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Single cell tuning of Myc expression by antigen
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Abstract

Myc controls the metabolic reprogramming that supports effector
T cell differentiation. The expression of Myc is regulated by the
T cell antigen receptor (TCR) and pro-inflammatory cytokines such
as interleukin-2 (IL-2). We now show that the TCR is a digital
switch for Myc mRNA and protein expression that allows the
strength of the antigen stimulus to determine the frequency of
T cells that express Myc. IL-2 signalling strength also directs Myc
expression but in an analogue process that fine-tunes Myc quantity
in individual cells via post-transcriptional control of Myc protein.
Fine-tuning Myc matters and is possible as Myc protein has a very
short half-life in T cells due to its constant phosphorylation by
glycogen synthase kinase 3 (GSK3) and subsequent proteasomal
degradation. We show that Myc only accumulates in T cells exhibit-
ing high levels of amino acid uptake allowing T cells to match Myc
expression to biosynthetic demands. The combination of digital
and analogue processes allows tight control of Myc expression at
the population and single cell level during immune responses.
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Introduction

Immune-activated T lymphocytes undergo rapid clonal expansion

and differentiation into effector subpopulations. Activated T cells

also strikingly increase nutrient uptake and lipid and protein biosyn-

thesis. Naı̈ve T lymphocytes thus have low rates of amino acid and

glucose uptake and use oxidative phosphorylation to efficiently

metabolise glucose to generate ATP. In contrast, effector T cells

upregulate amino acid and glucose uptake and switch to metabolis-

ing glucose through glycolysis (Greiner et al, 1994; Fox et al, 2005;

Jacobs et al, 2008); they also metabolise glutamine to pyruvate and

lactate via glutaminolysis (Brand et al, 1984; Newsholme et al,

1985). These changes in T cell metabolism are necessary to support

the production of the cytokines and cytolytic effector molecules that

are essential for T cell immune responses (Pollizzi & Powell, 2014).

One key controller of metabolic reprogramming in T cells is Myc

(myelocytomatosis oncogene, c-Myc). In the absence of Myc,

mature T cells cannot respond to antigen receptor engagement to

increase the expression of glucose and glutamine transporters and

fail to initiate glycolysis or glutamine catabolism (Wang et al,

2011a). Myc loss also has a global impact on the T cell transcrip-

tome. Myc may thus have multiple transcriptional targets or act to

amplify expression of active genes in T cells (Nie et al, 2012). The

importance of Myc in T lymphocytes is also exemplified by its role

in T cell development in the thymus (Dose et al, 2006, 2009; Mycko

et al, 2009; Jiang et al, 2010) and by its key role in T cell malignan-

cies. For example, elevated Myc expression is observed in most

cases of T cell acute lymphoblastic leukaemia (T-ALL), either as a

consequence of a chromosomal translocation event (t(8;14)(q24;

q11)) that places Myc under the control of the TCR alpha chain

promoter (Erikson et al, 1986; Charrin, 1996) or more commonly

as a consequence of Notch mutations that lead to transcriptional

activation of Myc (Weng et al, 2004, 2006; Palomero et al, 2006).

It was recognised many years ago that upregulation of Myc

mRNA accompanied T cell activation (Reed et al, 1987; Kelly &

Siebenlist, 1988; Wang et al, 2011a). More recently, the Immuno-

logical Genome Project has mapped the transcriptional profiles of

multiple T cell populations and reported high levels of Myc mRNA

in immune-activated effector T cells (Best et al, 2013). However, the

expression of Myc mRNA and protein can be quite discordant

because of post-transcriptional control of Myc protein (Vervoorts

et al, 2006; Junttila & Westermarck, 2008; Thomas & Tansey, 2011;

Ehninger et al, 2014). For example, stabilisation of Myc protein by a
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T58A mutation has been described in Burkitt’s lymphoma (Yano

et al, 1993; Gregory & Hann, 2000) and inactivating mutations of

the E3 ubiquitin ligase Fbw7 that target Myc for proteasomal degra-

dation are frequently found in T-ALL (Welcker et al, 2004a; O’Neil

et al, 2007).

The relevance of understanding the control of Myc protein levels

in T cells was highlighted recently: immune-activated T cells lacking

the system L amino acid transporter Slc7a5 upregulate Myc mRNA

but fail to express Myc protein and hence have global metabolic

defects (Sinclair et al, 2013). In this context, many experiments have

analysed Myc mRNA in T cells activated pharmacologically with

phorbol esters, calcium ionophores and plant lectins (Kelly et al,

1983; Reed et al, 1987, 1988; Kelly & Siebenlist, 1988), but there is

almost no detailed analysis of Myc protein in T cells responding to

physiological stimuli. Accordingly, the present study has explored

how engagement of the T cell antigen receptor (TCR) with peptide/

major histocompatibility complexes (p/MHC) controls Myc expres-

sion. We have also examined how a key pro-inflammatory cytokine

interleukin-2 (IL-2) impacts on Myc expression. We show that the

TCR is a digital switch that couples the strength of the antigen stimu-

lus to the frequency of cells within a population that express Myc.

However, TCR triggering alone cannot sustain expression of Myc

and post-transcriptional control of Myc protein by IL-2, a cc cytokine
that triggers Janus-associated kinase (JAK)-dependent signalling

pathways, fine-tunes Myc levels in individual T cells. We show that

Myc is constantly phosphorylated by the serine/threonine kinase

GSK3 in activated T cells and targeted for proteasomal degradation.

Myc protein thus only accumulates in T cells with high levels of

protein synthesis. This study also affords the insight that the cellular

concentration of Myc matters in the context of T cell metabolism.

Results

TCR signal strength determines Myc protein expression in a
digital manner

The expression of Myc in T cells is controlled by the TCR (Wang

et al, 2011a). A crucial question is how TCR signalling strength

controls the pool size of T cells that differentiate to effector cells. In

this respect, although Myc is required for T cell differentiation, the

impact of antigen signalling strength on Myc expression has not

been explored. To explore the sensitivity of Myc induction to differ-

ent strengths of TCR ligand, we used the OT1 TCR transgenic model

where there are well-characterised peptide ligands with different

affinities for the TCR (Daniels et al, 2006). These permit exploration

of how the affinity of peptide-major histocompatibility complexes

(p/MHC), the physiological ligand for TCR complexes, dictates Myc

expression. In these experiments, we activated OT1 T cells with TCR

agonists of varying affinity: SIIQFEHL (Q4H7: Kd 51 � 9.1 nM),

SIITFEKL (T4: Kd of 55 � 10.1 nM), SIIQFERL (Q4R7: Kd 48 � 9.5

nM), SIIQFEKL (Q4: Kd 29 � 7.2 nM) and SIINFEKL (N4: Kd

3.7 � 0.7 nM) (Daniels et al, 2006). Western blot analysis of OT1 T

cells shows that the level of Myc protein within a T cell population is

determined by the strength of the TCR ligand (Fig 1A). Cellular levels

of Myc mRNA are also determined by TCR ligand strength (Fig 1B),

revealing that one fundamental way TCR agonists control Myc

expression in T cells is by controlling the expression of Myc mRNA.

