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ABSTRACT 

 

Killer immunoglobulin-like receptors (KIRs) are a family of proteins expressed on human 

natural killer cells and a subset of T cells.  Several inhibitory KIRs have been shown to 

recognise MHC class I molecules (predominantly HLA-C), with their engagement preventing 

target cell lysis.  The ligand(s) and function(s) of activating KIRs, however, are less well 

characterised.  Genetic studies of the association of KIRs with disease have identified an 

association with viral infections and autoimmune disease and this implicates that these 

proteins are important in human health. 

 

This thesis was concerned with an investigation of the factors that determine KIR expression 

on lymphocytes, and how this might influence the cellular functional response.  In my initial 

work I produced soluble recombinant forms of activating and inhibitory KIRs and studied the 

biophysical interaction of these proteins with HLA-C molecules.  I saw some evidence that 

KIR2DS2 binds to the HLA-C group 1 allele HLA-Cw*0702, supporting the idea that HLA-C 

alleles are a true ligand for stimulatory KIRs.  I then went on to make a detailed 11 colour 

flow cytometric analysis of the expression of KIR proteins in healthy individuals.  I was able 

to show that total, and individual, KIR protein expression was correlated and defined a pattern 

of dominance on lymphoid subsets.  I then went on to study the distribution of KIR 

expression on discrete memory T cell subsets and showed that they were found predominantly 

on late differentiating CD45RA+ T cells.  Interestingly there was also considerable expression 

on central memory CD8+ T cells although the biological basis for this is unclear.  I 

demonstrated that age and CMV infection have a marked effect on KIR expression and I 

speculate on the reason for this.  Finally I studied KIR expression on CMV-specific T cell 

clones in order to undertake a functional analysis of the consequence of KIR expression.  I 

observed that KIR expression increased when cells were cultured in vitro but I could not 

detect any difference in cytokine production or cytotoxicity between KIR+ and KIR- cells.  

My work has contributed to the literature on KIR biology in relation to lymphoid cells and 

will have direct relevance to a number of clinical studies. 
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Chapter 1 

Introduction 

 

 

THE IMMUNE SYSTEM 

The immune system is a complex network composed of many interdependent cell types that 

collectively protect the body from bacterial, parasitic, fungal and viral infections as well as 

growth of tumour cells.  Both innate and adaptive immune responses are vital.  A key feature 

of the innate response is that the mechanisms for immunity are in place even before pathogen 

exposure, providing a ‘set response’ which can act immediately upon microbial invasion.  The 

principal components of this include physical and chemical barriers (such as epithelial 

surfaces and the antimicrobial products produced at these surfaces), serum proteins (such as 

complement), and phagocytic cells (including neutrophils, macrophages and dendritic cells), 

natural killer (NK) cells and gamma delta (γδ) T cells (Abbas and Lichtman, 2003).   

 

By contrast, adaptive immunity develops after the initial exposure to a microbe and is 

characterised by exquisite specificity which can be adapted and moulded to any given 

microbe, and is capable of distinguishing between self and non-self.  Furthermore, adaptive 

immune responses exhibit immunological memory; that is, the ability to respond more 
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quickly and vigorously following subsequent exposures to the same pathogen.  This 

protection against reinfection can persist for the lifetime of the host.  Adaptive immunity is 

dependent on the function of lymphocytes (T cells and B cells) and their products.  The 

specificity, adaptiveness and ability to provide immunological memory sets adaptive 

immunity apart from innate immunity.  However, the two systems do not work independently; 

phagocyte activation, part of the innate response, plays a crucial part in activating and shaping 

adaptive immunity, whilst innate effector mechanisms are directed and utilised during 

adaptive immune responses.   
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1.1 INNATE IMMUNITY 

The innate immune system is the front-line defense system that provides a non-specific 

response to pathogens in all plant and animals.  Unlike the adaptive immune response, the 

innate immune system does not generate memory or protective immunity.  An essential part 

of the mammalian innate immune system is the function of NK cells that recognise and 

destroy cells infected with intracellular pathogens, including viruses, parasites, and bacteria. 

 

1.1.1 Natural killer cell biology 

NK cells were first identified on a functional basis in 1975 (Kiessling et al. 1975).  Murine 

studies had identified cytolytic cells with specificity for in vitro cultured mouse Moloney 

leukaemia cells (Kiessling et al. 1975).  Removal of T and B cells left a population still 

capable of killing, and it was this population that became known as NK cells.  NK cells are 

large granular lymphocytes of the innate immune system.  They are widespread throughout 

the body, being present in both lymphoid organs and non-lymphoid peripheral tissues (Cooper 

et al. 2004; Ferlazzo et al. 2004).  NK cells are involved in direct innate immune reactions 

against viruses, bacteria, parasites, and other triggers of pathology, such as malignant 

transformation, all of which cause stress in affected cells (Moretta et al. 2002; Raulet 2004).  

Importantly, NK cells also link the innate and adaptive immune responses, contributing to the 

initiation of adaptive immune responses (Martin-Fontecha et al. 2004) and executing adaptive 

immune responses with the CD16 FcγRIIIA immunoglobulin Fc receptor.   

 



                                                                                                                                  Introduction 
 

- 4 - 
 

1.1.1.1 Origin 

NK cells arise from lymphoid precursors in the bone marrow (Hirose et al. 2002).  During 

development within the bone marrow, NK cells undergo maturation and express receptors, 

some of which are specific for MHC class I molecules.  This process of NK cell ‘education’ 

or ‘licensing’ is believed to account for functional NK cell clones that are self tolerant 

(Fernandez et al. 2005; Kim et al. 2005; Anfossi et al. 2006; Cooley et al. 2007).  However, a 

small proportion of NK cell clones that do not express receptors specific for self MHC may 

leave the bone marrow and enter the circulation.  These NK cells are ‘hyporesponsive’ to 

activation signals.  Although most NK cells become educated, around 10-20% of NK cells do 

not express any known inhibitory receptors for self MHC class I molecules (Fernandez et al. 

2005; Anfossi et al. 2006; Cooley et al. 2007).  These hyporesponsive NK cells may be 

activated by cytokines such as IL-2 and induce cytotoxicity.  Immature NK cells can leave the 

bone marrow without full receptor expression.  Further receptor development may also occur 

in peripheral tissues such as thymus, lymph nodes, liver and spleen (Huntington et al. 2007). 

  

1.1.1.2 Function 

NK cells were first identified on a functional basis.  Called ‘null’ cells (due to the lack of 

expression of detectable markers at the time), they were found to be capable of killing tumour 

cells and transformed lymphoblastoid cell-lines and described morphologically as large 

granular lymphocytes.  Work in the late 1970s and early 1980s confirmed that NK cells 

played an important role in host immunity (Santoli et al. 1979; Marx 1980).  Two methods of 

killing have been demonstrated.  Firstly, NK cells constitutively express a lytic machinery and 

are capable of lysing target cells in a non-MHC restricted manner as compared to cytolytic T-

cells, which kill in an MHC-restricted fashion (Phillips 1986).  Secondly, NK cells can help 
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respond to infectious agents via the FcγR (CD16), responding to the immune complexes 

formed between IgG antibodies and different pathogen components (Tarkkanen et al. 1986; 

Klimpel et al. 1988; Cassatella et al. 1989; Moretta et al. 1989).  What was not clear as these 

processes became understood was by what mechanism host cells escaped destruction by NK 

cells. 

 

The ‘missing-self’ hypothesis proposes that NK cells recognise self-antigens on host cells, 

and that this leads to them being spared (Ljunggren et al. 1990).  Virally infected cells or 

tumour cells lack the necessary antigens identifying them as self, and it is this that leads to 

NK cytolytic activity.  MHC molecules are critical to the control of NK function (Karre et al. 

1986; Storkus et al. 1989). 

 

1.1.1.3 Natural killer cell receptors (NKRs) 

NK cells have an abundance of receptors (Table 1-1), although the role of some is not yet 

clearly understood.  As has been demonstrated, NK cells are highly effective at lysing targets 

that fail to express class I MHC, the implication being that there are receptors on the cell 

surface recognising ligands other than MHC.  

 

Although human and mice NK cells undergo similar education within the bone marrow they 

have very different receptor systems.  This has occurred through evolutionary pressures that 

led to the development of greater polymorphism within the human NK cell receptor 

repertoire.  The evidence for this is inferred from the absence of recently discovered NK cell 

receptor orthologs beyond mammals (Parham 2005).  The human NK cell repertoire includes 

an array of activating and inhibitory receptors working in concert to determine the threshold 
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for NK cell activation.  These receptors are natural cytotoxic receptors (NCR), NKG2 (C-type 

lectin like receptors), killer immunoglobulin-like receptors (KIRs) and leukocyte 

immunoglobulin-like receptors (LIR). 

 

Table 1-1: Table of activating and inhibitory NKRs 

 

Activating Inhibitory 

NKp30 KIR2D (L) 

NKp44 KIR3D (L) 

NKp46 NKG2A 

NKp80 LAIR-1 

KIR2D (S) P75; CEACAM1; MAFA 

KIR3D (S)  

NKG2C  

NKG2D  

NKG2E  

CD16  

CD226 (DNAM-1) 

CD244 (2B4) 
 

CD96; CD160; NTB-A  

 

 

Natural cytotoxicity receptors 

The NCRs include NKp46, NKp30 and NKp44.  Overall, those NK cells that have a high 

surface density of NCRs have high cytolytic activity (Biassoni et al. 2001).  This is directly 

dependent on stimulation via the NCR, as stimulation via CD16 does not induce different 

degrees of response between NCRbright and NCRdull cells.  NCRbright cells have enhanced 

cytolytic activity against most target cells, the exceptions being T-cell lymphomas, some 

ovarian and epithelial tumours, which are killed equally as well by both NCRbright and NCRdull 

cells.  Reduced levels of surface expression are seen in infections such as HIV (De Maria et 



                                                                                                                                  Introduction 
 

- 7 - 
 

al. 2003), although whether this is cause or effect is unclear.  Further interest has been 

generated in NCRs because of the recurrent finding that their expression is down-regulated in 

patients with leukaemia (Costello et al. 2002) but often returns to normal levels in those 

patients that achieve a complete remission (Fauriat et al. 2007). 

 

Ly49 

The Ly49 family represents the receptors responsible for specific class I MHC recognition in 

the mouse (Correa et al. 1995).  The natural ligands of these receptors are the polymorphic H-

2 class I molecules on target cells, and the subsequent interaction leads to a modification of 

NK cell function (discussed below).  Ly49 is a homodimer type II integral membrane protein, 

a member of the C-type lectin superfamily.  Thus far, eleven functional Ly49 genes have been 

identified, located within the ‘NK gene complex’ on mouse chromosome 6 in the C57BL/6 

strain.  Additional variants have been found in other strains of mice.  Diversity appears to be 

provided by alternative mRNA splicing and allelic polymorphism (Held et al. 1995).  In 

addition, the genes differ in their extracellular and cytoplasmic domains.  These differences 

have functional implications, both through the nature of the ligand bound, and potential 

differences in signal transduction.  More than one Ly49 receptor can be expressed by any NK 

cell, allowing for a diverse repertoire to be assembled. 

 

Ly49A is the first and most thoroughly characterised member of the family.  It is expressed 

on a subset of C57BL/6 NK cells corresponding to approximately 20% of the total NK 

population.  Ly49A+ cells effectively lyse target cells bearing Db, Ld or Kd, but are unable to 

kil l target cells that express H-2Dd, H-2Dk or H-2Dp.  This protective effect is overcome by 
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‘masking’ with mAbs against Ly49A or class I molecules (Yu et al. 1996), confirmation that 

the abrogation of the NK cytotoxicity is mediated by receptor-class I interaction.  Further 

evidence has been provided by the demonstration of direct binding of Ly49A to purified Dd or 

Dk molecules.  The site of interaction of Ly49A with the MHC molecule has been localised to 

the α2 domain (Tormo et al. 1999), which contrasts with the KIRs in the human, where 

binding specificity is determined by the α1 domain of the MHC class I molecule. 

 

Lian et al demonstrated that Ly49C binds to a broad spectrum of class I MHC molecules 

(Lian et al. 1999), including Dd, Db, Kb, Kk, H-2Ds and H-2Db.  They also managed to localise 

on the Ly49C molecule residues crucial in the interaction between Ly49 and MHC.  A 

recombinant version of Ly49A (Ly49A-EC) has been created and crystallised with H-2Dd, 

allowing X-ray crystallographic analysis of the binding of the two molecules.  Ly49 interacts 

with two distinct sites on H-2Dd, neither of which overlaps with the footprint of the T-cell 

receptor (TCR) (Tormo et al. 1999).  Site 1 covers one end of the peptide-binding groove with 

a high degree of match in the topology of the two surfaces.  Site 2 overlaps the CD8 binding 

site. 

 

KIRs 

The KIRs are membrane-bound receptors found in humans and other primates, with no rodent 

homologs.  Originally described in natural killer cells, they have also been found on the 

surface of T cells (Vilches et al. 2002a).  They are glycoproteins of the Immunoglobulin 

superfamily.  The genes encoding KIRs are found on chromosome 19q13.4, near genes 

encoding related molecules such as the Leucocyte Immunoglobulin-like Receptors (LILRs, 

previously known as immunoglobulin-like transcripts (ILTs) or leucocyte Ig-like receptors 
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(LIRs)) and the leukocyte associated inhibitory receptors (LAIRs) (Martin et al. 2000).  This 

region of chromosome 19 has been termed the leukocyte receptor cluster (LRC) reflecting the 

density of receptor genes in this region.  The precise number of KIR genes is yet to be 

elucidated, complicated by the fact that firstly, there are several pseudogenes and secondly, 

what originally were thought to be separate genes may not be so (KIR2DL2/3).  Taking these 

into account, the expressed gene number is currently fourteen, with at least two pseudogenes 

(and KIR3DL3 to be confirmed as an expressed gene) (Williams et al. 2005). 

 

There are two main types of KIR characterised by their extracellular domains (D).  Those 

with three such domains (3D) specifically recognised certain HLA-A and HLA-B proteins 

while those with two such domains (2D) KIR bind to HLA-C proteins.  For most KIR there is 

further dichotomy defined by the structure of the cytoplasmic tail which determines whether 

the outcome of ligation is activation or inhibition.  KIR with long tails (KIR-L) contain 

immunoreceptor tyrosine-based inhibitory motifs (ITIM) that transduce inhibitory 

intracellular signals whereas short tailed KIR (KIR-S) associate with the DAP12 protein 

which contains an immunoreceptor tyrosine–based activating motif (ITAM) that transduces 

an activating signal.  The inhibitory KIR therefore include 2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 

3DL1, 3DL2 and 3DL3; and the activating KIR include 2DS1, 2DS2, 2DS3, 2DS4, 2DS5 and 

3DS1.  Amongst these KIR2DL4 has been shown to be both activating and inhibitory.  KIR, 

their known ligands and corresponding functions are listed in Table 1-2. 
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Table 1-2: KIR, their known ligands and corresponding functions 

 

Receptor Ligand Function 

KIR2DL1 HLA-C group 2 Inhibitory 

KIR2DL2/KIR2DL3 HLA-C group 1 Inhibitory 

KIR2DL4 HLA-G Activating & inhibitory 

KIR2DL5 Unknown Inhibitory 

KIR3DL1 HLA-Bw4 Inhibitory 

KIR3DL2 HLA-A3, HLA-A11 Inhibitory 

KIR2DS1 HLA-C group 2 (low affinity) Activating 

KIR2DS2 ? HLA-C group 1 (low affinity) Activating 

KIR2DS3/KIR2DS4/KIR2DS5/KIR2DS6 Unknown Activating 

KIR3DS1 Unknown Activating 

 

 

1.1.2 Leukocyte receptor complex (LRC) 

The LRC is approximately 1Mb in length, located at 19q13.4. The precise structure of the 

complex is not yet elucidated, but recent work by Trowsdale’s group has demonstrated that 

the content of the KIR region can vary dramatically (Wilson et al. 2000; Kelley et al. 2005).  

In total, there are at least 24 structurally and functionally related immunoglobulin-like 

receptors encoded within the LRC. 

 

Sequence analysis of the KIR region in two different haplotypes showed the presence of 

‘ framework’ loci that flanked regions of widely variable gene content (Wilson et al. 2000). 

The framework loci are KIR3DL3 centromerically, KIR3DP1-KIR2DL4 in the middle of the 

KIR region and KIR3DL2 at the telomeric end.  Their presence at a frequency of 100% in all 

populations tested so far is consistent with them being permanent members of all haplotypes. 

The ‘framework’ loci provide a fixed skeleton of KIR genes throughout which are distributed 

a more variable set of genes for other KIRs.  The framework genes have adjacent unreiterated 
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sequence (an unusual finding in the KIR region), which might have helped prevent loss of 

these genes.  All of the genes studied in this paper were in a head-to-tail configuration, 

suggesting evolution through extensive duplication.  

 

Recently, there have been several significant pieces of work published that have used family 

studies, and therefore the ability to define haplotype gene content by segregation analysis. 

Both Hsu (Hsu et al. 2002c)  and Uhrberg (Uhrberg et al. 2002) demonstrated that all of the 

haplotypes defined by these methods contained the framework genes cited above. Haplotype 

structure and current thinking on allelic relationships for certain KIRs will be further 

discussed below. 

 

Population studies indicate that nearly all humans have at least one activating KIR gene (Witt 

et al. 1999; Crum et al. 2000; Norman et al. 2001; Toneva et al. 2001; Rajalingam et al. 

2002; Cook et al. 2003).  However, it has been shown that chimpanzees can lack these short-

tailed KIRs (Rajalingam et al. 2001).  Comparing repertoires in the three species, pygmy 

chimpanzees appear to have a minimal repertoire, chimpanzees a slightly more expanded 

repertoire and humans a more complex repertoire.  Recently, KIR3DL0 has been described.  

This is an ancestral KIR gene, found outside the known KIR gene cluster in humans and has 

been highly conserved for approximately 50 million years (Sambrook et al. 2006). 

These findings give some clues as to the evolution of the KIR region of the LRC.  As 

commented on by Rajalingam, the genomic structure of the KIR region is slightly unusual 

(Rajalingam et al. 2004).  The genes are all structurally very similar (including the gene for 

the Fcα receptor lying telomeric to the region), they are arranged very close to each other and 

they are separated by short homologous sequences.  There are very few unique sequences 



                                                                                                                                  Introduction 
 

- 12 - 
 

over 100bp, with KIR gene sequences, including, intergenic regions, being highly conserved.  

This arrangement is favourable to several genetic events, in particular unequal crossing over 

which can either delete, expand or hybridise genes.  This would explain the increasing 

diversity seen in chimpanzee and human repertoires. 

 

1.1.2.1 KIR structure 

The genomic organisation of a KIR gene was first described in 1997 (Wilson et al. 1997) and 

there has been little published subsequently to significantly change our current understanding. 

The particular gene studied was NKAT2 (now known as 2DL3).  Structurally, there are 

several similarities with the gene for Fcα receptors (de Wit et al. 1995), the gene(s) for which 

are located immediately telomerically to KIRs.  The leader sequence is encoded by two exons 

(exons 1 and 2).  The immunoglobulin domains are each encoded by a single exon (exons 3-

5), and the stalk region also has a separate exon (exon 6 in KIRs).  One difference highlighted 

is that the transmembrane and cytoplasmic domains are each encoded by separate exons in 

FcαR.  Inhibitory KIRs have two exons encoding the cytoplasmic domain (exons 8 and 9), the 

second exon encoding the ITIM motif. 

 

The extracellular regions of KIR molecules consist of either two (KIR2D) or three (KIR3D) 

Ig-like domains.  It is likely that the ‘template’ KIR was a KIR3D with a long tail.  The three 

domains of KIR3D are named D0 (membrane – distal), D1 (middle) and D2 (membrane – 

proximal).  The 2DKIRs are derived by two different mechanisms (Vilches et al. 2000a). 

2DL1, 2DL2 and 2DL3 are structurally similar.  They have the 2 immunoglobulin domains 

homologous to D1, D2 type seen in 3DL KIRs.  The third (D0) domain is not translated.  This 

can be due to nonsense mutations and/or altered splicing sites.  Some pseudoexons have no 
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major structural abnormalities i.e. the correct reading frame is maintained suggesting 

alternative mechanisms for the failure of transcription.  The pseudoexon 3 has ~80% sequence 

identity with the exon 3 encoding the D0 domain in KIR3DL1 and KIR3DL2.  KIRs 2DL4 

and 2DL5 (Vilches et al. 2000b) arrive at two immunoglobulin-like domains by a different 

route.  They have two domains homologous to D0 and D2 of the 3D KIRs.  A deletion of 

approximately 2kb in size, encompassing exon 4 which would encode the D1 domain, results 

in the truncated receptor. 

 

The cytoplasmic tails of KIR are classified into long and short but the sequences encoding 

them are similar in length.  The difference arises from variation in the position of the stop 

codon, usually due to single nucleotide substitutions or short indels in exon 9.  Most of the 

long cytoplasmic tails carry two ITIMs.  The short cytoplasmic tailed KIRs are truncated 

before the first ITIM.  This has a significant bearing on function (see Figure 1-1). 

 

 

The nomenclature of KIRs is based on the above discriminating features, namely number of 

domains, and the length of the cytoplasmic tail e.g. 2DL1 has two Ig-like domains and a long 

cytoplasmic tail. 
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Figure 1-1. The configuration of 2 domain and 3 domain activating and 

inhibitory KIRs. (IPD-KIR database http://www.ebi.ac.uk/ipd/kir/). 

 

 

1.1.2.2 Two domain KIRs 

KIR2DL1 

KIR2DL1 is a type 1 inhibitory KIR with the immunoglobulin-like domains in a D1-D2 

configuration.  It is recognised by the antibodies EB6 or HP-3E4 (which also recognise the 

activating KIR2DS1).  To date, there are 15 alleles whose sequences are publicly available. 

KIR2DL1 is a component of the ‘A’ haplotype – the commonest haplotype in nearly all 

populations (Witt et al. 1999). 
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The natural ligands of KIR2DL1 are the group 2 HLA-C alleles characterised by Lysine (Lys) 

at position 80 (Winter et al. 1998).  The crystal structure of KIR2DL1 in complex with HLA-

Cw4 has been elucidated (Fan et al. 2001).  There has been some debate over the effect of 

peptide on KIR-HLA binding.  Recently, Betser-Cohen and colleagues demonstrated that not 

only is peptide crucial in the interaction but that the phosphorylation of individual residues 

within the peptide can itself impact on the binding of KIR2DL1 with MHC (Betser-Cohen et 

al. 2006).  Both findings should come as no surprise – the presence of peptide stabilises the 

MHC complex thus setting a context for improved interaction and post-translation 

modifications have been shown to impact significantly on many protein-protein interactions. 

 

KIR2DL2/3 

KIR2DL2 and KIR2DL3 were originally treated as separate genes.  However, a combination 

of functional and population genetic data have resulted in them being treated as behaving in 

an essentially allelic fashion as they do not appear on the same haplotype.  Both KIR2DL2 

and KIR2DL3 are recognised by the same antibodies (DX27 and GL183) and both interact 

with group 1 HLA-C.  They both have 2 domains in a D1-D2 configuration.  KIR2DL2 has 

been crystallised by itself and in complex with HLA-Cw3 (Boyington et al. 2000).  

 

KIR2DL4 

KIR2DL4 is another 2 domain KIR.  The two domains are in a D0-D2 configuration, a 2Kb 

deletion accounting for the ‘missing’ D1 domain.  2DL4 is the only KIR with homologues in 

all primate species (Grendell et al. 2001; Guethlein et al. 2002). 
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There is now in vitro evidence that despite being a long-tailed receptor, the structure of 2DL4 

is such that it has an activating rather than inhibitory function (Kikuchi-Maki et al. 2003).  

The cytoplasmic tail of 2DL4 contains one, rather than the usual two, inhibitory motif.  This 

motif has been shown to retain inhibitory potential, but its true role may be inhibition of other 

intracellular processes.  In addition, 2DL4 has a charged residue in the transmembrane region, 

a feature of the activating receptors.  Target cell lysis by 2DL4-induced activation does not 

require an intact cytoplasmic ITIM, but does require the transmembrane region (with its 

charged arginine residue).  There is evidence that FcRI-γ associates with KIR2DL4 to 

promote cell surface expression and signal transduction function (Kikuchi-Maki et al. 2005a). 

Finally, the state of the cell bearing the receptor has to be taken into account.  Resting NK 

cells activated via 2DL4 secrete IFNγ, whereas NK cells already activated by IL-2 increase 

both IFNγ production and cytotoxicity (Kikuchi-Maki et al. 2005b).  There is evidence that 

the natural ligand of KIR2DL4 is HLA-G (Rajagopalan et al. 1999), although this still 

remains to be convincingly demonstrated.   

 

KIR2DL5 

KIR2DL5 is the most recently described of the KIRs (Vilches et al. 2000b).  Like 2DL4 it has 

a D0-D2 configuration, also because of a 2Kb deletion through exon 4, and there is 

approximately an 80% identity in amino acid sequences (reviewed in (Vilches et al. 2002a)).  

At present, the ligand of 2DL5 is unknown.  Because of the similarity in configuration to 

2DL4 and the conservation of both in primates, it has been suggested that the ligand may also 

be a non-classical HLA molecule.  2DL5 is a common constituent of the ‘B’ haplotype along 

with KIR2DL2 and KIR2DS2 (Uhrberg et al. 2002).  
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KIR2DS1 and KIR2DS2 

There remains some doubt over the nature of the true ligands of the activating receptors. 

KIR2DS1 and KIR2DS2 are grouped together here because of their similarities in their 

extracellular structures with their inhibitory counterparts (2DL1 with 2DS1 and 2DL2 with 

2DS2).  Based on the sequence similarity, it would be expected that the activating KIRs bind 

HLA-C with the same affinity as their inhibitory counterparts.  However, despite these 

similarities, the evidence for binding of the same ligands is actually quite weak. 

 

KIR2DS3 and KIR2DS5 

There has been no identification of any ligands for either of these receptors.  Both bear some 

similarity to inhibitory receptors at residues that interact with HLA-C.  These two KIRs are 

more commonly found on the ‘B’ haplotype.  The ‘B’ haplotype is more prevalent in certain 

populations and this raises the possibility that the activating KIRs have arisen in these 

populations in response to certain environmental factors – particularly infective agents such as 

CMV.  Investigations seeking to determine the ligands will have to take elements such as viral 

peptides/class I homologues into account. 

 

KIR2DS4 

There have been several reports of the interactions of KIR2DS4.  It has been reported to 

interact with HLA-Cw3 and Cw4 (Campbell et al. 1998).  These do not have a consistent 

amino acid at position 80.  In addition, most of the interactions described have been weaker 

than the interaction seen between inhibitory receptors and HLA-C.  More recently, weak 

affinity binding to Cw4 was described.  Further exploration also demonstrated binding to 
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ligands expressed on melanoma cell-lines, the ligands not being class I MHC but 

unfortunately not identified within the paper (Katz et al. 2004). 

 

There has been much interest in the genetics of KIR2DS4 recently.  A variant has been 

described (initially termed KIR1D – now known as KIR2DS4*003 (Hsu et al. 2002c; 

Maxwell et al. 2002) that has a homologue in the Rhesus monkey (also called KIR1D).  This 

variant has a 22 nucleotide deletion in the coding sequence that leads to a truncated protein 

due to a premature termination codon following the first amino acid of the putative 

transmembrane domain.  

 

1.1.2.3 Three domain KIRs 

KIR3DL1/3DS1 

First identified in 1995, 3DL1 has 3 domains in a D0-D1-D2 configuration.  Most of our 

current understanding of this KIR comes from a complex study looking at antibody binding 

and genotype for the KIRs 3DL1/3DS1 and 3DL2 (Gardiner et al. 2001).  There are at least 

eight KIR3DL1 allotypes and they can be divided into three groups on the basis of cell 

phenotype as detected by the antibody DX9 (Gardiner et al. 2001).  Binding can be either low, 

bimodal or high (as well as no binding for those people who are negative for 3DL1 or have an 

allele that does not bind- 3DL1*004).  What Gardiner et al demonstrated was that these 

binding patterns are predictably determined by the alleles of KIR3DL1 an individual 

possesses.  Those individuals heterozygous for two alleles have these alleles expressed in a 

differential fashion giving rise to four populations of NK cells – those positive for either allele 

alone, those positive for both alleles and those negative for both alleles.  Different alleles have 

different DX9 binding properties, reflecting sequence variations in four positions of the KIR 
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amino acid sequence.  It was also demonstrated that differing binding was detectable between 

individuals of the same genotype.  This would suggest the influence of variations in the 

promoter regions. 

 

The natural ligands of KIR3DL1 are those HLA-B allotypes containing the Bw4 motif and the 

HLA-A allotypes that also carry the Bw4 motif (HLA-A23, A24, A25 and A32). This 

interaction is particularly dependent on amino acids at positions 80, 82 and 83.  Again, the 

binding is dependent on the antigenic peptide bound by the HLA molecule.  It is likely that 

the D1 and D2 domains interact with HLA-B in a manner similar to the KIR2DL-HLA-C 

interaction.  This appears to be stabilised by D0.  The precise nature of this remains unclear 

and requires crystallographic studies.  Carr demonstrated that in addition to the variable cell 

surface expression described by Gardiner, different alleles bind Bw4 (and thus inhibit) 

differentially, with 3DL1*002 being a much stronger inhibitory receptor than 3DL1*007 

(Carr et al. 2005). 

 

KIR3DS1 was originally defined separately from KIR3DL1 but is now considered an allele of 

3DL1, albeit without a long cytoplasmic tail and the associated ITIMs.  There is a 6-12 amino 

acid difference in the structures of 3DL1 and 3DS1.  Interestingly, these differences are found 

in the Ig-like domains and are predicted to affect binding – one possible explanation for why 

there have been no reports of 3DS1 binding Bw4 allotypes.  Occasionally, 3DL1 and 3DS1 

can be found on the same haplotype (Williams et al. 2003).  
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KIR3DL2 

KIR3DL2 is structurally similar to KIR3DL1. The gene for KIR3DL2 is one of the 

‘framework’ genes present on all KIR haplotypes. At present, the true ligand is not known. It 

has been mooted that HLA-A is the natural ligand (discussed above) but further work is 

required to clarify this.  In particular, needing explanation is why a ubiquitous KIR should 

have HLA-A3/A11 as a ligand.  Hansasuta et al have demonstrated that HLA-A3 and HLA-

A11 tetramers will bind KIR3DL2 and that this interaction is peptide-specific (Hansasuta et 

al. 2004). 

 

KIR3DL3 

The gene for KIR3DL3 is the most centromeric of KIR genes identified (Hsu et al. 2002b).  It 

is a framework gene being present in all described haplotypes since it was discovered. 

Originally thought to be a pseudogene, there is certainly evidence that mRNA is detectable in 

CD56bright cells (Trundley et al. 2006).  Demethylation results in cell surface expression 

(Trompeter et al. 2005).  It appears that in ‘normal’ cells therefore, that cell surface 

expression does not occur or does so only at a very low level.  It remains to be demonstrated 

whether this alters in pathological states. 

 

1.1.2.4 Interaction with class I MHC molecules 

 

HLA-C 

The classical KIR-HLA interaction is between the inhibitory KIRs 2DL1 and 2DL2/3 and 

HLA-C, first identified as the likely site of alloantigen recognition in 1992 following careful 
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genetic mapping of the NK-defined specificities NK-1 and NK-2 (Colonna et al. 1992).  This 

interaction inhibits the killing activity of the cell via ITIMs.  Once the ligand is bound, the 

tyrosine residue contained within the ITIM is phosphorylated and phosphatases are recruited 

through their SH2-domains.  SHP1, SHP2 and SHIP have all been identified as partners, 

depending on the receptor analysed (Long et al. 2001).  Subsequent phosphatase activity is 

near the membrane, dampening or preventing NK effector functions such as cytotoxicity and 

cytokine production.  In the absence of an inhibitory KIR interaction with ligand, such 

functions continue (Figure 1-2). 

 

On the basis of the interaction with KIR, HLA-C can be assigned two groups due to a 

dimorphism at position 80 (Mandelboim et al. 1996).  Group 2 HLA-C alleles are the natural 

ligand of KIR2DL1(Winter et al. 1998) and are defined by the presence of lysine at position 

80 on the α1-domain.  Group 1 has an asparagine (Asn) at this position and is recognised in 

only a weak to moderate fashion by KIR2DL1.  The amino acid at position 77 is also 

dimorphic (Ser-Asn) and is in strong linkage disequilibrium with the amino acid at position 

80 (Ser77 with Asn80 and Asn77 with Lys80).  However, there is no evidence that the amino 

acid at position 77 affects binding; indeed the evidence is stronger that the amino acid at 

positions 73 (Ala-Thr) and 90 (Ala-Asp) may be more influential. 

 

Binding experiments have shown that (in solution) binding of KIR to HLA occurs in a 1:1 

ratio (Fan et al. 1996).  The same study showed that carbohydrates were not required for 

binding or function in the experimental conditions used.  There is however, evidence that the 

peptide bound to HLA-C may affect the interaction between KIR and HLA (Rajagopalan et 

al. 1997), thereby affecting the protection from lysis conferred by the presence of the KIR.  
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Firstly, it was demonstrated that a peptide bound by HLA-Cw*0304 is required for protection.  

Secondly, the protection conferred varied widely between peptides (Zappacosta et al. 1997).  

Of interest was the finding that these differences were detectable between different 

endogenous peptides, not just between endogenous and synthetic peptides.  The effect of 

peptide was found to be different between some NK cell clones, possibly reflecting the 

contributions of different receptors on the same clone.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: NK cell interaction with target cells is modulated by KIRs.         

(a) When inhibitory KIR receptors are bound by ligand (class I MHC) activating 

processes are inhibited (b) When the ligand is absent, activation continues 

resulting in target cell kill. 
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HLA-B 

Akin to HLA-C, HLA-B can be collapsed into a dimorphic system on the basis of the Bw4 

and Bw6 motifs.  This system is slightly more complex than that of HLA-C as it is based on 

the amino acids at positions 77-83 of the α-helix of the α1-domain.  This is a highly 

polymorphic area, with three sequences described that define Bw4 (as defined initially by 

serological interaction).  KIR3DL1 has been demonstrated to recognise the Bw4 motif but not 

Bw6.  Recent work has highlighted the role of the ‘third’ domain (D0) (Khakoo et al. 2002).  

Deletion of residues 50 and 51 enhanced binding with Bw4.  15 different point mutations 

were induced in DO, but none of these affected binding.  This contrasts with point mutations 

that were carried out in areas of the D1 and D2 domains predicted to affect binding to Bw4 on 

the basis of KIR2D-HLA-C interactions.  These mutations were capable of disrupting 

binding.  These results indicate that the D0 domain enhances the interaction following initial 

contact between D1 and D2 and HLA-B.  This is of interest, not only in further clarifying 

KIR-HLA interactions but also in explaining how the loss of a domain during the evolution of 

KIRs has not prevented continued interaction with HLA.  Interestingly, deletion mutant 

experiments where D0, D1 or D2 were deleted demonstrated that the D0 domain is required 

for KIR3DL1 to bind to HLA-B. 

 

HLA-A 

Many reviews of KIR function mention that KIR3DL2 recognises some HLA-A molecules- in 

particular HLA-A3 and HLA-A11.  Published results are not always consistent, but it does 

appear that HLA-A3 does have an inhibitory effect via KIR3DL2 in several experimental 

models (Pende et al. 1996).  However, whether HLA-A3 is the true ligand of KIR3DL2 

remains a matter of controversy.  Of particular interest is the fact that the Bw4 motif is carried 
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by some HLA-A alleles.  These are thought to interact with KIR3DL1/DS1 in the same 

manner as HLA-B alleles carrying the Bw4 motif (Norman et al. 2007). 

