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Abstract 

MicroRNAs are key regulators of β-cell physiology. They participate to the differentiation of 

insulin-producing cells and are instrumental for the acquisition of their unique secretory 

properties. Moreover, they contribute to the adaptation of β-cells to conditions of increased 

insulin demand and, if expressed at inappropriate levels, certain microRNAs cause β-cell 

dysfunction and promote the development of different forms of diabetes mellitus. While these 

functions are increasingly better understood, additional tasks for these small non-coding 

RNAs have been recently unveiled. Thus, microRNAs are emerging as signaling molecules of 

a novel exosome-mediated cell-to-cell communication mode permitting a coordinated 

response of the β-cells to inflammatory conditions and to modifications in the insulin demand. 

These discoveries raise a number of important issues that once addressed promise to shed new 

light on the molecular mechanism governing the functions of the β-cells under normal and 

disease states.     
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Introduction 

Insulin is a central player in the control of glucose utilization and disposal. Indeed, this 

metabolic hormone promotes the uptake of this carbohydrate by skeletal muscles and 

adipocytes. Moreover, it inhibits hepatic glucose production and stimulates glycogen 

synthesis. In mammals, insulin is produced by pancreatic β-cells, a group of highly 

specialized cells located within the islets of Langerhans. The secretion of the hormone is 

modulated by nutrients and is fine-tuned by the integration of hormonal and neuronal cues [1]. 

The amount of insulin that is released in the circulation is determined by the levels of free 

fatty acids, of certain amino acids and of glucose, which is the main physiological stimulus of 

β-cell exocytosis. Instead of binding to a receptor, glucose triggers the release of the hormone 

through the generation of metabolic signals. To achieve this goal, β-cells are equipped with a 

specific repertoire of metabolic enzymes ensuring a tight coupling between glucose 

metabolism and insulin secretion. In fully differentiated β-cells, the glycolytic products 

generated by glucose catabolism are preferentially driven to mitochondria for oxidative 

phosphorylation. The ATP generated by this reaction causes the closure of ATP-sensitive K
+

channels and a consequent depolarization of the plasma membrane [2]. This in turn triggers 

the opening of voltage-gated Ca
2+

 channels and a rise in intracellular Ca
2+

 concentration,

finally leading to insulin exocytosis.  

The amount of insulin released by β-cells is precisely adjusted to match the moment-

to-moment organism needs, permitting to maintain blood glucose homeostasis and to avoid 

chronic hyperglycemia or life-threatening hypoglycemic episodes. The sensitivity of insulin-

target tissues is not constant throughout the entire lifespan and tends to decrease during aging 

[3]. Moreover, insulin-target tissues become resistant to the action of the hormone during 

pregnancy or obesity [4]. The consequent rise in the insulin needs is normally compensated by 

an increase in the mass and in the secretory activity of β-cells [4]. Failure in this adaptive 

process can result in the release of insufficient insulin to control blood glucose levels, leading 

to chronic hyperglycemia and to the development of diabetes mellitus, a very common 

metabolic disorder that is currently estimated to affect almost 400 million people worldwide 

(~8% of the adult world population). Due to population aging and a growing tendency to 

sedentary lifestyle and obesity, the number of individuals suffering from this disease is 

expected to further increase in the next decades.  

An in depth understanding of the mechanisms governing the activities of β-cells under 

normal conditions and of those responsible for their failure under diabetic conditions is 
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paramount for the discovery of novel innovative approaches to prevent or treat the disease. 

This has made the β-cells the focus of intense investigations since decades. Most of the 

studies carried out so far searched for modifications in the level of key protein-coding genes 

occurring in the islets of diabetes animal models. This led to the identification of fundamental 

β-cell genes that are dysregulated in diabetes conditions. The involvement of at least part of 

these genes in human diabetes was confirmed by the study of the causes of monogenic forms 

of diabetes and by the discovery of variants that increase the susceptibility to the disease [5]. 

