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Aquaporins in the brain: from aqueduct to “multi-duct”
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Abstract The aquaporin channel family was first considered as a family of water
channels, however it is now clear that some of these channels are also permeable to
small solutes such glycerol, urea and monocarboxylates. In this review, we will
consider AQP4 and AQP9 expressed in the rodent brain. AQP4 is present on
astrocytic end-feet in contact with brain vessels and could be involved in ionic
homeostasis. However, AQP4 may also be involved in cell adhesion. AQP4
expression is highly modified in several brain disorders and it can play a key role in
the cerebral edema formation. However, the exact role of AQP4 in edema formation
is still debated. Recently, AQP4 has been shown to be also involved in astrocyte
migration during glial scar formation. AQP9 is expressed in astrocytes and in
catecholaminergic neurons. Two isoforms of AQP9 are expressed in brain cells, the
shortest isoform is localized in the inner membrane of mitochondria and the longest
in the cell membrane. The level of expression of AQP9 is negatively regulated by
high concentrations of insulin. Taken together, these results suggest that AQP9 could
be involved in brain energy metabolism. The induction of AQP9 in astrocytes is
observed with time after stroke onset suggesting participation in the clearance of
excess lactate in the extracellular space. These recent exciting results suggest that
AQPs may not only be involved in water homeostasis in the brain but could also
participate in other important physiological functions.
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Water is an important molecule involved in several biochemical processes present in
living cells. Water was considered for a long time to freely diffuse through the
plasma membrane, but this hypothesis was revisited after the discovery of water
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channels (Preston et al. 1992). The water channel family is still growing with 13
members ubiquitously distributed in mammalian tissues. The importance of these
channels for life is supported by the fact that there are more than 150 types of AQPs
in microbes, invertebrates, non mammalian vertebrates and plants (Santoni et al. 2000).

These channels have been highly conserved throughout evolution and the family
is now divided accordingly to sequence homology and permeability into aquaporins
and aquaglyceroporins.

Research in this field has significantly advanced in the last years, and in this
review we will illustrate several new potential functional roles for brain AQPs.

Water channels: a general introduction

Aquaporins (AQP) are water channel proteins with a molecular weight of around
30 kDa, and exhibit a common structure of six membrane spanning alpha helical
domains with intracellular carboxyl (C) and amino (N) termini. They contain a
consensus motif Asn-Pro-Ala (NPA), implied in pore formation (Badaut et al. 2002).
As mentioned above, the AQP family is now divided into two subgroups based on
sequence homology (Amiry-Moghaddam and Ottersen 2003): aquaporin and
aquaglyceroporin.

The subgroup aquaporin is composed of AQP0, 1, 2, 4, 5, 6, 8 and is considered
to be mainly permeable to water with a high flow rate. A few of these pure water
channels are also permeable to anion (AQP6) and volatile solutes such as CO2 for
AQP1 (Cooper et al. 2002). Water diffusion through AQPs is inhibited by mercury,
except AQP4 which is a mercury-insensitive aquaporin (Amiry-Moghaddam and
Ottersen 2003).

The second subgroup aquaglyceroporins, is composed of AQP3, 7, 9, 10 and
bacterial glycerol facilitator (Glpf; Badaut and Regli 2004). These channels are
permeable to water and glycerol. AQP9, a member of this group, was also surnamed
“neutral channel” (Tsukaguchi et al. 1998). Indeed, the presence of AQP9 in
Xenopus Oocytes or proteoliposomes injected facilitates the diffusion of water, but
also polyols (glycerol, mannitol, and sorbitol), purines (adenine), pyrimidines (uracil
and chemotherapeutic agent 5-fluorouracil) and monocarboxylates (lactate and β-
hydroxybutyrate; Ishibashi et al. 1998; Tsukaguchi et al. 1998; Ko et al. 1999;
Tsukaguchi et al. 1999; Carbrey et al. 2003). However, the osmotic water coefficient
for AQP9 is lower than in a pure water channel like AQP4 (Carbrey et al. 2003). In
addition, AQP9 facilitates metalloid transport further suggesting that APQ9 may be a
major route of arsenite uptake into mammalian cells (Liu et al. 2002).

Water homeostasis is critical to sustain normal neural activity. An increase in the
water content into the brain leads to brain swelling and rapidly becomes deleterious.
Obviously, the knowledge of the distribution and regulation of water channels in the
brain is important to understand water homeostasis. To date, six aquaporin subtypes
(AQP1, AQP3, AQP4, AQP5, AQP8, AQP9 have been described in rodent brain
cells. However, only three aquaporins have been clearly identified in brain cells in
vivo: AQP1, AQP4 and AQP9 (Badaut et al. 2002). AQP1 is expressed in epithelial
cells of the choroid plexus (Nielsen et al. 1993), and is proposed to be involved in
cerebrospinal fluid formation (Brown et al. 2004). Expression of AQP1 is seen in
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many non-brain endothelia (Nielsen et al. 1993) but its expression is suppressed in
the specialized endothelial cells of the blood–brain barrier (Dolman et al. 2005).
Indeed, the presence of astrocytes inhibits the expression of AQP1 in endothelial
cells (Dolman et al. 2005). In this review, we will focus on distributions and putative
roles of AQP4 and 9 in the mammalian brain. Recent reports concerning the level of
expression of AQP in brain disorders will be then presented.