 

1.1.2.5 Hierarchy of interactions: HLA-C with KIR2DL 

There is increasing evidence for the importance of HLA-C ligands in the modulation of NK 

cell function.  Interaction between HLA-C alleles and KIR2DL1 are believed to be more 

inhibiting to NK cell function than interactions between HLA-C1 alleles and 

KIR2DL2/2DL3.  This may be explained by receptor ligand binding kinetics.  However in 

vitro binding studies have yielded equivocal results.  Binding measurements using fusion 

proteins indicate weaker binding for KIR2DL3-Fc fusion protein with HLA-C1 that between 

KIR2DL1-Fc fusion protein with HLA-C2, however surface plasmon resonance analysis 

demonstrated identical results for both interactions.  KIR2DL1 interacts with HLA-C2 at a 

more acute angle than KIR2DL2/2DL3 with HLA-C1.  As a consequence, KIR2DL1 makes 

no contact with peptide in the MHC groove, whereas KIR2DL2/2DL3 makes contact with 

peptide epitopes.  This may have an impact on binding kinetics making interactions between 

KIR2DL2/2DL3 and HLA-C1 weaker or more variable (Parham 2005). 

 

1.1.2.6 KIR haplotypes 

KIR genes are organised within the LRC into haplotypes, which have been shown to exhibit 

extensive variation in the number and type of KIR genes present.  All known KIR haplotypes 

are flanked at their centromeric end by KIR3DL3 and at their telomeric end by KIR3DL2, 

together with the centric KIR3DP1 and KIR2DL4.  These constitute the framework genes 
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(Martin et al. 2000; Wilson et al. 2000; Vilches et al. 2002b), which limit two regions of 

variable KIR gene content where the remaining KIR genes are located.  All KIR genes are 

arranged in a head to tail fashion approximately 2.4 Kb apart from each other (Hsu et al. 

2002a).  Many KIR haplotypes have been defined by family segregation studies (Gomez-

Lozano et al. 2002; Shilling et al. 2002; Uhrberg et al. 2002).  

 

Based on their gene content two kinds of KIR haplotypes, A and B, have been described. 

Originally these haplotype groups were distinguished using restriction fragment length 

polymorphism (RFLP), based on the presence of a ~24 Kb HindIII fragment (present in group 

B haplotypes and later correlated to the presence of the KIR2DL5 gene) (Vilches et al. 2002b) 

(Uhrberg et al. 1997). However, these haplotype groups are currently distinguished by the 

number of activating and inhibitory KIR genes present.  According to this new KIR haplotype 

group definition, group B haplotypes possess different combinations of KIR2DL5, KIR2DS1, 

KIR2DS2, KIR2DS3, KIR2DS5 and KIR3DS1 genes, where as group A haplotypes possess a 

single activating gene, KIR2DS4, as well as four inhibitory genes encoding proteins 

representing the main HLA class I specificities, KIR2DL1, KIR2DL3, KIR3DL1 and 

KIR3DL2 (Marsh et al. 2003). 

 

1.1.2.7 KIR and disease 

KIR genes may predispose to human diseases; association studies have highlighted the 

involvement of various factors including haplotype diversity, individual gene expression and 

HLA ligand diversity.  Although many association studies are available there is only one 
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functional study (Ahlenstiel et al. 2008) to date demonstrating a direct ‘cause and effect’ 

relationship.  Cross sectional functional studies are difficult to perform because of the 

inability to generate specific antibody tools are against KIR.  The relationship between 

KIR/HLA genes and various human diseases are now discussed. 

 

Autoimmune diseases 

Various associations have been made between KIR haplotype and KIR genes and 

autoimmune diseases.  A higher incidence of psoriasis vulgaris occurs in haplotype B 

individuals (Suzuki et al. 2004) suggesting the involvement of activating receptors in disease 

progression.  Several other groups have also demonstrated an association with activating 

receptor 2DS1 (Luszczek et al. 2004).  Likewise the possession of activating KIR2DS2 has 

been linked to a higher incidence of rheumatoid vasculitis (Yen et al. 2001), type I diabetes 

mellitus (van der Slik et al. 2003), and scleroderma (Momot et al. 2004).  Martin and 

colleagues demonstrated that subjects with activating KIR2DS1 and/or KIR2DS2 genes are 

susceptible to developing psoriatic arthritis only when HLA ligands for their homologous 

inhibitory receptors, KIR2DL1 and KIR2DL2/3, are missing (Martin et al. 2002).  They 

proposed that absence of ligands for inhibitory KIR could potentially lower the threshold for 

NK (and/or T) cell activation mediated through activating receptors, thereby contributing to 

the pathogenesis of psoriatic arthritis. 
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Infectious diseases 

KIR and HLA ligand interactions have been shown to be important.  Clearance of hepatitis C 

virus has been observed in individuals that possess homozygous 2DL3 and HLA-C1 alleles 

(Khakoo et al. 2004).  It was hypothesised that NK cells were less inhibited in this 

combination, as HLA-C1 alleles were weaker at inhibiting NK cell function that HLA-C2 

alleles.  As a consequence there was more aggressive NK cell mediated activity against 

hepatitis C virus.  Similarly in HIV, individuals with HLA-Bw4 and 3DS1 progressed more 

slowly to AIDS than those without.  The mechanism for this involves ligation of activating 

KIR3DS1 by HLA-Bw4 ligands leading to activation and virus clearance (Martin et al. 2007).  

Finally a case study of a patient suffering from multiple infections has been reported where 

expression of KIR2DL1 was observed on their entire NK cell population.  The most frequent 

infection was CMV and it is possible that overexpression of this inhibitory KIR may lead to 

an immune deficiency associated with primary CMV infection (Gazit et al. 2004) 

 

Pregnancy 

NK cells are found in abundance in the uterine circulation and are believed to be very 

important in feto-maternal tolerance.  HLA-C alleles have been shown to have an important 

role in reproductive success (Hiby et al. 2004).  Foetal expression of HLA-C2 is associated 

with an increased risk of pre-eclampsia which is believed to reflect a strong inhibitory signal 

between trophoblast and decidual NK cells serving to limit trophoblast invasion and 

subsequent placental vascularisation.  An association between HLA-C2 alleles and recurrent 

miscarriages has been observed (Hiby et al. 2008). 
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Transplantation 

In haematopoietic stem cell transplantation for acute myeloid leukaemia, an absence of 

cognate HLA ligands in the recipient for a corresponding donor, was associated with 

enhanced engraftment, a reduction in acute graft versus host disease, eradication of malignant 

cells and successful reconstitution of the immune system.  Furthermore, a donor possessing 

activating KIR2DS2 has been shown to be protective against CMV reactivation in the patient  

post-transplant (Cook et al. 2005). 
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1.2 ADAPTIVE IMMUNITY 

The adaptive immune response is antigen-specific and may take days or longer to develop. 

Cell types with critical roles in adaptive immunity are antigen-presenting cells including 

macrophages and dendritic cells. Antigen-dependent stimulation of T cell subtypes, B cell 

activation and antibody production, and the activation of macrophages and NK cells all play 

important roles in adaptive immunity. The adaptive immune response also includes the 

development of immunological memory, a process that continues to develop throughout life 

and enhances future responses to a given antigen. 

 

1.2.1  T cell memory 

The initial activation and expansion phase of both CD4+ and CD8+ T cell responses is 

invariably followed by a death phase during which the majority (~90%) of effector cells are 

eliminated. A small proportion of cells do survive however, and this population develops into 

long-term memory cells (Callan et al. 2000; Jenkins et al. 2001).  Immunological memory is a 

cardinal feature of the adaptive immune response and serves to provide a mechanism for long-

lasting, continuous defence against pathogens. Memory cells exist at a higher frequency than 

their naïve precursors and are able to respond more rapidly upon a subsequent pathogen 

encounter because their sensitivity to antigen and costimulatory requirements are lower than 

for naïve T cells  (Sprent et al. 2002). 

 

The precise factors which determine clone survival and selection to become long-lived 

memory cells following the contraction phase of an immune response remain a matter of 

intense debate.  The process may be stochastic, in that all cells have the ability to differentiate 
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into memory cells following activation, but competition for environmental factors, such as 

survival cytokines, ensures that only 5-10% escape deletion and survive (Jenkins et al. 2001). 

Alternatively, T cell fate may be deterministic, decided at the time of T cell priming  

(Mercado et al. 2000; Kaech et al. 2001; van Stipdonk et al. 2001; Badovinac et al. 2002) via 

the interaction with the APC and the milieu of inflammatory cytokines present (Iezzi et al. 

1999).  This latter model proposes that only a small subpopulation of cells which receive the 

‘correct’ signals upon priming will survive to become part of the memory pool.  

 

The lineage of memory T cell development is still not fully understood and it is unclear 

whether memory cells are direct descendents of effector cells, or if they arise from a second 

lineage.  Data from experiments in transgenic mice suggest that the memory T cell population 

is not generated from a subset of effector cells that ‘divide-out’, but rather, is formed directly 

from the effector cells themselves.  Other studies have shown activated T cells seem to be 

programmed to develop into memory T cells.  Therefore it is important to consider that 

memory T cell development might occur in a non-linear fashion and it can result in 

qualitatively different memory T cell subsets. 

 

Whatever the selection process, cells that survive to become the memory population escape 

apoptosis, although, again, the mechanisms by which this occurs are unclear.  The 

upregulation of proteins that inhibit apoptosis, for example the lysosomal protease inhibitior 

Spi2A (Liu et al. 2004) and the anti-apoptotic molecules Bcl-2, for CD8+ cells (Grayson et al. 

2000), and Bcl-XL , for CD4+ T cells are thought to be involved however (Garcia et al. 1999).  
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Furthermore, recent work has suggested that IL-7 and expression of the IL-7α-chain receptor 

(IL-7Rα )(CD127) are also critical to this process (Kaech et al. 2003). 

 

Once selected, memory cells persist for many years due to their capacity for self renewal. 

Studies using heavy glucose have shown that memory populations maintain their numbers by 

continual division at a rate of between 1.5 and 4.7% per day (Macallan et al. 2004).  This 

process does not require interaction with antigen (Lau et al. 1994; Tanchot et al. 1997; Garcia 

et al. 1999) or MHC molecules (Murali-Krishna et al. 1999; Swain et al. 1999).  Instead it is 

believed that turnover is driven by cytokines, in particular IL-15 and IL-7 for CD8+ cells 

(Goldrath et al. 2002; Tan et al. 2002), and IL-7 for CD4+ T cells (Geginat et al. 2001) and is 

termed homeostatic proliferation. 

 

CD4+ T cell lineages 

T helper cell lineage commitment was originally viewed as a unidirectional process with 

nonreversible termed differentiation of T helper 1 (Th1) and T helper 2 (Th2) cells.  Each T 

helper cell subset expresses its lineage-specific transcription factors and mutually exclusive 

cytokines.  The discovery of two new subsets of T helper cells, regulatory T (Treg) cells and 

T helper 17 (Th17) cells, and their capacity to produce cytokines that would be considered 

hallmarks of opposing lineages suggest that the commitment of T helper cell lineages is more 

complex than previously appreciated (Zhou et al. 2009).  The differentiation of naïve CD4+ T 

cells into lineages with distinct effector functions is governed predominantly by cytokines in 

the microenvironment and, to some extent, by the strength of the interaction of the TCR with 

antigen (Boyton et al. 2002).  Naïve CD4+ T cells can differentiate into Th1, Th2, Th17, Treg, 
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or T follicular helper (Tfh) cells.  As illustrated in Figure 1-3 these differentiation programs 

are controlled by cytokines produced by innate immune cells, such as IL-12 and IFNγ, which 

are important for Th1 cell differentiation, and IL-4, which is crucial for Th2 cell 

differentiation.  TGF-β together with IL-6 and IL-13 induces Th17 cell differentiation 

(Veldhoen et al. 2006), whereas Treg differentiation is induced by TGF-β, retinoic acid, and 

IL-2.  Tfh cell differentiation requires IL-21 (Nurieva et al. 2008; Vogelzang et al. 2008).  

Specific transcription factors that orchestrate the differentiation program of each T helper cell 

subset have been identified: T-bet for Th1 cells, GATA3 for Th2 cells, RORγt for Th17 cells, 

and Foxp3 for iTreg cells (Zhou et al. 2009).  The effector T cells had been thought to be 

terminally differentiated lineages, but it now appears that there is considerable plasticity 

allowing for conversion to other phenotypes.  Although Th1 and Th2 cells display more stable 

phenotypes, Treg cells and Th17 cells can readily switch to other T helper cell programs 

under certain cytokine conditions.  For example, Tregs can become IL-17-producing cells 

upon stimulation of IL-6 and IL-21. Treg cells can also switch to Tfh cells, and this requires B 

cells and CD40-CD40L interaction.  Th17 cells may also convert into IFNγ-producing Th1 

cells or IL-4-producing Th2 cells when stimulated by IL-12 or IL-4, respectively.  Evidence 

also suggests that Th2 cells can switch to IL-9-producing cells in response to TGF-β, although 

it is unclear whether these “Th9” cells truly represent a distinct lineage. 
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Figure 1-3: The cytokine milieu determines CD4+ T cell differentiation and 
conversion.  (Zhou et al. 2009). 

 

 

Memory cells: Subsets, phenotypes and function 

Because of their importance to understanding many of the fundamental immunological 

questions, a large amount of research has been devoted on methods to identify naïve and 

memory T cell subsets.  Much of this work has focused on distinguishing the populations by 

their cell surface phenotypes.  It is now well documented that naïve T cells can be identified 

by high expression of the long isoform of the protein tyrosine kinase CD45 (CD45RA), the 

lymph node homing molecules CD62L and CCR7, and the costimulatory molecules CD28 

and CD27 (Hamann et al. 1997; Young et al. 1997; Sallusto et al. 1999; Appay et al. 2002; 
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Rufer et al. 2003).  In addition, naïve cells have been shown to express low levels of the 

integrin CD11a and lack expression of the short isoform of CD45 (CD45RO), CD57 and 

granzyme and perforin effector molecules (Yamashita et al. 1993; Zimmerman et al. 1996; 

Hamann et al. 1997).  Defining the phenotype of memory T cells has proved more difficult 

however. Originally the differential expression of the CD45 isoform was used to identify 

subsets of T cells (i.e. CD45RA-CD45RO+ versus CD45RA+CD45RO- for memory and naïve 

cells, respectively) (Young et al. 1997), although it has since been demonstrated for both 

CD8+ (Dunne et al. 2002) and more recently CD4+ (Amyes et al. 2003; Weekes et al. 2004; 

Amyes et al. 2005) T cell subsets, that antigen experienced cells can re-express CD45RA.  

For this reason, the use of the CD45 isoform, together with other surface markers for example 

CD28, is now considered by many to be a way of identifying cells which have recently 

encountered antigen (Dunne et al. 2002; Carrasco et al. 2006). 

  

Most recently, expression of the chemokine receptors CCR7 and CD62L have been suggested 

as a better way to define T cell populations.  Using these markers together with CD45 and 

certain functional characteristics of T cells, Sallusto et al were able both to distinguish 

between naïve and memory T cell subsets and also to identify 2 distinct memory 

subpopulations (Sallusto et al. 1999).  These populations were termed central memory (TCM) 

and effector memory (TEM).  TEM cells display a CD45RA-, CD62L+ and CCR7+ phenotype, 

allowing their homing to secondary lymphoid organs.  These cells have little or no immediate 

effector function but retain the capacity to proliferate and differentiate in response to antigen.  

In contrast, the TEM subset generally persists in non-lymphoid tissues, due to a lack of CCR7 

and heterogeneous CD62L expression.  These cells display immediate effector function with 

CD8+ TEM cells carrying large amounts of perforin and both CD4+ and CD8+ TEM cells able to 
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rapidly produce IFNγ, IL-4 and IL-5 upon antigenic stimulation (Sallusto et al. 1999). 

Following their characterisation, Sallusto et al proposed a linear model of T cell 

differentiation.  They suggest that naïve T cells (CD45RA+ CCR7+ CD62L+) are activated 

upon antigen encounter and differentiate first into TCM (CD45RA-CCR7+ CD62L+) and then 

into TEM (CD45RA- CCR7- CD62+/-) upon subsequent antigen encounter.  Using this model 

Sallusto et al hypothesised that TEM cells represent the first line of defence against invading 

pathogens whilst TCM subsets are involved in maintaining the peripheral effector pool though 

the generation of successive waves of new effector cells. 

 

Although these terms are now widely employed to define memory populations, recent data 

questions this straightforward distinction by demonstrating the presence of T cells negative 

for CCR7 expression in lymph nodes (Chen et al. 2001; Ellefsen et al. 2002), production of 

effector cytokines by cells from both subsets (Ravkov et al. 2003), and the conversion of 

human TEM cells to TCM memory cells (Schwendemann et al. 2005).  Furthermore, whilst 

similar populations have been observed in mice (Masopust et al. 2001; Reinhardt et al. 2001), 

the two subsets do not appear to behave in the same way as human memory populations 

(Kaech et al. 2002; Wherry et al. 2003).  However, these differences may simply reflect 

differences in the number of pathogens encountered between the human and murine immune 

systems rather than unique differentiation programmes between the two species.  

 

Because of these data, the TCM/TEM model has now been refined by the inclusion of the 

costimulatory molecules CD28 and CD27.  This model is particularly favoured by groups 

studying the differentiation of human virus-specific responses.  Appay et al have proposed a 
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linear model of CD8+ T cell maturation using expression of these markers rather than defining 

subsets by attributing functional or protective properties (Appay et al. 2002).  In this model, 

cells progress from a CD45RA+ CD27+ CD28+ (naïve) phenotype via a CD45RA-CD27+ 

CD28+ (early antigen experienced) to a CD45RA+/- CD27+ CD28- (intermediate antigen 

experienced), and then to a highly differentiated CD45RA-/+ CD27- CD28- (late antigen 

experienced) phenotype (Figure 1-4).  The CD4+ T cell population may also be subdivided 

into early, intermediate and late differentiated subsets (Amyes et al. 2003; Day et al. 2003; 

Lucas et al. 2004; Yue et al. 2004; Amyes et al. 2005), however there is one key distinction. 

This is that CD4+ T cells appear to lose expression of CD27 before CD28, in contrast to CD8+ 

cells which lose CD28 prior to CD27 (Amyes et al. 2003) (Figure 1-4). 
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Figure 1-4: Phenotypic evolution pathway of CD8+ and CD4+ T cells 
following antigen encounter. 
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Interestingly Appay et al have shown that different viral infections are characterised by 

enrichment of CD8+ T cells with different memory cell phenotypes, consistent with the 

different stages of differentiation (Appay et al. 2002), HCV and EBV specific CD8+ T cells 

preferentially display an early antigen experienced phenotype, HIV-specific cells display an 

intermediate phenotype whilst CMV-specific cells accumulate in the late antigen experienced 

pool (Appay et al. 2002).  Other groups have confirmed these observations (Roos et al. 2000; 

Hislop et al. 2002; Urbani et al. 2002); and also shown that a similar phenomenon exists for 

virus specific CD4+ T cells.  HCV, EBV and HIV specific CD4+ T cells all appear to be less 

differentiated than CMV-specific CD4+ T cells (Amyes et al. 2003; Day et al. 2003; Yue et 

al. 2004; Fletcher et al. 2005)  

 

The above examples do not form an exclusive list of all cell surface markers that can be used 

to distinguish subpopulations of human cells.  A number of others have also been used 

including CD57, a cell surface marker which is associated with highly differentiated CD4+ 

and CD8+ T cells, in particular HIV- and CMV-specific cells (Wang et al. 1995; Kern et al. 

1999a; Weekes et al. 1999; Brenchley et al. 2003; Amyes et al. 2005; Palmer et al. 2005).  

Expression of the IL-7α-chain receptor may also be useful in dividing subsets of CD8+ virus-

specific T cells.  A number of groups have reported that expression of IL-7Rα is lost by T 

cells specific for persistent viruses such as HIV, EBV, HCV and CMV, whilst influenza-

specific cells retain expression (Boutboul et al. 2005; van Leeuwen et al. 2005; Golden-

Mason et al. 2006).  
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1.2.2  KIR expression on T cells 

KIRs can be expressed by both CD8+ and CD4+ T cells and may have a role in modulating 

their function (Anfossi et al. 2004; van Bergen et al. 2004).  KIR expression on T cells is only 

observed on cells with a memory phenotype or increasing age (van Bergen et al. 2004).  

Acquisition of KIR by T cells with a memory phenotype or with increasing age may indicate 

their role in dampening the T cell mediated response.  Indeed a recent study in the context of 

HIV disease identified increased expression of KIR on CD8+ T cells in humans infected with 

HIV who have a high viral load (Alter et al. 2008).  They demonstrated an antigen-specific 

inhibition of TCR responses on CD8+ T cells with KIR which was not dependent on the 

nature of KIR ligand.  Despite this evidence the role of KIR and KIR ligands in modulating T 

cell function remains unclear. 
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1.3 CYTOMEGALOVIRUS (CMV) 

Cytomegalovirus is a ubiquitous member of the herpes family of viruses, a diverse group of 

large DNA viruses that share common virion morphology, a basic mode of replication and the 

capacity to establish latent and recurrent infections.  Herpes viruses are strictly species-

specific and there are currently eight known herpes viruses which infect humans.  Although 

structurally similar, the viruses are grouped into three subfamilies (α,β and γ) on the basis of 

differences in their genomic homologies and biological properties.  Cytomegalovirus, also 

known as human herpes virus 5 (HHV-5), is the prototypic member of the β herpes virus 

subgroup which also includes herpes viruses 6 and 7.  Herpes virus infections are common 

and although they usually cause asymptomatic infection, they can be associated with 

significant morbidity and mortality especially in conditions of immunosupression.  Thus, a 

greater understanding of the immunobiology of herpes viruses is an important area of 

research. 
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Table 1-3: Herpes virus subtypes and diseases 

Subfamily Virus Site of latency Oncogenic 

potential 

Pathophysiology 

HHV-1 Herpes simplex 

type 1 (HSV-1) 
Neuron No Oral and/or genital herpes 

HHV-2 
Herpes simplex 

type 2 (HSV-2) 
Neuron No Oral and/or genital herpes 

HHV-3 
Varicella Zoster 

Virus (VZV) 
Neuron No Chicken pox/ shingles 

 

HHV-5 
Cytomegalovirus 

(CMV) 

Monocyte, 

lymphocyte and 

others 

No 
Infectious mononucleosis, 

retinitis, glioblastoma
1
  

HHV-6 
Human Herpes 

Virus 6 (HHV6) 

T cells and 

others 
No Roseola 

HHV-7 
Human Herpes 

Virus 7 (HHV7) 

T cells and 

others 
No Roseola 

     

     

HHV-4 
Epstein Barr 

Virus (EBV) 
B cells Yes 

Infectious mononucleosis, 

Burkitts Lymphoma 

HHV-8 

Kaposi’s Sacroma 

- related virus 

(KSHV) 

unknown Yes Kaposi’s Sacroma 

     

     

 

1 
CMV has been shown to be associated with glioblastoma with >90% tumours expressing HCMV nucleic acids 

and proteins, and 80% patients with newly diagnosed glioblastoma having detectable HCMV DNA in their 

peripheral blood (Mitchell et al. 2008) 

 

1.3.1 CMV epidemiology and disease 

CMV infections are highly prevalent throughout the human population.  Between 50 and 70% 

of the population in western societies are seropositive for the virus and in some parts of 

Africa, seroprevalence approaches 100%.  Primary infection can occur at any age, although 

the virus is usually first encountered in early childhood through contact with infected bodily 

secretions, for example tears, saliva, breast milk or blood.  In the immunocompetent, primary 

infection is usually asymptomatic and following infection the virus resides within the host for 

its lifetime generally without overt disease.  Clinical manifestations of CMV disease occur 

almost exclusively in the immunocompromised, in particular, HIV infected individuals that 

progress to AIDS and pharmacologically immunosuppressed recipients of stem cell or solid 
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organ transplants.  In these situations, de novo or recurrent infections are associated with 

serious morbidity or mortality, and CMV remains the most important viral pathogen affecting 

transplantation (Khanna et al. 2006).  CMV infection can also be a problem if acquired by the 

immature immune system.  Transplacental transmission during pregnancy or neonatal 

infection of premature newborns can lead to both neurological damage and deafness.  In 

addition, a role for CMV in other disease conditions, such as atherosclerosis (Adam et al. 

1987; Nieto et al. 1996; Horvath et al. 2000) and glioblastoma (Mitchell et al. 2008) have 

been suggested. 

 

1.3.2 CMV biology 

As illustrated in Figure 1-5, the CMV virion can be structurally divided into three regions, the 

nucleocapsid, an icosahedral structure containing the viral DNA genome; the tegument, an 

amorphous layer containing a number of viral proteins; and the envelope, a lipid bilayer 

containing a number of different viral glycoproteins.  The linear double stranded DNA 

genome of CMV is approximately 220-240 kb in length depending upon the strain, and these 

can be readily identified by restriction enzyme mapping of genomic DNA (Chandler et al. 

1986; Retiere et al. 1998).  Whilst the different strains share a high degree of sequence 

homology (approximately 95%), studies on clinical isolates have shown that a large number 

of genetically distinct strains of human CMV exist (Rasmussen et al. 2002).  In addition, the 

prolonged passage of CMV in cell culture experiments can lead to mutations and loss of 

certain regions of the genome (Cha et al. 1996). 
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Figure 1-5: CMV virion structure. CMV virions are composed of a double-
stranded DNA genome that is contained within an icosahedral nucleocapsid. This 
is surrounded by a structural layer known as the tegument, which is rich in 
structural proteins such as pp65. The virion is enclosed by an envelope, which has 
a lipid bilayer that expresses a number of viral glycoproteins such as the major 
glycoprotein B. 

 

The human CMV genome is organised into unique long (UL) and unique short (US) regions 

which are separated by internal repeat regions, and encodes for over 160 proteins (Britt et al. 

2004).  As with other herpesviruses, CMV gene expression can be separated into sequentially 

expressed kinetic classes.  These are the immediate early (α), early (β1 and β2) and late (γ1 

and γ2) phases based on the time of synthesis after infection.  The immediate early phase is 

routinely defined as 2-4 hours post infection and is characterised by the transcription of DNA 

binding proteins, for example IE-1 and IE-2, important for optimising the cellular 

environment for the production of viral DNA.  This is followed by the early phase (E), during 

which proteins such as transcription factors and DNA polymerase necessary for viral DNA 
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replication are produced.  Examples are ppUL54 (DNA polymerase), UL57 (DNA binding 

protein) and UL44 (DNA binding protein).  Finally, the late (L) phase occurs approximately 

36-48 hours post-infection and is associated with the production of structural proteins such as 

UL32  (pp150), UL86 (pp65), and viral glycoproteins for example UL55 (gB), and culminates 

in the release of infectious virions (Britt and Alford, 1996). 

 

CMV proteins are named according to the region of the genome encoding them and are 

numbered sequentially.  The first gene identified in the UL region is designated UL1 and that 

in the US region is termed as US1 (Figure 1-6).  Whilst a number of CMV proteins have been 

characterised, the functional properties of the majority of CMV derived proteins remain to be 

determined. 
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Figure 1-6: The CMV genome. The human CMV genome is organised into 
unique long (UL) and unique short (US) regions which are separated by internal 
repeat regions (IRL) and bounded by terminal repeats (TRL and TRS when 
attached to the long and short regions, respectively), CMV encodes for over 160 
proteins which are named sequentially and according to the region of the genome 
from which they are derived.  For example, the first gene identified in the UL 
region is designated UL1 and that in the US region is termed as US1.  In addition, 
proteins may also named according to other functional properties, for example 
glycoprotein B (gB/UL55) phosphoprotein 65 (pp65/UL83).  

 

 

The processes by which CMV infects and persists in the human host remain controversial.  

The virus is capable of infecting a broad array of different cell types (such as epithelia, 

endothelia and smooth muscle), as shown by in vitro studies (Sinzger et al. 1995; Sinzger et 

al. 1999) and the multiple organ complications of CMV disease.  However, cells of the 

myeloid lineage are thought to be the primary reservoirs (Taylor-Wiedeman et al. 1991; 

Kondo et al. 1994).   The mechanism of viral attachment and entry into cells is yet to be 

documented but viral glycoproteins, in particular glycoprotein B (gB/UL55), are likely to be 

important (Cranage et al. 1986) perhaps through an interaction with the epidermal growth 

factor receptor EGFR (Wang et al. 2003) and certain integrins expressed on the surface of the 

host cell (Wang et al. 2005). 
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It is also unclear whether CMV undergoes true molecular latency, involving a change in the 

pattern of viral gene expression and a stop in the synthesis of productive virions or whether 

CMV is a truly persistent infection, with productive virions being produced at very low 

levels/below level of detection, due to chronic immunosuppression by the host.  It is well 

documented that viral DNA is periodically shed throughout the lifetime of the 

immunocompetant host (Toro et al. 1996).  Whether this is due to a reactivation from latency 

caused by stimulation, for example cellular differentiation (Taylor-Wiedeman et al. 1994; 

Soderberg-Naucler et al. 2001) or allogenic stimulation (Soderberg-Naucler et al. 1997) or 

due to a failure in the immune control of a persistent infection, remains to be determined.  It is 

possible that both latency and persistence are involved in CMV infection (Sinclair et al. 

2006). 

 

1.3.3 The immune response to CMV 

It is widely held that the host immune system is the most important factor in controlling CMV 

infection and disease.  This is shown not only by the almost exclusive manifestations of CMV 

disease in the immunosuppressed or immature, but also by the mechanisms the virus employs 

to disrupt the host immune system to avoid recognition (reviewed in (Reddehase 2000; 

Mocarski 2002).  It is crucial that a fuller understanding of the immune response towards the 

virus is gained for the development of improved therapies and the chance of a successful 

vaccine.  A large amount of research has been undertaken, using both human and animal 

models, in particular murine CMV (mCMV), to fully elucidate the immunobiology of CMV 

infection.  Immune control is dependent upon all the different compartments of the immune 

system and the roles they play are discussed below.  
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1.3.3.1 Murine CMV (mCMV) 

Herpes viruses are strictly species-specific making the study of human CMV in animal 

models difficult.  However, there are a number of well established animal models used to 

study other CMV infections.  These include cercopithecine herpes virus 8 (CeHV8) (Rhesus 

Monkey), murine herpes virus 1 (mCMV) (mouse), murine herpes virus 2 (MuHV2) (rat) and 

cavid herpes virus 2 (guinea pig) (CavHV2).  The most widely utilised of all animal models is 

that of murine CMV.  Like human CMV, mCMV has 3 gene families, α, β and γ, which are 

expressed at the immediate early, early and late phases of the replication cycle and a number 

of proteins with similar functions have been described for both viruses for example IE-1 is 

encoded by UL123 and m123 in human and murine CMV, respectively (Reddehase 2000).  

However, a number of differences exist between the two viruses.  Primary mCMV infection 

in immunocompetent mice leads to localised infection in the salivary glands and not 

disseminated disease, as occurs in humans, and mCMV does not infect the murine placenta to 

contribute to congenital infection (Krmpotic et al. 2003).  Furthermore, the immunoevasion 

genes of murine and human CMV do not have any sequence homology, indicating specific 

adaption to the respective host (Reddehase 2002).  Consequently, the caveat of using mCMV 

is that it may not accurately represent the disease process in humans.  Despite these 

differences however, mCMV can be very useful in studying certain aspects of cellular and 

humoral immunity to CMV. 

 

1.3.3.2   The innate immune response to CMV 

Since primary infection with human CMV is asymptomatic, it is difficult to investigate the 

very early stages of infection in vivo.  In vitro studies however, have suggested that type 1 

interferons (IFNα and IFNβ) play a role in the innate response to CMV.  The synthesis of 
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these cytokines is induced following CMV infection (Zhu et al. 1998; Boyle et al. 1999; 

Simmen et al. 2001) through an interaction between glycoprotein B and TLR2 (Boehme et al. 

2006).  Binding of type I IFNs to their cognate receptor initiates a signalling cascade resulting 

in the upregulation of more than 100 interferon stimulated genes (ISGs).  The products of 

these are responsible for carrying out the antiviral activities attributed to interferons (Stark et 

al. 1998; Garcia-Sastre et al. 2006).  

 

Perhaps the most important component of the innate response to CMV however, are the NK 

cells.  The significance of this cell population is highlighted by the susceptibility of mice 

depleted of NK cells to experimental infection (Polic et al. 1998) and the observation that 

murine resistance to mCMV maps to a  single locus termed Cmv1(Scalzo et al. 1990), which 

encodes the activating NK receptor Ly49H (Brown et al. 2001; Daniels et al. 2001).  In 

humans, severe and recurrent HCMV infections are associated with naturally occurring NK 

cell deficiencies (Biron et al. 1989).  Levels of NK cell cytotoxicity have been shown to 

correlate with both patient recovery from CMV reactivation following stem cell 

transplantation (Quinnan et al. 1982), and asymptomatic congenital CMV infection (Cauda et 

al. 1987).  In the latter study, NK cells isolated from congenitally infected individuals had the 

ability to lyse CMV-infected target cells in vitro (Cauda et al. 1987). 

 

NK cell recognition and killing of target cells is mediated through activating and inhibitory 

NK receptors, and their interaction with MHC-related proteins expressed on the surface of 

potential target cells (Lanier 2005).   Both human and murine CMV actively downregulate the 
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expression of MHC related proteins, and this represents one way that infected cells can 

become susceptible to NK cell lysis (Lodoen et al. 2005) Once an infected cell is identified, 

NK control of viral infection primarily involves the production of the antiviral cytokine IFNγ 

(Orange et al., 1995) and direct lysis of infected cells via the granule exocytosis pathway (Tay 

et al. 1997) Both mechanisms are crucial for control of mCMV replication in the liver and 

spleen (Loh et al. 2005). 

 

1.3.3.3   The adaptive immune response to CMV 

Cell-mediated immunity 

In comparison to humoral immunity, there is a large body of evidence to suggest that viral 

control is mediated by components of the cell mediated immune response.  Disruption of cell 

populations that promote cytolysis has by far the greatest effect on CMV survival and disease. 

The main cell types involved are CD8+ and CD4+ T cells, although recent evidence suggests a 

role for gamma delta (γδ) T cells.  The numbers of γδ T cells are greatly increased following 

exposure to CMV, but their particular function in the context of infection remains to be 

determined (Dechanet et al. 1999). 

  

CMV-specific CD8+ T cells 

CMV-specific CD8+ T cells have been well characterised and are known to play a critical role 

in CMV-specific cell-mediated immunity.  Murine studies have shown that virus specific 

CD8+ T cells prevent lethal mCMV infection, limit the viral load in latency and reduce the 

risk of viral reactivation and disease (Reddehase et al. 1987; Polic et al. 1998; Steffens et al. 
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1998).  In humans, evidence for their importance comes largely from various clinical settings 

where a deficiency of functional CMV specific CD8+ CTLs correlates with the occurrence of 

CMV disease in the immunosuppressed (Quinnan et al. 1984; Reusser et al. 1991; Li et al. 

1994; Reusser et al. 1999). Perhaps the most convincing evidence for the involvement of 

CD8+ T cells comes from an important study by Riddell and colleagues in which adoptive 

transfer of CMV-specific CD8+ T cells was shown to restore protective immunity in 

immunocompromised bone marrow transplant patients (Walter et al., 1995).  In this study 

donor-derived CMV-specific CD8+ T cell clones were transferred into patients.  No toxic 

effects were observed and there was no evidence of CMV viraemia or disease in any of the 14 

patients.  In addition, molecular analysis of TCR genes in 2 donors showed that the infused 

clones had persisted for at least 12 weeks (Walter et al. 1995). 

 

CMV-specific CD8+ T cells proliferate rapidly following infection and dominate the primary 

response (Sester et al. 2003).  Their role in controlling viral infection involves the direct lysis 

of infected cells and secretion of antiviral cytokines, including IFNγ.  Interestingly, it appears 

that numbers of CMV-specific CD8+ T cells do not decline as dramatically as other viral 

specific CD8+ T cells following primary infection.  Instead, an extremely large CMV-specific 

CD8+ T cell response is evident in asymptomatic human and murine carriers (Khan et al. 

