the baseline due to ammonia, similar 

to the behaviour observed in Chapter 4. By allowing release of the sample to the open 

atmosphere, efficient dissipation of the vapour could occur, allowing the electrode to 

recover from humidity effects. Conversely, trapping the sample within the confines of the 

sensor resulted in elevated interference from humidity in the sample which masked the 

sensor’s response to ammonia. Thus, further studies were performed in the ‘open’ 

ventilated configuration. 
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Figure 5.2 Evaluation of the effect of the measurement chamber design on the sensor 

impedance response to simulated breath containing 245 ±8 ppbv ammonia. Sample 

was applied to the chamber (a) for a period of 10 s (b), followed by the next pulse of 

sample which was 50 s later (c). The cycle was repeated five times. 

5.3.2 Effect of sensor orientation relative to the measurement chamber on impedance 

response characteristics 

The position of the sensor relative to the chamber was also investigated with the sensor 

being positioned either perpendicular or parallel with the air flow in different regions of the 

chamber (Fig. 5.3). The diameters of the nanoPANI electrode and chamber were 

approximately 14 and 22 mm, respectively, allowing sample and air flow to pass over and 

around the electrode. Configurations 1 through 4 were parallel to the flow of air where 1 

was set at the base of the chamber, 2 at approximately a quarter ways from the base, 3 at 

three-quarters of the way, and 4 in close contact with the top of the chamber. Configuration 

5 was perpendicular to the flow of air. The 62 ±0.7 L/min flow of air from the simulated 

breath system was consistent with atmospheric conditions (21 ±1oC and 51 ±7% RH) 

whereby a 50 s input of 755 ±7 ppbv ammonia took place after a 100 s baseline consisting 

only of the atmospheric air flow. Since the purpose of the experiment was to optimise 

sensor response to ammonia, elevated humidity was not employed. 
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Figure 5.3 Configurations of electrode within the measurement chamber. With the 

nanoPA	I in parallel to the flow of air and exposed upwards, the approximate 

percentage chamber diameter from the base of the chamber: (1) 0%, (2) 25%, (3) 

75%, (4) 100%, and (5) perpendicular to the chamber exit. 

All configurations showed an increase in Z/Z0 upon exposure to the flow of atmospheric air 

from the simulated breath system (Fig. 5.4). However, configuration 5 displayed the 

greatest response from the sensor. This was observed by the largest increase in Z/Z0 as well 

as a notable recovery towards the baseline due to good ventilation at the surface following 

sample application. With regard to the parallel flow configurations, 1 showed the highest 

response and the fastest recovery although 2 was quite similar, as both were exposed to 

adequate sample headspace to ensure no reduction in signal due to convective limitations at 

the electrode. Configuration 3 showed a significantly weaker ammonia signal due to further 

headspace limitation, but still had good sensor recovery showing good convective 

ventilation at the electrode. However, configuration 4 showed further inhibition of signal 

response to ammonia due to the significantly reduced headspace and flow conditions close 

to the chamber wall, and also had slower recovery showing reduced convective efficiency 

in removing ammonia from the sensor. Transport of ammonia to the electrode was most 

efficient when the electrode was perpendicular (configuration 5) due to the improved mass 

transport characteristics. This demonstrated the difference between a configuration at which 

a turbulent, infinite layer was flowing parallel to a surface, and a perpendicular 

configuration more akin to a wall-jet which flows perpendicular to the surface. Wall-jet 
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type configurations have found use in assessment of electrode kinetics via electrochemical 

flow through detectors for liquid chromatography and flow-injection [14]. In addition, 

previous studies of hollow fibre membranes have demonstrated how perpendicular flow 

dynamics through the membranes have higher mass transfer coefficients than parallel flows 

[15, 16]. Sengupta et al examined this phenomenon for the purpose of more efficiently 

removing and adding gases to aqueous solutions. Results from the previous literature as 

well as those observed in the current study suggested that perpendicular flow would allow 

more of the analyte to react with the electrode surface over time than in parallel flows. 

Furthermore, the ratio of the nanoPANI sensor diameter to the diameter of the sample 

collection measurement chamber was sufficient to allow the largest change in Z/Z0 making 

configuration 5 the chosen configuration for use in future experiments. 
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Figure 5.4 Comparison of the effect of 755 ±7 ppbv ammonia sample over 50 s on 

various electrode configurations as seen in Figure 5.3 where the approximate 

percentage of the chamber diameter from the bottom of the chamber was: (1) ~ 0%, 

(2) 25%, (3) 75%, (4) ~ 100%, and (5) perpendicular to the chamber exit. 

5.3.3 Investigation of methods to displace sample from the sensor surface 

In Section 5.3.1, it was observed that the electrodes did not generate the typical increase in 

Z/Z0 upon exposure to ammonia if the moisture from the breath sample was allowed to 

condense on the electrode since the increasing presence of moisture masked the 

impedimetric behaviour of ammonia. Thus, in order to prevent the final fraction of breath 
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from remaining in contact with, and potentially condensing on the electrode, a method was 

developed to ensure that the entire breath sample would flow across the electrode, and be 

fully displaced from it when the breath was complete. This displacement could be brought 

about in two ways; either displacement of the sample with atmospheric air, or by using a 

defined gas supply that does not contain ammonia. Since responses from the ammonia 

sensor to atmospheric air had already been shown to be stable with low background signals, 

and that the addition of a means of providing defined gas supplies via a cylinder would add 

undesirable complexity to the measurement system, it was decided to use atmospheric air to 

displace the breath sample. This method of breath sample displacement had been shown to 

be effective in previous works for the collection of alveolar gases [17, 18]. This would 

require the application of a force to bring about this displacement and would, as a 

consequence, result in air flow.  

It has been shown here (Sections 5.3.6 and 5.3.7), and in other related work that several 

variables including sample flow rate (linear flow velocity) across the sensor will affect its 

response characteristics [19]. It is also well-established that exhaled breath samples are not 

linear in terms of flow rate and are not consistent in terms of volume [20]. There are 

multiple potential solutions to this issue which could include the constant monitoring of 

flow velocity and sample volume, or by controlling the flow rates and volumes of the 

sample gasses. Given that it was now a design requirement to introduce a mechanism to 

remove the breath sample from the electrode, it was decided that the most appropriate 

technological solution was one that brought about the alternating application of a human 

breath sample and atmospheric air of defined volume and flow rate to the electrode. As a 

consequence of this, a breath measurement prototype was developed and referred to as the 

Ammonia Breath Monitor (AmBeR), which utilised this approach. 

5.3.4 Preliminary AmBeR system design and optimisation 

Based on the design requirements defined, a preliminary, manually operated breath 

sampling device was assembled and configured with the ammonia sensors. A schematic 

and photograph of the system are shown in Fig. 5.5. The system now consisted of two 

major sub-systems; the sample collection chamber and the measurement chamber. 
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5.3.5 Sample collection chamber 

The sample collection chamber was initially composed of a 37 cm length of flexible plastic 

cylindrical tubing typically used for respiratory systems, with an internal diameter of 22 

mm and an initial volume of 250 ml which is approximately half the volume of an average 

human breath [21]. By employing a sampling volume of some fraction of the average 

human breath, it would be more likely to ensure collection of representative, undiluted 

samples from those who could only provide smaller sample volumes. Furthermore, use of a 

chamber volume some fraction of the average human breath would ensure that the sample 

remaining within the chamber after a full exhalation consisted of the end tidal volume of 

the breath. The end tidal volume consists of the alveolar breath which comes from 

exchange between the breath gases and blood [7], and is likely to provide the best quality 

sample. In addition, initial breath exhalate from the buccal cavity (mouth) would not be 

sampled and would, thus, be likely to reduce interference from ammonia generated from 

oral bacteria observed previously [22, 23].  

The sample collection chamber possessed an entry port for breath exhalation via a 

facemask. This was connected to the passive T-junction diaphragm valves to allow 

exhalation of the breath sample to the sample chamber, inhalation of atmospheric air by the 

subject without removal of the mask, and passage of atmospheric air through the sample 

collection chamber during measurement. However, for initial evaluation, the inlet valve for 

the drawing of atmospheric air remained closed off, effectively making it a one-way valve 

(1). The outlet of the sample collection chamber was also connected to a similar valve 

arrangement. Two exit ports were available where one was for passage of the sample across 

the electrode, while the other allowed excess breath sample to overflow the sample 

collection chamber. Again, for preliminary evaluation, these outlets could also be sealed off 

manually. The work of Murnick et al also made use of a breath displacement method for 

isolation of alveolar gases which required manual opening and closing of the chamber 

when capturing the samples [24]. This method effectively displaced the sample, but it was 

designed to capture breath samples at designated time intervals. Doing so had the 

disadvantage of not determining when the complete flow of breath had ended which could 

have led to inconsistencies in sample volumes among individuals of various lung 

capacities. 
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5.3.6 Measurement chamber 

The measurement chamber was fabricated using a 35 mm length of 22 mm diameter tubing 

in which the ammonia electrode was housed according to the outcome of experiments in 

Section 5.3.2 and positioned perpendicular to the sample flow. This was positioned 33 mm 

upstream from a miniature fan that would be used to draw the breath and air samples across 

the electrode. The fan speed, and therefore flow rate, could be controlled by the applied 

voltage and calibrated using spirometry.  

5.3.7 Operation of the sample collection and measurement system 

A manual operational methodology was adopted for initial system evaluation. A baseline 

signal from the sensor was first established using atmospheric air which was drawn through 

the initially detached measurement chamber assembly and across the electrode by the fan. 

For initial evaluation, the fan was operated at 10 V DC, which resulted in a flow rate of 

approximately 110.8 ±0.7 L/min. Following this, a simulated breath sample containing 245 

±8 ppbv of ammonia was applied to the sample chamber entry port for 4 s. The sample 

flowed through the collection chamber displacing the air present within by forcing the 

excess to exit via the open valve (2).  The sample chamber exit port remained sealed during 

this period, and was then opened to allow attachment of the measurement chamber 

assembly to draw the breath sample from the sample collection chamber across the 

electrode, followed by a portion of atmospheric air. This was allowed to proceed for a 

period of 0.33 min. The excess breath outlet (2) was sealed off during this period. 

Following this, the measurement chamber assembly was detached from the sample exit 

port. The seal from the excess breath outlet (2) was removed and used to seal the sample 

chamber exit. Finally, the measurement chamber assembly was detached from the sample 

collection chamber and the process repeated. 
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(b)  

Figure 5.5 (a) Schematic and (b) photograph of the preliminary ammonia breath 

monitor system. 

The impedance responses from the sensor for this experiment are shown in Fig. 5.6. The 

responses demonstrated the typical initial decrease in Z/Z0 for 0.33 min when the humidity 

from a breath sample interacted with the sensor (Fig. 5.6b to c).  At this point, the Z/Z0 

response increased gradually over the next 0.16 min followed by a more rapid increase with 

the flow of atmospheric air (Fig. 5.6c to d). The increase in Z/Z0 was noticeable once the 

measurement chamber assembly was detached from the sample exit port since a stronger 

flow of air was obtained. There was slight air flow resistance within the sample collection 

chamber resulting from the passive valve diaphragms in the T-junction valve assemblies 1 
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and 2 which weakened the flow of atmospheric air being drawn behind the breath sample 

and across the electrode. Once the increasing response (Z/Z0) of the electrode displayed a 

stable plateau, the sampling process repeated. The same behaviour was observed with all 

five samples, and displayed similarities to the behaviour seen in Chapter 4. The transition 

of interactions between breath sample and atmospheric air on the electrode not only 

demonstrated that the stagnant layer formed from sample humidity could be removed from 

the electrode following initial interaction, but that the technique had potential for use as the 

sampling methodology to generate an ammonia response from humidified breath samples 

within a device-type set-up. 
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Figure 5.6 Impedance response ratio of the ammonia sensor to alternating application 

of a sample of simulated breath and atmospheric air (n=5). (a) Time at which a 

simulated breath sample containing 245 ±8 ppbv ammonia was applied to the sample 

collection chamber; (b) point of attachment of the measurement chamber assembly to 

the sampling chamber drawing breath sample across the electrode; (c) point of 

detachment of the measurement chamber assembly from the sampling chamber 

drawing atmospheric air across the electrode; (d) time at which second simulated 

breath sample containing ammonia was applied to the sample collection chamber. 

As was observed, the process of removing the sample exit seal and attaching the sensor 

flow chamber assembly for each breath sample contributed to variability in the 

measurements. In order to efficiently automate the switch from sample collection to sample 

measurement, a manually operated two-way valve was installed to allow redirection of the 
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flow across the electrode with the measurement chamber assembly permanently attached to 

the sampling system (Fig. 5.7). One port of the valve was connected to the sample 

collection chamber, while the second was connected to the source of atmospheric air, and 

the third was connected to the measurement chamber assembly.  
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(b)  (c)  

Figure 5.7 (a) Schematic of breath ammonia measurement prototype incorporating 

manually operated, two-way valve and bespoke measurement chamber housing. (b) 

Photos of tap and measurement chamber assembly, and (c) the mouth-piece with a 

bacterial / viral filter. 

The sampling flow chamber was also upgraded to flexible corrugated ethyl vinyl acetate 

(EVA) cylindrical tubing that was approved for clinical usage (CE0123). The measurement 

chamber assembly was also upgraded from a temporary plastic housing to a bespoke 

housing that connected the fan and sensor to the valve (Fig. 5.7b). The CE-marked tubing 
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for the sample collection chamber was available in lengths of 23, 37, 51, and 65 cm which 

equated to volumes of 79, 128, 176, and 225 ml. For initial system evaluation, the 37 cm 

tubing was selected (128 ml) which was approximately half the volume used in previous 

experiments (i.e. 250 ml) and a quarter the volume of a normal exhalation (i.e. 500 ml). The 

system was also augmented with the addition of a CE0123-approved mouth piece with 

filter to avoid microbial contamination (Fig. 5.7c). In terms of operation, exhaled breath 

samples could enter the sample collection chamber while atmospheric air was being passed 

across the electrode through the measurement chamber. This revised assembly was tested 

with three samples of simulated breath ammonia at 40 ±2, 121 ±15 and 392 ±6 ppbv. As 

before, simulated breath samples of 4 s duration were applied to the sample collection 

chamber while the sensor was undergoing baseline measurement with atmospheric air. 

Once the baseline was complete, the valve was switched to allow the sample (followed by a 

plug of atmospheric air) to be drawn from the sample collection chamber and across the 

electrode for 10 s via the fan at a setting of 10 V. The sampling time was reduced from the 

previously used 20 s to 10 s since it was evident that the typical response behaviour could 

still be achieved in this time period, so reducing overall measurement time. After the 

sample was drawn out of the chamber, the tap was switched back to its original position 

where air was drawn directly from the atmosphere. This allowed another breath to be 

sampled in the collection chamber while fresh atmospheric air passed across the electrode 

through the measurement chamber. Once the Z/Z0 from the sample had levelled off, the 

process was repeated until three readings at each concentration were taken (Fig. 5.8). 

As seen in the previous data, each sample concentration displayed an initial decrease in 

Z/Z0 due to humidity, followed by an increase in Z/Z0 due to ammonia, which typically 

reached a plateau after 20 s. The method resulted in a response to ammonia that was 

capable of distinguishing concentrations of ammonia in the low ppbv concentration range, 

and the responses did not suffer from interference due to humidity. The changes in Z/Z0 

were lower than those derived in the previous design, most probably due to the reduction in 

the quantity of breath sampled. However, the responses were consistent and reproducible 

due to the effective systemisation of the breath sampling interface. 
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Figure 5.8 Evaluation of ammonia sensor impedance responses to simulated breath 

ammonia samples using the breath sample collection chamber with a manually 

operated tap in conjunction with the measurement chamber assembly. Simulated 

breaths of 4 s duration containing 40 ±2, 121 ±15, or 392 ±6 ppbv ammonia were (a) 

applied to the sampling chamber and (b) upon switching the tap, the samples followed 

by atmospheric air were drawn from the sample collection chamber for 10 s across 

the electrode (c) followed by switching the tap back to its original position allowing air 

to be drawn directly from the atmosphere until a stable baseline was observed, and (d) 

addition of the next sample to the collection chamber (n=3). 

5.3.8 Effect of flow-rate across the electrode on impedance response 

The effect of the flow rate across the electrode on impedance response was assessed. The 

fan speed could be adjusted by control of the applied voltage, operating across the range of 

8 to 12 V which resulted in flow rates from approximately 90 to 128 L/min (Table 5.1). 

Flow rates were measured with a spirometer at the interface between the sampling chamber 

and the manually operated valve. The responses from a simulated breath containing 755 ±7 

ppbv ammonia and a sample chamber volume of 128 ml were investigated (Fig. 5.9). As 

established, simulated breath samples filled the sampling chamber, and after establishment 

of the sensor baseline, the simulated breath sample was drawn from the sampling chamber 

through the measurement chamber across the electrode at a range of flow rates. After 

measurement, the valve was again switched back to draw air directly from the atmosphere 



 

 111 

across the electrodes for a period of 20 s which was found in Fig. 5.8 to be sufficient to 

derive a stable baseline response to ammonia. It was observed that the Z/Z0 signal decrease 

characteristic of the presence of humidity was greater at lower flow rates. This observation 

appears broadly in line with earlier observations that have indicated that rapid dissipation of 

the humid breath sample from the sensor surface reduces this effect. Thus, passage of 

sample at higher flow rates reduced this effect. In addition, higher flow rates also brought 

about an increase in the ammonia response. This can be explained due to improved mass 

transport at the electrode surface. The gas flow impinging on the electrode results in the 

formation of a stagnant layer at the electrode surface which is flow rate dependent. 

Increasing the flow rate has the effect of reducing this stagnant layer and increasing mass 

transport to the electrode surface. Due to the specific nature of this study, though, there is a 

lack of exact comparative literature on flow rates of ammonia interacting with polyaniline 

films. However, this flow rate dependent behaviour can be observed in literature which 

focuses on the flow rate interaction between other carrier gases and polyaniline. For 

example, Draman et al observed the effects of oxygen gas flow rate on response in 

sulphonic acid-doped polyaniline by way of fluorescence quenching [25]. Assessment of 

oxygen flow from 0.25 to 2.00 mL/s also resulted in an increased response with an increase 

in flow rate demonstrating the effect of increased mass transport. 

A flow rate of 110.8 ±0.7 L/min was chosen for further studies since the humidity effect 

was sufficiently decreased in comparison to lower flow rates (90.1 ±0.4 L/min and 101.0 

±0.4 L/min), while the increased Z/Z0 due to ammonia was comparable to that at higher 

flow rates (119.90 ±0.8 L/min and 127.50 ±0.8 L/min) and while having the advantage of 

reducing power consumption from 12 V to 10 V. For a point-of-care device intended to be 

used in clinical diagnostics, lower power consumption will no doubt prove to be beneficial. 

Table 5.1 Relationship between fan voltage, flow rates, and the change in Z/Z0 using 

simulated breath samples containing 755 ±7 ppbv of ammonia and a sampling 

chamber volume of 128 ml. 