Changes in Myc levels in response to TCR ligand strength could

reflect that ligand affinity governs the frequency of T cells within a

population that express Myc. Alternatively, TCR ligand strength

may dictate the amount of Myc expressed by each individual acti-

vated T cell. To distinguish these possibilities, we needed to directly

visualise Myc protein expression at the single cell level. Accord-

ingly, we used a mouse model in which a fusion protein of Myc and

enhanced green fluorescent protein (GFP-Myc) is expressed from

the endogenous Myc locus (GFP-MycKI) (Huang et al, 2008). We

then used OT1 GFP-MycKI T cells to assess whether the strength of

the TCR ligand influenced the frequency of T cells expressing Myc

within a population. Fig 1C shows the pattern of Myc expression in

OT1 T cells activated with TCR agonists of varying affinity for the

TCR. GFP-Myc is not expressed in naı̈ve CD8+ T cells but is rapidly

induced following exposure to TCR peptide agonists (2 h). Follow-

ing TCR engagement, two distinct cell populations were observed: a

population with high GFP-Myc expression and a population with no

detectable Myc expression (Fig 1C, left panel). It was striking that

the frequency of T cells that express Myc is determined by the

strength of the TCR ligand (Fig 1C, middle panel). This on/off

Figure 1. T cell receptor signalling drives digital expression of Myc.

A, B CD8+ T cells were purified from OT1 lymph node cells that had been stimulated for 4 h with 10 ng/ml of peptides SIIQFEHL (Q4H7), SIIQFERL (Q4R7), SIIQFEKL (Q4)
or SIINFEKL (N4) or were left unstimulated. (A) Western blot data show Myc and ERK1/2 protein expression, representative of 3 biological replicates. (B) qPCR data
show Myc mRNA expression relative to unstimulated naïve control (n = 3, mean � SEM).

C–F Flow cytometry data from lymph node cells of OT1 GFP-MycKI mice stimulated through the TCR with peptide or left unstimulated. Data are from at least 3 biological
replicates. (C) GFP-Myc expression in CD8+ T cells stimulated for 2 h with 10 ng/ml peptides Q4H7, T4, Q4R7, Q4 or N4 (left panel). The middle panel shows the
percentage GFP-Mycpos cells (mean � SEM, ANOVA was used to determine statistical significance, **P < 0.01). The right panel shows the MFIs of the GFPpos and
GFPneg populations (mean � SEM). (D) GFP-Myc expression in CD8+ T cells stimulated for 2 h with varying concentrations of Q4 (ng/ml) or N4 (10 ng/ml) (left
panel). The right panel shows the percentage GFP-Mycpos cells (mean � SEM, ANOVA was used to determine statistical significance, *P < 0.05, ** P < 0.01).
(E) GFP-Myc (top panel) and CD69 (bottom panel) expression on CD8+ T cells stimulated for 20 h with varying concentrations of Q4 and T4 peptides, indicated on the
histograms. The right panels show the percentage of GFP-Mycpos or CD69+ populations. (F) GFP-Myc expression in CD69+ or CD69� CD8+ T cells stimulated with
1.1 ng/ml of T4 peptide for 20 h (left panel). The right panel shows the GFP-Myc MFI of the CD69+ populations of cells treated as in (E) (mean � SEM).

G GFP-Mycneg and GFP-Mycpos CD8+ T cells were purified from OT1 GFP-MycKI lymph node cells that had been activated for 2 h with N4 peptide (1 ng/ml) or had
been left unstimulated. Graph shows the expression of Myc mRNA measured by qPCR relative to naïve unstimulated CD8+ T cells (*P < 0.05, ANOVA was used to
determine statistical significance). Data show mean+SEM of 3 biological replicates.

H, I Flow cytometry data from lymph node cells of WT or GFP-MycKI mice stimulated using CD3 and CD28 antibodies or left unstimulated. Data are from at least 3
biological replicates. (H) GFP-Myc expression over time in CD4+ or CD8+ T cells following stimulation with CD3 (1 lg/ml) and CD28 (3 lg/ml) antibodies. (I) The left
panel shows the percentage GFP-Mycpos CD8+ T cells stimulated with varying concentrations of CD3 (lg/ml as on graph) and CD28 (3 lg/ml) antibodies for 4 h. The
right panel shows the MFIs of the GFP-Mycpos and GFP-Mycneg populations (mean � SEM, ****P < 0.001, ANOVA was used to determine statistical significance).

Source data are available online for this figure.

▸

ª 2015 The Authors The EMBO Journal Vol 34 | No 15 | 2015

Gavin C Preston et al T cell Myc expression matched to metabolic demand The EMBO Journal

2009



A

Myc
Q

4H
7

U
ns

tim
.

Q
4R

7

Q
4

N
4

Erk 1/2

50

75

39

**

101

103

G
FP

-M
yc

 M
FI

GFP-Mycneg
GFP-Mycpos 

Q4H7 T4 Q4R7 Q4 N4Q4H7 T4 Q4R7 Q4 N4

C

GFP

C
ou

nt

Unstim

Q4H7

Q4R7

Q4

N4

T4

0

10

20

30

40

50

60

Q4H7 Q4R7 Q4 N4

Myc mRNA

Increasing ligand potency

B

naive.

G Myc mRNA

0

5

10

 m
R

N
A 

re
l. 

to
 n

ai
ve

GFP-Myc
 neg

GFP-Myc
 pos

Naive

ns

*

%
 G

FP
+  c

el
ls

0
10
20
30
40
50
60
70

 m
R

N
A

 re
l.t

o 
na

iv
e

0

10

20

30

40

50

60

70

0.1 0.3 1.1 3.3 10 N4
10

D

GFP

C
ou

nt

Q4 10
Q4 3.3
Q4 1.1
Q4 0.3
Q4 0.1

N4 10

Unstim

Q4 peptide (ng/ml)

**
*

%
 G

FP
+  c

el
ls

 peptide (ng/ml)

H

2hr

4hr

6hr

24hr

CD4 CD8

C
ou

nt

GFP

48hr

72hr

GFP-MycKI 
WT 
GFP-MycKI Unstim

CD3/CD28 

0 102 103 104 1050 102 103 104 105

105

CD69C
ou

nt

CD8+ Q4(ng/ml) CD8+ T4(ng/ml)
E

GFP

0 102 103 104 105 0 102 103 104

10

3.3

1.1

0.3

0.1

10

3.3

1.1

0.3

0.1

10

3.3

1.1

0.3

0.1

10

3.3

1.1

0.3

0.1

%
G

FP
+ 

ce
lls

0.1 0.3 1.1 3.3 10

peptide (ng/ml)

Unstim

Q4
T4

0

20

40

60

80

100

0.1 0.3 1.1 3.3 10Unstim

%
C

D
69

+ 
ce

lls

0.1 0.3 1.1 3.3 10

100

1000
Q4
T4

peptide (ng/ml)

G
FP

-M
yc

 M
FI

GFP-
Mycneg

F

I

0

10

20

30

40

50

%
 G

FP
 +

ve
 c

el
ls

Unstim 0.01 0.03 0.1 0.3 1.0

****

CD3 antibody (μg/ml)

G
FP

-M
yc

 M
FI

0.01 0.10 1
101

103

CD3 antibody (μg/ml)

GFP-Mycneg
GFP-Mycpos 

GFP

C
ou

nt

CD8+ T4 (1.1ng/ml)

0 102 103 104 105

CD69+

CD69-

0

20

40

60

80

100

Figure 1.

The EMBO Journal Vol 34 | No 15 | 2015 ª 2015 The Authors

The EMBO Journal T cell Myc expression matched to metabolic demand Gavin C Preston et al

2010



pattern of Myc expression suggested a bimodal/digital response

pattern of Myc regulation. Consistent with a digital response, the

mean fluorescence intensity (MFI) of Myc expression in the GFP-

Mycpos populations is not significantly different for the T4, Q4R7,

Q4 or N4 peptides (Fig 1C, right panel). Hence, increasing the affin-

ity of the TCR ligand does not increase the amount of Myc in indi-

vidual responding cells. We also examined Myc expression

following naı̈ve OT1 T cell activation with increasing concentrations

of the p/MHC ligand Q4. Fig 1D shows that the concentration of

TCR ligand dictates the frequency of T cells that express Myc.