AQP4 expression in brain and its several functional roles

Historically, mRNA for AQP4 was first observed by in situ hybridization in the rat
brain, with expression of the messenger in the glia limitans, the ependymal lining
system, the magnocellular hypothalamic nuclei, the cerebellum, the hippocampus,
the neocortex and in the medial habenular nucleus (Jung et al. 1994; Venero et al.
1999). This regional distribution for AQP4 mRNA was confirmed by several
immunohistochemistry studies (Nielsen et al. 1997; Badaut et al. 2000a, b). AQP4
protein is present on astrocyte endfeet in contact with blood vessels but also on
astrocytic processes in contact with the synapses (Nielsen et al. 1997; Badaut et al.
2000a, b).

Electronic microscopy studies after cryofracture and immunogold techniques
have shown that the highest density of AQP4 in astrocyte endfeet was observed in
geometric structures named orthogonal arrays of proteins (OAPs; Verbavatz et al.
1997; Rash et al. 1998, 2004). Interestingly, the ratio between the expression of the
long and the short AQP4 splice variant (AQP4m1 and AQP4m23) determines the
size of the OAPs (Rash et al. 2004). The AQP4m23 isoform stabilizes the structure
of the OAPs and an increase of its expression induces an increase in the size of the
OAPs (Rash et al. 2004). The first functional role of the OAPs has been suggested to
be an involvement with the astrocytic potassium-buffering (Grange-Messent et al.
1996). To date, functional consequences of the variation of the size of the OAPs are
not known. Recently, another physiological role has been suggested for AQP4, in
cell adhesion (Hiroaki et al. 2006). The involvement of an APQ in cell adhesion has
been well described for epithelial cells of the lens, where AQP0 participates in the
linkage of cells (Gonen et al. 2004). The high level of AQP4 protein in the
hypothalamic glia lamellae should facilitate the adhesion between the astrocyte
processes (Hiroaki et al. 2006). In this situation, AQP4 should not be involved in
water diffusion but rather in cell adhesion between astrocytes and possibly to
endothelial cells or muscle cells in the perivascular compartment. To support this
idea, recent reports showed that the presence of AQP4 of the endfoot membrane is
dependent on the presence of proteins in the basal lamina such as agrin, α-
dystroglycan and laminin (Guadagno and Moukhles 2004; Warth et al. 2004),
suggesting an involvement in the ability of astrocytes to maintain the integrity of the
blood–brain barrier. In the intracellular region, AQP4 is anchored to several proteins
of the astrocytic cytoskeleton such as α1-syntrophin and dystrophin (Frigeri et al.
2001; Neely et al. 2001; Vajda et al. 2002; Amiry-Moghaddam et al. 2004).
However, AQP4 is also observed outside the OAPs (Warth et al. 2004) raising the
following questions: is there a water diffusion inside the OAPs? Is there a difference
in the capacity of water diffusion inside or outside the OAPs? These questions are
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crucial because induction of AQP4 has been described in several brain diseases such
as ischemia (Badaut et al. 2002).

Some new insights were obtained from two mice strains deficient in gene
expression of dystrophin (mdx) and α1-syntrophin (a protein linked to dystrophin)
which exhibit a marked decrease in AQP4 immunolabeling with swelling of
astrocytic end-feet (Frigeri et al. 2001; Neely et al. 2001; Vajda et al. 2002; Amiry-
Moghaddam et al. 2004). In mdx and syntrophin knock out mice, astrocyte swelling
may be due to impaired water elimination resulting from AQP4-disturbed
organization at the plasma membrane. Another clue to the function of perivascular
AQP4 was obtained by platelet-derived growth factor B (PDGF-B)-knockout mice,
which showed abnormal vascular morphogenesis resulting in the absence of
pericytes, and the presence of endothelial hyperplasia already at embryonic
day 11.5 (Hellstrom et al. 2001). These knockout mice showed an increase in
AQP4 concentration and swelling of astrocytes which may be a response to vascular
abnormalities (Hellstrom et al. 2001). Similarly, a significant induction of AQP4
expression was observed on astrocyte endfeet in the ischemic hemisphere, one hour
after stroke onset (de Castro Ribeiro et al. 2006). These results suggest that the
increased AQP4 content of the perivascular space highlights the need for rapid
water movements in this region. The pattern of distribution of aquaporins within
the perivascular space might be related to the control of the perivascular volume,
a function that may be crucial for maintenance of cerebral blood perfusion
(Badaut et al. 2000b) and facilitation of the water clearance from perivascular
space.