Fan Voltage (V) Flow Rate (L/min) Z/Z0 

8 90.1 ±0.4 0.08 
9 101.0 ±0.4 0.09 
10 110.8 ±0.7 0.12 
11 119.9 ±0.8 0.13 
12 127.5 ±0.8 0.15 

 



 

 112 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 30 60 90 120 150

Time (s)

Z
/Z
0

128 L/min

120 L/min

111 L/min

101 L/min

90 L/min

(a) (b)
(d)

(c)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 30 60 90 120 150

Time (s)

Z
/Z
0

128 L/min

120 L/min

111 L/min

101 L/min

90 L/min

(a) (b)
(d)

(c)

(a) (b)
(d)

(c)

 

Figure 5.9 Investigation of the effect of sample flow rate on sensor response (Z/Z0). A 

simulated breath sample containing 755 ±7 ppbv ammonia within a sampling 

chamber volume of 128 ml was used. The samples were (a) applied to the sampling 

chamber 10 s before baseline completion, and (b) upon switching the valve were 

drawn across the electrode for 10 s (c) followed by switching to atmospheric air for 20 

s, whereupon (d) the next sample entered the collection chamber (n=4). 

5.3.9 Effect of sample collection chamber volume on electrode signal behaviour 

As already discussed, having control over the volume of breath sampled would ensure that 

any inconsistencies in human exhalation volumes were accounted for and the actual volume 

sampled was always known. In addition, errors due to insufficient sample and interferences 

due to oral ammonia would be reduced. An assessment of the effect of sample volume was 

made using the available tubing volumes from 79 to 225 ml which represented fractions of 

a normal breath sample of approximately 16 to 45% (Table 5.2). Using simulated breath 

samples containing 245 ±8 ppbv of ammonia at a flow rate of 110.8 ±0.7 L/min (n=4), the 

characteristic increase in Z/Z0 was observed for each sampling chamber volume (Fig. 5.10). 
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Table 5.2 Relationship between the sampling chamber volume and the change in Z/Z0 

using four sequential simulated breath samples containing 245 ±8 ppbv of ammonia 

and a fan flow rate of 110.8 ±0.7 L/min. 

Sample Collection Chamber Length (cm) Volume (ml) Z/Z0 

23 79 0.07 
37 128 0.05 
51 176 0.02 
65 225 0.01 
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Figure 5.10 Investigation of the effect of sample collection chamber volume on the 

ammonia sensor impedance response using simulated breath samples containing 245 

±8 ppbv of ammonia and a flow rate of 110.8 ±0.7 L/min. The samples were: (a) 

applied to the sampling chamber 10 s before baseline completion, and (b) upon 

switching the valve, they were drawn across the electrode for 10 s (c) followed by 

atmospheric air for 20 s, whereupon (d) the next sample entered the collection 

chamber (n=4). 

The results exhibited an inverse proportionality between volume and signal. Larger 

volumes of 176 and 225 ml displayed less of an increase in Z/Z0 than did the smaller two 

volumes (79 and 128 ml). Furthermore, the smallest sampling chamber (79 ml) showed the 

greatest initial decrease in Z/Z0 which would indicate the most significant signal 

contribution from humidity as demonstrated earlier (Chapter 4, Section 4.3.5). The inverse 

proportionality observed can be explained by the Fundamental Flow equation which is a 

representation of the fluid dynamics of air through a tube [26]. The equation is as follows: 
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  Q = 1.1494 x 10
-3 

(Tb / Pb) [(P1
2
 – P2

2
) / GTf LZf ] 

-0.5 
D

2.5                          (1) 

where Q is the gas flow rate (L/min*1.44), f is the friction factor (unitless), Tb is the base 

temperature (oC+274.15), Pb is the base pressure (kPa, air = ˜101 kPa), P1 is the upstream 

pressure (kPa, air = ˜101 kPa), P2 is the downstream pressure (kPa, air = ˜101 kPa), G is the 

gravity on the gas (unitless, air = 1.00), Tf is the average temperature of the flowing gas 

(oC+274.15), L is the length of the tube (cm*10-5), Z is the gas compressibility factor at the 

flowing temperature (unitless), and D is the internal diameter of the tube (mm). This 

formula could potentially be used to make predictions of Q within the system, but the 

friction factor and gas compressibility factor are values that must be found through 

experimentation where the friction is the effect of the ratio between the inner-most 

corrugation and the outer-most wall over the length of each tube, and the compressibility of 

a particular flowing gas is dependent upon the pressure and temperature measured within 

the tube at each time of flow. The Fundamental Flow equation states that when air passes 

through a cylindrical vessel such as the chamber used in this study for sample collection, 

the flow rate is affected by several factors. If the gravity, compressibility factor, and/or 

temperature of the gas increase, the flow rate will decrease. These variables have remained 

constant within the collection chamber, though, and so are not relevant factors. If the 

diameter of the tube were to increase, the flow rate would increase proportionally. 

However, the diameter of the chamber also remained constant resulting in no effect on the 

air flow. The Fundamental Flow equation also states that for a given pressure, and 

assuming the other variables (i.e. temperature, gravity, etc.) remain constant, the flow rate 

of air through the tube will decrease with an increase in tube length. The key factor behind 

this phenomenon is the friction between the gas and the walls of the chamber tubing [26]. 

With an increased amount of surface area from the increased length of the collection 

chamber comes an increased amount of friction between the gas and the tube surface as 

well as a reduction in pressure [27, 28]. The friction is further increased by the corrugated 

structure of the chamber wall. Hence, the shorter length of tubing used to assess smaller 

volumes resulted in a faster flow rate of ammonia gas. This compliments the results found 

in Section 5.3.6 which showed an increase in signal response (Z/Z0) with an increase in 

flow rate, and hence, improved mass transport of the ammonia gas. Experimental evidence 

using spirometry to measure a continuous flow of simulated breath (62 ±0.7 L/min, 37 
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±1oC, ≥ 90% RH, 245 ±8 ppbv ammonia) through each sample collection chamber length 

supported this observation (Table 5.3). 

Table 5.3 Relationship between the sample collection chamber volume and flow rate 

of sample exiting the collection chamber using four sequential simulated breath 

samples containing 245 ±8 ppbv of ammonia and an entry fan flow rate of 62 ±0.67 

L/min. 

Sample Collection Chamber Length (cm) Volume (ml) Flow Rate At Exit (L/min) 

23 79 51.9 ±0.3 
37 128 50.7 ±0.2 
51 176 49.5 ±0.2 
65 225 48.5 ±0.1 

 

The sampling chamber volume of 128 ml was chosen for use in future studies since it 

demonstrated a lower Z/Z0 change to humidity compared with the 176 and 225 ml 

chambers as well as a higher response to ammonia than either 176 or the 225 ml chambers. 

Furthermore, an assessment of patient comfort – which is necessary for use in clinical 

diagnostics – also indicated that the length of the 37 cm sampling chamber would allow 

adequate flexibility for patients to reach the breath sampler while undergoing 

haemodialysis. 

5.3.10 Final AmBeR prototype system assembly and analytical validation 

Based on preliminary experiments, the optimised system comprised of a sampling chamber 

volume of 128 ml and a fan setting of 10 V with a flow rate of 110.8 ±0.7 L/min. The 

measurement chamber and three-way tap were enclosed within a hinged plastic housing and 

the sample collection chamber was made external to the housing as it would be a semi-

disposable component and so be simpler to replace in this configuration, while also 

allowing a flexible interface with the patient. The fan was modified so as to have the speed 

controls mounted on the casing with lead-outs for mains power supply and impedance 

instrumentation. An axial fan finger guard was added to the exhaust port of the fan for 

safety. The ammonia sensor was mounted perpendicular to the air flow path between the 

manually-operated valve and the fan. A schematic and photographs of the final breath 

ammonia monitoring system (AmBeR) are shown in Figure 5.11.  
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 (d)  

Figure 5.11 Final AmBeR design prototype. (a) Schematic of the device and air flow 

direction, (b) photograph showing internal assembly, (c) photograph of disposable 

sampling chamber portion, and (d) photograph of final assembled prototype. 
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5.3.11 Calibration of AmBeR using simulated breath ammonia 

The response characteristics (Z/Z0) of the ammonia sensor in the assembled AmBeR 

prototype system to eight consecutive simulated breath samples containing ammonia in the 

range of 40 ±2 to 2,993 ±10 ppbv are illustrated in Fig. 5.12. Simulated breath samples 

were collected as described in Section 5.3.6. As seen in several earlier observations, the 

characteristic signal decrease due to the presence of humidity followed by an increase upon 

removal of the sample was evident with each breath sample. Furthermore, the increase in 

Z/Z0 due to ammonia was seen to be quantitative and cumulative over this clinically 

relevant analytical range. This cumulative response characteristic suggests that the 

interaction of ammonia with the electrode was following a process dominated by the rate of 

association of ammonia with the polyaniline. It further indicates that the nanoPANI film 

was below saturation levels whereby many nanoPANI sights were still available for 

interaction with ammonia molecules. Binding is thus limited by the mass of ammonia 

molecules arriving at the surface. Furthermore, the recovery towards the initial baseline 

suggests that the rate of dissociation was much slower than the rate of association 

indicating that the process was not in equilibrium. This slow rate of dissociation hinders the 

possibility of the sensors being utilised as a re-usable component. However, previous 

studies have indicated that the short-term application of heating to between 104 and 107oC 

could have potential in sensor recovery [29]. Kukla et al performed such a technique to 

remove ammonium residue from PANI films and found that in PANI exposed to ammonia 

between 100 and 600 ppm, almost complete restoration to the initial baseline was possible. 

However, examination of thermal effects on polyaniline using infrared spectroscopy was 

performed by Trchová et al and demonstrated that heat treatment can cause degradation of 

the PANI chain, resulting in decreased conductivity [30]. Thus, even if the nanoPANI could 

be recovered to the original baseline, duplicate exposures to ammonia may generate 

inconsistent conductive responses. 
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Figure 5.12 Impedance response ratio (Z/Zo) responses of nanoPA	I electrodes to 

sequential application of simulated breath samples containing 40 ±2 to 2,993 ±10 ppbv 

of ammonia measured using the AmBeR breath ammonia monitoring system.  

Similar to the work of Prasad et al which involved observation of the kinetics between 

ammonia and polyaniline-based films, the rate of dissociation appears to become greater as 

more ammonia binds to the film [31]. This was evidenced by the steepening of the 

dissociation component of the curve at higher ammonia concentrations. Prasad explained 

that higher concentrations of ammonia result in larger amounts of chemisorbed ammonia 

which leads to a higher rate of desorption. However, it has been demonstrated on numerous 

accounts that desorption of ammonia does not indicate that polyaniline will completely 

recover to its original baseline value [32, 33] which further verifies that polyaniline-based 

electrodes are at their optimum sensitivity during initial interaction with ammonia.  

The peak breath responses obtained after eight consecutive simulated breath samples were 

plotted against breath sample number (Fig. 5.13). By the eighth breath, the coefficient of 

variation of the signal response (Z/Z0, n=3 from three different electrodes) had increased 

from 0.0843 at 40 ppbv to 0.1728 at 2,993 ppbv, but did not increase proportionally. This 

could in part be due to the increased standard deviations previously observed at higher 

concentrations from the simulated breath system (Table 3.2). However, as described in 

previous literature, it is more likely that the higher concentrations of ammonia cause an 

increase in competition for available active nanoPANI sites [31], therefore causing greater 

variability.  



 

 119 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8

Number of Breaths

Z
/Z

0

2,993 ppbv

2,175 ppbv

1,919 ppbv

1,368 ppbv

984 ppbv

755 ppbv

245 ppbv

121 ppbv

40 ppbv

 

Figure 5.13 Relationship between impedance response ratio (Z/Z0) and breath sample 

number for sequential additions of simulated breath samples to the AmBeR device. 

Error bars indicate standard deviation (n=3). 

The relationship between Z/Z0 and ammonia concentration for each accumulated breath 

sample number was determined (Table 5.4 and Fig. 5.14). It could be seen that the 

coefficient of determination increased with the number of breath samples. It should also be 

noted that changes in response could be identified for a single breath. However, at lower 

breath sample number, it was difficult to quantify ammonia concentration due to the lower 

sensitivities obtained. Slopes demonstrated an increase from 0.00010 (breath 1) to 0.00076 

ppbv-1 (breath 8), and calibrations for all accumulated breath sample numbers resulted in 

good linear fitting which improved significantly with the numbers of breaths sampled from 

0.9687 (breath 1) to 0.9975 (breath 8). 

Table 5.4 Relationship between the impedance response ratio (Z/Z0) and breath 

ammonia concentrations with respect to breath sample number. 

Breath 	umber Slope (ppbv
-1

) R
2
 

1 0.00010 0.9687 
2 0.00022 0.9743 
3 0.00034 0.9689 
4 0.00044 0.9675 
5 0.00054 0.9808 
6 0.00062 0.9883 
7 0.00069 0.9960 
8 0.00076 0.9975 
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Figure 5.14 Effect of breath sample number on the relationship between the 

impedance response ratio (Z/Z0) and breath ammonia concentration determined using 

the AmBeR device. 

In the case of the responses after eight breaths, these generated a slope and intercept of 

0.00076 ppbv-1 and -0.0354, respectively (Table 5.5 and Fig. 5.15). Based on this data, and 

the maximum intra-electrode baseline drift variability data determined in Chapter 4 

(1.67%), a theoretical limit of detection of approximately 65.9 ppbv could be determined 

(S/N=3). The actual linear dynamic range observed, though, was from 40 ±2 to 2,993 ±10 

ppbv (although the system may have proven linear above this value, this was not tested 

during this research). As discussed previously, human breath ammonia typically falls 

between the physiological range of approximately 50 ppbv to 2,000 ppbv. This 

demonstrated that the AmBeR system’s operational range was within that required for 

human diagnostic breath measurements. The RSD (%) values were higher than expected, 

but as mentioned earlier, this may be due to the standard deviations previously observed 

from the simulated breath system (Table 3.2). This could also suggest that the sensors may 

require more complex calibration procedures than just simple baseline correction as well as 

further fabrication optimisation. With many of the deviations being of a smaller magnitude, 

it is clear that improvements are possible. 
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Table 5.5 Ammonia concentrations and impedance response (Z/Z0) results after eight 

breath samples. *Concentration of ammonia determined by PALS (Chapter 3, Section 

3.3.3). 

*PALS (	H3 / ppbv, n=5) AmBeR (Z/Z0, n=3) AmBeR (Z/Z0, RSD %) 

40 ±2 0.0318 ±0.0027 8.4 
121 ±15 0.0641 ±0.0155 24.1 
245 ±8 0.1490 ±0.0554 37.2 
392 ±6 0.2372 ±0.0228 9.6 
755 ±7 0.5553 ±0.0631 11.4 
984 ±21 0.6659 ±0.1249 18.8 

1,368 ±11 0.9831 ±0.2631 26.8 
1,576 ±7 1.2242 ±0.2641 21.6 
1,919 ±20 1.3620 ±0.1169 8.6 
2,175 ±26 1.6373 ±0.1347 8.2 
2,993 ±10 2.2594 ±0.3905 17.3 
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Figure 5.15 Relationship between ammonia concentration (as determined by PALS) 

and impedance response (Z/Z0) after eight sequential breath samples using AmBeR 

(R
2
 = 0.9975, n=3). Slope = 0.00076 ppbv

-1
 and intercept = -0.0354. 

5.3.12 Evaluation of the AmBeR system in normal human breath samples 

Having demonstrated the AmBeR system in simulated breath samples, it was evaluated 

using breath samples from normal healthy human volunteers (n=10) including repeated 

evaluation of a single volunteer over a period of three days (n=7). There were five female 

and five male volunteers, and the average body mass index provided from nine of these 

volunteers was 23.72 kg/m2 (range from 17.64 to 31.25 kg/m2). The mean age of the 

population was 35 years (range from 24 to 52 years). Of these volunteers, six identified 

themselves as ethnically Irish, three Americans, and one Maltese. The sampling was 

performed using both the AmBeR device and PALS whereby the AmBeR device was used 
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directly after PALS. Sampling with PALS involved breathing continuously into the system 

for five minutes (n=3) while sampling with AmBeR was performed by way of taking eight 

breath samples in the same way as in Section 5.3.6, again replacing the sensor with a new 

one for each set of measurements. Table 5.6 and Fig. 5.16a show the relationship between 

the concentration of ammonia in the human breath population samples as determined by 

PALS and the values of Z/Z0 derived from the AmBeR system. PALS indicated that the 

mean oral breath ammonia of the 10 volunteers was 226 ppbv (ranging from 22 to 583 

ppbv), while the average inter-individual deviation was 14 ppbv (n=3). The population data 

yielded a slope of 0.00066 ppbv-1 and an intercept of 0.079, with Pearson correlation 

coefficient of r=0.9980 (p<0.01), indicating excellent correlation with PALS in a normal 

human population. The ammonia concentrations were within the range of values previously 

determined for normal human subjects (Chapter 2, Section 2.3.1). The mean oral breath 

ammonia of the individual volunteer tested was 96 ppbv (ranging from 66 to 147 ppbv) 

with an intra-sample deviation of 25 ppbv (n=3) (Fig. 5.16b and Table 5.6). This yielded a 

slope of 0.00069 ppbv-1 and an intercept of -0.011, with Pearson correlation coefficient of 

r=0.9640 (p<0.01), again showing excellent correlation with PALS. Both population and 

individual data demonstrated similar response sensitivity (<8% RSD) to that determined 

using simulated breath (Fig. 5.15) indicating good agreement between simulated and real 

breath samples as well as the capability to quantify human breath ammonia concentrations. 

Table 5.6 Ammonia concentrations in real human breath samples as measured by the 

PALS and AmBeR systems displaying a normal human breath sample from 10 

volunteers, and 7 normal human breaths from one volunteer.  

	ormal Breath From 10 Volunteers 	ormal Breath From A Single Volunteer 

PALS 

(ppbv) (n=3) 

AmBeR 

(Z/Z0) 

AmBeR 

(ppbv) 

PALS 

(ppbv) (n=3) 

AmBeR 

(Z/Z0) 

AmBeR 

(ppbv) 

22 ±5 0.08 53 66 ±22 0.04 6 
53 ±1 0.09 76 83 ±10 0.04 6 

84 ±12 0.12 110 85 ±8 0.04 8 
102 ±14 0.17 182 91 ±14 0.05 19 
112 ±2 0.16 166 98 ±5 0.06 32 
163 ±8 0.21 233 101 ±16 0.06 32 
217 ±7 0.23 251 147 ±1 0.09 72 
451 ±27 0.37 443    
477 ±50 0.43 520    
583 ±29 0.44 528    
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Figure 5.16 Relationship between AmBeR (Z/Z0) and PALS (	H3/ppbv) (a) a normal 

human breath sample from 10 volunteers (r=0.9980, p<0.01), and (b) 7 normal human 

breaths from one volunteer (r=0.9640, p<0.01). 

Table 5.6 and Fig. 5.17 show the relationship between the concentration of ammonia in the 

human breath samples as determined by PALS and the concentration of ammonia derived 

from AmBeR via conversion of the Z/Z0 values using the simulated breath calibration 

established in Fig. 5.15. The population showed a positive bias towards the AmBeR 

responses across the measurement range with a slope and intercept of 0.8749 ppbv-1 and 

58.11. (Table 5.6 and Fig. 5.17a). The population data had a Pearson correlation coefficient 

of r=0.9860 (p<0.01). By comparison to the population mean oral breath ammonia 

concentration of 226 ppbv indicated by PALS, AmBeR provided a mean of 256 ppbv 

(ranging from 53 to 528 ppbv). The intra-individual correlation had a slope and intercept of 

0.9034 ppbv-1 and -61.94 with a Pearson correlation coefficient of r=0.9678 (p<0.01). 
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There was a bias towards PALS in the intra-individual data. By comparison to the mean 

oral breath ammonia concentration of 96 ppbv from the individual volunteer indicated by 

PALS, AmBeR displayed a mean of 25 ppbv (ranging from 6 to 72 ppbv). 