The bimodal, on/off pattern of Myc expression was also main-

tained during a sustained (20 h) T cell response to p/MHC ligands

(Fig 1E). Here we compared the TCR ligand dose–response for

induction of Myc and the activation marker CD69. Fig 1E (bottom

panel) shows that the upregulation of CD69 is more sensitive to the

TCR ligand dose than Myc induction (top panel). The expression of

CD69 marks T cells that have responded to antigen, and in this

respect, it was of note that Myc expression was restricted to the

CD69-expressing T cells and was bimodal in the CD69pos TCR-

activated lymphocytes (Fig 1F, left panel). We did however note

that at this sustained time point, the level of p/MHC ligand not only

directed the frequency of T cells that initiated Myc expression but

also influenced the level of Myc per cell (Fig 1F, right panel).

One important question was whether the frequency of cells that

expressed Myc protein in activated T cells was explained by differ-

ences in the frequency of T cells that express Myc mRNA. To

answer this question, OT1 GFP-MycKI T cells were activated with

the N4 TCR agonist for 2 h before GFP-Mycpos and GFP-Mycneg

T cells were purified by FACS and Myc mRNA was quantified.

Fig 1G shows that N4-stimulated GFP-Mycpos OT1 T cells express

high levels of Myc mRNA compared with GFP-Mycneg OT1 T cells.

This result is consistent with the hypothesis that the TCR controls

the frequency of cells that express Myc because the TCR controls

the frequency of cells that express Myc mRNA.

We next examined whether digital Myc expression is common to

both CD4+ and CD8+ T cells. Fig 1H shows that GFP-Myc is not

expressed in naı̈ve lymph node-derived CD4+ and CD8+ T cells but

is rapidly induced in both populations following polyclonal T cell

activation with CD3 and CD28 antibodies with a clear digital

response pattern of Myc regulation. In these experiments, we used

saturating levels of CD3 antibodies, and within the first few hours of

the activation response, there was an increase in the percentage of T

cells that expressed Myc but no increase in the maximal amount of

Myc expressed. Under these potent activation conditions, all T cells

expressed Myc at the 24-h time point. This response was sustained

over a 72-h period, but it was notable that the level of Myc per cell

had decreased at the 48- and 72-h time points (Fig 1H).

When T cells were activated polyclonally with different concen-

trations of CD3 antibody, then the frequency of Myc-expressing cells

directly correlated with the amount of CD3 antibody used (Fig 1I),

and the digital nature of the response was preserved. In these exper-

iments, the level of the costimulatory antibody CD28 was constant,

indicating that it is the level of TCR engagement that determined

Myc expression. The digital nature of Myc induction in response to

TCR engagement is thus a common feature of the TCR response to

both physiological and polyclonal ligands and occurs in both CD4+

and CD8+ T cells.

IL-2/JAK signalling controls Myc expression in TCR-activated
T cells

The differentiation of antigen-activated CD8+ T cells is regulated by

cc cytokines such as interleukin-2 (IL-2). Antigen-primed T cells

cultured in IL-2 thus differentiate to effector cytotoxic T cells (CTL)

(Kalia et al, 2010; Pipkin et al, 2010). It has also been described that

IL-2 controls the expression of Myc (Reed et al, 1988; Lord et al,

2000). In this context, we observed that antigen receptor-triggered

T cells maintained in culture in the presence of receptor-saturating

levels of IL-2 expressed high levels of Myc (Fig 2A). Moreover, it

was striking that sustained IL-2 signalling is required to maintain

the high expression of Myc protein in CTL, with Myc levels decreas-

ing within 1 h of withdrawal from IL-2 (Fig 2B). We also examined

the effect of two other cc cytokines, IL-7 and IL-15, on the expression

of Myc in CTL. In this context, Myc expression is essential in vivo

Figure 2. cc cytokine signalling supports Myc expression in an analogue fashion.

A–D CD8+ CTL were generated from splenocytes as described in Materials and Methods and maintained in IL-2 (20 ng/ml). Data are representative of at least 3
experiments. (A) Western blot data show Myc and ERK1/2 protein expression in CTL switched into the indicated concentration of IL-2 for 2 h. (B) Myc and GSK3a
protein expression in CTL maintained in IL-2 or deprived of IL-2 for the times indicated. (C) Myc and SMC1 expression in CTL maintained in IL-2 or switched into
IL-15 (20 ng/ml) or IL-7 (5 ng/ml) for 18 h. Histogram shows densitometry analysis of Myc expression relative to SMC1 expression. (D) Myc, pY694STAT5 and
panSTAT5 protein expression in CTL after 2-h treatment with the JAK inhibitor tofacitinib at the indicated concentrations.

E Lymph node cells from GFP-MycKI mice were stimulated using CD3 (1 lg/ml) and CD28 (3 lg/ml) antibodies in the presence or absence of JAK inhibitor tofacitinib
(100 nM). Flow cytometry data show GFP-Myc expression in CD4+ (left) or CD8+ (right) T cells at the indicated times. Data are representative of at least 3
experiments.

F Lymph node cells from GFP-MycKI mice were stimulated using CD3 (1 lg/ml) and CD28 (3 lg/ml) antibodies in the presence of IL-2 receptor-blocking antibody
PC61 (2 lg/ml) or isotype control for 6 or 48 h. Flow cytometry data show GFP-Myc expression in CD4+ (left) or CD8+ (right) T cells. Data are representative of 3
biological replicates.

G T cells from lymph nodes of GFP-MycKI mice were activated with CD3 antibody (60 ng/ml) for 48 h. The plots show the fluorescence intensity of GFP-Myc and
CD25 expression from flow cytometry data modelled by linear regression in CD4+ cells (left panel) and CD8+ cells (right panel). Data are representative of 3
experiments.

H, I GFP-MycKI KI and WT mice were immunised with attenuated Listeria monocytogenes, and after 24 h, spleens were harvested for analysis. Data are from 2
independent experiments with 2 control and 3 test animals in each experiment. (H) Flow cytometry data showing the gating of activated (CD25pos and CD44pos)
and resting (CD25neg and CD44neg) CD8+ T cells from control (left panel) and immunised (middle panel) mice. The right panel shows GFP-Myc expression of
activated and resting CD8+ T cells with the corresponding MFI values. (I) Flow cytometry data showing the gating of CD25high and CD25low CD8+ T cells (left panel)
and corresponding GFP-Myc expression in the GFP-MycKI cells compared to WT cells (right panel).

Source data are available online for this figure.
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for signalling by IL-15 (Bianchi et al, 2006; Dose et al, 2006, 2009;

Mycko et al, 2009; Jiang et al, 2010). Fig 2C shows that IL-2, IL-15

and IL-7 are different in their ability to maintain Myc protein expres-

sion in effector CTL. IL-2 has the strongest effect, IL-15 is much less

potent at maintaining Myc expression, and there are only very low

levels of Myc in effector CTL maintained in IL-7.

IL-2 and IL-15 signal via a receptor complex that includes the

common gamma chain (cc) and a b subunit (CD122). Triggering of

this receptor complex activates the tyrosine kinases JAK1 and JAK3.

