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ABSTRACT 
 
In this work we investigated the digital synthesis of images which mimic real textures observed in mammograms. Such 
images could be produced in an unlimited number with tunable statistical properties in order to study human 
performance and model observer performance in perception experiments. 
We used the previously developed clustered lumpy background (CLB) technique and optimized its parameters with a 
genetic algorithm (GA). In order to maximize the realism of the textures, we combined the GA objective approach with 
psychophysical experiments involving the judgments of radiologists. Thirty-six statistical features were computed and 
averaged, over 1000 real mammograms regions of interest. The same features were measured for the synthetic textures, 
and the Mahalanobis distance was used to quantify the similarity of the features between the real and synthetic textures. 
The similarity, as measured by the Mahalanobis distance, was used as GA fitness function for evolving the free CLB 
parameters. In the psychophysical approach, experienced radiologists were asked to qualify the realism of synthetic 
images by considering typical structures that are expected to be found on real mammograms: glandular and fatty areas, 
and fiber crossings. 
Results show that CLB images found via optimization with GA are significantly closer to real mammograms than 
previously published images. Moreover, the psychophysical experiments confirm that all the above mentioned structures 
are reproduced well on the generated images. This means that we can generate an arbitrary large database of textures 
mimicking mammograms with traceable statistical properties. 
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1. INTRODUCTION 
 
The problem of human perception and performance in radiology detection tasks has been studied in numerous 
frameworks in the past: detection of a tumor on computer tomographic images of the liver1,2, stenosis in a blood vessel 
on fluoroscopic images3, nodules on pulmonary radiographs4, or microcalcifications on mammograms5. The aim of such 
studies is to determine the role on diagnostic decisions of the inherent parameters of the images like resolution or 
contrast, the imaging unit acquisition parameters or the anatomy in the detection process. Many of such studies are 
psychophysical experiments involving radiologists or trained naïve observers. 
 
In particular, there has been a large interest in developing models that could predict human observer performance for 
detecting tasks as a function of the image characteristics and the observer properties6. These models aim at avoiding the 
subjective and time-consuming aspect of the psychophysical studies, as well as evaluating medical image quality7,8. 
Models for objects superimposed on various types of real backgrounds or computer generated noises have been 
developed and applied to the detection of lesions in radiological images9,10,11. 
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Both psychophysical and model observer approaches require a large number of images to obtain accurate results. Real 
images or regions of interest databases would be ideal, but in most cases the number of available clinical images is 
limited. In addition, the question arises about reproducibility of the results with other sets of images. An alternative to 
using real images is to use computer generated images which would allow for generation of unlimited number of 
samples with known and well-controlled statistical properties. Such images might have adjustable properties that would 
not depend on imaging device characteristics or digitization processes. 
 
Two major methods have been explored for producing synthetic images mimicking mammograms. First, complete 
three-dimensional simulation of the breast components and properties, in conjunction with imaging device simulation, 
which is expected to produce very realistic images12. However, the complexity and computational cost associated with 
such modeling and the difficulty of taking into account breast compression often takes from the quality of the resulting 
images. For that reason, 2D approaches have been investigated, using backgrounds constituted by the summation of 
elementary bright structures called blobs7,8,13,14. These lumpy backgrounds, as named originally by Rolland and 
Barrett13, were designed to reproduce the textures observed in mammograms. Bochud et al.14 generalized the model to 
clustered lumpy backgrounds (CLB), and empirically optimized the  parameters to obtain images which are as visually 
realistic as possible. CLB images have the advantage of having analytically computable statistical properties and are 
stationary within their boundaries. However, for this model as for most of 3D or 2D methods, thorough and objective 
assessment of visual and “statistical” realism has not been carried out. The main obstacle has been the difficulty of 
defining criteria for the assessment. They are nevertheless necessary for images intended to be used for experiments 
utilizing both human (visual realism) and model observers (statistical realism). 
 