The reason for the bias is not clear. However, it demonstrates that there may be a small bias 

in the response between simulated breath samples, as derived in Fig. 5.15, versus real 

breath samples due to, as yet, undetermined interferents. However, this bias could be 

removed by direct calibration against PALS or even SIFT-MS using real samples as 

opposed to simulated breaths.  
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Figure 5.17 Relationship between AmBeR (	H3/ppbv), calculated based on simulated 

breath samples, and PALS (	H3/ppbv). The data represents (a) a normal human 

breath sample from 10 volunteers (r=0.9860, p<0.01), and (b) 7 normal human breaths 

from one volunteer (r=0.9678, p<0.01). 
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In comparison to other recent devices for the measurement of ammonia, the AmBeR system 

demonstrated great potential for application in clinical diagnostics. Timmer et al proposed a 

technology involving miniaturised gas samplers for detection of ambient ammonia. This 

involved transfer of the ammonia gas to solution and its sequential acidification and 

basification, before measurement using simple conductivity. As a result, the system 

required many liquid supply lines and pumps and was not suitable for diagnostic 

application. In addition, they only demonstrated the capability of determining ammonia at 

concentrations from 600 to 9,400 ppb [34], and 300 to 9,800 ppb [35] which did not reach 

the minimum required for human breath measurements. Furthermore, the assessments were 

performed in air rather than actual breath or a breath-like matrix. This could leave many 

unanswered questions about potential interferences such as breath humidity or temperature, 

sample volume and flow rate, etc. Aguilar et al described a device based on conducting 

polymer nanojunctions and demonstrated a sensor which responded to concentrations of 

ammonia from 10 ppb to 1 ppm including data from both ammonia gas and human breath 

ammonia [36]. However, the technique used samples collected in Tedlar bags among 

dilutant air which would make real-time human breath sampling impossible. Furthermore, 

the device was relatively complex with integration of a sodium hydroxide filter required to 

minimise humidity. Integrated desiccants such as this could pose problems where issues of 

toxicity may come into question with regard to point-of-care clinical monitoring via oral 

sampling, or regeneration of the desiccant component. A further device which consisted of 

a metal oxide-based nanosensor (i.e. MoO3) displayed potential for measuring human 

breath since it was portable and capable of detecting ammonia gas as low as 50 ppb [37]. 

However, Gouma et al were only able to assess 50 ppb and 100 ppb, and no actual human 

breath measurement was performed. In this case, it is not known if it would be suitable for 

clinical patients whose breath ammonia concentrations could range from 50 to several 

thousand ppb. Furthermore, in each example, the methods were not validated against a 

standard method. 

5.3.13 Retrospect on sensor lifetime and robustness 

A preliminary six-month observation of electrode stability was performed using the data 

from individuals who displayed similar breath ammonia concentrations (651 ±36 ppbv, 

n=6) via AmBeR (Table 5.7 and Fig. 5.18). Stability and robustness of the electrodes at 

month six are comparable to that which was observed at month one where original baseline 
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drift is 0.00 ±0.01, and overall signal response to similar breath ammonia concentrations 

display similar response behaviours. 

Table 5.7 Sensor responses to similar human breath ammonia concentrations of 651 

±36 ppbv (n=6) via a batch of polyaniline-based electrodes printed prior to the initial 

indicated date and observed over duration of approximately six months. 

Trial Date Z/Zo Abs. 	H3 (ppbv) 

Oct 22, 2011 0.50 611 
Dec 8, 2011 0.52 638 

March 27, 2012 0.54 664 
April 3, 2012 0.56 690 
April 5, 2012 0.50 611 
April 6, 2012 0.56 690 
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Figure 5.18 Observation of behaviour from polyaniline-based electrodes (n=6) printed 

prior to the initial indicated date and utilised over duration of approximately six 

months. Similar concentrations of human breath ammonia (651 ±36 ppbv) were 

observed upon each electrode. The baseline drift from 0 to 100 s was 0.00 ±0.01 

overall. 

5.4 Conclusions 

Experimental observations showed that nanoPANI sensor responses to humidity could be 

controlled by careful design of the sensor/sampling interface with additional dynamic 

control of the sampling process. Further studies demonstrated the relationships between 

sample flow rates and sample volumes on the dynamics of interaction of ammonia in breath 
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with the polyaniline sensor. These findings led to the design and method of operation of a 

breath sampling interface having a sample flow rate of 110 L/min and a sample volume of 

128 ml. The device was calibrated over the range of 40 ±2 and 2,993 ±10 ppbv using 

simulated breaths. Detection and quantification of ammonia concentrations from normal 

human breath showed a 0.9860 correlation between the resulting AmBeR device and the 

commercial PALS system in the population and a 0.9678 in the intra-individual correlation. 

The bias observed could be due to interferences. Six month stability assessment of the 

electrodes displayed a baseline drift of 0.00 ±0.01 indicating robust fabrication. Utilising 

the combination of nanoPANI electrodes and impedance analysis within the prototype 

sampling system established that this system had potential for further clinical testing. 
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6.1 Introduction 

Throughout the world, national renal registries provide reports conveying the statistics of 

patients in need of treatment for kidney failure. The United States Renal Data System 

(USRDS) has recorded the prevalence of end stage renal disease for approximately 40 

countries dating as far back as 1998 [1]. The trends observed by the USRDS show that the 

rate of prevalence has slowed down in some countries while others continue to remain 

stable or increase. Countries which have registered patient numbers above 10,000 (per 

million) since 1998 include Australia, Canada, Japan, Taiwan, and the United States. As of 

2009, the number in Australia has increased by 57%, in Canada by 53%, in Japan by 66%, 

in Taiwan by 48%, and in the United States by 62% [1]. The causes of renal failure vary 

from person to person where conditions could arise from medical, surgical, traumatic, 

obstructive, or obstetric issues [2]. However, the main cause is acute tubular necrosis, 

which is responsible for approximately 80% of cases related to renal failure [3]. With this 

condition, the renal tubular epithelial cells use extremely large amounts of energy to 

process glomerular filtrate which results in the cells undergoing necrosis [4].  

The current treatment for kidney failure is haemodialysis. Even though haemodialysis 

machines have become more compact and simple since the 1960s, this is a therapy that is 

still both complicated and inconvenient for those involved [5]. In haemodialysis, blood 

flows out of the body by way of an arterial access point and into a dialyser. Within the 

dialyser are semi-permeable membranes upon which blood and dialysate flow counter-

currently. The blood consists of an excess of metabolic wastes and electrolytes, and the 

dialysate contains an electrolyte composition typical of normal blood which is closely 

matched to the particular composition of the individual patient [6]. Equilibration of these 

electrolytes takes place by their diffusion across the semi-permeable membrane from a 

higher concentration to a lower concentration. Metabolic wastes (e.g. urea and creatinine) 

and excess water also pass from the blood and into the dialysate through the membrane via 

osmotic and hydrostatic pressures thereby decreasing blood concentrations and removing 

waste outside of the body [6]. The flow of dialysate maintains the concentration of these 

species at a level close to zero on the dialyser side, so maintaining the maximum 

concentration gradient and most efficient removal of wastes from the blood. Haemodialysis 

patients, on average, undergo treatment three days a week for a period of approximately 

four hours to remove excess fluids, minerals, and wastes from the blood [7]. The 
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effectiveness of their dialysis is determined by the urea reduction ratio (URR), reduction of 

creatinine, and / or calculation of clearance (Kt/V) [8]. Use of the URR gives the 

percentage of urea cleared from the blood during dialysis by using the calculation: 

  (pre-dialysis urea – post-dialysis urea) / pre-dialysis urea) * 100           (1) 

where the concentration of urea is in mmol/L. A URR of at least 65% is sought during 

these sessions. However, the actual reduction achieved may vary each time [9]. Creatinine 

is a waste product generated from muscle metabolism that is cleared from the blood by the 

kidneys and which also acts as a good indicator of renal function [10]. Kt/V is a unitless 

ratio resulting from the amount of blood cleared of urea (K*t) divided by the urea 

distribution volume (V). In this case, K is measured in units of L/hour, t is hours, and V is 

approximately the volume (litres) equivalent to the total body water [8]. Monitoring of 

clearance usually only takes place once a month [9]. Hence, the result is a cumulative one, 

and the results per individual dialysis session are often unknown [7].  

Since its creation in 1976, continuous ambulatory peritoneal dialysis (CAPD) has 

developed as an alternative to haemodialysis which has allowed patients to remove wastes 

and fluids from their blood while at home rather than at a clinic [11]. The process works by 

allowing dialysate to enter from the outside of the body through the peritoneum of the 

abdomen via a catheter. The peritoneum is utilised as the semi-permeable membrane across 

which blood electrolytes and metabolic wastes diffuse [6]. The dialysate fluid is retained in 

the body for approximately 4 to 5 hours with each session and can be repeated up to five 

times in a day [12]. 

Both haemodialysis and CAPD are technologies that could benefit from the use of a real-

time, point-of-care monitoring device that was capable of indicating reductions in blood 

nitrogen levels. By having a portable device that utilises the non-invasive aspects of breath, 

the patient and clinicians would have a convenient way of determining end points or 

efficacy in every dialysis session [13]. It could also reduce the need for blood testing. It has 

been established in previous literature that patients with renal dysfunction have higher 

concentrations of ammonia in their blood than do healthy individuals [14]. Often, an 

increase in blood ammonia levels is attributed to dysfunction in the liver’s ability to convert 

ammonia into urea. However, in circumstances where the liver is functioning properly, but 

ammonia is still elevated, the condition is a result of uremic behaviour [15]. Briefly, 
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proteins and amino acids are naturally broken down throughout the body resulting in the 

generation of metabolic byproducts such as ammonia. Ammonia is then converted into urea 

by the liver and removed from the blood via the kidneys. However, if the kidneys can no 

longer remove urea from the blood, the normal dynamic between blood urea and ammonia 

is altered. An increased concentration of blood urea recycles back into the body (e.g. via the 

gastrointestinal tract) and is acted upon by the colonic bacteria and mucosal enzymes (e.g. 

urease) that previously broke down the proteins and amino acids resulting in production of 

more blood ammonia [15]. In circumstances where ammonia levels in the blood are higher 

than those found in the air, the ammonia can diffuse out of the blood and into the lungs 

[16]. It could, therefore, be predicted that, as byproducts of nitrogen metabolism (e.g. urea) 

are being removed from the patient during dialysis, the concentration of ammonia exhaled 

in the breath would decrease proportionally. As a consequence, breath ammonia could be a 

surrogate measurement for blood nitrogen levels. 

In this chapter, haemodialysis patients were selected to assist with preliminary evaluation 

of the AmBeR system. This study assessed the correlation between the values of ammonia 

determined by the AmBeR system and PALS in breath samples from haemodialysis 

patients. In addition, observations of the correlation between breath ammonia levels in 

haemodialysis patients as obtained by AmBeR and other measures of blood nitrogen (e.g. 

urea and creatinine) and clearance (Kt/V) were made. 

6.2 Materials and methods 

6.2.1 Instrumentation 

The ammonia sensor and AmBeR device described in Chapters 4 and 5 were used to 

quantify ammonia concentrations in patient breath samples. Impedance measurements of 

the AmBeR device were conducted using a model 660C Series Electrochemical Analyser 

Workstation (CH Instruments Inc., Austin, TX). Measurement of breath ammonia using 

photo-acoustic laser spectroscopy, PALS, (NephroluxTM, Pranalytica, USA) was used as 

the standard method for comparison with the AmBeR device. Renal profiles of nitrogen 

levels from urea and creatinine were measured from heparinised blood samples in the St. 

Vincent’s University Hospital biochemistry laboratory. Tests of the blood urea and blood 

creatinine samples were processed using the Roche chemistry analyser (Modular P, Roche 

Diagnostics, Ireland). 
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6.2.2 Methods 

A cohort of 20 haemodialysis patients were recruited following ethical approval at St. 

Vincent’s University Hospital (Appendix 5). Patients were excluded if they had conditions 

related to cognitive impairment, or were clinically unstable. These patients typically 

undergo dialysis three days a week for a minimum of three hours each day. Informed 

consent was obtained from each patient. Breath ammonia, blood urea nitrogen, blood 

creatinine, gender, age, and BMI were recorded. For breath sampling, volunteers were 

asked to provide samples using the AmBeR device and PALS. Pre- and post-dialysis 

measurements using both devices (PALS and AmBeR) were performed on four patients 

while measurements with the AmBeR system alone were performed on the full patient 

cohort. Some patients were measured repeatedly on multiple visits. The sampling method 

for PALS was the same as that used with the healthy volunteers in Chapter 2, Section 2.2.2 

and Chapter 5, Section 5.3.12, while the sampling method for the AmBeR device was the 

same as that used with healthy volunteers in Chapter 5, Section 5.3.12. Correlations were 

based on the equation determined in Fig. 5.15 which consisted of a slope and intercept of 

0.00076 ppbv and -0.0354 ppbv, respectively, from calibrations with simulated breath. The 

data obtained for normal volunteers in Chapters 2 and 5 served as normal controls for 

comparison with the haemodialysis patient breath samples in this chapter. Blood urea 

concentrations were determined using urease and glutamate dehydrogenase (GIDH) in 

combination with α-ketoglutarate and nicotinamide adenine dinucleotide (NADH), with 

measurement of the resulting NAD+ at 340 nm as follows [17]: 

Urea + 2 H2O              2 NH4
+ + CO3

2-

NH4
+ + α-ketoglutarate + NADH                L-glutamate + NAD+ + H2O

Urease

GIDH

Urea + 2 H2O              2 NH4
+ + CO3

2-

NH4
+ + α-ketoglutarate + NADH                L-glutamate + NAD+ + H2O

Urease

GIDH

 

Blood creatinine concentrations were measured with a rate-blanked and compensated 

alkaline picrate colorimetric assay (11875418, Roche Diagnostics, Ireland) based on the 

Jaffe method [18]. Standardisations for urea and creatinine measurements in the chemistry 

analyser were performed using standard reference material 909b (SRM-909b), and isotope 

dilution mass spectrometry (IDMS). SRM-909b was developed by The National Institute of 

Standards and Technology (NIST) from lyophilised human serum to provide known 

concentrations of analytes (i.e. urea and creatinine) for standardisation purposes [19]. In 
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IDMS, a known concentration of an isotope of the analyte is added to the sample among the 

natural isotopes, whereby the changes in isotopic ratios are monitored via mass-

spectrometry [20]. The changes in ratios are directly related to the concentration of analytes 

in the sample, and allow for quantification of the original analytes. 

6.2.3 Methodology for statistical and numerical calculations 

Assessment of relationships was performed using the Pearson correlation coefficient (r). 

Statistical significance (p) of that relationship was interpreted using SPSS statistical 

software package (IBM SPSS Statistics Version 19, IBM Co., U.S.A.) for Windows Vista, 

where the level of significance of the correlation was indicated as either <0.01 or <0.05 

(two-tailed). Absolute breath ammonia reduction was the subtraction of post-dialysis 

ammonia from pre-dialysis ammonia, where the significance was found using a two-tailed 

paired t-test. Breath ammonia reduction ratios were calculated from the previously 

discussed equation 1. Calculations of Kt/V were performed using Finesse® Dialysis Data 

Acquisition and Management software with FinProDB (Fresenius Medical Care, Ireland). 

All data assessments were performed post-hoc. 

6.3 Results and discussion 

6.3.1 Correlation of breath ammonia concentrations between AmBeR and PALS 

 
Eight breath ammonia samples were taken using PALS immediately followed by AmBeR. 

Four samples were pre-dialysis and four were post-dialysis (Table 6.1 and Fig. 6.1). This 

yielded a Pearson correlation coefficient of 0.97 (p<0.01). With a slope and intercept of 

0.9287 ppbv and -39 ppbv, respectively there was a slight bias towards PALS. This could 

be an indication that PALS is sensitive to unknown metabolites of which AmBeR is not. 

Hence, further clinical analysis was performed with the AmBeR device. 

Pre-dialysis measurements were comparable to the levels of 1,500 to 2,000 ppb stated in 

previous literature which are indicative of renal dysfunction and, hence, high blood 

nitrogen levels [9]. The post-dialysis measurements were similar to those observed from 

healthy volunteers in previous chapters (Chapter 2, Section 2.3.1, and Chapter 5, Section 

5.3.12) as well as in previous literature which employed laser spectroscopy to assess the 

breath ammonia of seven haemodialysis patients, indicating that a range from 
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approximately 200 to 300 ppb should be expected [9]. These concentrations suggest that 

blood metabolite concentrations had returned to a healthy state over the period of dialysis. 

 

Table 6.1 Pre-dialysis (n=4) and post-dialysis (n=3) breath ammonia concentrations 

obtained from four haemodialysis patients using both AmBeR and PALS (n=7). 

	egative values are indicated by (-). 

Volunteer (number) Dialysis (Pre / Post) PALS (ppbv) AmBeR (ppbv) 

1 Pre 1,030 1,203 

 Post 16 - 

2 Pre 2,442 2,230 

 Post 39 72 

3 Pre 774 335 

 Post 186 98 

4 Pre 678 506 

 Post 282 322 
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Figure 6.1 Pre-dialysis (blue diamond) and post-dialysis (red square) breath ammonia 

concentrations measured using AmBeR and PALS (n=7). The progression displayed a 

slope and intercept of 0.9287 ppbv and -39.73 ppbv, respectively (r=0.97, p<0.01). 
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6.3.2 Pre- and post-dialysis measurements of breath ammonia, blood urea nitrogen, and 

blood creatinine in the haemodialysis patient cohort 

Breath ammonia and blood nitrogen levels for dialysis patients have been shown to vary 

over large ranges depending on their level of renal dysfunction. In other words, this bias in 

readings can be the result of variable blood metabolite concentrations resulting from 

differences among the individual patient kidney functions, and their ability to remove 

nitrogenous waste [21]. For example, patients who have higher renal function are able to 

produce larger volumes of urine, and do not require the level of restrictions (e.g. dietary, 

etc.) that anuric patients do. This would imply that a larger variety of metabolites could 

exist at any given time in those with higher renal function since they are permitted to 

consume a larger variety of substances. In addition, the lengths of dialysis sessions as well 

as the time between sessions are often inconsistent among those in the population. Fluid 

weight gain between the midweek intervals would be less than after the longer weekend 

interval adding inconsistencies to the metabolic output observed during that period [21]. 

The methods of analysis of breath samples have also been shown to have an impact on the 

concentrations of ammonia observed. For example, it has been shown that the use of Tedlar 

bags to collect breath samples could result in a 1.5 to 2-fold decrease in breath ammonia 

concentration by comparison to measurements obtained from direct breath interaction to the 

sensing element [14]. This is due to the fact that ammonia is highly soluble in water, and 

Tedlar bags have potential for build up of condensation from breath on the surface of the 

bags. With greater condensation, it is expected that ammonia concentrations would 

decrease due to absorption. 

