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Abstract
We show how the introduction of the power divergence family proposed by Cressie and Read (1984) permits to
link various aspects of log likelihood model selection and factorial data description. Our approach, illustrated on
bigram textual frequencies, generalizes Factorial Correspondance Analysis beyond the independence model, as
exemplified by the symmetry model and an “independence-within classes” model, the latter seeming promising
for classification purposes. We introduce a “psi square” measure of inertia, alternative to the usual phi square. The
concept of “sharp contradiction” as well as a presumably new Rényi-like measure of dependence are discussed in
the framework of Information Theory. An “eigenvalues doubling” phenomenon associated to the symmetry model
is elucidated.

Keywords: Entropy, Factorial Correspondance Analysis, independence-within-class model, Kullback-Leibler
divergence, log likelihood, marginal homogeneity, model selection, power divergence family, Rényi’s entropy,
symmetry model, textual data analysis, variety.

1. Introduction

Markov chain models, Information Theory and Factorial Correspondance Analysis (FCA) share
a remarkable feature, namely to have first emerged as solutions of statistical problems about tex-
tual data: Markov (1913) about the quantification of the consonants/vowels sequences in Rus-
sian; Shannon (1951) about the entropy of written English; Benzécri (cited in Greenacre (1984)
p.9) about the consonants/vowels contingency tables in Chinese modern language manuals.

Hierarchical classification methods aside, French research on textual data mainly relies upon
FCA (as e.g. attested in Lebart and Salem (1994)) while Information Theory is the most popular
tool in Anglo-Saxon research (as e.g. attested in Manning and Schütze (1999)). With the hope
of a better understanding of both approachs, we present a framework originally aimed at linking
FCA to Information Theory.

Typical information theoretical expressions, such as the relative entropy (or Kullback-Leibler
dissimilarity) do not lend themselves to factorial decomposition. However, the relative entropy
is just one member among the power divergence family{Is} proposed by Cressie and Read
(1984); on the other hand, FCA is nothing but factor analysis on contingency tables for a partic-
ular model (namely the independence model) and a particular “total variance” measure, namely
the phi square, also belonging to the power divergence family.

Those circumstances enable to compare information theoretical expressions (obtained fors =
0 or s = −1) to factorial, data analytical formulations (obtained fors = 1); we will also
meet another measure (closely related to the Freeman-Tuckey or Escofier (1978) dissimilarity)
obtained fors = −1/2, we shall call “psi square”, which permits another approach to factor
analysis, alternative to the traditional practice based upon the phi square.
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We are of course well aware that the models we are discussing here (such as bigram indepen-
dence or symmetry) are little adapted to texts: they are simply aimed at illustrating methodolog-
ical points on familiar data and familiar models. Also, our choice of units (i.e. letters instead
of words) can be criticized from amodellingpoint of view (realistic models for sequences of
words are arguably easier to produce by an human subject than realistic models for sequences
of letters), but not, in our opinion, from the point of view ofinformation, since entropy-like
quantities can be converted without loss from a categorization system to another. For instance,
theentropy rate(see e.g. Cover and Thomas (1991)) satisfies

entropy rate per word= entropy rate per letter× average number of letters per word

2. Information theory and model selection

Notations: let njk be an(m1 ×m2) contingency table, with relative frequencyfjk := njk/n,
row profileswjk := njk/nj•, column profilesw∗jk := nkj/n•j and marginal profilesρ∗j :=
nj•/n = fj• andρk := n•k/n = f•k, wheren := n•• is the grand total. By construction,
fjk = ρ∗jwjk = ρkw

∗
kj; also, the row and column profiles transform aswjk = ρkw

∗
kj/ρ

∗
j and

w∗kj = ρ∗jwjk/ρk, which simply expresses Bayes’ rule on conditional profileswjk andw∗kj.

