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Abstract

Taxed risk processes, i.e. processes which change their drift when
reaching new maxima, represent a certain type of generalizations of
Lévy and of Markov additive processes (MAP), since the times at
which their Markovian mechanism changes are allowed to depend on
the current position. In this paper we study generalizations of the
tax identity of Albrecher and Hipp [3] from the classical risk model to
more general risk processes driven by spectrally-negative MAPs. We
use the Sparre Andersen risk processes with phase-type interarrivals
to illustrate the ideas in their simplest form.

Keywords First-passage time, taxed Sparre Andersen risk process, spectrally-
negative Markov additive processes

1 Introduction

In this work we reconsider the tax identities of Albrecher and Hipp [3], which
relate the survival probabilities of the Cramér-Lundberg risk process and its
taxed version. The initial motivation of this work was to extend these iden-
tities to risk models driven by spectrally-negative Markov additive processes
(MAP), such as Sparre Andersen risk processes with phase-type (PH) inter-
arrivals. As we will show in this paper, most of the theory, including the
linear differential equation defining the survival probabilities, can indeed be
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generalized. In one dimension, the solution of this equation has an exponen-
tial form, which immediately leads to a power relation. This is not the case
in the setting of MAP-driven risk processes. Nevertheless, the solution can
be expressed using so-called product integrals.

The taxed version of a risk process X(t) is defined by

Xγ(t) := X(t)−
∫ t

0

γ(X(s))dX(s), (1.1)

where X(t) := sup0≤s≤tX(s) denotes the running maximum of X(t). When
γ(x) ≡ γ ∈ [0, 1) is a constant, this means reducing the drift c to c(1 − γ)
whenever the process X(t) (or, equivalently, Xγ(t)) coincides with its run-
ning maximum. In the presence of a modulating environment it is of interest
to allow the taxation rate γ to depend on the state of this environment. We
define the taxed version of a MAP-driven risk process in Section 5.

In Section 2 we review and reinterpret the derivation of the tax identity for
the Cramér-Lundberg process. In Section 3 we show that the Sparre Ander-
sen model with PH interarrival times can be analyzed in essentially the same
way. The general case of a spectrally-negative MAP requires some new ideas,
which nevertheless are of a similar spirit. In Section 4 we review some basic
theory of MAPs, and give examples of several important risk processes that
can be viewed as MAPs. The taxed MAP-driven risk process is analyzed in
Section 5, see in particular Theorem 5.1, which extends the results of Wei et
al. [24]. Finally, in Section 6 we briefly discuss a special case, where certain
formulas become more explicit.

For practical computations there are essentially two difficulties. One is that
of calculating the scale matrix of the original MAP, i.e. of solving the two-
sided exit problem, and the other is to numerically solve a system of linear
differential equations with variable coefficients. For an asymptotic result on
the tax identity for renewal models see Albrecher et al. [2].

Finally, we briefly comment on notation. For a function f of a real variable we
use f(x±) and f ′±(x) to denote its right (left) limit and right (left) derivative
at x correspondingly. For a function of many variables we use ∂±/∂y to
denote its right (left) partial derivative with respect to y. Capital letters
are used to represent random variables and matrices, whereas bold symbols
stand for column and row vectors.
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2 Review of the tax identity for the Cramér-

Lundberg model

The classical Cramér-Lundberg process of collective risk theory (see e.g. Ger-
ber [15]) models the surplus of an insurance company at time t by

X(t) = X(0) + ct−
N(t)∑
k=1

Ck, (2.1)

where Ck are i.i.d. positive random variables representing claim amounts,
N(t) is an independent Poisson process with intensity λ modeling the times
at which claims occur, and c represents the premium rate. Define the prob-
ability of survival φγ(x) := P (Xγ(t) > 0 for all t > 0|Xγ(0) = x) for the
taxed process Xγ(t) whose dynamics are defined in (1.1), and assume that
the taxation rate γ is constant.

