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Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural al-
terations, whichwe study using the framework of themacroscopicwhite-matter connectome.We createweight-
ed connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance
imaging, and perform aweighted graph theoretical analysis. After confirming global network integration deficits
in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions re-
sponsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of
sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of
regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core
(A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of
numerous network hubs— chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated
lesion approach, we demonstrate that these core regions and their connections are particularly important to ef-
ficient network communication. Moreover, these regions are generally densely connected, but less so in
22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent
the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of
an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of nega-
tive symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core
overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which ap-
proximately 30–40% of 22q11DS patients develop.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic
disease affecting 1 in 4000 live births (Scambler, 2000), and generally
caused by a 1.5–3 megabase deletion on the long arm of chromosome
22 (Lindsay et al., 1995). As approximately 30–40% of 22q11DS patients
develop schizophrenia spectrum disorders during adulthood and even
more will experience psychotic symptoms during their lifetime
(Murphy et al., 1999; Monks et al., 2014; Schneider et al., 2014a), the
22q11.2 microdeletion has become an established genetic model for
schizophrenia spectrum disorders.
ment of Psychiatry, Sir William
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Patients with 22q11DS exhibit overall reductions in brain volume
andmorphological abnormalities.While graymatter alterations include
loss of volume (Shashi et al., 2010), cortical thickness (Bearden et al.,
2009; Jalbrzikowski et al., 2013) and gyrification (Schaer et al., 2006,
2009), white matter deficits appear both more extensive and more dif-
fuse (Barnea-Goraly et al., 2003; Simon et al., 2005). Specifically, volu-
metric analyses reported decreases in white matter volume in parietal,
temporal (Kates et al., 2001) and frontal lobes (Campbell et al., 2006).
Moreover, numerous studies used diffusion tensor imaging (DTI) to re-
port deficits in white matter integrity in the same regions
(Barnea-Goraly et al., 2003; Simon et al., 2008; Sundram et al., 2010;
Kikinis et al., 2012; Jalbrzikowski et al., 2014), in the corpus callosum
and midline structures (Simon et al., 2005), in tracts to and from all ce-
rebral lobes (Radoeva et al., 2012) aswell as within and between limbic
structures and fronto-temporal regions (Ottet et al., 2013a). Together
with gray matter abnormalities, these extensive, diffuse white matter
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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alterations may be responsible for disruptions in brain function
(Debbané et al., 2012; Rihs et al., 2013; Scariati et al., 2014; Schreiner
et al., 2014; Tomescu et al., 2014) and cognitive deficits (Glaser et al.,
2007; Dufour et al., 2008).

Diffuse and distributed diseases such as 22q11DS are suited for anal-
ysis using the framework of the structural magnetic resonance
connectome, a holistic description of the brain'smacroscopic connectiv-
ity (Hagmann, 2005; Sporns et al., 2005). A structural magnetic
resonance connectome is a complex network, where nodes correspond
to gray matter regions, while edges capture white matter connectivity
between them. In binary networks, edges only indicate the presence
of connections between regions. Conversely, weighted networks cap-
ture the relative importance of network connections. Various
magnetic resonance measures of diffusivity or myelination can be
used to quantify edge importance, reflecting diverse properties of the
underlying white matter substrate (Hagmann et al., 2010).

The mathematical framework of graph theory can be applied to
connectomes to characterize organizational principles of brain network
connectivity in health and their breakdown in disease (Hagmann et al.
2008; Bullmore and Sporns, 2009). This framework has been applied
to numerous pathologies (Griffa et al., 2013; Rubinov and Bullmore,
2013), including schizophrenia (van den Heuvel et al., 2010; Zalesky
et al., 2011; Fornito et al., 2012; Wang et al., 2012a; van den Heuvel
and Fornito, 2014) and 22q11DS (Ottet et al., 2013b).

The first study to apply graph theory to binary connectomes of
22q11DS patients reported deficits in topological integration and an in-
volvement of important “hub” nodes in the disease. Moreover, it dem-
onstrated associations between individual hallucination scores and the
local efficiency of several regions hypothesized to be involved in causing
hallucinations (Ottet et al., 2013b). However, the subset of regions re-
sponsible for global differences in integration was not pinpointed, or
studied.

Graph theoreticalmeasures of global connectivity can be sensitive to
connectivity alterations in disease, although their specificity is impeded
by the potential of different diseases to affect global brain topology in
similar ways (Griffa et al., 2013; Rubinov and Bullmore, 2013). At the
local level, disease-specific dysconnectivity has been studied using
nodal graph-theoretical measures (e.g., van den Heuvel et al., 2010;
Ottet et al., 2013b; see also Griffa et al., 2013), as well as statistical
methods designed to identify network components (Zalesky et al.,
2010; Meskaldji et al., 2011) or individual edges and nodes (Meskaldji
et al., 2015) with reduced connectivity strength. However, the
dysconnectivity of sub-networks responsible for deficits in higher-
order network properties such as integration or segregation has, until
recently (Griffa et al., 2015), not been studied.