Entropy. H(column) := −∑
k ρk ln ρk ≤ lnm2 is the entropy on columns, andH(row) :=

−∑
j ρ

∗
j ln ρ∗j ≤ lnm1 is the entropy on rows.H(column|j) := −∑

k wjk lnwjk ≤ lnm2 is
the conditional entropy on columns given rowj andH(column|row) :=

∑
j ρ

∗
j H(column|j) is the con-

ditional entropy on columns given the rows. Similarly,H(row|k) := −∑
j w

∗
kj lnw∗kj ≤ lnm1

is the conditional entropy on rows given columnk andH(row|column) :=
∑

k ρk H(row|j) is the
conditional entropy on rows given the columns. Also,H(row, column) :=

∑
jk fjk ln fjk is the total

entropy. Simple algebra yields the well-known relations:

H(column|row) = H(row, column)−H(row) H(row|column) = H(row,column)−H(column) (1)

Kullback-Leibler divergence. The canonical information-theoretical measure of dissimilarity
between two theoriesf andg, supposed here defined by discrete distribution probabilities on
modalitiesi asfi ≥ 0 with

∑
i fi = 1 andgi ≥ 0 with

∑
i gi = 1 is the Kullback-Leibler

dissimilarityK(f ||g) :=
∑

i fi ln(fi/gi). The functionalK(f ||g) is non-negative, asymmetric,
with the propertyK(f ||g) = 0 iff f ≡ g. It can be interpreted as a measure of the information
gained (or the surprise generated) when the distributionf replaces the prior distributiong.
Its form can be justified from many points of view (see e.g. Cover and Thomas (1991)); for
instance, maximum likelihood estimationf theo obtains from the data (specified by the empirical
distributionf ) as well as from the model (specified by a family of distributionsf(θ) possessing
dim(Θ) free parametersθ ∈ Θ) as

f theo = f(θ0) where K(f ||f(θ0)) = min
θ∈Θ

K(f ||f(θ)) (2)

Also, thep-value associated to the test ofH0 : “data follow modelg” asymptotically behaves
asp ∼ exp(−n K(g?||g)), whereg? is the true theoretical distribution andn the sample size.
Thep-value thus decays exponentially whenever0 < K(g?||g) <∞. WhenK(g?||g) = 0, the
tested theoryg turns out to be the true oneg? andp should not decrease with the sample size,
as expected. Oppositely, ifg? sharply contradictsg, namely if there exists an outcomei0 held
for impossible by the tested theoryg (i.e. gi0 = 0) but actually possible (i.e.g?

i0
> 0), then,
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sooner or later, theoryg should be eliminated consecutively to the observation of outcomei0
(deterministic or Poperian refutation). Satisfactorily enough, one getsK(g?||g) = ∞ in that
case, meaning that thep-value asymptotically decays faster than exponentially.

Model selection. Maximum likelihood model selection consists in computingL2(H0) :=
2nK(f ||f theo), and comparing its value to the thresholdχ2[df]1−α, wheredf = dim(data) −
dim(Θ) is the difference between the number of parametersdim(data) of the saturated model
fitting perfectly the data and the number of free parametersdim(Θ) available in the modelf(θ).
That is, df is the number of constraints expressed inH0 : “data follow modelf(θ), where
θ ∈ Θ”. ModelH0 survives at levelα as long as

2nK(f ||f theo) ≤ χ2[df]1−α (or 2nK(f theo||f)
∼
≤ df in the simplified version) (3)

Example 1: independence model.For the independence modelH0 = HIND, the expected
frequencies (2) aref theo

jk = ρ∗jρk, and the corresponding Kullback-Leibler dissimilarity is thus

K(f ||f theo) =
∑
jk

fjk ln
fjk

ρ∗jρk

= H(row) +H(column)−H(row, column) (4)

As an illustration, consider the contingency tablenjk counting the number of bigrams appear-
ing in the firstn = 15′442 characters of the French text “La pensée remonte les fleuves” by
C.F.Ramuz (1937). Suppressing separators with the exception of the blank character “_”, ac-
cents and case, we are left withm1 = m2 = 26 categories (namely “_” together with 25 letters,
“k” having no occurrences in the text).