Our aim in this study was to extend and optimize the CLB model and to objectively assess the realism of the obtained 
images. For this purpose, we used a database of 1000 square regions of interest selected from real mammograms, and 
defined a metric based on the Mahalanobis distance to compute the statistical distance between real images and 
synthetic regions of interest produced by adjusting CLB parameters with a genetic algorithm. Psychophysical 
experiments were then designed in order to evaluate the visual realism of the synthetic images. 

2. MATERIAL AND METHODS 

2.1. Clustered lumpy background (CLB) model 
 
Lumpy backgrounds are digital images consisting of the superposition of elementary bright blobs. The number of blobs 
is randomly sampled according to a Poisson process and the blob centers are placed at random locations uniformly 
distributed in the image. Lumpy backgrounds were originally designed by Rolland and Barrett13 with circularly 
symmetric blobs b(r), so that the image g could be written as : 
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where rk is the center position of the kth blob, and K the total number of blobs in the image. 
Later, Bochud et al.14 generalized this model to clusters of non-necessary circularly symmetric blobs. Clustered lumpy 
backgrounds (CLB) are produced by randomly choosing a number of clusters, K, following a Poisson process, and 
distributing them randomly on the image plane. For each cluster, a random number of  blobs, Nk, are positioned 
randomly around the cluster center according to a probability density function (pdf) φ(r). Finally, all blobs belonging to 
the same kth cluster are rotated  by an angle θk before being summed to obtain the final image g(r): 
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where all parameters and their distributions are summarized in Table 1.  
 



 
 Table 1: Definitions and distributions of the variables described in the CLB model. 

Variable Definition Distribution
K number of clusters poisson with mean value K0

rk position of the kth cluster uniform across image
Nk number of blobs within the kth cluster poisson with mean value N0

θk rotation angle of the blobs in the kth cluster uniform between 0 and 2π
Rθ rotation matrix of angle θ N/A

rkn position of the nth blob within the kth cluster Gaussian pdf φ(r)
b(r,Rθ) blob profile rotated at angle θ N/A
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 Fig. 1: Characteristic length of an 
ellipse having half-axes Lx and Ly 

 
 
The general functional expression of the blob has been chosen as: 
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where α and β are real parameters, and the characteristic length L is defined on Fig. 1. 
One of the major advantages of CLB technique is that some statistical properties of g(r) like its power spectrum can be 
analytically computed from the model parameters14. 
 
The free parameters of the CLB model are thus {α,β,Lx,Ly,σx,σy,K0,N0}, where σx and σy are the standard deviations of 
the Gaussian pdf, φ(r), in x and y directions respectively. These 8 parameters had been empirically optimized in the 
original study14, on the basis of visual inspections of the images and comparison of Wiener spectrum with that of real 
mammograms. These values were used as a starting point for our study. 
 
In order to improve the realism of CLB images, we introduced two variations into the model. First, we superimposed 
another CLB onto the image computed from Eq. (2), with fixed parameters α = 2.0, β = 0.9, Lx = 50 pixels, Ly = pixels, 
σx = 10 pixels, σy = 10 pixels, and free parameters K0’< K0 and N0’. The inclusion of a small amount of long and narrow 
blobs aims to better reproduce the fibrous structures of real mammograms. 
 
The second variation was to favor oriented structures similar to those visible on real mammograms. At the whole breast 
scale, these structures arise from the projection of the ducts converging to the nipple, or from suspensory ligaments. For 
this purpose, the pdf of the rotation angle was changed from uniform to Gaussian with a mean equal to θ0 and a standard 
deviation of π/6. With this change, the large scale oriented structures were constructed by the summation of clusters 
with similar orientation. The mean parameter,θ0, was changed randomly with uniform pdf between 0 and 2π for each 
realization. 

2.2. Genetic algorithms and application to CLB model 
 
Genetic algorithms are a family of computational models inspired by evolution15. The free parameters of a given 
optimization problem are encoded on a chromosome-like data structure, and selection and recombination operators are 
applied in order to allow a population of potential solutions to evolve towards the optimal solution of the problem. The 
initial population is usually chosen randomly in the search space, and the corresponding chromosomes are evaluated 
through a fitness function. The best chromosomes are given better reproduction and survival opportunities. Following, 
crossover and mutation operators are applied in order to generate a new population of equal cardinality. These processes 
of evaluation, crossover and mutation are repeated until a user-defined (sub-)optimal value of the fitness function is 
reached, or when the best chromosome of the population has not been improved for a given number of generations. 