As proposed in [1], it is beneficial to view the taxed process in the following
way. While at the maximum it evolves as a linear drift of rate c(1 − γ).
Upon arrival of a claim, the linear drift process is stopped until the present
level is regained, and then it is restarted again. Note that the excursions
from the maximum initiated by an arrival of a claim do not depend on the
taxation rate - these are excursions from the maximum of the original process.
Furthermore, an excursion may lead to ruin, in which case we kill the linear
drift process. According to this view, survival of the surplus process coincides
with survival of the killed linear drift, but the latter satisfies the following
differential equation

c(1− γ)φ′γ(x)− λq(x)φγ(x) = 0, (2.2)

where q(x) = P(H > x) is the probability that the height H of a generic
excursion from the maximum exceeds x. Indeed, the analysis of jumps of a
Poisson process in the interval [0, h

c(1−γ)
] shows that

φγ(x) =

(
1− λq(x)

h

c(1− γ)

)
φγ(x+ h) + o(h),

because P(x < H ≤ x + h) = o(1), as h ↓ 0. Roughly, the main idea of the
above derivation is to observe the risk process along the value axis instead
of the time axis. This is exactly the viewpoint of Itô’s excursion theory.
Furthermore, we make the following observations:
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1. The ”killing event” is the first point of a nonhomogeneous Poisson
process with rate λ

c(1−γ)
q(x), therefore we can write

φγ(x) = e−
∫∞
x

λ
c(1−γ) q(u)du, (2.3)

which can also be obtained directly by solving (2.2). The exponen-
tial form of the solution (2.3) immediately yields the following power
relation between taxed and non-taxed survival probabilities:

φγ(x) = φ0(x)
1

1−γ .

2. Formally, the derivative in Equation (2.2) is a right derivative φγ
′
+(x).

In fact, the left derivative is given by

c(1− γ)φγ
′
−(x)− λq(x−)φγ(x) = 0.

where q(x−) = P(H ≥ x) is the left limit.

3. The Cramér-Lundberg risk model can be generalized to a spectrally-
negative Lévy process, that is a process with stationary and indepen-
dent increments with only negative jumps. In this more general setting
one can use excursion theory to derive the counterparts of (2.2) and
(2.3), see [4, 19]. In the theory of spectrally-negative Lévy processes
there exists a so-called scale function W (x), x ≥ 0, which can be used
to express φ0(x) in the following way

φ0(x) = W (x)/W (∞).

Our differential Equation (2.2) for a Cramér-Lundberg process without
tax shows that

λ

c
q(x) =

W ′
+(x)

W (x)
.

Indeed, the right-hand side has a well-known interpretation in excursion
theory: it is the rate of arrivals of excursions exceeding height x. So
q(x) is available explicitly whenever W (x) is1.

4. It is not difficult to see that Equation (2.2) still holds if the taxation
rate γ(x) is a function of x, and we write c(1−γ(x)) instead of c(1−γ).
Hence the essential difficulty in obtaining φγ(x) is that of calculating
the scale function corresponding to the original process.

1It may happen that q(x) is more convenient to work with than the scale function; note

that the ”Riccati substitution”
W ′

+(x)

W (x) is used in computer programs for solving ODE’s for

detecting ”Liouvillian solutions”, which are precisely those solutions for which q(x) is
rational, but for which W (x) is not.
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5. Consider the general Gerber-Shiu discounted penalty function

m0(x) = Ex[e−δτ
−
0 w(X(τ−0 )−, X(τ−0 )); τ−0 <∞],

where τ−0 is the time of ruin, w is a penalty as a function of surplus
prior to ruin and deficit at ruin, and δ ≥ 0 is a force of interest. Let
mγ(x) denote the corresponding quantity in the same risk model with
tax. Assume δ = 0 for now (the general case δ ≥ 0 can be regained by
exponential killing, see also Remark 5.2). Equation (2.2) then extends
to

c(1− γ)m′γ(x)− λq(x)mγ(x) + λrw(x) = 0,

where rw(x) is the penalty resulting from an excursion starting at the
level x. This penalty function does not depend on taxation, hence we
obtain

c(1− γ)m′γ(x)− λq(x)mγ(x) + [−cm′0(x) + λq(x)m0(x)] = 0,

which can be rewritten using scale functions as

(1− γ)m′γ(x)−
W ′

+(x)

W (x)
mγ(x) +

(
−m′0(x) +

W ′
+(x)

W (x)
m0(x)

)
= 0.