In the rodent brain, several regions show a strong AQP4 immunoreactive signal
that may be due to the presence of the channel outside the perivascular space on
astrocyte processes surrounding neuronal cells (Nielsen et al. 1997; Venero et al.
1999; Badaut et al. 2000b). The cellular distribution of AQP4 protein suggest that it
may be involved in potassium homeostasis due to its co-distribution with KIR4.1
(Nagelhus et al. 2004). This hypothesis is also supported by functional results
obtained from AQP4 KO mice showing that the delay of potassium re-uptake during
electrical activity is increased and therefore these mice develop seizures more easily
(Binder et al. 2006). The perivascular pool of AQP4 anchored by α-syntrophin,
seems to have an important role in this spatial potassium buffering because the delay
of potassium re-uptake during electrical activity is also increased in α-syntrophin
KO mice (Amiry-Moghaddam et al. 2003b). Interestingly, observations in sclerotic
tissues from patients with mesial temporal lobe epilepsy and hippocamplal sclerosis,
suggest that the loss of perivascular AQP4 could be secondary due to the absence of
brain specific dystrophin in these pathological tissues (Eid et al. 2005). This
hypothesis suggests that the clearance of extracellular potassium can be compro-
mised which then contributes to the accumulation of extracellular potassium in the
brain of these patients. These results support the concept that AQP4 plays an
important role in ionic homeostasis by facilitating water diffusion.

Potassium spatial buffering is facilitated by application of vasopressin (VP), an
anti-diuretic hormone, which stimulates V1b receptors in acute cortical slices
(Niermann et al. 2001). The increase in extracellular potassium clearance after VP
application may be due an increase of AQP4 expression (Niermann et al. 2001). In
contrast to brain, the effect of VP on the level of AQP4 and AQP2 expression is well
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described in the kidney (King et al. 2000). However, direct regulation of the level of
AQP4 expression by VP has never been demonstrated in the central nervous system.

VP is synthesized in the magnocellular and parvocellular neurons of the
hypothalamic nuclei, paraventricular and supraoptic nuclei and released into the
blood stream in the neurohypophysis. These hypothalamic nuclei are known to be
involved in the central osmoreception of variations of plasma osmotic pressure
(Wells 1998). The high level of AQP4 and similar distribution have been observed in
all osmosensitive brain areas such as the subfornical organ, the supraoptic nuclei, the
paraventricular nucleus and accessory nuclei such as the circularis nucleus (Nielsen
et al. 1997; Badaut et al. 2000a). In these brain regions, AQP4 is on plasma
membranes facing both capillaries and magnocellular neurons (Nielsen et al. 1997;
Badaut et al. 2000a). The specificity and intensity of AQP4 staining within
hypothalamic magnocellular nuclei strongly suggest that water channels allow
variations of plasma osmotic pressure to be transferred from blood to osmosensitive
neurons. Furthermore, high blood vessel density is another common feature of these
nuclei, which contribute to plasma osmolarity detection (Badaut et al. 2000a).

AQP9 expression in brain and its functional roles

Aquaglyceroporins facilitate the diffusion of water and several solutes such as
glycerol, urea and monocarboxylate. The highest level of expression of AQP9 is in
the liver (Tsukaguchi et al. 1998; Elkjaer et al. 2000) with polarization of the protein
to the hepatocytic plasma membrane facing the sinusoids (Elkjaer et al. 2000;
Nicchia et al. 2001; Nihei et al. 2001). The expression of AQP9 is also observed in
the rodent brain (Badaut and Regli 2004). AQP9 mRNA was first detected in
astrocytic cultures (Tsukaguchi et al. 1998) and confirmed by immunocytochemical
studies in rodent brain (Badaut et al. 2001, 2004). To date, AQP9 expression has
been observed in three cell types: glial cells, in particular tanycytes and astrocytes
(Elkjaer et al. 2000; Badaut et al. 2001, 2004), endothelial cells of sub-pial vessels
(Badaut et al. 2004) and neurons (Badaut et al. 2004; de Castro Ribeiro et al. 2006).

AQP9 expression was found predominantly in one subtype of neuronal cells, the
catecholaminergic neurons, characterized by tyrosine hydroxylase expression in rat
and mouse brains (Badaut et al. 2004; de Castro Ribeiro et al. 2006). In agreement
with the regional distribution of AQP9 protein by immunohistochemistry, high levels
of mRNA for AQP9 was detected in catecholaminergic nuclei confirming the
presence of this protein in these nuclei (Badaut et al. 2004). Regarding these results,
a sole role for AQP9 in water homeostasis should be revised, as to the best of our
knowledge, catecholaminergic neurons are not directly implied in the regulation of
systemic osmotic pressure, but are rather involved in energy balance (Grill and
Kaplan 2002; Penicaud et al. 2002). This leads us to postulate that AQP9 could be
involved in brain energy metabolism as a metabolite channel. In agreement with this
hypothesis, the presence of AQP9 protein was recently demonstrated in mitochon-
dria of astrocytes and dopaminergic neurons (Amiry-Moghaddam et al. 2005).
Indeed, two isoforms of AQP9 are expressed in brain cells. The shortest isoform of
AQP9 (26 kDa) is observed in inner membrane of the mitochondria and the longest
isoform (30 kDa) is present in cell membrane (Amiry-Moghaddam et al. 2005). It is
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possible that the presence of AQP9 facilitates the diffusion of glycerol and
monocarboxylates, which serve as energy substrates for neurons (McKenna et al.
1986; Magistretti et al. 1999; Nguyen et al. 2003). Interestingly, utilization of
glycerol by neuronal cells in vitro was inhibited by mercury, suggesting transport by
an AQP (Nguyen et al. 2003). In the “lactate shuttle” model, glucose is transformed
by astrocytes into lactate and diffuses from astrocytes to neurons using the
monocarboxylate transporters (Magistretti and Pellerin 1999). Therefore, presence
of AQP9 in astrocytes suggests that it may facilitate the diffusion of lactate to
neuronal cells in conjunction with the monocarboxylate transporters.