IL-2 is able to sustain a much higher level of signalling in activated

T cells than IL-15, even when both cytokines are at the receptor-

saturating concentrations (Cornish, 2006). The differential effect of

IL-2 and IL-15 on Myc expression suggests that the level of JAK

kinase activity might determine the expression of Myc. Recently,

inhibitors of JAK kinases have been described, notably tofacitinib

(Changelian et al, 2003). We could therefore test directly the contri-

bution of JAK signalling to the regulation of Myc expression in IL-2-

maintained CTL. Fig 2D shows that tofacitinib treatment leads to a

rapid loss of Myc protein expression in IL-2-maintained CTL.

Immune-activated T cells produce IL-2 and can have autocrine

responses to this cytokine (Feau et al, 2011; Sa et al, 2013). The

ability of IL-2 to control Myc expression in CTL made us question

whether autocrine IL-2/JAK signalling had any role in controlling

Myc expression in TCR-activated naı̈ve T cells. We therefore exam-

ined the effect of the JAK inhibitor tofacitinib on Myc induction in

TCR- and CD28-activated T cells. Fig 2E shows that there was no

effect of tofacitinib on Myc expression in T cells activated with CD3

and CD28 antibodies for 4 h, whereas there was a clear reduction in

Myc expression in tofacitinib-treated T cells at the 24- and 48-h time

point. It was notable that treatment of activated T cells with the JAK

inhibitor did not change the frequency of activated T cells that

express Myc but rather reduced the amount of Myc expression per

cell. In further experiments, we examined the impact of PC61, a

CD25 antibody that blocks IL-2 binding to its high-affinity receptor

(Lowenthal et al, 1985), on Myc expression in T cells activated poly-

clonally with CD3 and CD28 antibodies. Fig 2F shows that blockade

of IL-2 binding to its receptor reduced Myc expression in the

longterm-activated T cells. However, the neutralising IL-2 antibody

had no impact on the digital TCR-induced Myc response seen at 6 h.

Inhibition of autocrine IL-2 did not reduce the frequency of activated

T cells that express Myc but could reduce Myc expression level per

cell. Hence, IL-2 control of Myc expression is an analogue response

unlike the bimodal response pattern for TCR control of Myc

expression.

The data above argue that there is no role for autocrine IL-2/JAK

signalling in the immediate response to TCR engagement, but during

the sustained immune activation response, IL-2 signalling does have

an impact on Myc expression. In further experiments to explore this

question, we took advantage of the fact that the level of IL-2 signal-

ling in a T cell is determined by the level of CD25 expression

(Cantrell & Smith, 1984). Moreover, CD25 expression in T cells is

controlled by a positive feedback mediated by JAK activation of the

transcription factor STAT5 (Nakajima et al, 1997). If Myc expres-

sion in effector T cells is determined by the strength of IL-2 signal-

ling, then Myc levels will be highest in cells that express high levels

of CD25. Fig 2G shows that the level of Myc protein in activated

CD4+ and CD8+ T cells correlates with the expression of CD25.

Similarly, when GFP-MycKI mice are immunised with an attenuated

strain of Listeria monocytogenes over 24 h, it is possible to identify

immune-activated CD25-positive effector T cells (Fig 2H, left

panels). These activated CD8+ T cells express Myc, whereas no

Myc expression is detected in non-responding naı̈ve CD8+ T cells

from the same animal (Fig 2H, right panel). Importantly, Myc

expression levels in the activated CD8+ T cells correlate with the

level of CD25 expression (Fig 2I). Collectively, these data are consis-

tent with the hypothesis that IL-2 activation of JAK signalling path-

ways controls cellular levels of Myc in effector T cells.

Transcriptional and post-transcriptional control of Myc
expression in T cells

T cell antigen receptor control of Myc expression was explained by

TCR control of the frequency of cells that express Myc mRNA. IL-2

regulates an analogue response that controls the amount of Myc

expressed by each cell. We therefore assessed whether the analogue

IL-2 response reflected the control of Myc mRNA levels. Fig 2A

shows that although there is a clear IL-2 dose–response for Myc

protein expression, there is no equivalent IL-2 dose–response for

Myc mRNA in CTL (Fig 3A). Similarly, the JAK inhibitor tofacitinib

causes CTL to rapidly lose Myc protein but not Myc mRNA (Figs 2D

and 3B). Moreover, CTL maintained in IL-2, IL-15 or IL-7 have very

different levels of Myc protein but express equivalent levels of Myc

mRNA (Figs 2C and 3C). These data argue that the cc cytokines IL-2
and IL-15 primarily regulate Myc levels via post-transcriptional

mechanisms.

To rigorously test this model further, we transduced activated

T cells with a FLAG-MycWT-IRES-GFP retroviral construct (encoding

a FLAG-tagged wild-type Myc cDNA and an IRES-controlled GFP

cDNA) and then cultured the cells in the presence or absence of

IL-2. CTL transduced with the Myc-IRES-GFP vector only overex-

press ectopic Myc protein if the cells are cultured with IL-2 (Fig 3D),

whereas the IRES-controlled GFP (Fig 3D) and Myc mRNA (Fig 3E)

were detected in both the IL-2-maintained and IL-2-deprived T cells.

These data show that in the absence of IL-2, CTL cannot sustain the

expression of Myc from endogenous or ectopically expressed retro-

viral Myc transcripts.

Myc protein has a short half-life in T cells

One striking observation was the rapidity with which Myc protein

was lost from CTL following IL-2 withdrawal (Fig 2B). These data

argue that Myc has a very short half-life in activated T cells. One

previously described mechanism to control the expression of Myc

is a phosphorylation-dependent pathway that targets Myc for

proteasomal degradation (Gregory & Hann, 2000). Phosphorylation

of Myc on T58 by glycogen synthase kinase 3b (GSK3b) promotes

its interaction with Fbw7, the substrate recognition component of

the SCFFbw7 ubiquitin ligase, and directs Myc ubiquitination and

proteasomal degradation (Gregory et al, 2003; Welcker et al,

2004a,b). We have previously used high-resolution mass spectro-

metry to map the phosphoproteome of IL-2-maintained CTL (Navarro

et al, 2011). Analysis of this data revealed that Myc is phosphory-

lated on Ser62 and Thr58 in activated T cells (Fig 4A). In this

respect, it has been described that the phosphorylation of Ser62

primes Myc for subsequent Thr58 phosphorylation by GSK3b
(Sears et al, 1999, 2000). These data argue that Myc is constantly
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phosphorylated and targeted for degradation in IL-2-maintained

CTL. To explore this hypothesis further, we examined the impact

of MG132, a well-characterised inhibitor of the 26S proteasome,

on the expression of Myc in IL-2-maintained and IL-2-deprived

CTL. These data show that MG132 promoted the expression of

Myc in IL-2-maintained CTL and could also prevent the loss of

Myc expression that normally accompanies IL-2 withdrawal

(Fig 4B). Moreover, if CTL were treated with the GSK3 inhibitor

CHIR99021, they were able to sustain Myc expression following

IL-2 withdrawal (Fig 4C).
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Figure 3. Post-transcriptional regulation of Myc protein expression by cc cytokine signalling.

A Myc mRNA expression in CTL, generated as described in Materials and Methods, switched into decreasing concentrations of IL-2 for 2 h, shown relative to IL-2-
deprived CTL (2 h) (n = 3, mean � SEM).

B Myc mRNA expression in IL-2-maintained CTL treated with the indicated concentration of tofacitinib for 2 h, shown relative to untreated IL-2-maintained CTL
(n = 3, mean � SEM).