Assuming that the process X(t) drifts to infinity (or that the force of
interest is positive) we see that mγ(∞) = 0, which then yields

mγ(x) =
1

1− γ

∫ ∞
x

(
W ′

+(y)

W (y)
m0(y)−m′0(y)

)(
W (x)

W (y)

) 1
1−γ

dy.

This formula generalizes Theorem 2.1 of Wang et al. [23] and may
be viewed as an extension of the tax identity, see also Cheung and
Landriault [12, (2.16)] and Kyprianou and Zhou [19].

It is not immediately clear how to generalize the approach based on excursion
theory to the MAP setting. Our approach, presented in Section 5 resembles
excursion theory, but relies only on some basic tools from the theory of
Markov chains.

3 The Sparre Andersen renewal risk model

with phase-type interarrival times

In this section we generalize Equation (2.2) to the Sparre Andersen renewal
risk model with PH interarrival times, see [21] for the analysis of this model
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with no tax. This generalization turns out to be quite straightforward and
can be extended to a wider class of processes, including a Markov-modulated
Cramér-Lundberg process as in [24]. A Sparre Andersen risk process is a
process of the form (2.1), where N(t) is an independent renewal process with
interarrival distribution A(x) concentrated on (0,∞) (see e.g. Asmussen and
Albrecher [7]).

We assume that A(x) is of phase type with parameters (n,α, A), which means
that A(x) is the distribution of the life time of a transient Markov chain (MC)
on n states with transition rate matrix A and initial distribution given by a
row vector α. Strictly speaking, these n transient states should be comple-
mented by an absorbing state. Letting a = −A1 be the column vector of
transition rates into the absorbing state, one can identify the PH density by
f(x) = αeAxa for x ≥ 0.

Let φ(x, i) be the survival probability assuming that at time 0 the process
is at level x and in phase i, i.e. the MC representing the interarrival times
is in state i. Then the survival probability for the original model is given by
αφ(x), where φ(x) is a column vector of φ(x, i). Let p(x) be a row vector
composed of p(x, j), where p(x, j) is the probability that an excursion started
at x regains the original level in phase j without causing ruin. Then Equation
(2.2) reads

c(1− γ)φ′γ(x) + (A+ ap(x))φγ(x) = 0.

To see this we write up to o(h) terms

φγ(x, i) = (1+aii
h

c̃
)φγ(x+h, i)+

∑
j 6=i

aij
h

c̃
φγ(x+h, j)+ai

h

c̃

∑
j

p(x, j)φγ(x+h, j)

with c̃ = c(1−γ), which immediately leads to the above differential equation.
In other words, we obtain

φ′γ(x) +
1

1− γ
Λ(x)φγ(x) = 0, (3.1)

where Λ(x) = (A + ap(x))/c. Interestingly, the matrix Λ(x) has a very
nice probabilistic interpretation, which we later exploit in the analysis of
a spectrally-negative MAP. This matrix can be identified using scale matri-
ces, the analogues of scale functions of a spectrally-negative Lévy process,
see Section 4.2.

The solution to Equation (3.1) in one dimension has an exponential form,
which then leads to the power relation between taxed and original survival
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probabilities. This is not the case in higher dimensions, because matrices
Λ(x), x ≥ 0 do not commute in general. The solution can be expressed using
so-called product integrals, see [14, 16]. Our numerical experiments with a
simple two-dimensional model indicate that various power relations indeed
fail to hold, see Section 6.

Finally, we only indicate the form of a differential equation for the taxed
Gerber-Shiu function αmγ(x), where mγ(x) is a column vector composed
from mγ(x, i). Similarly to (3.1) we get

(1− γ)m′γ(x) + Λ(x)mγ(x) + arw(x) = 0,

where rw(x) is the penalty resulting from an excursion starting at the level x.
Since the vector arw(x) again does not depend on taxation, one arrives at

(1− γ)m′γ(x) + Λ(x)mγ(x)−m′0(x)− Λ(x)m0(x) = 0.

