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ABSTRACT Next-generation sequencing (NGS) technologies have become the standard for data generation
in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are
known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte
antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to pop-
ulation genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability
of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by
1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of
HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the
1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele
frequencies are estimated with an error greater than 60.1 at approximately 25% of the SNPs in HLA genes.
We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping
bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have
poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of
analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights
into the challenges of using of NGS data at other genomic regions of high diversity.
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Whole-genome resequencing data for large numbers of human indi-
viduals, as generated by the 1000 Genomes Project (www.1000genomes.
org), provide unprecedented amounts of information about micro-
evolutionary processes and demographic histories. Such inferences
rely on either genotypic or allelic frequency information for each

variable position, which constitute the data for downstream analyses
and hypothesis testing.

The calling of single-nucleotide polymorphisms (SNPs) and
genotypes and the estimation of allele frequencies from next-
generation sequencing (NGS) has undergone rapid development,
along with likelihood-based and Bayesian methods created to deal with
challenges associated to heterogeneity in read quality and coverage
(Nielsen et al. 2011). In Phase I of the 1000 Genomes Project, geno-
types were called using a combination of different approaches: first,
primary call sets were independently generated by different centers with
different sequencing platforms, alignment, and variant calling methods;
then, a consensus SNP call set was generated and made publicly avail-
able (The 1000 Genomes Project Consortium 2012).

The data generated by the 1000 Genomes Project frequently have
been used to make inferences about evolutionary processes affecting
our species, including the detection of targets of natural selection
(Hernandez et al. 2011; Ward and Kellis 2012; Andersen et al. 2012)
and understanding the genetic basis of complex phenotypes
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(Lappalainen et al. 2013). In addition, the detailed catalog of
genetic variation it provides across multiple human populations
has been used to understand the processes affecting specific
genes.

Among the well-documented targets of selection is the major his-
tocompatibility complex region of the human genome, which harbors
the highly polymorphic classical human leukocyte antigen (HLA) class
I and II loci. The interest in these loci stems from their strong asso-
ciation to various autoimmune disorders (Sollid et al. 2014), suscep-
tibility and resistance to infection (Chapman and Hill 2012), and
striking signatures of genetic variation indicating strong balancing
selection (Meyer and Thomson 2001). Such types of investigations
can naturally be extended to the analysis of the 1000 Genomes data,
which provide a rich resource of population genetic variation within
and around HLA genes.

Despite this interest, the use of NGS data for HLA loci is hampered
by a major technical hurdle, which is the mapping of short sequence
reads to genes that are both highly polymorphic and which constitute
a multigene family. The high polymorphism may decrease the prob-
ability that short reads will be successfully mapped to the reference
genome, in the event that the sequenced individual carries a variant
that is highly diverged from that used in the index (Nielsen et al.
2011). In addition, the fact that many HLA genes have close
paralogues increases the chance that a read will map to two or more
genomic regions, leading it to be discarded from most sequencing
analyses pipelines, and thus decreasing the amount of usable infor-
mation for genotype calling (Treangen and Salzberg 2012).

In previous studies authors explored the applicability of NGS to
genotype the HLA alleles of an individual, where an allele typically is
defined as the haplotype determined by a combination of SNPs within
a given HLA gene [e.g., Erlich et al. (2011); Major et al. (2013)]. To
this end, Erlich et al. (2011) proposed NGS methodologies in which
different steps—from sample preparation to haplotype level allele
calling—were adapted to deal with the issues of high polymorphism
and paralogy of HLA genes. In this way, they were able to successfully
validate their methodology in a study of 270 samples that had been
typed previously by sequence-specific oligonucleotide hybridization,
which they treated as a gold standard dataset. The same gold standard
dataset was used by Major et al. (2013), who also examined the re-
liability of calling HLA alleles using NGS, but using the 1000 Genomes
alignment data, and showed that this publicly available dataset can
be used for this purpose, after appropriate filters (e.g., coverage) are
applied.

Both Erlich et al. (2011) and Major et al. (2013) were interested in
using NGS data to determine HLA alleles. Information regardingHLA
alleles is of biomedical relevance because HLA genotypes often are an
important covariate to account for in association studies, and HLA
typing is critical to hematopoietic transplantation. In this study, how-
ever, we evaluate the quality of SNP level genotype calls from the 1000
Genomes at the HLA genes.

The analysis of genotype and allele frequencies for SNPs contained
within HLA genes has proven of great value in biomedical and evo-
lutionary studies, and the 1000 Genomes dataset is a resource used
recurrently in this context. Examples of the use ofHLA SNP data from
the 1000 Genomes Project include: (1) In genome-wide association
studies (GWAS), SNPs in HLA genes often are associated with phe-
notypes of interest, and it is useful to understand the prevalence of
these variants in additional populations; (2) GWAS studies benefit
from knowledge of the haplotype structure surrounding HLA genes,
which can be inferred from the dense SNP data of the 1000 Genomes
for multiple populations (e.g., Hill-Burns et al. 2011); and (3) when

testing for selection, many studies have found strong evidence asso-
ciated to the HLA region, using the 1000 Genomes as a source of
polymorphism data (e.g., Leffler et al. 2013).