Rows and columns formally coincide. Thus bothwjk andw∗kj can be regarded as Markov tran-
sition matrices, describing the first-order generation of symbols given the previous one (resp.
the next one). The text begins and ends with a blank, and thus satisfies marginal homogeneity,
namelynj• = n•j. Consequently,ρ∗j = ρj, the latter also constituting the stationary distribution
of wjk or w∗kj (Bavaud 1998). WhileH(column|j) andH(row|j) do not coincide in general (for in-
stance,H(column|“q” ) = 0 since “q” is always followed by “u”, butH(rows|“q” ) = 0.69 > 0 since
“q” can follow different symbols), their averagesH(column|row) andH(row|column) do, with value 2.14.
AsH(row) = 2.70, one getsK(f ||f theo) = 2.70− 2.14 = 0.56.

The corresponding log likelihood isL2(HIND) = 2nK(f ||f theo) = 17′371.2 (df = 625): as we
well know, successive symbols in a text are highly dependent.

Equation (4) can be generalized by introducingRényi’s entropyHα of parameterα ∈ (0, 1) :

Hα(f) := 1
1−α

ln
∑

i f
α
i (5)

The interested reader will find helpful to use the freewareEntropizer 1.1of A.Xanthos (2000),
computing transition tables as well as Rényi’s and Shannon’s entropies of different orders. From
inequality

∑
jk f

α
jk ≤ (

∑
j f

α
j•)(

∑
k f

α
•k), the quantity

Rα(f) := Hα(ρ∗) +Hα(ρ)−Hα(f) = Hα(row) +Hα(column)−Hα(row, column) (6)

is non-negative, with value zero ifffjk = ρ∗j ρk. ThusRα(f) constitutes a suitable measure
of dependence. The limitlimα→1Hα(f) = H(f) yields Shannon entropy again. The limit
limα→0Hα(f) = lnV (f) makes appear thevarietyV (f) of the system, i.e. the number of dis-
tinct categoriesi such thatfi > 0. In this case, (6) simply says thatlnV (f) ≤ lnV (ρ∗)+lnV (ρ)
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or equivalentlyV (row, column) ≤ V (row) V (column): the number of distinct cross-modalities observed
in the contingency tablenjk cannot exceed the number of observed rows times the number of
observed columns. Note thatHα(f) andRα(f) somewhat interpolate between “qualitative mea-
sures” forα = 0 (taking only into account the presence/absence of a category) and “quantitative
measures” forα > 0 (taking into account the relative frequency of a category).

Example 2: independence-within-classes model.Suppose vowels on one hand and con-
sonants on the other hand are equivalent to the extent to be entirely substitutable by each
other. More generally, consider the set ofm1 = m2 =: m categories to be partitioned into
M1 = M2 =: M < m classes, and suppose the countsntheo

jk to be independentconditionallyto
the belonging of symbolsj andk in classesJ(j) andK(k) respectively (J,K = 1, . . . ,M ).
Explicitly, this independence-within-classesmodelH0 = HIWC assumesntheo

jk = αjβkγJ(j)K(k).
Using notational conventions such asnJK :=

∑
j∈J ; k∈K njk andnJ• :=

∑
j∈J ; k njk, ML-

estimation (2) yields:

ntheo
jk = nf theo

jk =
nj•

nJ(j)•

n•k
n•K(k)

nJ(j)K(k) (7)

Therefore, the Kullback-Leibler expresses as

K(f ||f theo) =
∑
jk

njk

n
ln
njk

ntheo
jk

=
∑
jk

njk

n
ln

njk

nj• n•k
−

∑
JK

nJK

n
ln

nJK

nJ• n•K
(8)

or equivalentlyL2(HIWC) = L2(HIND, symbols) − L2(HIND, classes). The corresponding degrees of free-
dom are readily found to be df= (m− 1)2 − (M − 1)2.

Considering in our text sample the three groups{blank} (J=1), “vowels”={a,e, i,o,u, y} (J=2)
and “consonants” (J=3) comprising all the other symbols, one getsL2(HIND, classes) = 3′934.8, and
thusL2(HIWC) = 17′371.2− 3′934.8 = 13′436.4 with df = (26− 1)2 − (3− 1)2 = 621. While
the proposed partitioning is too rough to withstand empirical confrontation, equation (8) can
clearly serve at constructing a well-defined hierarchical classification scheme.