In this study, we use weighted network analysis to confirm findings
of deficits in global integration in 22q11DS, previously reported in an
overlapping sample of participants using binary connectomes (Ottet
et al., 2013b). In addition, we extend previous findings of 22q11DS
dysconnectivity by identifying and studying the spatial distribution of
regions driving the global integration differences, referred to as the “af-
fected core” (A-core).We demonstrate that these core regions and their
connections are particularly important to efficient network communi-
cation, describe their role in disrupting communication efficiency in
the 22q11DS connectome and identify network alterations related to
negative symptoms in 22q11DS.

2. Methods

2.1. Participants

Forty-four participants with 22q11DS aged between 13.1 and
31.5 years (median(inter-quartile range)= 18.2(5.9) years) participat-
ed in the study. The chromosome 22q11.2 deletion was confirmed by
analysis of a blood sample with the Quantitative Fluorescent Polymer-
ase Chain Reaction.
Forty-four healthy participants aged between 13.1 and 30.4 years
(median(inter-quartile range) = 17.8(6.2) years) served as controls.
None of the control participants had a history of psychiatric or neurolog-
ical disorders. Subjects were matched for age (two-tailed Wilcoxon
rank-sum test (WRST), p = 0.65) and gender, each group consisting
of 23 females and 21 males.

Participants' IQ was assessed using Wechsler intelligence scales —
WISC-III for children under 17 years (Wechsler, 1991) and WAIS-III
for older participants (Wechsler, 1997). There were significant differ-
ences in full-scale IQ between 22q11DS patients (median(inter-quartile
range) = 69.5(17)) and healthy participants (median(inter-quartile
range) = 107.5(18)) (two-tailed WRST, p b 0.001).

22q11DS patients completed the Schizotypal Personality Question-
naire (SPQ) (Raine, 1991), which assesses the presence of symptoms
frompositive (e.g., hallucination or delusion), negative (e.g., socialwith-
drawal or blunted affect) and disorganized (e.g., odd speech and behav-
ior) dimensions. The medians(inter-quartile ranges) on the SPQ were
respectively: Total Score — 20(27.5), Positive — 6(12), Negative —
5(10) and Disorganized — 9(6). Moreover, the presence of psychiatric
disorders was evaluated using the Diagnostic Interview for Children
and Adolescents — Revised (DICA-R; Reich, 2000) for adolescents
under 18 years, and using the Structured Clinical Interview for DSM-IV
axis I disorders (SCID-I; First et al., 1996). Of the sample of 44
22q11DS patients, 7 were diagnosed with psychosis (15.9%) and 2
with schizophrenia (4.6%).

At the time of testing, 17 (38.6%) patients were receiving psychotro-
pic medication: 7 (15.9%) were on methylphenidate, 6 (13.6%) on anti-
depressants, 5 (11.4%) on antipsychotics, 4 (9.1%) on anticonvulsants
and 1 (2.3%) on anxiolytics.

Written informed consentwas obtained fromall participants or their
parents. The institutional review board of Geneva University School of
Medicine approved the study protocol. Of the present 88 participants,
56 (63.6%) were included in a related recent study by Ottet et al.
(2013b). The present sample also overlaps other (less directly relevant)
recent studies on magnetic resonance imaging structural or functional
connectivity in 22q11DS. Specifically, these are studies on structural
connectivity (without graph-theoretical analysis) (Ottet et al., 2013a),
resting-state functional connectivity (Debbané et al., 2012; Scariati
et al., 2014) and structural and functional connectivity within the de-
faultmodenetwork (Padula et al., 2015). For detailed quantitative infor-
mation on sample overlaps, see supplementary table S1.

2.2. Image acquisition and preprocessing

Magnetic resonance imaging (MRI) was performed using a Siemens
3T MRI scanner, including an anatomical T1-weighted scan and a DTI
scan (30 directions, maximum b-value 1000 s/mm2). Individual
connectomes were created using the Connectome Mapping ToolKit
(Daducci et al., 2012), which combines several MRI processing pro-
grams into an integrated pipeline. First, T1-weighted volumeswere reg-
istered to DTI data (Jenkinson et al., 2002). FreeSurfer was applied to
registered T1-weighted volumes to remove non-brain tissue and seg-
ment remaining tissue into gray and white matter (Fischl et al., 2002).
Subsequently, graymatter was parcellated into 82 cortical and subcorti-
cal regions of interest (ROIs). DTI data was realigned and corrected for
effects of head motion (Jenkinson et al., 2002). Next, deterministic
streamline tractography was used within white matter to reconstruct
macroscopicwhitematter tracts (Wang et al., 2007). Finally, overlap be-
tween streamlines and the ROI mask enabled the creation of individual
structural connectomes. Acquisition and preprocessing details are de-
scribed in the supplementary information.

2.3. Weighted connectome creation

As there is currently no consensus on how best to weight
connectomes, we used several connectome weightings, to ensure



241F. Váša et al. / NeuroImage: Clinical 10 (2016) 239–249
robustness of our findings. The main weighting was the streamline
count, or number of streamlines connecting two ROIs. Further, we
used streamline density, which takes into account variability in ROI
size by normalizing the streamline count between two ROIs by their
mean surface area, here normalized by total cortical area (Hagmann
et al., 2008). Finally, we weighted the streamline count between two
ROIs by the inverse average apparent diffusion coefficient (ADC) along
the corresponding white matter tract, indicative of myelination level,
axonal packing or axonal integrity (Beaulieu, 2002). Streamline count,
streamline density and average ADC have recently been shown to corre-
late to invasive measures of tract importance in the macaque,
supporting their utility in weighting macroscopic white-matter
connectomes in non-invasive diffusion imaging studies in humans
(van den Heuvel et al., 2015). Weight definition details are reported in
the supplementary information. All results reported in the results sec-
tion refer to the streamline count weight definition. Results obtained
using streamline density and inverse ADCweights are qualitatively con-
sistent, and are reported in the supplementary information.