However, protein-coding sequences represent only a tiny fraction of the human genome 

(about 2%) and we now know that most DNA sequences can be transcribed to RNA. Thus, 

beside mRNAs, the human transcriptome contains a very large repertoire of RNA molecules 

with no protein-coding potential. It is now clear that at least part of these non-coding 

molecules play central regulatory roles in a wide variety of physiological and pathological 

processes. Non-coding RNAs fall in different categories according to their length, biogenesis, 

genomic origin, binding partners and mode of action. This review will focus on a particular 

class of non-coding RNAs, the microRNAs (miRNAs). For a detailed description of the 

properties and functions of other non-coding transcripts produced by β-cells we refer the 

reader to other recent reviews [6, 7]. 

miRNAs as regulators of specialized β-cell functions 

MiRNAs are major regulators of gene expression. These small non-coding RNAs (21-23 

nucleotides) function by partially pairing to the 3’untraslated region of target mRNAs, 

causing translational repression and/or a decrease in messenger stability [8]. Every miRNA 

can regulate many target genes and a specific target mRNA is often under the control of 

several distinct miRNAs. Thus, miRNAs form a complex regulatory network permitting the 

fine tuning of gene expression. The first evidence for an involvement of miRNAs in the 

control of β-cell activities was provided more than a decade ago by Poy et al. [9]. In this 

pioneering work, miR-375, a miRNA highly enriched in pancreatic islets, was demonstrated 

to inhibit the secretory activities of β-cells. Later on, the analysis of the phenotype of miR-

375 knockout mice revealed that this miRNA is also necessary for compensatory β-cell mass 

expansion under insulin resistance conditions [10]. Moreover, miR-375 was discovered to 

play an even more important role in pancreatic α-cells. Indeed, miR-375 knockout animals 

display an increased α-cell mass and elevated glucagon levels, resulting in chronic 

hyperglycemia. The knockout of other miRNAs that are very abundant in β-cells caused also 

major changes in insulin secretion and glucose homeostasis. Indeed, miR-7a was shown to 
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target important components of the exocytotic machinery of β-cells and to act as a negative 

regulator of insulin secretion [11]. Overexpression of this miRNA resulted in impaired insulin 

release and in the development of diabetes. On the other hand, ablation of the members of the 

miR-200 family improved survival of β-cells under stress conditions while their 

overexpression induced apoptosis and promoted the manifestation of diabetes [12]. These are 

only few examples of the many miRNAs that have been reported to inhibit the expression of 

key β-cell genes and/or to affect specialized activities of insulin-secreting cells. Exhaustive 

lists of miRNAs potentially contributing to the control of β-cell functions can be found 

elsewhere [13, 14]. Unfortunately, many of the studies investigating the role of specific 

miRNAs in β-cells were carried out only in cell lines or under experimental settings that are 

never observed under physiological or pathophysiological conditions. Thus, although 

potentially informative, some of these findings await further confirmation with more 

appropriate experimental approaches.  

Involvement of miRNAs in β-cell differentiation and maturation 

Pancreatic β-cells are highly specialized cells displaying unique functional features. 

Differentiation of these cells occurs through a complex series of events that begins in the fetus 

and terminates only after weaning. There is now substantial evidence indicating that miRNAs 

are necessary for the differentiation of β-cells and for the acquisition of a fully mature 

phenotype. Indeed, pancreatic-specific deletion of Dicer1, the gene coding for the enzyme 

necessary for miRNA biogenesis, results in an almost complete absence of insulin-positive 

cells [15]. Moreover, the conditional knockout of Dicer1 in insulin-producing cells has a 

major impact on islet architecture and causes impaired glucose metabolism and defective 

insulin secretion [16, 17]. Although the full repertoire of miRNAs involved in β-cell 

differentiation remains to be defined, the contribution of some specific miRNAs has already 

been established. Indeed, embryonic knockdown of miR-375 in zebrafish causes defects in 

islet morphology and scattering of the endocrine cells in the developing pancreas [18]. 

Moreover, re-expression of miR-375 permits to prevent dedifferentiation of human β-cells in 

culture [19] and the same miRNA favors the induction of insulin-producing cells from human 

embryonic stem cells by controlling the level of key transcription factors involved in 

pancreatic islet organogenesis [20]. Appropriate expression of miR-375 is also critical for 

fetal β-cell mass expansion. Indeed, fetuses of mothers fed with a low protein diet display 

increased levels of this miRNA with a consequent reduction of PDK1 expression and of the 
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number of β-cells [21]. In contrast, miR-7 appears to be required for the survival of β-cells 

during early embryonic life. Indeed, blockade of this miRNA in mouse embryos using 

antisense morpholinos has a major impact on insulin production and decreases the number of 

β-cells, resulting in post-natal glucose intolerance [22]. Finally, embryonic induction of miR-

124a has been proposed to contribute to the generation of β-cells by repressing the 

transcription factor Forkhead box A2 (FOXA2) and permitting the expression of Pdx1 [23].  