Example 3: symmetry model.ML-estimation of the expected frequencies under the symmetry
modelH0 = HSYM are well known to bef theo

jk = f theo
kj = (fjk+fkj)/2. One findsK(f ||f theo) = .21

andL2(HSYM) = 6′337.9 with df = 26(26 − 1)/2 = 325. Texts being not invariant by time-
reversal, the rejection of the symmetry model hardly comes as a surprise.

3. Factorial data analysis

Linking model selection and factor analysis: the power divergence family.Factor analytic
methods in data analysis consist in spectrally decomposing a sum of squares generally inter-
pretable as a total variance or total inertia. The Kullback-Leibler dissimilarityK(f ||g) does not
expresses as a sum of squares; however, it belongs to thepower divergencefamily

Is(f : g) := 1
s(s+1)

∑
i fi((

fi

gi
)s − 1) (9)

wheres is a real parameter (Cressie and Read (1984)). Specifically,I0(f : g) = K(f ||g) and
I−1(f : g) = K(g||f) (more generally,Is(f : g) = I−s−1(g : f)). Moreover, other well-known
functionals obtain for particular values ofs, namely (in order) the (ordinary) khi-square, the
Freeman-Tuckey statistic and the Neyman khi-square:

I1(f : g) = 1
2

∑
i

(fi−gi)
2

gi
I−1/2(f : g) = 2

∑
i(
√
fi −

√
gi)

2 I−2(f : g) = 1
2

∑
i

(fi−gi)
2

fi

(10)
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In particular, those three expressions constitute sum of squares (and the only ones identified
so far in the power divergence family) on which factor analysis can be performed. Power
divergence functionals are “H0-equivalent” in the sense that, irrespectively of the value ofs,
2n Is(f : g) asymptotically follows a khi-square distribution wheng is the true distribution and
f the empirical distribution. However, if dataf sharply contradictg, thenIs(f : g) = ∞ holds
for s ≥ 0 only; similarly,Is(f : g) = ∞ whenever modelg sharply contradicts dataf , provided
s ≤ −1: for that range of values, theories predicting unobserved outcomes are rejected.

Factor decomposition of the khi square and the “psi square”. Let fjk be the observed
distribution, andf theo

jk the associated theoretical distribution under some modelH0. Define the
(m1 ×m2) matrices

cjk := (fjk − f theo
jk )/

√
f theo

jk c̃jk := 2(
√
fjk −

√
f theo

jk ) (11)

as well as the(m1 × m1) matricesB := CC ′ and B̃ := C̃C̃ ′. By construction,B and B̃
are symmetric and positive definite, thus decomposable asB = UΛU ′ andB̃ = Ũ Λ̃Ũ ′. On
the other hand, consider a set{Xj}j=1,...,m1 (resp.{X̃j}j=1,...,m1) of, say, normally distributed
vectors with variance-covariance matrixB (resp.B̃) and zero mean. Factor analysis ofB and
B̃ consists in spectrally decomposing the total variances, namely

∑
j var(Xj) = trace(B) =

∑
α λα =

∑
j,k

(fjk−f theo
jk

)2

f theo
jk

= 2 I1(f, f
theo) (phi square = khi square /n)∑

j var(X̃j) = trace(B̃) =
∑

α λ̃α = 4
∑

j,k(
√
fjk −

√
f theo

jk )2 = 2 I−1/2(f, f
theo) (“psi square”)

ThusanymodelH0 relative to a contingency table can be factor-analyzed by using one of the
two decompositions above (corresponding tos = 1 or s = −1/2 in (9): see Escofier (1978) for
the latter case. The cases = −2 is not considered here, since any empty cell associated with
a non-zero expected count would sharply reject the model). The procedure decomposes the
deviations offjk from f theo

jk , i.e. the deviations of the data from the modelH0, into independent
components.