2.4. Network analysis

Connectome topology was characterized in Matlab (mathworks.
com), using the Brain Connectivity Toolbox (Rubinov and Sporns,
2010) and customized code.

We evaluated two measures of global integration— the characteris-
tic path length and global efficiency, or average inverse shortest path
length, both of which quantify the ease of communication between dis-
tant brain areas (Latora andMarchiori, 2001).We also assessed segrega-
tion using transitivity, which is the ratio between pairs and triplets of
nodeswithin thenetwork (Newman, 2010). Between-group differences
in global graph-theoretical metrics were assessed using two-tailed
WRSTs.

Following our results and those of Ottet et al. (2013b), indicating a
decrease in integration in 22q11DS, we thereafter focused on regions
driving global integration deficits. Thus, we identified the spatial distri-
bution of regions responsible for the difference in global integration, by
comparing distributions in local measures analogous to global ones
using two-tailed WRSTs and correcting for multiple comparisons using
the false discovery rate (FDR) (Benjamini and Hochberg, 1995). For
local differences in integration we used the closeness centrality, which
is the inverse of the sum of topological distances between a node and
all other nodes in the network. We designate regions with decreased
closeness centrality in 22q11DS, and edges connecting them, as the “af-
fected core” — hereafter referred to as A-core. For completeness, we
have repeated our analysis using the local integration measures of
nodal path length and nodal efficiency, which bear similarities and dif-
ferences to closeness centrality. The results obtained using these mea-
sures are located and discussed in the supplementary information.

Subsequently, we evaluated several other local topological mea-
sures, which describe the importance of individual nodes. These include
the degree, a count of the number of edges connected to a node, and the
strength, or sum of these edges' weights. Furthermore, we evaluated
nodal betweenness centrality, which quantifies the fraction of shortest
topological paths in the network that traverse a given node, and the
clustering coefficient and local efficiency, which quantify the connectiv-
ity among a node's neighbors (Latora and Marchiori, 2001).

2.5. Affected core properties

A number of diseases, including 22q11DS, have been shown to in-
volve connectomehubs— particularly important regions of the network
(Lo et al., 2010; Achard et al., 2012; Ottet et al., 2013b; Crossley et al.,
2014). To qualitatively assess the topological importance of A-core re-
gions within the healthy network, we ranked nodes in descending
order according to each of their average nodal properties in control par-
ticipants, and highlighted A-core regions.
Subsequently, we compared effects of simulated A-core-targeted le-
sions and random lesions against the entire network (Kaiser et al., 2007;
Alstott et al., 2009). First, we removed all edges interconnecting A-core
regions from each participant's connectome, and evaluated the global
efficiency of the lesioned network. Then, we assessed the statistical sig-
nificance of the result using Z-scores, evaluated relative to reference dis-
tributions of global efficiencies following 1000 random lesions of an
equal number of randomly selected edges each subject's connectome.

Next, we assessed whether the mutual connectivity strength of A-
core regions is different than expected based on their degree alone.
First, we evaluated the mean strength of within-A-core edges for each
subject. Then, we computed Z-scores of the result relative to reference
distributions of average weights of the same edges, within 1000
weight-randomized connectomes with preserved binary topology.

In both permutation approaches described above, we evaluated dif-
ferences between Z-score distributions of 22q11DSpatients and healthy
controls using one-tailedWRSTs. Considering that A-core regions are by
definition affected in 22q11DS, we expected lesions of A-core edges to
have a lesser impact on the global efficiency of 22q11DS patients than
controls, and the interconnectivity strength of A-core regions, not
accounted for by degree, to be lower in 22q11DS patients than controls.

Moreover, defining the A-core sub-network enables discriminating
“core” edges, which interconnect A-core regions, “feeder” edges, which
connect A-core regions to remaining peripheral ones, and “peripheral”
edges, which interconnect peripheral regions. To assess whether differ-
ent edge types are differentially affected in 22q11DS, we compared con-
nectivitywithin these three edge classes betweenboth groups, using two
edge-specific measures — their average weight and their average edge
betweenness centrality, which in analogy to nodal betweenness central-
ity quantifies the fraction of shortest network paths which traverse a
given edge (Newman, 2010). We assessed differences in these measures
using two-tailed WRSTs.

2.6. Relation to symptomatology

Finally, we assessed potential impacts of network dysconnectivity
on symptomatology in 22q11DS by evaluating Spearman correlations
between the average strength and global efficiency of a subset of A-
core nodes (see supplementary information for details regarding in-
cluded regions) and SPQ scores (total, positive, negative, disorganized).
The selection of the subset of A-core nodes was based on previous stud-
ies (see Section 3.4 for details). We repeated these correlations while
controlling for age and IQ.