2002; Karrer et al. 2003) which continues to expand throughout life.  In the elderly, CMV-

specific CD8+ T cells dominate the repertoire to such an extent that they may impair the 

ability to respond to other antigens (Khan et al. 2004). 
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Successful CMV-specific immunity is dependent on CD8+ T cell response to a broad range of 

epitopes.  It was originally believed that CMV-specific CD8+ T cell responses are mainly 

focused towards IE-1 or pp65 antigens (McLaughlin-Taylor et al. 1994; Wills et al. 1996; 

Gillespie et al. 2000; Kern et al. 2002; Gillespie et al. 2007), however more recent work has 

identified responses to structural, early and late proteins, for which a number of epitopes have 

been described (Kern et al. 1999b; Frankenberg et al. 2002; Kern et al. 2002; Burrows et al. 

2003; Elkington et al. 2003; Kondo et al. 2004).  Elkington et al used computer based 

algorithms to predict HLA-class I epitopes from 14 CMV derived proteins and tested their 

ability to induce IFNγ responses (Elkington et al. 2003).  Their results suggested that CMV 

specific immune control in healthy virus carriers is dependent on a strong CD8+ T cell 

response directed against a broad range of antigens.  Interestingly, this work also showed that 

immunomodulatory proteins can become targets of CMV specific CD8+ T cells themselves 

(Elkington et al. 2003). 

 

CMV-specific CD4+ T cells 

CMV-specific CD4+ T cells have been studied in much less detail than CD8+ T cells.  This, 

presumably, is because CD8+ T cells are considered to be the direct effector cells in 

controlling viral infection, CD4+ T cell responses are generally of much smaller magnitude 

and because of the difficulties in the production of MHC Class II tetramers.  However, there 

is increasing evidence to suggest that CD4+  T cells do indeed play an important role in CMV 

immunity, and appear to be more important than previously thought.  In mice, work by Jonjic 

et al using mice depleted of CD8+ T cells, showed that clearance of mCMV from salivary 

glands was dependent on the CD4+ subset (Jonjic et al. 1990) suggesting a direct role for this 

subset in controlling infection.  More recently, clearance of the virus from the brains of 
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infected mice has also been shown to be due to the function of CD4+ T cells (Reuter et al. 

2005).  In humans, CMV-specific CD4+ T cells have a significant influence the outcome of 

disease in primary infection. Using a cohort of CMV seronegative individuals who received a 

CMV seropositive renal transplant to study primary infection, Sester et al showed that the size 

of the CMV specific CD4+ T cell pool was significantly decreased in individuals displaying 

clinical symptoms of infection (Sester et al. 2001).  Furthermore, a delayed reconstitution of 

the CD4+ subset correlated with the occurrence of CMV-associated morbidity, even in the 

presence of functional CMV-specific CD8+ T cells (Gamadia et al. 2003; Gamadia et al. 

2004). 

 

An interesting observation in respect to CMV-specific CD4+ T cells is that, like CMV-

specific CD8+ T cells, the magnitude of response is very large.  Using intracellular staining 

for IFNγ, Sester et al analyzed the size of the response in 50 healthy seropositve donors and 

showed that between 0.1 and 16% of total CD4+ T cells were CMV-specific in these 

individuals.  Furthermore, using a cohort of seropositive renal transplant patients the same 

group showed that up to 40% of the CD4+ T cell pool could be specific for the virus (Sester et 

al. 2002).  Other groups have also reported large frequencies of virus-specific CD4+ T cells 

(Waldrop et al. 1997; Dunn et al. 2000; Bitmansour et al. 2001; Kern et al. 2002)  and that 

the response is much greater than the CD4+ T cell response to other virus-specific cells. 

Asanuma et al., also using intracellular staining for IFNγ, investigated the CD4+ T cell 

response to varicella zoster virus (VZV) herpes simplex virus (HSV) and CMV in 12 donors. 

They reported that the mean percentage of the CD4+ T cell pool specific for each virus were 

0.11% , 0.22% and 1.21% respectively (Asanuma et al. 2000).  
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The kinetics of the CD4+ T cell response during primary infection have also been 

investigated.  Using renal transplant patients, Rentenaar et al showed that virus-specific CD4+ 

T cells appear approximately 1 week after the detection of viral DNA in the peripheral blood, 

interestingly before the detection of virus specific CD8+ T cells or IgM or IgG antibodies. 

Following the initial rise, CD4+ T cells in peripheral blood reduce dramatically, presumably 

as they migrate to sites of CMV replication in peripheral tissues (Rentenaar et al. 2000).  

 

The way in which CMV-specific CD4+ T cells contribute to CMV-specific immunity involves 

numerous mechanisms.  In addition to supporting CMV-specific antibody production CD4+ T 

cells also appear to be essential for both the maintenance and function of CMV-specific CD8+ 

T cells (Gamadia et al. 2001; Komanduri et al. 2001), because the persistence of adoptively 

transferred CD8+ CMV-specific T cells is dependent upon the presence of CD4+ specific T 

cells(Walter et al. 1995).  IFNγ and TNFα produced by the CD4+ T cells seem to be critical in 

the control of CMV infection (Gamadia et al. 2003).  In mice, the mechanism of viral 

clearance from the salivary glands of CD8+ T cell depleted mice involves IFNγ production by 

CD4+ T cells, while in humans IFNγ production by CD4+ T cells inhibits virus replication in 

vitro (Davignon et al. 1996).  Furthermore, Tu showed that viral persistence in a cohort of 

young children was associated with a deficiency in IFNγ production by CD4+ T cells (Tu et 

al. 2004) suggesting that IFNγ production by CD4+ T cells is also important to CMV control 

in vivo in humans.  In addition to the traditional helper roles displayed by CD4+ T cells, recent 

work has reported a subset of CD4+ CMV-specific T cells which display cytotoxic activity in 

vitro. This suggests that the activity of CD4+ T cells may extend to the elimination of virus 
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through the direct lysis of infected cells (Elkington et al. 2004; Zaunders et al. 2004; 

Elkington et al. 2005; van Leeuwen et al. 2006). 

 

A number of studies have focused on identifying the antigen specificity of the CMV-specific 

CD4+ T cell pool.  Initially the approach taken to detect CMV-specific CD4+ T cells, involved 

stimulating PBMC from healthy virus carriers in vitro with recombinant CMV proteins and 

using proliferation as a readout of T cell recognition.  Using this approach, IE-1, pp65, gB and 

gH were suggested to be important antigenic targets and a number of CD4+ T cell epitopes 

were reported (Alp et al. 1991; Davrinche et al. 1993; Beninga et al. 1995; Beninga et al. 

1996; Davignon et al. 1996; Gautier et al. 1996; Hopkins et al. 1996; Khattab et al. 1997).  

However, a number of these studies lacked the robustness of using a large cohort of donors. 

The development of intracellular cytokine staining (Waldrop et al. 1997) offered a quicker 

and more direct method of detecting-antigen specific cells.  Using this method a number of 

groups have confirmed the presence of cells specific for pp65, ie-1, gB, gH,  (Kern et al. 

2002; Li et al. 2004; Elkington et al. 2005; Harcourt et al. 2006).  The relative contribution of 

these proteins to the CD4+ T cell response however, remains under investigation. 

Immunodominant proteins have been suggested; pp65 (Kern et al. 2002), ie-1 (Davignon et 

al., 1995) and gB  (Elkington et al. 2004) have all been proposed as the most immunogenic 

proteins for CD4+ T cell responses. However, these conclusions were based simply upon the 

observations that responses were detectable in the majority of donors tested and/or that 

antibodies to the proteins are the most abundant in the sera of CMV infected individuals, and 

therefore remain equivocal. 
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Interestingly, a study by Beninga et al attempted to address the question of the hierarchy of 

immunodominance.  Using 14 different CMV proteins they observed that CD4+ T cell lines 

from all donors responded to pp65, cell lines from 3/5 donors responded to gB and gH and 

cell lines from 1/5 of donors responded to ie-1, ie-2, and UL69.  However, the proliferative 

responses used as a read out are likely to have biased the results because of the cell culturing 

processes involved (Beninga et al. 1995). 

 

It is evident therefore that a number of proteins are involved in this response but detailed 

studies of this area are clearly necessary to fully define the antigen specificity of the CMV-

specific CD4+ T cell population.  Sylwester et al began to address this by using overlapping 

15mer peptides encompassing all 213 known or predicted HCMV open reading frames 

(ORFs) in a flow cytometric assay using CD69 and IFNγ as readouts to identify peptide-

specific responses (Sylwester et al. 2005).  This study provided the first glimpse of the total 

human T cell response to HCMV and provides insight into immunodominance and cross-

reactivity in such viral infections. 

 

1.3.3.4   Involvement of inhibitory NKR in the response to CMV 

The special relationship between NK cells and CMV has been appreciated ever since it was 

reported that both humans and mice lacking functional NK cells are particularly susceptible to 

infection with CMV (Bancroft et al. 1981; Biron et al. 1989).  NK cells express several 

inhibitory receptors such as KIR, the CD94/NKG2A killer lectin-like receptor (KLR) and 

CD85j (ILT2 or LIR-1) (Colonna et al. 1999; Lopez-Botet et al. 1999; Moretta et al. 2004), 

that are also expressed by some T lymphocytes (Vivier et al. 2004).  The spectra of class I 
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HLA molecules covered by inhibitory KIR and, indirectly, by CD94/NKG2A are partially 

overlapping.  Both receptor systems complement each other to monitor the surface expression 

of most class I molecules, which are also broadly recognised by CD85j.  The heterogeneous 

distribution of NKR in distinct NK cell subsets enables the system to react against variable 

alterations of HLA class I expression, provided that activating signals overcome the inhibitory 

threshold. 

 

KIR 

The possibility that CMV-infected cells might preserve HLA-C to escape KIR-mediated 

surveillance, as originally proposed for HIV (Cohen et al. 1999), remains unclear.  HLA-C 

appeared resistant to US2 and US11 when expressed in a trophoblast cell line (Schust et al. 

1998).  In contrast HLA-Cw7 was downregulated in US2+ and US11+ transfected cells (Llano 

et al. 2003), and it has also been reported that US11+ targets were sensitive to KIR2DL+ NK 

cells (Huard et al. 2000), supporting the idea that HLA-C expression was inhibited. 

 

1.3.3.5  Involvement of activating NKR in the response to CMV 

The nature of the cellular ligands for triggering human NK cell receptors has been only 

partially unravelled.  Some of them appear to be constitutively expressed by target cells (i.e. 

HLA class I molecules), others are inducible under stress conditions and can be detected in 

virus-infected anmd tumour cells (i.e. MICA/B), whereas a third category remains unknown. 
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1.4 SUMMARY AND AIMS 
 

From reviewing the current literature it is clear that the mechanisms underlying KIR 

expression and function are not fully known.  The NK cell receptor repertoire in humans is far 

more evolved and complex than in mice, making it impossible to draw any specific 

conclusions from mouse model experiments that may be transferrable to humans.  Both KIR 

and HLA are highly polymorphic and inherited independently of each other and so the 

interactions within an individual are highly complex.  Many association studies have been 

carried out, and it is obvious that KIRs play an extremely important role in human health.  A 

better understanding of the pattern of KIR expression in healthy donors will undoubtedly help 

us gain a clearer picture of the changes that occur with disease progression and the functional 

effect this has.  Up to this point studying KIR expression has been difficult due to the high 

homology between receptors.  Commercial KIR-specific antibodies are cross-reactive and 

unable to discriminate between activating and inhibitory receptors.  Since this work was 

carried out novel antibodies have been generated, which when used in combination with 

commercial antibodies, can discriminate between some of the 2DKIRs (David et al. 2009), 

however generating a single KIR-specific reagent is still the holy grail.   

  

In this thesis therefore, I investigated interactions between 2DKIRs and their HLA-C ligands, 

and then sought to generate a KIR-specific antibody.  I also characterised the pattern of KIR 

expression on lymphoid cells in healthy donors, and finally investigated the changes that 

occurred upon CMV infection. 
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The aims of the project were: 

1) To investigate the binding of activating KIR2DS2 to its predicted Cw*0702 ligand. 

2) To attempt to generate a specific antibody against activating KIR2DS2. 

3) To perform a detailed FACS study on the pattern of KIR expression on lymphocyte 

subsets, particularly T cells. 

4) To investigate the effect of CMV on the pattern of KIR expression. 

5) To determine whether KIRs play a role on CMV-specific T cells, and investigate 

their function. 
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Chapter 2 

Materials and methods 

 

 

2.1 CELLULAR BIOLOGY 

 

2.1.1 Tissue culture media and reagents 

RPMI-1640 supplemented with 2mM L-glutamine (Sigma) was stored at 4°C. 

Foetal calf serum (FCS) (PAA) was stored in 50ml aliquots at -20°C. 

Human serum (HuS) (PAA) that was free from viruses and mycoplasma, and derived from a 

male type AB, was stored in 50ml aliquots at -20°C. 

Penicillin-streptomycin (GIBCO/Invitrogen) containing 5000 IU/ml penicillin and 

5000µg/ml streptomycin was stored as a 100x stock solution in 10ml aliquots at -20°C. 

Phosphate buffered saline (PBS) was made by dissolving 1 Dulbecco A tablet (Oxoid) per 

100ml of water that had been filtered through an Elgastat purifier and ion remover (referred to 

as SDW).  PBS contains: 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4 and 2mM KH2PO4 at 

a pH of 7.4. Aliquots of 50ml were dispensed into bottles and sterilised by autoclaving for 20 

minutes at 121°C.  
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Recombinant interleukin-2 (IL-2)  was reconstituted from lyophilised powder (PeproTech) 

in PDW to give a concentration of 105 IU/ml and then sterilised through a 0.2µm filter and 

stored at -20ºC in 200µl aliquots. 

MLA -144 supernatant (MLA)  was obtained from cultured MLA-144 cells (see section 

2.1.7) by sterile filtration through Millipore Steritop™ 0.22µm vacuum driven disposable 

bottle top filters, and 60ml aliquots were stored at -20°C.  

Lymphoprep™ was purchased from Axis-Shield in 300ml bottles. 

Dimethyl sulphoxide (DMSO) was purchased from Sigma-Aldrich in 100ml bottles. 

 

2.1.2 Subjects 

Healthy members of the institute were recruited and consented as donors for this study.  In 

addition, with local ethical approval (LREC No: 2002/073), healthy individuals aged 60 and 

over were recruited from the local West Midlands community in collaboration with the 

department of Geriatric Medicine.  DNA was extracted from whole blood from each donor 

(see section 2.5.2) and sent to the Anthony Nolan trust for HLA typing.  A latex agglutination 

kit (CMVScan, Becton Dickinson, Oxford, UK) was used to determine CMV serostatus using 

plasma samples.  All experiments were approved by the South Birmingham Local Research 

Ethics Committee (07/Q2702/24).  All donors provided written informed consent for the 

collection of blood samples and subsequent analysis. 

 

2.1.3 Lymphocyte isolation from peripheral blood 

Peripheral blood samples were obtained by venepuncture and collected into heparinised 

syringes and processed as soon as possible.  Buffy coat samples were obtained from the West 
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Midlands Blood Transfusion Service.  Both were then diluted 1:1 with RPMI-1640 

(Invitrogen, UK), layered on top of 15mls of Lymphoprep™ (Axis-Shield UK, Huntingdon, 

UK) and peripheral blood mononuclear cells (PBMCs) were isolated by density gradient 

centrifugation.  PBMCs were harvested from the interphase and washed twice in RPMI-1640 

and then resuspended in RPMI-1640 supplemented with 10% FCS, 2mM L-glutamine and 

100U/ml penicillin-streptomycin (Sigma-Aldrich, UK) before counting using a FastRead 

102™ counting slide (Immune Systems Limited, UK).  Cells were then used immediately or 

cryopreserved for later use.  Plasma samples were also collected following density gradient 

centrifugation and stored at -20°C for CMV serotyping at a later date.   

 

2.1.4 Generation and maintenance of B95.8 transformed lymphoblastoid cell lines (LCLs) 

5 x 106 PBMCs were resuspended in 1ml of supernatant from the B95.8 cell line (provided by 

Al ison Leese).  Cells were incubated for 1 hour with gentle agitation every 15 minutes, before 

being washed twice in LCL media (RPMI-1640 plus 10%FCS, 2mM L-glutamine and 

100U/ml penicillin-streptomycin solution).  Cells were resuspended in 2mls of LCL media 

containing 0.5µg/ml cyclosporin A and plated out into 2 wells of a 48-well plate.  B cell 

transformation could be observed within one week and transformed cells were expanded until 

they could be maintained in 25cm2 tissue culture flasks (IWAKI) in 10ml LCL media. 

 

2.1.5 Generation and maintenance of fibroblasts 

Primary human fibroblasts from donors in the Institute of Cancer Studies had already been 

established from skin punch biopsies.  Briefly, skin biopsies were sterilely transferred to a 

100mm Petri dish and minced finely.  Tissue pieces were distributed into a 12-well tissue 

culture plate and fibroblast growth medium (DME medium supplemented with Hepes, 10% 
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FCS, and 100U/ml penicillin-streptomycin solution) was added.  Cells were fed by half 

medium change until they reached 80% confluence.  At this point the cells were passaged by 

removing the medium, washing with PBS and incubating in PBS containing 0.05% trypsin, 

0.02% ethylenediaminetetraacetic acid (EDTA) until cells detached from the plate.  Cells 

were collected by centrifugation and seeded into 25cm2 flasks.  Human foetal foreskin 

fibroblasts (HFFFs) (a kind gift from Dr. Naeem Khan) had previously been established and 

stored in liquid nitrogen. 

 

2.1.6  Maintenance and passage of human cells in culture 

All cell cultures were kept at 37° C with 5% CO2 in a Galaxy R humidified incubator (RS 

Biotech Irvine, UK). 

 

LCLs 

LCLs were maintained in LCL media and were fed once weekly by half medium change.  

Flasks were maintained at a cell density between 105 and 106 cells/ml.  Once established, 

LCLs were frozen in aliquots of 5×106 cells and transferred into liquid nitrogen for long-term 

storage. 

 

Fibroblasts 

Both primary human fibroblasts and HFFFs were maintained in flasks in fibroblast growth 

medium.  Cells were passaged when they reached around 80% confluence.  Aliquots of 5x106 

cells were frozen down and stored in liquid nitrogen for later use. 
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MLA-144 

The gibbon cell line MLA-144 is an established line derived from a spontaneous 

lymphosarcoma of gibbon (Rabin, 1981 #424). This cell line releases IL-2 and so supernatant 

was used as a source of T cell growth stimuli.  Cells were routinely maintained in standard 

media, but for the production of MLA supernatant, cells were cultured in standard media for 

two weeks in 150cm2 flasks without further feeding, after which time supernatant was 

harvested as described in section 2.1.3. 

 

Cytotoxic T lymphocyte (CTL) clones 

Clones were maintained in established clone media (RPMI-1640 supplemented with 10% B 

Cell Serum (BCS), 1% HuS, 30% MLA, 2mM glutamine, 100U/ml penicillin, 0.1mg/ml 

streptomycin and 50U/ml IL-2) in 24-well plates and were fed twice weekly by half medium 

exchanges.  Once cell numbers exceeded 106/ml clones were split into further wells. 

 

2.1.7  Cryopreservation of cells and revival of cryopreserved cells 

Cells were pelleted and resuspended in freezing media (90% FCS + 10% DMSO) at a 

concentration of 1-10 x 106 cells/ml and then aliquoted into sterile 1ml cryovials (Nunc).  

These were transferred to a “Mr Frosty” (Nalgene) and placed at -80°C to ensure a 

1°C/minute decrease in temperature for the cryovials.  The following day, cryovials were 

transferred to liquid nitrogen freezers for long-term storage.  

 

Revival of cells was carried out by placing frozen cryovials into a 37°C waterbath for rapid 

thawing, followed by washing the cells with RPMI-1640 + 10% FCS.   Cells were pelleted by 
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centrifugation before resuspending in appropriate media and transferred into a culture 

flask/plate.  

 

2.1.8  Mycoplasma testing 

Cell cultures were routinely screened for mycoplasma contamination by using a MycoAlert® 

kit (Cambrex), according to the manufacturer’s instructions.  
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2.2 VIRUSES AND ANTIGENS 

 

2.2.1 AD169 

AD169 is a laboratory strain of CMV which during extensive passage in vitro suffered a 

spontaneous 15-kb deletion in one end of the long unique (UL) region commonly referred to 

as the UL/b_ sequence.  This region is predicted to encode 23 ORFs designated as UL128–

UL150 (Dolan et al. 2004).  Consequently, both UL141 and UL142 are missing from strain 

AD169.  UL141 encodes an endoplasmic reticulum resident glycoprotein that acts to prevent 

surface expression of CD155 (also called poliovirus receptor), a ligand for NK cell-activating 

receptors CD226 (DNAM-1) and CD96 (TACTILE) (Bottino et al. 2003; Fuchs et al. 2004; 

Tomasec et al. 2005).  UL142 helps to protect HCMV-infected fibroblasts from NK cell 

attack by decreasing surface expression of most MICA alleles (Wills et al. 2005; Chalupny et 

al. 2006).  Finally, UL144, a TNFR homologue which inhibts CD4+ T cells is also absent 

from the AD169 virus strain.  AD169 is also unique in that it is unable to enter latency and 

nearly always assumes lytic growth upon infection.  

 

The AD169 strain of human CMV (a kind gift from Dr. Andreas Moosmann) was propagated 

in a human foreskin fibroblast cell line at a multiplicity of infection of 0.1.  Supernatants were 

harvested 5 days after 100% cytopathic effect (CPE) was observed by microscopy.  

Supernatants were frozen in 1ml aliquots and stored at –80°C.  Virus titres were determined 

by plaque assays in 12-well plates using 10-fold dilutions of virus. 
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2.2.2 Modified Vaccinia Ankara (MVA)  

An MVA construct containing pp65 was provided by Dr. Naeem Khan. Briefly, cDNA was 

made from RNA extracted from CMV-infected human fibroblasts.  The PCR product for pp65 

was digested with restriction enzymes and ligated with a modified version of the vaccinia 

virus shuttle vector pSC11.  Recombinant MVAs were generated by transfecting the pSC11 

plasmid into 106 primary chicken embryo fibroblasts (CEF).  The CEF were previously 

infected with wild-type MVA at an MOI of 0.1 in 25cm2 tissue culture flasks.  Recombinant 

MVA plaques were then selected by ß-galactosidase screening.  After six rounds of plaque 

purification, the viruses were expanded by infecting serially greater numbers of BHK-21 cells 

and were harvested after visible CPE occurred.  Virus stocks were resuspended in PBS and 

then subjected to three freeze-thaw cycles and sonication.  Cell debris was removed by low-

speed centrifugation prior to storage of the virus in aliquots at –80°C.  Virus titers were 

determined by plaque assay on CEF and/or BHK-21 cells.  Typical titers were 5x107 to 5x108 

pfu/ml.  A control MVA was also generated, which incorporated empty pSC11 plasmid 

sequences.  

 

2.2.3 Infection of cells with viruses 

 

2.2.3.1 Infection of fibroblasts with CMV 

Cells were seeded into 150cm2 tissue culture flasks at least 24 hours prior to infection.  Media 

was removed from the flasks and virus was added in 5ml of fibroblast growth medium.  Cells 

were incubated for 2 hours (37°C, 5% CO2) and flasks were rocked every 15 minutes.  

Following incubation, virus was removed from the cells and fresh media added.   
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2.2.3.2 Infection of LCLs with MVAs 

LCLs were counted and aliquoted into 15ml propylene tubes.  Cells were centrifuged and the 

pellets resuspended in 100µl of LCL growth medium to which an MVA construct had been 

added (MOI of 2:1).  Cells were incubated for 2 hours (37°C, 5% CO2) with gentle agititation 

every 15 minutes.  Following incubation, cells were washed and resuspended in growth 

medium. 

 

2.2.4 Generation of CMV lysate 

HFFF monolayers at 80% confluence were infected with the AD169 strain of human CMV at 

an MOI of 3 (pfu/cell) as described above.  Cells were incubated at 37°C, 5% CO2 and the 

supernatant was harvested and replaced with fresh media at 2-3 day intervals until full CPE 

was seen.  In addition some cells were harvested at 6 hours post infection by removing the 

medium and using a cell scraper to detach the monolayer.  Harvested supernatants and cells 

were stored at -80°C until all had been collected.   Supernatants were then defrosted and 

centrifuged at 18,368 x g for 2 hours at room temperature.  The pellets were resuspended in a 

small volume of RPMI-1640.  The suspension was sonicated and subjected to 3 rounds of a 

freeze/thaw cycle using liquid nitrogen.  Lysate was aliquoted and stored at -80°C until use.  

As a control mock lysate was also generated using the same method but with uninfected cells.  

 

2.2.5 Peptides 

Peptides were synthesised by Alta Biosciences (University of Birmingham, UK) and 

dissolved in DMSO.  Peptide concentration was determined by using biuret reagent (Sigma, 

UK) (see section 2.2.6).  A description of peptides used can be found in Tables 2-1 and 2-2. 
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Table 2-1: Table of peptides used for tissue culture 

Peptide Protein Peptide sequence HLA restriction 

A1 pp65 (UL83) KYQEFFWDANDIYRI (509-523) HLA-DR1/3 

A2 pp65 (UL83) AGILARNLVPMVATV (489-503) HLA-DRB1*0701 

A3 pp65 (UL83) PQYSEHPTFTSQYRIQ (361-376) HLA-DR11 

A4 pp65 (UL83) FTSQYRIQGKLEYRHT (369-384) HLA-DR11 
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Table 2-2: Table of peptides used for stimulation of CMV-specific T cell responses 

Peptide sequence HLA restriction CD8/CD4 

ATTFLQTMLRK A68 CD8 

KEVNSQLSL B40 CD8 

QIKVRVDMV B8 CD8 

DELRRKMMY B44 CD8 

ELRRKMMYM B8 CD8 

ELKRKMIYM B8 CD8 

KRKMMYMCY B27 CD8 

FPKTTNGCSQA B55 CD8 

CVETMCNEY A1/B18 CD8 

CRVLCCYVL B7 CD8 

YVLEETSVML 
A2 

(contains 2 epitopes: YVL & VLE) 
CD8 

RRIEEICMK B27 CD8 

EEAIVAYTL B44 CD8 

VLEETSVML A2 CD8 

DTPVLPHETR A68 CD8 

QPSLILVSQY B35 CD8 

YTPDSTPCHR A68 CD8 

CPSQEPMSIY B35 CD8 

VYALPLKML A24 CD8 

IPSINVHHY B35 CD8 

FVFPTKDVALR A68 CD8 

FPTKDVAL B35 CD8 

QYVKVYLESF A24 CD8 

RPHERNGFTVL B7 CD8 

QAIRETVELR B35 CD8 

QYDPVAALF A24 CD8 

YSEHPTFTSQY 

(HPTFTSQY) 

A1 

(also spans a B35 epitope) 

CD8 

TPRVTGGGAM B7 CD8 

NLVPMVATV A2 CD8 

RIFAELEGV A2 CD8 

PDVYYTSAFVFP DR7 CD4 

IIKPGKISHIMKL DR4 CD4 

PQYSEHPTFTSQYRI DR11 CD4 

FTSQYRIQGKLEYRH DR11 CD4 

AGILARNLVPMVATV DR CD4 

KYQEFFWDANDIYRI DR52 CD4 

VTEHDTLLY A1 (pp50) CD8 

DYSNTHSTRYV DR7 (gB) CD4 

VFETSGGLVVFWQGI DR7 (gB) CD4 

CMLTITTARSKYPYH DR4(gB) CD4 

HELLVLVKKAQL DR11 (gH) CD4 
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2.2.6 Biuret assay 

A standard curve was generated with serial dilutions of bovine serum albumin (BSA) 

dissolved in DMSO.  20µl of each dilution was transferred into duplicate wells of a 96-well 

plate along with 20µl of each sample of unknown peptide concentration.  180µl of biuret 

reagent was added to each well and the plate was incubated for 30 minutes at room 

temperature.  Plates were then centrifuged and 100µl of each well was transferred to a 96-well 

flat bottom plate.  The absorbance was measured at 540nm using a Victor plate reader 

(Wallac, Finland).  Concentrations of the unknown samples were then determined from the 

standard curve.   
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2.3 FLOW CYTOMETRIC ANALYSIS 

 

2.3.1 Analysis of surface antigens 

The cell surface phenotype of PBMCs, T cell clones and peptide lines was examined by flow 

cytometry.  Between 1x105 and 1x106 cells were used for each set of antigens examined.  

Additional cells were used for colour compensation and isotype controls.  Cells were washed 

in ice cold FACS buffer (PBS, 2% FCS) and aliquoted into wells of a 96-well V bottomed 

plate.  Centrifuging the plate at 400 x g for 3 minutes at 4°C pelleted the cells and the 

supernatant was discarded.  Cells were resuspended in 50µl of FACS buffer containing a 

Live/Dead® Fixable Dead Cell Stain (Invitrogen Molecular Probes) which stains dead cells so 

they can later be excluded from analysis.  Cells were then washed in ice cold FACS buffer, 

and incubated in HuS for 15 minutes to prevent non-specific binding.  Cells were washed x3 

in FACS buffer and then resuspended in 50µl FACS buffer containing the primary antibody.  

Cells were incubated at 4°C for 30 minutes before being washed x3 in FACS buffer.  If the 

primary antibody was directly conjugated to the fluorophore then the pellet was resuspended 

in FACS buffer, transferred to FACS tubes and analysed on the flow cytometer.  If the 

primary antibody was un-conjugated samples were incubated in 20µl mouse serum 

(DakoCytomation) for 20 minutes at 4°C before being washed x3 in FACS buffer and 

incubated with the conjugated secondary antibody diluted in 50µl of FACS buffer.  Cells were 

incubated for a further 30 minutes at 4°C before being washed and transferred to FACS tubes 

for analysis.  
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2.3.2 Analysis of intracellular cytokines and components 

To assess the production of intracellular interferon gamma (IFNγ) following antigenic 

stimulation the Intraprep intracellular staining kit was used according to manufacturer’s 

instructions.  Approximately   1 x 106 PBMCs were used for each condition and were 

aliquoted in 15ml propylene tubes in 0.5ml growth media.  Cells were stimulated with either 

CMV lysate (50µl), peptide (2µg/ml) or 0.5µg/ml staphylococcal enterotoxin (SEB) (Sigma-

Aldrich, UK) as a positive control.  Samples were incubated (37°C, 5% CO2) for 6 hours with 

10µg/ml of Brefeldin A (Sigma) added to each sample 1 hour after stimulation to prevent 

IFNγ being exported via the golgi apparatus.  Following incubation, cells were washed, 

transferred to a 96-well V bottomed plate, and stained for surface antigens using both 

conjugated and unconjugated antibodies (as described in section 2.3.1).  Cells were then fixed 

and permeabilised using the IntraPrep kit (Beckman Coulter) according to the manufacturer’s 

instructions.  1µl of α-IFNγ mAb (BD Biosciences) was then added to the wells and samples 

were incubated for a further 30 minutes (4°C).  Cells were washed x3 in FACS buffer and 

transferred to FACS tubes for analysis. 
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Table 2-3: Table of antibodies for flow cytometry 

Antigen Clone Fluorophore Isotype Source 
     

CD3 UCHT1 PC5 IgG1 Beckman Coulter 

CD3 SK7 AmCyan IgG1 BD Biosciences 

CD3 S4.1 APC IgG2a Caltag 

CD4 RPA-T4 FITC IgG1 BD Pharmingen 

CD4 RPA-T4 R-PE IgG1 BD Pharmingen 

CD4 13B8.2 PC5 IgG1 Beckman Coulter 

CD4 SK3 PerCP-Cy5.5 IgG1 BD Biosciences 

CD4 S3.5 Pacific Orange™ IgG2a Caltag 

CD8 B9.11 PC5 IgG1 Beckman Coulter 

CD8 RPA-T8 Pacific Blue™ IgG1 BD Pharmingen 

CD8 3B5 Qdot
®
 655 IgG2a Invitrogen Molecular Probes 

CD14 M5E2 Pacific Blue™ IgG2a BioLegend 

CD19 HIB19 Pacific Blue
®
 IgG1 eBioscience 

CD27 M-T271 FITC IgG1 BD Pharmingen 

CD28 CD28.2 ECD IgG1 Beckman Coulter 

CD45RA HI100 Alexa Fluor
®
 700 IgG2b BioLegend 

CD56 C5.9 R-PE IgG2b DakoCytomation 

CD56 HCD56 Pe/Cy7 IgG1 BioLegend 

CD158a HP-3E4 FITC IgM BD Biosciences 

CD158e1 DX9 FITC IgG1 BD Biosciences 

CD158e1 DX9 Biotin IgG1 BioLegend 

CD158i FES172 PE IgG2a Beckman Coulter 

CCR7 150503 APC IgG2a R&D Systems 

IFNγ 25723.11 FITC IgG2b BD Biosciences 

IFNγ 25723.11 PE IgG2b BD Biosciences 

IFNγ 4S.B3 Alexa Fluor
®
 700 IgG1 BioLegend 

     

     

CD158b GL183 Unconjugated IgG1 Beckman Coulter 
     

     

α-mouse IgG - R-PE Goat DakoCytomation 

α-mouse IgG1 - PC5 Goat Caltag 

α-mouse IgG - Pe/Cy7 Goat Santa Cruz Biotechnology 

α-mouse IgG - Pacific Blue™ Goat Invitrogen Molecular Probes 

α-mouse IgG - APC Goat Southern Biotech 
     

     

Streptavidin - R-PE - Invitrogen Molecular Probes 

Streptavidin - APC - Caltag 

Streptavidin - APC/Cy7 - BioLegend 
     

     

Negative mouse 

IgG1 control 

- Unconjugated - DakoCytomation 

Negative mouse 

IgG2a control 

- Unconjugated - DakoCytomation 

Negative mouse 

IgG2b control 

- Unconjugated - DakoCytomation 
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2.3.3 Colour compensation and isotype controls 

Flow cytometer settings were optimised for each set of cells analysed.  Isotype control 

antibodies were used for the different antibody isotypes used and the negative population was 

set on the basis of the isotype controls.  Colour compensation settings were adjusted for each 

experiment.  Single antibody stained cells were mixed with equal numbers of unstained cells. 

 

For experiments analysed on the BD LSR II cytometer, colour compensation was carried out 

using BD™ CompBeads (BD Biosciences) where appropriate.  Analysis was performed using 

BD FACSDiva software. 
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2.4 IMMUNOLOGICAL ASSAYS 

 

2.4.1    Production of T cell clones 

CMV-specific T cells were isolated using different methods (described in sections 2.4.1.1 – 

2.4.1.3) and then cloned by limiting dilution.  Once established, clones were amplified in 

order to produce large enough numbers to address their characteristics. 

 

2.4.1.1 FACsorting 

Cell sorting was employed to isolate CD4+ CD28- T cells.  PBMCs were stained with α-CD4 

phycoerythrin (PE) and α-CD28 fluorescein isothiocyanate (FITC) and then washed with 

sterile PBS (containing 2% FCS and no azide) prior to sorting using a FACS Vantage cell 

sorter (Becton Dickinson).  Single CD4+ CD28- cells were sorted into 96-well plates 

containing 200µl of cloning mix.  A 96-well plate with only cloning mix and no T cells added 

was used as a control.  After 14 days growing microcultures were expanded to 2ml cultures.   

 

2.4.1.2 Cytokine Secretion Assay (CSA) 

The IFNγ secretion assay (Miltenyi Biotec, Germany) was used to detect CMV-specific T 

cells based on antigen-triggered induction of cytokine production.  In this assay the secreted 

IFNγ is bound to the cell surface and then stained as an artificial surface molecule and 

analysed by flow cytometry.  The assay was performed according to the manufacturer’s 

instructions.  Briefly, PBMCs at 107cells/ml were incubated with 50µl of CMV lysate 

overnight (37°C, 5%CO2) or peptide (5µg/ml) or SEB (1µg/ml) for 3 hours.  Cells were 

washed with MACS buffer (PBS, 0.5% BSA, 2mM EDTA) and incubated with cytokine 
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capture reagent on ice before addition of PBMC medium.  Cells were then incubated for 45 

minutes under constant rotation (37°C, 5% CO2).  Samples were washed with MACS buffer 

before being stained with IFNγ detection antibody and then washed again before incubation 

with α–PE microbeads.  Samples were either passed through an autoMACS separator 

(Miltenyi Biotec, Germany) or through MACS MS separator columns (Miltenyi Biotec, 

Germany) and the positive fraction containing IFNγ secreting cells was collected.  Pre- and 

post-sort samples were stained with α-IFNγ, α-CD4, and α-CD8 monoclonal antibodies 

(mAbs) and analysed for purity by flow cytometry.  