While already capable of producing insulin and of releasing the hormone in response 

to certain secretagogues, newborn β-cells are unable to proliferate and to secrete insulin in a 

glucose-dependent manner until after weaning [24, 25]. Recent findings indicate that miRNAs 

contribute not only to the generation of insulin-expressing cells during the fetal life but 

participate also to the post-natal maturation of β-cells and to the acquisition of a fully mature 

phenotype. Newborn β-cells undergo major changes in the expression of metabolic genes 

permitting to acquire the capacity to respond to glucose. This gene reprogramming process is 

initiated by the nutritional shift occurring at weaning and is at least in part driven by changes 

in the expression of specific groups of miRNAs (Fig.1), including the miR-17-92 cluster and 

the miR-181 family [25]. Indeed, a reduction in the level of these miRNAs mimicking the 

modifications occurring at weaning was sufficient to render neonatal rat β-cells capable of 

secreting insulin in response to glucose. 

MiRNAs participate in the adaptation of β-cells to increased insulin needs 

The activity and the number of β-cells are constantly adjusted to match the insulin needs. 

Short-term exposures to a rise in circulating levels of glucose, free fatty acids or amino acids 

enhance the secretory activity of β-cells [1]. In case of a sustained augmentation of the insulin 

needs, resulting from a drop in the sensitivity of peripheral tissues, the number of β-cells is 

also increased. MiRNAs appear to play a critical role in this adaptive process. In fact, as 

mentioned above, insulin-secreting cells fail to proliferate in obese leptin-deficient ob/ob mice 

lacking miR-375 [10]. Moreover, the compensatory expansion of the β-cell mass necessitates 

a reduction in the level of miR-184 and miR-338-3p. Indeed, the expression of these two 

miRNAs in pancreatic islets is diminished under insulin resistance conditions and blockade of 

miR-184 or miR-338-3p in β-cells enhance their proliferative rate both in vitro and in vivo 

[26-28]. There is also increasing evidence for the involvement of miR-132 in the mechanisms 

enabling the β-cell to face conditions necessitating the release of higher insulin quantities. In 

fact, the expression of this miRNA is strongly induced under insulin resistance conditions and 

upon exposure of the β-cells to GLP1 analogues or cAMP-raising agents [29-31]. A rise in the 
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level of miR-132 improves glucose-induced insulin secretion and promotes β-cell 

proliferation and survival [30, 32, 33].  

The expression of several miRNAs is altered under diabetes conditions 

Chronic hyperglycemia and hyperlipidemia induce major changes in gene expression causing 

the loss of specialized β-cell functions. Prolonged exposure of β-cells to saturated fatty acids 

such as palmitate was reported to increase the level of miR-34a and miR-146a [34] while 

several other miRNAs were shown to be modulated by glucose, including miR-9,  miR-30d, 

miR-124a, miR-130a, miR-132, miR-133, miR-212 and miR-335 [35-38]. Glucose was also 

found to decrease the level of miR-375 [39] but the effect of the carbohydrate on this miRNA 

remains controversial [36]. Alterations in miRNA expression were observed in the islets of 

several animal models of Type 2 diabetes, including the GK rats, ob/ob and db/db mice and 

mice fed a high fat diet [10-12, 28, 29, 32, 34, 36]. Moreover, aging and the loss of 

compensatory β-cell mass expansion was associated with changes in the rat islet miRNA 

profile [40]. In addition, modifications of islet miRNA expression were observed before the 

onset of Type 1 diabetes in NOD mice [41, 42]. Differential expression of specific miRNAs, 

including miR-7a, miR-124a, miR-187 and a cluster of miRNAs produced from an imprinted 

locus on chromosome 14q32, was also detected in the islets of human donors suffering from 

Type 2 diabetes [11, 43-45]. When reproduced in isolated β-cells, many of the changes in 

miRNA expression observed under diabetes conditions resulted in impaired insulin secretion 

and/or a decrease in cell survival, suggesting that the alterations in the miRNA profile 

contribute to β-cell failure and to the development of the disease.  

Novel miRNA tasks 

Beside their classical functions accomplished inside the cells producing them, few years ago, 

the role of miRNAs took another dimension with the discovery of the presence of these small 