3. Results

All results reported below refer to the streamline count definition of
edgeweights. Results obtained using edgeweight definitions of stream-
line density and streamline count weighted by inverse ADC are qualita-
tively consistent, and are reported in the supplementary information.
Medians and first and third quartiles (Q1,Q3) of all distributions com-
pared using WRSTs are located in supplementary table S2.

3.1. Global network measures

Connectomes of 22q11DS patients presented significantly decreased
global integration, demonstrating both increased characteristic path
length (p = 0.0039) and decreased global efficiency (p = 0.019)
(Fig. 1A). Furthermore, connectomes of 22q11DS patients possessed
lower global segregation, evaluated using transitivity (p = 0.032)
(supplementary figure S1A).

Further, we tested differences in global properties using local mea-
sures averaged over all nodes for each subject. This confirmed a decrease
in integration, identified by node-averaged closeness centrality (p =
0.0058) (Fig. 1B). However, node-averaged local segregation measures
failed to confirm the global segregation difference, both for the clustering

http://mathworks.com
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Fig. 1.Differences in global integration between healthy controls and 22q11DS patients, assessed using: (A) global measures, the characteristic path length and global efficiency, and (B) a
node-averaged local measure, closeness centrality. p-values refer to two-tailed Wilcoxon rank-sum tests.

242 F. Váša et al. / NeuroImage: Clinical 10 (2016) 239–249
coefficient (p= 1) and local efficiency (p= 0.67) (supplementary figure
S1B).

Importantly, these topological differences could not be explained by
a potential difference in the number of reconstructed streamlines (p =
0.32) or in edge density (p=0.95) between the two groups (two-tailed
WRSTs).

3.2. Identification of the 22q11DS affected core

Based on the robust integration deficit results, we investigated the
spatial distribution of regions driving the global group difference using
closeness centrality.When averaged over all nodes, thismeasure is highly
correlated to global efficiency, andhighly inversely correlated to the char-
acteristic path length (supplementary figure S2). A total of 31 regions
presented decreased closeness centrality in 22q11DS (FDR-corrected
two-tailed WRST; p b 0.05), which were defined as the affected core, or
Fig. 2. The affected core, or A-core, of regions with reduced closeness centrality in 22q11DS. R
corrected for multiple comparisons using the false discovery rate (FDR). Only cortical regions a
is found in supplementary table S3.
A-core (Fig. 2). No regions with increased closeness centrality in
22q11DS were found.

Affected regions are broadly bilaterally symmetric. Regions with bi-
laterally decreased closeness centrality include superior frontal and
orbitofrontal cortex, precentral gyrus, superior and inferior parietal lob-
ules, precuneus and entorhinal cortex as well as caudate nucleus, puta-
men, thalamus and hippocampus. On the left side, the cingulate cortex,
parahippocampal gyrus, cuneus and amygdala are also affectedwhereas
on the right side the pericalcarine cortex and pallidum are involved. For
a list of all affected regions and associated raw and FDR-corrected p-
values, see supplementary table S3.

For all patients and controls, A-core nodes form a single connected
component, which justifies considering them as a sub-network of the
connectome. Further, the fact that these regions are driving the global
integration deficit is highlighted by evaluating differences in integration
between patients and controls within the A-core only. Both
egions are color-coded according to p-values from two-tailed Wilcoxon rank-sum tests,
re visualized; a list of all A-core regions, with associated raw and FDR-corrected p-values,
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characteristic path length (p = 2.9⋅10−6) and global efficiency (p =
4.1⋅10−5) show strongly significant decreases in integration in
22q11DS (supplementary figure S3).

Although differences in global segregation were not significant
when using average nodal measures, for the sake of completeness we
assessed local differences in segregation by comparing nodal clustering
coefficients between the two groups using FDR-corrected two-tailed
WRSTs. For results, see the supplementary information.

3.3. Affected core properties

A-core nodes are largely hubs of the healthy network, featuring
among highest-ranked nodes for node centrality and path centrality
measures evaluated on control connectomes. Considering node central-
itymeasures, 16 of the 20 highest degree nodes and 15 of the 20 highest
strength nodes are part of the A-core (Fig. 3A). Concerning path central-
ity, 13 of the 20 highest closeness centrality nodes and 18 of the 20
highest betweenness centrality nodes are A-core members (Fig. 3B).
When considering node clustering, A-core nodes are distributed rela-
tively evenly amongst the ranking (Fig. 3C). For numerical details on
the rankings of all regions by each nodal property, see supplementary
table S4.

When comparing effects of A-core-targeted and random lesions on
network efficiency, a lesion of A-core edges disrupts global network ef-
ficiency far more than randomly located lesions of equal magnitude
(Fig. 4A). Z-scores of global efficiency after targeted A-core lesions, rel-
ative to reference distributions of global efficiencies following random
lesions, were significantly smaller than zero in both healthy controls
and 22q11DS patients (both p b 10−10). Notably, lesions of deficient
edges are less harmful to network integrity than lesions of healthy
edges, as underlined by a significantly lesser impact of targeted lesions
on efficiency of 22q11DS connectomes (p = 0.00067).