 

2.4.1.3 Generation of polyclonal CTL lines 

PBMCs were isolated as described from fresh blood.  For lines using total PBMC, after the 

second wash with RPMI-1640 the cells were ready for peptide stimulation.  For CD4 lines, 

CD8+ cells were depleted using CD8 dynabeads (Dynal, UK).  Briefly, beads were washed 

twice in cold PBS prior to incubation with cells.  Cells were then incubated with CD8 beads at 

4°C on a tube rotator for 30 minutes (at a ratio of 4 beads: 1 CD8+ T cell, assuming that 33% 

of the PBMC population are CD8+ T cells).  Afterwards the separation was carried out using a 

Dynal magnet.  The purity of the separation was determined by staining the negatively 

selected fraction with an α-CD8 FITC conjugated mAb.  Subsequent flow cytometric analyses 

revealed excellent purity with less than 2% of the negatively-selected fraction being CD8+ 

cells.  In cases where lower levels of purity were observed, the selection process was 

repeated. 

 

Cells were resuspended in 100µl of RPMI-1640 containing 5µl/ml of peptide and incubated 

for 1-2 hours at 37°C.  Cells were then transferred to a 24-well plate and diluted in RPMI-
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1640 containing 2mM L-glutamine, 100U/ml penicillin-streptomycin and 5% autologous 

plasma.  The culture was restimulated with γ-irradiated autologous LCL pulsed with peptide 

at a ratio of 2:1 after 7 days.  Polyclonal CTL lines were screened by IFNγ enzyme-linked 

immunosorbent assay (ELISA) (as described in section 2.4.2) for antigen specificity before 

cloning by limiting dilution. 

 

2.4.1.4 Limiting dilution assay (LDA) 

A cloning mix was prepared which comprised cloning media (RPMI-1640 supplemented with 

10% HuS (Invitrogen), 2mM glutamine, 100 U/ml penicillin-streptomycin solution and 

50U/ml recombinant IL-2 (Chiron, Netherlands)) with 106/ml feeder cells (γ-irradiated            

(40 greys)) PBMCs pooled from 3 buffy coats) and 105/ml antigen presenting cells (APCs)           

(γ-irradiated autologous or HLA matched LCL pulsed with the appropriate antigen). 

 

Antigen-specific cells separated as described above were counted and plated out in 96-well U 

bottomed plates at dilutions of 0.3, 3 and 30 cells/well in 100µl of the cloning mix.  Cells 

were incubated for 3 days (37°C, 5% CO2) before 100µl/well of cloning media supplemented 

with 60% MLA was added.  Cells were then incubated for a further 2-3 weeks until cell 

growth could be identified. 

 

2.4.1.5 Buffy boost protocol for expansion of T cell clones 

Once established, clones were screened for antigen specificity using IFNγ ELISA (see section 

2.4.2).  CMV-specific clones were then expanded using the buffy boost protocol.  Briefly, a 

mix was prepared comprising established clone media (RPMI-1640 supplemented with 10% 
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BCS, 1% HuS, 30% MLA, 2mM glutamine, 100U/ml penicillin, 0.1mg/ml streptomycin and 

50U/ml IL-2) plus106/ml feeder cells (γ-irradiated (40 greys) PBMCs pooled from 3 buffy 

coats) and 105/ml APCs (γ-irradiated autologous, or HLA matched, LCL pulsed with the 

appropriate antigen).  Approximately 105 cells of each established clone (or one well from the 

96-well cloning plates) were placed into one well of a 24-well plate containing 2 ml of buffy 

boost mix. 

 

2.4.2 IFNγ ELISA 

IFNγ ELISA was used to screen clones for antigen specificity using production of IFNγ as a 

marker of recognition.  Autologous or HLA matched LCL served as APCs and were pulsed 

with CMV lysate or peptide or infected with MVA constructs expressing individual CMV 

proteins (see section 2.2.2).  APCs were also left untreated, pulsed with mock lysate, 

irrelevant peptide or infected with control MVA (MVA-pSC11).  5x104 /well APCs were 

plated out in a 96-well U bottomed plate in PBMC growth media.  T cell clones were washed 

in RPMI-1640 and between 1x102 and 2x103 of each T cell clone were added to the 

appropriate wells containing APCs.  Plates were then incubated for 16 hours (37°C, 5% CO2).  

 

On the same day, F96 maxisorp ELISA plates (Nunc, Denmark) were coated with α-human 

IFNγ mAb (Pierce, UK) diluted to 0.75µg/ml in coating buffer (0.1M Na2H2PO4) and 

incubated overnight (4°C).  Wells were then blocked by addition of 200µl of blocking buffer 

(PBS 1% BSA 0.5% Tween 20 (v/v)) and incubated at room temperature for 1 hour.  Plates 

were washed x3 with washing buffer (PBS 0.05% Tween 20 (v/v)) and 50µl of supernatants 

from the wells containing APCs/T cell clones were added to each well.  IFNγ standards were 
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prepared in PBMC growth media using two fold serial dilutions of IFNγ (Sigma) from 2ng/ml 

to 31.25pg/ml.  50µl of each standard were added in triplicate to the ELISA plates.  Plates 

were incubated for 3 hours at room temperature, after which they were washed x3 in washing 

buffer and then 50µl of biotinylated α-IFNγ (Pierce, UK) diluted to 0.375µg/ml in blocking 

buffer was added to each well.  Plates were incubated for 1 hour at room temperature 

followed by 3 washes.  50µl of ExtrAvidin (Sigma-Aldrich, UK) diluted 1:1000 in blocking 

buffer was added to each well and the plates incubated for 30 minutes.  Following this, plates 

were washed x8 in washing buffer before 100µl of 3,3’-5,5’-tetramethylbenzidine (TMB) 

(Tebu-Bio, UK) was added to each well.  Reactions were terminated after 20 minutes by the 

addition of 100µl 4M H2SO4/well.  The concentration of IFNγ in each well was quantified by 

determining the absorbance at 450nm, using a Victor plate reader (Wallac, Finland), and 

comparing the values to a standard curve constructed using the IFNγ standards.   

 

2.4.3 Chromium release assay 

To determine specific cytotoxicity of generated T cell clones standardised chromium release 

assays were performed.  Autologous and HLA mismatched LCLs served as target cells.  LCLs 

were infected with MVAs (MOI of 2:1) as described above and incubated for 16 hours 

following infection.  Alternatively, targets were loaded with 50µl CMV lysate for 12 hours 

prior to the assay.  In addition, LCLs were loaded with relevant or irrelevant peptide for 90 

minutes prior to the assay.  Following antigen-loading targets were incubated with 100µCi 

sodium chromate (Na2
51CrO4) (Amersham-Pharmacia Biotec, UK) for 90 minutes at 37°C, 

5% CO2 with agitation.  Targets were washed, counted and resuspended (25000 cells /ml) in 

growth medium.  100µl of each target were then added to wells of a 96-well V bottomed 

plate.  T cell clones were washed, counted and resuspended at the correct concentration before 
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being added in 100µl to the plate.  T cells (effectors) were used at 2 different effector/target 

ratios, 2.5:1 and 5:1 – each carried out in triplicate.  Maximum release was determined by 

incubation of radioactively labelled target cells with 1% SDS, and spontaneous release by 

incubation with medium alone.  Plates were incubated for 6 and 18 hours at 37°C, 5% CO2.  

After this time γ emission was quantified in 100µl culture supernatant using Packard Cobra 

gamma counter (Global Medical Instrumenatation, Minnesota, USA.)  Results were 

represented as percentage lysis and were calculated using the following formula; 

 

      % lysis =     Gamma count of sample – spontaneous gamma release           x 100 

    Gamma count of maximum release – spontaneous gamma release 
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2.5 MOLECULAR BIOLOGY 

 

2.5.1 Media and buffers 

LB media 

LB (Luria Broth) media was prepared by dissolving 20g/L of Lennox L Broth base powder 

(Invitrogen) in SDW and sterilised by autoclaving for 20 minutes at 15psi and 121°C. 

Luria agar (LB agar) 

LB agar was prepared by dissolving 20g/L of LB powder (Invitrogen) and 7.5g/L of LB 

Select Agar (Invitrogen) in SDW and sterilised by autoclaving for 20 minutes at 15psi and 

121°C. 

SOB/SOC media 

SOB media was prepared by dissolving 28g/L DIFCO-Bacto-SOB medium (Becton-

Dickinson) in SDW and sterilised by autoclaving for 20 minutes at 15psi and 121°C. 

SOC was made by adding 20ml of 20% glucose filter sterilised through a 0.2µM filter 

(Millipore) to 1L of SOB media.  

Antibiotics 

Ampicillin was made up as a 1000X stock at 100mg/ml in distilled water and filter sterilised 

through a 0.2µm filter (Millipore).  This was then stored in aliquots at -20°C. 

Tris/acetate buffered EDTA (TAE) 

TAE was prepared as a 50X stock by dissolving 242g of Tris base (Sigma), 57.1ml glacial 

acetic acid and 18.2g EDTA in 1L of SDW. 

Tris-EDTA (TE) 

A 1X TE stock was prepared as 10mM Tris-HCl pH8.0 with 1mM EDTA in SDW.  This was 

sterilised by autoclaving for 20 minutes at 15psi and 121°C prior to use.  
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2.5.2  DNA extraction from PBMCs 

DNA was extracted from PBMCs using the DNeasy™ Tissue Kit (QIAgen, UK) according to 

the manufacturer’s instructions.  Briefly, up to 5x106 cells were washed in PBS and pelleted 

by centrifugation at 145 x g, then resuspended in 200µl PBS.  20µl Proteinase K and 200µl 

lysis buffer were added to the mix to lyse cells and digest protein.  Proteinase K is also used 

to inactivate nucleases that might degrade the DNA during purification.  The sample was 

incubated at 70°C for 10 minutes, then 200µl ethanol (96-100%) were added to provide the 

appropriate binding conditions and the sample was applied to a DNeasy column where DNA 

binds to a silica gel membrane.  The column was washed and spun at 11,015 x g x3 before the 

DNA was eluted in 200µl of dH2O.  The purified DNA was quantified using a Nanodrop 

machine (Thermo Scientific), and stored at -80°C until needed. 

 

2.5.3 RNA extraction from PBMCs 

Total RNA was extracted from PBMCs using the RNeasy® Mini Kit (QIAgen, UK) according 

to the manufacturer’s instructions.  Briefly, between 2x106 and 5x106 cells were washed in 

PBS and pelleted by centrifugation at 17,900 x g.  Cells were resuspended, lysed and 

homogenized in a high denaturing guanidine-isothiocyanate buffer which functions to 

inactivate all RNases ensuring isolation of intact RNA.  Ethanol was then added to provide 

the appropriate binding conditions and the sample applied to an RNeasy.  Subsequent washing 

steps were carried out to eliminate contaminants before the RNA was eluted in 30µl of dH2O.  

The purified RNA was quantified using the Nanodrop machine, and stored at -80°C until 

needed. 
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2.5.4 cDNA synthesis 

5µg RNA was incubated with an oligo(dT)12-18 primer and 10mM deoxyribonucleotide 

triphosphate (dNTP) mix at 65°C for 5 minutes and then chilled on ice for a further 2 minutes.  

The RNA/primer mix was used for reverse transcription in a 20µl reaction at 42°C for 50 

minutes containing 50mM Tris-HCl (pH 8.3), 75mM KCl, 5mM MgCl2, 10mM dithiothreitol 

(DTT) and 50 units of Superscript II (Life Technologies, UK).  Reactions were terminated by 

incubation at 70°C for 15 minutes.  The presence of cDNA was verified by PCR amplification 

using primers specific for the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). 

 

2.5.5 Standard PCR amplification  

50µl reactions were set up containing <0.1µg of DNA template (e.g. 0.5µl of Qiagen plasmid 

miniprep), dNTPs (10mM), forward and reverse primers (~20pM) (see Table 2-4), DNA 

polymerase and the enzyme buffer recommended by the manufacturer.  All reactions were 

carried out using a thermocycler (Perkin Elmer) according to the following programmes :- 

 

KIR proteins 

94°C for 2 minutes 

94°C for 30 seconds 

61°C for 30 seconds 

72°C for 30 seconds 

72°C for 7 minutes.   

 

 

35 cycles 



                                                                                                                  Materials and methods 

- 84 - 
 

 

HLA proteins 

95°C for 3 minutes 

95°C for 1 minute 

61°C for 1 minute  

72°C for 1 minute 

 72°C for 10 minutes 

 

 

 

 

30 cycles 
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Table 2-4: Table of primers 

 

 

              Restriction site – CATATG = BamHI; GGATCC = NdeI 

Amplicon Forward primer Reverse primer 

KIR2DS2 AGTCGTCATATGCCACATCATGAGGGAGTCCACAG AGCTACGGATCCGGTTTTGGAGCTTGGTTCAG 

   

KIR2DL2 

SDM 1 
GGCCCACCCAGGTCGCCTGGTGAAATCAG - 

KIR2DL2 

SDM 2 
GCACAGAGAAGGGAAGTTTAAGGACAC - 

KIR2DL2 

SDM 5 
GGAGGCCCATGAATGTAGGTTCTCTGC - 

KIR2DL2 

SDM 7 
CTTGTTTCTGTCATAGGAAACCCTTC - 

   

HLA-Cw*0702 AGTCGTCATATGTGCTCCCACTCCATGAGGTATTTC AGCTACGGATCCTGGCTCCCAGCTCAGGGTGAGGGG 

   

E.coli optimised 

HLA-Cw*0702 

GGGAATTCCATATGGGTTCTCATTCTATGAGATATTTCGA

TACTGCTGTGTCCCGGCCCGGCCGCGGAG 

- 

   

T7 TAATACGACTCACTATAGGG TATGCTAGTTATTGCTCAG 
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2.5.6 Site-Directed Mutagenesis (SDM)  

PCR products were modified using a QuikChange® XL Site-Directed Mutagenesis Kit 

(Stratagene, CA) according to manufacturer’s instructions.  Briefly, a reaction mix of <0.1µg 

of DNA template, dNTPs (10mM), 0.125µg multiple primers (all forward) (see Table 2-4), 

QuikChange® Multi enzyme blend and QuikChange® Multi reaction buffer.  The reaction was 

carried out as the standard PCR but using the following cycling conditions :- 

95°C for 2 minutes 

95°C for 1 minute 

55°C for 1 minute 

65°C for 8 minutes 

68°C for 10 minutes 

Amplification products were Dpn I digested at 37°C for 1 hour to remove parental DNA. 

 

2.5.7 Bacterial strains  

The bacterial strains of Escherichia coli (E.coli) used in this work are detailed in Table2-5 

below :-  

35 cycles 
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Table 2-5: Table of E.coli strains used 

 

 

 

 

 

 

E.coli strain Genotype Source 

DH5α F- endA1 glnV44 thi-1 relA1 gyrA96 deoR nupG lacZdeltaM15 hsdR17 Stratagene 

BL-21 DE3 pLysS F
-
 ompT gal dcm lon hsdSB(rB

-
 mB

-
) λ(DE3) pLysS(cm

R
) Novagen 

One Shot
®
 Top 10   F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacΧ74 recA1 araD139 Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG λ- Invitrogen 
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2.5.8 Generation of competent bacteria 

Competent cells were prepared using the “Simple Efficient Method” (Inoue et al. 1990).  3ml 

of LB medium (10mg/ml Tryptone, 5mg/ml Yeast Extract, 10mg/ml NaCl) was inoculated 

with either DH5α or BL-21 DE3 pLysS strains of E.coli.  The cells were incubated overnight 

at 37°C shaking at 200rpm.  103 cells of the overnight culture were streaked onto an LB agar 

plate containing no antibiotics and incubated until colonies had reached a diameter of about 

5mm.  5–6 of such colonies were used to inoculate 125ml of SOB media (20mg/ml Tryptone, 

2.5mg/ml Yeast Extract 10mM NaCl, 3mM KCl), supplemented with 10mM MgCl2 and 

10mM MgSO4, in a 1 litre flask.  The cultures were grown at 18°C with shaking until the 

optical density (OD) at 600nm reached approximately 0.6.  At this point the cells were 

harvested by centrifugation at 4°C.  Cell pellets were gently resuspended in 80ml of cold 

SEM medium (15mM Pipes, 10mM CaCl2, 150mM KCl, 30mM MnCl2) and spun again.  The 

cell pellet was resuspended a second time in 20ml SEM media, this time containing 7% 

DMSO, aliquoted into sterile eppendorf tubes at 200µl per tube and snap frozen immediately 

in liquid nitrogen to be stored at -80°C. 

 

2.5.9 Transformation of competent bacteria 

1µl of plasmid was added to competent cells of the appropriate E.coli strain and incubated on 

ice for 45 minutes.  This was followed by a heat shock of 42°C for 1 minute and then brief 

chill on ice.  200µl of LB medium was added to each tube and cells were incubated at 37°C 

for an additional 45 minutes.  100µl of each tube was added to a petri-dish containing LB agar 

medium supplemented with 100µg/ml of ampicillin.  The cells were spread evenly across the 
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whole surface area of the agar and after 10 minutes plates were inverted and incubated 

overnight at 37°C.  The next day plates were checked for colonies. 

 

2.5.10     Preparation of plasmid DNA from transformed bacteria 

Bacterial colonies were picked and transferred into 15ml Falcon tubes containing 5ml of LB 

media containing 100µg/ml of ampicillin.  Cultures were then grown with constant shaking 

overnight at 37°C.  The following day the bacterial culture was pelleted by microfuge 

centrifugation and plasmid DNA then extracted using a QIAprep® Miniprep Kit following 

manufacturer’s instructions.  The kit is based on alkaline lysis of bacterial cells followed by 

adsorption of DNA onto a silica membrane in the presence of high salt.  DNA is then washed 

and eluted in Tris buffer.  The recovered bacteria were resuspended in 250µl resuspension 

buffer containing RNase.  250µl lysis buffer was added, mixed by inversion and allowed to 

stand for 5 minutes.  350µl neutralisation buffer was added and samples mixed immediately 

by inversion.  A precipitate formed which was cleared by centrifuging at 17,900 x g for 10 

minutes and the supernatant poured into a separation column.  After centrifugation the pellet 

was discarded and 750µl wash buffer added.  After standing for 1 minute, columns were 

centrifuged and the flow-through again discarded.  Columns were centrifuged for a second 

time to ensure all wash buffer was removed and DNA eluted into a fresh 1.5ml eppendorf 

tube with 30-50µl elution buffer.  The purified plasmid DNA was stored at -20°C for future 

use. 
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2.5.11    Restriction endonuclease digestion of DNA 

DNA was digested with specific restriction endonucleases (Roche Applied Science and New 

England Biolabs) using appropriate buffers as supplied by the manufacturers.  Reactions were 

carried out at 37°C for 1 hour. 

 

2.5.12    Agarose gel electrophoresis 

Separation of DNA fragments generated by PCR amplification was performed by agarose gel 

electrophoresis.  1.5% agarose in 1x TBE (0.09M Tris-Borate, 2mM EDTA) was cast into a 

gel and loaded with DNA samples diluted in 5x sample loading buffer (25%w/v sucrose, 

0.01% bromophenol blue, 0.01% xylene cyanol in 5x TBE buffer).  Gels were run for 

approximately 40 minutes at 140 volts.  Bands were visualized with ethidium bromide 

staining using an ultra-violet transilluminator and the size was estimated with reference to a 

100bp or 1kb molecular markers (Life Technologies, UK). 

 

2.5.13    Purification of DNA from agarose gels 

DNA fragments were excised from agarose gels with a scalpel and DNA extracted using a 

GENECLEAN® SPIN Kit (Qbiogene, Inc).  The kit is designed on the principle that DNA 

adsorbs to a silica gel membrane in the presence of high salt while contaminants pass through.  

Impurities are washed away and the DNA eluted in Tris buffer.  Briefly, the gel slices were 

added to 400µl GLASSMILK® in a spin filter and incubated at 55°C for 5 minutes (or until 

gel slice had melted).  A maximum of 300mg of gel can be added to each filter.  Samples 

were then centrifuged at 17,900 x g for 1 minute and the flow-through discarded.  500µl wash 

buffer was added to the filter and centrifuged again for 30 seconds.  Again the flow-through 

was discarded and samples were centrifuged to eliminate any residual wash buffer.  30µl 
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elution buffer was added to the column and the sample allowed to stand for 1 minute.  Finally 

columns were placed in fresh collection tubes, centrifuged, and the eluate containing the DNA 

stored for future use at -20°C.    

 

2.5.14    Alkaline phosphatase treatment of DNA  

Digested plasmid vector DNA was treated with shrimp alkaline phosphatase (SAP) (Roche 

Applied Science) in order to prevent recircularisation during subsequent ligation steps.  The 

reaction was carried out as per manufacturer’s instructions, using 1 unit of SAP per reaction 

for 1 hour at 37°C. 

 

2.5.15    Ligation  

DNA fragments with complementary overhangs were ligated to pGMT7 plasmid vectors 

through the action of T4 DNA ligase (Roche Applied Science).  DNA insert and vector DNA 

were mixed at a 10:1 ratio in a total volume of 20µl and incubated at 24°C for 6 hours, and 

then left at 4°C overnight. 

 

2.5.16    Sequencing  

Sequencing of DNA in a PGMT7 vector was carried out using an ABI PRISM BigDye® 

Terminator v3.1 Cycle Sequencing kit (Applied Biosystems).  1µg of DNA was mixed with 

3.2pmol/µl of T7 primer (forward or reverse) (see Table 2-4) and 8µl of Terminator Ready 

Reaction mix in a total volume of 20µl. The sequencing reaction was then carried out in a 

GeneAmp 9600 PCR system (Hewlett-Packard) using the following protocol :- 
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  96°C for 10 seconds 

  50°C for 5 seconds  

  60°C for 4 minutes 

4°C until precipitation. 

 

Sequencing sample precipitation was then carried out by adding 2µl of 3M sodium acetate 

(pH4.8) and 50µl of absolute ethanol to the reaction mixture, vortexing and incubating at 

room temperature for 30 minutes.  Afterwards sample tubes were spun at 17,900 x g for 20 

minutes, the supernatant aspirated and the pellets rinsed with 250µl of 70% ethanol.  Pellets 

were then air dried and stored at -20°C until needed.  Samples were resuspended in 10µl of 

HiDi formamide buffer and boiled for 5 minutes prior to sequence analysis, carried out 

commercially by the Department of Genomics, Department of Biosciences, University of 

Birmingham.  

 

 

 

 

 

 

 

 

 

 

 

25 cycles 
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2.6 TETRAMER PRODUCTION 

 

2.6.1 Protein synthesis 

KIR and HLA proteins were synthesized using standard methods (Garboczi et al. 1992; 

Altman et al. 1996).  Plasmids encoding KIR and HLA-C heavy chains (modified by 

substitution of the transmembrane and cytoplasmic domains by a BirA target sequence) and 

beta2 microglobulin (β2M) were used to transform chemically competent BL-21 (DE3) pLysS 

strains of E.coli.  Cells were plated overnight onto LB-agar plates using ampicillin as a 

selection agent.  The next day colonies were picked and grown in 4ml LB with ampicillin 

selection (100µg/ml) to test expression.  Cells were grown at 37°C with shaking until the OD 

at 600nm reached 0.4-0.6; at this point pre-induction samples were taken as controls, and 

protein expression was induced with  isopropyl-β-D-thiogalactopyranoside (IPTG) to 500µM.  

Following 3 hours incubation at 37°C, post-induction samples were taken.  Samples were then 

centrifuged, and cell pellets were resuspended in reducing SDS-PAGE loading buffer 

containing DTT prior to electrophoresis.  For large-scale expression, E. coli BL21 DE3 cells 

were transformed with the appropriate plasmid, and colonies were incubated in 10ml LB with 

ampicillin selection and grown at 37°C with vigorous shaking until cloudy.  Cultures were 

then transferred into 2L flasks containing 1L LB and incubated at 37°C for 4-6 hours 

induction with IPTG to 500µM at an OD600 between 0.4 and 0.6.  After 3 hours the cultures 

were incubated at 4°C overnight.    
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2.6.2 Protein purification   

Cultures were centrifuged, and cell pellets were resuspended in 50ml of ice-cold PBS.  Cell 

membranes were disrupted by several rounds of sonication after which the sample was 

washed in detergent buffer (50mM Tris.HCl, 0.5% Triton X-100, 100mM NaCl, 1mM EDTA, 

1mM DTT, 0.1% sodium azide & 1mM phenylmethylsulphonyl fluoride (PMSF)) by 

homogenisation with a glass homogeniser and centrifuged for 10 minutes at 26,892 x g in a 

centrifuge pre-cooled to 4°C.  The detergent wash and subsequent spin was repeated twice 

followed by a wash in resuspension buffer lacking detergent (50mM Tris.HCl, 0.5% 100mM 

NaCl, 1mM EDTA, 1mM DTT, & 1mM PMSF).  The supernatant was discarded and the 

pellet was solubilised overnight in 20ml denaturing buffer (8M urea, 50mM 2-(N-

morpholino)ethanesulfonic acid (MES) pH 6.5, 10mM EDTA & 2mM DTT) on a rotator.  

Insoluble debris was then removed by centrifugation at 21,782 x g for 15 minutes.  The 

supernatant was transferred to a fresh tube and dispensed into 1ml aliquots before snap 

freezing in liquid nitrogen.  The frozen protein preparations were stored at –80°C.  The yield 

of protein was determined by protein assay using known amounts of BSA as standards.  

 

2.6.3 Sodium-Dodecyl-Sulphate PolyAcrylamide Gel Electrophoresis (SDS-PAGE)   

SDS PAGE was carried out using the Bio-Rad minigel system.  Glass plates were first wiped 

clean in ethanol and then with sterile water.  Spacers were attached to the sides and the plates 

were clamped together and attached to a stand.  Two gel solutions were prepared: a separating 

gel (12% acrylamide, 0.375M Tris.HCl pH8.8 and 0.1% SDS) and a stacking gel (4% 

acrylamide, 0.125M Tris.HCl pH6.8 and 0.1% SDS).  10µl of Tetramethylethylenediamine 

(TEMED) and 50µl of 15% ammonium persulphate (APS) was added to the separating gel, 

which was mixed and then injected into the glass plates quickly.   Once the separating gel had 
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set, 5µl of TEMED and 25µl of APS was added to the stacking gel.  Once mixed, this was 

injected onto the top of the separating gel and the combs were inserted.  After the stacking gel 

had set the comb was removed and wells were washed with running buffer (25mM Tris.HCl 

pH8.3, 250mM glycine, 0.1%SDS) to flush out any unpolymerized acrylamide.  Samples 

were then prepared.  Each sample was mixed with an equal volume of loading dye (0.0625M 

Tris.HCl pH 6.75, 2% SDS, 10% glycerol, 5% mecapto-ethanol 0.001% bromophenol blue) 

and heated at 90°C for 5 minutes to allow proteins to denature.  The samples were then loaded 

onto the gel and run for 20 minutes at 200V.  Size determination was aided by also running a 

protein molecular weight marker on each gel.  Gels were stained in Coomassie blue solution 

(25% methanol, 7% acetic acid, 0.25% coomassie blue) for 30 minutes and then destained 

(30% methanol, 10 % acetic acid) for 3 hours before drying.  

 

2.6.4 Protein quantification – Bradford assay   

Protein quantity was estimated by performing a simple protein assay using known amounts of 

BSA as standards.  Briefly, dilutions of BSA ranging from 5µg/ml to 400µg/ml were added in 

triplicate to separate wells in a 96-well flat bottomed plate.  Then 100µl of 1 in 5 dilution of 

Bio-Rad protein assay reagent (Bio-Rad) was added to each well, and the plate was left at 

room temperature for 10min.  After this incubation, absorbances at 595nm were read using a 

plate reader and average values were calculated to derive a standard curve.  Dilutions of the 

refold fractions were simultaneously tested and absorbances measured.  The standard curve 

was used to calculate the protein concentration of each fraction tested. 
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2.6.5 Generation of protein monomers 

Proteins were renatured by dilution refolding, as opposed to dialysis methods, using the 

following buffer: 100mM Tris-HCL, 2mM EDTA, 0.4M L-arginine-HCL, 0.5mM oxidized 

glutathione, 5mM reduced glutathione, and 0.1mM PMSF, pH 8.3. 

 

KIR Proteins 

15mg KIR protein was added in 3 additions, an hour apart, to 250ml refold buffer at 4°C over 

a period of 3 hours.  The mixture was left for a further 24 hours stirring at 4°C before 

continuing with the next stage. 

 

HLA Proteins 

Heavy chain and β2M were refolded around the appropriate peptide (see Table 2-6) for 48 

hours at 4°C in refold buffer (as above).  6mg β2M were added to 250ml refold buffer and left 

stirring for 30 minutes.  Then 1.25mg of appropriate peptide were added followed by the first 

pulse of 7.5mg HLA-C heavy chain.  The following day, another 7.5mg heavy chain were 

added in the morning, and again in the evening.  On day 3, the last 7.5mg heavy chain were 

added, and the mixture was left for a further 24 hours before continuing.  Each 7.5mg addition 

was divided into 3 aliquots, added to 0.5µl DTT and diluted in 10ml refold buffer before 

being added dropwise to the refold to prevent protein precipitation. 

 

The refolding solution was incubated overnight and then concentrated down to a final volume 

of 4-8ml using a stirred cell and then ultrafiltration device (Amicon).  The buffer was 

exchanged into a biotinylation buffer (100mM Tris.HCl pH 7.5, 5mM MgCl2, 20mM NaCl, 

0.1mM PMSF) using a PD-10 column (Amersham Pharmacia, Bucks UK).  Biotinylation was 
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conducted overnight in the dark at room temperature in the following reaction mix: 5mM      

d-biotin, 5mM ATP, 5µg BirA enzyme.  The BirA enzyme was produced in E.coli as 

described previously (O'Callaghan C et al. 1999).   

 

Refolded protein was purified by size exclusion chromatography using Superdex S75 or S200 

columns equilibrated with 50mM NaCl, 20mM Tris-HCl, pH 8.0, using an AKTA FPLC.   

The heavy chain protein is highly susceptible to protease degradation.  In cases of such 

degradation one observes a lower molecular weight heavy chain band on SDS gels.  Therefore 

monomer integrity was analysed by SDS-PAGE. To minimize any protease activity, 

inhibitors (1µg/ml leupeptin and pepstatin, Sigma UK) were used at all stages.  Fractions 

constituting the main peak of protein eluting at an expected volume were subjected to 

trichloroacetic acid (TCA) precipitation.  Briefly, samples were incubated on ice, centrifuged, 

and pellets were washed in ice-cold acetone, followed by resuspension in either reducing or 

non-reducing SDS-PAGE buffer prior to electrophoresis.   
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Table 2-6: Table of peptides used to refold HLA monomers 

HLA allotype Peptide sequence Source protein 

HLA-Cw*0401 QYDDAVYKL Consensus peptide 

HLA-Cw*0401 QYDPVAALF CMV peptide – pp65 

HLA-Cw*0702 RYRPGTVAL MHC binder – histone H3.3 40-48 

HLA-Cw*0702 CRVLCCYVL CMV peptide - IE-1 

HLA-Cw*0702 AYADFVYAY MHC binder – Cw7 consensus 

HLA-Cw*0702 FAMPNFQTL MHC binder – Cw3 consensus 

HLA-Cw*0702 IPFPIVRYL MHC binder – Cw6 consensus 

HLA-Cw*0702 KYFDEHYEY MHC binder – CKShs2 11-19 

HLA-Cw*0702 KYPDFVDAL MHC binder – Cw7 consensus 

HLA-Cw*0702 YQFTGIKKY MHC binder – unknown Cw6 natural ligand 

HLA-Cw*0702 YRHDGGNVL MHC binder – unknown Cw6 natural ligand 

 

 

2.6.6 Protein ELISA to check conformation of folded monomers 

To confirm monomers were refolded in the correct conformation antibody recognition was 

tested. 

  

KIR Proteins 

Protein was added at various dilutions (neat to 1:1000000) to a F96 maxisorp ELISA plate in 

coating buffer and left at 4°C overnight.  The following morning the plate was washed x4 in 

PBS/Tween, and the protein blocked by addition of 5% milk.  This was left for 1 hour at 

37°C.  The plate was then washed again x4 with PBS/Tween and primary antibody (α-KIR) 
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was diluted in milk, added to the plate and left for 1 hour at 37°C.  Following the incubation 

the plate was washed x4 in PBS/Tween and the secondary antibody (α-mouse-HRP 

(horseradish peroxidise) (DakoCytomation)) diluted 1:2000 in milk added to the plate.  This 

was left for a further hour at 37°C before being washed for a final time with PBS/Tween.  

SIGMAFAST™ OPD (o-Phenylenediamine dihydrochloride) tablets were dissolved and 100µl 

added per well.  OPD is a soluble substrate for the detection of peroxidase, and is used in 

enzyme immunoassays as it is highly sensitive.  This was left for 20 minutes at room 

temperature, in the dark.  To stop the reaction 100µl sulphuric acid (H2SO4) was added and 

absorbance read at 490nm. 

 

HLA Proteins 

A F96 maxisorp ELISA plate was coated with W6/32 mAb (α-HLA class I) at ~1µg/ml and 

left for 1 hour at 37°C (or overnight at 4°C).  Wells were then blocked by addition of 200µl of 

blocking buffer and incubated at room temperature for 1 hour.  Plates were washed x3 with 

washing buffer and HLA proteins then added to wells at a range of dilutions from 1µg to 

0.0016 µg.  Plates were incubated for 1 hour at 37°C, after which they were washed x3 in 

washing buffer and then 50µl of extravidin-peroxidase diluted 1000x with blocking buffer 

was added to each well and the plates incubated for 30 minutes.  Following this, plates were 

washed x8 in washing buffer before 100µl of TMB was added to each well and the plates 

incubated for 10 minutes before the absorbance was read at 405nm.   

 

2.6.7 Generation of tetrameric complexes 

The quantity of refolded protein was estimated by performing a simple protein assay using the 

Bradford Assay (see section 2.6.4).  In addition an ELISA was performed to confirm that the 
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sample was biotinylated.  Serial dilutions of each fraction were added to wells in a 96-well 

plate and left for 1 hour at 37°C to allow the proteins to adhere to the wells.  Each well was 

then washed x4 with PBS containing 0.05% Tween and then twice with PBS only.  100µl of a 

1/1000 dilution of extravidin-peroxidase conjugate (Sigma, UK) in PBS with 0.1% BSA was 

added to each well.  This would bind to any wells with biotinylated proteins but not to non-

biotinylated proteins.  After 15 minutes incubation at room temperature, the wells were 

washed again x4 with PBS containing 0.05% Tween and then twice with PBS only.  

Afterwards 100µl of TMB substrate solution was added to each well.  The plate was left to 

allow for colour development.  The appearance of blue colour was indicative of biotinylated 

protein.  

 

Tetrameric complexes were then generated by addition of PE- or Allophycocyanine (APC)-

conjugated streptavidin (Molecular Probes) in a molar ratio of 1:4 to the biotinylated 

monomer over 3-4 days.  This was equivalent to adding 0.312µg of streptavidin-PE or 

0.087µg streptavidin-APC to 1µg of monomer.  Each tetramer was hereby designated 

according to the HLA type and first three letters of the presented peptide e.g. the tetrameric 

complex composed of HLA-Cw*0702, β2M and RYRPGTVAL peptide is referred to as Cw7-

RYR tetramer.    
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2.7 LUMINEX 

 

2.7.1 ONELAMBDA – HLA beads 

Binding of refolded KIR2DS2 and KIR2DL2 proteins to a broad panel of HLA-A, HLA-B 

and HLA-C allotypes was assessed using commercially available LABScreen single-Ag bead 

sets (One Lambda).  Cumulatively, the three sets encompass 29 HLA-A, 50 HLA-B, and 16 

HLA-C allotypes.  KIR proteins at a concentration ranging from 10µg/ml to 1mg/ml were 

incubated with LABScreen microbeads for 30 minutes at room temperature.  Beads were then 

washed three times and streptavidin-PE added to bind biotinylated KIR protein.  Fluorescent 

intensity and identification labels of the individual beads were visualised on a Luminex 100 

reader (Luminex).  A minimum of 200 events per Ag were collected.  The W6/32 (α-HLA 

class I) and 2M2 (α-β2M) antibodies were used as positive controls and to account for bead-

to-bead differences in the amount of HLA class bound to each bead.  Median values were 

normalised to the 75th percentile and the correction factor was determined for each bead.   