The breath ammonia levels measured using AmBeR along with blood urea nitrogen, blood 

creatinine, corresponding reduction ratios, and Kt/V values from all 51 volunteer samples 

are compiled in Table 6.2. The observed patient cohort (n=20) had a mean age of 63 years 

(ranged 36 to 91 years). There were ten female and ten male volunteers. The mean body 

mass index was 25.79 kg/m2 (ranged 17.58 to 32.42 kg/m2). Of these patients, 11 were 

willing to perform repeated correlative measurements of breath ammonia and blood 

nitrogen resulting in a complete population sample count of 51. Reductions in breath 

ammonia, blood urea nitrogen, and blood creatinine concentrations were observed in all 

patient samples following dialysis. 
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Table 6.2 Summary of pre- and post-dialysis breath ammonia concentrations as 

measured with the AmBeR device, blood urea nitrogen, blood creatinine, 

corresponding reduction ratios, and Kt/V for a cohort of 20 haemodialysis patients 

(n=51). 	egative values are indicated by (-). 

Volunteer Dialysis Abs. 	H3 Abs. Urea Abs. Cre 	H3 Urea Cre Kt/V 

(number) (Pre/Post) (ppbv) (mmol/L) (µµµµmol/L) RR (%) RR (%) RR (%) (A.U.) 

1 Pre 638 33.7 866     
 Post 98 9.3 279 84.64 72.40 67.78 1.19 

2 Pre 624 18.7 863     
 Post 164 6.2 357 73.72 66.84 58.63 1.16 

3 Pre 1,203 25.5 1,020     
 Post - 6.3 337 - 75.29 66.96 1.36 

4 Pre 2,230 29.0 1,137     
 Post 72 7.6 359 96.77 73.79 68.43 1.32 

5 Pre 335 24.8 1,257     
 Post 98 7.2 507 70.75 70.97 59.67 1.29 

6 Pre 835 21.5 683     
 Post 519 9.0 340 37.84 58.14 50.22 0.79 

7 Pre 1,532 15.9 359     
 Post 611 5.8 154 60.12 63.52 57.10 0.95 

8 Pre 506 24.3 551     
 Post 322 9.0 229 36.36 62.96 58.44 0.90 

9 Pre 1,309 31.5 959     
 Post 164 8.0 311 87.47 74.60 67.57 1.50 

10 Pre 282 21.1 392     
 Post 85 7.6 156 69.86 63.98 60.20 0.93 

11 Pre 1,322 13.1 789     
 Post 730 5.4 387 44.78 58.78 50.95 0.91 

12 Pre 1,690 19.0 995     
 Post 1,138 9.7 576 32.66 48.95 42.11 0.69 

13 Pre 1,361 20.3 649     
 Post - 4.6 206 - 77.34 68.26 1.09 

14 Pre 164 12.3 470     
 Post 19 4.2 187 88.41 65.85 60.21 0.98 

15 Pre 1,138 23.0 705     
 Post 480 8.0 299 57.82 65.22 57.59 1.09 

16 Pre 743 21.3 630     
 Post 480 8.6 285 35.40 59.62 54.76 N/A 

17 Pre 1,559 28.9 509     
 Post 572 10.1 230 63.31 65.05 54.81 1.01 

18 Pre 940 23.2 586     
 Post 388 7.4 231 58.72 68.10 60.58 1.04 

19 Pre 1,085 21.4 684     
 Post 98 5.4 225 90.97 74.77 67.11 1.25 

20 Pre 440 30.2 920     
 Post 72 8.3 280 83.64 72.52 69.57 1.15 

21 Pre 2,243 17.6 642     
 Post 190 6.8 276 91.53 61.36 57.01 0.94 

 



 

 139 

Volunteer Dialysis Abs. 	H3 Abs. Urea Abs. Cre 	H3 Urea Cre Kt/V 

(number) (Pre/Post) (ppbv) (mmol/L) (µµµµmol/L) RR (%) RR (%) RR (%) (A.U.) 

22 Pre 1,401 35.0 1,420     
 Post 19 7.7 396 98.64 78.00 72.11 1.54 

23 Pre 874 26.6 912     
 Post 480 7.7 323 45.08 71.05 64.58 1.36 

24 Pre 664 30.8 1,470     
 Post 85 9.6 517 87.20 68.83 64.83 1.16 

25 Pre 1,098 25.0 1,050     
 Post 177 6.2 309 83.88 75.20 70.57 1.51 

26 Pre 967 19.9 545     
 Post - 4.3 161 - 78.39 70.46 1.46 

27 Pre 874 22.4 751     
 Post 414 7.2 284 52.63 67.86 62.18 1.02 

28 Pre 1,072 19.8 623     
 Post 32 4.7 206 97.01 76.26 66.93 1.44 

29 Pre 901 19.2 710     
 Post 72 4.6 224 92.01 76.04 68.45 1.53 

30 Pre 993 21.3 1,079     
 Post 440 4.6 354 55.69 78.40 67.19 1.48 

31 Pre 677 18.1 593     
 Post 282 5.2 212 58.35 71.27 64.25 1.13 

32 Pre 1,217 16.4 597     
 Post 45 5.1 248 96.30 68.90 58.46 1.13 

33 Pre 940 18.7 554     
 Post 85 4.5 175 90.96 75.94 68.41 1.39 

34 Pre 1,282 14.7 563     
 Post 217 5.1 240 83.07 65.31 57.37 1.02 

35 Pre 2,164 25.6 1,150     
 Post 85 4.6 293 96.07 82.03 74.52 1.72 

36 Pre 493 8.8 325     
 Post 19 2.5 133 96.15 71.59 59.08 1.20 

37 Pre 690 16.3 536     
 Post 32 3.9 165 95.36 76.07 69.22 1.37 

38 Pre 559 23.2 815     
 Post 138 6.2 253 75.31 73.28 68.96 1.18 

39 Pre 282 23.2 1,151     
 Post 32 6.7 415 88.65 71.12 63.94 1.31 

40 Pre 611 20.2 843     
 Post 164 5.2 291 73.16 74.26 65.48 1.46 

41 Pre 388 32.9 786     
 Post - 7.6 226 - 76.90 71.25 1.39 

42 Pre 598 23.9 969     
 Post 32 4.4 302 94.65 81.59 68.83 1.62 

43 Pre 835 20.2 823     
 Post 480 4.8 249 42.51 76.24 69.74 1.51 

44 Pre 1,217 15.6 535     
 Post 151 5.3 231 87.59 66.03 56.82 1.06 

45 Pre 690 14.2 475     
 Post - 3.5 157 - 75.35 66.95 1.36 

46 Pre 295 31.0 847     
 Post 59 7.4 240 80.00 76.13 71.66 1.31 
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Volunteer Dialysis Abs. 	H3 Abs. Urea Abs. Cre 	H3 Urea Cre Kt/V 

(number) (Pre/Post) (ppbv) (mmol/L) (µµµµmol/L) RR (%) RR (%) RR (%) (A.U.) 

47 Pre 756 20.0 504     
 Post 85 5.4 179 88.76 73.00 64.48 1.32 

48 Pre 717 23.4 750     
 Post 164 5.6 210 77.13 76.07 72.00 1.28 

49 Pre 677 15.9 623     
 Post 59 4.6 213 91.29 71.07 65.81 1.25 

50 Pre 611 25.0 754     
 Post 72 8.1 271 88.22 67.60 64.06 1.08 

51 Pre 690 13.8 556     
 Post - 2.8 149 - 79.71 73.20 1.36 

 

6.3.3 Pre- and post-dialysis measurements of breath ammonia in the haemodialysis patient 

cohort 

Breath ammonia measurements had a pre-dialysis population mean of 930 ±483 ppbv 

(ranged 164 to 2,243 ppbv, n=51) and a post-dialysis mean of 227 ±236 ppbv (ranged 19 to 

1,138 ppbv, n=45). Fig. 6.2 represents the difference between pre- and post-dialysis breath 

ammonia measurements demonstrating the link between blood and breath metabolites. 

SPSS analysis of the correlation between the two-data sets generated a two-tailed p<0.05 

displaying a high level of significance in the difference between pre- and post-dialysis 

measurements. 
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Figure 6.2 The mean pre-dialysis (930 ±483 ppbv, n=51) and post-dialysis (227 ±236 

ppbv, n=45) breath ammonia measurements in the haemodialysis population (p<0.05) 

as determined by the AmBeR system. 
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These concentration ranges were comparable with the results obtained in previous 

literature. For example, Narasiman et al conducted a study on a cohort of haemodialysis 

patients (n=7) using laser spectroscopy whereby breaths were sampled directly rather than 

pre-collected [9]. The concentration range measured among those patients showed a 

decrease from approximately 2,000 to 200 ppb following haemodialysis. Furthermore, as in 

Section 6.3.1, the post-dialysis breath ammonia concentrations were similar to the levels 

observed in healthy volunteers (Chapter 2, Section 2.3.1 and Chapter 5, Section 5.3.12). 

However, as mentioned earlier, different studies have indicated a wide range of potential 

concentrations. Endre et al observed oral breath ammonia concentrations from two cohorts 

of haemodialysis patients as measured using SIFT-MS [13]. Group A (n=15) were from a 

hospital unit, and group B (n=5) were undergoing home dialysis. Samples from group A 

were pre-collected in Tedlar bags and generated breath ammonia concentrations from 370 

to 9,210 ppb while group B measurements were collected by way of direct breath 

exhalations from the patients through a mouthpiece into the heated inlet of the SIFT-MS 

resulting in breath ammonia concentrations from 270 to 10,900 ppb. Group B displayed a 

slightly higher concentration range which could be either attributed to the bias in 

population sizes, or in the use of Tedlar bags by group A. Davies et al also used SIFT-MS 

with a cohort of 26 CAPD patients [14]. Breath samples were either collected in volumes of 

3 litres in Tedlar bags, or directly into the device. A concentration range from 820 to 

14,700 ppb was observed for this population. 

6.3.4 Pre- and post-dialysis measurements of blood urea nitrogen in the haemodialysis 

patient cohort 

Both breath ammonia and blood urea nitrogen concentrations were found to decrease from 

pre- to post-dialysis. Blood urea nitrogen pre-dialysis had a mean of 22 ±6 mmol/L (range 

of 9 to 35 mmol/L), and reduced to a mean of 6 ±2 mmol/L (range of 3 to 10 mmol/L) in 

post-dialysis measurements (Fig. 6.3). Analysis of this difference using a paired t-test 

displayed a t-statistic of 23.00 (two-tailed, p<0.01). Literature has suggested that blood urea 

nitrogen concentrations indicative of renal failure are approximately 10 mmol/L [22] to 

13.2 mmol/L [23]. These values which indicate the boundary between healthy and non-

healthy concentrations coincide with what was found in the patients in this work. The 

observed patient group had a pre-dialysis mean that was higher than these indicated 

references, while the post-dialysis mean was well within the indicated healthy range. 
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Figure 6.3 The mean pre-dialysis (22 ±6 mmol/L) and post-dialysis (6 ±2 mmol/L) 

blood urea nitrogen measurements in the haemodialysis population (p<0.01, n=51). 

Dashed lines designate the approximate range (10 to 13.2 mmol/L) indicative of renal 

failure [22, 23]. 

The relationship between the absolute concentrations of breath ammonia and blood urea 

nitrogen was studied. This was found to have a Pearson correlation coefficient of 0.61 

(p<0.01, n=96) (Fig. 6.4). The correlation r=0.61 is not very strong, but the strength of 

significance, p<0.01, among the measurements demonstrates enough potential for 

continued assessment in clinical applications to take place. In comparison to previous 

literature, the work by Davies et al which used SIFT-MS with 26 CAPD patients, displayed 

a correlation between breath ammonia and blood urea nitrogen of 0.49 (p<0.01) [14]. This 

lower correlation could be due to a difference between CAPD and haemodialysis 

techniques. However, a review by Gokal et al has stated that variations among these 

techniques are minimal, and therefore, unlikely to be the cause of the difference [24]. 

Another more likely possibility is that population size has affected the statistical assessment 

since the cohort observed by Davies et al was smaller. 
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Figure 6.4 Pre-dialysis (blue diamond) and post-dialysis (red square) of absolute 

breath ammonia and blood urea nitrogen concentrations (n=96). The regression 

displayed a slope and intercept of 35.57 ppbv and 78.56 ppbv, respectively, with 

r=0.61 (p <0.01). 

6.3.5 Pre- and post-dialysis measurements of blood creatinine in the haemodialysis patient 

cohort 

Pre-dialysis measurements of blood creatinine had a mean of 764 ±261 µmol/L (ranged 

from 325 to 1,470 µmol/L) and a post-dialysis concentration mean of 302 ±96 µmol/L 

(ranged from 133 to 576 µmol/L) (Fig. 6.5). Blood creatinine concentrations indicative of 

renal failure range from approximately 141 µmol/L [23] to 250 µmol/L [22]. As with the 

blood urea nitrogen measurements, the observed patients had pre-dialysis blood creatinine 

means that were higher than the values indicated for renal failure. However, the post-

dialysis mean was marginally above the cut-off for normal creatinine. Analysis of these two 

means using a paired t-test yielded a t-statistic of 18.58, and a two-tailed p<0.01 

demonstrating a significant difference between the pre- and post-dialysis creatinine levels. 
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Figure 6.5 The mean pre-dialysis (764 ±261 µµµµmol/L) and post-dialysis (302 ±96 

µµµµmol/L) blood creatinine measurements in the haemodialysis population (p<0.01, 

n=51). Dashed lines designate the approximate range (141 to 250 µµµµmol/L) indicative of 

renal failure [22, 23]. 

The relationship between the absolute concentrations of breath ammonia and blood 

creatinine had a Pearson correlation coefficient of 0.60 (p<0.01, n=96) (Fig. 6.6) which was 

very similar to the 0.61 value previously determined with blood urea nitrogen. It was stated 

by Ishida et al that the lower correlations found with creatinine could be directly related to 

differences in muscle mass among individuals in the population since creatinine is a 

byproduct from muscle metabolism. A bias would exist where those with more muscle 

would generate higher amounts of creatinine even if other factors (e.g. weight, etc.) were 

the same [7]. Furthermore, in the work of Davies et al, the cohort of 26 CAPD patients 

generated a poor and statistically insignificant correlation of 0.22 (p>0.1) via SIFT-MS 

which was lower than the 0.49 (p<0.01) observed with blood urea [14]. In addition, the data 

shown in Fig. 6.6 suggests a near comparable correlation between breath and urea and 

creatinine. As mentioned previously, the differences between this data and that found in 

previous literature could be due to the statistical variations in accordance with cohort size 

as SIFT-MS should not suffer from the introduction of sampling errors. 
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Figure 6.6 Pre-dialysis (blue diamond) and post-dialysis (red square) of breath 

ammonia and blood creatinine levels using the AmBeR device (n=96). The progression 

displayed a slope and intercept of 0.9895 ppbv and 68.70 ppbv, respectively, with 

r=0.60 (p<0.01). 

6.3.6 Comparison of pre- and post-dialysis measurements of blood urea and blood 

creatinine in the haemodialysis patient cohort 

The laboratory results for absolute blood urea and creatinine were compared with one 

another to see if there was a relationship between these two blood nitrogen species (Fig. 

6.7). This yielded a Pearson correlation of 0.88 (p<0.01) demonstrating a strong 

relationship. These two species have been examined in previous literature, and are well 

known to have a good correlation. For example, Davies et al found a correlation of 0.63 

(p<0.01) between blood urea and creatinine in 26 CAPD patients via SIFT-MS [14], and 

Lesaffer et al employed high performance liquid chromatography (HPLC) analysis yielding 

a correlation of 0.51 (p<0.01) between the removed blood urea and creatinine of 10 

haemodialysis patients [25]. Both correlations were lower than that found in this work, 

again potentially as a result of the difference in sample sizes. Nonetheless, the relationship 

was evident in all cases. A slight bias existed towards creatinine as indicated by the 

intercept of 83.56 µmol/L. 
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Figure 6.7 Pre-dialysis (blue diamond) and post-dialysis (red square) of blood 

creatinine and blood urea nitrogen concentrations (n=102). The regression displayed a 

slope and intercept of 30.82 µµµµmol/L
-1

 and 83.56, respectively, r=0.88 (p<0.01). 

6.3.7 Correlation of breath ammonia reduction ratios with blood urea and blood creatinine 

reduction ratios in the haemodialysis patient population 

The population data established in Figs. 6.4 and 6.6 did not yield very strong correlations 

between breath ammonia and either blood urea nitrogen or creatinine. It has already been 

discussed that additional patient-specific variables may make it difficult to establish a 

strong population correlation. Thus, other approaches were investigated to see whether 

better relationships could be established between breath ammonia and blood nitrogen levels 

that could eliminate such subject-specific variables. One approach to this was to investigate 

reduction ratios in breath ammonia, urea, and creatinine as such ratios only take into 

account the overall change in levels pre- and post-dialysis, rather than the absolute 

concentrations. However, the relationship between the reduction ratios from pre- to post-

dialysis breath ammonia and blood urea concentrations yielded a Pearson correlation 

coefficient of 0.60 (p<0.01, n=45) (Fig. 6.8). This value was closely in line with those 

determined for the relationship between absolute concentrations. This data again suggested 

that there was a link between blood urea nitrogen levels and breath ammonia levels, but that 

the correlation could be masked by additional, patient-specific variables such as the 
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previously mentioned differences in renal function, body mass, and perhaps simultaneous 

influences such as oral ammonia (e.g. bacteria) [21, 26]. 
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Figure 6.8 Relationship of breath ammonia and blood urea reduction ratios for the 

haemodialysis patient population (r=0.60, p<0.01, n=45). 

The relationship between the reduction ratios from pre- to post-dialysis breath ammonia 

and blood creatinine concentrations had a Pearson correlation coefficient of 0.55 (p<0.01) 

(Fig. 6.9). This was a slightly lower correlation in comparison to the previously observed 

urea reduction ratio (r=0.60). No indications of relationships with creatinine reduction 

ratios could be found in previous literature. 
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Figure 6.9 Relationship of breath ammonia and blood creatinine reduction ratios for 

the haemodialysis patient population (r=0.55, p<0.01, n=45). 

The relationship between the reduction ratios from pre- to post-dialysis blood creatinine 

and urea concentrations had a Pearson correlation coefficient of 0.94 (p<0.01) (Fig.6.10) 

showing the strong link between the blood nitrogen species and the consistency from one 

patient to the next. However, it is worth noting that the range observed is indicative of 

individual metabolic behaviour. In other words, each patient has a reduction ratio that was 

unique to themselves and varied from levels in excess of 85% to levels lower than 45%. 

Narasimhan et al also showed that the reductions could potentially be different from person 

to person [9]. While observing four haemodialysis patients, Narasimhan et al found a 

significant bias among the blood samples. Pre- to post-dialysis measurements showed a 

15% greater reduction in the blood urea for three of the four patients suggesting that 

differences exist in how the other patient’s body processed the nitrogenous compounds [9], 

and further demonstrated the need for a real-time monitoring technique to assist with such 

variation. 
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Figure 6.10 Relationship of blood creatinine reduction ratios and blood urea nitrogen 

reduction ratios for the haemodialysis patient population (r=0.94, p<0.01, n=51). 