While A-core nodes are mostly hubs, their mutual connectivity
strength cannot be accounted for by their high degree alone (Fig. 4B).
Z-scores of mean within-A-core strength, relative to reference distribu-
tions of mean within-A-core strength, within connectomes with pre-
served binary topology but randomized edge weights, were greater
than zero in both healthy controls and 22q11DS patients (both
p b 10−10). Thus, A-core nodes are more strongly interconnected than
expected on the basis of their high degree alone, in both groups. Howev-
er, this effect is significantly lower in 22q11DS patients (p = 0.00040).

Finally, distinguishing A-core and peripheral nodes enables differen-
tiating three classes of edges — core, feeder and peripheral, which pro-
vide specificity in comparing average weight and edge betweenness
centrality between the two groups. In 22q11DS patients, average
Fig. 3. Ranking of nodes by average nodal property in control subjects, with A-core region
(C) clustering measures. For numerical details on the rankings of all regions by each nodal pro
connection weight was reduced within A-core edges (p = 0.0025),
but not within feeder edges (p = 0.48) or peripheral edges (p =
0.86). In a post-hoc analysis, we unraveled the contributions to this ef-
fect by the total edge weight and by the number of edges. While the
total number of edges within each class did not significantly differ be-
tween groups for A-core edges (p = 0.20), feeder edges (p = 0.93) or
peripheral edges (p= 0.46), the total edge weight was significantly de-
creased in 22q11DS for A-core edges (p = 0.00018) but not for feeder
edges (p = 0.99) or peripheral edges (p = 0.20). Moreover, in
22q11DS, average edge betweenness centrality was decreased in A-
core edges (p = 0.0012) and increased in feeder edges (p = 0.0044)
and peripheral edges (p = 0.0049) (Fig. 5).

3.4. Relation to symptomatology

Regarding the important role played by orbito-frontal and cingulate
cortices in the emergence of negative symptoms (Wolkin et al., 2003;
Ohtani et al., 2014), we computed Spearman correlations between con-
nectivity of this circuit, substantially overlapping the A-core, and SPQ
scores, expecting significant correlations to negative symptoms only.
As hypothesized, significant negative correlations were present between
the strength (ρ=−0.37, p = 0.012) and global efficiency (ρ=−0.30,
p=0.048) of this circuit and the SPQ negative symptom scale. No signif-
icant correlations were present with other SPQ items— total, positive or
disorganized (supplementary table S6).When controlling for age and IQ,
there is a significant correlation of negative symptoms with strength
(ρ = −0.38, p = 0.011) and a trend-level correlation with efficiency
(ρ = −0.28, p = 0.069). For alternative edge weight definitions, both
correlations are significant both before and after correcting for age and
IQ (supplementary table S6). Although correlations between connectivi-
ty and SPQ scores are qualitatively independent of age and IQ and consis-
tent across edge weight definitions, they have not been corrected for
multiple comparisons and should thus be considered as preliminary.

3.5. Effects of age and IQ

To verify that differences in connectivity between healthy partici-
pants and 22q11DS patients are not driven by significant IQ differences
between the two cohorts, or influenced by the wide age range of our
participant sample, we evaluated post-hoc Spearman correlations be-
tween several connectivity measures and both IQ and age. The connec-
tivity measures included both global and within-A-core integration
(characteristic path length and global efficiency), as well as the average
strength of within-A-core, feeder and peripheral edges (for definition of
these edge classes, see Section 2.5 or Fig. 5). None of the correlations
s highlighted in red. (A) Nodal centrality measures, (B) path centrality measures and
perty, see supplementary table S4.



Fig. 4. Z-scores of control subjects and 22q11DS patients, obtained using permutation methods. (A) Z-scores of global network efficiencies after targeted removal of all within-A-core
edges, relative to reference distributions of global efficiencies of 1000 networks where an equal number of randomly selected edges was lesioned for each subject. (B) Z-scores of average
A-core strength, relative to reference distributions of average A-core strength in 1000 weight-randomized connectomes with preserved binary topology. p-values refer to one-tailed
Wilcoxon rank-sum tests.
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were significant, in patients or controls (supplementary table S5), pro-
viding evidence for the independence of our results on these potential
confounding factors.
4. Discussion

Presentweighted network results confirm integration deficits previ-
ously reported in 22q11DS using binary connectomes (Ottet et al.,
2013b), and further extend previous analyses by identifying the spatial
distribution of affected regions driving global effects — the A-core,
which consists chiefly of densely interconnected hubs, critical for effi-
cient network integration. These specific disturbances are associated
to a rerouting of shortest network paths in 22q11DS, “de-centralizing”
the network, and circumventing the A-core. Finally, connectivity of an
orbito-frontal/cingulate circuit, overlapping the A-core, correlates with
negative symptoms in 22q11DS. While segregation deficits also seem
present, they appear weaker and less spatially compact, encouraging
us to focus on integration insufficiencies.