 

 

2.7.2 Conjugation of KIR and HLA proteins to Bio-Plex COOH microspheres 

Bio-Plex COOH microspheres (Bio-Rad) are carboxy-coated beads internally labelled with 2 

fluorescent dyes (xMAP technology), and so are spectrally distinct.  Beads were coupled to 

KIR and HLA proteins.  Briefly, 12,500 beads were mixed and added to protein monomers.  

These were left for 15 minutes, washed and resuspended in 500µl PBS.  50µl were then used 

per test.  Coupling was checked by addition of α-KIR or W6/32 Abs and analysis on the 

Luminex 100 reader.  Once it was confirmed that protein had been successfully conjugated to 

the beads tetramer binding was tested.  
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2.7.3 Luminex IS 2.3 software 

The Luminex 100 reader employs a software package – IS 2.3 to analyse the recorded data.    

Negative cut-off values for HLA antibody identification using the kits manufactured by both 

OneLambda, and Tepnel are arbitrary.  H&I at NHSBT in Birmingham use an approximate 

MFI of  >1000 to assign positive reactions.  However, as these Luminex assays were designed 

for an alternative use, it may be that the supplied software is not appropriate to use in this 

analysis.  Thus, all raw data was exported in parallel and reanalysed. 
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2.8 BIACORE 

Surface plasmon resonance (SPR) studies were carried out at 25°C in HBS-EP buffer using a 

BIAcore 3000 machine (BIAcore AB).  Briefly, streptavidin was immobilized on CM5 sensor 

chips at pH5.5 as described previously (Willcox et al. 1999) allowing subsequent oriented 

coupling of HLA monomers.  HLA was immobilized onto streptavidin-coated surfaces by 

injection at 5µl/min.  Reactivity towards KIR proteins was tested by injection of each KIR 

protein over HLA-C and control surfaces of either streptavidin alone or HLA-A2 immobilised 

to streptavidin.   
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2.9 STATISTICAL ANALYSIS 

Results were analysed using Graphpad Prism.  Intergroup comparisons were performed using 

the Mann-Whitney U test.  For multiple comparisons a Dunns multiple comparison test was 

used.  For comparisons between paired results, a Wilcoxon signed rank test was performed.  

When 3 or more groups were being compared one-way analysis of variance (ANOVA) was 

used.  All p values were two-tailed and considered significant if less than 0.05.  Relationships 

were tested by applying linear regression, and then correlation was tested for using 

nonparametric (Spearman) test and p values were two-tailed.  Results were presented using 

Graphpad Prism 4.0. 

 

Multivariate analysis 

Data was reanalysed using SPSS to carry out multivariate analysis in order to account for 

variable factors such as age and CMV serostatus.  Linear regressions and ANOVA tests were 

used.  All multivariate analysis was done in consultation with a statistician. 
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Chapter 3 

The interaction of 2DKIRs with their HLA-C ligands 

 

 

There remains some doubt as to the true nature of the ligands for the activating KIRs.  Based 

on sequence similarity, they would be expected to bind HLA-C with the same affinity as their 

inhibitory counterparts.  However, despite these similarities, the evidence for binding of the 

same ligands is quite weak.  Crystallography of KIR2DS2 indicated that the reason that 

KIR2DS2 tetramers did not bind HLA-Cw3 was due to subtle displacement of two residues: 

tyrosine (Tyr) at position 45 and glutamine (Gln) at position 71 (Saulquin et al. 2003).  

However, Stewart et al. used KIR tetramers to show increased binding of KIR2DS1 to EBV 

infected cells and through using blocking experiments they demonstrated that the ligand was 

HLA-C (Stewart et al. 2005).  Therefore it was proposed that KIR2DS1 binding to HLA-C is 

dependent on the upregulation of MHC class I expression on the cell surface following viral 

infection; – interestingly, infection of cells with CMV could not induce the same effect in this 

experiment.  It remains to be seen if this conclusion is the correct explanation for the 

differential binding of HLA-C by inhibitory and activating homologues (Stewart et al. 2005).   

KIR2DS2 has been shown to activate T cells when in the presence of the adaptor protein 
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DAP12 – the latter being crucial in differentiating the KIR from a co-receptor into a receptor 

capable of independently inducing cell activation (Snyder et al. 2004). 

 

Many studies of KIR genotype in relation to the development or natural history of different 

diseases have been performed, and the activating receptor KIR2DS2 has often emerged as an 

important factor in the control of disease progression.  In some conditions it is associated with 

disease severity such as rheumatoid vasculitis (Yen et al. 2001), Sjogren's syndrome (Lowe et 

al. 2009), type I diabetes mellitus (van der Slik et al. 2003), scleroderma (Momot et al. 2004) 

and psoriatic arthritis (Nelson et al. 2004).  In others such as chronic myeloid leukaemia 

(CML) (Middleton et al. 2009),  HIV-1 infection in adolescents (Lazaryan et al. unpublished 

data) and CMV reactivation post-transplant (Cook et al. 2005) it appears to have a protective 

role. 

 

In light of the finding of our group that KIR2DS2 plays a protective role against CMV 

reactivation I sought to investigate this receptor further.  Reagents to measure KIR2DS2 are 

limited and, apart from primers to genotype DNA, the antibody GL183 is somewhat limited in 

value as it detects not only KIR2DS2, but also KIR2DL2 and KIR2DL3.  My aim for the 

work presented in this chapter was to try and develop a KIR2DS2-specific antibody to allow 

investigation of KIR2DS2 expression in healthy individuals.  A second aim was to examine 

KIR2DS2 binding to HLA-C ligands.  As already mentioned existing data is somewhat 

lacking, and a better understanding of which proteins KIR2DS2 binds, with what affinity, and 

whether or not this is peptide dependent is essential for studying the role of this receptor in 

CMV and other diseases. 
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3.1 PRODUCTION OF RECOMBINANT 2D KIR PROTEINS 

Antibodies are invaluable reagents for biological research and are also emerging as important 

therapeutic agents for clinical use.  Mouse antibodies have been the mainstay of research to 

date but are seen as foreign by the human immune system which limits their in vivo efficacy.  

Recombinant and phage display technologies have emerged as useful applications for 

developing humanised antibodies.  Phage display is also used due to the high-throughput 

screening potential (Schofield et al. 2007).  I decided to attempt to employ this approach for 

the development of a KIR2DS2-specific antibody as the 2-domain KIR proteins KIR2DS2 

and KIR2DL2 are highly homologous.  There are only 10 nucleotide changes between the two 

proteins, four of which result in an amino acid change.  These are shown in Table 3-1 below.  

 

Table 3-1: Nucleotide differences between KIR2DS2 and KIR2DL2 

Nucleotide position Nucleotide substitution Amino acid change 

50 C → G Pro → Arg 

129 G → A - 

137 A → T Ser → Phe 

186 G → A - 

358 T → C - 

445 C → T Arg → Cys 

558 C → A - 

561 T → C - 

602 C → T Thr → Ile 

648 C → T - 
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In order to attempt to produce specific antibodies via phage display and investigate KIR 

interactions with their HLA ligands, recombinant KIR proteins were generated.  An E.coli 

expression system using the bacteriophage T7 promoter was employed (Tabor et al. 1985; 

Studier et al. 1986).  The KIR2DS2 and KIR2DL2 proteins consist of two Ig-like domains in 

their extracellular region.  Prokaryotic expression constructs (pGMT7, encoding KIR2DS2 

and KIR2DL2) were designed to encode a 230aa insert encompassing both Ig-like domains 

along with the stem and part of the transmembrane region (Figure 3-1). 

 

 

Figure 3-1: Schematic of KIR2DS2 and KIR2DL2 proteins.  (a) KIR gene 
organisation.  The coding regions of the exons are represented as blue boxes; their 
size in base pairs is shown in digits above them.  The pseudoexon 3 is shown in 
pink.  (b) KIR protein domain and region lengths.  The amino acid length of each 
region is shown in digits above the corresponding box. 
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RNA was extracted from a BW5147.3 cell line that had been transfected with a plasmid 

encoding KIR2DS2 (a kind gift from Prof. Eric Vivier).  Total cellular cDNA was synthesised 

by reverse transcription, from which KIR2DS2 cDNA was amplified via PCR using primers 

designed to incorporate NdeI and BamHI restriction sites (see Table 2-4).  This enabled direct 

cloning into pGMT7 expression vector after digestion of the PCR product with NdeI and 

BamHI.  Following amplification, a small amount of the PCR product was visualised as a 

DNA band using agarose gel electrophoresis.  An example of this is shown in Figure 3-2.       

 

 

 

 

Figure 3-2: KIR2DS2 PCR product.  Following PCR, 1µl amplified sample was 
separated using agarose gel electrophoresis.  Photograph shows the KIR2DS2 
product. 
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The remaining PCR product and the pGMT7 vector were subjected to restriction digest using 

NdeI and BamHI before being visualised on a gel.  Products of the correct size were excised 

from the gel and purified.  The digested vector was treated with SAP prior to ligation to 

prevent recircularisation.  Ligation products were then transformed into competent E.coli 

cells, and individual colonies were selected for further expansion before DNA extraction and 

sequence analysis were performed to validate the KIR2DS2 insert.   

 

Having successfully made the pGMT7-KIR2DS2 construct, primers were designed to 

incorporate the four nucleotide substitutions that resulted in amino acid changes (see Tables 

2-4 and 3-1) in order to express KIR2DL2.  A multi-SDM reaction was carried out using the 

Stratagene QuikChange kit.  The PCR product could not be verified on an agarose gel as it 

contained single stranded DNA after DpnI digest.  Therefore DNA was transformed 

immediately into Top10 cells and resulting colonies sequenced to check that all 4 nucleotide 

substitutions had been successful.  Five out of 25 colonies tested contained the substituted 

DNA sequence and these were subsequently analysed for expression of KIR2DL2 protein. 

 

Clones containing inserts with the correct sequence were taken forward to test for inducible 

protein expression.  In E. coli strain BL21(DE3), IPTG is known to induce the expression of 

T7 RNA polymerase gene and this enzyme can transcribe the KIR2DS2 gene under the 

control of the T7 promoter leading to expression of KIR2DS2 protein.  The level of KIR2DS2 

and KIR2DL2 protein expression was assessed using small test expression cultures and SDS-

PAGE to visualise induction.  Coomassie blue staining of the SDS-PAGE gel indicated 
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induction of protein producing bands at molecular weights between the 21 and 31 kDa marker 

bands, consistent with the molecular weight of the KIRs (24kDa) (Figure 3-3). 

 

 

 

Figure 3-3: SDS-PAGE analysis of 2DKIR test expression. For each protein, 
molecular weight standards are shown in the first lane with masses indicated in 
kDa.  Pre- and post-induction samples of (a) KIR2DS2 and (b) KIR2DL2 are 
shown in lanes 2 and 3 of each gel.  In post-induction samples an induced protein 
band can be seen between 21 and 31 kDa. 
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large pellet of insoluble material, consistent with accumulation of each protein in intracellular 

inclusion bodies, a phenomenon that occurs for many other Ig-domain proteins, including 

MHCs, TCRs and LIRs (Garboczi et al. 1992; Chapman et al. 1999).  Inclusion bodies were 

purified as described previously, by homogenisation in a detergent wash solution 

incorporating Triton X-100, and were finally solubilised in a denaturing buffer containing 

urea.  SDS-PAGE analysis of purified inclusion body pellets confirmed the presence of 

KIR2DS2 and KIR2DL2 (Figure 3-4) at relatively high purity. 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                          Results 

- 113 - 
 

 

 

Figure 3-4: SDS-PAGE analysis of KIR2DS2 and KIR2DL2 inclusion body 
preparations.  (a) KIR2DS2, (b) KIR2DL2.  For each protein molecular weight 
standards are shown in the first lane and inclusion body preparations in the second 
and third lanes (0.5µl and 1µl respectively).  The mass of molecular weight 
standards is shown in kDa. 

 

Dilution refolding was then used to renature natively folded KIR2DS2 and KIR2DL2, a 

technique that has proven successful for many other Ig-like domain-containing proteins 

(Snyder et al. 1999; Chapman et al. 2000; Willcox et al. 2002).  Renaturation was carried out 

in the presence of glutathione redox components to allow shuffling of disulphide bonds.  

During the process, an alkaline pH was maintained to promote formation of the active 

glutathione thiolate anion and hence disulphide exchange.  Also, L-arginine, an additive 
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the refolding buffer, and refolding was carried out at protein concentrations <100µg/ml to 

lessen concentration-dependent aggregation effects.  Folded protein was concentrated by 

ultrafiltration, the buffer exchanged on disposable PD-10 columns containing G25 resin, and 

the BirA enzyme substrate peptide (BSP) tag in pGMT7 vector was biotinylated by the BirA 

enzyme overnight. Size exclusion analysis of refolded samples of both KIR2DS2 and 

KIR2DL2 was performed using FPLC.  This resulted in a prominent peak of protein eluting at 

~220ml, an elution volume consistent with a molecular weight of ~24kDa (Figure 3-5a).  

SDS-PAGE analysis of peak fractions under reducing conditions revealed a single prominent 

band equivalent in motility to that of reduced KIR2DS2 and KIR2DL2 in a sample of 

solubilised inclusion body (Figure 3-4), confirming that the vast majority of protein in these 

peaks correctly corresponded to extracellular portions of 2DKIR proteins (Figure 3-5b). 
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Figure 3-5: Size exclusion chromatography and SDS-PAGE analysis of 
refolded KIR2DS2 and KIR2DL2. (a) Size exclusion chromatogram showing 
KIR2DS2 and KIR2DL2 elution profiles.  (b) SDS-PAGE analysis of KIR2DS2 
and KIR2DL2 samples TCA-precipitated from FPLC fractions.  Proteins are 
shown under both reducing and non-reducing conditions.  The mass of molecular 
weight standards is shown in kDa. 
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In order to verify correct folding of KIR2DS2 and KIR2DL2 proteins, refolded monomers 

were subjected to an ELISA to check for GL183 Ab recognition.  ELISA plates were coated 

with proteins overnight and then blocked with milk before the addition of GL183 Ab.  The 

KIR-specific antibodies HP-3E4 and DX9 were used as negative controls, as was an α-HLA-

A2 Ab.  An α-mouse-HRP secondary antibody was then added, and antibody binding detected 

with the use of OPD substrate.  As can be seen in Figure 3-6, both KIR2DS2 and KIR2DL2 

proteins are recognised by the GL183 Ab but not any of the control antibodies, indicating 

correct folding.  Recognition is apparent in the neat sample and at a 1:10 dilution, although 

lower concentrations of the proteins are undetectable by GL183 Ab.  Control HP-3E4, DX9 

and α-HLA-A2 Abs failed to recognise KIR2DS2 and KIR2DL2 proteins even at a high 

concentration, demonstrating protein-specific binding by the GL183 Ab. 
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Figure 3-6: Validation of refolded KIR2DS2 and KIR2DL2 by GL183 Ab 
ELISA.  Refolded monomers were coated on an ELISA plate and tested for 
GL183 Ab recognition. Irrelevant HP-3E4, DX9 and α-HLA-A2 Abs were 
included as negative controls.  Absorbance was read at 490nm.   

 

 

0

0.5

1

1.5

2

2.5

A
b

s 
4

9
0

n
m

Protein conc (µg/ml)

GL183

HP-3E4

DX9

α-HLA-A2

0

0.5

1

1.5

2

2.5

A
b

s 
4

9
0

n
m

Protein conc (µg/ml)

GL183

HP-3E4

DX9

α-HLA-A2

a.

b.

KIR2DS2

KIR2DL2



                                                                                                                                          Results 

- 118 - 
 

Finally a biotinylation ELISA was performed to prove that KIR monomers were biotinylated.  

Antibody production via phage display requires such a tag for selection and purification, and 

it would also be needed for the generation of KIR tetramers.  KIR2DS2 and KIR2DL2 

proteins were serially diluted and coated onto an ELISA plate.  An HLA-A2 monomer that 

was previously known to be biotinylated (as confirmed by tetramerisation and subsequent 

flow cytometric staining) was included as a positive control.  Wells were treated with 

extravidin-peroxidase and TMB substrate solution to detect biotinylated protein.   The result 

of this ELISA, shown in Figure 3-7 confirms that KIR2DS2 and KIR2DL2 monomers were 

highly biotinylated when compared to the HLA-A2 control. 

 

Figure 3-7: Biotinylation ELISA of KIR2DS2 and KIR2DL2.  KIR2DS2 and 
KIR2DL2 monomers were tested for biotinylation.  A previously generated    
HLA-A2 monomer was included as a positive control.  Absorbance was read at 
490nm. 
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3.2 PRODUCTION OF RECOMBINANT HLA-C1 AND HLA-C2 PROT EINS 

HLA-C alleles can be divided into two groups, HLA-C group 1 (C1) and HLA-C group 2 

(C2), based on their amino acid sequences in the α1 domain.  C1-group alleles have the amino 

acid serine (Ser) at residue 77 and asparagine (Asn) at residue 80, whereas C2-group alleles 

have the amino acid Asn at residue 77 and lysine (Lys) at residue 80 (Colonna et al. 1993).  

The inhibitory receptors KIR2DL2 and KIR2DL3 (CD158b) recognise C1-group alleles, 

while KIR2DL1 recognises C2-group alleles.  Although the amino acid sequences of 

activating KIRs (KIR2DS1, KIR2DS2 and KIR3DS1) suggest that they might bind to similar 

ligands as their inhibitory counterparts (KIR2DL1, KIR2DL2/3 and KIR3DL1 respectively), 

it has been difficult to show that activating receptors bind to these HLA-C ligands.  

 

In order to investigate HLA-C binding by the 2DKIR proteins, recombinant HLA-C proteins 

were also made.  As KIR2DS2 has high homology to KIR2DL2 which binds to HLA-C1-

group alleles, it has been predicted that this group will also be the ligand for the activating 

KIR (Saulquin et al. 2003; Stewart et al. 2005).  However a C2-group allele also needed to be 

expressed as a negative control.  Plasmids expressing HLA-Cw*0401 (C2-group) and HLA-

Cw*0702 (C1-group) were kindly donated by Dr. Katsumi Maenaka.  HLA-Cw*0401 was in 

a vector already containing a biotin tag (necessary for BIAcore analysis and tetramer 

production).  HLA-Cw*0702 however had to be subcloned into a vector containing the Bir A 

biotin-protein ligase sequence (pGMT7) in order to add a biotin tag.  Primers were designed 

to amplify the extracellular domain of HLA-Cw*0702 and also incorporate NdeI and BamHI 

restriction sites ready for cloning into the pGMT7 expression vector (see Table 2-4) as for the 

KIR proteins.  Following amplification, a small amount of the PCR product was visualised as 

a DNA band using agarose gel electrophoresis.  An example of this is shown in Figure 3-8.       
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Figure 3-8: HLA-Cw*0702 PCR product.  Following PCR, 1µl amplified 
sample was separated using agarose gel electrophoresis.  Photograph shows the 
HLA-Cw*0702 product. 

 

  

The remaining PCR product was cloned into pGMT7 via the NdeI and BamHI restriction 

sites.  DNA was transformed into Top10 cells and resulting colonies sequenced to check that 

the HLA-Cw*0702 insert was successfully generated.  Clones containing an insert with the 

correct sequence were then tested to see if protein expression could be induced. 
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The level of HLA-Cw*0401 and HLA-Cw*0702 protein expression was assessed using small 

test expression cultures and SDS-PAGE to visualise induction.  Coomassie blue staining of 

the SDS-PAGE gel indicated induction of protein bands at molecular weights between the 31 

and 45 kDa marker bands, consistent with the molecular weight of HLA class I heavy chain 

(~33kDa) (Figure 3-9). 

 

 

 

Figure 3-9: SDS-PAGE analysis of HLA-Cw*0401 and HLA-Cw*0702 test 
expression.  For each protein, molecular weight standards are shown in the first 
lane, masses indicated in kDa.  Pre- and post-induction samples of (a) HLA-
Cw*0401, (b) HLA-Cw*0702 are shown in lanes 2 and 3 of each gel.  In post-
induction samples an overexpressed protein band can be seen between 31 and 45 
kDa.  Lanes 4 and 5 of gel (b) show pre- and post-induction samples of the E.coli 
optimised HLA-Cw*0702 construct. 
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As shown in Figure 3-9a, there was clear expression of HLA-Cw*0401 post-induction.  

However the expression of HLA-Cw*0702 was considerably lower (Figure 3-9b, lane 3).  A 

method often used to overcome this is to alter the ORF of the DNA sequence to use 

alternative codon sequences which encode for the same amino acid, but are known to be more 

efficiently expressed in E.coli. (Williams et al. 1988; Makoff et al. 1989).  This can lead to 

enhanced expression of a protein with the same amino acid sequence.  Some organisms, 

especially bacteria, have a wide range of GC content and this reflects the types of amino acids 

they have and the codons they use preferentially for these amino acids.  Dong et al. showed 

that tRNA abundances in rapidly growing E.coli are correlated with the pool of available 

codons in a way that optimises translation rate (Dong et al. 1996).  It is evident that the 

synonymous codon choices of highly expressed genes have evolved to match tRNA.  This 

assumes that there are selective differences among synonymous codons that become stronger 

for proteins that are expressed more often.  Therefore the sequence of HLA-Cw*0702 in 

pGMT7 was adjusted to substitute for codons preferentially used by E.coli by redesigning the 

5’ primer (see Table 2-4).  Clones containing the E.coli optimised insert were tested for 

inducible protein expression.  Lanes 4 and 5 of the gel shown in Figure 3-9b demonstrate an 

improved yield of HLA-Cw*0702 protein expressed. 

 

Expression conditions were replicated on a 2L scale to obtain high yields.  As for the 

purification of the KIRs, inclusion bodies were purified and then solubilised in a denaturing 

buffer.  SDS-PAGE analysis of purified inclusion body pellets confirmed the presence of 

HLA-Cw*0401 and HLA-Cw*0702 (Figure 3-10).  Protein was also produced using the 

original untagged HLA-Cw*0702 plasmid obtained from Dr. Katsumi Maenaka and run on 

the gel as a positive control 
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Figure 3-10: SDS-PAGE analysis of HLA-Cw*0401 and HLA-Cw*0702 
inclusion body preparations. (a) HLA-Cw*0401, (b) HLA-Cw*0702 – Lanes 2 
and 3 show original untagged plasmid as a reference, lanes 4 and 5 show E.coli 
optimised sequence.  For each protein molecular weight standards are shown in 
the first lane and inclusion body preparations in the second and third lanes (0.5µl 
and 1µl respectively).  The mass of molecular weight standards is shown in kDa. 
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In order to obtain HLA-C ligands in their correct conformation, dilution refolding was carried 

out using the same principle as for the KIRs.  However, this time β2m and peptide (see Table 

2-6) were first added to the refold buffer, followed by heavy chain to generate stable peptide 

MHC complexes.  Refolding was carried out at protein concentrations <100µg/ml to lessen 

concentration-dependent aggregation effects.  Using this strategy, size exclusion analysis of 

refolded samples of both HLA-Cw*0401 and HLA-Cw*0702 resulted in a peak of protein 

eluting at ~155ml on an S75 column, an elution volume consistent with a molecular weight of 

~45kDa (Figure 3-11a).  SDS-PAGE analysis of peak fractions under reducing conditions 

revealed two bands equivalent in motility to that of reduced HLA-C heavy chains (~33kDa) 

and β2m (~12kDa) in a sample of solubilised inclusion body, confirming that the vast majority 

of protein in these peaks correctly corresponded to the extracellular regions of HLA-C 

proteins (Figure 3-11b). 
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Figure 3-11: Size exclusion chromatography and SDS-PAGE analysis of 

refolded HLA-Cw*0401-QYDD and HLA-Cw*0702-RYR. (a) Size exclusion 

chromatogram showing HLA-Cw*0401 and HLA-Cw*0702 elution profiles.  (b) 

SDS-PAGE analysis of HLA-Cw*0401 and HLA-Cw*0702 samples TCA-

precipitated from FPLC fractions.  Proteins are shown under both reducing and 

non-reducing conditions.  The mass of molecular weight standards is shown in 

kDa. 
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In order to verify correct folding of HLA-Cw*0401 and HLA-Cw*0702 proteins, refolded 

monomers were subjected to an ELISA to check for W6/32 Ab recognition.  W6/32 is a mAb 

used to characterise human HLA class molecules, which recognises a conformation-

dependent epitope on the intact MHC molecule, thus requiring the correct conformation of 

β2m and heavy chain.  ELISA plates were coated with W6/32 Ab and then blocked with 

blocking buffer.  The purified recombinant HLA-C proteins, as well as biotinylated HLA-A2 

as a positive control and an inclusion body as a negative control, were added to wells at 

concentrations ranging from 1µg to 0.0016µg.  Extravidin-peroxidase was added to each well 

to bind to the biotinylated proteins.  Binding was then detected by the addition of TMB 

substrate.  As can be seen in Figure 3-12 both HLA-Cw*0401 and HLA-Cw*0702 proteins 

are recognised by W6/32 Ab indicating correct folding.  Wells containing inclusion body or 

no protein as negative controls failed to be recognised by W6/32 Ab even at a high 

concentration, demonstrating conformation-specific binding.  Recognition of HLA-C protein 

is apparent in wells containing 1µg and 0.2µg, although lower concentrations of the proteins 

are undetectable by W6/32 Ab.  HLA-A2 was recognised with higher affinity, possibly due to 

the presence of a higher proportion of biotinylated protein.  This may be the case as HLA-C 

monomers were not subjected to ion exchange for the removal of protein which had not been 

biotinylated, as previous attempts resulted in the protein precipitating.   
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Figure 3-12: Validation of refolded HLA-Cw*0401 and HLA-Cw*0702 by 

W6/32 Ab ELISA.  W6/32 Ab was coated onto an ELISA plate to test 

recognition of HLA-C monomers. HLA-A2 was used as a positive control, and 

wells containing inclusion body and no protein were included as negative 

controls.  Absorbance was read at 405nm.   

 

 

To confirm the biotinylation of the HLA-C monomers, an ELISA was performed as 

biotinylation is necessary for the generation of tetramers.  HLA-C proteins were serially 

diluted in an ELISA plate and an HLA-A2 monomer that was previously known to be 

biotinylated and had subsequently been tetramerised and used for staining was included as a 

positive control.  The result shown in Figure 3-13 confirms that HLA-Cw*0401 and HLA-

Cw*0702 monomers were well biotinylated when compared to the HLA-A2 control. 
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Figure 3-13: Biotinylation ELISA of HLA-Cw*0401 and HLA-Cw*0702.  

HLA-Cw*0401 and HLA-Cw*0702 monomers were tested for biotinylation. A 

previously generated HLA-A2 monomer was included as a positive control.  

Absorbance was read at 490nm. 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 0.2 0.04 0.008 0.0016 0

A
b

s 
4

9
0

n
m

µg protein

HLA-Cw*0401-biotinylated 
 

HLA-Cw*0401 
 

HLA-Cw*0702-biotinylated 
 

HLA-Cw*0702 
 

HLA-A2-TPR 



                                                                                                                                          Results 

- 129 - 
 

3.3 INTERACTION OF KIR2DS2 AND KIR2DL2 WITH HLA-C 

Having successfully generated both 2DKIR receptors and HLA-C ligand proteins we wanted 

to investigate their interaction.  It is important to be able to show that the recombinant 

proteins have the same structure as their native counterparts, which is most easily done by 

confirming that the protein binds its natural ligands.  Therefore the proteins were subjected to 

SPR analysis which offers advantages for analysing weak macromolecular interactions (van 

der Merwe et al. 1994; van der Merwe et al. 1996).  In the absence of natural ligands mAbs 

that are known to bind to the native protein are an excellent means of assessing the structural 

integrity of the recombinant protein.  All monomers had been tested and shown to bind 

relevant mAbs prior to SPR analysis.  A BIAcore 3000 was used which is particularly well 

suited to evaluate the binding of recombinant proteins to natural ligands and mAbs.  

Biotinylated recombinant HLA proteins were immobilised onto a streptavidin coated binding 

surface and 2DKIR proteins were then injected over the HLA surface.  Injection of both 

KIR2DS2 and KIR2DL2 resulted in a substantial increase in the signal; however, this 

appeared to be non-specific as the increase seen for both HLA-Cw*0401 and HLA-Cw*0702 

was also observed in the negative controls (HLA-A2 and blank) (Figure 3-14). Injection of 

KIR2DL2 resulted in a higher level of binding to HLA-Cw*0401 than the blank chip, but in 

light of the other interactions observed this result was unreliable.  Following this, several 

experiments were carried out in order to try and optimise protein purity in case this was a 

factor.  Inclusion bodies were expressed in Rosetta cells as opposed to BL-21 but results 

remained unchanged. 
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Figure 3-14: Surface plasmon resonance analysis of recombinant 2DKIR proteins binding to HLA proteins.              
HLA-Cw*0401 and HLA-Cw*0702 monomers were immobilised to a streptavidin coated chip.  HLA-A2 and a blank 
containing no protein were included as negative controls.  KIR2DS2 and KIR2DL2 were injected over the HLA surface to test 
for binding. 

KIR2DS2 KIR2DL2
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Luminex technology was employed as an alternative approach to surface plasmon resonance.  

Recombinant KIR2DS2 and KIR2DL2 proteins were tested for binding to beads coated with 

single HLA class I allotypes (One Lambda single Ag beads).  Variation in the density of HLA 

antigens coupled to polystyrene beads for use in the Luminex assay is a key factor which 

hinders the interpretation of data provided by this technique.  Therefore in these assays the 

binding of 2DKIR proteins to each bead was normalised to the binding of monomorphic α-

HLA class I mAbs w6/32 and α-β2m to the same bead (Figures 3-15 and 3-16).  Median 

channel values were normalised to the 75th percentile and the corresponding correction factor 

applied for each bead.   
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Figure 3-15: Use of W6/32 Ab for correction of variability in HLA antigen density on Luminex beads.  W6/32 Ab was 
used at a range of concentrations to determine HLA antigen density on each bead.  Median channel values were then normalised 
to the 75th percentile and a correction factor obtained for each bead.  
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Figure 3-16: Use of 2M2 Ab for correction of variability in HLA antigen density on Luminex beads.  α-β2m Ab 2M2 was 
used at a range of concentrations to determine HLA antigen density on each bead.  Median channel values were then normalised 
to the 75th percentile and a correction factor obtained for each bead. 
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The binding of 29 HLA-A, 49 HLA-B and 15 HLA-C allotypes was independently assessed.  

2DKIR monomers were incubated with HLA class I coated beads at a concentration range 

from 1mg/ml to 10µg/ml before being washed and streptavidin-PE added for detection of 

binding.  Samples were then run on a Luminex 100 machine.  As can be seen in Figure 3-17 

both KIR2DS2 and KIR2DL2 proteins failed to bind any of the HLA coated beads.  To rule 

out any possibility that the streptavidin-PE did not bind the biotinylated KIR proteins, 

monomers were tetramerised prior to use in the assay.  The results when using KIR2DS2 and 

KIR2DL2 tetramers were unchanged from those achieved using the monomers and 

streptavidin-PE as a secondary Ab. 
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Figure 3-17: Luminex assay using One Lambda single antigen beads.  KIR2DS2 and KIR2DL2 tetramers tested for recognition against 
a panel of 93 beads each coated with a single HLA class I antigen.  Green bars represent a negative signal, whilst red bars are indicative of 
protein binding. 
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Negative cut-off values for HLA antibody identification using the kits manufactured by 

OneLambda are arbitrary.  H&I at NHSBT in Birmingham use an approximate MFI of >1000 

to assign positive reactions.  The application of negative cut-off values is a controversial area 

in the field of HLA antibody identification with a range of negative cut-off values in use in 

UK laboratories.  However analysis of the range of negative cut-off used by UK H&I 

laboratories quote values in the range of 500-2000MFI to assign positivity.  As this assay was 

not used for the application it was designed for, and HLA antibodies may well bind at a 

higher affinity, data was reanalysed and a cut-off figure determined using one standard 

deviation (S.D) away from the mean (Table 3-2a).  Using this cut-off several beads may be 

classed as positive (Table 3-2b), including HLA-C allotypes and some HLA-B allotypes 

(which may be plausible as they are highly homologous to HLA-C).   

 

Table 3-2: Reanalysis of Luminex data.  

a) Data statistics                       b) Beads classed as positive 

 

Mean 132.54 

Median 120 

Standard Deviation 44.57 

+1 S.D. 177.11 

Bead HLA 

38 B65 (Bw6) 

50 B37 (Bw4) 

72 B57 (Bw4) 

81 Cw1 

82 Cw2 

83 Cw3 

86 Cw4 

87 Cw5 

88 Cw6 

89 Cw7 

92 Cw14 

95 Cw17 

96 Cw18 



                                                                                                                    

 

 

Figure 3-18: Reanalysis of One Lambda Luminex assay.  
statistical analysis.  Bars above the red cut-off (+1 S.D from mean) were considered positive.
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Reanalysis of One Lambda Luminex assay.  Data from Figure 3-17 was re-graphed and cut
off (+1 S.D from mean) were considered positive. 
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To ensure the high concentration of 2DKIR protein used had not caused the beads to form 

duplets, the remaining samples were run on a flow cytometer.  As shown in Figure 3-19 all 

HLA beads could be seen as singlets.  At the same time the sample was checked for PE 

staining, but in accordance with the Luminex assay all samples were PE-negative. 

 

 

 

 

 

Figure 3-19: Possibility of duplet formation is excluded by flow cytometric 
analysis.  Remaining samples from the Luminex assay were analysed on a flow 
cytometer to ensure that all beads were singlets and examine PE staining.  The red 
laser excites both the internal red and infrared dyes allowing the proper 
classification of the microsphere (APC and APC-Cy7 channels).  The green laser 
excites any fluorescence associated with the binding of 2DKIR proteins (PE 
channel). 
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To validate the KIR tetramers PBMC were stained.  As shown in Figure 3-20 the tetramers 

stained a small percentage of NK and T cells (both CD8+ and CD4+) from an HLA-C1 

homozygous donor.  Percentages were lower than expected – presumably all T cells express 

HLA-C albeit at a much lower level (90% less) than HLA-A and HLA-B (Snary et al. 1977; 

Sodoyer et al. 1984; Gussow et al. 1987).  Only 5 donors were stained and their HLA-C type 

not tested.  It may be that donors did not possess any C1-group alleles, or were heterozygous 

C1/C2.  Also it may be the case that KIR binding is peptide dependent.  In the absence of 

HLA-C isoform-specific antibodies this could not be validated. 

 

 

 

 

Figure 3-20: KIR tetramer staining.  KIR2DS2 and KIR2DL2 monomers were 
tetramerised by the addition of streptavidin-PE.  PBMC from a HLA-C1 
homozygous donor were then stained using KIR tetramers and the percentage of 
tetramer+ cells recorded. 
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Assuming KIR proteins were correctly folded based on SDS-PAGE gels, antibody ELISAs 

and biotinylation ELISAs (Figures 3-5, 3-6 and 3-7) they were next checked for stability 

during the Luminex assay.  As before, an antibody ELISA was used to check for GL183 

recognition.  Samples that had been diluted in Luminex buffer were compared to neat 

monomer stocks.  As controls monomers denatured either by high temperature, urea or SDS 

were included along with inclusion body and wells containing no protein.  Figure 3-21 shows 

that samples diluted in buffer ready for the Luminex assay were no longer recognised by 

GL183 Ab.  Denatured proteins, inclusion bodies and wells containing no protein were all 

negative for GL183 binding. 
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Figure 3-21: Validation of KIR monomers in Luminex buffer.  KIR2DS2 and 
KIR2DL2 monomers were tested for recognition with GL183 Ab.  Stock 
monomer and samples that had been diluted in Luminex buffer were compared.  
Denatured protein, inclusion body and no protein were used as negative controls. 
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To overcome this, another Luminex assay was developed.  Both 2DKIR and HLA monomers 

were coupled to spectrally distinct Bio-Plex COOH microspheres.  Binding of 2DKIR and 

HLA tetramers to the beads was investigated.  Figure 3-22 shows KIR2DS2 and KIR2DL2 

were recognised by Cw7-CRV tetramer and Cw7-RYR (to a lesser extent).  There is some 

slight recognition by Cw4-QYDP after beads had been normalised and background excluded.  