All the aforementioned applications of the 1000 Genomes Project
SNP data in HLA genes are dependent on the reliability of genotype
calls at each SNP. However, no study to date has provided a detailed
survey of the reliability of individual genotype calls and allele fre-
quency estimates at the SNPs in HLA genes, despite their frequent
usage. We address this issue, discuss likely causes for cases of incorrect
genotype calls, and provide a list of reliable sites for the HLA loci in
the 1000 Genomes data. As in previous studies (Erlich et al. 2011;
Major et al. 2013), we used a dataset in which individuals had their
HLA genes genotyped using Sanger sequencing as a gold standard to
benchmark the genotypes called at the 1000 Genomes Project. How-
ever, differently from these other studies, which were interested in
reconstructing the HLA haplotypes using NGS, here we have decon-
structed the haplotypes determined from Sanger sequencing data into
SNPs, and compared genotypes at the SNP level to the 1000 Genomes
data. We took advantage of the recent availability of a dataset of
Sanger sequencing based HLA genotyping of HLA-A, -B, -C, -DQB1,
and -DRB1 for 930 of the samples from the 1000 Genomes Project
(Gourraud et al. 2014). Our results have implications for other studies
that use SNP data from the 1000 Genomes in order to estimate allele
frequencies. BecauseHLA loci are the most polymorphic in the human
genome, they most likely represent the worst case scenario for map-
ping bias and, consequently, allele frequency estimation error.

METHODS
In this study, we compare NGS genotype calls and allele frequency
estimates reported by the 1000 Genomes Project with those obtained
in a study which used Sanger sequencing to genotype HLA genes. For
the purpose of our analysis we assembled a dataset comprising the
intersection of the 1000 Genomes and Sanger sequencing samples,
resulting in 930 individuals from 12 populations. Supporting Infor-
mation, Figure S1 summarizes the preprocessing of both datasets,
which preceded genotype and allele frequency comparisons.

1000 Genomes dataset (1000G)
SNP genotypes were acquired from the chromosome 6 integrated
Variant Call Format (VCF) file from version 3 of the 1000 Genomes
Project Phase I data, which is available at ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20110521/ (The 1000 Genomes Project Consor-
tium 2012). We selected only SNPs in exons encoding the antigen
recognition sites (ARS), which are exons 2 and 3 for HLA-A, -B, and
-C (Bjorkman et al. 1987) and exon 2 for HLA-DQB1 and -DRB1
(Brown et al. 1993). Sites were selected based on the most inclusive
coordinates of the RefSeq database in July 22, 2014 (see File S1). Both
SNP and sample selection were carried out using VCFtools v0.1.12b
(Danecek et al. 2011).

HLA reference panel by Gourraud et al.
(2014) (PAG2014)
Gourraud et al. (2014) typed class I HLA-A, -B and -C, and class II
HLA-DRB1 and -DQB1 genes of 1266 individuals from 14 different
populations in Africa, Europe, Asia, and America. The HLA sequence-
based typing was performed with specific polymerase chain reaction
amplification of ARS exons followed by Sanger sequencing. Data are
available at the dbMHC Web site (http://www.ncbi.nlm.nih.gov/gv/
mhc/xslcgi.fcgi?cmd=cellsearch; Helmberg et al. 2014).

Data from Gourraud et al. (2014) are available in the form of HLA
allele names per individual. Allele naming for HLA genes follows
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specific rules (Marsh et al. 2010). To summarize, allele names are
composed of a letter indicating the locus, followed by 224 numeric
fields separated by colons. Each numeric field indicates specific forms
of variation: the 1st field distinguishes groups of alleles by serological
type, and the following fields distinguish nonsynonymous polymor-
phisms, synonymous polymorphisms, and noncoding differences, re-
spectively. To obtain SNP genotypes and frequencies from the Sanger
sequencing data, we converted all allele names to their associated

sequences for ARS encoding exons. Sequences were acquired from
the IMGT (i.e., international ImMunoGeneTics information system)
database (Robinson et al. 2013), which keeps a well-curated repository
of all known HLA allele sequences.