 
Genetic algorithms have a great potential for non-linear function optimization in multi-dimensional spaces, since the 
intrinsic parallel structure of the optimization process is highly efficient for exploring multiple locations in the search 
space simultaneously, and avoiding local extrema. They can be used for binary or real coded problems, and many 
specific reproduction/mutation operators and techniques have been designed16 in order to design specific algorithms for 
handling a wide range of optimization problems. 
 
According to Eq. (2) and (3), a classical CLB implementation requires a set of eight real parameters 
{α,β,Lx,Ly,σx,σy,K0,N0}. For the 2-layer CLB, the addition of {K0

’,N0’} increases the number of parameters to ten. The 
statistical properties of CLB images depend in a non-analytical way on the parameters. Their optimization is 
furthermore complicated by the stochastic nature of the realizations for a same set of parameters. The optimization of 
the eight parameters of the classical CLB model14 were limited to maximize the similarity of the gray level histogram 
properties and Wiener spectrum of the synthetic and real mammographic textures. No other consideration was taken into 
account in order to evaluate the mathematical realism of the obtained synthetic images. One key aspect of the present 
study was to introduce a metric based on Mahalanobis distance for quantifying similarity between synthetic and real 
images. 
 
For this purpose, 36 statistical features based on the gray level histogram properties, the co-occurrence matrices17,18,19, 
the primitives matrices17, the neighborhood gray tone difference matrix20 and the fractal dimension21 were computed for 
1000 square regions of interest within digital mammograms22. These 256 by 256 pixels square regions were manually 
selected from the central breast areas of digital mammograms. We used a database of 88 patients who underwent 
screening exams on a GE Senograph 2000D full-field digital detector23,24, with one craniocaudal (CC) and one 
mediolateral oblique (MLO) view per breast for each of them. Once all 36 features of a given synthetic or real image 
were measured and grouped into a single vector v, the Mahalanobis distance d was given by: 

 2 ( ) ( )Td = -1v -� K v -� , (4) 

where µµµµ represents the mean vector over the real images and K is the covariance matrix: 
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with n = 1000 being the size of the reference database. 
 
The chromosomes in our genetic algorithm implementation were sets of 8- or 10-dimensional real vectors representing 
CLB parameters values. The genetic algorithm used the average Mahalanobis distance computed over m = 10 successive 
CLB realizations as the fitness function for evaluating the chromosomes, and was designed to minimize it. This 
averaging was done in order to avoid erroneous evaluation caused by the random nature of the CLB algorithm. Rank-
weighted selection of the parents, and elitist strategy were employed for the reproduction operators. The first parent 
chromosome was thus chosen with probability: 
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where r is the rank of the chromosome (rank 1 being attributed to the best chromosome), S is the population size, and ψ 
is a parameter influencing the relative weight of the best chromosomes compared to the worst. The second parent was 
chosen randomly with equal probability among the population, and the operation was repeated until (S-1)/2 couples of 
chromosomes had been chosen for crossover.  
 
Crossover of two chromosomes c1 and c2 consisting in averaging half of the genes, keeping the others unchanged. The 
genes to be averaged were chosen randomly with equal probabilities. The crossover between c1 and c2 occurred with 
probability pc, leaving both genes unchanged otherwise. The best chromosome remained unchanged from one 
generation to the next, which is the definition of elitist strategy. 



After the crossover processes, all but the elite chromosome underwent individual gene mutation with probability pm. 
The value of a mutated gene G’ was given by: 
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where G is the value of the original gene, Gmin and Gmax the user-defined bounds of the search space for gene G, T the 
number of generations for which mutations might occur, t ≤ T the current generation,  and r∈[0,1[ and p∈{-1,1} were 
chosen randomly each time a mutation occurred. Eq. (8) indicates that mutations are stronger at the beginning of the 
optimization, in order to extend the exploration of the search space, and to decrease monotonically in intensity. The 
mutation probability pm itself evolved with t for the same reasons, as: 
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where L is the number of genes in a chromosome. 
 