In disagreement with the belief that KIR2DL2 binds only C1-group allotypes, HLA-Cw*0401 

refolded with QYDD peptide was recognised by KIR2DL2 tetramer and there was weak 

recognition when using KIR2DS2 tetramer.  This is interesting as it concurs with the data 

obtained from BIAcore experiments. 

 

     

Figure 3-22: Luminex assay using Bio-Plex COOH microspheres.  KIR2DS2 
and KIR2DL2 monomers were coated onto beads and tested for recognition with 
HLA tetramers and vice versa.  
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Somewhat surprisingly KIR2DS2 and KIR2DL2 were only seen to bind HLA-Cw*0702 when 

the KIR protein was on the bead and an HLA tetramer used.  This may be due to inefficient 

levels of HLA-Cw*0702 being coated onto the beads (data not shown).  In contrast KIR2DL2 

bound HLA-Cw*0401-QYDD when the HLA protein was on the bead and a KIR tetramer 

used. 
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3.4 EX VIVO RECOGNITION OF 2DKIRS USING HLA-C TETRAMERS 

HLA-C tetramers had been generated and were used to bind KIRs at the cellular level.  

Although not as useful a reagent as a specific KIR2DS2 antibody, there are potential 

advantages to the use of these novel tetramers, including the fact that they are a natural ligand.  

PBMCs were stained with HLA-C tetramers in order to see if any cells were positively 

stained.  The HLA-C tetramers did not stain lymphoid cells which were isolated directly ex 

vivo.  However, tetramers did not stain cells which were cultured in vitro for a period of at 

least seven days.  Figure 3-23 shows an example of staining by HLA-Cw*0401 tetramers in 

one donor.  After culture the percentage of tetramer-positive cells had increased in several of 

the culture conditions.  The addition of IL-2 to the culture made a profound difference to the 

percentage of lymphoid cells that were stained with the tetramer.  Within the T cell subset the 

staining was more profound in the CD8+ T cell subset where approximately 10% of cells 

showed positive staining, but there was also evidence of staining in the CD4+ populations.  

The addition peptide alone also increased the proportion of tetramer-positive cells although to 

a rather lesser extent.  The CW4-QYDD tetramer also stained more cells than the Cw4-QYDP 

reagent.  HLA-Cw*0702 tetramers were not able to stain lymphoid cells in any of the donors 

tested.  Collective data from 5 donors is shown in Figure 3-24. 
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Figure 3-23: HLA-C tetramer staining of peptide lines.  An example of    
HLA-C tetramer staining of PBMCs cultured for one week with or without 
peptide and IL-2.  Percentages are proportion of lymphocytes that are tetramer-
positive. 
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Figure 3-24: HLA-C tetramer staining of peptide lines.  Collective HLA-C tetramer staining from peptide lines of 5 donors. 
Percentages graphed are the frequency of lymphocytes that are tetramer+. 
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3.5 DISCUSSION 

The activating receptor KIR2DS2 shares 99% homology with its inhibitory counterpart 

KIR2DL2 (extracellular domains), making the generation of specific reagents to differentiate 

between these proteins a difficult task.  Recombinant KIR2DS2 and KIR2DL2 proteins were 

generated to attempt antibody production via phage display.  However with only four amino 

acid changes between the two proteins these attempts have so far proved to be unsuccessful. 

 

The aim of the work presented in this chapter was to investigate the interaction between the 2-

domain KIRs (KIR2DS2 and KIR2DL2) and their HLA-C ligands.  Recombinant KIR2DS2 

and KIR2DL2 proteins were successfully generated, as were HLA-Cw*0702 and HLA-

Cw*0401 which were chosen as examples of HLA-C group 1 and group 2 alleles.  Refolding 

HLA-C, especially HLA-Cw*0702 was not straightforward.  Standard conditions could not be 

used and even after optimisation SDS-PAGE analysis of peak fractions collected during 

FPLC revealed that the stoichiometry of the folded HLA molecule was not 1:1, β2m : heavy 

chain (Figure 3-11b).  Much less β2m than heavy chain was incorporated into the monomer.  

Despite this, monomers were all well biotinylated and recognised by W6/32 Ab.   

 

To examine binding, and assess whether or not interactions were peptide dependent, HLA-C 

monomers were refolded with a panel of peptides (Table 2-6).  BIAcore analysis of KIR2DS2 

and KIR2DL2 was attempted against HLA-Cw*0401 and HLA-Cw*0702.  However, in this 

assay the KIR proteins bound the ligands coated to the chip in a non-specific manner.   This 

may have been caused by problems immobilising the ligand proteins to the sensor surface.  

We also wondered whether protein purity could have an effect and so KIR proteins were re-
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expressed this time in Rosetta cells.  However, the resulting protein, although appearing purer 

on an SDS-PAGE gel did not improve the BIAcore results. 

 

The reasons for the failure to observe ligand binding by BIAcore are unclear as this is a very 

sensitive technique for studying protein interactions.  It was considered possible that my 

recombinant protein had mutations compared to the native sequence but this was excluded by 

sequencing of the expression plasmid.  Glycosylation-dependency of the KIR-HLA-C 

interaction is another possibility as proteins were generated in a prokaryotic expression 

system. 

 

An alternative approach to examine 2DKIR interactions with HLA-C was therefore 

undertaken.  A Luminex assay, based on a technique used routinely to measure HLA class I-

specific antibodies in patients after allo-transplantation, was adapted to measure recombinant 

KIR2DS2 and KIR2DL2 protein interactions with HLA-coated beads.  HLA class I was 

initially used to optimise the assay, but class II beads were also available and intended to be 

tested.  No binding was observed between KIR2DS2 or KIR2DL2 proteins and the HLA-

coated beads which raised further doubt over the integrity of the recombinant proteins that I 

had generated.  At this stage it became important to show that the proteins had been correctly 

folded but I was able to confirm this with an ELISA assay incorporating the GL183 antibody.  

However, when the GL183-based ELISA was performed with 2DKIR proteins diluted in 

Luminex buffer this recognition was lost.  This was unexpected as, although the exact 

composition of the commercially produced Luminex buffer is unknown, the only ingredient 

listed is 0.1% sodium azide.  During this project another group published data using this same 
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method, although they only investigated the inhibitory 2DKIR proteins.  Moesta et al. 

produced KIR2DL1-, KIR2DL2- and KIR2DL3-Fc fusion proteins as opposed to recombinant 

proteins and measured binding to the HLA class I coated beads (Moesta et al. 2008).  They 

successfully showed that KIR2DL2 bound all C1-group allotypes but also several C2-group 

allotypes (Cw*0501 and Cw*0202), and 2 HLA-B allotypes (B*4601 and B*7301) that share 

polymorphisms with HLA-C.  This novel observation confirmed the potential of the Luminex 

technology and has led to a reappraisal of the previous dogma of the 2DKIR binding pattern.  

 

A second Luminex assay was designed in which the recombinant KIR and HLA-C protein 

monomers were coupled to spectrally distinct COOH beads.  Interactions between these beads 

were then measured against tetrameric HLA-C or KIR proteins.  With this assay the 

KIR2DS2 and KIR2DL2 proteins were shown to bind to HLA-Cw*0702.  Recognition was 

seen with two different HLA-Cw*0702 monomers which had been refolded around the RYR 

and CRV peptides, although binding to RYR was much less marked.  Interestingly KIR2DL2 

was also observed to bind HLA-Cw*0401 QYDD, and the BIAcore experiments may back 

this up, although this needs readdressing. Although this interaction is in conflict with the 

‘KIR2DL2-C1’ and ‘KIR2DL1-C2’ paradigm, evidence is now emerging that the binding 

specificity of KIR ligands is not as well defined as had previously been believed.  The Parham 

group have shown that KIR2DL2 can recognise C2-group allotypes when polymorphisms 

occur at amino acids 16 (Pro→Arg) and 148 (Arg→Cys) (Dr. Paul Norman, personal 

communication).  These particular amino acids reside opposite the binding site and when 

substituted the positive charge causes the structure to bend and the binding site opens.   
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Recombinant protein monomers were also tetramerised to further investigate the KIR-HLA 

interactions.  KIR2DS2 and KIR2DL2 tetramers were used to stain PBMC.  A small 

frequency of cells stained positive, but this was a much lower percentage than might be 

expected by the number of cells expressing HLA-C.  It may be that KIR binding is peptide 

dependent and therefore only a fraction of HLA-C molecules on the cell surface will bind 

KIRs.  HLA-C tetramers were also synthesised and used to stain PBMC.  The frequency of 

cells detected initially was low, but in experiments carried out on cultured cells showed that 

the percentage of HLA-Cw4 tetramer-binding cells increased.  We observed that staining was 

highest in cells cultured with IL-2 and there is indeed evidence in the literature that CD158a 

and CD158b are upregulated by IL-2 (Kogure et al. 1999).  Cultured cells were tested with 2 

Cw4 tetramers containing different peptides.  We were interested to see whether binding was 

peptide dependent, and from the data there were different patterns of binding in some 

cultures.  However, this data is not yet conclusive and a larger panel of peptides needs to be 

examined to reach a better understanding. 

 

This chapter shows that much remains to be determined regarding the binding specificity of 

the KIR2D proteins.  To some extent, the interpretation will depend on the specificity of the 

technique that is used.  Ultimately it will be the molecular interaction at the cell surface that 

determines the functional significance of KIR protein binding but biophysical studies, such as 

those in this chapter, and reagents such as HLA-C tetramers, have the potential to generate 

important novel information. 
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Chapter 4 

The expression of Killer Immunoglobulin-like Receptors on T 

cells and other lymphocyte subsets 

 

 

As discussed in the introduction there has been little information so far relating to the pattern 

of KIR expression on cell types other than NK cells.  There have been numerous studies 

which have highlighted disease associations with specific KIR alleles (described in section 

1.1.2.7), but very little has been done to address what these receptors do and how they interact 

with their ligands at a cellular level.  Before these questions can be answered a clearer picture 

of the expression pattern of these receptors on different cell types needs to be gained, and it 

needs to be determined whether expression is stable over time, or if there are factors that can 

change expression levels.   

 

The role that KIR proteins perform on T cells is not fully understood, but signalling through 

KIRs on T cells may inhibit T cell receptor mediated activation and KIR expression has been 

suggested to be one mechanism of controlling T cell mediated immune responses (Phillips et 
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al. 1995). An aberrant pattern of KIR expression on T cells could thus be of importance in 

autoimmune as well as infectious disorders. 

One setting where NKR expression has been examined is in the elderly population.  It has 

been shown that there is increased frequency of some NKRs on T lymphocytes with age 

(Tarazona et al. 2000). It is not clear whether expression of all KIR antigens increases in this 

way and this information is essential to allow understanding of the role of KIR in disease as 

many of the conditions that KIRs have been associated with affect the elderly population. 

 

In light of our group’s observation that KIR2DS2 had a protective role against CMV 

reactivation in patients who had undergone a stem cell transplant, (Cook et al. 2005), I was 

also keen to investigate whether there is any relationship between CMV infection and KIR 

expression.  Although CMV encodes many genes that can influence MHC class I expression, 

no specific KIR has yet been shown to play an important modulatory influence on the 

immune response to CMV (Carr et al. 2002).  This may reflect a true absence of effect but 

may also be masked by the complexity of the polygenic interactions between CMV, MHC 

alleles, and the NK cell haplotype.  The aim of the work presented in this chapter therefore 

was to determine the pattern of KIR expression on T cells and other lymphocyte subsets in 

healthy donors and to investigate the effect that age and CMV have on this. 
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4.1 KIR EXPRESSION ON LYMPHOCYTE SUBSETS 

Previous studies examining KIR expression on lymphocytes have focussed mainly on the 

expression pattern on NK cells.  A few small studies have also shown expression on subsets 

of CD8+ and CD4+ T lymphocytes (Mingari et al. 1996; Ugolini et al. 2000; Lanier 2005).  

Therefore in an initial series of experiments the expression of KIRs was characterised on NK 

cells as well as major T cell subsets (CD8+, CD4+ and γδ), non-invariant NKT (NKT-like) 

cells and B cells to give a more complete overview of KIR distribution on these cell types.  

Lymphocytes from 10 donors were isolated and stained for typical cell surface markers to 

characterise each subset as shown in Table 4-1 and co-stained for KIR expression. 

 

Table 4-1: Cell surface markers used to identify lymphocyte subsets 

Lymphocyte subset Cell surface markers 

NK cells CD3
-  

CD56
+
 

NKT-like cells CD3
+ 

CD56
+
 

CD8
+
 T cells CD3

+
 CD8

+
 

CD4
+
 T cells CD3

+
 CD4

+
 

γδ T cells CD3
+
 γδ TCR 

B cells CD19
+
 

  

 

Using flow cytometry each lymphocyte subset was examined for KIR expression.  The 

antibodies that we used usually detect several KIR proteins due to the high degree of 

homology between receptors.  Specificities of the α-KIR Abs used in these experiements are 

summarised in Table 4-2.       
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Table 4-2: α-KIR antibodies and their specificities 

Antigen Ab clone KIRs detected Inhibitory Activating HLA ligand 

CD158a HP-3E4 KIR2DL1, KIR2DS1 � � HLA-C group 2 

CD158b GL183 KIR2DL2, KIR2DL3, KIR2DS2 � � HLA-C group 1 

CD158e1 DX9 KIR3DL1 �  HLA-Bw4 

CD158i FES172 KIR2DS4  � ?HLA-Cw4 
1
 

 

1 
Studies have indicated that KIR2DS4 may have a restricted affinity for HLA-C ligands interacting specifically  

and with low affinity with HLA-Cw4 rather than HLA-Cw6 (Katz et al. 2001).  More recently a non-class I MHC 

ligand for KIR2DS4 has been shown, on melanoma cell lines (Katz et al. 2004). 

 

In initial experiments antibodies specific to CD158a, CD158b, CD158e1 and CD158i were 

pooled to give total frequency of KIR expression on the lymphocytes.  Figure 4-1 shows an 

example of staining from 1 donor, representative of all 10 donors stained, with data from all 

10 donors summarised in Table 4-3. 
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Figure 4-1: KIR expression on lymphocyte subsets.  PBMC from healthy donors were stained for KIR molecules and other 
phenotypic cell surface markers.  KIR expression was examined on NK cells, NKT-like cells, CD8+ and CD4+ T cells, -γδ T 
cells and B cells.  (a) representative plots and  (b) histograms showing KIR expression on each lymphocyte subset is shown. 

NK cells NKT-like cells CD8+ T cells CD4+ T cells γδ T  cells B cells

K
IR

s
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a.

KIRs
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KIRs are predominantly expressed on NK cells, although NKT-like cells and -γδ T cells were 

also found to express KIR at frequencies of ~15% and ~10% respectively.   KIRs were also 

expressed on αβ T cells with approximately 10% of CD8+ T cells and 1.5% of CD4+ T cells 

staining positively with the KIR Ab mix.  Finally no or very few B cells were found to 

express KIR.   

 

Table 4-3: KIR expression on lymphocyte subsets 

Donor NK cells NKT-like cells CD8
+
 T cells CD4

+
 T cells γδ  T cells B cells 

1 81.25% 13.80% 12.54% 1.57% 11.42% 0.00% 

2 79.14% 15.26% 11.23% 0.95% 8.52% 0.15% 

3 90.84% 12.79% 9.32% 1.27% 7.98% 0.01% 

4 73.88% 14.73% 10.27% 1.33% 9.72% 0.76% 

5 69.36% 13.25% 14.19% 1.97% 10.28% 0.04% 

6 74.67% 12.07% 10.74% 1.69% 12.88% 0.09% 

7 91.54% 14.98% 11.62% 2.06% 9.29% 0.24% 

8 83.84% 15.06% 10.33% 1.84% 8.76% 0.09% 

9 78.96% 11.97% 9.84% 1.02% 10.05% 0.17% 

10 75.27% 16.51% 10.05% 1.30% 9.47% 0.37% 

Median 79.05% 14.27% 10.54% 1.45% 9.60% 0.12% 

 

T cells are important in the control of CMV replication and a number of studies are 

suggesting that KIR proteins may play important roles in the CMV-specific immune response.  

KIR2DS2 expression has a role in suppression of CMV reactivation (Cook et al. 2004; Cook 

et al. 2005), and increased expression of KIR has been seen on CD4+ CD28- cells in patients 

with rheumatoid arthritis.  It is now appreciated that this T cell subset is almost exclusively 

CMV-specific (Namekawa et al. 2000; Yen et al. 2001).  Interestingly, Ly49 is a functional 
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ortholog of KIR in mice and has been shown to act as a murine ligand for CMV (Adam et al. 

2006).  A better understanding of KIR expression by T cells in healthy donors is needed.  I 

therefore sought to examine the KIR phenotype of CD4+ and CD8+ T cells more closely and 

went on to determine the influence of CMV seropositivity on this profile.  NK cells were 

included in experiments as a comparison.   Blood samples were collected from 100 donors, 

and lymphocyte subsets were stained with α-KIR Abs to measure the frequency of cells 

expressing KIRs.  The percentage of total KIR+ cells in the subsets is shown for each donor in 

Figure 4-2.  KIRs were expressed on significantly higher numbers of NK cells (median of 

42%) than T cells, and within the T cell subset, significantly more CD8+ T cells expressed 

KIRs than CD4+ T cells (median values of 15.5% and 6.7% respectively).  These findings are 

in agreement with current literature (van Bergen et al. 2004). 
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Figure 4-2: Total KIR expression on NK cells and T cells.  PBMC from 
healthy donors were stained with Abs specific for KIRs and other phenotypic cell 
surface markers.  Percentage of cells expressing KIRs was measured within NK 
cells, CD8+ and CD4+ T cells.  Dead cells, monocytes and B lymphocytes were 
excluded using a ‘dump channel’.  Plotted values are the percentage of KIR+ cells 
within each lymphocyte subset.  A Dunn's Multiple Comparison test was carried 
out to determine whether the median values were significantly different.   
*** = p <0.001 

 

To define which KIRs were expressed on T cells and NK cells, an 11 colour Ab staining panel 

was developed.  This included all four antibodies specific for KIRs (CD158a, CD158b, 

CD158e1 and CD158i), phenotyping antibodies to identify the lymphocyte subsets and a 

‘dump channel’ to exclude dead cells, monocytes and B cells.  The same 100 donor panel was 

analysed with this panel and individual KIR expression was measured on lymphocyte subsets.  

Figure 4-3a shows example staining from one donor, and Figure 4-3b shows the collective 

data from all 100 donors.  A similar pattern is observed as for the combined KIR staining 

shown in Figure 4-2.  For each KIR, expression is more frequent on NK cells, followed by 

CD8+ T cells and then CD4+ T cells. 
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Figure 4-3: Individual KIR expression on NK and T cells.  KIR expression was 
measured on NK, CD8+ and CD4+ T cells.  (a) Representative staining data from 
one donor.  The percentage of each lymphocyte subset expressing that KIR 
receptor (quadrant Q2) is shown.  NK and T cells were stained in different 11-
colour Ab panels and two different secondary Abs were used to detect CD158b.  
(b) Collective data from 100 donors.  Comparisons between the groups were 
analysed using a Dunn’s Multiple Comparison test.    
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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Multivariate analyses were also performed to ensure differences seen were not influenced by 

other factors such as CMV serostaus and age.  ANOVA yielded a clear difference in KIR 

expression between NK, CD8+ T and CD4+ T cells (p <0.001), which was subsequently 

confirmed by univariate analyses for total KIR and each KIR separately (all p <0.001).  KIR+ 

cells were always more frequent within the NK subset than either CD8+ or CD4+ T cell subset 

(all p <0.001).  A larger proportion of CD8+ T cells were KIR+ than CD4+ T cells; the largest 

difference was seen for total KIR, CD158b, and CD158e1 expression (all p <0.005) whereas 

somewhat smaller differences were observed for CD158a and CD158i (all p <0.05).  These 

effects remained unaltered after adjustment for CMV status and age. 

 

When lymphocytes were stained with the α-CD158e1 Ab (DX9), some donors showed two 

clear lymphoid populations which stained with different intensities.  This has been attributed 

to the antibody binding differentially to polymorphic KIR3DL1 molecules (Gardiner et al. 

2001).  The bright population stains ‘KIR3DL1*015-like’ molecules due to stronger binding, 

and the dim population binds ‘KIR3DL1*005-like’ allotypes that have one or two amino acid 

substitutions out of four possible at residues 182, 283, 320, and 373.  These changes are 

enough to result in a lower binding affinity.  KIR3DL1*004 does not stain with DX9 Ab and 

has substitutions at all four positions (Gardiner et al. 2001).  However when donors stained 

positively for both sets of molecules they were not uniformly expressed across the different 

cell subsets.  Figure 4-4 illustrates the pattern of CD158e1 staining.  Figure 4-4a shows the 

percentage of each lymphocyte subset staining positive with the DX9 Ab.  Example FACS 

plots from two donors are shown in Figure 4-4b.  It can be seen that NK cells mostly have one 

positively-stained population, whereas CD3+ T cells have two.  Collective data from all 

donors is illustrated in Figure 4-4c.  NK cells were seen to almost exclusively express the 
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poor-binding allotypes (95% : 5%), whereas expression on T cells was more balanced (60% : 

40%).  Upon closer inspection CD8+ T cells appeared to mainly express those poor-binding 

allotypes (70%), although expression is not as homogenous as on NK cells.  CD4+ T cells 

appeared to have a much more heterogeneous repertoire with almost equal levels of poor-

binding allotypes to strong-binding (55% : 45%). 
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Figure 4-4: Differing CD158e1 allotype expression on NK and T cells.           
(a) Total CD158e expression on NK and T Cells.  (b)  CD158e positivity was 
divided into 2 populations – those KIR3DL1 alleles that were strong binding 
(bright) and those that were poor binding (dim).  Plots are gated on all 
lymphocytes.  (c)  Frequencies of bright and dim-staining cells are shown as a 
percentage of total CD158e1+ cells within each cell type.  One-way ANOVA 
analysis was carried out to test for significance.  *** = p < 0.001 
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It has been shown that functionally, these subtypes of KIR3DL1 differ in inhibition signal 

strength (Carr et al. 2005).  This along with data from this study is summarised in Table 4-4. 

 

 

Table 4-4: Characteristics of KIR3DL1 subtypes 

KIR3DL1 

allotypes 

DX9 Ab 

binding 

Inhibition 

signal 

strength 

Expression 

Proportion 

of CD158e1
+ 

NK cells 

Proportion 

of CD158e1
+
 

CD8
+
 T cells 

Proportion  

of CD158e1
+
 

CD4
+
 T cells 

*001, 002, 

008, 009, 

015, 020 

Bright High Cell surface 5% 30% 45% 

*005, 006, 

007 
Dim Low Cell surface 95% 70% 55% 

*004 Negative Null 
Sequestered

 
 

within cell 
- - - 
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4.2 KIR EXPRESSION ON T CELL MEMORY SUBSETS 

Few studies have examined the pattern of KIR expression on individual subsets of memory T 

cells.  In 2001, Anfossi et al. showed that KIR+ T cells exhibited a memory effector 

phenotype with no expression of CCR7 and only low levels of CD27 and CD28 (Anfossi et 

al. 2001).  It has also been suggested that the expression of KIR on T cells is more restricted 

than the expression of other NKRs with, again, preferential expression on the CD28- subset 

(Abedin et al. 2005; Vallejo 2006; 2007).  

 

To perform a more detailed analysis of how memory subset profile influenced the frequency 

of KIR expression my 11 colour antibody panel was employed to examine KIR expression on 

CD8+ and CD4+ T cell memory subsets.  In order to characterise T cell memory subsets I used 

the markers of CCR7 and CD45RA (Table 4-5).   

 

 

Table 4-5: Cell surface markers used to classify T cell memory subsets 

T cell memory subset Cell surface markers 

Naïve CCR7
+
 CD45RA

+
 

TCM CCR7
+
 CD45RA

-
 

TEM CCR7
-
 CD45RA

-
 

TEMRA CCR7
-
 CD45RA

+
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PBMCs from 50 donors were studied by FACS analysis.  Dead cells, monocytes and B cells 

were excluded from analysis but a selection gate was set around CD3+ T cells.  CD8+ and 

CD4+ T cell memory subsets were further gated as described in Table 4-3, and the frequency 

of KIR expressing cells recorded for each of these subsets.  Figure 4-5 shows the frequency of 

total KIR expression observed for each of the T cell subsets. 

 

Figure 4-5: T cell differentiation leads to an increase in total KIR positivity.  
KIR expression was measured on CD8+ and CD4+ T cell memory subsets. Dead 
cells, monocytes and B lymphocytes were excluded using a ‘dump channel’.  
Plotted values are the percentage of KIR+ cells within each subset.  A Dunn's 
Multiple Comparison test was carried out to determine whether the median values 
are significantly different.  *** = p < 0.001, ** = p < 0.01, * = p <0.05 
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In the CD8+ compartment, effector memory ‘revertant’ CD45RA+ T cells (TEMRA) were seen 

to have a 3-fold increase in the frequency of KIR expression when compared to naïve T cells, 

while in the CD4+ compartment a 6-fold increase in frequency was observed when compared 

to the naïve population.  KIR expression by the other CD8+ memory subsets is varied, with 

central memory T cells (TCM) more frequently expressing KIR when compared to effector 

memory cells (TEM) (median expression of 13% vs. 8.6%).  However, in the CD4+ T cell 

subsets an increase in the frequency of KIR+ cells was observed as cells move along the 

‘classical differentiation’ pathway from N → TCM → TEM.  As discussed above, the highest 

concentration of KIR expression is seen on TEMRA cells.  

 

As well as total KIR expression, I also examined expression of the four individual KIR 

proteins on the different T cell memory subsets was also measured.  As can be seen in figure 

4-6, the pattern of expression of the four individual KIRs on CD8+ T cells was similar to that 

of the total KIR.  The frequency of KIR expression increases with the transition from naïve 

cells to TCM, decreases in the TEM subset before increasing greatly within the TEMRA 

population. 

 

Figure 4-7 shows KIR expression analysis on CD4+ T cells.  Again, the pattern seen with total 

KIR expression remains the same when looking at each of the KIR antigens individually.  

Frequency of KIR expression increases gradually as naïve cells undergo transition to TCM and 

then TEM.  There is then a huge increase in the frequency of KIR+ cells within the TEMRA 

population.  However, in contrast to the total frequency of KIR expression, CD158i appears to 

be downregulated on TCM relative to the naïve population. 
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Figure 4-6: CD8+ T cell differentiation is associated with an increase in 
frequency of all individual KIRs.  Individual KIR expression was measured on 
CD8+ T cell memory subsets. Dead cells, monocytes and B lymphocytes were 
excluded using a ‘dump channel’.  Plotted values are the percentage of KIR+ cells 
within each subset.  A Dunn's Multiple Comparison test was carried out to 
determine whether the median values are significantly different.   
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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Figure 4-7: CD4+ T cell differentiation is associated with an increase in 
frequency of most individual KIRs.  Individual KIR expression was measured 
on CD4+ T cell memory subsets. Dead cells, monocytes and B lymphocytes were 
excluded using a ‘dump channel’.  Plotted values are the percentage of KIR+ cells 
within each subset.  A Dunn's Multiple Comparison test was carried out to 
determine whether the median values are significantly different.   
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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4.3 KIR CO-EXPRESSION ON T CELL MEMORY SUBSETS 

The ability to determine the expression of the four KIR determinants simultaneously enabled 

analysis of the co-expression of these receptors.  This type of study has not previously been 

reported and so KIR+ cells were examined for expression of single or multiple types of KIRs.  

The pattern of expression was also examined during differentiation to see if it remained 

stable. 

  

The initial analysis was performed on CD8+ T cells.  KIR+ cells were divided into four groups 

– those that stained positively for 1, 2, 3, or all 4 KIR antibodies respectively, and the 

percentages of each T cell memory subset that fell into each group were determined.  Figure 

4-8a shows the results of this analysis with the proportion of KIR+ cells staining with 1, 2, 3 

or 4 KIR Abs (Figure 4-8b).  CD8+ TEM and TEMRA populations were found to have a more 

focussed KIR repertoire than naïve and TCM.  Median values of 89 and 88% of KIR+ TEM and 

TEMRA cells respectively stain positive with 1 or 2 antibodies, whereas 75 and 72% of naïve 

and TCM do.  
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Figure 4-8: CD8+ TEM and TEMRA  populations have a more focussed KIR repertoire than naïve and TCM.  KIR co-
expression was determined on CD8+ T cell memory subsets. Cells were grouped according to the number of KIR Abs they 
stained positive for.  Dead cells, monocytes and B lymphocytes were excluded using a ‘dump channel’.  (a)  Plotted values are 
the percentage of KIR+ cells within each T cell subset.  (b)  Plotted values show the proportion of KIR+ cells that fall into each 
group.   A Dunn's Multiple Comparison test was carried out to determine whether the median values are significantly different.  
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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KIR co-expression was also measured at on CD4+ T cell subsets (Figure 4-9).  When looking 

at the proportion of KIR+ cells it can be seen that TCM and TEM populations appear to have a 

more focussed KIR repertoire than naïve and TEMRA.  Of KIR+ cells in both TCM and TEM 

populations 70% stain for 1 antibody and 90% for 1 or 2 antibodies.  This is in contrast to 

naïve and TEMRA where 51 and 33% of KIR+ cells stain only for 1 KIR antibody, and 79 and 

68% 1 or 2 antibodies.  It can be seen that the CD4+ TEMRA population express a particularly 

diverse KIR repertoire with 10% of cells expressing KIR proteins detected by all 4 KIR Abs. 
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Figure 4-9: CD4+ TCM and TEM populations have a more focussed KIR repertoire than naïve and TEMRA .  KIR co-
expression was measured on CD4+ T cell memory subsets. Cells were grouped according to the number of KIR Abs they 
stained positive for.  Dead cells, monocytes and B lymphocytes were excluded using a ‘dump channel’.  (a)  Plotted values are 
the percentage of KIR+ cells within each T cell subset.  (b)  Plotted values show the proportion of KIR+ cells that fall into each 
group.   A Dunn's Multiple Comparison test was carried out to determine whether the median values are significantly different.  
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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4.4 EFFECT OF AGE ON KIR EXPRESSION 

The decline in immune function with age is a well documented phenomenon and appears to 

occur regardless of geographical and ethnic background.  Those over the age of 65 have been 

shown to have increased morbidity and mortality in association with infectious disease, low 

response to vaccinations, and a higher incidence of malignancies and autoimmune disorders 

(Castle 2000; Ramos-Casals et al. 2003; Denduluri et al. 2004; Simonsen et al. 2005).  The 

age-related decline in thymic function causes extensive remodelling of the T cell system 

(Sauce et al. 2009).  Whilst TCR repertoire contraction is characteristic of the ageing immune 

system, there is increasing evidence that clonal T cells of elderly persons may express a 

variety of receptors normally found on NK cells (Tarazona et al. 2000). 

 

In light of the effects observed with the expression of other NKR expression on lymphoid 

cells with ageing, KIR expression was examined within our donor cohort and plotted against 

age.  PBMC samples from CMV seronegative donors only were used in this analysis due to 

an association seen between CMV seropositivity and KIR expression (see section 4.5).   Both 

total KIR positivity and individual KIR expression were examined on lymphoid subsets in 25 

donors.  Figure 4-10 shows that total KIR expression increases on NK and CD8+ T cells in 

association with age.  CD4+ T cells also showed a trend towards increased frequency of KIR 

expression although this did not reach statistical significance (p=0.0630).  This is probably 

due to the lesser number of data points when only looking at CMV seronegative subjects, and 

this effect is augmented by the fact that most elderly donors (over 60 years of age) are CMV 

seropositive, meaning the regression analysis could only be applied over a narrow age range. 
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Figure 4-10: Frequency of combined KIR expression increases on NK and 
CD8+ T cell subsets with age.  The frequency of KIR+ cells in each lymphocyte 
subset was measured using samples derived from healthy donors who were CMV 
seronegative.  The plots above show these frequencies in relation to the donor age.  
Linear regression analysis was applied to each data set to test significance. 
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CMV seronegative donors were then analysed for the frequency of individual KIR antigen 

expression.  Most of the trends observed when pooling all KIR Abs held true for the 

individual antigens (Figure 4-11).  Three out of 4 antigens (CD158a, CD158b and CD158i) 

showed a significant increase with age on NK cells, and there were also 3 out of 4 (CD158a, 

CD158b and CD158e1) statistically significant correlations for CD8+ T cells.  No age effect 

on expression of individual KIR proteins was witnessed on CD4+ T cells. 
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Figure 4-11: Frequency of KIR antigen expression increases on NK and CD8+ 
T cells with age.  The same seronegative donors were examined and each KIR 
antigen analysed individually.  The percentage of each subset expressing the 
relevant KIR was plotted against age and linear regression analysis applied to test 
significance of trends. 
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4.5 EFFECT OF CMV ON T CELL EXPRESSION OF KIRS 

Apart from NK cells, expression of some NKRs is also found on the resting cytotoxic effector 

cells of CMV carriers (Gamadia et al. 2001).  In agreement with this, cross sectional cohort 

studies have shown that CMV infection leaves an imprint in the NKR repertoire on T cells 

(Guma et al. 2004).  Whether NKRs on T cells regulate recognition and subsequent 

elimination of CMV-infected cells is not clear.  Huard and Karlsson postulated that repeated 

stimulation by antigen in vivo would upregulate NKR expression (Huard et al. 2000). We 

therefore analyzed expression of KIR antigens on T cells (and NK cells) of healthy 

individuals who are CMV seropositive exposed to virus and compared the findings with 

seronegative donors.  

 

Figure 4-12 shows that CMV seropositive donors have a lower frequency of KIR expressing 

NK cells, CD8+ T cells and CD4+ T cells than CMV seronegative donors.  This is true for 

total KIR expression, and for most individual KIR antigens (apart from CD158a on NK cells 

and CD158b on CD8+ T cells).  The most striking effect is seen with CD158e1 expression, 

especially on NK cells (median expression of 20.8% compared with 0.03%).  CD4+ T cells 

displayed marked differences in expression of total KIR, CD158a and CD158i where the 

decrease in median expression is between 2-4-fold for each.  Somewhat surprisingly however, 

not all differences proved to be statistically significant.  This may be partly due to the large 

variation in KIR expression between individuals, and another factor to consider may be age, 

as the median ages in the 2 groups of donors does differ.  To address the latter point further 

statistical analysis was undertaken. 
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Figure 4-12: CMV infection results in lower levels of KIR expression.  As 
described previously, total and individual KIR expression was measured on 
lymphocyte subsets of both CMV seronegative and seropositive donors and the 
frequency of expression compared.  (a) Median frequencies of KIR+ cells within 
each subset.  (b)  Comparisons between the groups were analysed using a Mann-
Whitney, two-tailed t test.  ** = p < 0.01, * = p <0.05 
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ANOVA was utilized to further determine the association between CMV serostatus and KIR 

expression.  A positive serostatus was associated with lower total KIR expression on CD4+ T 

cells (p <0.05) and also reduced expression of CD158a (p <0.01), CD158e1 (p = 0.05), and 

CD158i  (p <0.05).  In addition NK cells exhibited a lower expression of CD158e1 (p <0.05).  

After adjustment for age, differences were still significant for CD158a and CD158i expression 

on CD4+ T cells (p <0.05) and CD158e1 on NK cells (p <0.05). 