As was discussed earlier, a decrease of 65% in the URR is typically sought to ensure 

adequate dialysis. Here, this equated to a concomitant breath ammonia reduction of 

approximately 63% of the pre-dialysis value. If using 65% reduction in creatinine, this 

would equate to a reduction in breath ammonia of approximately 80%. This may suggest 

that urea and creatinine levels diminish at different rates than breath ammonia levels where 

urea is faster and creatinine is potentially slower. However, previous research by Lévesque 

et al demonstrated through case studies of haemodialysis patients (n=2) that blood 

metabolites were removed at similar rates [27, 28]. Blood-side clearances such as these are 

calculated using a standard method which is detailed by Leypoldt et al [29]. To summarise, 

concentrations (e.g. mmol/L or µmol/L) of the nitrogenous compounds are monitored at the 

arterial blood inlet, the venous blood outlet, and the dialysate outlet. Comparison of the 

blood-side with dialysate-side clearances (blood minus dialysate) is then used to calculate 

the overall clearance flow rate (ml/min) of the particular nitrogenous compounds [29, 30]. 

Observations in one patient took place at four hourly increments of a four hour dialysis 

session, and resulted in averaged clearance rates of approximately 261 ml/min for 

ammonia, 263 ml/min for urea, and 200 ml/min for creatinine [27]. The study was repeated 

in a second haemodialysis patient and clearance rates were found to be approximately 290 
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ml/min for ammonia, 352 ml/min for urea, and 180 ml/min for creatinine [28]. The urea in 

those studies was cleared from the blood faster than ammonia, but creatinine was cleared at 

a slower rate. Urea was cleared from the blood 2 ml/min faster than ammonia in the first 

patient and 62 ml/min faster in the second patient. However, creatinine was cleared from 

the blood 61 ml/min slower than ammonia in the first patient and 110 ml/min slower in the 

second patient. Hence, with the diversity of the results, it is not likely that the dialysis 

clearance rate of nitrogenous compounds is initiating the difference between reductions in 

breath ammonia and both blood nitrogen species. 

However, one potential reason is that urea and creatinine measurements come from samples 

which are taken directly from the source (i.e. blood) while the ammonia is sampled from an 

intermediate source (i.e. breath) which must abide by the rate of gas exchange via the lungs. 

This could cause a slight delay in the measurements from blood-to-breath whereby the 

complete ammonia load generated in the blood has not yet diffused into the alveolar air by 

the time measurements are taken. In other words, to exhale gaseous ammonia, the ammonia 

molecules in the blood which are flowing through the capillaries of lung alveoli must move 

from their position of higher concentration to that of lower concentration in the atmosphere. 

This makes it necessary for the partial pressure between the capillary blood and the alveolar 

air to initiate diffusion allowing ammonia molecules to bypass the tissue. This would occur 

more slowly than sampling directly from the blood as with urea and creatinine nitrogen 

giving the appearance of delayed ammonia clearance [31]. 

Another possible reason could be related to the rebound of nitrogenous compounds in the 

blood of patients after dialysis. Patients with elevated blood nitrogen levels have potential 

for rapid reaccumulation of ammonia in the blood upon cessation of dialysis which could 

give the appearance of less ammonia reduction via dialysis clearance as detected by way of 

the breath [32]. This is due to ongoing catabolism of nitrogenous compounds within the 

blood [33]. Kooman et al described the phenomenon of increased nitrogenous waste as 

being a result of one of three key factors [34]. First, within 0.25 to 0.33 min after dialysis, 

access recirculation could occur whereby dialysed blood from the venous line returns to the 

arterial line [35] causing a narrowing of blood vessel walls (vessel stenosis) [36]. Second, 

during the first minute or two after dialysis, cardiopulmonary recirculation takes place [34]. 

This is where the purified blood which is returning from the dialyser to the body is rapidly 

returned to the dialyser thereby reducing the efficiency of dialysis by reducing the 
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concentration of metabolites at the dialyser inlet [37]. Third, up to 30 and 60 minutes after 

dialysis, disequilibrium of the nitrogenous wastes throughout the body could exist due to 

the concentration gradients between intra- and extra-cellular spaces derived from resistance 

of cell membranes to transport of the nitrogenous wastes [34] whereby reaccumulation 

would arise from the intra-cellular space. Rajpoot et al described three examples of this in 

haemodialysis patients [38]. In their patient C, ammonia decreased from 639 to 150 µmol/l 

during dialysis with a rebound to 360 mmol/l measured over the six hours after dialysis. In 

their patient D, ammonia decreased from 650 to 270 µmol/l during dialysis followed by an 

increase to 389 µmol/l as measured over three hours. A follow up dialysis session of patient 

D was performed, and the ammonia concentration further decreased from 389 to 200 

µmol/l during dialysis. This was followed by an ammonia rebound to 254 µmol/l as 

measured over the next seven hours. This rapid rebound of nitrogenous compounds in the 

blood could, therefore, result in a post-dialysis breath measurement consisting of higher 

blood ammonia levels than that which was measured during dialysis. This would result in 

the measurement of a smaller ammonia reduction from pre- to post-dialysis, and give the 

appearance that ammonia has a slower rate of clearance than other nitrogenous compounds. 

6.3.8 Relationship between Kt/V and absolute breath ammonia reduction, breath ammonia 

reduction ratio, and blood urea nitrogen reduction ratios in the haemodialysis patient 

population 

It has already been shown that population statistics of the correlation between breath 

ammonia and blood nitrogen levels was less than satisfactory. Attempts to compensate for 

patient-specific factors using reduction ratios did not improve this. Kt/V is a unitless ratio 

used to determine clearance rates of urea from blood during dialysis [39]. In this way, it 

takes into account individual differences in body fluid volume which can impact clearance 

rates and which might partly account for inter-individual variations. While current 

guidelines request a urea reduction ratio of 65% in haemodialysis, a Kt/V of at least 1.20 is 

sought [40]. However, due to potential rebound of nitrogenous compounds at the end of 

dialysis, this number could be overestimated by as much as 0.15 to 0.20 of the true value. 

To compensate, a calculation is often performed to equilibrate the Kt/V measurement, 

where 1.00 becomes the optimum value [40]. A higher Kt/V, indicative of higher dialysis 

efficiency, is well known to decrease mortality risks [41], and is therefore a key goal of 
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each dialysis session. As mentioned in Section 6.3.2, variations in the internal fluids among 

individuals in a haemodialysis population can result in a range of metabolite concentrations 

within. Thus, additional correlations were performed between Kt/V and absolute breath 

ammonia reduction, breath ammonia reduction ratio, and blood urea nitrogen reduction 

ratio to determine if variations in volume clearance rate might account for the variations 

seen in earlier correlations.  

The correlation between the absolute breath ammonia reduction and Kt/V of 44 patient 

samples (only 44 of the 51 patient samples could be measured due to lack of post-dialysis 

breath ammonia measurements for 6 patients, and no haematocrit data for one patient) 

displayed a Pearson correlation coefficient of 0.25, and was not significant (p=0.102) (Fig. 

6.11), indicating that use of Kt/V to correlate with absolute breath ammonia reduction 

would not be beneficial. In the case of the SIFT-MS data of Endre et al generated from 

their group B (n=5, home dialysis patients), this yielded a 0.34 (p<0.01) correlation 

between the change in breath ammonia during dialysis and Kt/V, which was significant 

[13]. The difference observed could again potentially be due to population size, but this is 

uncertain. 
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Figure 6.11 Relationship between absolute breath ammonia reduction and Kt/V for 

the haemodialysis patient population samples (r=0.25, p=0.102, n=44). 
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Breath ammonia reduction ratios of the 44 patient samples displayed a Pearson correlation 

of 0.50 (p<0.01) with Kt/V indicating a stronger relationship (Fig. 6.12). Endre et al also 

showed a slight increase in this relationship with a correlation of 0.38 (p<0.01) [13]. This 

makes sense since both breath ammonia reduction ratio and Kt/V consider the fraction of 

metabolites removed from the whole of a particular volume, while the absolute reduction 

shown earlier is just a difference calculated of the metabolites being removed during 

dialysis where volume is not taken into account. 
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Figure 6.12 Relationship between breath ammonia reduction ratio and Kt/V for the 

haemodialysis patient population samples (r=0.50, p<0.01, n=44). 

The relationship between Kt/V and blood urea reduction ratio yielded a Pearson correlation 

coefficient of 0.93 (p<0.01) (Fig. 6.13). This correlation was significantly higher than 

between the Kt/V and absolute breath ammonia reduction (r=0.25) and breath ammonia 

reduction ratio (r=0.50) indicating that use of Kt/V to correlate with blood urea reduction 

ratios would be useful. This further corroborates the fact that Kt/V is meant to yield 

measurements associated with the urea reduction ratio, and would be expected to 

demonstrate a significant correlation with that ratio [42]. 
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Figure 6.13 Relationship between blood urea nitrogen reduction ratio and Kt/V for 

the haemodialysis patient population samples (r=0.93, p<0.01, n=44). 

6.3.9 Intra-individual correlations of breath ammonia and blood urea nitrogen levels 

Thus far, any population-based correlations, using either absolute values or looking at 

changes and ratios did not yield strong correlations between breath ammonia and blood 

nitrogen levels. As a result, focus was switched to looking at the relationship between 

breath ammonia and blood nitrogen on a patient-by-patient basis. Several patients were 

willing to perform repeated correlative measurements of breath ammonia and blood 

nitrogen (Table 6.3). 

Table 6.3 Summary of pre- and post-dialysis absolute breath ammonia concentrations 

(as measured with the AmBeR device), blood urea nitrogen, and blood creatinine for 

haemodialysis patients (n=11). 	egative values are indicated by (-). 

Volunteer Dialysis Absolute 	H3 Absolute Urea Absolute Cre 

(	umber) (Pre/Post) (ppbv) (mmol/L) (µµµµmol/L) 

1 Pre 874 22.4 751 
 Post 414 7.2 284 
 Pre 690 16.3 536 
 Post 32 3.9 165 

2 Pre 1,098 25.0 1,050 
 Post 190 6.2 309 
 Pre 611 20.2 843 
 Post 164 5.2 291 
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Volunteer Dialysis Absolute 	H3 Absolute Urea Absolute Cre 

(	umber) (Pre/Post) (ppbv) (mmol/L) (µµµµmol/L) 

3 Pre 1,203 25.5 1,020 
 Post - 6.3 337 
 Pre 1,072 19.8 623 
 Post 32 4.7 206 
 Pre 861 23.9 969 
 Post 32 4.4 302 

4 Pre 335 24.8 1,257 
 Post 98 7.2 507 
 Pre 664 30.8 1,470 
 Post 85 9.6 517 
 Pre 282 23.2 1,151 
 Post 32 6.7 415 

5 Pre 2,230 29.0 1,137 
 Post 72 7.6 359 
 Pre 1,401 35.0 1,420 
 Post 19 7.7 396 
 Pre 2,164 25.6 1,150 
 Post 85 4.6 293 

6 Pre 835 21.5 683 
 Post 519 9.0 340 
 Pre 967 19.9 545 
 Post - 4.3 161 
 Pre 559 23.2 815 
 Post 138 6.2 253 
 Pre 717 23.4 750 
 Post 164 5.6 210 

7 Pre 1,361 20.3 649 
 Post - 4.2 206 
 Pre 1,085 21.4 684 
 Post 98 5.4 225 
 Pre 677 18.1 593 
 Post 282 5.2 212 
 Pre 940 18.7 554 
 Post 85 4.5 175 

8 Pre 545 40.5 970 
 Post 59 10.1 293 
 Pre 638 33.7 866 
 Post 98 9.3 279 
 Pre 440 30.2 920 
 Post 72 8.3 280 
 Pre 388 32.9 786 
 Post - 7.6 226 
 Pre 295 31.0 847 
 Post 59 7.4 240 
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Volunteer Dialysis Absolute 	H3 Absolute Urea Absolute Cre 

(	umber) (Pre/Post) (ppbv) (mmol/L) (µµµµmol/L) 

9 Pre 1,309 31.5 959 
 Post 164 5.4 311 
 Pre 874 26.6 912 
 Post 480 7.7 323 
 Pre 993 21.3 1,079 
 Post 440 4.6 354 
 Pre 835 20.2 823 
 Post 480 4.8 249 
 Pre 677 15.9 623 
 Post 59 4.6 213 

10 Pre 1,690 19.0 995 
 Post 1,138 9.7 576 
 Pre 2,243 17.6 642 
 Post 190 6.8 276 
 Pre 1,217 16.4 597 
 Post 45 5.1 248 
 Pre 1,282 14.7 563 
 Post 217 5.1 240 
 Pre 1,217 15.6 535 
 Post 151 5.3 231 

11 Pre 940 23.2 586 
 Post 388 7.4 231 
 Pre 901 19.2 710 
 Post 72 4.6 224 
 Pre 493 8.8 325 
 Post 19 2.5 133 
 Pre 690 14.2 475 
 Post - 3.5 157 
 Pre 756 20.0 504 
 Post 85 5.4 179 

 

The relationship between the absolute concentrations of breath ammonia and blood urea 

nitrogen are shown in Fig. 6.14. It can be seen that the correlation between breath ammonia 

and blood urea nitrogen ranged from 0.82 to 0.96 with p-values of <0.01 and <0.05, 

indicating strong correlation and good statistical significance in all cases. The fact that the 

correlations for all intra-individual data were strong with good statistical significance 

suggests that the relationship between breath ammonia and blood urea levels remain 

reasonably consistent between dialysis sessions for a particular individual and so the 

correlation is not utterly dependent on the dynamics of a single dialysis event. It was also 

obvious that the relationship between breath ammonia and blood urea varied considerably 

from patient to patient as evidenced by the slopes (ranging from 15.70 to 122.59 ppbv). 
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Figure 6.14 (a-g) Pre-dialysis (blue diamond) and post-dialysis (red square) of intra-

individual absolute breath ammonia and blood urea nitrogen concentrations: (a) 

Volunteer 1: r=0.96, p<0.05, n=4 (b) Volunteer 2: r=0.96, p<0.05, n=4 (c) Volunteer 3: 

r=0.96, p<0.01, n=5 (d) Volunteer 4: r=0.94, p<0.01, n=6 (e) Volunteer 5: r=0.88, 

p<0.05, n=6 (f) Volunteer 6: r=0.82, p<0.05, n=7 and (g) Volunteer 7: r=0.94, p<0.01, 

n=7. 
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Figure 6.14 (h-k) Pre-dialysis (blue diamond) and post-dialysis (red square) of intra-

individual absolute breath ammonia and blood urea nitrogen concentrations: (h) 

Volunteer 8: r=0.93, p<0.01, n=9 (i) Volunteer 9: r=0.86, p<0.01, n=10 (j) Volunteer 

10: r=0.93, p<0.01, n=10 and (k) Volunteer 11:  r=0.96, p<0.01, n=9. 

Furthermore, the relationship between breath ammonia and blood urea appears to be 

reasonably linear for each individual. All these facts suggest that there would appear to be a 

defined relationship between breath ammonia and blood urea nitrogen levels that was 

specific to each individual. The reasons for this specific relationship are, as yet, 

undetermined, but again probably relate to patient-specific factors. For example, Volunteer 

8 (Fig. 6.14 h) yielded pre-dialysis urea concentrations in excess of 30 mmol/L, while only 

registering ammonia levels of approximately 440 ppbv, and Volunteer 10 (Fig. 6.14 j) had a 

pre-dialysis breath ammonia level of 2,243 ppbv with a urea level of 17.6 mmol/L. This is 

an obvious display of the unique physiological factors associated with each individual. 

It should be noted that individually these relationships were based on small sample sets. 

However, the number of volunteers and the strength and consistency of the correlations 

across all samples strengthens their validity. It can be seen that the correlations were much 

improved over the population correlations, suggesting the possibility that tracking changes 

in an individual’s levels may be more effective than using population correlations. The 

population data had potential for bias since comparisons were made inter-individual, and 
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the unique physiology of each patient could have interfered with the correlations observed 

in other patients. With the intra-individual assessment, the unique behaviour is only being 

compared against itself which would greatly reduce bias. The values were comparable to 

the 0.95 correlation (n=6) seen within the individual haemodialysis patient observed in the 

previous research of Narasimhan et al [9]. In that study, the six measurements observed in 

the individual were made over the period of a single dialysis session following the 

reduction of blood constituents from pre- to post-dialysis rather than over separate sessions 

as performed in this work. However, the correlations in both experiments between the 

decrease in breath ammonia and the decrease in nitrogenous blood metabolites demonstrate 

how non-invasive breath ammonia measurements could provide a real-time measure of 

blood nitrogen levels within an individual. 

6.3.10 Intra-individual correlations of breath ammonia and blood creatinine levels 

The relationship between the absolute concentrations of breath ammonia and blood 

creatinine begins in Fig. 6.15. The correlation between breath ammonia and blood 

creatinine had a wider range than that with urea going from 0.71 to 0.97 with p-values of 

<0.01 and <0.05, once again displaying a strong correlation with good statistical 

significance. Volunteer 6 (Fig. 6.15f), however, displayed a non-significant relationship 

(p=0.074) between breath ammonia and blood creatinine. The reason for this result is 

unidentified, but is likely the cause of an unknown interferent given that the other 

correlations were strong. Furthermore, the results were similar to that of Narasimhan et al 

where laser spectroscopic measurements of breath ammonia displayed a correlation of 0.83 

(n=6) with blood creatinine over the duration of a dialysis session in an individual 

haemodialysis patient [9]. As with the urea correlations, the good statistical significance 

among the intra-individual data suggests that the relationship between breath ammonia and 

blood creatinine levels remain reasonably consistent between dialysis sessions. In addition, 

the behaviour observed by the slopes (ranging from 0.47 to 2.64 ppbv) was similar to that 

seen with urea analysis where the relationship varied from person to person suggesting 

patient-specific factors are involved. The previously discussed Volunteer’s 8 (Fig. 6.15 h) 

and 10 (Fig. 6.15 j) yielded pre-dialysis creatinine concentrations in excess of 500 µmol/L, 

yet Volunteer 8 only expressed breath ammonia concentrations of approximately 400 ppbv 

in this region while Volunteer 10 was over 900 ppbv on all accounts again demonstrating 

individual specificity. 
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Figure 6.15 (a-g) Pre-dialysis (blue diamond) and post-dialysis (red square) of intra-

individual absolute breath ammonia and blood creatinine concentrations: (a) 

Volunteer 1: r=0.96, p<0.05, n=4 (b) Volunteer 2: r=0.97, p<0.05, n=4 (c) Volunteer 3: 

r=0.89, p<0.05, n=5 (d) Volunteer 4: r=0.93, p<0.01, n=6 (e) Volunteer 5: r=0.88, 

p<0.05, n=6 (f) Volunteer 6: r=0.71, p=0.074, n=7 and (g) Volunteer 7: r=0.94, p<0.01, 

n=7. 
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Figure 6.15 (h-k) Pre-dialysis (blue diamond) and post-dialysis (red square) of intra-

individual absolute breath ammonia and blood creatinine concentrations: (h) 

Volunteer 8: r=0.92, p<0.01, n=9 (i) Volunteer 9: r=0.85, p<0.01, n=10 (j) Volunteer 

10: r=0.86, p<0.01, n=10 and (k) Volunteer 11: r=0.95, p<0.01, n=9. 