In addition, some catecholaminergic neurons are known to be sensitive to
variations in glucose levels and recently, lactate and glycerol have been also shown
to be potential activators of these neurons (Yang et al. 1999; Ainscow et al. 2002;
Penicaud et al. 2002). These neurons are located in the same brain areas as AQP9-
positive neurons (Badaut and Regli 2004). Taken together, these results raise the
hypothesis that neuronal AQP9 plays a role in energy balance as a glycerol-lactate-
channel, but this awaits functional proof.

In liver, AQP9 expression has been shown to be regulated by the physiological
feeding state mediated by the insulin response element (IRE) in the promoter of the
gene (Kuriyama et al. 2002). High plasma insulin suppresses glycerol uptake into
hepatocytes which participates in neoglucogenosis to replenish blood glucose
concentrations. AQP9 is down regulated by high insulin concentration suggesting
that AQP9 may play a key role in cellular energy balance as a glycerol channel in the
liver (Kuriyama et al. 2002; Carbrey et al. 2003). In vivo, the expression of AQP9 is
increased after fasting and returns to basal levels upon refeeding (Carbrey et al.
2003). AQP9 expression in liver is dramatically increased in models of diabetes
induced by streptozotocin (STZ) injection (Carbrey et al. 2003) and in a mouse
model of insulin resistance (Kuriyama et al. 2002). As mentioned above, energy
balance is regulated by detection of glucose levels in the periphery as well as in the
central nervous system (Levin et al. 1999). The feeding state, set by blood insulin
concentration, also influences the glucose sensitive areas of the brain. Interestingly,
AQP9-positive neurons are present in brain regions known to be glucose sensitive or
implicated in the feeding state (Badaut et al. 2004); systemic insulin has been
reported to cross the BBB, and insulin receptors are expressed in catecholaminergic
neurons (Kyriaki 2003; Unger et al. 1991 #211). These data lead us to investigate
whether brain AQP9 expression is regulated by insulin. The first in vitro results on
brain stem slices containing catecholaminergic neurons showed a decrease in AQP9
protein levels 6 h after insulin application (Badaut et al. 2005). In vivo, the level of
AQP9 was increased in liver and in the NTS of rats treated with STZ injections to
induce diabetes (Badaut and Regli 2004; Badaut et al. 2005). Therefore, it would
appear that brain AQP9 expression appears is regulated by insulin concentrations,
supporting the hypothesis that AQP9 is involved in brain energy metabolism.

AQP9 was also observed in endothelial cells of the pial vessels, and in the
intraparenchymal vessels (Badaut et al. 2004; Amiry-Moghaddam et al. 2005).
interestingly in mice, AQP4 expression was observed by immunogold labeling in
endothelial cells at their luminal, as well as abluminal membranes, but at much lower
levels than observed on astrocytic endfeet (Amiry-Moghaddam et al. 2004). The
blood–brain barrier (BBB) is known to be highly permeable to water (Oldendorf
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1970) and therefore, AQP4 and AQP9 may facilitate the water flow through
endothelial cells. AQP9 could also participate in diffusion of monocarboxylate
through the BBB which is mainly carried out by the monocarboxylate transporter,
MCT1, highly expressed in endothelial cells (Gerhart et al. 1997; Pierre et al. 2000;
Bergersen et al. 2002).

AQP expression in brain disorders

As mentioned previously, AQPs in rodent brain as water-channels are likely to play
an important role in extracellular homeostasis, and thus may sustain normal neuronal
activity (Badaut et al. 2002). A profound perturbation of the brain environment
usually induces a regional cerebral edema, as observed in ischemia. Brain edema
which leads to an expansion of brain volume, has a crucial impact on morbidity and
mortality after stroke as it increases intracranial pressure, favours herniations, and
contributes to additional ischemic injuries (Klatzo 1985). Despite its complexity,
brain oedema has been defined as an increase in net brain water content which leads
to an increase in tissue volume (Pappius 1974). The two major types of brain
oedema, cytotoxic and vasogenic oedema, both occur after brain ischemia. Cytotoxic
oedema is characterized by intracellular water accumulation involving both
astrocytes and neurons and depending mainly on the perturbation of ionic gradients
(Kimelberg 2004). Vasogenic oedema is characterized by a protein rich exudate
derived from plasma, as a result of an increased permeability of the capillary
endothelial cells to albumin and other plasma proteins (Unterberg et al. 2004).