4 Spectrally-negative Markov additive pro-

cesses

In this section we present a definition of a MAP and show that a number of
important risk processes can be represented using spectrally-negative MAPs,
that is, MAPs which have negative jumps only. Furthermore, we briefly
review related exit problems and the definition of a so-called scale matrix.
Strictly speaking, a MAP is a bivariate process (X(t), J(t)), where J(t) is
a Markov chain (MC) representing an exogenous background process, and
X(t) is a so-called additive component modulated by J(t). Nonetheless we
often say MAP meaning X(t), so for example a spectrally-negative MAP is
a MAP whose additive component can have only negative jumps. A MAP is
a generalization of a Lévy process in the sense that X(t) has stationary and
independent increments conditioned on the state of the modulating process
J(t), see [6, Ch. XI] for an introduction to MAPs.

Definition 4.1. A bivariate process (X(t), J(t)) is called MAP if, given
{J(T ) = i}, the shifted process (X(T + t) −X(T ), J(T + t)) is independent
from (X(t), J(t)), 0 ≤ t ≤ T and has the same law as (X(t) − X(0), J(t))
given {J(0) = i} for all i and T > 0.

Furthermore, one can replace the deterministic T in the above definition by
a stopping time. The resulting property is called the strong Markov property
for MAPs.
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It is common to assume that J(t) is an irreducible MC with a finite state
space E = {1, . . . , n}, which we do throughout this work. It can be shown
that X(t) evolves as some Lévy process Xi(t) while J(t) = i, and in addition
a transition of J(t) from i to j triggers a jump of X(t) distributed as Uij,
where J(t) and all the components in the construction are assumed to be
independent. This construction presents an alternative often-used definition
of a MAP.

The law of a spectrally-negative MAP is characterized by a certain matrix-
valued function F (θ), which is the analogue of the Laplace exponent of a
spectrally-negative Lévy process. In particular, assuming X(0) = 0, the
following holds true

E[eθX(t); J(t)] = eF (θ)t,

where the (i, j)-th element of the matrix on the left is given by

E(eθX(t); J(t) = j|J(0) = i),

see [6, Prop. XI.2.2]. The n× n matrix F (θ) is given by

Fij(θ) =

{
ψi(θ) + qii, if i = j,

qijGij(θ), if i 6= j,

where qij are the elements of the transition rate matrix Q of J(t), ψi(θ) =
logEeθXi(1) is the Laplace exponent of the Lévy process Xi(t), and Gij(θ) =
EeθUij .

4.1 Some MAP risk processes

Let us consider some special cases of spectrally-negative MAPs relevant in
risk theory.

Example 4.1. A Markov-modulated Cramér-Lundberg process with tax was
considered in [24]. This model is retrieved from a spectrally-negative MAP

(X(t), J(t)) by putting Uij = 0 and Xi(t) = cit −
∑Ni(t)

k=1 Ck, where Ni(t) is
a Poisson process of intensity λi and Ck are iid positive random variables.
Hence Gij(θ) = 1 and ψi(θ) = ciθ − λi(1− Ee−θC1).

Example 4.2. A Sparre Andersen renewal risk process with PH interarrival
times, as considered in Section 3, is another special case of a spectrally-
negative MAP (X(t), J(t)). Here the MC J(t) lives on n states. It makes a
jump from i to j without causing a jump of X(t) with rate aij; it makes a
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jump from i to j and triggers a jump −Ck with rate aiαj. Hence for i 6= j
it holds that Fij(θ) = aij + aiαjEe−θC1, that is qij = aij + aiαj and Uij is
an appropriate mixture of 0 and −C1. Then Fii(θ) = aii + aiαiEe−θC1 + cθ,
because qii = −

∑
j 6=i qij = aii + aiαi and ψi(θ) = cθ − aiαi(1 − Ee−θC1)

which corresponds to a compound Poisson process with intensity aiαi, jumps
distributed as −C1 and drift c. In matrix notation we have

F (θ) = A+ aαEe−θC1 + cθIn,

where In is an n × n identity matrix. Finally, we note that J(0) should be
distributed according to α.