6.3.11 Intra-individual correlations of blood creatinine and blood urea levels 

The relationship between the absolute concentrations of blood urea and creatinine begins in 

Fig. 6.16. The correlation between blood urea nitrogen and creatinine ranged from 0.90 to 

1.00 with p-values of <0.01 and <0.05, indicating strong correlation and good statistical 

significance. The variation previously seen in the slopes also existed between blood urea 

and creatinine (ranging from 23.84 to 43.71 µmol/L), but not as much as between blood 

and breath. It is also worth noting that the relationship between blood urea and creatinine 

appears to be reasonably linear among the individuals suggesting that the relationship 

between blood urea nitrogen and creatinine levels displays similar behaviour from person to 

person. Although, slight variations do exist as exemplified by the previously mentioned 

Volunteer 8 (Fig. 6.16 h) yielded pre-dialysis urea concentrations in excess of 30 mmol/L, 

while registering creatinine levels of approximately 1,000 µmol/L, and Volunteer 10 (Fig. 

6.16 j) had a pre-dialysis creatinine level close to 1,000 µmol/L where urea concentrations 

were only at approximately 20 mmol/L. 
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Figure 6.16 (a-g) Pre-dialysis (blue diamond) and post-dialysis (red square) of intra-

individual blood creatinine and blood urea concentrations: (a) Volunteer 1: r=1.00, 

p<0.01, n=4 (b) Volunteer 2: r=1.00, p<0.01, n=4 (c) Volunteer 3: r=0.97, p<0.01, n=6 

(d) Volunteer 4: r=1.00, p<0.01, n=6 (e) Volunteer 5: r=1.00, p<0.01, n=6 (f) Volunteer 

6: r=0.98, p<0.01, n=8 and (g) Volunteer 7: r=1.00, p<0.01, n=8. 
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Figure 6.16 (h-k) Pre-dialysis (blue diamond) and post-dialysis (red square) of intra-

individual blood creatinine and blood urea concentrations: (h) Volunteer 8: r=0.99, 

p<0.01, n=10 (i) Volunteer 9: r=0.94, p<0.01, n=10 (j) Volunteer 10: r=0.90, p<0.01, 

n=10 and (k) Volunteer 11: r=0.95, p<0.01, n=10. 

By comparison to the population data, the improved correlations observed between breath 

ammonia, blood urea, and blood creatinine within individuals demonstrates a higher level 

of consistency among intra-individual samples. It is likely that the metabolic and 

physiological characteristics (e.g. kidney function, muscle mass, etc.) unique to the 

individuals would result in greater consistency in blood and breath measurement behaviour 

than would inter-individual comparisons among a population. This is demonstrated by the 

variations in individual slopes which signify metabolic behaviour unique to each person. In 

addition, the Pearson correlations found between breath ammonia and blood urea nitrogen 

were within a slightly smaller range than with blood creatinine suggesting that a more 

consistent and potentially stronger relationship may exist between breath ammonia and 

blood urea. 

6.4 Conclusions 

The AmBeR breath ammonia system was shown to yield excellent correlation with PALS 

(r=0.97, p<0.01, n=7) with regard to breath ammonia measurements in haemodialysis 
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patients and so was evaluated for its ability to further correlate with both blood urea 

nitrogen and blood creatinine levels. A significant difference between pre- and post-dialysis 

breath ammonia levels was identified. However, population correlations between absolute 

breath ammonia and blood urea (r=0.61, p<0.01, n=96), and blood creatinine (r=0.60, 

p<0.01, n=96) levels suggested the presence of patient-specific variables that reduced the 

correlative relationship between blood nitrogen and breath ammonia. Furthermore, this 

negative impact on correlations could also be seen between breath ammonia reduction 

ratios and blood urea reduction ratios (r=0.60, p<0.01, n=45), and blood creatinine 

reduction ratios (r=0.55, p<0.01, n=45). Comparison of Kt/V with breath ammonia 

reduction ratios (r=0.50, p<0.01, n=44), and blood urea reduction ratios (r=0.93, p<0.01, 

n=44) demonstrated similar correlations to the previous results, but did not reduce patient-

specific variations. A urea reduction ratio of 65% equated to a breath ammonia reduction 

ratio of approximately 63% of the pre-dialysis value. Studies on the intra-individual 

correlations between absolute breath ammonia and blood urea nitrogen and blood creatinine 

yielded correlation coefficients ranging from 0.82 to 0.96, and 0.71 to 0.97, respectively. 

Although, further trials will be necessary to confirm these correlations, the data suggests 

that the AmBeR system has the potential to aid clinicians and patients in monitoring 

haemodialysis in a non-invasive manner following patient-specific calibration of the 

device. 
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OVERALL CO	CLUSIO	S A	D FUTURE WORK 
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7.1 Overall conclusions 

The concentrations of breath ammonia in a healthy cohort measured via PALS were 

comparable to those of previous literature, and defined normal baseline analytical 

measurements. Inter-individual comparisons between oral breath ammonia and biometric 

parameters of oral breath carbon dioxide, gender, age, and BMI displayed insignificant 

correlations. Observations of changes in breath ammonia over the course of daily routines 

revealed a pattern of decline at mid-day followed by an increase in the afternoon. Orally 

exhaled breath had consistently higher concentrations of ammonia than did nasally exhaled 

breath. 

The system developed to simulate breath for sensor characterisation studies generated 

continuous flowing samples at human levels of flow rate, temperature, humidity, and trace 

gas ammonia levels, which were validated using a number of measurement tools (e.g. 

PALS, thermistor, spirometer). 

The ammonia sensing element (nanoPANI interdigitated electrode) displayed an intra-

electrode variability of 0.05 to 1.67%. Observations of potential interferent gases as well as 

effects of temperature and humidity established that the only significant factors in the 

response of the sensor were ammonia gas, humidity, and temperature. Correlations of 

ammonia gases over the range of 40 ±2 ppbv to 2,175 ±26 ppbv demonstrated a correlation 

of 0.99 with a limit of detection of 6.3 ppbv. 

A breath sampling system (AmBeR) was thus developed consisting of a breath sampling 

interface, sample measurement chamber with integrated nanoPANI-based ammonia sensor 

connected to an impedance analyser, and integrated into a housing to allow the system to be 

used at the point-of-care. A correlation of ammonia concentration with PALS of 0.99 with a 

LOD of 65.9 ppbv over the range of 40 ±2 to 2,993 ±10 ppbv was established in simulated 

breath samples. In addition, quantification of ammonia concentrations from normal human 

breath showed a 0.9860 correlation between the resulting AmBeR device and the 

commercial PALS system in the population, and a 0.9678 in the intra-individual correlation 

A correlation of 0.97 was also established for ammonia breath concentrations in 

haemodialysis patients between AmBeR and PALS. A significant difference between pre- 

and post-dialysis breath ammonia and blood metabolite levels was also observed in these 
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patients. Population statistics displayed intermediate levels of correlation (r=0.54 to 0.65) 

between breath ammonia and blood nitrogen concentrations. However, intra-individual 

responses displayed higher correlations (r=0.78 to 0.97) between breath ammonia and 

blood nitrogen levels, establishing the prospect for AmBeR to be used in assisting with 

clinical decision support in this, or related applications. 

7.2 Future works 

The breath ammonia data collected from healthy volunteers using PALS was based on a 

small cohort (n=30). Tests on a larger population, both local and internationally, would 

provide stronger statistical analysis of ammonia levels in the breath of the normal 

population. It is well known that different cultures have unique diets, and various countries 

often have unique environments, which can all potentially influence metabolic input and 

output. Also, it would be of interest to examine the breath of volunteers who indicate no 

internal kidney dysfunction, but have been fasting, have asthma, are on specific diets, are 

smokers, drink alcohol, use medications, or play sports regularly.  

A brief assessment of the effect of medication on breath ammonia levels as measured using 

PALS was made following administration of a normal dose of paracetamol. Breath 

ammonia levels appeared to increase over time subsequent to paracetamol consumption, 

and were monitored via PALS every 30 minutes (Fig. 7.1). Further studies could 

investigate whether the administration of this and other drugs have a transient effect on 

liver function that results in a change in the ability to process nitrogen. Such a technique 

might allow investigation of drug liver toxicity. In addition, assessment of increased blood 

sugar (e.g. glucose) and the effect on breath ammonia also took place (Fig. 7.2). Over the 

duration of three hours after injection of a glucose bolus into the blood stream, breath 

ammonia concentrations were continuously monitored displaying a steady increase from 

approximately 200 to 400 ppb. The resulting changes discussed here are merely anecdotal, 

as there was no additional investigation or controls performed. However, they show that 

there could be potential for future studies using AmBeR to monitor breath in other 

applications such as human physiology/sports science, etc. Such variables would apply to a 

real-world situation and may help to discriminate against potential interferences that were 

not observed previously. 
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Figure 7.1 Effect on breath ammonia over time following paracetamol ingestion. 
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Figure 7.2 Effect of glucose bolus injection on breath ammonia concentration over 

time. 

The ammonia sensor was also briefly studied for its potential use in other applications apart 

from breath. In addition to breath samples, responses to urine were carried out for the 

purpose of investigating urinary incontinence. The experimental set-up shown in Fig. 7.3 

shows the configuration of three sensors (A, B, and C) in relation to a urine sample. 

According to the results in Fig. 7.4, the vapour response from urine suggested that the 

further away the sensor was from the urine, the less the response. Hence, sensor A 
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displayed a week change in conductivity since exposure to vapour was weakest, while 

sensor C displayed the largest change due to direct interaction with the urine. This was 

important since it indicated that vapour could be detected over a given distance and a 

sensor would not have to be in direct contact with the sample. Such a system of disposable 

sensors could have applications in assisted living to improve the quality of life for those 

suffering from this condition, while also assisting in better targeting the needs of patients. 

 

Figure 7.3 Experimental set-up for urine analysis. 
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Figure 7.4 Examination of optimum distance of sensors from urine sample via 

impedance. 
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The simulated breath system assisted with studies of the major interferents in breath. One 

possible future direction in its development might be integration of multiple gases 

simultaneously. For example, the nanoPANI electrodes did not show significant affects 

from CO2 in Chapter 4, but this gas could demonstrate interferent effects if combined with 

some of the other thousands of gases found in breath, or be an interferent in another sensor 

type. In addition, the system developed here used constant, continuous gas flow, which was 

extremely useful for sensor development. However, it did not represent a breath in terms of 

the flow rate profile during exhalation. Inclusion of such a pulsed breath method would 

enable the instrument to simulated human breath more realistically, which may be 

important for other applications. This system may have limited value since other similar 

versions are commercially available such as the Gas Calibration Unit (Ionimed Analytik 

GmbH, Austria), but perhaps the simplicity of the simulated breath instrument may prove 

more beneficial in some applications. 

The primary focus of the development of the ammonia sensor should be on further 

optimisation of nanoPANI fabrication and production so as to improve sensor 

reproducibility. In addition, with portability being a key dynamic in diagnostics, assessment 

of miniaturisation and design development could make it easier to insert and remove the 

electrode from the device and allow further miniaturisation of the system. It would be of 

interest to observe the effects that these changes have on signal behaviour as well. The 

modification process could also involve replacement of silver ink with inks of lower cost 

such as carbon. Perhaps carbon could be ink-jet printed instead of screen-printed which 

may simplify the manufacturing process. Methods could be developed to increase 

sensitivity using composite mixtures (e.g. silver, gold, MWCNT, SWCNT), or a new 

chemistry all together which utilises the current methods but allows the sensors to detect 

gases other than ammonia. Development of better methods for exclusion of interference 

from humidity such as use of PTFE membranes on the nanoPANI film or new impedance 

measurement techniques which compensate for these interferences could also be pursued. A 

study of the shelf-life where electrodes are stored in both air and modified atmosphere 

packaging should also be performed to ensure adequate product shelf-life. A closer look at 

the kinetic nature of the interaction of ammonia with the polymer film should be taken to 

assess whether or not quick recovery would be possible could increase the potential for 

reuse of the electrodes. 
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For the future of the AmBeR device, further simplification is recommended to make it 

potentially hand-held. The impact of miniaturisation would need to be studied so as to see 

the effect on measurement characteristics. Complete systems integration with inbuilt 

electronics consisting of a display screen, minimal controls for ease-of-use, and further 

automation should be performed. This should also include an interface for the simple 

insertion and removal of sensors from the system. Automation could utilize pressure 

sensors that detect the beginning and end of exhalation, and automatic control of valves and 

flow controls. Furthermore, addition of a CO2 sensor could assist with confirmation of 

alveolar samples which would assist in progression towards single breath analysis rather 

than multi-breath. Integration and optimisation of the impedance measurement electronics 

would also be a key development. 

With regards to the application of AmBeR in haemodialysis, examination of a larger 

clinical cohort would provide a better understanding of limitations in both the AmBeR 

system and in the relationship between breath and blood nitrogen levels. Furthermore, 

rather than just observing pre- and post-dialysis, it would be beneficial to observe metabolic 

behaviour throughout, and after haemodialysis. A direct comparison of breath ammonia 

with blood ammonia is also lacking in the literature and may demonstrate better 

correlations than breath ammonia and blood urea nitrogen. Further development of intra-

individual calibrations should be attempted to see if this would have clinical benefit. 

Collaborations with a wider number of dialysis units would also be an important next step 

since the parameters currently observed may not transfer to other countries where diets, 

environments, and daily routines vary. In addition, focus on monitoring of effects from 

other ammonia-based conditions such as transplants, liver dysfunction, Helicobacter pylori, 

and hepatic encephalopathy may open the route to assisting with a wider population of 

patients. If efforts were made to modify the chemistry of the sensing element, there may 

also be potential for monitoring of other breath gases (e.g. acetone) which would lead to 

assistance with other conditions such as diabetes. 

7.3 Challenges 

Certain challenges arose during the conduct of this work. Instances which involved human 

trials always required ethical approval. The process took several months in both the 

university and hospital trials due to the fact that committees which oversee applications 
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meet only a few times a year. Applications and timelines should have been assessed more 

thoroughly before beginning the project. Furthermore, when attempting to find volunteers 

for trials, it was not always easy to find the required population number. Hence, plans 

should have been made to schedule the volunteer cohorts months in advance. With the 

clinical volunteers, candidates were unwilling to commit to the trials unless a doctor 

provided direct introductions on a regular basis. In addition, since the clinical trials 

involved doctors, nurses, technicians, patients, and even personal assistants of the patients, 

there was little organisation. With so many people involved, regular meetings which engage 

everyone associated should have been better established. The result was that schedules 

became confused, samples were forgotten, and much needed time was lost. Regarding 

equipment, the most vital pieces failed at key moments. To name just a few from this 

project, lap tops were not always compatible with the required software, experiments had to 

be repeated regularly due to potentiostats freezing in the middle of a reading, the PALS 

system malfunctioned at the beginning of the clinical trials resulting in a six month loss due 

to repair and maintenance, and the internal construction of AmBeR had leaks which 

required regular sealing. All of these were challenges which could be overcome with time, 

but with studies involving clinical trials, loss of a key component such as PALS resulted in 

a lack of data for correlations between AmBeR and PALS. 
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Appendix 1 

DCU Research Ethics Committee: 	otification Form for Low-Risk 

Projects 

Project Title: 

Breath Monitoring: Non-invasive Sample Collection and Analysis 

Project Dates: 

February 1, 2009 – January 31, 2012 

Applicant 	ame and Email: 

Troy Hibbard (troy.hibbard2@mail.dcu.ie) 

If a student applicant, please provide the following: 

Level of Study:  PhD 

Supervisor %ame and Email:  Dr. Tony Killard (Tony.Killard@dcu.ie) 

1.  A lay description of the proposed research 

Currently, the methods for monitoring dysfunction of the human liver and kidneys rely on 
elaborate testing techniques. In development of these techniques, research has shown that 
impairment of the liver and kidneys can be detected by analyzing breath ammonia.  Thus, 
having a sensor that can provide accurate readings would prove advantageous.  The 
eventual goal is to develop a non-invasive breath ammonia sensor that can provide readings 
in real-time at the point-of-care.  In order to do this, data must be recorded from healthy 
human subjects to determine normal baseline trends.  Volunteers will be asked to provide 
breath samples at specified times over the period of the project.  Breath samples will be 
taken and measured by a non-invasive ammonia breath monitoring system which 
investigators will establish. Once sufficient data is collected, it will be used as a reference 
for future clinical trials.  When the clinical juncture of the project is reached, notification 
will be sent to the ethics committee again for further approval. 

2.  Details of the proposed methodology 

Initially, suitable volunteers will be recruited by the methods mentioned in the following 
section titled “3. Details of the means by which potential participants will be recruited”.  
Suitable volunteers are defined in the Plain Language Statement which is attached within 
this application.  Once volunteers are recruited, they will be asked to provide breath 
samples at designated times during the project.  Before each designated breath sampling, 
volunteers will be asked to fill out a questionnaire.  This questionnaire serves the purpose 
of informing the investigator of possible reasons for abnormal data fluctuations (if any 
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exist).  A copy of the questionnaire has been attached to this application and the anonymity 
of the information is discussed in section titled “4.  How the anonymity of the participants 
will be respected”.  The time involved per volunteer is relatively short.  The method for 
providing a breath sample is by breathing into a safe and approved interface similar to the 
image in Figure 1. Interface for sample collection of oral breath ammonia.   

               

Figure 1. Interface for sample collection of oral breath ammonia 

(http://www.fphcare.com/osa/Oracle452.asp) 

Breath samples will be taken using three different interfaces.  The amount of breath 
samples taken will depend on the volunteer’s comfort and willingness.  Volunteers will be 
comfortably seated during the breath test and advised to rest and recover following the test.  
Each breath only takes a matter of seconds to produce.  The three different interfaces are 
nasal, oral (front of mouth), and oropharyngeal (back of mouth).  Using three different 
interfaces serves the purpose of analyzing possible physiological interferences to alveolus 
ammonia.  It is of interest to measure the breath ammonia that originates only from the 
lungs.  However, the human mouth is a source of bacteria that can produce ammonia gas. 
This oral bacterial gas can interfere with the ammonia gas from the lungs.  Measuring 
ammonia concentrations through nasal and oropharyngeal (back of mouth) interfaces is 
expected to bypass the interference from the oral (front of mouth) ammonia.  Furthermore, 
to have data that shows the difference between the oral (front of mouth) ammonia and other 
ammonia, specific volunteers will be asked to refrain from brushing their teeth for up to 
seven days before sampling.  Not brushing for up to seven days is expected to increase the 
bacteria of the mouth to a level that will be distinguishable from that of the lungs.  This 
technique has been approved by dental consultants of the St. James Hospital Ethics 
Committee as discussed in the section titled “6. Approvals that have been sought or secured 
from other sources”.  The ammonia breath concentration will be measured by an 
instrumental ammonia sensor known as the Pranalytica Nephrolux 
(http://www.pranalytica.com/nephrolux.html).  For measurements of breath flow rates and 
volumes, a modified spirometer with added temperature and humidity sensors will also be 
used.  Regular “follow ups” will be performed to answer any questions that the volunteers 
may have. 
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3.  Details of the means by which potential participants will be recruited 

A document containing our requirements for volunteers will be written from the Plain 
Language Statement.  The document will reflect the purpose of the study, variables of 
preference (age ranges, etc.), time involved, risk assessment, and potential benefits to the 
volunteers.  This document will be circulated by methods of brochures, campus flyers, 
emails, and in-person discussions.  Volunteers will be sought on the campus of Dublin City 
University, and will not include vulnerable groups (children, etc.).   