As mentioned previously, three AQPs could be involved in water movements
occurring during formation and resolution of cerebral edema after ischemia.
Astrocytic AQP1 expression is induced in human brain tissues after subarachnoid
hemorrhage (SAH; Badaut et al. 2003) but modification in expression has not yet
been described in rodent models of human brain disorders (de Castro Ribeiro et al.
2006). The level of AQP4 expression is regulated in several brain disorders, such as
trauma (Ke et al. 2001; Kiening et al. 2002; Sun et al. 2003), ischemia (Taniguchi et
al. 2000; Amiry-Moghaddam et al. 2003a; Meng et al. 2004; de Castro Ribeiro et al.
2006) and human SAH (Badaut et al. 2003). To better understand the roles of AQP4
and AQP9 in edema, the expression profiles were recently characterized at various
time points after transient cerebral ischemia in mice. Two peaks of AQP4 expression
were observed 1 h and 48 h after stroke, coinciding with the two peaks of maximal
hemispheric swelling (de Castro Ribeiro et al. 2006). This temporal expression of
AQP4 differs with the result from brain trauma where there is an initial decrease in
AQP4 levels within 48 hours, followed by an increase (Ke et al. 2001, 2002;
Kiening et al. 2002). The difference in expression between the two models suggests
that the role of AQP4 in edema formation and resolution is complex. In contrast to
AQP4, AQP9 showed a significant induction at 24 h, that increased gradually with
time, without correlation to swelling (de Castro Ribeiro et al. 2006), suggesting that
AQP4 but not AQP9 plays a role in edema formation after transient cerebral
ischemia in the mouse. Interestingly, AQP4 expression is rapidly regulated with a
major induction at 1 h after stroke onset on astrocyte endfeet, suggesting that we
need to consider early time points after brain disorder onset (de Castro Ribeiro et al.
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2006). To date, functional consequences of the early AQP4 induction on astrocyte
endfeet have not yet been determined. It is possible that the presence of AQP4 in
cytotoxic edema formation is deleterious (Manley et al. 2000). Indeed, edema is
lower in AQP4-KO mice compared to wild type after permanent ischemia and acute
water intoxication (Manley et al. 2000). On the other hand, AQP4 was shown to be
important in water clearance in vasogenic edema (Papadopoulos et al. 2004).
Perhaps, AQP4 plays a dual role in edema evolution. However, a treatment with
sulforaphane which enhances AQP4 expression, induces a decrease in edema
following traumatic brain injury (Zhao et al. 2005), suggesting that induction of
AQP4 expression could facilitate the water clearance to decrease edema.

As mentioned previously, the role of AQP4 in brain disorders is complex. Indeed,
AQP4 has been recently shown to be involved in glial scar formation due to its
involvement in astrocyte migration towards the lesion (Saadoun et al. 2005). This
new role for AQP4 illustrates well that one AQP could be involved in several
cellular functions in one organ and in one cell type, depending on the environment.

AQP9 protein is up-regulated on reactive astrocytes in the border of the infarct after
transient middle cerebral artery occlusion in mice (Badaut et al. 2001; de Castro
Ribeiro et al. 2006). This up-regulation of AQP9 in reactive astrocytes was also
observed in the border zone not influenced by the middle cerebral artery territory (de
Castro Ribeiro et al. 2006). AQP9 permeability to water, glycerol and lactate may be
important under pathological conditions such as brain ischemia (Bertrand et al. 1992;
Schulz et al. 2000; Frykholm et al. 2001; Kuo et al. 2003) and interestingly, AQP9
permeability to lactate increases fourfold when the pH decreases to 5.5 (Tsukaguchi
et al. 1998). Lactic acidosis during ischemia may increase the permeability of AQP9
and enable uptake of excess lactate by astrocytes. In this way AQP9 could favor
lactate and glycerol clearing from the extracellular space during ischemia. Lactate and
glycerol could then be used as energetic substrates, lactate, for example, has been
shown to facilitate the recovery of neurons after ischemic insults (Schurr 2002).

To date, molecular pathways involved in AQP4 and 9 regulation have not yet
been studied in vivo. However several groups have investigated the regulation of
AQP expression in primary astrocyte cultures. Several pathways leading to
regulation of AQP expression were identified including protein kinase A (PKA)
and C (PKC; Yamamoto et al. 2001, 2002). Stimulation of the PKC pathway is
known to reduce AQP4 mRNA expression in astrocyte cultures (Nakahama et al.
1999) and furthermore, PKC phosphorylation at consensus sites in the AQP4 protein
acts to reduce water influx through the channel (Han et al. 1998; Vajda et al. 2000).
AQP9 mRNA and protein were also down-regulated by stimulation of the PKC
pathway which did not require de novo protein synthesis (Yamamoto et al. 2001).
Despite the presence of consensus sites for phosphorylation by PKC in the AQP9
protein, direct regulation of this channel by phosphorylation has not yet been
observed (Yamamoto et al. 2001). Activation of PKA by dibutirylcAMP induces an
increase in AQP9 mRNA and protein expression in contrast to AQP4 in astrocytic
cultures (Yamamoto et al. 2002). Recently, P38 MAP-kinase was shown to be
involved in an increase of AQP4 and AQP9 expression after osmotic stress (Arima
et al. 2003). MAP-kinase pathways is activated in ischemia and then could be also
involved in the increase of astrocytic AQP9 expression at the border of the ischemic
infarct (Badaut et al. 2001; de Castro Ribeiro et al. 2006).