C Myc mRNA expression in CTL switched into IL-7 (5 ng/ml) or IL-15 (20 ng/ml) or maintained in IL-2 (20 ng/ml) for 18 h, shown relative to IL-2-maintained CTL
(n = 3, mean � SEM).

D, E Myc-IRES-GFP-transduced CD8+ cells were sorted by FACS, and the Myc-IRES-GFPpos and Myc-IRES-GFPneg CTL were maintained in IL-2 (20 ng/ml) or deprived of
IL-2 for 2 h. Data are representative of 3 experiments. (D) Western blot data show the expression of Myc, GFP and SMC1. (E) qPCR data show Myc mRNA expression
relative to IL-2-maintained control (Myc-IRES-GFPneg) CTL (mean � SEM, ANOVA used to determine statistical significance of multiple comparisons, ***P < 0.001).

Source data are available online for this figure.
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These data indicate that the short half-life of Myc in T cells is

controlled by GSK3b-mediated phosphorylation of Myc Thr58, which

then targets Myc for proteasomal degradation. This predicts that a

Myc protein with the Thr58 mutated to a non-phosphorylatable

residue such as alanine would be expressed in T cells independent of

the presence of cc cytokines. To test this hypothesis, we transduced

antigen receptor-activated T cells with a retroviral construct encod-

ing MycT58A-IRES-eGFP and then cultured the cells in the presence or

absence of IL-2. The data show that MycT58A expression is sustained

in CTL deprived of IL-2 (Fig 4D). This is in marked contrast to the

inability of IL-2-deprived T cells to sustain the expression of endo-

genous or ectopically expressed retroviral wild-type Myc (Fig 3D).

The present results demonstrate that GSK3 constantly phospho-

rylates Myc on Thr58 in T cells and hence constantly targets Myc

for degradation. Moreover, it was striking that the treatment of

T cells with the proteasome inhibitor MG132 causes Myc to accumu-

late in IL-2-maintained CTL (Fig 4B). This demonstrates that there

is a constant high rate of Myc proteolysis by the proteasome in IL-2-

maintained T cells. Accordingly, Myc will only be able to accumu-

late in activated T cells when rates of Myc synthesis exceed the rates

of Myc degradation. IL-2 is very potent at inducing amino acid

uptake and protein synthesis in CTL (Cornish, 2006; Sinclair et al,

2013). High rates of amino acid uptake and consequently high rates

of protein synthesis in IL-2-maintained CTL could therefore explain

why Myc accumulates in IL-2-maintained CTL and could also

explain why IL-15 is unable to sustain high levels of Myc in CTL:

IL-15 is much less potent than IL-2 in its ability to promote protein

synthesis (Fig 5A).
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Figure 4. Myc protein expression is post-transcriptionally regulated in response to IL-2 signals by GSK3 and proteasome activity in CTL.

A Sequence data from phospho-proteomic analysis of IL-2-maintained CTL. Phosphorylated Myc in CTL demonstrated by manual sequencing of acquired multistage
activation spectra for the Myc peptide KFELLPTPPLSPSRR (amino acid residues 52–66) with Biemann–Roepstorff nomenclature; asterisks (y and b ion series) indicate
neutral loss of one (*) or two (**) phosphate groups; 2+ indicates double-charged fragment ions. Above: vertical lines indicate a fragmented bond after collision-
induced dissociation; horizontal lines indicate the fragment retaining the charge. Data are representative of three experiments.

B, C CTL were cultured in the presence or absence of IL-2 and inhibitor as indicated for 2 h. Data are representative of 3 independent experiments. (B) Western blot data
show Myc and SMC1 expression in CTL treated with or without proteasome inhibitor MG132 (25 lM). (C) Western blot data show Myc and GSK3a/b expression in
CTL treated with or without increasing concentration of the GSK3 inhibitor CHIR99021.

D evGFP- or MycT58A-transduced CD8+ CTL were sorted by FACS for GFP expression. evGFP, MycT58A and non-transduced CTL were then maintained in IL-2 (20 ng/ml)
or deprived of IL-2 for 18 h. Western blot data show Myc and GSK3a/b expression.

Data information: (C, D) Data are from the same lysates but run on parallel gels. Data are representative of 3 experiments.
Source data are available online for this figure.

ª 2015 The Authors The EMBO Journal Vol 34 | No 15 | 2015

Gavin C Preston et al T cell Myc expression matched to metabolic demand The EMBO Journal

2015



Recently, we have shown that expression of system L amino acid

transporter Slc7a5 by TCR-activated cells is essential for the expres-

sion of Myc protein (Sinclair et al, 2013). IL-2 can sustain high

levels of Slc7a5 expression and CD98, the two subunits of the

system L amino acid transporter (Fig 5B), and system L-mediated

amino acid transport in CTL (Fig 5C). In contrast, IL-15 is much less

potent at inducing Slc7a5 and CD98 expression (Fig 5B) and IL-15-

maintained cells exhibit much lower rates of system L amino acid

transport (Fig 5C). We considered whether the ability of the JAK

inhibitor tofacitinib to decrease Myc expression in T cells could be

caused by a requirement of JAK activity for system L amino acid

uptake and protein synthesis in activated T cells. Fig 5D addresses

this question and reveals a striking reduction of system L transport

activity and very low rates of protein synthesis in CTL treated with

tofacitinib.

These results collectively argue that T cells need continual high

rates of amino acid uptake to sustain high levels of Myc protein. To

test this hypothesis directly, we looked at the impact of amino acid

deprivation on Myc expression in activated T cells; indeed, amino

acid deprivation caused IL-2-maintained CTL to rapidly lose the

expression of Myc (Fig 5E). Additionally, blockade of system L

transport by the inhibitor 2-amino-2-norbornanecarboxylic acid

(BCH) also prevented the upregulation of Myc protein in activated

CD8+ T cells (Fig 5F). Moreover, TCR-stimulated GFP-Mycpos OT1

T cells have high levels of Slc7a5 and CD98 mRNA compared to

GFP-Mycneg OT1 T cells (Fig 5G). Thus, Myc protein levels in

immune-activated T cells are matched to high expression of amino

acid transporters and to high rates of amino acid uptake. One

consideration in these experiments is that inhibition of amino acid

transport will cause loss of mTORC1 activity (Sinclair et al, 2013).

However, we have shown previously that inhibition of mTORC1

does not prevent Myc expression in TCR- or IL-2-activated CD8+

T cells (Finlay et al, 2012; Sinclair et al, 2013).

Myc levels are important for activated T cells

The mechanisms whereby TCR signalling strength controls the pool

size of T cells that differentiate to effector cells are not fully under-

stood. In the absence of Myc, T cells cannot respond to TCR trigger-

ing to proliferate or differentiate to effector cells (Wang et al,

2011b). The present data now show that when GFP-MycKI OT1

T cells are activated with p/MHC ligands, it is the GFP-Mycpos cells

that express the effector cytokine interferon gamma (IFNc) mRNA,

whereas GFP-Mycneg cells from the same cultures do not (Fig 6A).

Moreover, in the sustained responses to p/MHC ligands, it is the

GFP-Myc-expressing OT1 T cells that produce high levels of IFNc
and not the GFP-Mycneg T cells (Fig 6B). We also observed that the

level of IFNc in an individual cell correlates with the level of expres-

sion of GFP-Myc (Fig 6C).