4.  How the anonymity of the participants will be respected 

All volunteers will be associated with a number.  The data recorded from each volunteer 
will be labeled with respect to the variables tested rather than the volunteer’s identity.  Any 
personal information recorded for purposes of contacting the volunteer will be used only 
for that purpose.  No personal information of the volunteers will be made public in any 
way. 

5.  The risks that researchers and / or participants may be exposed to 

No abnormal testing will be performed.  Abnormal is defined as any risks that may arise 
outside of everyday life.  However, as with any breathing test, specific risks and 
discomforts may apply. The risks involved in this test may include fainting.  Every effort 
will be made to minimize risks by selecting only those who fit the criteria written in the 
Plain Language Statement and by creating a safe and comfortable environment in the test 
location.  Volunteers will be given time to rest and recover as needed. 

6.  Approvals that have been sought or secured from other sources 

Since select volunteers will be asked to refrain from brushing their teeth for up to seven 
days, an inquiry was submitted to dental consultants of the St. James Hospital Ethics 
Committee.  The question concerns whether or not lack of brushing for up to seven days 
could cause any ethical issues.  Ethical issues in this case are defined as anything that 
causes dental health problems.  The following is the email response from the dental 
consultants of St. James Hospital Ethics Committee in regards to this matter: 

-----Original Message-----  

From: O Mahony, Aisling (Consultant Restorative Dentistry)  

Sent: 10 March 2009 09:05  

To: Info  

Subject: RE: Dental Ethics Question - Dublin City University  

  

Hi,  

I cannot see any ethical issue with this. It will certainly result in  

some gingivitis which is reversible. The only problem might be to  

exclude people with a history of or with active periodontal disease.  

This is obviously a personal opinion only. So a complete bill of health  

(dental) from their gdp might be in order.  

AIsling  
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-----Original Message-----  

From: Info  

Sent: 02 March 2009 13:04  

To: McKiernan, Eamonn (Consultant Orthodontist); O Mahony, Aisling  

(Consultant Restorative Dentistry)  

Subject: FW: Dental Ethics Question - Dublin City University  

  

-----Original Message-----  

From: troy.hibbard2@mail.dcu.ie [troy.hibbard2@mail.dcu.ie]  

Sent: 02 March 2009 12:25  

To: Info  

Subject: Dental Ethics Question - Dublin City University  

  

Hello,   

My name is Troy Hibbard and I am a current PhD researcher at Dublin City 

University. If it is possible, I was hoping that you would be able to 

answer a question that I have about dental ethics. I previously contacted 

the Irish Dental Association, and they informed me that there is an 

ethical committee at St James's Hospital which can give quick approval to 

such studies. We are researching breath ammonia levels and require that 

volunteers stop brushing their teeth anywhere from 5 days to one week. 

Would this time frame be acceptable or would there be any ethical issues? 

If so, do you have any recommendations on how to go about approaching the 

ethical issues, or perhaps who to ask? I greatly appreciate your time and 

assistance.  

Regards,  

Troy Hibbard  

Dublin City University 

Aisling O’Mahony recommended that we inquire about the dental background of the 
volunteers that will be asked to refrain from brushing.  This inquiry will take place in the 
attached questionnaire labeled “DCU Breath Analysis Questionnaire”.  In relation to the 
criteria of section “5. The risks that researchers and / or participants may be exposed to”, a 
risk assessment was asked for from Fisher & Paykel.  Fisher & Paykel is the company that 
we intend to purchase the nasal, oral and oropharyngeal interfaces from.  Since these 
interfaces will make physical contact with the volunteer, the risks should be acknowledged.  
Fisher & Paykel responded with the following email stating that risks have already been 
assessed by their company and there is no need to provide a copy for ethical proposal: 

Date: Monday, March 2, 2009 3:29 PM   

From: Emma Duckworth <Emma.Duckworth@fphcare.co.nz> 
 

To: troy.hibbard2@mail.dcu.ie 
 

cc: Stephen Stanley <Stephen.Stanley@fphcare.co.uk>  
 

Subject: RE: Fisher & Paykel Healthcare Website Enquiry  

 

Hello Troy, 

Thanks you for providing me with further information. Unfortunately we 

cannot give out our risk assessment data. Once we have products approved 

for release then it means they have completed the risk assessment 

process. In my research experience, we have never had to provide risk 

assessment data on a released product that is already for sale - only on 
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products that are still in development for use in clinical 

investigations. However, I am not familiar with the Irish system so this 

may be a requirement. Perhaps providing the Instructions for use of each 

product would suffice as the Investigators Brochure for these products 

in your Clinical Investigation, which may help. I have certainly used 

them for this in Clinical Investigations in the past.  For price 

estimates I have copied in one of my Irish colleagues who will be able 

to assist you with this.  Please let me know if I can help more. 

Best regards,                                                                                                                                                           

Emms                                                                                                                                      

Emma Duckworth                                                                                                                                                       

Clinical Research Manager – OSA                                                                                                                           

Fisher & Paykel Healthcare                                                                                                                                  

Phone     +64 9 5740123 ext 8754 

-----Original Message----- 

From: troy.hibbard2@mail.dcu.ie [mailto:troy.hibbard2@mail.dcu.ie]  

Sent: Thursday, 26 February 2009 1:49 a.m. 

To: Emma Duckworth 

Subject: Re: Fisher & Paykel Healthcare Website Enquiry  

Hello Emma, 

Thanks for getting back to me and sorry for the lack of details. The 

interfaces are needed for a current Clinical Research Investigation. We 

are in the first phases of collecting data on breath. In order to do 

this, though, we still need the interfaces for people to breathe into. 

However, ethical protocols require that we have a risk assessment 

available before breath sampling can take place. The reason that I asked 

for information on various interfaces is because we are going to be 

collecting data from various methods (nasal and oral). If there is 

anything else that you have questions about, please let me know. 

Thanks for your assistance, 

Troy 

Hello Troy, 

Thank you for your recent enquiry via the Fisher & Paykel Healthcare 

website. I need to ask a few more questions before I will be able to 

help you out. Do you require this information for a Clinical Research 

Investigation or simply for the use of our products within your clinical 

setting? If you could provide me with a little more information I will 

see how we can help.              

Best regards,                                                                                                                                 

Emms 

Emma Duckworth                                                              

Clinical Research Manager – OSA                                                                                         

Fisher & Paykel Healthcare                                                     

Phone +64 9 5740123 ext 8754                                                                                               
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Mobile +64 21 538499 

-----Original Message----- 

From: troy.hibbard2@mail.dcu.ie [mailto:troy.hibbard2@mail.dcu.ie]                

Sent: Sunday, 22 February 2009 1:49 a.m.                                                                           

To: Info                                                                                         

Subject: Fisher & Paykel Healthcare                                                                                   

Web Site : General enquiry (21 February 2009 05:48)                                      

Name: Troy Hibbard                                                                                                                         

E-mail: troy.hibbard2@mail.dcu.ie                                     

Subject: General                                                                                                                        

Country: Ireland                                                                                                                            

Company Name: Biomedical Diagnostics Institute                                                       

Position: PhD student researcher                                                                                         

Hospital Name: BDI of DCU                                                                                                           

Product Enquiring About: OSA Interfaces                                                                          

Comments:  

Hello, 

My name is Troy Hibbard and I am a current PhD researcher at Dublin City 

University. We are interested in purchasing several of the interfaces in 

regards to the nasal and oral. Due to protocol of human use, though, it 

is necessary to ask for a risk assessment of the equipment before being 

able to use them. Would it be possible for you to send a risk assessment 

form for the OSA Interfaces? The specific ones we are interested in are 

the Opus360, FlexFit405, FlexFit406, FlexFit407, Zest, and the 

Oracle452. Your time and assistance are greatly appreciated! 

Thank you, 

Troy Hibbard 
 

 

7.  Confirmation that the following forms are attached to this document: 

Informed Consent Form (yes/no): 

Yes 

Plain Language Statement (yes/no): 

Yes 
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Dublin City University - Informed Consent Form 

Research Study Title: Breath Monitoring: Non-invasive Sample Collection and Analysis 

University Department:  Biomedical Diagnostics Institute and School of Chemical 
Sciences 

Investigators: Dr. Tony Killard, Dr. Karl Crowley, Zahra Shahbazian, and Troy Hibbard 

Before agreeing to participate in this research study, it is important that you read the 
explanation of this study. This statement describes the purpose, procedures, benefits, 
alternative procedures, risks, and precautions of the program. Also described is your right 
to withdraw from the study at any time. No guarantees or assurances can be made as to the 
results of the study. 

Purpose of the research 

To collect and analyse breath samples for ammonia concentrations.  The data collected will 
serve to develop a sensor specific to assisting dialysis patients who have excretory 
dysfunctions. 

Confirmation of requirements as highlighted in the Plain Language Statement 

Participant – please complete the following (Circle Yes or No for each question) 

1.  Have you read (or had read to you) the Plain Language Statement? Yes / No 

2.  Do you understand the information provided?    Yes / No 

3.  Have you had an opportunity to ask questions and discuss this study? Yes / No 

4.  Have you received satisfactory answers to all your questions?  Yes / No 

5.  Are you aware that your participation will involve a questionnaire? Yes / No 

Statement of voluntary involvement 

Participants may withdraw from the Research Study at any point.  There will be no penalty 
for withdrawing before all stages of the Research Study have been completed. 

Confidentiality of data 

All information gathered from the study will remain confidential and kept in a locked 
facility. Participant’s individual data will not be disclosed outside of the testing personnel 
without each participant’s written permission. However, Dublin City University may 
review the study data without written consent. The results of this study may be published 
for scientific purposes, and participant’s identity will not be revealed. 
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Benefits to participants 

Although there are no direct benefits to the people in this study, possible benefits include 
better sensor technology for dialysis patients.   

Risks to participants 

No abnormal testing will be performed.  Abnormal is defined as any risks that may arise 
outside of everyday life.  However, as with any breathing test, specific risks and 
discomforts may apply. The risks involved in this test may include fainting.  Every effort 
will be made to minimize risks by selecting only those who fit the criteria written in the 
Plain Language Statement and by creating a safe and comfortable environment in the test 
location.  Volunteers will be given time to rest and recover as needed.  It is the participant’s 
responsibility to inform the study investigator if they feel dizzy, ill-feeling or other 
symptoms during the breath sampling procedure. 

Alternative Procedures 

Since this study does not involve specific treatments or procedures, there are no alternative 
methods at this time. 

Signature 

I have read and understood the information in this form.  My questions and concerns have 
been answered by the researchers, and I have a copy of this consent form.  Therefore, I 
consent to take part in this research project. 

 

Participants Signature: ________________________________________________ 

 

	ame (Block Capitals):  ________________________________________________ 

 

Witness:   ________________________________________________ 

 

Date:    ________________________________________________ 
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Dublin City University – Plain Language Statement 

Research Study Title: Breath Monitoring: Non-invasive Sample Collection and Analysis 

University Department: Biomedical Diagnostics Institute and School of Chemical 
Sciences 

Investigators: Dr. Tony Killard, Dr. Karl Crowley, Zahra Shahbazian, and Troy Hibbard 

What involvement in the Research Study will require 

I. Human volunteers will be expected to fulfill the requirements of “normalcy”.  Normalcy 
is defined as having the following characteristics: 

 1.  Age range between 18 and 60 years 

 2.  Have no known respiratory (breathing, etc.) or digestive (stomach, etc.) 
 complications 

 3.  Not a daily tobacco smoker 

 4. Do not consume excessive quantities of alcohol (21 units for men / 14 units 
 for women – per week) 

II. Volunteers will be asked to fill out an Informed Consent Form to confirm they 
 understand the project.  Volunteers will also be asked to fill out a short 
 questionnaire (10 to 15 “check-box” questions) to help associate the data with 
 the volunteer. 

III.  Volunteers will be asked to provide breath samples by breathing into a sensor.  
 Specific volunteers may be asked if they would be willing to refrain from  brushing 
their teeth for up to seven days.  Once a schedule has been agreed  upon between the 
volunteer and the investigator, the sampling can begin. The  amount of samples required per 
volunteer is as follows: 

 1.  Oral (front of mouth) – Up to 10 breaths (more if volunteer is willing) 

 2.  Oropharyngeal (back of mouth) – Up to 10 breaths (more if volunteer is 
 willing) 

 3.  Nasal (from nose) – Up to 10 breaths (more if volunteer is willing) 

IV.  The preferred schedule is once a week for 1-2 months before 12 noon (lunch).  
 This schedule can be modified according to the necessity of the volunteer.  Times 
before lunch are preferred since food and beverages may modify data. 
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Risks to participants 

No abnormal testing will be performed.  Abnormal is defined as any risks that may arise 
outside of everyday life.  However, as with any breathing test, specific risks and 
discomforts may apply. The risks involved in this test may include fainting.  Every effort 
will be made to minimize risks by selecting only those who fit the criteria written in the 
Plain Language Statement and by creating a safe and comfortable environment in the test 
location.  Volunteers will be given time to rest and recover as needed.  It is the participant’s 
responsibility to inform the study investigator if they feel dizzy, ill-feeling or other 
symptoms during the breath sampling procedure. 

Benefits to participants 

Although there are no direct benefits to the people in this study, possible indirect benefits 
include better sensor technology for dialysis patients. 

Confidentiality of data 

All information gathered from the study will remain confidential and kept in a locked 
facility. Participant’s individual data will not be disclosed outside of the testing personnel 
without each participant’s written permission. However, Dublin City University may 
review the study data without written consent. The results of this study may be published 
for scientific purposes, and participant’s identity will not be revealed. 

Is data to be destroyed after a minimum period? 

All data being recorded is non-sensitive.  No clinical assessments or diagnoses will be 
made that would reflect the volunteers associated with this research study.  With this, there 
is no need to destroy the data. 

Statement of voluntary involvement 

Participants may withdraw from the Research Study at any point.  There will be no penalty 
for withdrawing before all stages of the Research Study have been completed. 

* If participants have concerns about this study and wish to contact an independent 

person, please contact: 

The Secretary, Dublin City University Research Ethics Committee, c/o Office of the Vice-
President for Research, Dublin City University, Dublin 9.  Tel 01-7008000 

 



 

 187 

DCU Breath Analysis Questionnaire 

A.  Please write your information on the lines, and put a check mark ( X ) in the box next to 
the gender that qualifies.   

Volunteer 	umber: 

 

_____________ 

 

Gender: Male    

  Female  

Age: 

 

_____________ 

Occupation: 

 

__________________________________________________________ 

B.  For the following questions, please put a check mark ( X ) in the box next to the 
answers.  If any of the questions are unclear, please feel free to ask an investigator to 
clarify. 

1)   In the past month, I have suffered from the following symptoms: 

* Please check all boxes that apply 

Difficulty Breathing    Excessive Sneezing  

Excessive Coughing   Stomach Pain 

Rhinitis (Runny Nose)   Sinus Pain 
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2) In the past week, the amount of tobacco products I smoked was: 

*An example of “amount” would be associated with 1 cigarette (not 1 pack). 

0 – 5  

6 – 10  

11 – 15 

16 + 

3) In the past week, I believe I was exposed to secondary smoke: 

* An example of “exposed” would be if the smoke was noticeably being inhaled. 

0 – 5 times 

6 – 10 times 

11 – 15 times 

16 times + 

4) In the past week, I consumed an alcoholic beverage (ex: 1 glass = 1 time): 

0 – 5 times 

6 – 10 times 

11 – 15 times 

16 times + 

5) In the past week, I consumed a sugar-based beverage (ex: Cola, Energy 

 Drinks, Sports Drinks, etc.): 

0 – 5 times 

6 – 10 times 

11 – 15 times 

16 times + 
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6) I receive a professional dental evaluation: 

More than “one time every year” 

One time every year 

One time every two years 

Less than “one time every two years” 

7) My regular oral cleaning routine is: 

I brush my teeth more than twice a day 

I brush my teeth twice a day 

I brush my teeth less than twice a day 

I use other methods 

8)  I have had dental complications in the past (ex: oral diseases, gingivitis, etc.): 

Yes 

No 

9) Please rank the following food groups in the order of what you believe you eat 

the  most to what you eat the least (on a regular basis): 

* What you eat the most = 1 ; What you eat the least = 5 

Grains 

Vegetables 

Fruits 

Milk 

Meat / Beans 

10) In the last six hours I have eaten and / or drank the following items: 

 

_____________________________________________________________________ 
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11) I am currently on a medication that affects my breathing and / or digestion: 

Yes    

No 
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Appendix 2 

Reynolds number for a humidified air stream containing gaseous ammonia 

Reference (Re Formula): http://www.engineeringtoolbox.com/reynolds-number-
d_237.html 

%ote: Dynamic viscosity used is the average of the three gas viscosities. 

Definition: A dimensionless number that gives a ratio of inertial forces to viscous forces in 
flow conditions. In this case, within a pipe or tube. 

Laminar:  Re < 2300 
Transient:  2300 < Re < 4000 
Turbulent:  4000 < Re  
 
Reynolds (Re) = (pVD) / (µ) 

p  =  Gas density, Kg/m3 
V  =  Mean velocity, m/s 
D = Diameter of pipe, m 
µ = Dynamic viscosity of gas, Pa.s 
 
Calculated Reynolds number of (air + ammonia gas + water vapour) =  

((2.65 Kg/m3)(2.735 m/s)(0.022 m)) / (0.0000142 Pa.s) = 11,228.91 = Turbulent Flow 

------------------------------------------------------ 

II. Gas Density (p, Kg/m
3
) 

Online Calculated Densities: 

Reference (Densities): http://www.engineeringtoolbox.com/gas-density-d_158.html 

%ote: Reference densities were at 20oC and 1atm. 