While global graph theoretical measures can be sensitive to differ-
ences between patients and healthy controls, they are not sufficiently
specific to characterize individual diseases, which can impact global
brain topology in similar ways (Griffa et al., 2013; Rubinov and
Bullmore, 2013). Localized deficits in nodal graph-theoretical properties
in disease have been studied before (e.g., van den Heuvel et al., 2010;
see also Griffa et al., 2013), but the sub-network interconnectivity of
the affected nodes has not been described. Other statistical methods
have been proposed, to identify network components (Zalesky et al.,
2010; Meskaldji et al., 2011) or individual edges and nodes (Meskaldji
et al., 2015) with reduced connectivity strength. Instead, the methods
presented here and in Griffa et al. (2015) “extract” regions responsible
for deficits in higher-order properties such as integration (as empha-
sized by strongly significant decreases of within-A-core integration in
22q11DS patients), and further characterize their inter-connectivity by
considering them as a sub-network. By characterizing this sub-
network, specifically affected in 22q11DS, we reach beyond global inte-
gration differences to extend our understanding of aberrant network
connectivity in this genetic disease.
The presently identified A-core exhibits significant overlap with re-
gions previously identified as affected in 22q11DS. Reports of deficits
in corpus callosum as well as other midline structures (Simon et al.,
2005; Machado et al., 2007; Bearden et al., 2009) could explain the
largely bilateral integration reductions reported here. Furthermore, pre-
vious voxel-based studies reported decreases in radial diffusivity in bi-
lateral parietal and frontal regions (Simon et al., 2008), in fractional
anisotropy and axial diffusivity in the left parietal lobe (Kikinis et al.,
2012) and in axial and radial diffusivity in multiple WM tracts
(Jalbrzikowski et al., 2014). These DTI-derived indices are indicative of
deficits in myelin and axonal integrity (Sun et al., 2006; Klawiter et al.,
2011). The idea that myelin shortfalls could be responsible for presently
reported alterations is supported by the fact that genes relevant to
myelination are included in the 22q11.2 deletion region (Schreiner
et al., 2013). The A-core also presents substantial overlap with regions
recently identified as presenting reduced volume, cortical thickness,
surface area and gyrification in 22q11DS (Schmitt et al., 2015).

Additionally, these alterations could also be caused by genetic or
vascular abnormalities in 22q11DS. Cerebrovascular malformations
have been suggested to impair brain development by altered perfusion
(Shprintzen, 2000). Congenital heart disease, which is commonly asso-
ciated with 22q11DS (McDonald-McGinn et al., 1999; Hay, 2007), can
also affect brain structure in 22q11DS, both in gyrification (Schaer
et al., 2006, 2009) and cortical volume (Schaer et al., 2010; Fountain
et al., 2014). These links could either be due to shared genetic mecha-
nisms (e.g., TBX1) affecting the development of both cardiovascular
and nervous systems (Lindsay et al., 2001), or to cardiac malformations
disrupting cerebral hemodynamics (Schaer et al., 2009).

Our results confirm an involvement of brain hubs in 22q11DS,
shown by Ottet et al. (2013b), who reported reduced degree in hubs in-
cluding bilateral precentral, superior and frontal parietal gyri as well as
the hippocampus. Indeed, many A-core regions are hubs — highly con-
nected and central nodes. Furthermore, our A-core exhibits substantial
overlap with known structural cores of the healthy brain (Hagmann
et al., 2008; van den Heuvel and Sporns, 2011). Our results are in line
with a recent meta-analysis, demonstrating a general involvement of
structural connectome hubs in the etiology of psychiatric disorders
(Crossley et al., 2014).



Fig. 5. Differences between healthy controls and 22q11DS patients in average properties of three classes of edges— A-core edges, interconnecting A-core nodes, feeder edges, linking A-
core nodes to remaining peripheral ones and periphery edges, interconnecting peripheral nodes. (A) Average edge weight and (B) average edge betweenness centrality. p-values refer to
two-tailed Wilcoxon rank-sum tests.
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Having established their status as hubs, we used a simulated lesion
method to demonstrate the important role of A-core nodes as well as
edges interconnecting them in facilitating efficient network communi-
cation.Within each cohort, A-core-targeted lesions had greater impacts
on network efficiency than random lesions of equal magnitude.
Moreover, the intuitive fact that simulated lesions of deficient edges
have a lesser impact on network efficiency than lesions of healthy
edges confirms findings reported in a recent meta-analysis (Crossley
et al., 2014).

We further characterized A-core connectivity using a permutation
approach, to demonstrate that the mutual connectivity strength of A-
core nodes is higher than predicted by their high degree, both in control
and 22q11DS connectomes. This pattern is similar to the “rich-club”
phenomenon, present in human connectomes, whereby high-degree
nodes tend to possess a density of connections superior to chance
(van den Heuvel and Sporns, 2011). While the rich-club approach
identifies strongly interconnected regions among high-degree nodes,
we demonstrate instead that A-core regions exhibit stronger-than-
expected interconnectivity, and in that respect resemble a weighted
rich-club (Alstott et al., 2014). Importantly, this effect is impacted in
22q11DS, which implies a lesser concentration of strong edges within
the A-core of 22q11DS patients than healthy contols.