Finally, we illustrate that it is also possible to incorporate positive jumps
of phase type into the model. To do so we enlarge the state space of the
background process and replace PH jumps by linear stretches of the unit
slope. This procedure is commonly known as fluid embedding.

Example 4.3. One can extend the model of Section 3 to allow more general
jumps. We assume that Ck is a mixture of C−k with probability p and −C+

k

with probability 1 − p, where C−k are any iid positive random variables and
C+
k are iid positive random variables of phase type. Let β, B, b be the initial

distribution, the transition rate matrix and the vector of rates into the absorb-
ing state corresponding to this PH distribution having, say, nb phases. The
corresponding spectrally-negative MAP (X(t), J(t)) is constructed as follows.
We let n = na + nb, where the first na phases represent the PH interarrival
times. The matrix F (θ) can be written in a block form as

F (θ) =

(
A+ paαEe−θC−1 + cθIna (1− p)aβ

bα B + θInb

)
and J(0) is to be distributed according to (α,0). It is noted that the original
process is retrieved by the time change, so that the time when J(t) > na is
not counted. This can be achieved by the state-dependent killing as discussed
in Remark 5.2.

4.2 Review of some exit problems

Consider a spectrally-negative MAP (X(t), J(t)) and assume that none of
the underlying Lévy processes Xi(t) is a.s. non-increasing. This assumption
is satisfied by all the examples given in Section 4, and allows to simplify the
notation. Define the first passage times as follows

τ+
a = inf{t ≥ 0 : X(t) > a}, τ−b = inf{t ≥ 0 : X(t) < −b},
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where a, b ≥ 0. The two-sided exit problem concerns identification of the ma-
trix P[τ+

a < τ−b , J(τ+
a )], whose ijth element is given by P[τ+

a < τ−b , J(τ+
a ) =

j|J(0) = i]. The following solution to this problem is obtained in [18]:

Theorem 4.1. There exists a unique continuous function W : [0,∞) →
Rn×n such that W (x) is invertible for all x > 0,

P[τ+
a < τ−b , J(τ+

a )] = W (b)W (a+ b)−1 for all a, b ≥ 0 with a+ b > 0,

and ∫ ∞
0

e−θxW (x)dx = F (θ)−1

for all sufficiently large θ > 0.

The matrix-valued function W (x) is a generalization of a scale function of a
spectrally-negative Lévy process, and hence we call it a scale matrix.

In the framework of spectrally-negative MAPs it is often advantageous to
identify certain associated MCs. For example, using the Definition 4.1 of a
MAP with T = τ+

x we see that the process J(τ+
x ) is itself a MC as a function

of x ≥ 0. We denote its transition rate matrix by Λ, so that P[J(τ+
x )] = eΛx.

This MC can be transient, that is, strictly speaking, we may need to add an
absorbing state. In this case the life time of J(τ+

x ), which coincides with the
overall supremum of X(t), has a PH distribution characterized by matrix Λ.

Next consider the reflected process Y (t) = X(t) −X(t). Roughly speaking,
this process depicts excursions of X(t) from its maximum. Suppose we kill
X(t) (send it to some absorbing state) at the stopping time

Ta = inf{t ≥ 0 : Y (t) < −a},

i.e. at the first time when the height of an excursion from the maximum
exceeds a > 0. Again, using the strong Markov property for MAPs, we see
that J(τ+

x ), x ≥ 0 is a MC also in the presence of killing. We denote its
transition rate matrix by Λ(a), so that P[τ+

x < Ta; J(τ+
x )] = eΛ(a)x. It was

shown in [18] that for a > 0 the right and left derivatives W ′
+(a) and W ′

−(a)
exist and

Λ(a) = −W ′
+(a)W (a)−1, Λ(a−) = −W ′

−(a)W (a)−1, (4.1)

which generalizes the well-known identities in the theory of Lévy processes.
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Remark 4.1. We remark that in the case of a Lévy process the life time
of the transient MC characterized by Λ(a) reduces to an exponential random
variable. Hence X(Ta) is exponentially distributed with rate W ′

+(a)/W (a).
This quantity can be seen as the total amount of dividends paid until ruin in
a Lévy model with the barrier dividend strategy, where the initial capital and
the barrier are both placed at the level a.