Air    1.205 Kg/m3  
Water (vapour) 0.804 Kg/m3 
Ammonia (gas) 0.717 Kg/m3 

 

My Calculated Densities:  

Reference (Ideal Gas Law): 
http://www.indiana.edu/~geog109/topics/10_Forces&Winds/GasPressWeb/PressGasLaws.
html 

Ideal Gas Law (PV = nRT) => (Pressure x Volume = Moles x Gas Constant x Temperature) 

Converted for Density (P = nRT / V) => (P / RT = n / V) => (Density = p = n / V) 
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Air   1.199 Kg/m3 
Water (vapour) 0.746 Kg/m3 
Ammonia (gas) 0.705 Kg/m3 
 
Air + Water + Ammonia (summed molecular weights; same original volume) = 2.65 Kg/m

3 

Air (Molecular Weight, g/mol, Kg/mol) 

Reference (Molecular Weight): DCU chem. lab manual periodic table 

Reference (Gas Percentages): http://scifun.chem.wisc.edu/chemweek/pdf/airgas.pdf 

Nitrogen (N2) 14.00674 x 2 = 28.0134 g/mol at 78.08% of air 
 0.7808 x 28.0134 = 21.87286272 g/mol 
Oxygen (O2) 15.9994 x 2 = 31.9988 g/mol at 20.95% of air 
 0.2095 x 31.9988 = 6.7037486 g/mol 
Argon (Ar) 39.984 g/mol at 0.93% of air 
 0.0093 x 39.984 = 0.3718512 g/mol 
Carbon Dioxide (CO2) 12.0107 + (15.9994 x 2) = 44.0095 g/mol at 0.033% of air 
 0.00033 x 44.0095 = 0.014523135 g/mol 
Neon (Ne) 20.1797 g/mol at 0.0018% of air 
 0.000018 x 20.1797 = 0.0003632346 g/mol 
Helium (He) 4.002602 g/mol at 0.00052% of air 
 0.0000052 x 4.002602 = 0.0000208135304 g/mol 
Methane (CH4) 12.0107 + (1.00794 x 4) = 16.04246 g/mol at 0.0002% of air 
 0.000002 x 16.04246 = 0.00003208492 g/mol 
Krypton (Kr) 83.798 g/mol at 0.00011% of air 
 0.0000011 x 83.798 = 0.0000921778 g/mol 
Nitrogen (I) Oxide (N2O) (14.00674 x 2) + 15.9994 = 44.01288 g/mol at 0.00005% of air 
 0.0000005 x 44.01288 = 0.00002200644 g/mol 
Hydrogen (H2) 1.00794 x 2 = 2.01588 g/mol at 0.00005% of air 
 0.0000005 x 2.01588 = 0.00000100794 g/mol 
Xenon (Xe) 131.293 g/mol at 0.0000087% of air 
 0.000000087 x 131.293 = 0.000011422491 g/mol 
Ozone (O3) 15.9994 x 3 = 47.9982 g/mol at 0.000001% of air 
 0.00000001 x 47.9982 = 0.000000479982 g/mol 
 
Air Molar Mass =  

 (21.87286272 + 6.7037486 + 0.3718512 + 0.014523135 + 0.0003632346 + 
 0.0000208135304 + 0.00003208492 + 0.0000921778 + 0.00002200644 + 
 0.00000100794 + 0.000011422491 + 0.000000479982) =  
 28.96352888 g/mol = 0.02896352888 Kg/mol 
 
Ammonia (NH3) Molar Mass 14.00674 + (1.00794 x 3) =  

 17.03056 g/mol = 0.01703056 Kg/mol 
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Water (H2O) Vapour Molar Mass (1.00794 x 2) + 15.9994 =  

 18.01528 g/mol = 0.01801528 Kg/mol  

Air Density = Molar Mass / Volume =  

 ((Kg/mole)(1 mole / 24.15 L Perfect Gas Constant)(L/m3)) = 
 ((0.02896352888 Kg/mole)(1 mole / 24.15 L)(1 L / 0.001 m3) = 
 1.199317966 Kg/m

3
 

 

Ammonia (gas) Density = Molar Mass / Volume =  

 ((Kg/mole)(1 mole / 24.15 L Perfect Gas Constant)(L/m3)) = 
 ((0.01703056 Kg / mole)(1 mole / 24.15 L)(1 L / 0.001 m3) = 
 0.705199171 Kg/m

3
 

 

Water (vapour) Density = Molar Mass / Volume =  

 ((Kg/mole)(1 mole / 24.15 L Perfect Gas Constant)(L/m3)) = 
 ((0.01801528 Kg/mole)(1 mole / 24.15 L)(1 L / 0.001 m3) = 
 0.745974327 Kg/m

3
 

 

Air + Ammonia (gas) + Water (vapour) Density = Molar Mass / Volume = 

 (0.02896352888 Kg/mol + 0.01703056 Kg/mol + 0.01801528 Kg/mol) = 
 ((Kg/mole)(1 mole / 24.15 L Perfect Gas Constant)(L/m3)) = 
 ((0.06400936888 Kg/mole)(1 mole / 24.15 L)(1 L / 0.001 m3)) = 
 2.65049 Kg/m

3
 

--------------------------------------------------------- 

III. Flow velocity per concentration (V, m/s) 

Reference: I calculated these myself from previously shown work attached at the end. 

%ote: Pressure setting from air blower of main flow is 4 cmH2O, and velocities from 
velocity at concentration were used for final calculation. 

1) Humidified air (Control = No ammonia): 

Flow Rates and Concentration 

62.0 L/min 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
62.0 L/min to m3/s convert: (62.0 L/min)(0.00001667 constant) = 0.00103354 m3/s 
Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.00103354 m3/s) / (0.00037994 m2) = 2.72 m/s 
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2) Humidified air + 24.08 ppb (0.0161 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 

(0.3 L/min / 62.3 L/min)(Initial 5,000 ppb NH3 cylinder concentration) = Final 24.08 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 24.08 ppb NH3 / 1000 = 0.0241 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.0241 ppm) = 4.9971 
Step 2: 4.9971 / 310.15oC = 0.0161 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
3) Humidified air + 40.00 ppb (0.026766 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 5,000 ppb NH3 cylinder concentration) = Final 40.00 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 40.00 ppb NH3 / 1000 = 0.04 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.04 ppm) = 8.3017844 
Step 2: 8.3017844 / 310.15oC = 0.026766 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
 
4) Humidified air + 80.00 ppb (0.053533 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 
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(0.5 L/min / 62.5 L/min)(Initial 10,000 ppb NH3 cylinder concentration) = Final 80.00 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 80.00 ppb NH3 / 1000 = 0.08 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.08 ppm) = 16.60356 
Step 2: 16.60356 / 310.15oC = 0.053533 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
 
5) Humidified air + 120.39 ppb (0.08055 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 

(0.3 L/min / 62.3 L/min)(Initial 25,000 ppb NH3 cylinder concentration) = Final 120.39 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 120.39 ppb NH3 / 1000 = 0.12038 ppm = ((X mg/m3)(273.15 + 
37oC))/((12.187)(17.03 g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.120385 ppm) = 24.985 
Step 2: 24.985 / 310.15oC = 0.08055 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
6) Humidified air + 200.00 ppb (0.1297 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 25,000 ppb NH3 cylinder concentration) = Final 200.00 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 200.00 ppb NH3 / 1000 = 0.2 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.2 ppm) = 41.5089 
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Step 2: 41.5089 / 310.15oC = 0.13383 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
 
7) Humidified air + 240.77 ppb (0.1611 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 

(0.3 L/min / 62.3 L/min)(Initial 50,000 ppb NH3 cylinder concentration) = Final 240.77 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 240.77 ppb NH3 / 1000 = 0.2407 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.2407 ppm) = 49.97 
Step 2: 49.97 / 310.15oC = 0.1611 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
8) Humidified air + 400.00 ppb (0.26766 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 50,000 ppb NH3 cylinder concentration) = Final 400.00 ppb 
NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 400.00 ppb NH3 / 1000 = 0.4 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.4 ppm) = 83.017 
Step 2: 83.017 / 310.15oC = 0.26766 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
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9) Humidified air + 481.54 ppb (0.32187 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 

(0.3 L/min / 62.3 L/min)(Initial 100,000 ppb NH3 cylinder concentration) = Final 481.54 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 481.54 ppb NH3 / 1000 = 0.481 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.481 ppm) = 99.828 
Step 2: 99.828 / 310.15oC = 0.32187 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
10) Humidified air + 800.00 ppb (0.53533 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 100,000 ppb NH3 cylinder concentration) = Final 800.00 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 800.00 ppb NH3 / 1000 = 0.8 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.8 ppm) = 166.03 
Step 2: 83.017 / 310.15oC = 0.53533 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
 
11) Humidified air + 963.08 ppb (0.64446 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 
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(0.3 L/min / 62.3 L/min)(Initial 200,000 ppb NH3 cylinder concentration) = Final 963.08 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 963.08 ppb NH3 / 1000 = 0.963 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (0.963 ppm) = 199.88 
Step 2: 199.88 / 310.15oC = 0.64446 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
12) Humidified air + 1,444.62 ppb (0.96670 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 

(0.3 L/min / 62.3 L/min)(Initial 300,000 ppb NH3 cylinder concentration) = Final 1,444.62 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 1,444.62 ppb NH3 / 1000 = 1.444 ppm = ((X mg/m3)(273.15 + 
37oC))/((12.187)(17.03 g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (1.444 ppm) = 299.82 
Step 2: 299.82 / 310.15oC = 0.96670 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
13) Humidified air + 1,600 ppb (1.07067 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 200,000 ppb NH3 cylinder concentration) = Final 1,600.00 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 1,600.00 ppb NH3 / 1000 = 1.6 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (1.6 ppm) = 332.07 
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Step 2: 332.07 / 310.15oC = 1.07067 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
 
14) Humidified air + 1,926.16 ppb (1.28883 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.3 L/min flow ammonia into main flow of 62.0 L/min. 
0.3 L/min + 62.0 L/min = 62.3 L/min main flow 
Ammonia Concentration 

(0.3 L/min / 62.3 L/min)(Initial 400,000 ppb NH3 cylinder concentration) = Final 1,926.16 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 1,926.16 ppb NH3 / 1000 = 1.926 ppm = ((X mg/m3)(273.15 + 
37oC))/((12.187)(17.03 g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (1.926 ppm) = 399.73 
Step 2: 399.73 / 310.15oC = 1.28883 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.3 L/min to m3/s convert: (62.3 L/min)(0.00001667 constant) = 0.001038541 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001038541 m3/s) / (0.00037994 m2) = 2.73 m/s 
 
15) Humidified air + 2,400.00 ppb (1.60601 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 300,000 ppb NH3 cylinder concentration) = Final 2,400.00 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 2,400.00 ppb NH3 / 1000 = 2.4 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (2.4 ppm) = 498.10 
Step 2: 498.10 / 310.15oC = 1.60601 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
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16) Humidified air + 3,200.00 ppb (2.14135 mg/m3) NH3: 

Flow Rate (Ammonia, Humidified Air) 

0.5 L/min flow ammonia into main flow of 62.0 L/min. 
0.5 L/min + 62.0 L/min = 62.5 L/min main flow 
Ammonia Concentration 

(0.5 L/min / 62.5 L/min)(Initial 400,000 ppb NH3 cylinder concentration) = Final 3,200.00 
ppb NH3 
ppm = ((mg/m3)(Kelvin constant + temperature oC))/((proportionality constant)(gas 
molecular weight)) 
Final 3,200.00 ppb NH3 / 1000 = 3.2 ppm = ((X mg/m3)(273.15 + 37oC))/((12.187)(17.03 
g/mol)) 
Step 1: (12.187)(17.03g/mol) = 207.54461 g/mol => 207.54461 (3.2 ppm) = 664.14 
Step 2: 664.14 / 310.15oC = 2.14135 mg/m3 
Velocity at this Concentration 

Velocity within tube (m/s) = Airflow (m3/s) / Internal surface area of tube (m2) 
Airflow: 62.5 L/min to m3/s convert: (62.5 L/min)(0.00001667 constant) = 0.001041875 
m3/s 
Internal Surface Area = (pi)(radius2) = (3.14)((0.011 m)^2) = 0.00037994 m2 
Velocity = (0.001041875 m3/s) / (0.00037994 m2) = 2.74 m/s 
 
Average of eight velocities (humid air with ammonia): 

(2.73 + 2.74 + 2.73 + 2.74 + 2.73 + 2.74 + 2.73 + 2.74 +2.73 + 2.74 + 2.73 + 2.74 +  
2.73 + 2.74 + 2.73 + 2.74) / 16 = 2.735 m/s 
-------------------------------------------------------- 

IV. Internal diameter of tubing (D, m) 

Reference: I used digital callipers on spirette tube = 0.022 m 

--------------------------------------------------------- 

V. Dynamic viscosity of gas (µµµµ, Pa.s) 

Reference: http://www.complore.com/viscosity-gases 

Reference (Water vapour): http://www.thermexcel.com/english/tables/vap_eau.htm 

%ote: Dynamic viscosity of water vapour was taken from density of 0.75 Kg/m3 of link 
since this is similar to the 0.745 Kg/m3 calculated in the density section of this document. 

Sutherlands Formula: µ = µ0 
. ((T0 + C)/(T + C)) . (T/T0)

3/2  

µ0  = Reference viscosity at reference temperature 
T0  = Reference temperature in Kelvin 
T  = Input temperature in Kelvin (273 + 37oC) 
C = Sutherlands constant for particular gas 
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Variable Air   Ammonia (Gas) Water (Vapour)  
µ0   0.00001827 Pa.s 0.00000982 Pa.s  -   
T0   291.15 K  293.15 K   -   
C  120 K   370 K    -   
T  310 K   310 K    -   
µ  0.0000192 Pa.s 0.0000104 Pa.s 0.0000130 Pa.s  
 

Average Viscosity: (0.0000192 Pa.s + 0.0000104 Pa.s + 0.0000130 Pa.s) / 3 =  

0.0000426 Pa.s / 3 = 0.0000142 Pa.s  
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Appendix 3 

Ammonia calculations for expected concentrations 

(NH3 flow rate / Sum of flow rates)(Initial NH3 Concentration) = Expelled NH3 
Concentration (ppb) 

	H3 

Flow Rates 

(L/min) 

Humid Air 

Flow Rates 

(L/min) 

Sum of 

Flow Rates 

(L/min) 

Initial 	H3 

Concentration 

(ppb) 

Expelled 	H3 

Concentration 

(ppbv) 

0.30 62.00 62.30 5,000 24.08 
0.50 62.00 62.50 5,000 40.00 
0.30 62.00 62.30 10,000 48.15 
0.50 62.00 62.50 10,000 80.00 
0.30 62.00 62.30 25,000 120.39 
0.50 62.00 62.50 25,000 200.00 
0.30 62.00 62.30 50,000 240.77 
0.50 62.00 62.50 50,000 400.00 
0.30 62.00 62.30 100,000 481.54 
0.50 62.00 62.50 100,000 800.00 
0.30 62.00 62.30 200,000 963.08 
0.50 62.00 62.50 200,000 1,600.00 
0.30 62.00 62.30 300,000 1,444.62 
0.50 62.00 62.50 300,000 2,400.00 
0.30 62.00 62.30 400,000 1,926.16 
0.50 62.00 62.50 400,000 3,200.00 
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Appendix 4 

Healthy Volunteers Ethics Approval 

---------- Forwarded message ---------- 
From: Fiona Brennan<Fiona.Brennan@dcu.ie> 
Date: Thu, May 5, 2011 at 11:09 AM 
Subject: RE: Ethical Approval - Troy Hibbard 
To: Troy Hibbard<troy.hibbard2@mail.dcu.ie> 
 
Hi Troy - if this is part of the same project, and no changes have been made either to the 
methodology or the documentation being provided to the next cohort of participants, then 
the ethics approval will stand. 
 
Kind regards, Fiona. 
 
Fiona Brennan 
Research Officer 
Office of the VP for Research 
Invent Building 
Dublin City University 
 
-----Original Message----- 
From: Troy Hibbard [mailto:troy.hibbard2@mail.dcu.ie] 
Sent: 05 May 2011 10:19 
To: Fiona Brennan 
Subject: Ethical Approval - Troy Hibbard 
 
Dear Fiona, 
 
I have attached a pdf of the ethical approval you sent to us in 2009. The experiments were 
low-risk non-invasive measurements of breath from volunteers. We will be conducting the 
exact same experiments with volunteers again soon. If I recall correctly, the approval lasts 
for the duration of the project which is from January 2009 to January 2012. However, I do 
not have written documentation stating the approval duration. Is this correct about the 
duration of the ethical approval given that the procedures are still just breath sampling from 
volunteers? 
 
Thank you for your time, 
Troy 
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Appendix 5 

St. Vincent’s University Hospital ethics approval 
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ELM PARK, DUBLI	 4 

DEPARTME	T OF 	EPHROLOGY, ST. VI	CE	T’S U	IVERSITY HOSPITAL 

PARTICIPANT INFORMATION AND CONSENT FORM 

 
STUDY TITLE:    
A clinical study on breath ammonia diagnostics involving haemodialysis 
patients 

NAME OF PRINCIPAL INVESTIGATOR:    

Collaboration: 
Prof. Alan Watson (St. Vincent’s University Hospital) 
Prof. Anthony J. Killard (Dublin City University) 

WHAT IS THE PURPOSE OF THIS STUDY? 

The aim of the study is to establish whether there is potential for a point-of-
care breath ammonia analyser. The analyser is to be used in measuring 
ammonia levels in the breath of haemodialysis patients with the potential to 
assist in the treatment and management of patients with kidney disease. 

WHY HAVE I BEEN CHOSEN? 

You have been chosen because your specific condition could provide valuable 
information on how to improve current treatment methods. 

WHAT WILL HAPPEN IF I VOLUNTEER? 

Your participation is entirely voluntary. If you initially decide to take part you 
can subsequently change your mind without difficulty. This will not affect your 
future treatment in any way. If you agree to participate, you will be requested 
to donate breath samples during your regularly scheduled dialysis, and 
complete an optional questionnaire. 
 
You will be asked to provide breath samples by breathing into a machine for 
approximately 10 minutes. 
 
No additional time and/or visits are required. 
 

ARE THERE ANY BENEFITS FROM MY PARTICIPATION? 

You will not benefit directly from taking part in this study, but the information 
we will obtain may provide further knowledge of this condition. 

ARE THERE ANY RISKS INVOLVED IN PARTICIPATING? 

As with the normal breathing process, specific risks and discomforts may 
include dizziness, weakness and sweating. Every effort will be made to 
minimize risks by creating a safe and comfortable environment in the test 
location. The equipment that comes into contact with you (mouthpiece, etc.) 
contains a bacterial / virus filter and is disposed of after use.  You will be given    
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time to rest and recover as needed. It is the participant’s responsibility to 
inform the study investigator if they feel dizzy, ill, or have other symptoms 
during the breath sampling procedure.   

WHAT HAPPENS IF I DO NOT AGREE TO PARTICIPATE? 

If you decide not to participate in this study your treatment will not be 
affected in any way. 

CONFIDENTIALITY 

Your identity will remain confidential. A study number will identify you. Your 
name will not be published or disclosed to anyone.   

COMPENSATION 

Your doctors are adequately insured by virtue of their participation in the 
clinical indemnity scheme. 

WHO IS ORGANISING AND FUNDING THIS RESEARCH? 

This research has been organised by the technicians of St. Vincent’s University 
Hospital and Dublin City University under the supervision of the previously 
acknowledged principle investigators. No additional funding is required since 
this study is part of a continuous project which has already been established 
through Enterprise Ireland. 
 
Will I be paid for taking part in this study? 
There is no option for payment during this study. 
 
Will my expenses be covered for taking part in this study? 
This study will be conducted during already scheduled dialysis and will not 
result in additional expenses. 

HAS THIS STUDY BEEN REVIEWED BY AN ETHICS COMMITTEE? 

The St. Vincent’s Healthcare Group, Ethics and Medical Research Committee 
have reviewed and approved this study. 

CONTACT DETAILS 

Prof. Alan Watson 
Department of Nephrology 
SVUH 
Ph: (01) 2214493  
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PLEASE TICK YOUR RESPONSE IN THE APPROPRIATE BOX 

 
• I have read and understood the Participant 

 Information        YES �    NO � 
 
• I have had the opportunity to ask questions and discuss 

the study       YES  �   NO � 
 
• I have received satisfactory answers to all my questions YES  �   NO � 
 
• I have received enough information about this study  YES  �   NO � 

 

• I understand that I am free to withdraw from the study  
at any time without giving a reason and without this  
affecting my future medical care    YES �    NO � 

 
• I agree to take part in the study    YES �    NO � 
 
 
Participant’s Signature:     ____________________________ Date:   _________ 
 
Participant’s Name in print:  __________________________ 
 

      Investigator’s Signature:     ___________________________ Date:   _________ 
       
      Investigator’s Name in print:     ________________________ 
  

 

 

 