The initial population was chosen randomly between the bounds Gmax and Gmin defined individually for each gene. We 
made the assumption that the empirical optimization proposed in the original study14 (G = GOex) could be used as 
starting point, and we computed Gmin and Gmax as: 
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thus allowing ±20% deviations from these values. Values for the various Gmin and Gmax are summarized in Table 2. All 
parameters of the genetic algorithm and their meaning are given in Table 3. Four variations of the CLB model were 
successively optimized: 1-layer classical CLB with isotropic orientation of the clusters (this will be referred further in 
text as simpiso type), 2-layer CLB with isotropic orientation of the clusters (doubiso), 2-layer CLB with favored 
orientation of the clusters (doubori), and 1-layer CLB with favored orientation of the clusters (simpori). 
 

Table 2: Lower and upper bounds of the search space for each 
gene. 

Table 3: Genetic algorithm parameters used for optimizing CLB 
variables 

Variable [Gmin, Gmax]
α [1.6,2.4]
β [0.4,0.6]
Lx [4,6]
Ly [1.68,2.52]

σ x [9.6,14.4]

σ x [9.6,14.4]

K0 [480,720]

N0 [16,24]

K0
' [50,500]

N0' [5,50]
 

Parameter Meaning Value
L Number of genes in a chromosome 8 or 10
S Size of the chromosomes population 51
m Number of realizations of a chromosome

for evaluating its fitness function
10

T Time constant of the mutation operator 200
ψ Relative weight of the best chromosomes 1.5

pc Crossover probability 0.8

pm Mutation probability Eq. (9)

 
 
 

 
 
 



2.3. Evaluation of the visual realism of synthetic images 
The role of the genetic algorithm is to ensure that the synthetic CLB images would have statistical properties similar to 
real images. Although this point is necessary for future model observer experiments for example, it is certainly not a 
sufficient condition for using them in psychophysical detection experiments. Human perception is highly dependent on 
properties of the background as well as those of the neural processing and coding of visual information. Thus, similar 
statistical properties for a pair of images does not necessarily imply their visual resemblance. To evaluate the visual 
realism of the four optimized CLB types, a study was conducted with three radiologists and two radiographers. 
 
The three main structures types that are likely to be found in real mammograms were evaluated: glandular areas, fatty 
areas, and fibers. The observers were first presented a series of 20 real images representative of each structure type. The 
selection of these reference images was based on the choices of one of the radiographers, and then confirmed by the 
opinion of a radiologist. The presentation of the reference images also allowed the radiologists to get acquainted to the 
laptop screen, light conditions, and definitions used for the three structure types. After this training phase, 50 
realizations of  each CLB model variation were presented in random order. The four variations developed with the GA, 
and the original CLB14 were displayed in 10 blocks of 25 images. The order of presentation for each CLB type was 
randomized within each block. 
 
For each image, the observers were asked to tell whether or not they observed a given structure (glandular areas, fatty 
areas, fibers). For each affirmative answer, they were asked to grade the realism of the structure, indicating whether it 
could be expected to be observed on real mammograms or not, based on a 10-grade scale evaluation. Grades 7 to 10 
were considered to be realistic enough, and 1 to 6 to be insufficiently realistic. In the latter case, the observers were 
given the possibility to further evaluate which features looked unrealistic by using one or more checkboxes representing 
possible defaults: too disorganized, too rectilinear, too much contrast, too fuzzy, or appearance of 3D-like artifacts. 
Additionally, the radiologists were asked to mention if some structure resembled a tumor (mass). This latter question 
was aimed at determining whether unwanted pathological (tumor-like) patterns arose from the CLB superimposition 
algorithm. 
 