Usual computations and interpretation rules apply. Theα-th factor scores column (of variance
λα) obtains asFα :=

∑
j Xj ujα, the cross-covariances ascov(Xj, Fα) = λαujα and the satura-

tions (loadings) as

sjα = corr(Xj, Fα) =
√

λα√
bjj
ujα

∑
α

sjαsj′α = corr(Xj, Xj′) (12)

(analogous results hold for the psi square decomposition (12)). The sum rules
∑

α s
2
jα = 1 and∑

j bjj s
2
jα = λα permit to define contributions of the factors or dimensions to the variance of

the variables and vice-versa. In particular,λα/
∑

β λβ (resp.λ̃α/
∑

β λ̃β) is the proportion of the
total divergenceI1(f : f theo) (resp.I−1/2(f : f theo)) explained by dimensionα.

Considering column instead of row profiles would lead to definem2 variablesY1, . . . , Ym2 of
variance-covariance(m2 × m2) matrixBY := C ′C (or B̃Y := C̃ ′C̃). As BX := B = CC ′,
normalized eigenvaluesvkα of BY are related to normalized eigenvaluesujα of BX by

vα = 1√
λα
C ′uα uα = 1√

λα
Cvα (13)

for the same eigenvalueλα. Corresponding saturations obtain ass∗kα =
√

λα√
bY kk

vkα.
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Figure 1:power divergenceIs(f : f theo) wheref theo is the ML-estimates = 0 corresponding to models
HIND (A),HIWC (B) andHSYM (C). The value ats = 1 gives the phi square;s = −1/2 gives the psi square.

This generalizes to arbitrary modelsH0 the well-known results of FCA, the latter covering the
caseH0 = HIND only. Note thatf theo above is the ML-estimate underH0, minimizing I0(f :
f theo) = K(f ||f theo). It is not the minimizer ofIs(f : f theo) for s = −1/2 or s = 1, although such
a specification would have been perfectly possible also, with still another resulting factorial
representation; see Bavaud (2000 b) for an example bearing upon the model of quasi-symmetry.
Besides computational convenience, our choice simply matches the usual practice in khi square
testing or FCA. Figure 1 depicts the near constancy ofIs(f : f theo) in the range−1/2 ≤ s ≤ 1.

Figure 2 shows the row (or column) saturationssjα associated to the three models, in the phi
square or psi square version. Another representation, generalizing the usual practice in FCA
(see e.g. Saporta (1990) or Lebart et al. (1995)), consists in defining factorial coordinates for
row j by ψjα :=

√
αj sjα or ψ̃jα :=

√
α̃j s̃jα whereαj andα̃j are theatypicitiesdefined as

αj :=
∑

k

(wjk−wtheo
jk

)2

wtheo
jk

(phi square) α̃j := 4
∑

k(
√
wjk −

√
wtheo

jk )2 (psi square)

andwtheo
jk := f theo

jk /ρ
∗
j . One can check marginal homogeneity of our data to insurewtheo

j• = 1 in the
three models, althoughwtheo

j• 6= 1 in general.ψ-coordinates permit to express total divergence as
an inertia, i.e. as a weighted origin-row squared euclidean distance:∑

j

ρ∗j
∑
α

ψ2
jα = 2 I1(f : f theo)

∑
j

ρ∗j
∑
α

ψ̃2
jα = 2 I−1/2(f : f theo)

ψjα and ψ̃jα representresidualswith respect to the model under consideration:ψj = 0 or
ψ̃j = 0 iff wjk = wtheo

jk for all k. More on inertia (in particular on aggregation invariance, scaling
properties and Huygens’ principle for dissimilarities) can be found in Bavaud (2000 a).

The phi square decomposition of the symmetry modelHSYM produces an noticeable phenomenon,
namely aneigenvalues doubling: one finds indeed thatλ1 = λ2 ≥ λ3 = λ4 ≥ λ5 = λ6 ≥ . . .
(where the last eigenvalue is zero in case of an odd number of categoriesm). The explanation
is the following: in the phi square version,cjk = (fjk−fjk)/

√
2(fjk + fjk) and thusC ′ = −C.