Our analysis was restricted to ARS exons because the HLA typing
method used by Gourraud et al. (2014) only probed genetic variation
in these specific exons. As a consequence, multiple HLA alleles are
compatible with the sequencing results, because the sites that

Figure 1 Genotype mismatches between the 1000G and PAG2014 datasets. Results per polymorphic site (“Position”) and per individual (930 in
total). Individuals are ordered by number of mismatches (individuals with less mismatches on top). Sites are numbered according to their position
in ARS exons coding sequence. Dark squares indicate mismatches between genotypes in the two datasets. ARS, antigen recognition sites; HLA,
human leukocyte antigen.
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differentiate them are in other exons. This results in what we refer to
as an “ambiguous allele call” for an HLA allele (e.g., the allele is iden-
tified as B�35:03, but we cannot establish whether it is B�35:03:01 or
B�35:03:02, or a group of alleles is attributed to an individual, such as
B�35:02/B�35:03/B�35:04). Ambiguous allele calls also may happen
when sequencing has low quality at bases that differentiate two alleles.
In addition, there are also genotypic ambiguities, which occur when
different pairs of alleles are compatible with the sequencing results. For
individuals that bear ambiguous alleles, we created a consensus se-
quence in which ambiguous sites were reported with both possible
alleles (e.g., A/T, see Figure S1). In this way, we incorporate the un-
certainty associated to the sequence-based typing into downstream
analyses.

Although we cannot rule out technical errors in the Sanger
sequencing that generated the PAG2014 data (Gourraud et al. 2014),
we assume that this method provides the most reliable estimate of
HLA alleles (and hence SNP genotypes), and will serve as a standard
to estimate the reliability of genotype calls and allele frequencies for
the 1000 Genomes data (De Santis et al. 2013).

Genotype comparisons
We initially quantified how well the 1000G and PAG2014 data agreed
with respect to genotype calls. Genotypes at each site in each individual
were compared between the 1000G data and the PAG2014 data, here
considered as a gold standard. In the case of sites with ambiguity (e.g.,
T/A) in the PAG2014 data, if one of the two possible alleles matched
an allele present in the 1000G, we considered this an allele match and
PAG2014 was corrected, by attributing the allele present in the 1000G
data to the ambiguous site. After correcting the ambiguous sites in
PAG2014, we only considered genotypes to be a match if both alleles
in 1000G were present in the PAG2014 data, at that site. Throughout

this article, sites are numbered according to their position in the ARS
exons coding sequences (12546 at the class I loci and 12270 at the
class II loci).

Allele frequency comparisons
After correcting all possible ambiguities in PAG2014 (as described
previously), we calculated allele frequencies for SNPs in both datasets.
By comparing the frequency of the reference allele in 1000G to its
value in PAG2014, we assessed the accuracy of allele frequency
estimation. The reference allele was defined as the allele present in the
hg19 build of the reference sequence of the human genome. RefSeq
IDs of the reference sequences used for each HLA gene are reported
on File S1.

We computed the error in 1000G frequency estimates per site
i (FEi) as follows:

FEi ¼ fi;1000G 2 fi;PAG2014

where fi;1000G and fi;PAG2014 are the frequency of the reference allele at
site i in 1000G and PAG2014, respectively. We also computed the
mean absolute error in frequency estimates per gene as a mean of
absolute FEi for all sites within a gene (MAE):

MAE ¼ 1
n

Xn

i¼1

��� fi;1000G 2 fi;PAG2014
���

where n is the number of SNPs in the gene.

Coverage in 1000G
Sequencing coverage per individual per site was calculated from the
1000 Genomes Project phase I BAM files for the low coverage

Figure 3 (A) Distribution of coverage (x-axis) at matched and mismatched genotypes; y-axis is the square root of the relative frequency (Mann-
Whitney U one-tailed test, P , 10216); (B) Relationship between mean coverage (x-axis) and absolute frequency difference (jFEj, y-axis) between
1000G and PAG2014 (r =20.11, P = 0.09). All polymorphic sites from HLA-A, -B, -C, -DRB1, and -DQB1 genes are included in both a and b. HLA,
human leukocyte antigen.

Figure 2 REF allele frequency per site in each HLA gene in the 1000 Genomes (1000G) and Sanger sequencing (PAG2014) datasets. Continuous
line indicates the expected relationship (i.e., no difference) between 1000G and PAG2014. Dashed lines indicate a 60.1 deviation from the
expected frequency (as estimated from PAG2014 dataset). MAE (mean absolute error) defined in the section Materials and Methods. Numbers
indicate site position in ARS exons sequence. REF, reference; ARS, antigen recognition sites; HLA, human leukocyte antigen.
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experiments using the genomeCoverageBed program from BED-
Tools (Quinlan and Hall 2010). BAM files are available on ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/[sampleID]/alignment/.
Only low-coverage BAM files were used to estimate coverage be-
cause genotype likelihoods for the data we analyzed (1000 Genomes
Project Phase I integrated VCF files) were estimated from this source.
Genotype likelihoods were estimated from high coverage exome BAM
files only for a minority of sites that were exclusively discovered on the
exome experiments, and were not used in the coverage analysis (See
Table S1).