Let us briefly discuss the proof of the left identity in (4.1). These ideas will
be important in the analysis of the taxed process. One starts by establishing
a bound for any 0 < h < δ:

P[τ+
h < Ta; J(τ+

h )] ≤ P[τ+
h < τ−a ; J(τ+

h )] ≤ P[τ+
h < Ta+δ; J(τ+

h )], (4.2)

which follows directly from a sample path analysis. Then

Λ(a) ≤ lim
h↓0

(P[τ+
h < τ−a ; J(τ+

h )]− I)/h ≤ Λ(a+ δ),

because P[τ+
h < Ta; J(τ+

h )] = I + Λ(a)h up to o(h) terms. Finally, from the
probabilistic interpretation it follows that Λ(a+ δ)→ Λ(a) as δ → 0, and so
we obtain

W (a)W (a+ h)−1 = P[τ+
h < τ−a ; J(τ+

h )] = I + Λ(a)h (4.3)

as h ↓ 0 up to o(h) terms.

5 The taxed process

In the setting of MAP-driven risk processes it is important that the taxation
rate is allowed to depend on the state of the environment process J(t). Hence
we consider a vector γ(x) = (γ1(x), . . . , γn(x)) of taxation rates and define
a diagonal matrix Γ(x) with 1/(1− γi(x)) on the diagonal, where all γi(x) ∈
[0, 1). So the taxed version of X(t) is defined by

Xγ(t) = X(t)−
∫ t

0

γJ(s)(X(s))dX(s) = X(t)−
∫ X(t)

0

γJ(τ+x )(x)dx.

Similarly, to the one-dimensional case we choose to illustrate the ideas for
γi(x) ≡ γi for all i.

Denoting the law of the taxed process by Pγ, we consider the main quantity
of interest:

Φγ(x, y) = Pγx[τ+
y < τ−0 ; J(τ+

y )],
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where 0 ≤ x ≤ y. This quantity is more convenient to work with than
the survival vector. Moreover, the latter can be obtained from Φγ(x, y) by
taking the limit y → ∞. Using the strong Markov property for MAPs, it
is not difficult to see that Φγ(x, y) is a transition probability matrix (from
time x to time y) of a non-stationary Markov process with a finite number
of states. In particular,

Φγ(x, y + h) = Φγ(x, y)Φγ(y, y + h). (5.1)

It can be seen that Φγ(x, y) is continuous in both x and y, because a MAP
as considered in the present paper can not touch a fixed level without im-
mediately passing it a.s., see [18]. The following limiting result is crucial to
derive Kolmogorov’s equations characterizing Φγ(x, y).

Lemma 5.1. It holds that

Pγ[τ+
h < τ−a ; J(τ+

h )] = I + ΓΛ(a)h

up to o(h) terms as h ↓ 0.

Proof. For a fixed a transition probability matrix Pγ[τ+
h < Ta; J(τ+

h )] is given
by I + ΓΛ(a)h up to o(h) terms, because h under taxation corresponds to
h/(1 − γi) without taxation. Finally, the same bound as in (4.2) applies to
taxed processes, which then yields the result.

Lemma 5.1 and Equation (5.1) immediately yields the following theorem.

Theorem 5.1. The transition probability matrices Φγ(x, y) solve the Kol-
mogorov’s forward equation

∂+

∂y
Φγ(x, y) = Φγ(x, y)ΓΛ(y) = −Φγ(x, y)ΓW ′

+(y)W (y)−1 for y ≥ x (5.2)

with the initial condition Φγ(x, x) = I. For ∂−/∂y one needs to replace Λ(y)
and W ′

+(y) with Λ(y−) and W ′
−(y).