Then ifuα is an eigenvalue ofBX = CC ′ for the valueλα, so isCuα since

BXCuα = −CCCuα = CCC ′uα = Cλαuα = λαCuα

On the other hand,Cuα, proportional tovα by (13), is generally distinct fromuα, whence the
doubling of eigenvalues.
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Figure 2:circles of correlations (saturations) in the factorial plane spanned by the two first dimensions.
I) row profiles (coordinates ofXj) underHIND (phi square). II) column profiles (coordinates ofYj) under
HIND (phi square). III) row profiles underHIWC (phi square). IV) column profiles underHIWC (phi square).
V) row profiles underHSYM (phi square). VI) row profiles underHSYM (psi square).

Figure 3: left: Rényi-like indexRα(f) (6) (thick line; the thin line representsRα(f) for the same text
where all repetitions of the same letter have been suppressed). The only necessarily coinciding value with
the graph of figure 1A isI0(f : f theo) = R1(f) = K(f ||f theo) = 0.56. Weref = f theo, thenIs(f : f theo) ≡
Rα(f) ≡ 0 for all s and all α. Rα(f) (thick line) decreases fromR0(f) = 2 ln 26 − ln 301 = 0.81
(among the262 = 676 possible bigrams, 301 only did actually occur) toR1(f) = 0.56. Middle:
scree graphs for the phi square (circles) and psi square (squares) decompositions forHIWC. Right: scree
graphs for the phi square (circles) and psi square (squares) decompositions forHSYM. Note the eigenvalue
doubling phenomenon associated to the former.



JADT 2000 : 5es Journées Internationales d’Analyse Statistique des Données Textuelles

References
Bavaud, F. (1998). Models for spatial weights: a systematic look.Geographical Analysis, vol 30: 153-

171
Bavaud, F. (2000 a). On a class of aggregation-invariant dissimilarities obeying the weak Huygens’

principle. Submitted for publication.
Bavaud, F. (2000 b). The quasi-symmetric side of gravity modelling. Submitted for publication.
Cover, T.M. and Thomas, J.A. (1991).Elements of Information Theory. Wiley, New York.
Cressie, N. and Read, T.R.C. (1984). Multinomial goodness-of-fit tests.J.R.Statist.Soc.B, vol 46: 440-

464
Escofier, B. (1978). Analyse factorielle et distances répondant au principe d’équivalence distribution-

nelle.Revue de Statist.Appl., vol 26: 29-37
Greenacre, M. (1984).Theory and Applications of Correspondance Analysis. Academic Press, London.
Lebart, L. and Salem, A. (1994).Statistique textuelle. Dunod, Paris.
Lebart, L. et al. (1995).Statistique exploratoire multidimensionnelle. Dunod, Paris.
Manning, C.D. and Schütze, H. (1999).Foundations of Statistical Natural Language Processing. The

MIT-Press, Cambridge.
Markov, A.A. (1913). An example of statistical enquiry on the text “Eugène Onéguine”, illustrating tests

on chains (in Russian).Bulletin de l’Académie Impériale des Sciences de St-Pétersbourg.
Ramuz, C.-F. (1937).La pensée remonte les fleuves. Mermod, Lausanne.
Saporta, G. (1990).Probabilités, analyse des données et statistique. Editions Technip, Paris.
Shannon, C.E. (1951). Prediction and entropy of printed English.Bell Sys.Tech. Journal, vol 30: 50-64

Xanthos, A. (2000). Entropizer 1.1: un outil informatique pour l’analyse séquentielle.Proceedings of
the 5th International Conference on the Statistical Analysis of Textual Data (JADT 2000).

ERRATUM (August 2001)

Inequality (6) is referred to as the sub-additivity property by Alfred Rényi. Although verified for
the data considered in this paper, inequality (6) does not hold in general (unlessα = 0 orα = 1),
as pointed out by Rényi himself (1962). That is to say, inequality

∑
jk f

α
jk ≤ (

∑
j f

α
j•)(

∑
k f

α
•k)

is not valid in general forα ∈ (0, 1); indeed, with a bit of numerical exploration, a counter-
example can be found. My apologies for this.

Rényi, A. (1962).Wahrscheinlichkeitsrechnung : mit einem Anhang über Informationstheorie.
Deutscher Verlag der Wissenschaften, Berlin.