258 Metab Brain Dis (2007) 22:251–263



Conclusion

Regarding to recent advances, a unique role of AQP in brain water homeostasis
needs to be reconsidered. AQP4 is involved in ionic homeostasis of the brain by
facilitation of water diffusion through the cell membrane. An absence of AQP4 in
astrocyte endfeet modifies the clearance of potassium during neuronal activity and
leads to an increase in the susceptibility of animals to seizure. In pathological
conditions, expression of AQP4 is rapidly increased and correlated with edema
formation. However, the exact role of AQP4 in edema formation is still debated.
Furthermore, the induction of AQP4 in reactive astrocytes after traumatic brain
injury has been recently associated with astrocyte migrations towards the glia scar.

AQP9 is expressed in astrocytes and catecholaminergic neurons and may be
involved in brain energy metabolism by facilitating the diffusion of solutes such as
glycerol and monocarboxylates. Furthermore, the level of AQP9 expression is
dependent on the concentration of insulin, supporting the idea that AQP9 is involved
in brain energy metabolism. In ischemia, the AQP9 expression is induced over time
and could participate in the reuptake of excess glycerol and lactate after stroke onset.
Recent reports on AQP9 suggest that the AQP is not only an aqueduct but a
metabolite pipeline.

Acknowledgements The authors wish thank Dr M. Price for critical comments on the manuscript. This
study was supported by grants from the Swiss Science Foundation (FN 3100AO-108001); Fondazione Per
Lo Studio Delle Malattie Neurodegenerative Delle Persone Adulte e Dell’ Anziano”, from Lugano,
Switzerland; SwissHeart foundation.

References

Ainscow EK, Mirshamsi S, Tang T, Ashford ML, Rutter GA (2002) Dynamic imaging of free cytosolic
ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent
control of ATP-sensitive K(+) channels. J Physiol 544:429–445

Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev
Neurosci 4:991–1001

Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely
JD, Agre P, Ottersen OP, Bhardwaj A (2003a) An alpha-syntrophin-dependent pool of AQP4 in
astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S
A 100:2106–2111

Amiry-MoghaddamM,WilliamsonA, PalombaM, Eid T, de Lanerolle NC, Nagelhus EA, AdamsME, Froehner
SC, Agre P, Ottersen OP (2003b) Delayed K+clearance associated with aquaporin-4 mislocalization:
phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A 100:13615–13620

Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori
S, Ottersen OP (2004) Alpha-syntrophin deletion removes the perivascular but not endothelial pool of
aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental
model of acute hyponatremia. FASEB J 18:542–544

Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, Rinvik E, Torgner
IA, Ottersen OP (2005) Brain mitochondria contain aquaporin water channels: evidence for the
expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J 19:1459–1467

Arima H, Yamamoto N, Sobue K, Umenishi F, Tada T, Katsuya H, Asai K (2003) Hyperosmolar mannitol
stimulates expression of aquaporin 4 and 9 through a p38 mitogen activated protein kinase-dependent
pathway in rat astrocytes. J Biol Chem 27:27

Badaut J, Regli L (2004) Distribution and possible roles of aquaporin 9 in the brain. Neuroscience
129:969–979

Metab Brain Dis (2007) 22:251–263 259



Badaut J, Nehlig A, Verbavatz J, Stoeckel M, Freund-Mercier MJ, Lasbennes F (2000a) Hyper-
vascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution
of aquaporin-4 and markers of energy metabolism. J Neuroendocrinol 12:960–969

Badaut J, Verbavatz JM, Freund-Mercier MJ, Lasbennes F (2000b) Presence of aquaporin-4 and
muscarinic receptors in astrocytes and ependymal cells in rat brain: a clue to a common function.
Neurosci Lett 292:75–78

Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L (2001) Astrocyte-specific
expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb
Blood Flow Metab 21:477–482

Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and
pathophysiology. J Cereb Blood Flow Metab 22:367–378

Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, Villemure JG, Regli L (2003) Aquaporin 1
and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue.
Acta Neurochir Suppl 86:495–498

Badaut J, Petit JM, Brunet JF, Magistretti PJ, Charriaut-Marlangue C, Regli L (2004) Distribution of
Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial
cells. Neuroscience 128:27–38

Badaut J, Petit JM, Brunet JF, Magistretti P, Regli F (2005) Brain aquaporin 9 (AQP9) regulation by
systemic insulin in rat. J Cereb Blood Flow Metab 25:246

Bergersen L, Rafiki A, Ottersen OP (2002) Immunogold cytochemistry identifies specialized membrane
domains for monocarboxylate transport in the central nervous system. Neurochem Res 27:89–96

Bertrand N, Ishii H, Spatz M (1992) Regional and temporal glycerol changes induced by forebrain
ischemia in gerbils. Neurosci Lett 148:81–84

Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and
slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636

Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid
production. Neuroscience 129:955–968

Carbrey JM,Gorelick-FeldmanDA, KozonoD, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9:
solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950