The 12-bits CLB images were converted to 256 gray levels before being displayed on the laptop screen. Their mean 
gray level value and standard deviation were adjusted to 110 and 35 respectively, in order to obtain images lying in the 
central dynamic range region of the display. The observers had the possibility to adjust the display brightness and 
contrast by observing a mammography test pattern at the beginning of the experiment. All radiologists and 
radiographers reported satisfactory conditions to confidently assess the realism of the three structure types, since they 
were to be compared to real digital mammograms regions of interest displayed on the same screen at the beginning of 
the test. The 256 by 256 pixels synthetic images display size was 9 by 9 cm. According to preliminary discussions with 
the radiologists, the size of the synthetic images structures at this scale corresponded to the scale obtained when 
zooming on the GE Senograph 2000D display unit. 

3. RESULTS 

3.1. CLB parameters optimizations 
The genetic algorithm designed to optimize the different variations of CLB model ran on a Pentium 4 (3GHz processor, 
512 MB RAM) processor. Typical total time for evaluations, crossovers and mutations was around 150 minutes per 
generation. More than 95% of the computation time was spent for computing the m realizations of each chromosome in 
the population, whereas applying evolution operators was a faster process. Although genetic algorithms with elitist 
strategy usually have the property to be monotonically converging towards extrema of the fitness function, the example 
fitness function history on Fig. 2 shows that it decreased relatively regularly during 20-30 generations, and then had a 
more chaotic behavior. This was observed for all model variations, and can be explained by the random nature of the m 
realizations per chromosome that were computed for evaluating its fitness function. Same CLB parameters lead to 
images with similar overall statistical properties, but the 36 features we used in this study were able to evaluate their 
variations much more precisely. The fitness function of a given chromosome could thus vary from a generation to 
another, and the best chromosome of generation T’ could be rejected to a higher rank at T’+1, even by chromosomes 
that had worse performance at generation T’. The upper series in Fig. 2 shows that the median fitness function of the 
population was less sensitive to this phenomenon. The evolution process was conducted during 100 generations for each 



of the variation of the CLB model, and the best chromosome of the evolution history was selected for computing the 
fitness functions presented on Fig. 3, on the basis of 200 realizations per model. 
 
 
Fig. 3 shows that the gain obtained by tuning the CLB parameters with the genetic algorithm is at least a factor of  2 for 
average Mahalanobis distance, compared to the original values14 (Oex series), depending on the model used. One-sided 
t-test  (significance level of 5%, power of 0.8, under the null hypothesis that the means are equal) showed that the means 
of the last three presented series were significantly lower than for the series doubiso, and that Oex series was 
significantly higher than the other four variations. 
 
 
Fig. 4 presents representative examples of images created with the different CLB parameters. The real mammogram 
region of interest (ROI) was selected from a medium-density breast. Superimposition effects for 2-layer backgrounds 
doubiso, doubori and oriented structures for doubori and simpori series are visible. The optimized CLB parameters for 
generating these 256 by 256 pixels images are detailed in Appendix A. Typical computation time needed for computing 
the 200 realizations and their associated Mahalanobis distance was 40 minutes, which represents 12 seconds/realization. 

3.2. Evaluating the realism of synthetic textures 
 
Table 4 summarizes the results for visual realism evaluation experiments performed by the radiologists (KK, ES, NH) 
and the radiographers (FD, PS). About 2% of the data was classified as outliers according to Chauvenet criterion25. The 
outliers arose from the fact that the observers sometimes used grades which were too extreme for qualifying subjectively 
excellent or poor images, compared to their usual answers. The corresponding data were removed before results 
analysis. 
 
For each synthetic image, the radiologists evaluated the realism of the three structures types (glandular areas, fatty areas, 
and fibers), whereas the two radiographers chose not to give their opinion in some cases, when they judged that a given 
structure covered a too small part of the ROI to be evaluated. This mainly happened for the evaluation of fibers, which 
are less visible in Oex and simpiso series. This latter series (simpiso) was only evaluated by the first two observers 
which took part in the study. T-tests of the first two observers’ data (with significance level equal to 5% and power 
equal to 0.8) showed that the simpiso series was significantly lower from the apriori selected threshold for realism (6.5) 
and thus visually unrealistic. 
 