T cell antigen receptor engagement triggers a growth response in

T cells causing them to increase in cell size (blastogenesis) as

judged by flow cytometric analysis of the forward and side scatter

properties of activated T cells. We thus used flow cytometry to

analyse the forward and side scatter properties of GFP-MycKI OT1

T cells activated with the p/MHC ligands Q4 and T4. The expression

of Myc in the CD69+ TCR-activated cells had a bimodal response as

described in Fig 1. Fig 6D shows that it is the GFP-Myc-expressing

cells that have undergone blastogenesis. We also analysed blasto-

genesis of GFP-MycKI T cell populations activated polyclonally

with CD3 and CD28 antibodies. As described above, when T cells

are activated polyclonally with different concentrations of CD3

antibody, then the frequency of Myc-expressing cells directly

correlated with the dose of TCR ligand used. Fig 6E shows GFP-Myc

and CD69 expression in CD8+ T cells stimulated with a low concen-

tration of the CD3 antibody. A large percentage of the cells

responded to TCR ligation to induce CD69 expression, but only a

subset of the CD69+ cells express GFP-Myc; that is, Myc induction

is bimodal in the TCR-activated CD69+ T cells. Fig 6F shows that

CD69+ CD8+ T cells that do not express Myc have increased cell

size in comparison with the CD69� quiescent CD8 T cells. However,

the Myc-expressing CD69+ CD8+ T cells are much larger than the

Myc-negative CD69+ CD8+ T cells. Importantly, T cells with both

Myc alleles deleted do not blast in response to TCR and CD28

activation (Fig 6G).

How important is it that the amount of Myc protein expressed in

a single, activated T cell can be fine-tuned? Strategies to address this

issue require the ability to quantitatively analyse a Myc-regulated

response in single T cells. In this regard, there is strong evidence

that Myc regulates transferrin receptor expression (O’Donnell et al,

2006) (Holland et al, 2012). Moreover, there are good tools for

single cell analysis of this pathway that would allow a direct analy-

sis of the importance of Myc protein levels for transferrin uptake.

We first addressed whether Myc was indeed important for transfer-

rin receptor expression in T cells. Naı̈ve T cells do not express the

Figure 5. Myc protein expression is dependent on sustained system L amino acid uptake and protein synthesis in CD8+ T cells.

A 3H methionine incorporation into CTL maintained in IL-15 or IL-2 or switched from IL-2 into varying concentrations of IL-2 (as shown) for 18 h.
B Data show qPCR analysis of slc7a5 mRNA in CTL maintained in IL-2, IL-15 or naïve lymph node cells (left panel). The data are expressed relative to IL-2-maintained

CTL. The right panel shows flow cytometry data of CD98 expression on CTL maintained in IL-2 or IL-15, with corresponding MFIs.
C 3H phenylalanine uptake in CTL maintained in IL-2, IL-15 or naïve lymph node cells. The data are expressed relative to IL-2-maintained cells.
D 3H leucine uptake (left panel) and 3H methionine incorporation (right panel) measured in IL-2-maintained CTL treated with or without JAK inhibitor tofacitinib

(100 nM) for 18 h.
E Western blot data show Myc and SMC1 expression in CTL maintained in IL-2 with or without amino acids in culture media for 15 or 30 min.
F Lymph node cells from GFP-MycKI mice were stimulated with CD3 (1 lg/ml) and CD28 (3 lg/ml) for 18 h. Flow cytometry data (left panel) show GFP-Myc expression

in CD8+ T cells stimulated through the TCR (black) or unstimulated (grey) compared to CD8+ T cells stimulated in the absence of amino acids (red, middle panel) and
CD8+ T cells stimulated in the presence of the system L transporter inhibitor BCH (50 mM) (red, right panel). MFIs are indicated on each panel.

G GFP-Mycneg and GFP-Mycpos CD8+ T cells were purified from OT1 GFP-MycKI lymph node cells that had been activated for 2 h with N4 peptide (1 ng/ml). Graph
shows expression of slc7a5 and CD98 mRNA measured by qPCR relative to naïve unstimulated CD8+ T cells.

Data information: (A–E, G) Data shown are from at least 3 experiments (mean � SEM, *P < 0.05, **P < 0.01, ***P < 0.001, Multiple analyses were performed with
ANOVA, comparisons between two groups were performed using Student's t-test.). (F) Data are representative of 3 biological replicates.
Source data are available online for this figure.
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transferrin receptor (CD71), but expression of this receptor, and the

cellular uptake of transferrin, is strongly induced in antigen recep-

tor-activated T cells (Fig 7A). T cells with both Myc alleles deleted

cannot upregulate CD71 or transferrin uptake in response to TCR

engagement (Fig 7B). Is the level of Myc expression per cell impor-

tant for transferrin receptor expression? To explore this, we first

used the GFP-MycKI mouse model and examined CD71 expression

versus GFP-Myc expression in TCR-activated CD4+ and CD8+

T cells. The data show a clear correlation between expression of

CD71 and Myc (Fig 7C).

There was also a strong correlation between cellular levels of

Myc and expression of transferrin receptors in CTL cultured in the
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Figure 6. Myc protein expression correlates with effector functions.

A Lymph node CD8+ T cells were activated with N4 peptide (1 ng/ml) for 2 h, and GFP-Mycneg and GFP-Mycpos populations were FACS-sorted. Expression of IFNc
mRNA measured by qPCR relative to naïve unstimulated CD8+ T cells is shown. Data show mean + SEM of 3 biological replicates.

B Flow cytometry data show GFP-Myc and IFNc expression from spleen OT1 GFP-MycKI CD8+ T cells stimulated with 5 ng/ml Q4 (left panel) or T4 (middle panel)
peptides for 24 h. Quadrant percentages are shown. The right panel shows the percentage of GFP-Mycpos and GFP-Mycneg CD8+ T cells expressing IFNc protein.
Data are from 3 biological replicates.

C The fluorescence intensity of GFP-Myc and IFNc expression from flow cytometry data modelled by linear regression in OT1 GFP-MycKI CD8+ T cells treated with
5 ng/ml Q4 for 24 h. Data are representative of 3 biological replicates.

D Forward scatter and side scatter plots of CD69+ GFP-Mycneg (upper panels) and CD69+ GFP-Mycpos (lower panel) OT1 GFP-MycKI CD8+ T cells stimulated with
3.3 ng/ml Q4 or N4 peptides for 24 h. Data are representative of 2 biological replicates

E, F GFP-MycKI CD8+ T cells were stimulated with CD3 antibody (60 ng/ml) for 24 h. Data are representative of 3 biological replicates. (E) Flow cytometry data show
CD69 and GFP-Myc expression. (F) Forward and side scatter plots of CD69� GFP-Mycneg (left panel), CD69+ GFP-Mycneg (middle panel) and CD69+ GFP-Mycpos (right
panel) populations.

G CD4Cre� Mycfl/fl and CD4cre+ Mycfl/fl lymph node cells were activated with CD3 (1 lg/ml) and CD28 (3 lg/ml) antibodies for 24 h. The data show forward and side
scatter plots of CD4+ (upper panels) and CD8+ (lower panels) T cells, compared to unstimulated CD4Cre� Mycfl/fl cells. Data are representative of at least 3 biological
replicates.
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expression from flow cytometry data modelled by linear regression in CD4+ cells (upper panel) and CD8+ cells (lower panel).

D Flow cytometry data showing CD71 expression and transferrin uptake (bottom panel) in CTL maintained in IL-2 (20 ng/ml) or IL-15 (20 ng/ml) or withdrawn from
IL-2 for 18 h (no cytokine).

E CD71 MFI data (mean � SEM) in CTL treated with decreasing concentrations of IL-2 in the presence or absence of the GSK3 inhibitor CHIR99021 (2 lM) for 18 h.
F evGFP- or MycT58A-transduced CD8+ CTL were cultured in IL-2 (20 ng/ml), IL-15 (20 ng/ml) or withdrawn from IL-2 for final 18 h (no cytokine). Histograms show

CD71 expression (upper panels) and transferrin uptake (lower panels) as measured by flow cytometry.