 

In the previous section (4.4) the effect of age on frequency of KIR expression was only 

conducted on samples from CMV seronegative donors.  This same analysis was conducted on 

CMV seropositive donors and compared to the previous results. From Figure 4-13 it can be 

seen clearly that the trends look completely different.  Although there are few donors in the 

CMV seronegative cohort, statistical analysis showed that the regression analyses were 

significantly different implying that, when accounting for age, CMV has an effect on 

frequency of KIR expression.  More specifically the trend lines in the CMV seropositive data 

suggest there is a weak negative correlation – i.e. the frequency of KIR-expressing cells is 

reduced with age when combined with CMV.  Although these trends are not significant in 

themselves, they are the reverse to the effect seen in the CMV seronegative cohort, supporting 

the data that CMV decreases the frequency of KIR expression.   
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Figure 4-13: Effect of CMV on total KIR expression on lymphocyte subsets.  
Lymphocyte samples from healthy donors were segregated according to CMV 
serostatus and the frequency of KIR+ cells in each lymphocyte subset recorded.  
The plots above show these frequencies in relation to the donor age.  A linear 
regression analysis was applied to each data set.  Significances of each trend were 
tested as well as the significance of the difference between groups.  
** = p < 0.01, * = p <0.05 
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Linear regression was used to test if the effects of ageing were moderated by serostatus.  

There indeed appeared to be a robust age-by-serostatus interaction for frequency of total KIR 

expression on NK cells, CD8+ T cells, and CD4+ T cells - all p <0.05.   

 

The same analysis was performed to investigate individual KIR antigen expression.  Figures 

4-14, 4-15 and 4-16 show the differences for each KIR antigen on NK cells, CD8+ T cells and 

CD4+ T cells, respectively.  CD158a and CD158e1 KIR expression was observed to be 

significantly different on CD8+ T cells between seronegative and seropositive donors.  

Multivariate analysis showed the pattern observed for total KIR was replicated with CD158b 

expression (NK cells p <0.01; CD8+ T cells p <0.05; CD4+ T cells p <0.005).  A significant 

age-by-serostatus interaction effect was also observed for CD158e1 on CD8+ T cells               

(p <0.05). 
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Figure 4-14: Effect of age and CMV on individual KIR expression on NK 
cells.  Frequency of individual KIR expression was measured on NK cells of both 
CMV seronegative and seropositive donors.  A linear regression analysis was 
applied to each data set.  The significance of each trend was tested as well as the 
significance of the difference between groups.  
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Figure 4-15: Effect of age and CMV on individual KIR expression on CD8+ T 
cells.  Frequency of individual KIR expression was measured on CD8+ T cells of 
both CMV seronegative and seropositive donors.  A linear regression analysis was 
applied to each data set.  The significance of each trend was tested as well as the 
significance of the difference between groups. ** = p < 0.01, * = p <0.05 
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Figure 4-16: Effect of age and CMV on individual KIR expression on CD4+ T 
cells.  Frequency of individual KIR expression was measured on CD4+ T cells of 
both CMV seronegative and seropositive donors.  A linear regression analysis was 
applied to each data set.  The significance of each trend was tested as well as the 
significance of the difference between groups. 
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In brief, individual KIR antigen expression was not significantly different between cohorts on 

NK cells.  Both CD158b and CD158e1 nearly reached significance with the probability that 

trends were significantly different being 0.058 and 0.064 respectively (Figure 4-14).  It 

appears that it is the cumulative expression that is affected (Figure 4-13, top panel).  However 

on CD8+ T cells CD158a and CD158e1 expression were significantly different (p = 0.009 and 

p = 0.002 respectively) between the two groups (Figure 4-15).  None of the individual 

antigens appeared to have significantly different expression levels on CD4+ T cells when 

analysed according to age and CMV serostatus (Figure 4-16).  Again, it is only the cumulative 

expression of all KIR antigens that is significantly reduced in CMV seropositive donors 

(Figure 4-13, bottom panel). 

 

After determining that CMV did indeed affect KIR expression levels the previous data was 

reanalysed segregating donors according to CMV serostatus.  In view of the observation that 

CMV decreased frequency of CD158e1-expressing cells, this was investigated further, and in 

reference to the differential staining pattern observed in Figure 4-4, the effect of CMV on 

specific CD158e1 allotypes being expressed was examined.  Figure 4-17 shows the same data 

from Figure 4-4, but the donors have been separated according to CMV serostatus.  Even 

though CMV serostatus has been shown to affect the frequency of cells expressing CD158e1, 

it appears to have no affect on the ratio of dim : bright allotypes on NK cells or CD4+ T cells.  

However when analysing CD8+ T cells, it can be seen that CMV seropositive donors have a 

higher percentage of dim staining allotypes, and less bright staining.   
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Figure 4-17: Effect of CMV on CD158e1 allotype expression on NK and T 
cells.  CD158e1 expression frequency data was segregated according to CMV 
serostatus and reanalysed.  Nonparametric, paired analysis (Wilcoxon signed rank 
test) was used to test for significant changes in allelic ratio.  * = p <0.05 
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Section 4.2 had investigated KIR expression on memory T cell subsets.  The effect of CMV 

on the pattern of KIR expression on T cells at different stages of differentiation was next 

investigated.  A particular point to address here is the presence of CD4+ TEMRA cells.  In the 

li terature it is generally considered that the TEMRA subset is lacking from CD4+ T cells, 

however we have observed a very small subset of CD4+ TEMRA cells, and this is in agreement 

with findings of Gupta et al. and  Sallusto et al. (Sallusto et al. 2001; Gupta 2005) although 

the latter author did not discuss this small population in their results.  What has been alluded 

to is that viral infections induce a CD4+ CD45RA+ population (Hooper et al. 1999; van 

Leeuwen et al. 2004; Weinberger et al. 2007).  For this reason we wanted to look whether 

there was a difference in KIR expression during T cell differentiation in CMV seronegative 

and seropositive donors.  

 

The frequency of CD4+ TEMRA cells was measured in CMV seronegative and seropositive 

donors.  The result, which can be seen in Figure 4-18, was that CMV seropositive donors had 

a larger population of CD4+ TEMRA cells, around a 3-fold increase versus CMV seronegative 

donors (4.9% and 1.6% respectively).  
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Figure 4-18: CD4+ TEMRA  cells are more common in CMV seropositive 
donors compared to healthy donors.  PBMC were stained, and following ‘dump 
channel’ exclusion, CD3+ CD4+ T cells were analysed.  TEMRA cells were 
identified by gating on CCR7- CD45RA+ cells.  Data was plotted as the 
percentage of total CD4+ cells that are defined as TEMRA.  A Mann-Whitney test 
was used to check significance.   * = p <0.05 
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This finding is in agreement with current literature.  There have been several studies showing 

that antigen-experienced T cells such as virus-specific T cells revert back to expressing 

CD45RA (Harari et al. 2004).    

 

When comparing the frequency of KIR expression on T cell memory differentiation subsets in 

CMV seronegative and seropositive donors a different pattern of expression is observed 

(Figure 4-19).  The frequency of KIR+ cells is highest in TCM and TEMRA populations, but 

remains fairly low in naïve and TEMRA.  In CMV seropositive donors, KIR+ cells are increased 

in the TEMRA population only.  This pattern of KIR expression being maintained on a steady 

proportion of cells throughout early stages of differentiation and then showing a marked 

increase in the TEMRA population mirrors the KIR expression pattern in the CD4+ subset.   

 

When considering the CD4+ T cell population it can be seen that the overall pattern of KIR 

expression is similar in CMV negative and CMV seropositive donors when comparing naïve, 

TCM and TEM populations.  However, the increased frequency of KIR expression on TEMRA 

cells is much more pronounced on the CMV seronegative cohort.  It is also worth noting that 

naïve and TCM populations as well as the TEMRA more frequently express KIRs in the 

seronegative donors when compared to the equivalent populations in CMV seropositive 

donors. 
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Figure 4-19: T cell differentiation is associated with an increase in total KIR 
positivity in both CMV seronegative and seropositive donors.  Donors were 
segregated according to CMV serostatus and the frequency of KIR expression 
measured on CD8+ and CD4+ T cell memory subsets in both cohorts. Dead cells, 
monocytes and B lymphocytes were excluded using a ‘dump channel’.  Plotted 
values are the percentage of KIR+ cells within each subset.  A Dunn's Multiple 
Comparison test was carried out to determine whether the median values are 
significantly different.  *** = p < 0.001, ** = p < 0.01, * = p <0.05 
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This analysis was repeated looking at each individual KIR antigen.  Similar results were seen 

as for total KIR expression on CD8+ lymphocytes (Figure 4-20).  CMV seronegative donors 

more frequently expressed KIR than CMV seropositive donors.  This was especially 

pronounced in the TCM population.  The frequency of KIR+ cells is increased in TEMRA 

populations of both cohorts of donors.  Interestingly CD158b was found to be more frequently 

expressed on TEMRA cells in CMV seropositive donors when compared to the equivalent 

population from CMV seronegative donors.   

 

When looking at the frequency of individual KIR expression on CD4+ T cells (Figure 4-21), 

the patterns resemble that seen when measuring total KIR expression – frequencies of KIR+ 

cells gradually increase (although remain low) until cells become highly differentiated.  In all 

cases the TEMRA population more frequently expresses KIR molecules.  This is true for both 

CMV seronegative and seropositive donors.  However, KIRs are less frequently expressed by 

CD4+ T cells in CMV seropositive donors.  This is true for all 4 antigens tested on each 

memory subset. 
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Figure 4-20: CD8+ T cell differentiation is associated with an increase in 
frequency of all individual KIRs in both CMV seronegative and seropositive 
donors.  Individual KIR expression was measured on CD8+ T cell memory 
subsets in CMV seronegative and seropositive donors. Dead cells, monocytes and 
B lymphocytes were excluded using a ‘dump channel’.  Plotted values are the 
percentage of KIR+ cells within each subset.  A Dunn's Multiple Comparison test 
was carried out to determine whether the median values are significantly different.   
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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Figure 4-21: CD4+ T cell differentiation is associated with an increase in 
frequency of all individual KIRs in both CMV seronegative and seropositive 
donors.  Individual KIR expression was measured on CD4+ T cell memory 
subsets in CMV seronegative and seropositive donors. Dead cells, monocytes and 
B lymphocytes were excluded using a ‘dump channel’.  Plotted values are the 
percentage of KIR+ cells within each subset.  A Dunn's Multiple Comparison test 
was carried out to determine whether the median values are significantly different.   
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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Finally, KIR co-expression on T cell subsets was compared between CMV seronegative and 

seropositive donors.  Figures 4-22 and 4-23 show the results for CD8+ and CD4+ T cells, 

respectively.  It can be seen clearly that CMV seropositive donors have a more limited KIR 

repertoire than seronegative donors.  This was true for both CD8+ and CD4+ T cells, and 

within each memory subset.  CMV seropositive donors can be seen to have a higher 

percentage of KIR+ cells staining for 1 Ab and 1 or 2 Abs than seronegative donors.   
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Figure 4-22: CMV seropositive donors have a more focussed CD8+ T cell repertoire than seronegative donors.  KIR co-
expression was measured on CD8+ T cell memory subsets. Cells were grouped according to the number of KIR Abs they 
stained positive for and results segregated into CMV+ and CMV-.  (a)  Plotted values are the percentage of KIR+ cells within 
each T cell subset.  One-way ANOVA analysis was carried out to test for significant differences between cohorts.  (b)  Plotted 
values show the proportion of KIR+ cells that fall into each group.    
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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Figure 4-23: CMV seropositive donors have a more focussed CD4+ T cell repertoire than seronegative donors.  KIR    co-
expression was measured on CD4+ T cell memory subsets. Cells were grouped according to the number of KIR Abs they 
stained positive for and results segregated into CMV+ and CMV-.  (a)  Plotted values are the percentage of KIR+ cells within 
each T cell subset.  One-way ANOVA analysis was carried out to test for significant differences between cohorts.  (b)  Plotted 
values show the proportion of KIR+ cells that fall into each group.    
*** = p < 0.001, ** = p < 0.01, * = p <0.05 
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4.6 DISCUSSION 

Polychromatic flow cytometry is proving to be a powerful tool for examining changes in 

immune parameters.  This study is the most comprehensive work looking at KIR expression 

on T cells to date.  It has begun to answer some questions, but at the same time has initiated 

many more.  All of the analyses performed compared the frequency of KIR+ cells in each T 

cell subset, and it could be argued that recording absolute number of cells would be 

informative and possibly more robust as sizes of the memory T cell compartments differ 

greatly. 

 

Firstly, KIR expression on the main lymphocyte subsets was examined and NK cells, NKT-

like cells, CD8+ T cells, γδ T cells and CD4+ T cells were found to express KIR (in order of 

highest to lowest frequency).  Few if any B cells were found to express KIR.  This study then 

focussed on NK and T cells, and looked at total and individual KIR expression on these cells.  

All KIRs were expressed on these lymphocyte subsets. 

 

One interesting point to note is the frequency of CD4+ T cells expressing KIR within this 

cohort of donors.  Significantly higher proportions of CD4+ T cells expressed KIRs relative to 

that reported previously (median of 6.7% compared with reports of typically 1%.  The latter 

figure is what is seen from each antibody independently in this study).  One explanation could 

be the combination of antibodies in the KIR ‘antibody cocktail’ used in the present study.  No 

previous studies have included α-CD158i Ab (which has a median expression of 2.2%). 
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KIR expression on T cells varies according to the stage of differentiation.    Levels are highest 

in the most differentiated TEMRA population, but all memory subsets do express KIR.  This 

finding goes against published studies by Abedin et al. and Vallejo that suggest KIRs are only 

expressed on senescent or pre-senescent memory T cells (Abedin et al. 2005; Vallejo 2006).  

This difference in these results may be explained by several possibilities.  Neither CMV 

serostatus or age of donors is stated in these studies.  Also not all four KIR antibodies used in 

this study were used in previous studies e.g Arlettaz et al used only GL183 Ab (Arlettaz et al. 

2004).  In this study the pattern of expression is the same for total KIR and individual KIR 

antigens, but differs between CD8+ and CD4+ T cells.  As well as the frequency of cells 

expressing KIRs within each subset, co-expression of different KIR molecules was also 

investigated.  Different memory subsets have varying degrees of receptor diversity.  This may 

possibly be related to the KIR frequency in some cases – as the number of KIRs increases the 

repertoire contracts and becomes more focussed.  This may be a mechanism of achieving a 

balance of signals.   

 

The KIR repertoire may contract as CD8+ T cells differentiate to compensate for the increase 

in the frequency of cells expressing KIR or vice versa.  KIR expression appears to be 

extremely complex and there are a lot of mechanisms in place to carefully maintain the 

balance of signalling.  This may be another of these mechanisms.  Control of KIR expression 

appears to be heavily regulated with each lymphocyte subset being controlled independently.  

Many different factors are believed to control expression – in fact Trowsdale et al. have 

speculated that KIR expression is likely to involve up to 15 different transcription promoter 

sequences which are located within 500 bp and 5' to the initiation codon (Trowsdale et al. 

2001).  Other mechanisms controlling KIR levels have been suggested, including hormonal 



                                                                                                                                           Results 

- 200 - 
 

and cytokine regulation of expression (Ponte et al. 1999; Mingari et al. 2000).  Despite the 

many potential factors contributing to altered expression, levels of KIR appear stable year to 

year (Shilling et al. 2002). 

 

 

Because the frequency of KIR expression on CD4+ T cells is low, it is plausible that naïve 

cells express as diverse a range as possible to maximise potential interactions.  As T cells 

differentiate the repertoire contracts and a steady balance is maintained.  The TEMRA 

population are most diverse.  As TEMRA cells are rare, again it could be down to the balance 

between frequency of expression and diversity.  Another possibility could be that there is a 

viral link – as CD4+ TEMRA cells are increased with CMV infection it could be postulated that 

CMV is driving the upregulation of multiple KIRs on these cells. 

 

Finally the effect of CMV on KIR expression was examined.  It was found that CMV 

seropositive donors have lower numbers of KIR+ cells in NK cell, CD8+ and CD4+ T cell 

populations.  It also seems that the KIR repertoire in these donors is more focussed.  This 

could be an indication that CMV is shaping the KIR repertoire (in the same way it does other 

NK receptors (Guma et al. 2004).  An interesting example of this can be seen when looking at 

CD158e1 expression.  This KIR receptor is downregulated in CMV seropositive donors 

(median value of 20.8% in seronegative donors vs. 0.03% in seropositive donors on NK 

cells).  Furthermore in CMV seropositive donors, the proportion of CD8+ T cells expressing 

bright-staining allotypes is decreased.  CMV appears to be dampening down the inhibitory 

KIR signal, this time not in number of receptors being expressed, but in their binding affinity.  
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It may be plausible that CMV is targeting this receptor in some way to evade the immune 

system.  It would be interesting to investigate this further and determine CD158e1 allotype 

expression on CMV-specific T cells. 

 

Like many other NKRs, age was found to affect the frequency of KIR-expressing cells in that 

an increased number of NK and CD8+ T cells were found to express these receptors.  This 

effect was only seen in the CMV seronegative cohort as the opposing action of CMV masked 

it in the seropositive donors.  Not only is the frequency of KIR+ T cells reduced in CMV 

seropositive donors, but the receptor diversity is also more limited.  KIR+ T cells in CMV 

seropositive donors were found to include a higher proportion of cells expressing only 1 or 2 

KIR types when compared to CMV seronegative donors.  One possibility is that they are not 

required.  CMV may drive KIR expression and it is possible that CMV could select for a 

specific KIR phenotype.  This would be a potential explanation for the high percentage of 

KIR+ cells only staining with 1 KIR antibody.  Another explanation could be that this is an 

immune response ‘counter measure’ to CMV and in fact the change in KIR expression is not 

itself CMV-driven, but an effect of preferential selection of those cells doing the job. 

 

The following figures pictorially show a summary of the effect of T cell differentiation and 

CMV on KIR expression (both frequencies, and co-expression).  Figures 4-24 and 4-25 

illustrate CD8+ T cells and CD4+ T cells, respectively.  The size of each pie chart represents 

the frequency of KIR+ cells in each memory subset, and the segments within each pie chart 

il lustrate the KIR diversity of those KIR+ cells.  Changes in the CD8+ T cell population appear 

to be more subtle on both counts.  In contrast the changes within the CD4+ T cell 



                                                                                                                                           Results 

- 202 - 
 

compartment are startling.  It is clear that as KIR+ cells within the CD4+ T cell population 

increase the repertoire gets more diverse.  This seems to go against the idea of fine tuning a 

constant balance.  Is this a last chance attempt to engage with a ligand and send a needed 

signal to the cell?  Highly differentiated cells may need more KIRs to regulate effector 

function.  If we could be sure it were inhibitory KIRs that were being measured it could also 

be postulated that KIRs are protecting the cells from exhaustion and conserving telomeres.   
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Figure 4-24: Summary of the effect of CMV and T cell differentiation on KIR expression on CD8+ T cells.  Size of the pie 
charts represents the frequency of KIR-expressing cells within that subset.  The area within the pie chart represents KIR          
co-expression data. 
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Figure 4-25: Summary of the effect of CMV and T cell differentiation on KIR expression on CD4+ T cells.  Size of the pie 
charts represents the frequency of KIR-expressing cells within that subset.  The area within the pie chart represents KIR          
co-expression data. 
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When presenting the summary above, the frequency of KIR+ CD4+ cells in the CMV negative 

cohort was striking.  As this is a very small population within these donors I decided to also 

present this data taking the population size of each subset into account.  Figure 4-26 therefore 

shows the adjusted data according to population size of each memory subset.  This gives a 

clearer picture of the actual number of KIR molecules that are present.  It can be seen that 

CMV seropositive donors have lower numbers of KIR+ T cells in naïve, TCM and TEM 

populations of CD8+ and CD4+ T cells.  When looking at the TEMRA populations it can be seen 

that there is no difference in the number of KIR+ cells between CMV seropositive and CMV 

seronegative donors.  This again reiterates the theory that a balance of KIR signalling needs to 

be maintained.   
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Figure 4-26: Summary of Figures 4-24 and 4-25 adjusted for population size of T cell memory subset.  Size of the pie 
charts represents the frequency of KIR-expressing cells within that subset.  Charts have been scaled in size according to the 
number of cells in each T cell subset.  The area within the pie chart represents KIR co-expression data. 
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Chapter 5 

Investigating the function of KIRs on T cells 

 

 

The previous chapter summarised a fairly comprehensive study of KIR expression on 

lymphocytes in healthy donors.  Of particular interest was the finding that CMV seropositve 

donors have lower levels of KIR expression on NK and T cells.  This went against our initial 

hypothesis and so KIR expression in CMV seropositive donors was further investigated.  

Although overall KIR expression was reduced in the total T cell pool of these donors, it was 

unknown what the KIR repertoire would be on the CMV-specific T cell population. 

 

Existing data analysing the correlation between KIR expression and CMV-specificity is 

scarce.  In 2001, van Lier’s group demonstrated that CMV-specific CD8+ T cells were 

predominantly KIR negative.  Furthermore, within the CMV-specific population there was a 

lower frequency of KIR+ cells than within the total CD8+ T cell pool (Gamadia et al. 2001).  

However, this data was limited to T cell responses against a single tetramer containing a pp65 

derived peptide (NLVPMVATV) in only 7 donors.  A second study in 2004 examined renal 

transplant patients that were immunosuppressed and developed CMV infection.  This showed 
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representative data from 2, 32 and 37 weeks post-transplant illustrating again that there is a 

lower frequency of KIR-expressing cells in the tetramer positive CD8+ T cells than within the 

total CD8+ T cell pool (Anfossi et al. 2004).  Again this study looked at a limited cohort of 

donors and used the same single tetramer to detect CMV-specific CD8+ T cells.  Thus the 

pattern, and functional significance, of KIR expression on CMV-specific T cells remains 

largely unresolved. 

 

Therefore the aim of the work in this chapter was to investigate KIR expression on CMV-

specific T cells in more detail within our healthy cohort of donors.  Firstly, KIR expression 

was characterised on CMV-specific T cells and then attempts were made to determine the 

functional significance of this.  Several groups have used rheumatoid arthritis (RA) patients to 

isolate CD4+ CD28- T cells, a highly oligoclonal, largely CMV-specific,  subset of T cells that 

is expanded this disease (Namekawa et al. 2000; Snyder et al. 2003; Snyder et al. 2004; van 

Bergen et al. 2009). CMV-specific CD4+ T cells are CD28- and I therefore chose to attempt to 

clone these cells and investigate KIR function in this setting. 
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5.1  KIR EXPRESSION ON CMV-SPECIFIC T CELLS 

From the original cohort of donors, 31 were CMV seropositive.  To add to current work both 

CD8+ and CD4+ T cells were included in this study.  Initial experiments compared total KIR 

expression on CMV-specific CD8+ and CD4+ T cells with KIR expression on the total CD4+ 

and CD8+ pool.  To identify CD8+ and CD4+ CMV-specific T cells, PBMCs were stimulated 

with a combined pool of peptide mixes made up of a selection of peptides from the CMV 

proteins IE-1, pp65, pp50, gB and gH (see Table 2-2).  This stimulus was chosen to better 

represent the whole CMV genome, rather than sole responses to a single pp65 peptide, and 

also cover responses to a range of HLA-types.  The use of a peptide pool was also preferable 

to use of CMV lysate as all PBMC samples had been frozen to keep results consistent.  We 

find that the T cell response is markedly dampened when lysate is used on frozen cells due to 

the lack of APCs to process it, but the response to peptide remains intact. 

 

PBMC from the CMV seropositive donors were stimulated for 6 hours with the CMV peptide 

mix in the presence of Brefeldin A.  This had previously been shown in our lab to be the 

optimal incubation period (Dr. Laura Crompton, personal communication).  Following 

stimulation, cells were stained for surface markers, and after fixing and permeabilisation 

intracellular cytokine was stained using an IFNγ-specific mAb to identify peptide-reactive 

cells.  The gating strategy for analysis is shown in Figure 5-1.  Firstly, lymphocytes were 

identified by plotting cell size against granularity, and then dead cells, monocytes and B cells 

excluded from the analysis using the ‘dump channel’.  CD8+ and CD4+ T cells were gated on 

and then cells were divided according to IFNγ production.  Those cells producing IFNγ in 

response to peptide stimulus were classed as CMV-specific and KIR expression was 

compared on this population and the control IFNγ-negative subset. 
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Figure 5-1: Gating strategy to identify CMV-specific CD8+ and CD4+ T cells.  
PBMC from CMV seropositive donors were stained for KIRs and additional 
phenotypic cell surface markers.  (a) Lymphocytes were gated on and dead cells, 
monocytes and B lymphocytes were excluded using a “dump channel”.  T cells 
were gated on (b) CD3+CD8+ and (c) CD3+CD4+) and CMV-specific T cells 
selected based on the production of IFNγ in response to a CMV peptide mix. 
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Data from initial experiments is summarised in Figure 5-2 below.  It can be seen that there is a 

significantly higher frequency of KIR+ cells within the CMV-specific T cell compartment 

(both CD8+ and CD4+) when compared to the total T cell pool (p = < 0.001).     

 

 

 

 
Figure 5-2: KIR expression is higher on CMV-specific T cells than on their 
IFNγ-negative counterparts.  Total KIR expression was compared on (a) CD8+ 
and (b) CD4+ CMV-specific T cells with the rest of the T cell pool.  Left panels 
show frequency of KIR+ cells in each population for all donors.  Right panels 
show the frequency of KIR+ cells in matched IFNγ- and IFNγ+ subsets within the 
same donor.  Nonparametric, paired analysis (Wilcoxon signed rank test) was used 
to test for significant differences.  *** = p <0.001 
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In chapter 4 we had observed increased expression of KIRs in TEMRA populations of both 

CD8+ and CD4+ T cells.  As CMV-specific cells are typically highly differentiated it was 

important to assess if the apparent increase expression of KIRs on CMV-specific cells 

compared to non-CMV-specific populations was simply a consequence of their differentiation 

state.  By looking back at the data in the previous chapter (Figure 4-5), the frequency of KIR+ 

cells in the overall TEMRA population could be compared with that of the CMV-specific subset 

shown in Figure 5-2.  Within CMV seropositive donors, a median value of 20% of both CD8+ 

and CD4+ TEMRA cells express KIRs.  In contrast 40% and 60% of CD8+ and CD4+ CMV-

specific T cells respectively express KIRs.  These results proved to be significant (p = <0.001 

using a Mann-Whitney test), meaning that KIR-expressing cells are more frequent in the 

CMV-specific subset, and importantly that this increase in frequency is not purely due to T 

cell differentiation (Figure 5-3). 
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Figure 5-3: Increased KIR expression on CMV-specific T cells is not simply 
due to differentiation status.  Median frequencies of KIR+ T cells were compared 
between CMV-specific T cells and TEMRA populations.  Comparisons between the 
groups were analysed using a Mann-Whitney, two-tailed t test.   
*** = p < 0.001 
 
 
 

Following this result, we were interested to investigate which subpopulations of KIR proteins 

were increased on CMV-specific T cells.  Thus, each of the 4 KIR proteins studied in the 

previous chapter was measured individually on CMV-specific T cells and, as before, 

compared to the overall T cell pool (Figure 5-4).  Figure 5-4a shows that on CD8+ CMV-

specific T cells the expression of CD158e1 and CD158i was increased by approximately 4-

fold compared to control cells.  In contrast, expression of CD158b was significantly 

downregulated.  CD158a expression was also reduced but the difference was not significant.   
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Some similarities were also observed when we analysed the CD4+ data (Figure5-4b).  

CD158e1 and CD158i were again found to be upregulated on CMV-specific T cells, although 

in this setting the increase was 6-fold and 10-fold respectively.  However, in contrast to CD8+ 

CMV-specific T cells, CD158b was seen to be upregulated on CD4+ CMV-specific T cells, 

with a median value 3-fold higher than that of the remaining CD4+ T cell pool.  No difference 

was seen in levels of CD158a expression.  CD158e1 is an inhibitory molecule and CD158i is 

activating and so it appears that inhibitory and activating molecules are simultaneously 

upregulated on CMV-specific T cells.  Due to the lack of specific antibodies it is unclear 

using HP-3E4 (CD158a) and GL183 (CD158b) Abs which specific KIR proteins are being 

measured. 

 

Thus, not only is there differential expression of individual KIR proteins on CMV-specific T 

cells but there is also a different pattern of expression on CD4+ and CD8+ T cells.  The most 

obvious difference is with CD158b expression which binds to the inhibitory KIR2DL2, 

KIR2DL3 and activating KIR2DS2 proteins.  It is downregulated on CD8+ CMV-specific T 

cells but modestly upregulated on the CD4+ subset.   
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Figure 5-4: CD158e1 and CD158i are upregulated on both CMV-specific 
CD8+ and CD4+ T cells whilst CD158b is differentially regulated.  (a) Median 
frequencies of individual KIR-expressing T cells were compared between CMV-
specific T cells and the rest of the T cell pool.  (b) Frequency of KIR+ cells in 
matched IFNγ- and IFNγ+ subsets within the same donor. Nonparametric, paired 
analysis (Wilcoxon signed rank test) was used to test for significant differences. 
*** = p <0.001, ** = p < 0.01, * = p <0.05 
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Finally KIR co-expression on CMV-specific T cells was compared with the KIR repertoire 

expressed on the rest of the T cell pool.  As before KIR+ cells were categorised into 4 groups 

according to the number of KIR-specific Abs to which they bound, and the results shown in 

Figure 5-5.  CD8+ and CD4+ CMV-specific T cells have both a higher frequency of KIR-

expressing cells, and a more diverse receptor repertoire than that of the total T cell pool 

(Figure 5-5b).  Thus, a larger proportion of KIR+ cells within the CMV-specific pool is made 

up from cells that stain positive for 2 or 3 KIR antibodies.  Indeed 45% of KIR+ CD8+ CMV-

specific T cells stain with more than one KIR antibody compared to only 30% of the KIR+ 

cells within the rest of the T cell pool.  Similar results were observed with CD4+ CMV-

specific T cells with median values of 40 and 28% respectively. 
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Figure 5-5: CMV-specific T cells have a more diverse KIR repertoire.  Co-
expression of KIRs was analysed on CD8+ and CD4+ CMV-specific T cells as well 
as the rest of the T cell pool.  Cells were grouped according to the number of KIR 
antibodies they stained positive for.  Dead cells, monocytes and B lymphocytes 
were excluded using a “dump channel”.  (a)  Plotted values are the percentage of 
KIR+ cells within each T cell subset.  (b)  Plotted values show the proportion of 
KIR+ cells that fall into each group.  A Dunn's Multiple Comparison test was 
carried out to determine whether the median values between the 2 populations are 
significantly different.  *** = p < 0.001, ** = p < 0.01, * = p <0.05 
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5.2  GENERATION OF KIR+ CD4+ CMV-SPECIFIC T CELL CLONES 

Previous reports to address KIR function have largely focussed on T cells derived from 

patients with RA.  As described earlier these patients have an expansion of CD4+ CD28- T 

cells which show high expression of KIR molecules.  An expansion of CD4+ CD28- T cells 

which express KIRs in clinical syndromes such as RA and acute coronary syndromes has 

been described (Yen et al. 2001).  It is now clear that CMV infection results in an expansion 

of CD4+ CD28- T cells (van Leeuwen et al. 2004), and CMV has also been shown to be the 

cause of the CD4+ CD28- expansion in RA patients (Hooper et al. 1999).  As such it may be 

plausible that the expansion of KIR+ T cells in patients with RA is driven by CMV rather than 

the RA process itself.  

 

Using the same cohort of donors as above, subsequent experiments analysed KIR expression 

on different subsets of CD4+ T cells analysed directly ex vivo.  Donors were separated 

according to CMV serostatus and within each group the frequency of CD4+ T cells that were 

CD28- was determined.  Consistent with earlier work showing CD4+ CD28- T cells emerge as 

a consequence of CMV infection  (van Leeuwen et al. 2004), Figure 5-6a shows that only 

around 4% of CD4+ T cells are CD28- in the CMV seronegative group of donors, whereas this 

is increased to over 25% in the CMV seropositive group.  As can be seen in Figure 5-6b, the 

CD4+CD28- subset contains a significantly higher frequency of KIR-expressing cells in both 

groups of donors.  Another interesting observation is that the CD28- subset in CMV 

seronegative donors has a higher frequency of KIR-expressing cells than the comparable 

subset in CMV seropositive donors.  However, the absolute number of KIR+ cells within the 

CD4+ CD28- pool is lower in CMV seronegative donors due to the small overall CD4+ CD28- 

pool in these donors (Figure 5-6c).  Furthermore, when looking at the CD28+ subset only it 
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can be seen that CMV seronegative donors possess a higher number of KIR+ CD4+ cells.  

When examining the CD28- subset, CMV seronegative donors possess fewer KIR+ cells than 

CMV seropositive donors.   

 

A potentially interesting observation is that the total number of KIR+ CD4+ cells is equivalent 

between CMV seropositive and seronegative donors but they are differentially distributed 

within the CD28- and CD28+ subsets.  An explanation for this could be the need to maintain a 

balance of signals – as CMV seropositive donors have more CD4+ CD28- cells not such a 

high proportion may need to express KIRs.  This hypothesis would fit with the observation of 

the previous chapter – that CMV seropositive donors have a lower frequency of KIR-

expressing cells. 
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Figure 5-6: KIRs are more frequently expressed on the CD28- subset of CD4+ 
T cells.  (a)  The percentage of CD4+ T cells that were CD28- was compared 
between CMV seronegative and seropositive donors.  (b)  KIR expression was 
measured on each of these CD4+ T cell subsets.  (c) KIR expression on CD4+ T 
cell subsets was adjusted according to population size.  Nonparametric, paired 
analysis (Wilcoxon signed rank test) was used to test for significant differences 
between CD4+ T cell subsets within each group of donors.  Comparisons between 
the groups were analysed using a Mann-Whitney, two-tailed t test.    
*** = p <0.001, ** = p < 0.01, * = p <0.05 

 

a.

b. c.
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To study the function of KIRs on T cells I then went on to generate KIR+ T cell clones. Based 

on previous findings that KIR+ CD4+ T cells are more frequent in the CD28- population my 

fi rst attempts at generating KIR+ CD4+ T cell clones were to FACsort CD4+ CD28- cells.  

PBMCs were stained with CD4-specific and CD28-specific antibodies and sorted using a 

FACS Vantage cell sorter. Single CD4+ CD28- cells were sorted into 96-well plates 

containing 200µl of cloning mix.  An example of the gating is shown in Figure 5-7.  Firstly 

the lymphocyte gate was set according to cell size and granularity (Figure 5-7a).  Next, CD4+ 

CD28- cells were selected by gating (Figure 5-7b) and the cell sorter isolated these cells into a 

96-well plate at a density of 1 cell per well.  Cells were left for 14 days and then screened for 

clone growth. 

 

 

 
 
Figure 5-7: CD4+ CD28- cells were selected via FACsorting.  PBMC were 
stained with α-CD4-PE and α-CD28-FITC. (a) Lymphocytes were gated on based 
on cell size and granularity.  (b) CD4+CD28- cells were then sorted using a FACS 
Vantage cell sorter. 
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Initial attempts to isolate specific cells via this method were unsuccessful and yielded no 

proliferating clones.  It was unclear whether this was due to technical problems with the 

FACS Vantage, or due to the impaired replicative potential of these T cells which tend to be 

terminally differentiated (Vallejo et al. 1999).    

 

To overcome this, we concentrated solely on generating CMV-specific CD4+ CD28- T cells 

(Fletcher et al. 2005).  This approach was advantageous as I could use methods that are well-

established within our group, and the isolated clones would be defined as CMV-specific.  

Thirty CMV seropositive laboratory donors were screened against a panel of four pp65-

derived proteins (Table 2-2).  PBMCs were stimulated with CMV peptides in the presence of 

Brefeldin A, an inhibitor of protein secretion from the Golgi apparatus, and the production of 

IFNγ by CD4+ T cells was assessed by intracellular cytokine staining.  PBMCs stimulated 

with CMV lysate generated from CMV-infected fibroblasts were used as a positive control for 

the assay.  Unstimulated PBMCs or PBMCs stimulated with a ‘mock’ lysate, made from 

uninfected fibroblasts, were used as negative controls to confirm that any responses seen were 

specific for CMV-derived antigens within the lysate. As an additional control, PBMCs from 

healthy seronegative donors were stimulated with both mock and CMV lysate.  Figure 5-8 

shows typical responses to controls and CMV derived peptides in 2 CMV seropositive donors.  