Cooper GJ, Zhou Y, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through
AQP1. J Physiol 542:17–29

de Castro Ribeiro M, Hirt L, Bogousslavsky J, Regli L, Badaut J (2006) Time course of aquaporin
expression after transient focal cerebral ischemia in mice. J Neurosci Res 83:1231–1240

Dolman D, Drndarski S, Abbott NJ, Rattray M (2005) Induction of aquaporin 1 but not aquaporin 4
messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 93:825–833

Eid T, Lee TS, Thomas MJ, Amiry-Moghaddam M, Bjornsen LP, Spencer DD, Agre P, Ottersen OP, de
Lanerolle NC (2005) Loss of perivascular aquaporin 4 may underlie deficient water and
K + homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci U S A 102:1193–1198

Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S
(2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys
Res Commun 276:1118–1128

Frigeri A, Nicchia GP, Nico B, Quondamatteo F, Herken R, Roncali L, Svelto M (2001) Aquaporin-4
deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15:90–98

Frykholm P, Hillered L, Langstrom B, Persson L, Valtysson J, Watanabe Y, Enblad P (2001) Increase of
interstitial glycerol reflects the degree of ischaemic brain damage: a PET and microdialysis study in a
middle cerebral artery occlusion-reperfusion primate model. J Neurol Neurosurg Psychiatry 71:455–461

Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate
transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273:E207–E213

Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure
of a closed water pore. Nature 429:193–197

Grange-Messent V, Raison D, Bouchaud C (1996) Compared effects of extracellular K + ions and soman, a
neurotoxic, on cerebral astrocyte morphology. An in vitro study. J Submicrosc Cytol Pathol 28:151–159

Grill HJ, Kaplan JM (2002) The neuroanatomical axis for control of energy balance. Front Neuroendocrinol
23:2–40

Guadagno E, Moukhles H (2004) Laminin-induced aggregation of the inwardly rectifying potassium
channel, Kir4.1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in
astrocytes. Glia 47:138–149

Han Z, Wax MB, Patil RV (1998) Regulation of aquaporin-4 water channels by phorbol ester-dependent
protein phosphorylation. J Biol Chem 273:6001–6004

260 Metab Brain Dis (2007) 22:251–263



Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes
leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H, Walz T, Sasaki S, Mitsuoka K,
Kimura K (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J
Mol Biol 355:628–639

Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression
of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and
urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of
an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl
Acad Sci U S A 91:13052–13056

Ke C, Poon WS, Ng HK, Pang JC, Chan Y (2001) Heterogeneous responses of aquaporin-4 in oedema
formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett 301:21–24

Ke C, Poon WS, Ng HK, Lai FM, Tang NL, Pang JC (2002) Impact of experimental acute hyponatremia
on severe traumatic brain injury in rats: influences on injuries, permeability of blood-brain barrier,
ultrastructural features, and aquaporin-4 expression. Exp Neurol 178:194–206

Kiening KL, van Landeghem FK, Schreiber S, Thomale UW, von Deimling A, Unterberg AW, Stover JF
(2002) Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled
cortical impact injury in rats. Neurosci Lett 324:105–108

Kimelberg HK (2004) Water homeostasis in the brain: Basic concepts. Neuroscience 129:851–860
King LS, Yasui M, Agre P (2000) Aquaporins in health and disease. Mol Med Today 6:60–65
Klatzo I (1985) Brain oedema following brain ischaemia and the influence of therapy. Br J Anaesth 57:18–22
Ko SB, Uchida S, Naruse S, Kuwahara M, Ishibashi K, Marumo F, Hayakawa T, Sasaki S (1999) Cloning

and functional expression of rAOP9L a new member of aquaporin family from rat liver. Biochem Mol
Biol Int 47:309–318

Kuo JR, Lin CL, Chio CC, Wang JJ, Lin MT (2003) Effects of hypertonic (3%) saline in rats with
circulatory shock and cerebral ischemia after heatstroke. Intensive Care Med 29:1567–1573

Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M,
Nagaretani H, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y (2002) Coordinated
regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9.
Diabetes 51:2915–2921

Kyriaki G (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23:1–25
Levin BE, Dunn-Meynell AA, Routh VH (1999) Brain glucose sensing and body energy homeostasis: role

in obesity and diabetes. Am J Physiol 276:R1223–R1231
Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian

aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058
Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to

functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354:1155–1163
Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497
Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4

deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med
6:159–163

McKenna MC, Bezold LI, Kimatian SJ, Tildon JT, Fife MM (1986) Competition of glycerol with other
oxidizable substrates in rat brain. Biochem J 237:47–51

Meng S, Qiao M, Lin L, Del Bigio MR, Tomanek B, Tuor UI (2004) Correspondence of AQP4 expression
and hypoxic-ischaemic brain oedema monitored by magnetic resonance imaging in the immature and
juvenile rat. Eur J Neurosci 19:2261–2269

Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: Cellular and
subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

Nakahama K, Nagano M, Fujioka A, Shinoda K, Sasaki H (1999) Effect of TPA on aquaporin 4 mRNA
expression in cultured rat astrocytes. Glia 25:240–246

Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-
dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S
A 98:14108–14113

Nguyen NH, Brathe A, Hassel B (2003) Neuronal uptake and metabolism of glycerol and the neuronal
expression of mitochondrial glycerol-3-phosphate dehydrogenase. J Neurochem 85:831–842