Bold values in Table 4 indicate that nearly all structures were considered significantly realistic (above a grade of 6.5) for 
the first four CLB models. Oex, doubori and simpori series obtain comparable overall performances for all structures 
types, while doubiso series outperforms them for all structures types when the results are averaged over the 5 observer 
(Fig. 5). This series was evaluated by the three radiologists as significantly better than Oex for all structure types, and 
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Fig. 2: Example of fitness function history (70 first 
generations). The upper series represents the median value of 
the fitness function evaluated on the population at generation 
t, and the lower series indicates the value for the best 
chromosome. 
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Fig. 3: Fitness function computed from 200 realizations with the 
optimized set of CLB parameters for model variation. The error 
bars represent standard deviation of the realizations’ fitness 
function. 



better than all other series by ES and NH. The radiographers, however, did not significantly prefer a unique series for all 
structure types. For these two observers, Oex and doubiso series obtained the best evaluations for glandular and fatty 
areas, while observer PS preferred doubiso and simpori series for the fibers. No significant differences between the four 
series were observed for the evaluation of fibers by observer FD.  
 
 

  
 

 

 

 
 

 

 

 
 

Fig. 4 Examples of realizations for the different types of CLB variations. (a) ROI selected from a real mammograms; (b) 1-layer 
CLB, Oex parameters (referred in text as Oex); (c) 2-layer CLB, isotropic orientation of the clusters (doubiso); (d) 2-layer CLB, 
favored orientation of the clusters (doubori); (e) 1-layer CLB, favored orientation of the clusters (simpori); (f) 1-layer CLB, 
optimized version of (b) (simpiso)

(a) : Real mammogram ROI (b) : Oex 

(c) : Doubiso (d) : Doubori 

(e) : Simpori (f) : Simpiso 



Table 4: Realism evaluation by the five observers. Bold values indicate substantially realistic evaluations The statistical test 
performed was one-sided t-test, with significance level = 5%, and power = 0.8, under the null hypothesis H0 that the average is equal 
to 6.5. 

Oex 7.38 Doubiso 7.99 Doubori 7.37 Simpori 7.32 Simpiso 5.02
Gland. Fatty Fibers Gland. Fatty Fibers Gland. Fatty Fibers Gland. Fatty Fibers Gland. Fatty Fibers

KK 6.80 7.18 7.85 7.18 7.96 7.94 7.40 7.96 8.78 7.22 7.76 7.92 5.00 6.47 4.93
ES 6.65 6.87 6.87 7.68 7.70 7.73 6.68 6.81 6.81 6.98 7.05 7.11
NH 7.68 7.68 7.68 9.00 9.00 9.00 7.68 7.68 7.68 6.96 6.96 6.96 (b)
FD 7.47 8.16 7.00 7.68 8.04 6.87 7.54 7.93 7.03 7.44 7.71 7.08
PS 7.65 7.77 (a) 8.40 8.14 7.58 7.23 7.15 6.18 7.55 7.46 7.67 4.67 4.95 4.09

Mean 7.3 7.5 7.4 8 8.2 7.8 7.3 7.5 7.3 7.2 7.4 7.3 4.8 5.7 4.5
± 0.2 ± 0.2 ± 0.3 ± 0.3 ± 0.2 ± 0.4 ±0.2 ± 0.2 ± 0.4 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.8 ± 0.4  

(a) This observer did not report any observation of fibers in that series 
(b) This series was only evaluated by two observers. 
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Fig. 5: Average values obtained by the four best series for the realism 
of glandular areas, fatty areas, and fibers. Error bars represent standard 
deviation of the mean 

4. DISCUSSION 
 
The genetic algorithm, although made complex by the inherent random nature of CLB model, produced images which 
statistical properties were significantly closer to real mammographic images. As the chromosomes’ evolution continued 
for more than 50 generations after the optimal parameters presented in Table 5 had been found, these values can thus be 
confidently considered as optimal for the developed model variations. It is difficult to intuitively interpret the absolute 
Mahalanobis distances in Fig. 3, since several statistical parameters, among the 36 used for defining that metric, are 
correlated in a complex way. However, a benchmark can be given by the distance computed for the 1000 real 
mammograms regions of interest, which is equal to 5.6 ± 2.1. This indicates that from the statistical point of view, the 
synthetic images obtained by the models tuned by the genetic algorithm are much closer to real images than the original 
Oex series, but also that they cannot be considered indistinguishable from real images. Allowing enlarged bounds for 
Gmin and Gmax would lead to optimized chromosomes with better fitness function, but preliminary tests had shown that 
when given more freedom, the blobs dimensions evolved to points as small as Gmin,Lx by Gmin,Ly, lowering the average 
Mahalanobis distance down to about 10-15 depending on the model, but losing all visual realism. For that reason, we 
limited the search space of the genetic algorithm to reasonably close values to the original CLB model. 
 