Testing for mapping bias
After demonstrating that there is an overestimation of reference allele
frequency in the 1000G SNPs (see the section Results), we hypothe-
sized that mapping bias was the underlying cause. To test this hy-
pothesis, we examined whether reads carrying the alternative allele at
a SNP are less likely to map to the reference genome than reads
carrying the reference allele. First, for each HLA allele present in the
PAG2014 dataset, we defined windows of 51 base pairs that were
centered on each SNP (25 base pairs upstream and 25 base pairs
downstream of the SNP, including non-polymorphic sites). The set

Figure 4 Difference in reference allele frequency between 1000G and PAG2014, measured by FE (see the section Materials and Methods), at
each polymorphic site, in each population. Shades of red indicate overestimation of reference allele frequency and shades of blue indicate
underestimation of reference allele frequency in 1000G. Full population names are given in Table S3.
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of windows centered on a specific SNP was then separated in two
groups: (i) those that carry the reference allele at the central site and
(ii) those that carry the alternative allele at the central site. Next, all
windows were compared with the reference genome (hg19) sequence
(the same sequence that was used as an index in the 1000 Genomes
Project), and the number of mismatches was counted, excluding the
mismatch at the central SNP. If mapping bias was influencing allele
frequency estimates, we expected that, for SNP positions with over-
estimation of the reference allele frequency in the 1000G, the alterna-
tive alleles would be flanked by additional alternative alleles (and thus
have a greater mismatch count against the reference sequence).

RESULTS

Genotypic mismatch frequency
We found that, on average, 18.6% of genotypes were mismatched
between 1000G and PAG2014 when individual genotypes for each
site in the five classical HLA genes were compared, and exons with
greater nucleotide diversity tend to have a greater proportion of
genotype mismatches (Figure S2). We also observed that mismatches
are specially concentrated on a few sites (Figure 1), with 18.7% of
sites concentrating 50% of the mismatches over the five loci we
analyzed.

Reference allele frequency accuracy
Accuracy of estimation of allele frequencies in 1000G was assessed
comparing the observed frequency of the reference allele in the 1000G
data with that of PAG2014, for both the global dataset (consisting of
a pooled set of all individuals) and for each population separately (see
Figure S3, Figure S4, Figure S5, Figure S6, and Figure S7). We chose
a difference of 0.1 between the frequencies on both datasets as
a threshold that determines a “large frequency difference.”

For the global dataset (Figure 2) we found that for HLA-A and -C
most SNPs have similar frequency estimates for 1000G and PAG2014,
with few large deviations (only 9/66 and 8/44 SNPs with absolute
difference in frequencies (jFEj) larger than 0.1, respectively). The
HLA-DQB1 locus shows an intermediate proportion of SNPs with
large deviations (10/42 SNPs with jFEj. 0:1), and HLA-B and
HLA-DRB1 show the greatest proportion of sites with large frequency
differences between 1000G and PAG2014 (23/64 and 15/35 sites with
jFEj. 0:1). Overall, the mean absolute difference in frequency be-
tween SNPs in the 1000G and PAG2014 data are 0.08, and it is greater
at the HLA genes with the greatest levels of nucleotide diversity (HLA-
B, -DQB1 and -DRB1 all deviate by 60:1).

The proportion of genotype mismatches and allele frequency
deviations per site are highly correlated (Pearson correlation = 0.86,
P , 10216; Figure S8). However, some SNPs with a high proportion
of genotype mismatches have well-estimated allele frequencies. One
example is site 465 at HLA-B, in which 44% of genotypes are mis-
matched, but jFEj is only 0.007. Overall, 15 sites have more than 25%
mismatched genotypes while showing jFEj, 0:1 (see Figure S8). This
is possible when the frequency of genotype errors in which the refer-
ence allele is overrepresented is similar to the frequency of errors in
which the alternative allele is overrepresented.

Allele frequency at the axiom exome genotyping array – Affymetrix:
Because genotyping arrays constitute an additional frequently used
resource to genotype SNPs within HLA genes, playing an important
role in GWAS studies, we also have investigated the accuracy of allele
frequency estimation from this genotyping technology. We estimated
allele frequencies from Axiom Exome data, and we found that those

allele frequency estimates are as reliable as the ones from the 1000
Genomes NGS data, at the same SNPs (see Figure S9).

Relationship between sequencing coverage and
genotypic mismatches
To investigate whether low sequencing coverage could explain
genotype mismatches and deviations from expected allele frequencies,
we compared sequencing coverage between mismatched and matched
genotypes (Figure 3A) and assessed the relationship between coverage
and frequency deviation (Figure 3B).