Nicchia GP, Frigeri A, Nico B, Ribatti D, Svelto M (2001) Tissue distribution and membrane localization
of aquaporin-9 water channel: evidence for sex-linked differences in liver. J Histochem Cytochem
49:1547–1556

Metab Brain Dis (2007) 22:251–263 261



Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and
resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized
membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of
aquaporin-4 in rat brain. J Neurosci 17:171–180

Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of
vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci
21:3045–3051

Nihei K, Koyama Y, Tani T, Yaoita E, Ohshiro K, Adhikary LP, Kurosaki I, Shirai Y, Hatakeyama K,
Yamamoto T (2001) Immunolocalization of aquaporin-9 in rat hepatocytes and Leydig cells. Arch
Histol Cytol 64:81–88

Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water
internal standard. Brain Res 24:372–376

Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of
excess fluid in vasogenic brain edema. FASEB J 18:1291–1293

Pappius HM (1974) Part I: tumors of the brain and skull. In: Vinken PJ, Bruyn GW (eds) Handbook of
clinical neurology, vol. 16. North Holland Publishing Company, New York, pp 167–185

Penicaud L, Leloup C, Lorsignol A, Alquier T, Guillod E (2002) Brain glucose sensing mechanism and
glucose homeostasis. Curr Opin Clin Nutr Metab Care 5:539–543

Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ (2000) Cell-specific localization of
monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double
immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627

Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes
expressing red cell CHIP28 protein. Science 256:385–387

Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4
in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc
Natl Acad Sci U S A 95:11981–11986

Rash JE, Davidson KGV, Yasumura T, Furman CS (2004) Freeze-fracture and immunogold analysis of
aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly. Neuroscience 129:915–934

Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of
aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

Santoni V, Gerbeau P, Javot H, Maurel C (2000) The high diversity of aquaporins reveals novel facets of
plant membrane functions. Curr Opin Plant Biol 3:476–481

Schulz MK, Wang LP, Tange M, Bjerre P (2000) Cerebral microdialysis monitoring: determination of
normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J
Neurosurg 93:808–814

Schurr A (2002) Lactate, glucose and energy metabolism in the ischemic brain (Review). Int J Mol Med
10:131–136

Sun MC, Honey CR, Berk C, Wong NL, Tsui JK (2003) Regulation of aquaporin-4 in a traumatic brain
injury model in rats. J Neurosurg 98:565–569

Taniguchi M, Yamashita T, Kumura E, Tamatani M, Kobayashi A, Yokawa T, Maruno M, Kato A,
Ohnishi T, Kohmura E, Tohyama M, Yoshimine T (2000) Induction of aquaporin-4 water channel
mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res 78:131–137

Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger
MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem
273:24737–24743

Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characteriza-
tion of the human neutral solute channel aquaporin-9. Am J Physiol 277:F685–F696

Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization,
signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362

Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:
1019–1027

Vajda Z, Promeneur D, Doczi T, Sulyok E, Frokiaer J, Ottersen OP, Nielsen S (2000) Increased aquaporin-
4 immunoreactivity in rat brain in response to systemic hyponatremia. Biochem Biophys Res
Commun 270:495–503

Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD,
Agre P, Frokiaer J, Nielsen S (2002) Delayed onset of brain edema and mislocalization of aquaporin-4
in dystrophin-null transgenic mice. Proc Natl Acad Sci U S A 99:13131–13136

262 Metab Brain Dis (2007) 22:251–263



Venero JL, Vizuete ML, Ilundain AA, Machado A, Echevarria M, Cano J (1999) Detailed localization of
aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs.
Neuroscience 94:239–250

Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and
muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855–2860

Warth A, Kroger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates
with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol (Berl)
107:311–318

Wells T (1998) Vesicular osmometers, vasopression secretion and aquaporin-4: a new mechanism for
osmoreception. Mol Cell Endocrinol 136:103–107

Yamamoto N, Sobue K, Miyachi T, Inagaki M, Miura Y, Katsuya H, Asai K (2001) Differential regulation
of aquaporin expression in astrocytes by protein kinase C. Brain Res Mol Brain Res 95:110–116

Yamamoto N, Sobue K, Fujita M, Katsuya H, Asai K (2002) Differential regulation of aquaporin-5 and -9
expression in astrocytes by protein kinase A. Brain Res Mol Brain Res 104:96–102

Yang XJ, Kow LM, Funabashi T, Mobbs CV (1999) Hypothalamic glucose sensor: similarities to and
differences from pancreatic beta-cell mechanisms. Diabetes 48:1763–1772

Zhao J, Moore AN, Clifton GL, Dash PK (2005) Sulforaphane enhances aquaporin-4 expression and
decreases cerebral edema following traumatic brain injury. J Neurosci Res 82:499–506

Metab Brain Dis (2007) 22:251–263 263


	Aquaporins in the brain: from aqueduct to “multi-duct”
	Abstract
	Water channels: a general introduction
	AQP4 expression in brain and its several functional roles
	AQP9 expression in brain and its functional roles
	AQP expression in brain disorders
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