RNAs in different biological fluids either in association with proteins [46] or lipoproteins [47] 

or packaged inside extracellular vesicles [48]. A large proportion of plasma miRNAs was 

found to be associated with ribonucleoprotein complexes, but a subset of specific miRNAs 

was detected only in microvesicles [46]. Nearly all cell types investigated so far were found to 

release microvesicles containing miRNAs that can be transferred in active form to recipient 

cells [48, 49]. Therefore, circulating miRNAs are now viewed as essential components of a 

new cell-to-cell communication mode whose rules and limitations remain to be defined. 
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Mammalian cells can release several types of vesicles, including exosomes, microvesicles and 

apoptotic bodies that possess distinct sizes and cargo composition and are probably involved 

in different biological processes [50]. Because of the rapid progress in the field and the 

exponential increase in the number of published articles, there is a lack of consensus in the 

isolation methods and in the microvesicle nomenclature. In this review, we will focus on 

exosome-like microvesicles (also called exosomes or exosome-like vesicles) that are isolated 

by ultracentrifugation. They are characterized by a diameter smaller than 200 nm and the 

presence of characteristic markers such as tetraspanins (CD63, CD9 or CD81), Alix or 

TSG101. Exosomes originate from the late endosomal pathway and are secreted in the 

extracellular space upon fusion of multivesicular bodies with the plasma membrane [50]. The 

biogenesis and release of exosomes have been shown to involve different components of the 

ceramide pathway and of the ESCRT and exocytotic machinery [51-53]. Once released in the 

circulation, exosomes can 1) bind to receptors such as toll-like receptors on recipient cells, 2) 

fuse with the plasma membrane of the target cells and deliver their cargo in the cytoplasm or 

3) be internalized and merge with endosomes to undergo transcytosis or to be targeted for 

degradation [54] (Fig.2). Exosomes can travel in body fluids over long distances and carry 

proteins and nucleic acids that can be transferred to recipient cells [48, 55]. Thus, the study of 

these extracellular vesicles promises not only to improve the understanding of the 

mechanisms underlying intercellular and inter-organ communication but opens also new 

perspectives for the discovery of disease biomarkers.  

 The interest for exosomes has gained also the diabetes field [56]. Different research 

groups observed the release of exosome-like microvesicles from mouse, rat and human islets 

and from different β-cell lines [57-62]. The analysis of the content of β-cell exosomes 

revealed the presence of both proteins and miRNAs [58-60]. Interestingly, the exosomal cargo 

differs when β-cell lines are treated with cytokines, suggesting that the signals carried by 

these extracellular vesicles contribute to the changes in β-cell activities observed under 

inflammatory conditions [58, 60]. Incubation of MIN6 or mouse-islet cells in the presence of 

exosomes isolated from the culture media of cytokine-treated β-cells did not affect insulin 

secretion but was found to trigger apoptosis [58]. To investigate whether this effect is linked 

to the transfer of miRNAs, a C. Elegans miRNA was transfected in MIN6 cells. This 

exogenous miRNA was indeed transferred via exosomes to untransfected MIN6 recipient 

cells. In addition, down-regulation in recipient cells of Ago2, a protein essential for the 
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repressive activities of miRNAs, prevented apoptosis induced by exosomes released from 

cytokine-treated cells [58].  

The effect of cytokines such as IL-1β, TNFα and IFNγ on β-cells is concentration 

dependent. In fact, high levels of these inflammatory mediators induce apoptosis whereas low 

doses stimulate β-cell function and survival [63, 64]. With this concept in mind, Zhu and 

colleagues [62] demonstrated that the exosomes isolated from the culture media of INS1 cells 

treated with low concentrations of cytokines protect recipient β-cells from cytokine-induced 

apoptosis. The mechanism responsible for this protective effect was suggested to involve the 

release of exosomes containing the neutral ceramidase, a membrane-bound enzyme known to 

promote cell survival, the generation of sphingosine 1-phosphate in recipient cells and its 

interaction with S1P receptor 2. The functional impact of exosomes produced in response to 

higher doses of cytokines was not investigated in this study, neither the potential involvement 

of miRNAs. However, taken together these two studies suggest that the dual effect of 

cytokines may be linked to differences in the content of the exosomes released by β-cells, 

which would result either in protective or deleterious effects on recipient β-cells. If 

confirmed, this hypothesis would point to a concerted response to inflammatory mediators of 

β-cells located within the same islet.  