Sites with mismatched genotypes have on average lower sequencing
coverage than sites with matched genotypes (Figure 3A; Mann-
Whitney U one-tailed test P , 10216). This is the expected relation-
ship if low sequencing coverage explains genotype mismatches
between datasets. However, the difference in sequencing coverage
between sites with matched and mismatched genotypes is small (mean
coverage in matching genotypes is 1.95, and 1.75 in nonmatching
genotypes, a difference of 6.2%) and has likely achieved very high
significance only due to the large number of observations. Similarly,
correlation between allele frequency deviation and sequencing cover-
age is weak and not significant (Figure 3B; r = 20.11, P = 0.09),
although the direction of correlation is in agreement with what would
be expected if lower coverage explained larger deviations in frequency
estimation. We have also investigated the possible effect of the posi-
tion of the SNPs relative to exon edges on the allele frequency devia-
tions and found no correlation between those factors (Figure S10). We
therefore investigated other factors that may account for errors in
genotype calling.

Direction of frequency deviation
We found that most of the genotype mismatches are caused by
miscalling an alternative allele as a reference allele (Table S2). Fur-
thermore, most deviations in allele frequency estimates are in the
direction of an overestimation of reference allele frequencies in the
1000 Genomes data (Figure 2). This information is summarized in
Figure 4, which shows the location and magnitude of frequency devi-
ations between the 1000G and PAG2014 data.

The overall shift in the direction of overestimating reference
alleles is summarized in Table 1, which shows the number of SNPs
with more than 0.1 frequency difference in at least two popula-
tions, for each locus. For HLA-A, -B, and -DQB1 most sites with
large frequency differences between 1000G and PAG2014 are
skewed in the direction of overestimating the reference allele
[P = 0.057 for HLA-A and P , 1024 for HLA-B and -DQB1, bi-
nomial test for null hypothesis of equal numbers of deviations in
direction of reference (REF) or alternative (ALT)], whereas HLA-C
and HLA-DRB1 show no evidence for an excess of large deviations
in the direction of reference alleles.

n Table 1 Number of sites with overestimation of REF or ALT
allele frequency in each HLA locus (jFEj . 0.1 in 2 or more
populations)

A B C DQB1 DRB1

REF 11 30 6 22 11
ALT 3 2 3 2 11

Genomic coordinates of those sites are given in Table S4. HLA, human leukocyte
antigen; REF, reference; ALT, alternative.
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Testing for mapping bias
We hypothesized that the observed reference allele bias was caused by
a lower efficiency in the mapping of reads containing the alternative
allele. This is expected under the assumption that the reads carrying
the alternative allele on average have more differences with respect to
the reference genome (used by the 1000 Genomes Consortium as the
index to align NGS reads) than reads carrying the reference allele. In
this scenario, some sites would have a stronger bias than others if the

alternative alleles in those sites are flanked by additional alternative
alleles.

To test this hypothesis, we aligned sequences of all alleles present
in PAG2014 to the HLA sequences present in the hg19 build of the
reference human genome (the same sequences used for the alignment
of reads in the 1000 Genomes Project) and defined windows of 51
base pairs around each SNP. We then quantified the number of differ-
ences with respect to the reference genome for windows surrounding

Figure 5 Number of differences to the reference genome at 1860 51-bp windows centered at sites HLA-B 132 and HLA-DQB1 244 with reference
(REF) or alternative (ALT) allele at those sites. Windows were defined from all HLA alleles present in the 930 samples from the PAG2014 dataset.
HLA, human leukocyte antigen.

Figure 6 Number of differences to the reference genome at 51-bp
windows centered at each SNP in the HLA-A, -B, and -DQB1 genes.
Windows around each SNP were defined from the set of 1860 alleles
present in the 930 samples from the PAG2014 dataset. Next, the set of
windows was divided in three groups: those centered on SNPs with
overestimated, well estimated and underestimated reference allele fre-
quencies (red, yellow and blue boxplots, respectively). Then, each
group was divided in two: windows in which the central site contains
the reference allele (REF, dark boxplots) and windows centered on an
alternative allele (ALT, light colored boxplots). Upper and lower hinges
correspond to the 25th and 75th percentiles, horizontal lines represent
the median, whiskers are 1.5 times the interquartile range, and outliers
are represented by dots. HLA, human leukocyte antigen; SNP, single-
nucleotide polymorphism.
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(i) REF and (ii) ALT alleles. If REF allele mapping bias is driving
errors in frequency estimation, it is expected that sites with an over-
estimation of REF allele frequency would present the following pat-
tern: windows carrying the REF with fewer differences to the reference
genome than sequences centered on the ALT alleles. For sites with
well-estimated frequencies, on the other hand, we did not expect such
a difference between REF and ALT windows.

To illustrate this effect, Figure 5 shows the results for the two most
extreme cases of frequency deviation shown in Figure 4: site 244 of
HLA-DQB1 and site 132 of HLA-B (0.56 and 0.52 absolute increase in

REF allele frequency in the 1000 Genomes data with respect to
PAG2014). In both cases, ALT windows bear more differences to
the reference sequence than REF windows.