Similarly, one can obtain Kolmogorov’s backward equation

∂

∂x
Φγ(x, y) = −ΓΛ(x)Φγ(x, y) = ΓW ′(x)W (x)−1Φγ(x, y) for 0 ≤ x ≤ y

(5.3)
with the initial condition Φγ(y, y) = I.

The above reasoning can be seen as an extension of ideas from Section 2,
where the killing event was identified with the first point of a nonhomogenous
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Poisson process, which in many dimensions corresponds to the life time of
a non-stationary MC. Note also that our proof identifies the transition rate
matrix ΓΛ(y) defining this non-stationary Markov process with the transition
rate matrix of the stationary taxed MC J(τ+

x ), τx < Ty.

Remark 5.1. In many cases the matrix W (x) is continuously differentiable,
and so in particular W ′

−(x) = W ′
+(x) for all x > 0. This is for instance

the case when all the underlying Lévy processes Xi(t) satisfy the following
assumption: Either Xi(t) is of unbounded variation on compacts, or the jump
measure of Xi(t) as well as the distributions of Uij for all j have no atoms.

In the case of no taxation Equations (5.2) and (5.3) indeed admit the solution
Φ0(x, y) = W (x)W (y)−1. In one dimension, i.e. in the case of a spectrally-
negative Lévy process, we get an exponential function leading to a power
relation between Φγ(x, y) and Φ0(x, y):

Φγ(x, y) = e
∫ y
x

1
1−γΛ(z)dz = Φ0(x, y)

1
1−γ .

In higher dimensions Φγ(x, y) can be expressed using so-called product in-
tegrals, see [14, 16]. The problem arises from the fact that ΓΛ(a) and
ΓΛ(b) do not commute in general. Our numerical experiments with a simple
two-dimensional model and constant taxation rate γ indicate that various
power relations (inspired by the one-dimensional case) between Φγ(x, y) and
Φ0(x, y) fail to hold.

It is possible to show that Φγ(x, y) = Wγ(x)Wγ(y)−1 for some matrix-valued

function Wγ(·); in one dimension it is given by W (·)
1

1−γ . Then Equation (5.3)
shows that W ′

γ(x) = −ΓΛ(x)Wγ(x), which is the same differential equation
as (5.3), but with a different initial condition. It is unlikely that Wγ(x) can be
identified via its transform similarly to Theorem 4.1. Let us finally comment
on possible extensions of Theorem 5.1.

Remark 5.2. The above analysis can be applied in exactly the same form
to an exponentially killed MAP. This then yields Kolmogorov’s equations for
Eγx[e−δτ

+
y ; τ+

y < τ−0 , J(τ+
y )], where δ > 0 is the rate of killing. In certain cases,

as e.g. in Example 4.3, one may need to use state-dependent killing. This al-
lows to ‘ignore’ the time spent in auxiliary states representing positive jumps
of phase type. In terms of the matrix F (θ) characterizing the MAP, killing
amounts to replacing F (θ) with F (θ)−δI, or rather F (θ)−δD, where D is a
diagonal matrix with 0 and 1 on the diagonal depending if the corresponding
state is auxiliary or not. Some further details about state-dependent killing
of MAPs can be found in [11, 17].
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Remark 5.3. Suppose now that the taxation rates γi(x) are function of x.
Assume that γi(x) ∈ [0, 1) are right-continuous functions bounded away from
1, so that 1/(1 − γi(x)) are right-continuous, too. One can repeat the argu-
ments of Lemma 5.1 to obtain

Pγ[τ+
h < τ−a ; J(τ+

h )] = I + Γ(a)Λ(a)h

up to o(h) terms as h ↓ 0. This shows that the Kolmogorov’s Equation (5.2)
holds with Γ replaced by Γ(y).