Considering properties of A-core, feeder and peripheral edges sepa-
rately confirms a lower average weight of A-core edges, although aver-
age edgeweights remain unaltered for feeder and peripheral edges. This
effect is driven by a decreased total weight ofwithin-A-core edges; edge
numbers do not significantly differ between groups, for either of the
three edge classes. Still, the decrease of A-core edge weights in
22q11DS leads to a decrease in the number of shortest paths traversing
A-core edges, as quantified by a decreased edge betweenness centrality
of A-core edges. In turn, this leads to a greater proportion of shortest
paths traversing feeder and peripheral edges in 22q11DS, indicating a
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topological decentralization of the network through a reorganization of
shortest paths in this disease.

Ultimately, the purpose of white matter structure is to support
function, and thereby cognition. Thus, structural deficits reported here
could be responsible for functional aberrations. Indeed, several studies
report functional deficits in 22q11DS, in regions exhibiting substantial
spatial overlap with the presently identified A-core. Debbané et al.
(2012) identified dysconnectivity in several functional networks in
22q11DS, including superior and medial frontal gyrus as well as cingu-
late gyrus portions of the default mode network (DMN), and pre- and
post-central gyrus portions of the sensori-motor network. Furthermore,
the authors reported a correlation between atypical connectivity within
the left superior frontal gyrus and prodromal symptom intensity as well
as neuropsychological performance. Subsequently, Schreiner et al.
(2014) confirmed DMN deficits in 22q11DS, and related them to social
skills. Recently, reductions in functional connectivity between DMN
nodes were explicitly shown to be driven by deficits in structural con-
nectivity (Padula et al., 2015). Moreover, a machine learning approach
applied to functional connectomes demonstrated that frontal and pari-
etal functional connections were among the most discriminative be-
tween 22q11DS patients and healthy controls, while left anterior
cingulate and precentral gyri were most discriminative between
22q11DS patients with and without psychotic symptoms (Scariati
et al., 2014). The anterior cingulate cortex and dorsomedial prefrontal
cortex were also implicated in altered auditory processing in 22q11DS
(Rihs et al., 2013), while a further study demonstrated an association
between dynamics of the salience network, which includes bilateral
insula and anterior cingulate cortex, and hallucinations in 22q11DS
(Tomescu et al., 2014). Generally, a model was proposed which links
deficits in engagement of the above key neuro-cognitive networks to
the emergence of psychiatric and neurological disorders (Menon,
2011).

In line with the status of 22q11DS as a high-risk model for schizo-
phrenia, our results exhibit similarities with findings of dysconnectivity
in this disease. Deficits in integration have been reported in schizophre-
nia (Zalesky et al., 2011;Wang et al., 2012a; Zhang et al., 2012; Griffa et
al., 2015), with network alterations reported in fronto-temporal regions
(van den Heuvel et al., 2010), a fronto-parieto-occipital network
(Zalesky et al., 2011) a fronto-limbic circuit (Wang et al., 2012a) and
the cerebellum (Kim et al., 2014).While our scans did not cover this im-
portant area, future work on 22q11DS connectivity should include the
cerebellum, known to be affected in this disease (Campbell et al.,
2006). Moreover, the “rich-club” of densely inter-connected high-
degree regions is affected in schizophrenia (van den Heuvel et al.,
2013; Collin et al., 2014, 2015).

Onemight expectmore exaggerated aberrations in the connectomes
of those 22q11DS patients who were diagnosed with clinical schizo-
phrenia. However, only two of our 44 22q11DS patients have been diag-
nosed with schizophrenia, an insufficient number to compare to the
remaining 42 non-schizophrenic 22q11DS patients, or to the healthy
controls. Moreover, a previous DTI study identified no significant differ-
ence in white matter integrity, measured using fractional anisotropy
andwhitematter volume, between 22q11DS patients with andwithout
schizophrenia (da Silva Alves et al., 2011).

Finally, localized dysconnectivity as identified here can be associated
to clinical symptoms. Negative symptoms are tightly linked to 22q11DS,
being present in up to 80% of adolescents (Schneider et al., 2012,
2014b). Our finding that greater dysconnectivity in an orbito-frontal/
cingulate circuit is related to a greater expression of negative symptoms
in 22q11DS confirms previous findings from schizophrenic patients
(Wolkin et al., 2003; Ohtani et al., 2014), and extends them by empha-
sizing the role of network interactions implicated in such deficits. In-
deed, orbito-frontal and cingulate cortices form a circuit hypothesized
to play an important role in emotional processing (de Marco et al.,
2006), decision making (Krain et al., 2006; Paulmann et al., 2010), and
more generally in social behaviors (Rudebeck et al., 2008). Thus,
dysconnectivity within such a circuit could lead patients with
22q11DS to present negative symptoms, such as social withdrawal, an-
hedonia or blunted affect. It is crucial to understand mechanisms lead-
ing to the development of these symptoms — whereas positive
symptoms can often be controlled by neuroleptics, negative symptoms
are usually resistant to this treatment and cause great impairment in pa-
tients (Chien and Yip, 2013). Moreover, negative symptoms have been
associated with impairments in multiple cognitive domains; in
22q11DS, they have been linked specifically to deficits in visualmemory
and processing speed, as well as lower functional and occupational out-
come (Schneider et al., 2014b). However, negative symptomsdonot ap-
pear to be caused by lower intellectual functioning in 22q11DS
(Schneider et al., 2014b), in line with our results demonstrating the
qualitative independence on IQ of correlations between dysconnectivity
and negative symptoms. We note that while correlations between
orbito-frontal/cingulate connectivity and SPQ scores are consistent for
measures of strength and efficiency as well as acrossweight definitions,
and are qualitatively independent of age and IQ, they have not been
corrected for multiple comparisons and should thus be considered as
preliminary, subject to confirmation in future studies.