These results support the hypothesis that these sites with poorly
estimated allele frequencies have their ALT alleles residing in haplotypes
with substantially more differences with respect to the reference genome
than haplotypes centered on the REF allele, thus accounting for the
observed bias.

To gain a broader perspective of this issue, we classified SNPs from
the HLA loci with REF allele bias (HLA-A, -B, and -DQB1) into three
categories: (i) sites at which the REF allele frequency was overesti-
mated, i.e., FE. 0:1 (“overestimated”); (ii) sites where the REF allele
frequency was underestimated, i.e., FE, 2 0:1 (“underestimated”);
and (iii) sites at which allele frequencies were well estimated
(jFEj, 0:01, here referred to as “well estimated”). We compared these
three categories of sites with respect to the number of differences
relative to the reference genome in REF and ALT windows (Figure
6). We found that the overestimated group has significant excess of
differences at alternative allele bearing haplotypes. In this group of
SNPs, ALT windows have on average 4.4 other differences relative to
the reference genome, whereas those centered on the REF allele have
1.9 differences (excess of differences on windows centered on the ALT
allele was tested with a one tailed Mann-Whitney U test; P , 10216).
Sites with well estimated or underestimated REF allele frequency, on
the other hand, do not show a similar excess of differences in the
haplotypes bearing the ALT allele, although the difference between
REF and ALT windows is statistically significant because of the large
sample size (well estimated: ALT mean = 1.7; REF mean = 1.8; one
tailed Mann-Whitney U test P, 10216; underestimated: ALT mean =
1.9 ; REF mean = 1.2; one tailed Mann-Whitney U, P , 10216).

Impact of biases in frequency estimation to population
genetic statistics
Our analysis was able to identify a subset of SNPs in the HLA genes
for which genotype calls and allele frequency estimates from the
1000G showed a high error rate with respect to the PAG2014 dataset.
To evaluate the impact of the errors introduced by including these
sites in population genetic analyses, we compared the distribution of
sample heterozygosity between the sites with low and high error rates.
Heterozygosity is defined as H ¼ 2pð12 pÞ for biallelic loci, as is the

Figure 7 Heterozygosity of SNPs at HLA genes estimated from the
PAG2014 dataset. Orange bars show distribution of heterozygosity at
sites with a high error rate in frequency estimation (jFEj.0:1 in two or
more populations). Blue bars show the distribution of heterozygosity
after exclusion of SNPs with high error rate. SNP, single-nucleotide
polymorphism; HLA, human leukocyte antigen.

Figure 8 Relationship between SNP heterozygosity (H) and (A) absolute value of deviation (jFEj; Pearson’s correlation = 0.32; P = 1.938 · 1027) or
(B) magnitude and direction of deviation (FE; Pearson’s correlation = 0.59; P , 10216). SNP, single-nucleotide polymorphism.
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case for the 1000 Genomes Phase I SNPs, because tri- or quad-allelic
SNPs were not reported on Phase I.

The removal of sites with poor frequency estimates (jFEj. 0:1 in
at least two populations) results in a marked change in the distribution
of H, with a significant drop in the frequency of sites with large H and
a shift in the distribution toward lower values (Figure 7). Note that the
H values in Figure 7 are estimated from the PAG2014 data, implying
that the high values of H among “excluded” sites are not due to the
deviations in allele frequencies generated by NGS errors, but are the
true heterozygosities at those sites. These results therefore document
that because sites with high heterozygosity tend to have greater devia-
tions from the “true” frequency (i.e., based on the PAG2014 dataset),
the removal of poorly estimated sites results in a reduction in H
values.

The effect of heterozygosity on allele frequency
estimation bias
We found an overall positive correlation between SNP heterozygosity
and the magnitude of error in allele frequency estimates (Figure 8A;
Pearson’s correlation = 0.32; P = 1.938 · 1027). This result provides
further evidence that sites with greater heterozygosity tend to have
poorer estimates for allele frequencies in the 1000G. Also, heterozy-
gosity is even more strongly correlated to the deviation in frequency,
considering the direction of the deviation (Figure 8B; Pearson’s cor-
relation = 0.59; P , 10216). Together, these results show that HLA
SNPs with greater heterozygosities not only have more errors in fre-
quency estimation but also a stronger bias toward overestimation of
REF allele frequency.

DISCUSSION
The 1000 Genomes Project data were generated by various sequencing
centers, which relied on different sequencing platforms, read lengths,
aligners and variant and genotype calling algorithms (The 1000
Genomes Project Consortium 2012), creating challenges to an overall
assessment of data reliability. In this study, we specifically examine the
performance of NGS-based genotype calls and allele frequency esti-
mates for the highly polymorphic and intensely studied classical HLA
genes. We took advantage of the possibility of comparing downstream
genotype calls from the 1000 Genomes and HLA typing based on
Sanger sequencing for the same set of samples to assess data quality
and test hypothesis about possible biases.