6 The Sparre Andersen model with PH in-

terarrivals and PH jumps

Let us consider a special case of a spectrally-negative MAP for which the
scale matrix W (x) and then also Λ(x) can be identified (semi-)explicitly.
We reconsider the model from Section 3 and assume that the jumps Ck
have PH distribution with nb phases, transition rate matrix B, the initial
distribution β, and b = −B1 (see also [9]). Similarly to Example 4.3, we
introduce nb auxiliary states to represent the jumps, and let n = na +nb and
Xi(t) = −t for i > na. Hence we get a continuous piecewise linear MAP
characterized by

F (θ) =

(
A+ (cθ − δ)Ina aβ

bα B − θInb

)
,

where δ ≥ 0 is the rate of exponential killing. Such a fluid model allows for
an explicit identification of W (x).

Let Λa and Λb be na × na and nb × nb transition rate matrices of the MCs
J(τ+

x ) and J(τ−x ). Let also Πa,b be an na × nb matrix, such that its ith row
contains the distribution Pi[J(τ−0 )]. Similarly, we define the nb × na ma-
trix Πb,a as the matrix of initial distributions of J(τ+

0 ). There are various
ways to obtain matrices Λa,Λb,Πa,b and Πb,a from F (θ) including iterative
and spectral methods [5, 13, 22], see also the fundamental works [10, 20] on
Wiener-Hopf factorisation for matrices.

In the following we work exclusively with the original na dimensional MAP
with jumps using matrices Λ·, Π·,· defined above. The scale matrix W (x) of
the original process can be written as [e−Λax − Πa,be

ΛbxΠb,a]C, where C is a
constant matrix irrelevant in the following, see [8, 17]. Hence we get

Λ(x) = −W ′(x)W (x)−1 = [e−ΛaxΛa+Πa,be
ΛbxΛbΠb,a][e

−Λax−Πa,be
ΛbxΠb,a]

−1.
(6.1)
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Next, one can use Kolmogorov’s Equation (5.2) to numerically solve for
Φγ(x, y).

6.1 A numerical example

In order to illustrate the effort required to obtain Φγ(x, y) we consider a
simple example. We assume that the distribution of interarrivals of claims is
Erlang(2) with rates λ, and that the claims are exponential with rate µ. So
we get na = 2, nb = 1 and

F (θ) =

−λ− δ + cθ λ 0
0 −λ− δ + cθ λ
µ 0 −µ− θ

 .

We put δ = 0, λ = c = 1, µ = 2 and use the spectral method to compute
matrices Λ· and Π·,·, which amounts to finding the zeros of det(F (θ)) and
the corresponding null spaces, see e.g. [13]. We find

Λa =

(
−1 1

0.732051 −0.732051

)
, Πa,b =

(
0.133975
0.366025

)
Λb = −1.73205, Πb,a = (0.732051, 0.267949).

As a check we note that Λa1 = 0, because the process X(t) drifts to +∞
and hence Λa is a transition rate matrix of a recurrent MC. Next we use
Equation (6.1) to find the 2× 2 matrix Λ(x).

Choosing taxation rate γ = 0.2 and initial capital x = 1 we numerically
solve the system of differential equations in (5.2). In fact, we are only in-
terested in the first row of Φγ(x, y), because the initial distribution of the
phase process corresponding to the Erlang(2) distribution is (1, 0). Hence
we are concerned with a system of 2 differential equations. Summing up
these two solutions we obtain Pγx(τ+

y < τ−0 ), which is depicted in Figure 1
in bold. Its non-taxed version is plotted using the thinner solid line (on
top). The dashed line represents Px(τ+

y < τ−0 )1/(1−γ), and the dotted line

gives the sum of the first row of Φ0(x, y)1/(1−γ). The plot illustrates that
both the identity Pγx(τ+

y < τ−0 ) = Px(τ+
y < τ−0 )1/(1−γ) and the matrix version

Φγ(x, y) = Φ0(x, y)1/(1−γ) of the tax identity indeed do not hold for general
MAP risk processes.
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Figure 1: Hitting probabilities Pγx(τ+
y < τ−0 ) as a function of y ≥ x = 1 (in

bold) and some hypotheses.
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