Concerning the model variations and their effect on the visual evaluation by the radiologists and radiographers, the 
favored orientation of the structures in simpori and doubori series was generally recognized as such by the observers, 
and their main drawback was that in some cases this orientation was too obvious and artificial, giving them the 
impression of seeing three-dimensional structures instead of flat projections. This defect was particularly mentioned in 
simpori series, while the few large scale structures of doubori seemed to hide or mask the principal layer composed of 
the smaller blobs. On the other hand, the observers found that some of the isotropic images were too disorganized to 
correctly represent real mammograms. This was the main reason for discarding the display of simpiso series for the last 
three observers in the psychophysical study. The presence of the second layer CLB in doubori did not improve or 
deteriorate significantly the visual aspect of simpori series, but the difference was clearly shown by the observers’ 
evaluations for the isotropic series: they reported unorganized images with too much contrast for the 1-layer series, and 
selected the 2-layer doubiso images as best overall series. The only limitation mentioned by the radiologists for that 
series was that for some images (about 10% of the set), bright points caused by blobs superimposition might be 
interpreted as clusters of microcalcifications. However, for visual experiments of mass detection, they confirmed that 
this downside would not be critical, since they are not affected by the presence of mm-scale microcalcifications when 
looking for cm-scale structures like masses. 
 
A still open question is the visual variability of the synthetic textures. As for most of other models, it is much smaller 
than that of real images. This has been partly solved by converting the CLB output float images to 12-bit image using 
randomly chosen values of mean gray level and standard deviation following real image corresponding distributions. 
One could have imagined using “floating” values for CLB parameters as well, but this possibility was not applied in our 
study. 

5. CONCLUSION 
 
Using a genetic algorithm and variations of the original CLB model, we were able to synthesize images having 
significantly closer visual and statistical properties than the original model. These models and parameters allows for 
generating an arbitrary number of such images while guaranteeing their realism. The synthetic images may find direct 
applications in detection experiments involving human or model observers. We would recommend doubiso series in 
particular, since they have excellent visual characteristics, even if their statistical properties are more distant from real 
images than for the other model variations simpori and doubori. 
 
Compared to other image synthesis techniques, our models are limited to the generation of square regions of interest. 
However, they have the advantage of being able to quickly generate a large number of images, with traceable statistical 
properties, and visually representing all major structures types (glandular areas, fatty areas, fibers) that are visible on 
real mammograms. The methodology presented in this study is not limited to mammography and may be easily 
generalized to other medical or non-medical images: the only need in such cases would be a sufficiently large database 
of reference textures for defining the Mahalanobis distance used as fitness function by the genetic algorithm for tuning 
the CLB parameters.  
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APPENDIX 
 
A. Optimal CLB parameters for each model variation 
 
The CLB parameters mentioned used for generating the ROIs of  
Fig. 4 are given in Table 5.  

Table 5: Optimized CLB parameters for the various CLB models 

Series α β Lx Ly σ x σ x K0 N0 K0
' N0'

Oex 2.1 0.5 5 2 12 12 600 20 N/A N/A
Doubiso 2.31 0.57 4.09 1.76 13.27 13.92 643.81 20.21 61.47 5.60
Doubori 2.49 0.53 4.14 1.61 11.17 14.29 709.96 20.37 78.00 5.01
Simpori 2.51 0.54 4.53 1.66 10.67 13.33 714.44 23.14 N/A N/A
Simpiso 2.47 0.59 4.19 1.63 11.02 12.27 674.97 16.53 N/A N/A
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