We show that the 1000 Genomes SNPs called in the HLA genes
have many differences at the genotype level, when compared to results
obtained using Sanger sequencing. However, considerably high geno-
type mismatching is possible with only modest deviations in allele
frequencies, and we conclude that for the 1000 Genomes data allele
frequency estimates for SNPs at HLA genes are considerably more
reliable than the individual genotype calls.

Low coverage did not explain the errors in genotypes and allele
frequencies in the 1000 Genomes dataset. Instead, we found evidence
that read mapping bias was responsible for those errors. Mapping bias
is well known for NGS, and highly polymorphic regions such as HLA
genes are especially susceptible to its effects (Nielsen et al. 2011),
particularly when a single reference genome is used as an index for
the alignment of NGS reads. In this situation, many true variants fail
to be identified because they are present in haplotypes that differ from
the genome used as index, and thus reads generated from these
regions are not aligned and are lost. Together, these results suggest
that increasing coverage would not improve allele frequency estimates
at those sites if a single reference sequence is still used as index. By
mapping to multiple genomes [e.g., using strategies similar to Boegel

et al. (2012) or Dilthey et al. (2014)], it would be possible to improve
genotype calling and allele frequency estimates.

In our study, HLA-A, -B, and DQB1 show evidence of REF allele
mapping bias. The HLA-DRB1 locus, on the other hand, did not
present REF allele frequency overestimation, a finding that can be
explained by the existence of multiple copies of this gene (both pseu-
dogenes and functional copies), which may result in biases/errors that
make REF allele bias comparatively less visible (Degner et al. 2009).
The HLA-C locus also shows a weaker REF allele bias, a pattern that
may be explained by its lower degree of polymorphism which leads to
a decrease in the number of mismatches of reads with respect to the
reference genome, thus decreasing the mapping bias.

We provide a list of unreliable SNPs within the HLA genes, defined
by us as those with an absolute difference in frequency larger than 0.1
(jFEj. 0:1) in two or more populations (Table S4). We show that
these unreliable SNPs on average have greater heterozygosities in our
gold standard dataset. As a consequence, although filtering out those
unreliable sites improves the overall accuracy in allele frequency esti-
mation, it leads to an underestimation of the mean heterozygosity of
SNPs in HLA genes, a bias that should be taken into account in down-
stream analyses. Analyses that require genotype calls at the individual
level, including haplotype-based analyses, should be performed with
caution when using the data from the 1000 Genomes at HLA genes.

Our results have implications to studies that use SNP data from the
1000 Genomes in other genomic regions with high variability, such as
KIR and olfactory receptors. Because HLA loci are the most polymor-
phic in the human genome, they represent a worst case scenario for
mapping bias and subsequent allele frequency estimation errors. We
found a significant correlation between SNP heterozygosity and the
absolute difference in frequency between 1000 Genomes data and our
gold standard. This suggests that in genome-wide studies, SNPs with
high heterozygosities, and contained within regions with additional
SNPs, have an increased chance of presenting poor frequency estimates.

ACKNOWLEDGMENTS
This research was financially supported by grants from São Paulo
Research Foundation (FAPESP) and The Brazilian National Council
for Scientific and Technological Development (CNPq). D.Y.C.B. was
funded by FAPESP scholarships #2012/22796-9 and #2013/12162-5;
V.R.C.A. has a FAPESP grant #2014/12123-2, B.D.B. was funded by
#2011/12500-2 (FAPESP) and #152676/2011-2 (CNPq); K.N. has
a FAPESP grant #2012/09950-9; and D.M. has a FAPESP research
grant #12/18010-0 and a CNPq productivity grant #308167/2012-0.

LITERATURE CITED
Andersen, K. G., I. Shylakhter, S. Tabrizi, S. R. Grossman, C. T. Happi et al.,

2012 Genome-wide scans provide evidence for positive selection of
genes implicated in Lassa fever. Philos. Trans. R. Soc. Lond. B Biol. Sci.
367: 868–877.

Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger
et al., 1987 Structure of the human class I histocompatibility antigen,
HLA-A2. Nature 329: 506–512.

Boegel, S., M. Löwer, M. Schäfer, T. Bukur, J. de Graaf et al., 2012 HLA
typing from RNA-Seq sequence reads. Genome Med. 4: 102.

Brown, J. H., T. S. Jardetzky, J. C. Gorga, L. J. Stern, R. G. Urban et al.,
1993 Three-dimensional structure of the human class II histocompat-
ibility antigen HLA-DR1. Nature 364: 33–39.