Data information: (A–D, F) Data are representative of at least 3 biological replicates. (E) Data are quantified from 3 experiments.
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cytokines IL-2 and IL-15. Fig 7D thus shows that IL-2-maintained

CTL express high levels of CD71 and uptake high amounts of trans-

ferrin compared to T cells deprived of cytokines, with expression of

CD71 and transferrin uptake in activated T cells cultured in IL-15

being intermediate. This correlates with the ability of IL-2 to main-

tain high levels of Myc protein compared to IL-15 (Fig 2C). These

data are correlative; hence, to test whether differences in Myc

expression levels were causal for differences in CD71 expression,

we examined the impact of increasing Myc levels in T cells cultured

under these different conditions. In these experiments, we looked at

the impact of expressing the MycT58A mutant on CD71 expression

and transferrin uptake because the use of this mutant bypasses the

GSK3-mediated pathway that rapidly targets Myc for degradation

and allows overexpression of Myc even when cells are cytokine-

deprived. In this respect, Fig 7E shows that GSK3 inhibition using

CHIR99021, which prevents Myc degradation, could increase CD71

expression in IL-2-maintained CTL. There was also a strong effect of

MycT58A expression on CD71 expression and the ability of cells to

take up transferrin in cytokine-maintained CTL. Hence, ectopic

expression of MycT58A increased expression of CD71 and transferrin

uptake in both IL-15- and even IL-2-cultured CTL (Fig 7F). Ectopic

expression of MycT58A was also able to sustain expression of CD71

and transferrin uptake in IL-2-deprived CTL. In addition, increasing

Myc levels increased transferrin uptake in IL-15-cultured CTL to the

level seen in the control IL-2-maintained cells. Hence, the limiting

factor for transferrin receptor expression and transferrin uptake in

IL-15-maintained CTL was the level of Myc expression. Moreover,

the fact that expression of MycT58A, which increased cellular

concentrations of Myc, increases rates of transferrin uptake in IL-2-

maintained cells (Fig 7G) shows that the concentration of Myc

levels per cell dictates transferrin receptor expression and rates of

transferrin uptake by immune-activated T cells. There is thus a clear

biological consequence of fine-tuning Myc expression in single, acti-

vated T cells.

Discussion

The expression of Myc in CD8+ T cells is regulated by both antigen

receptor signals and the cc cytokine IL-2. The present study now

shows that the TCR and IL-2 use distinct mechanisms to control

Myc levels in T cells. The TCR controls Myc expression in a digital

response that determines the frequency of the T cell population that

switches on Myc mRNA and protein expression. In contrast, the

cytokine IL-2 regulates Myc expression in an analogue response that

fine-tunes Myc protein levels per cell. In the immediate response to

TCR engagement, the strength of TCR signal controls how many

cells express Myc, and at these time points there is no apparent role

for IL-2/JAK signalling. Myc expression in T cells thus appears to be

a two-stage process; Myc expression is digitally induced by the

strength of TCR signalling, but the maintenance of high Myc expres-

sion then becomes dependent upon other external stimuli such as

IL-2. Myc is essential for the metabolic reprogramming that controls

effector T cell differentiation (Wang et al, 2011a). The fact that the

strength of the TCR ligand determines the frequency of T cells that

express Myc gives new insight about the mechanisms that allow

TCR signalling strength to control the pool size of T cells that meta-

bolically reprogramme and differentiate to effector cells.

One striking observation from the present study was the discor-

dance between Myc protein and mRNA levels in immune-activated

T cells. This latter observation is relevant because many previous

studies have interrogated Myc mRNA expression in T lymphocyte

subpopulations (Best et al, 2013). The data herein show that T cells

can express high levels of Myc RNA but that high levels of Myc

protein can only be sustained in T cells that have high rates

of amino acid uptake. Myc expression in an antigen receptor-

stimulated T cell will thus be transient unless the T cell can sustain

high rates of biosynthesis of Myc protein. A key mechanism that

controls Myc protein expression in activated T cells is mediated by

the serine/threonine kinase GSK3. Hence, in activated T cells Myc is

phosphorylated by GSK3 on Thr58, which then constantly targets

the protein for proteasomal degradation (Gregory et al, 2003). It is

this constant high rate of Myc degradation in activated T cells that

confines high levels of Myc protein expression to T cells with high

rates of amino acid uptake and protein synthesis. Myc protein

expression thus rapidly declines in situations where T cell protein

synthesis and amino acid uptake are limited. Recent studies have

shown that there is very tight control of amino acid transport and

hence protein synthetic capacity during the immune activation of

T cells (Hayashi et al, 2013; Sinclair et al, 2013). The critical signals

that are known to be able to induce and sustain high-level expression

of amino acid transporters in T cells are antigen and pro-inflammatory

cytokines such as IL-2 (Wang et al, 2011a; Sinclair et al, 2013). This

means that Myc protein expression will be restricted to T cells responding

to immune activation or to T cells exposed to pro-inflammatory

cytokines that can maintain amino acid uptake.

One of the cytokines that can sustain high levels of Myc protein

in T cells is IL-2. This molecule is a member of the cc family of

cytokines that signal by activating the JAK tyrosine kinases. The

present experiments interrogated the role of JAKs regulating Myc

expression using the JAK inhibitor tofacitinib: a drug showing clini-

cal promise for the treatment of autoimmune diseases (Hsu &

Armstrong, 2014; Lee et al, 2014). Our data afford the insight that

immune-activated T cells can express high levels of Myc mRNA and

yet be dependent on sustained JAK activity to express Myc protein.

Moreover, another novel insight from the present experiments is

that part of the tofacitinib mechanism of action as an immunosup-

pressant may be to prevent T cell reprogramming of Myc-controlled

metabolic responses. In the context of cc cytokines and JAKs, the

strength of IL-2 signalling during an immune response determines

effector versus memory cell fate of immune-activated CD8+ T cells

(Kalia et al, 2010). Herein we show that IL-2 has the ability to

sustain high rates of Myc expression compared to other cc cytokines
such as IL-7 and IL-15, and this could contribute to the unique role

for this cytokine as a regulator of peripheral T cell metabolism and

differentiation. What is the mechanistic explanation for the differen-

tial effect of IL-2, IL-7 and IL-15? They all signal through the cc, and
IL-2 and IL-15 share the same beta receptor subunit. Recent studies

have shown that it is predominantly the abundance of the specific

alpha chain for IL-2 and IL-15 that determines the strength of signal

mediated by that cytokine (Ring et al, 2012). Furthermore, in T cells

that highly express CD25, the alpha subunit for the high-affinity IL-2

receptor, signalling through IL-15 and IL-7 in particular is attenuated

because of the sequestration of cc subunits in complete IL-2 recep-

tors (Cotari et al, 2013). Therefore, even at saturating concentra-

tions, IL-7 and IL-15 are less potent than IL-2 in our system.
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The ability of T cells to rapidly fine-tune intracellular concentra-

tions of Myc is striking but is it important? How sensitive are T cells

to changes in Myc protein levels? We addressed this question by

interrogating the importance of Myc protein levels for transferrin

uptake. We show that Myc is essential for transferrin receptor

expression in immune-activated T cells. Moreover, a salient result

was that Myc protein levels determine the level of transferrin recep-

tor expression and rates of transferrin uptake by immune-activated

T cells. Myc is thus not an on/off switch for transferrin receptor

expression but can fine-tune expression of this key receptor that

ensures that T cells have sufficient iron. Myc has other roles in T

cells, for example to control glucose and glutamine metabolism and

to regulate expression of key transcription factors such as AP4

(Wang et al, 2011a; Chou et al, 2014). The present observation that

there is coordination of Myc protein expression with amino acid

uptake thus reveals a mechanism that would ensure that T cells

coordinate increases in glucose and glutamine and iron metabolism

to match the biosynthetic demands associated with the immune

activation of T cells.