Donor A has a strong response to peptide A1as well as the CMV lysate.  Donor B showed 

responses against peptides A1 and A2.  Both unstimulated samples and PBMCs treated with 

mock lysate produced no IFNγ.  
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Figure 5-8:  CD4+
 T cell responses to pp65-derived CMV peptides.  PBMC 

were stimulated for 6 hours with CMV peptides.  Brefeldin A was added to the 
samples 1 hour after infection.  Cells were then stained for surface expression of 

CD3, CD4 and intracellular IFNγ.  Percentages of total CD4+ T cells which 

produced IFNγ  following stimulation are indicated. 
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To increase the chance of cloning CMV-specific T cells from the background population, the 

cytokine capture assay was employed prior to limiting dilution.  PBMCs from donors with 

peptide responses of over 0.5% were stimulated with CMV lysate.  Cells that responded by 

secreting IFNγ were magnetically selected and cloned by limiting dilution.  Figure 5-9 shows 

two examples of this procedure. The peptide-specific population is enriched from 1.96 % of 

the total population to 56.80% of the total population for donor A and from 0.18% to 46.50 % 

for donor B.  Enriching for peptide-specific cells to such a large degree markedly increases 

the proportion of CMV-specific T cell clones that expand following the cloning process. 
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Figure 5-9: Enrichment of CMV-specific CD4+ T cells using cytokine capture 
analysis.  PBMCs from Donors A and B were stimulated with CMV peptides A1 

or A2 respectively overnight and cells expressing IFNγ were isolated using the 
cytokine capture assay. Cells before and after enrichment were then stained for 
surface expression of CD4 and CD3 and assessed by flow cytometry.  The 
numbers indicated are the percentage of CD4+ IFNγ+ cells in the total population 
analysed. 
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Unfortunately, these attempts to generate T cell clones were also unsuccessful despite use of 

the cytokine capture assay to enrich antigen-specific cells prior to limiting dilution cloning.  

As it was possible that CD8+ T cells were outcompeting the CD4+ T cells the final method 

was to deplete CD8+ T cells from PBMC and set up a polyclonal T cell line (Khanna et al. 

2000). In brief, PBMC samples taken from the same donors were CD8+ T cell-depleted using 

α-CD8 Dynal beads.  Remaining cells were cultured with the relevant peptide for 2 weeks to 

establish polyclonal cultures enriched in peptide-specific T cells.  On day 14, cells from these 

peptide-reactivated cultures were used to set up limiting dilution cloning at both 0.3 and 3 

cells per well.  These cells were seeded in 96-well U bottomed plates along with 104 cells per 

well of autologous γ-irradiated LCL preloaded with 5µM relevant epitope peptide and 105 

cells per well of pre-activated γ-irradiated allogeneic PBMC feeder cells.  In a typical limiting 

dilution cloning experiment from a single peptide reactivation, 20 plates would be set up at 

0.3 cells per well, and 10 plates at 3 cells per well.  Three days following cloning, IL-2 

(derived from MLA supernatant) was added to stimulate cell expansion.    

 

Within approximately 2 – 5 weeks, growth of the microcultures could be observed.  Typically 

up to 30 proliferating cultures could be identified on a cloning plate where cells had been 

seeded at 0.3 cells per well and as many as 90 proliferating cultures were identifiable on the 

cloning plates seeded at 3 cells per well.  To enhance the probability that cultures had 

originated from a single cell, cultures at 0.3 cells per well were preferentially screened.  Plates 

seeded at 3 cells per well were only screened where <30% of the wells had proliferated 

(Taswell et al. 1980; Munz et al. 2000).    
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In order to confirm the peptide-specificity of the CD4+ T cell clones, individual clones were 

stimulated with irradiated HLA-matched LCLs which were pulsed with peptide.  Secretion of 

IFNγ in response to simulation was used as a marker of recognition and quantified using an 

IFNγ ELISA.  Unmanipulated LCLs and HLA-mismatched LCLs show that IFNγ secretion 

was due to recognition of CMV proteins and not EBV antigens.  Figure 5-10 illustrates 

examples of 4 clones from 2 different donors.  Three out of 4 of the clones shown here 

produced a high level of IFNγ only in response to LCLs pulsed with the pp65 derived peptide 

A1, indicating specific antigen recognition.   Clone 44 however produced IFNγ in response to 

stimulation with LCL alone suggesting that the cells were not CMV-specific.  This 

demonstrates that whilst using assays to select CMV-specific cells, inevitably clones which 

have other cross reactivities may also be cloned.  Table 5-1 shows a summary of clones 

generated.   

 

 Table 5-1: Peptide-specific CD4+ T cell clones generated 

 

Protein Epitope sequence 
Amino acid 

position 
HLA restriction 

No. of T cell 

clones 

generated 

pp65 (UL183) KYQEFFWDANDIYRI  509 – 523  HLA-DR1/3 177 

pp65 (UL183) AGILARNLVPMVATV 489 – 503  HLA-DRB1*0701 5 

EBNA3A GPWVPEQWMFQGAPPSQGTD 780 – 799  HLA-DR1 44 

EBNA3C SDDELPYIDPNMEPV 386 – 400  HLA-DQ5 36 
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Figure 5-10: Screening of CD4+ T cell clones for recognition of A1 peptide.  
APCs (LCLs) were pulsed with A1-peptide or DMSO as a negative control before 
being incubated overnight with T cell clones.  Production of IFNγ was used as a 

marker of T cell recognition and IFNγ concentration of the supernatants was 
analysed by ELISA. 
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Given that the A1 peptide-specific CD4+ T cell clones were generated via stimulation with a 

synthetic peptide, and it is known that this process can lead to peptide, but not antigen-

specific, T cell clones (Khanna et al. 1995), it was important to show that they could 

recognise processed antigen and not just the peptide.  To determine whether A1 peptide-

specific CD4+ T cells could recognise endogenously processed pp65 antigen, an MVA-pp65 

construct in which the pp65 coding sequence was linked to a target sequence from the 

invariant chain (Ii) was employed.  This provided a way of over-expressing pp65 within LCL 

target cells which was designed to be delivered directly into the class II processing pathway 

(Chaux et al. 1999). 

 

T cell clones were stimulated with LCLs infected with MVA-pp65 or control MVA-pSC11.  

IFNγ was used as a marker of recognition and assessed by ELISA.  Figure 5-11 shows typical 

examples of IFNγ production from 4 clones derived from 2 different donors following 

exposure to MVA-infected LCLs, in which recognition of LCLs infected with Ii targeted pp65 

was clearly detected.  This confirms that the established clones are capable of recognising 

processed antigen.  No significant production of IFNγ was observed when clones were 

stimulated with unmanipulated LCL, mismatched LCL (with or without peptide) or control 

MVA (MVA-pSC11).  This confirms the response was not due to recognition of EBV or 

vaccinia antigens. 
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Figure 5-11: Capacity of A1 peptide-specific clones to recognise peptide 
derived from processed pp65 protein.  APCs (LCLs) were either infected with 
MVA expressing CMV derived pp65 or an empty vector sequence (pSC11), 
pulsed with peptide, or left unmanipulated prior to overnight incubation with CD4+ 
A1 peptide-specific T cell clones.  Production of IFNγ was used as a marker of T 
cell recognition, and the IFNγ concentration of the supernatants was analysed by 
ELISA.  Representative examples of antigen recognition by 4 clones derived from 
2 different donors are shown. 
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An important function of antiviral T cells is the ability to lyse virally infected cells.  

Classically, this is a function of CD8+ CTLs but more recently cytotoxic CD4+ T cells have 

been reported (Appay et al. 2002; Zaunders et al. 2004; Long et al. 2005; Casazza et al. 

2006).  To determine whether these A1 peptide-specific CD4+ T cell clones displayed 

cytolytic activity, chromium release assays were used.  This method measures the release of 

the radioactive isotope Cr51 from Cr51-labelled APC ‘target’ cells that have been pulsed with 

peptide prior to incubation with T cell clone ‘effector’ cells.  Release of Cr51 into the 

supernatant is used as a measure of target cell lysis and thus the cytolytic ability of the 

effector T cells. 

 

All clones tested were able to kill A1 peptide-loaded LCL, with killing apparent within 5 

hours after incubation.  Figure 5-12 shows representative examples of cytolytic activity of 4 

clones from 2 different donors.  Minimal chromium was detected in the supernatants 

following incubation with matched targets pulsed with A3 peptide or mismatched targets 

pulsed with A1 peptide indicating that killing was A1 peptide-specific. 
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Figure 5-12: Killing of LCL targets by A1 peptide-specific CD4+ T cell clones.  
5 and 18 hour chromium release assays were conducted using autologous target 
cells pulsed with A1 and A3 peptides and A1 peptide-pulsed HLA-Class II 
mismatched targets.  Representative examples for 4 clones derived from 2 donors 
are shown.  Results are expressed as the average percent lysis of target cells from 
triplicate assays at effector : target ratio 2.5 : 1. 
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To further characterise the CMV-specific CD4+ T cell clones, cells were stained for surface 

expression of memory markers to characterise their phenotype.  Markers included CD4, CD8, 

CD45RA, CD45RO, CD28 and CD27.  An example of staining from one donor is shown in 

Figure 5-13, which is representative of all clones stained.  As shown, all cells exhibited an 

effector memory phenotype (CD45RA-, CD45RO+, CD28- and CD27-) similar to that which 

has been described for CD4+ T cells that arise during chronic viral infection (Amyes et al. 

2003). 

 

 

 
 
Figure 5-13: Cell surface phenotype analysis of A1-specific T cell clones.  T 
cell clones were washed and stained for surface expression of CD3, CD4, and CD8 
along with phenotype markers CD45RA, CD45RO, CD28 and CD27. 
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5.3 KIR EXPRESSION AND FUNCTION ON CD4+ CMV-SPECIFIC T CELL 

CLONES 

Having successfully generated antigen-specific CD4+ T cell clones, and established that they 

were functional, we were interested to investigate their KIR expression.  T cell clones were 

stained with CD158a-, CD158b- and CD158e1-specific antibodies.  As illustrated in Figure 5-

14 showing examples of staining from 2 A1 peptide-specific clones, KIRs were not 

constitutively expressed.  Indeed, typically less than 5% of a T cell clone would be KIR+.   

 

 

 

Figure 5-14: KIRs are not constitutively expressed on CD4+ T cell clones.  A1 
peptide-specific CD4+ T cell clones were stained with CD158a, CD158b and 
CD158e1 antibodies to establish KIR expression. 
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No more than 0.2% of cells expressing CD158e1 in any of the clones.  There may be a 

number of reasons for this observation, including the possibility of donor selection.  The gene 

frequency of KIR3DL1 in the population is 88%.  Although this is high, the donors we cloned 

from were not KIR genotyped and so it is not certain that KIR3DL1 protein would be encoded 

for.   

 

 Interestingly, whilst I was culturing the clones I had the opportunity to document the 

expression of KIR proteins during the culture period.  During these experiments I noticed that 

the frequency of cells expressing CD158a and CD158b increased during culture.  In order to 

investigate this phenomenon further I then went on to assess if the antigenic-specificity of the 

ones was a determinant in this response.  A panel of 15 clones were studied of which 5 were 

specific for the CMV A1 peptide, 5 recognised the EBV GPW peptide and an additional 5 had 

unknown specificity.  Clones were examined for KIR expression at several points over a 12-

week period.  Interestingly, the frequency of cells which expressed both CD158a+ and 

CD158b+ cells increased significantly in all subsets.  Table 5-2 shows a summary of the 

median values. 
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Table 5-2: KIR expression on CD4+ T cell clones 

Clone specificity 

CD158a 

expression 

Day 0 

CD158a 

expression  

Day 60 

CD158b 

expression 

Day 0 

CD158b 

expression  

Day 60 

CMV – pp65 (A1 peptide) 1.45% 52.40% 1.17% 28.21% 

EBV – EBNA3A (GPW peptide) 0.04% 30.25% 0.15% 25.41% 

Non-specific 0.00% 22.14% 0.09% 18.95% 

 

Percentages shown are median values.  5 of each clone type were tested.   

 

 

The frequency of KIR+ cells increased over time irrespective of the antigenic specificity of the 

cells and this was true for both CD158a as well (although to a lesser extent) as CD158b.  The 

increase in KIR expression was greatest in the CMV-specific populations although this did 

not reach statistical significance.  An example of staining is shown in Figure 5-15. 
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Figure 5-15: KIR expression on CD4+ T cell clones increases with prolonged 
culture.  Example staining from CMV-specific clone C114.  T cell clones were 
stained with CD158a and CD158b antibodies on Day 0 and Day 60.   
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Having characterised KIR expression on CMV-specific CD4+ T cell clones, I finally sought to 

investigate the functional consequence of this phenotype.  At a point when the clonal 

populations contained a high proportion of KIR+ cells, experiments could be carried out to 

investigate the effect of blocking KIR interactions.  Antibodies to CD158a and CD158b were 

therefore incubated with the cell populations prior to IFNγ ELISAs and chromium release 

assays which were repeated as before (Figures 5-10 and 5-13).  Figure 5-16 shows examples 

from 2 different clones, which are representative of all clones tested.  Attempting to block 

KIRs on these clones using commercial antibodies had no significant effect on either 

recognition of processed antigen (Figure 5-16a) or killing of peptide-loaded LCL targets 

(Figure 5-16b).  However it is unfair to draw conclusions from this data as it is not apparent 

whether mAbs HP-3E4 and GL183 block KIR function. 
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Figure 5-16: KIR blockade does not affect recognition or killing of LCL 
targets by A1 peptide-specific CD4+ T cell clones.  T cell clones were treated 
with either CD158a or CD158b antibodies or both before function was tested.  (a)  
Recognition of A1 peptide was tested by IFNγ ELISA.  (b) Killing of peptide-
loaded targets was tested by chromium release.  Results are expressed as the 
average from triplicate assays. 
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5.4 DISCUSSION 

This chapter followed on from the data in the previous chapter to investigate, in more detail, 

the role of KIRs in the context of CMV infection.  Initial experiments were carried out to 

determine whether CMV-specific T cells express KIRs.  Once this was established, work was 

begun to try and generate KIR+ CD4+ T cell clones as a model to test function.  This proved 

more difficult than first thought, and many complicating factors came to light.   

 

CMV-specific T cells were shown to contain a higher frequency of KIR+ cells than the 

general T cell pool.  This was true for both CD8+ and CD4+ T cells although both should 

perhaps be considered individually when attempting to understand this observation.  Huard 

and Karlsson suggested that repeated exposure to specific antigens would increase expression 

of NKRs on specific T cells and this work correlates with that (Huard et al. 2000).  However 

there is some controversy as Gamadia et al. showed that CD8+ CMV-specific T cells barely 

expressed KIRs at all (even when the rest of the CD8+ T cell population did) (Gamadia et al. 

2001).  To reconcile these data, it is conceivable that KIR+ and KIR– T cells recognize distinct 

sets of CMV proteins.  CMV-specific CD8+ T cells in that study were identified by tetramer 

staining, using a single HLA-A2-restricted CMV peptide derived from pp65, one of the 

immunodominant CMV proteins (Gamadia et al. 2001; Anfossi et al. 2004).  In contrast, in 

our assays CMV-specific T cells were identified after stimulation with a CMV peptide pool 

which contains a much larger number of potential T cell epitopes. It will therefore be of 

interest to test whether CD8+ T cells specific for other CMV antigens express KIRs. 
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Since this work has been carried out, van Bergen et al. published a study looking at KIR 

expression on CD4+ T cells in correlation with CMV.  As with other studies published, the 

focus of the paper was not on healthy donors, but on rheumatoid arthritis patients.  The group 

showed that there was a higher frequency of IFNγ producing cells in the CD4+ KIR+ subset of 

T cells than CD4+ KIR- (van Bergen et al. 2009).  The data in this chapter fits in with this 

finding. 

 

Despite the reduced frequency of KIR+ cells in CMV seropositive donors, CMV-specific T 

cells do express KIRs.  This apparent data, although conflicting, is credible as it backs up 

several other studies.  In their paper, van Bergen et al. say they attempted to culture PBMCs 

in the presence of a CMV lysate and this invariably led to a reduction rather than an increase 

in the proportion of CD4+ KIR+ T cells, although this data was not shown (van Bergen et al. 

2009).  Cohort studies have indicated that the NKR profile on NK and T cells is imprinted by 

CMV (Guma et al. 2004).  A recent study by van Stijn et al. demonstrated strong induction of 

NKRs on T cells as a direct result of CMV infection (van Stijn et al. 2008).  A possible 

scenario may be that expression is regulated to provide essential control mechanisms for the 

activation of T cells by controlling costimulatory signals, dampening T cell activation when 

viral load diminishes, and controlling harmful activation to the host during latent viral 

infections.  The stage of infection may well be relevant and it would be interesting to compare 

this between studies. Another possibility to consider is that CMV may itself have some kind 

of systemic effect of reducing KIR expression on cells of other specificities despite CMV-

specific cells showing an increased pattern of KIR expression. 
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To add to the studies that are currently being carried out the frequency of expression of each 

individual KIR antigen was also addressed.  Interestingly, not all KIR antigens were regulated 

in the same way.  In the CD8+ T cell compartment the frequency of CD158b expression was 

significantly downregulated on CMV-specific T cells, whereas both CD158e1 and CD158i 

were significantly upregulated.  The frequency of CD4+ cells expressing CD158e1 and 

CD158i were again found to be significantly higher in the CMV-specific subset.  However, 

CD158b, in contrast to CD8+ T cells was also higher in the CD4+ CMV-specific 

compartment.  The frequency of cells expressing CD158a remained unchanged for both CD8+ 

and CD4+ T cells.   This adds to current knowledge of KIR expression and indicates that not 

only is each KIR antigen independently regulated, but expression is controlled according to 

cell type.  One big question that needs to be addressed however is whether the same pattern of 

expression is observed for each specific KIR receptor on CD8+ and CD4+ T cells.  As GL183 

is a non-specific antibody it is hard to draw firm conclusions here.  Is expression of all 3 KIRs 

(KIR2DL2, KIR2DL3, KIR2DS2) altered, or is it just one?  Is this the same for CD8+ and 

CD4+ T cells or are they unrelated?  These are just some of the questions that need to be 

addressed in the future. 

 

Co-expression of KIRs on CMV-specific T cells was also investigated.  It was found that 

CMV-specific T cells express a more diverse repertoire of KIRs than the remaining T cell 

pool within the same donor.  This is true for both CD8+ and CD4+ T cells.  So, despite lower 

frequency of KIR+ T cells in CMV seropositive donors , their CMV-specific T cells contain a 

higher frequency of KIR+ cells and these cells are more likely to show a diverse KIR 

phenotype expressing 2 or 3 different types of KIR.  A possibility may be that CMV is 

shaping the KIR repertoire and downregulates KIRs to evade the immune system.  However it 
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is plausible that CMV-specific T cells upregulate KIRs in an attempt to combat CMV 

infection.  Again, a question that really needs to be addressed is which KIRs exactly are 

affected.  α-CD158e1 and α-CD158i are specific antibodies (one for an inhibitory KIR and 

one an activating), but α-CD158a and α-CD158b detect both inhibitory and activating 

receptors so it is difficult to interpret how CMV is modulating the immune system.  It would 

be of interest to carry out a longitudinal study of patients who experience primary CMV 

infection (although these donors are difficult to identify other than post-transplant) to observe 

the changes in KIR expression as infection progresses.  The study by van Stijn et al. looked at 

13 renal transplant patients who experienced a primary CMV infection over a period of one 

year.  The study was rather limited as they only looked at CD8+ T cells using NLV and TPR 

tetramers, and they only looked at 2 time points – 40-60 weeks post transplant, and 1 year 

post-infection.  The frequency of KIR+ cells at these time points were compared to naïve 

CD8+ T cells, and they found KIR3DL3 expression remained unchanged whereas KIR2DL1, 

2DL2, 2DL4, 3DL1, 2DS2, 2DS4 and 3DL5a were upregulated during peak CMV infection 

but returned to baseline levels in the latency stage (van Stijn et al. 2008).  This study used 

microarray analysis to look at mRNA, but if the expression on the cell surface is correlated 

with this data then the findings could be relevant.   

 

In view of these changes in KIR expression I went on to investigate the function of KIR 

proteins.  I tried on several occasions to clone KIR+ CD4+ T cells and eventually antigen-

specific clones were generated that were shown to express KIRs.  Unfortunately only ~2% of 

the clone showed KIR expression at early time points.  However, this is not surprising as KIR 

expression has been shown to occur after TCR rearrangement (Vely et al. 2001).  What was 

observed was that CD158a and CD158b expression increased with prolonged culture.  IL-2 
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has been shown to upregulate expression of CD158a and CD158b (Kogure et al. 1999), and 

this was probably the case in these cultures.  Clones were cultured for several months to 

increase KIR expression so functional assays could be attempted.  However, neither antigen 

recognition nor killing were affected by the blockade of CD158a (KIR2DL1 and 2DS1) 

and/or CD158b (KIR2DL2, 2DL3 and 2DS2).  Assuming these antibodies block KIRs, one 

possibility for the results observed is that the effects are simply too subtle to be seen with my 

assays.  Alternatively, the blockade that I achieved with these antibodies may be non-specific 

and lead to opposing influences on cell cytotoxicity.  α-CD158a and CD158b antibodies bind 

a range of inhibitory and activating receptors and it is possible that these cancel each other 

out.  What would be of real use to investigate KIR function effectively would be a T cell 

clone with high expression of a single KIR.  Alternatively the generation of specific reagents 

to target each single KIR antigen may be a more practical step. 

 

It is now believed that CMV undergoes intermittent reactivation in immunocompetent hosts 

(Gillespie et al. 2000).  If activating KIRs also play a significant role in controlling CMV 

reactivation in healthy donors this may contribute to the maintenance of their polymorphism 

within the population.  Any potential benefit of inheriting multiple activating KIRs must be 

weighed against their potential contribution towards other disease.  Indeed, the inheritance of 

activating KIRs in the absence of an inhibitory homologue has been shown to increase the 

risk of psoriatic arthritis and other autoimmune phenomena (Martin et al. 2002; Nelson et al. 

2004). 
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A number of questions regarding the involvement of KIRs in the immune response to CMV 

remain open.  The identification of KIR ligands becomes essential to define their putative 

participation in the response against CMV.  The true ligands for activating KIRs remain to be 

determined. There is considerable homology between the extracellular sequence of activating 

and inhibitory KIRs which might suggest that they share ligands.  However, activating KIRs 

demonstrate only a weak affinity for HLA class I although they may potentially respond to an 

increase in levels of HLA class I on the cell surface (Saulquin et al. 2003; Stewart et al. 

2005).  The interaction between activating KIRs and HLA class I may be dependent on the 

peptide presented within the peptide binding groove of the HLA class I molecule.  There is 

certainly considerable evidence that peptides affect the interaction between inhibitory KIRs 

and HLA class I (Zappacosta et al. 1997). Alternatively the true ligand(s) for activating KIRs 

may not be HLA class I molecules but virally encoded homologues.  In mice, the lectin-type 

activating receptor Ly49H confers resistance against murine CMV by engaging a major 

histocompatibility (MHC)-like protein encoded by the virus (Arase et al. 2002).  In humans 

the KIR-related protein LILRB1 binds to the CMV encoded HLA class I homologue UL18 

and shows increased expression on lymphocytes in lung transplant patients with CMV disease 

(Berg et al. 2003) and there is evidence that CMV seropositivity influences the cell surface 

expression of molecules encoded within the leukocyte receptor complex (LRC).   
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Chapter 6 

Discussion 

 

 

The biology of KIR proteins is an intriguing and complex subject and is further complicated 

by the considerable polymorphism within the KIR gene complex.  Firstly, the number of KIR 

genes varies between individuals (Uhrberg et al. 1997), with potentially hundreds of discrete 

KIR genotypes.  Secondly, some KIR sequences vary by the presence or absence of ITIM 

motifs.   Thirdly, there are additional, more common, causes of sequence variation such as 

single nucleotide polymorphisms and gene insertions or deletions (Martin et al. 2000; Shilling 

et al. 2002).  Fourthly, KIRs possess either two or three Ig domains and the reasons for this 

functional dimorphism are not understood. The result of this is that the KIR region on the 

leukocyte receptor complex (LRC) is highly plastic (Parham 2004). 

 

KIR genes have been found in disparate species including humans, primates (Rajalingam et 

al. 2001) and ungulates (Dobromylskyj et al. 2007).  Comparison of the KIR region between 

man and other primate species suggests that there has been a rapid expansion of the KIR 

region within the last few million years (Canavez et al. 2001; Hershberger et al. 2001).  Three 

of the KIR lineages are conserved in humans and chimpanzees, suggesting that they predate 

divergence of the two species. 
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A fascinating aspect of HLA/KIR evolutionary biology is the very extreme divergence in 

haplotype frequencies between human populations, presumed to indicate regional population 

differences in pathogen driven selection (Parham 2005).  The AA genotype is found in around 

56% of Japanese individuals and around 15% of Australian Aboriginal individuals. While 

these frequencies must also be considered in the context of the corresponding HLA class I 

allelic frequencies, they suggest that different populations may possess NK cell systems of 

inherently different functional programming.   

 

NK cells are known to play an important role in a wide range of disease settings and there 

have been many studies relating KIR genotypes to disease susceptibility (Jie et al. 2004; 

Rajagopalan et al. 2005; Williams et al. 2005; Khakoo et al. 2006).  The disease studies 

encompass several conditions in which NK cell function might be expected to play a role. 

This includes viral infection, autoimmune and inflammatory conditions, tumour immunity, 

pre-eclampsia and recurrent spontaneous abortion. 

 

A fundamental question needing to be addressed is what are the forces driving the variability 

of KIRs?  One possibility is reproduction – it has been shown that the interaction between 

maternal KIR and trophoblast, rather than having an immune function, plays a physiological 

role related to placental development (Hiby et al. 2004).  Certain HLA/KIR genotypes appear 

to have been selected against and so it is postulated that reproduction may have been a factor 

in the evolution of KIR polymorphisms.  Another suggestion in the literature is that it is 

indeed pathogen-driven selection that occurs and maintained by balancing selection for 

heterozygote advantage.  NK cells presumably express inhibitory KIR in order to set 

thresholds for cellular activation to ensure that only strong stimuli will elicit an effector 
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response.  This system is advantageous in that it permits detection of virus-infected cells or 

tumours that have downregulated MHC class I.  This provides the opportunity for viruses to 

acquire MHC class I homologues that engage inhibitory NK receptors, but these viral class I 

proteins would fail to interact with the T cell receptor, thus circumventing both NK and T 

cell-mediated immunity.  The existence of m157 and its ability to bind Ly49 documents that 

this mechanism of subversion has been devised by a viral pathogen. 

 

In this thesis, I sought to gain a better understanding of KIR biology in healthy donors.  I was 

also keen to investigate the effect of CMV on KIR expression and was interested to determine 

exactly what the consequence of CMV infection is on pattern and number of KIR molecules 

found on lymphocyte subsets.   

 

My initial work focussed on production of recombinant soluble proteins to study the 

biophysical interactions between 2DKIRs and their ligands.  Both KIR2DS2 and KIR2DL2 

were expressed to high purity as were HLA-C molecules Cw*0401 and Cw*0702.  I was able 

to show that both KIR2DS2 and KIR2DL2 interacted with HLA-Cw*0702.  I also observed 

an interaction between KIR2DL2 and HLA-Cw*0401.  Initially this caused me to reconsider 

my primary data as KIR2DL2 has previously been shown to bind HLA-C1 group allotypes 

only, and not HLA-C2 due to a genetic polymorphism at residues 77 and 80 (Colonna et al. 

1993).  However, during a conversation with Paul Norman, I discovered that there is now 

evidence for KIR2DL2 interacting with some HLA-C2 alleles.  In 2008 they observed binding 

to Cw*0501 and Cw*0202 (Moesta et al. 2008), and subsequently have found that 

polymorphisms at positions 16 (Pro→Arg) and 148 (Arg→Cys) lying opposite the binding 
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site induce a positive charge and result in a conformational change and the binding site 

opening (unpublished data).   

 

One interesting finding from my work is that the HLA-C tetramers did not show significant 

staining of NK cells despite the presence of KIR proteins on these cells.  In contrast, when 

cells were cultured in vitro in the presence of IL-2 for 1 week there was a marked increase in 

staining with HLA-C reagents.   One possibility that I have considered is that the epitope for 

HLA-C binding is blocked in resting NK cells but is released by in vitro culture.  There is a 

developing precedent for this theory with the realisation that membrane proteins are 

frequently involved in interactions with partners at the cell surface.  These so called 'cis' 

interactions can serve to block binding of ligand partners until released and has been observed 

in murine Ly49A and PIRB proteins, and human LIR-1 and LILRB2 (Masuda et al. 2007; 

Held et al. 2008; Chalifour et al. 2009).  Due to time constraints I was unable to pursue this 

possibility further but it remains of considerable interest.   

 

I performed a detailed FACs analysis of the expression of KIR receptors on lymphoid cells.  

One limitation of this when compared to techniques such as microarray is that only the 

proteins being expressed on the surface of the cell are measured.  Also, some of the antibodies 

available are cross-reactive, specific for both activating and inhibitory forms of KIR proteins.  

However, observations from this comprehensive study have indicated several possible roles 

for KIRs to follow up.  Healthy donors were seen to have low frequencies of T cells 

expressing KIRs.  In the CD8+ subset frequencies were highest in TCM and TEMRA populations, 

whereas in the CD4+ subset only the TEMRA population showed an increased frequency of 

KIR+ cells.    The CD4+ TEMRA population is cytotoxic (Appay et al. 2002) and therefore I 
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wonder whether KIRs play a role in protecting against cytotoxicity.  Figure 6-1 illustrates a 

model whereby TCM and TEMRA CD8+ T cells show increased frequencies of KIR+ cells to 

protect against cytotoxicity in secondary lymphoid tissues where primary immune responses 

are induced, as well as in the periphery (respectively).  CD4+ T cells only show increased 

frequencies of KIR+ cells in the cytotoxic TEMRA subset.  This theory is based on a dominant 

inhibitory function for KIR expression.  α-CD158a and α-CD158b antibodies are cross-

reactive and so may be measuring activating KIR2DS1 and KIR2DS2 as well as inhibitory 

KIRs.  However the α-CD158e antibody is specific for inhibitory KIR3DL1.  α-CD158i 

antibody detects activating KIR2DS4, although this allele is often inherited as a non-

functional deletion variant (KIR1D) (Hsu et al. 2002; Maxwell et al. 2002).  Therefore it is 

plausible to assume we are predominantly measuring inhibitory KIRs. 

 

 

 



                                                                                                                             

 

 

 

Figure 6-1: Proposed model of KIR expression on T cells protecting against 
cytotoxicity.  A higher frequency of T
when compared to other CD8
population is the only CD4
frequency of KIR+ cells.
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Proposed model of KIR expression on T cells protecting against 
A higher frequency of TCM and TEMRA CD8+ T cells express KIRs 

when compared to other CD8+ T cell memory subsets.  The cytotoxic CD4
population is the only CD4+ T cell memory subset to express a substantial 

cells. 

            Final discussion 

 

Proposed model of KIR expression on T cells protecting against 
T cells express KIRs 

T cell memory subsets.  The cytotoxic CD4+ TEMRA 
T cell memory subset to express a substantial 
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This study is the first to identify the differential regulation of CD158e1 allotypes on each 

lymphocyte subset.  Previously the DX9 antibody has been characterised and shown to detect 

different allotypes at two staining intensities but expression on T cells has never been 

investigated.  I have shown that the CD158e1 receptor is heavily regulated and different 

allotypes are preferentially expressed according to the cell type.  Interestingly, the binding 

properties of these subsets of allotypes differs and the resulting signals to the cell vary in 

strength (Carr et al. 2005).  NK cells were shown to predominantly express allotypes that 

provide a weaker signal, whereas T cells (especially CD4+) exhibited a higher proportion of 

CD158e1+ cells staining for allotypes that generate a strong inhibitory signal upon binding 

their HLA-Bw4 ligand.  

 

Another interesting finding from this study is that CMV-seropositive donors have a lower 

frequency of KIR+ cells.  In addition, from the KIR co-expression experiments I found that 

the KIR repertoire is more limited on these cells.  It appears that CMV infection is driving the 

KIR expression to select for a specific repertoire.  It would be interesting to investigate this 

further with a much larger cohort, and using KIR genotyped donors, to determine whether or 

not there are any individual KIR alleles that are preferentially targeted.  This idea of CMV 

leaving an ‘imprint’ in the receptor repertoire of infected cells has been previously described 

for other NKRs (Guma et al. 2004) and it would be interesting to see if KIRs are regulated in 

the same manner.  CMV infection is a much more common phenotype for homo sapiens than 

a seronegative state and thus might be regarded as the ‘norm’ in human evolution. As such we 

need to gain a clear understanding of the effect this virus has in altering receptor expression 

on lymphoid cells. 
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I finally investigated KIR expression on CMV-specific T cells and demonstrated that a higher 

frequency of these cells are KIR+ than in the rest of the T cell pool.    These cells were used as 

a model to examine KIR function, however I was unable to show any effect when these 

interactions were blocked.  I do not doubt however that these receptors are playing an 

important role.  It may be that the effects were too subtle to see a difference in cytokine 

production or killing.  Also, the use of cross-reactive antibodies may mean that any effect 

seen was masked – α-CD158a and α-CD158b antibodies would have blocked both activating 

and inhibitory interactions and one may have cancelled the other out.  Finally, this is an 

artificial target – peptide pulsed LCLs are not truly representative of the natural target in vivo 

and although routinely used to test T cell function we must not forget this. 

 

 

Future work 

This thesis has begun to characterise the pattern of KIR expression in healthy individuals and 

the functional consequence of this expression pattern.  However there is a multitude of future 

work that could be continued.  Clearly there is a need for more reagents to benefit KIR 

research.  Unfortunately our attempts at producing a specific-antibody have, as yet, yielded no 

success.  Although an extremely tall order, given the high degree of homology between 

receptors, the benefit of producing such a reagent would be invaluable.  An increasingly 

popular way to circumvent this problem has been to KIR genotype donors and/or cells and 

determine which allotypes are being expressed via a process of elimination.  In the absence of 

time constraints I would have genotyped all of my donors and undergone further analyses to 

try and determine the pattern of individual allele expression.  Following on from this it would 

be of great benefit to have T cell clones expressing single KIR alleles so the true effect of 
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blocking this interaction could be measured.  If not naturally obtained then transfecting KIR 

genes into cells would also be a possibility. 

 

There is still conflicting data regarding KIR expression on CMV-specific T cells.  It would be 

of real benefit to stain donors over a period of time ranging from the point of primary CMV 

infection to years or even decades afterwards as it is plausible that KIR expression may 

change throughout the course of CMV infection.  This is something that I initiated by 

collecting samples from patients who were undergoing CMV reactivation post stem cell 

transplant, but they were extremely lymphopenic and so data was difficult to interpret.  The 

optimum samples would be obtained from donors experiencing primary CMV infection, but 

these donors are difficult to identify.  Not only is KIR expression important in the context of 

CMV, but also their ligands.  It has been fairly well characterised that CMV downregulates 

HLA-A and HLA-B, but the effect on HLA-C is less well documented.  As HLA-C molecules 

are ligands for the 2DKIRS it would be of benefit to investigate the effect of CMV on 

expression levels.   

 

Finally, the work on 2DKIR and their interactions with HLA-C still needs pursuing.  It would 

be useful to test interactions against HLA-C incorporating a larger panel of peptides.  As 

HLA-C monomers appeared to be so unstable this may be easier to achieve at a cellular level.  

LCLs pulsed with peptides could be stained with KIR tetramers and differences in frequencies 

examined for each peptide. 
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Clearly there is still a lot of work to do in the field of KIR biology, but the work presented in 

this thesis provides a good foundation for future investigations.           
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