Chapman, S. J., and A. V. S. Hill, 2012 Human genetic susceptibility to
infectious disease. Nat. Rev. Genet. 13: 175–188.

Danecek, P., A. Auton, G. R. Abecasis, C. a. Albers, E. Banks et al.,
2011 The variant call format and VCFtools. Bioinformatics 27: 2156–
2158.

940 | D. Y. C. Brandt et al.

http://www.g3journal.org/content/suppl/2015/03/17/g3.114.015784.DC1/TableS4.pdf


De Santis, D., D. Dinauer, J. Duke, H. A. Erlich, C. L. Holcomb et al., 2013 16
(th) IHIW: review of HLA typing by NGS. Int. J. Immunogenet. 40: 72–76.

Degner, J. F., J. C. Marioni, A. A. Pai, J. K. Pickrell, E. Nkadori et al.,
2009 Effect of read-mapping biases on detecting allele-specific expres-
sion from RNA-sequencing data. Bioinformatics 25: 3207–3212.

Dilthey, A., C. Cox, Z. Iqbal, M. R. Nelson, and G. McVean, 2014 Improved
genome inference in the MHC using a population reference graph. bio-
Rxiv. Available from: http://biorxiv.org/content/early/2014/07/08/006973.
Accessed March 20, 2015.

Erlich, R. L., X. Jia, S. Anderson, E. Banks, X. Gao et al., 2011 Next-generation
sequencing for HLA typing of class I loci. BMC Genomics 12: 42.

Gourraud, P.-A., P. Khankhanian, N. Cereb, S. Y. Yang, M. Feolo et al.,
2014 HLA Diversity in the 1000 Genomes Dataset. PLoS One 9: e97282.

Helmberg, W., M. Feolo, R. Dunivin, and D. Hoffman, 2014 dbMHC.
Hernandez, R. D., J. L. Kelley, E. Elyashiv, S. C. Melton, A. Auton et al.,

2011 Classic selective sweeps were rare in recent human evolution.
Science 331: 920–924.

Hill-Burns, E. M., S. A. Factor, C. P. Zabetian, G. Thomson, and H. Payami,
2011 Evidence for more than one Parkinson’s disease-associated variant
within the HLA region. PLoS One 6: e27109.

Kitts, A., M. Feolo, and W. Helmberg, 2003 The major histocompatibility
complex database, dbMHC. In: National Center for Biotechnology In-
formation NIH, ed. The NCBI Handbook. Bethesda: National Center for
Biotechnology Information NIH, p.1–29.

Lappalainen, T., M. Sammeth, M. R. Friedländer, P. C. ’t Hoen, J. Monlong
et al., 2013 Transcriptome and genome sequencing uncovers functional
variation in humans. Nature 501: 506–511.

Leffler, E. M., Z. Gao, S. Pfeifer, L. Ségurel, A. Auton et al., 2013 Multiple
instances of ancient balancing selection shared between humans and
chimpanzees. Science 339: 1578–1582.

Major, E., K. Rigo, T. Hague, A. Bérces, and S. Juhos, 2013 HLA typing
from 1000 genomes whole genome and whole exome Illumina data. PLoS
One 8: e78410.

Marsh, S. G. E., E. D. Albert, W. F. Bodmer, R. E. Bontrop, B. Dupont et al.,
2010 Nomenclature for factors of the HLA system, 2010. Tissue Anti-
gens 75: 291–455.

Meyer, D., and G. Thomson, 2001 How selection shapes variation of the
human major histocompatibility complex: a review. Ann. Hum. Genet.
65: 1–26.

Nielsen, R., J. S. Paul, A. Albrechtsen, and Y. S. Song, 2011 Genotype and
SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12:
443–451.

Quinlan, A. R., and I. M. Hall, 2010 BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26: 841–842.

Robinson, J., J. A. Halliwell, H. McWilliam, R. Lopez, P. Parham et al.,
2013 The IMGT/HLA database. Nucleic Acids Res. 41: D1222–
D1227.

Sollid, L. M., W. Pos, and K. W. Wucherpfennig, 2014 Molecular mecha-
nisms for contribution of MHC molecules to autoimmune diseases. Curr.
Opin. Immunol. 31C: 24–30.

The 1000 Genomes Project Consortium, 2012 An integrated map of genetic
variation from 1,092 human genomes. Nature 491: 56–65.

Treangen, T. J., and S. L. Salzberg, 2012 Repetitive DNA and next-generation
sequencing: computational challenges and solutions. Nat. Rev. Genet. 13:
36–46.

Ward, L. D., and M. Kellis, 2012 Evidence of abundant purifying selection
in humans for recently acquired regulatory functions. Science 337: 1675–
1678.

Communicating editor: C. R. Marshall

Volume 5 May 2015 | Mapping Bias at HLA in 1000 Genomes | 941

http://biorxiv.org/content/early/2014/07/08/006973