Materials and Methods

Mice and cell culture

All mice were kept in the Biological Resource Unit at the Wellcome

Trust Biocentre, University of Dundee, in accordance with UK Home

Office (Animals) Scientific Procedures Act 1986. Mice used were OT1

TCR transgenic mice, which express a TCR recognising the ovalbu-

min (OVA)-derived peptide SIINFEKL, or P14 TCR transgenic mice,

which express a TCR recognising the gp33-41 peptide of LCMV

(KAVYNFATM). GFP-MycKI was used as described (Huang et al,

2008). CD4Cre+ x Mycfl/fl and control CD4Cre� x Mycfl/fl were used as

previously described (Mycko et al, 2009). All mice are on a C57BL/6

genetic background and were used between 12 and 24 weeks of age.

For experiments involving T cell receptor (TCR) stimulation, CD3

antibody (2C11, 0.5 lg/ml) and CD28 antibody (clone 37.51, eBio-

science, 3 lg/ml) were used for polyclonal T cell activation whilst

OVA-derived peptides (10 ng/ml unless otherwise stated) were used

for OT1 T cell activation for the specified times.

For experiments using cytotoxic T lymphocytes (CTL), cells

were generated as described in Waugh et al (2009). Briefly, splenic

CD8+ T cells from P14 mice were activated with 100 ng/ml

gp33-41 peptide, washed and maintained with 20 ng/ml IL-2

(Novartis) or IL-15 (Peprotech) for a further 3–5 days, or in IL-7

(5 ng/ml, Peprotech) as indicated. Culture medium consisted of

RPMI 1,640 medium containing L-glutamine (Invitrogen) with 10%

heat-inactivated foetal calf serum (Gibco), penicillin–streptomycin

(Gibco) and 50 lM b-mercaptoethanol (Sigma).

The proteasome inhibitor MG132 and GSK3 inhibitor CHIR99021

were synthesised by DSTT, University of Dundee. Tofacitinib (GSK)

was used at 100 nM unless otherwise stated. Anti-mouse CD25

antibody (eBioscience, clone PC61.5) and IgG1 isotype control

(eBioscience, clone eBRG1) were used at 2 lg/ml. For experiments

involving T cell culture with the system L blocker 2-amino-2-

norbornanecarboxylic acid (BCH, Sigma), cells were cultured in

50% RPMI culture medium and 50% Hanks’ buffered saline

solution with or without 50 mΜ BCH.

Listeria immunisation

An attenuated Act-A-deleted strain of Listeria monocytogenes that

expresses OVA was used courtesy of Professor Hao Shen (Pearce &

Shen, 2007). GFP-MycKI and WT control mice were immunised by

intravenous injection of 5 × 106 colony-forming units. Mice were

culled after 24 h and spleens harvested for analysis.

Retroviral transduction

The GFP control plasmid construct was made by PCR amplification

of EGFP from a pEGFP construct (Clontech) and cloning into the

pBMN-LZRS vector (Addgene) as a HindIII/NotI fragment, replacing

the lacZ gene. MycT58A cDNA was generated by in vitro mutagenesis

and the mutation confirmed by sequencing before cloning into the

pBMN-I-GFP vector as an EcoRI fragment. Phoenix ecotropic pack-

aging cells (Swift et al, 2001) were used to generate virus. The retro-

viral infection protocol of T cells was performed as previously

described (Waugh et al, 2009).

Flow cytometry and cell sorting

The following fluorochrome-conjugated antibodies (BD Pharmingen

or eBioscience) were used for staining: CD4 (RM4-5), CD8 (53-6.7),

TCRb (H57-597), CD25 (PC61), CD44 (IM7), CD69 (H1.2F3), CD71

(C2F2), CD98 (RL388), IFNc (XMG1.2), anti-GFP (rabbit polyclonal,

Life technologies, for fixed samples in Listeria immunisation

experiments) and Fc Block (2.4G2). DAPI was used as a live/dead

discriminator.

Data were collected on FACSCalibur, Verse and LSR Fortessa

machines (Becton Dickinson) and analysed using FlowJo software

(Treestar). Fluorescence-activated cell sorting (FACS) was performed

on a FACSVantage Cell Sorter (Becton Dickinson) to separate CD8+

GFP-Mycpos and CD8+ GFP-Mycneg live cell populations.

Transferrin uptake assay

Cells were resuspended at 5 × 105/ml in RPMI 5% BSA for 2 h prior

to assay and then washed with RPMI 0.5% BSA before incubation

with transferrin-alexa647 conjugate (Sigma, 5 lg/ml) at 37°C for

5 minutes. Uptake was stopped by washing twice with ice-cold acid

wash (150 mM NaCl, 20 mM citric acid, pH 5.0). Transferrin uptake

was measured by flow cytometry.

Amino acid uptake

3H L-Phe or 3H L-Leu (Perkin Elmer) uptake into CTL was analysed

using previously defined techniques (Sinclair et al, 2013), described

in full in Supplementary Methods.

Protein synthesis

CTL were re-suspended in methionine-free RPMI 1640 (Gibco Invitro-

gen) at 1 × 106/ml. Triplicate samples were incubated in 96-well plates

for 15 min before addition of 3H methionine (Perkin Elmer, 5 lCi/ml)

and harvested after 15-min incubation at 37°C onto glass fibre plates

(Perkin Elmer). Plates were soaked in HiSafe scintillant (Perkin Elmer)

and incorporated 3H counted using a 1450 microb+ counter (Wallac).
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Real-time PCR

CD8+ T cells were negatively selected from lymph nodes using

AutoMacs (Miltenyi Biotechnology) prior to mRNA extraction. RNA

was extracted from CTL or naı̈ve cells using the RNeasy Minikit

(Qiagen) and used to make cDNA using the cDNA synthesis kit

(Quanta Biosciences). Quantitative real-time PCR (qPCR) was

performed on an iQ5 (Bio-Rad) using SYBR Green Fastmix (Quanta

Biosciences). The primers used are listed in Supplementary

Methods.

Western blotting

TCR-stimulated CD8+ T cells were purified by AutoMacs (Miltenyi

Biotechnology) prior to protein extraction. Standard Western blot-

ting protocols as described in Waugh et al (2009) were used. Blots

were probed with antibodies recognising Myc, ERK1/2, pY694

STAT5, pan STAT5, GSK3a/b (Cell Signalling Technology), SMC1

(Cambridge Bioscience) and GFP (Roche Life Science). Densito-

metric analysis was performed using ImageJ software.

Statistical analysis

Data sets were analysed using SigmaPlot v11.0 (Systat Software Inc.,

USA) or Prism 6. Comparisons between two groups were made using

Student’s t-test or a non-parametric Wilcoxon rank-sum test where

appropriate. Comparisons between multiple groups were made using

one-way analysis of variance (ANOVA) test. Levels of significance

are denoted as follows: * P < 0.05, ** P < 0.01, *** P < 0.001. Non-

significant results are either not marked or indicated ns.

Supplementary information for this article is available online:

http://emboj.embopress.org
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