Negative symptoms have previously been related to functional
dysconnectivity in graph-theoretical studies of the functional
connectome. A study constructing functional connectomes from
resting-state electro-encephalogram (EEG) recordings of schizophrenic
adolescents and young adults reported positive correlations between
the path length and two negative symptom items from the positive
and negative symptoms scale (PANSS) — loss of spontaneity (N6) and
stereotypical thinking (N7) (Rubinov et al., 2009). This result was con-
firmed by a further task-based EEG study, reporting a significant posi-
tive correlation between the path length of the adult functional
schizophrenic connectome and the negative (as well as cognitive)
symptom factors from PANSS (Shim et al., 2014). Finally, these results
were corroborated by a resting-state functional MRI study reporting
that negative symptoms are positively correlated with path length,
and negatively correlated with global efficiency, in adults with schizo-
phrenia (Yu et al., 2011). As the path length is inversely related to net-
work efficiency, the sign of all of these correlations suggests that lower
functional integration is associated with greater negative symptoms, in
linewith our findings within a sub-circuit of the structural connectome.
Graph theory provides a useful framework for further studies simulta-
neously analyzing both structural and functional connectomes; such
studies will be required to disentangle the relationships between struc-
tural dysconnectivity, functional aberrations and their effect on symp-
tomatology in 22q11DS.

Given the importance of localizing aberrant connectivity in psychi-
atric diseases, we have applied novel analysis methods aiming to iden-
tify sub-networks responsible for global deficits (Griffa et al., 2015) to
22q11DS diffusion imaging data, part of which had previously been ex-
plored using more standard graph-theoretical methods (Ottet et al.,
2013b). Beyond its potential to provide increased sensitivity and speci-
ficity to connectivity abnormalities, moving from a global to a local
characterization of dysconnectivity in disease can open up avenues for
new forms of treatment, such as non-invasive transcranial magnetic
or electric stimulation, which have been trialed in schizophrenia
(Dougall et al., 2015). Crucially, the effectiveness of such stimulation
methods depends on the structure and function of the underlying
brain networks (Fox et al., 2014; Sale et al., 2015), and specifically on
the (dys)connectivity of the stimulated region. Thus, the identification
of deficient sub-networks, such as the presently reported affected core
of the 22q11DS structural connectome, is a valuable first step towards
novel locally-targeted treatment methods.

The present study has several limitations. While there is a significant
difference in IQ between the two cohorts, we tried to rule out effects of
this potential confounding factor. The IQdoes not correlatewithmeasures
of within-A-core integration and does not qualitatively affect the correla-
tion of orbito-frontal/cingulate connectivity with negative symptoms.
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Additionally, several 22q11DS neuroimaging studies have used IQ-
matched cohorts, likewise reporting white matter reductions in frontal,
posterior and temporal lobes (Van Amelsvoort et al., 2001, 2004; Baker
et al., 2011), largely consistent with previous studies using cohorts not
matched for IQ as well as present findings. Moreover, 22q11DS patients
are likely to differ in psychiatric comorbidities, such as psychosis and
schizophrenia. Our results relate to the entire clinical and cognitive phe-
notype of 22q11DS — larger or longitudinal groups would be required
to disentangle individual participant's clinical evolution or comorbidity
development. Furthermore, the 22q11DS group covers a wide age
range, which includes adolescence — a period where significant changes
are known to occur (Giedd, 2004). Still, a close age match between our
22q11DS and control groups enables comparability between the larger
cohorts, which increase statistical power. Finally, the relatively low angu-
lar resolution of DTI data used is unable to resolve crossing fibers
(Hagmann et al., 2006). A dataset with higher angular resolution com-
binedwith a suitable reconstructionmodel would providemore anatom-
ical detail. Still, the short acquisition time of standard DTI acquisitions is
better suited to scanning clinical populations such as 22q11DS, and the re-
constructed fibers present a reduced number of false positives as well as
higher reproducibility (Bassett et al., 2011; Bastiani et al., 2012; Wang
et al., 2012b).

In conclusion, we confirmed decreased topological integration in
22q11DS and extended our understanding of aberrant network connec-
tivity in this genetic disease by localizing and studying the regions re-
sponsible for global deficits. The identified A-core consists of regions
which in healthy connectomes are highly central and strongly connect-
ed. However, these properties are impacted in 22q11DS, along with a
de-centralization of A-core regions through a re-routing of shortest net-
work paths. Our findings suggest that like schizophrenia,which approx-
imately 30–40% of 22q11DS patients develop (Murphy et al., 1999;
Schneider et al., 2014a), 22q11DS can be considered a disease of
dysconnectivity, and that this dysconnectivity is associated with nega-
tive symptomatology. In general, the methods presented here and in
Griffa et al. (2015) can be extended to other diseases affecting network
connectivity, as well as to functional connectomes, to identify local ab-
normalities driving global topological deficits.
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