The exosomes released by β-cells can have an impact on the activity and/or survival of 

other cell types. During Type 1 diabetes development, immune cells infiltrate the islets and 

trigger the autoimmune destruction of the β-cells. In an attempt to elucidate the events 

eliciting the auto-immune attack, Sheng and colleagues [61] discovered that exosomes 

isolated from MIN6 cells stimulate the production of inflammatory cytokines by splenocytes, 

induce lymphocyte proliferation and activate autoreactive T-helper 1 cells. Moreover, intra-

venous injection of these exosomes in NOR mice favored lymphocyte infiltration and 

increased insulitis. In a follow-up study, MIN6 exosomes were found to stimulate marginal 

zone-like B cells and to trigger both innate and antigen-specific signals, an effect associated 

with diabetes onset in NOD mice [65]. They also observed that exosomes from mesenchymal 

stem cell-like cells derived from the islets of NOD mice are highly immunostimulatory and 

activate autoreactive B and T cells as well as antigen-presenting cells [66]. As was the case 

for the exosomes from MIN6 cells, injection of exosomes from mesenchymal stem cell-like 

cells in NOD mice enhanced insulitis. The authors hypothesized that abnormal or excess 

release of exosomes from islet mesenchymal stem cell-like cells initiates the autoimmune 

response in NOD mice.  
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In the context of islet transplantation, the cross-talk between pancreatic and 

endothelial cells is critical to allow graft vascularization and sustain β-cell function. Figlioni 

and colleagues [57] observed that extracellular vesicles isolated from conditioned media of 

human islets are internalized by islet endothelial cells, leading to the transfer of different 

mRNAs and miRNAs. This enhanced proliferation and migration of recipient endothelial cells 

and improved their resistance to apoptosis. Of interest, the exosomes released by human islets 

were found to carry a subclass of miRNAs known as angiomiR (miR-27b, miR-126, miR-130 

and miR-296) which promote angiogenesis by stimulating the release of several endothelial 

cell growth factors. However, the precise mechanisms through which miRNAs or other 

extracellular vesicle components favor endothelial integrity and function remain to be 

established. In the other way around, Cantaluppi et al. [67] investigated the angiogenic 

potential of microvesicles isolated from human endothelial progenitor cells (EPC) on islet 

grafts. In vivo, these microvesicles favored revascularization of human islets transplanted 

subcutaneously in SCID mice. In vitro, EPC microvesicles stimulated insulin secretion and 

survival of human β-cells and promoted proliferation, migration and resistance to apoptosis of 

islet endothelial cells and their organization in vessel-like structures. Interestingly, EPC 

microvesicles were found to carry two proangiogenic miRNAs, miR-126 and miR-296, and 

EPC microvesicles derived from Dicer knockout animals displayed reduced angiogenic 

effects, confirming a relevant contribution of miRNA transfer on islet revascularization and 

function [67].   

In addition to the described paracrine effects, exosomes and their miRNA cargo may 

potentially affect the activity of distant cells. A crosstalk between β-cells and insulin-

responding tissues is an essential prerequisite to maintain blood glucose homeostasis. Failure 

in this inter-organ communication can result in the release of insufficient insulin to cover the 

organism needs and to the development of Type 2 diabetes. Several proteins, including, 

hormones, cytokines and chemokines are known to form a signaling network connecting β-

cells to adipose tissue, skeletal muscles and liver. The role of these extracellular vesicles in 

intercellular communication is just starting to emerge. Skeletal muscles from mice fed with a 

lipid-enriched diet were found to release more exosomes than those of mice on a regular chow 

diet and were able to transfer the deleterious effects of fatty acids between muscle cells. 

Injection in the mouse tail vein of labelled exosomes originating from muscle cells led to their 

accumulation in several organs including liver, spleen, lung and pancreas [68]. Analogous 

findings were obtained by Jalabert et al. [69] that showed that muscle-released exosomes are 
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taken up by the pancreas within 24h. Interestingly, intramuscular injection of labelled muscle 

exosomes resulted in a different biodistribution compared to intravenous delivery and was 

accompanied with a reduced accumulation in liver and spleen while the deposit in muscle, 

pancreas, kidneys and gastrointestinal tract was enhanced. These results suggest that 

exosomes released by muscle cells can target other insulin-sensitive tissues as well as the 

pancreas. In vitro experiments revealed that exosomes from GFP transfected muscle cells are 

taken up by MIN6 cells and can transfer their cargo. Indeed, upon incubation with muscle-

exosomes, GFP and the muscle-specific miR-206 were detected in MIN6 cells. To investigate 

if the insulin-resistant state of skeletal muscles can be signaled to β-cells, MIN6 and mouse-

islet cells were incubated with exosomes released ex vivo by skeletal muscles isolated from 

mice fed for 16 weeks on a standard diet or a diet rich in palmitate, a saturated fatty acid 

known to be involved in insulin resistance. Of note, β-cells exposed to exosomes produced 

from mice on a high-palmitate diet displayed a higher proliferation rate, potentially explaining 

the increased islet size observed in the mice fed with the lipid-rich diet. The exosomes 

produced from animals on a high-palmitate diet caused a rise of miR-16 in MIN6 cells and a 

concomitant downregulation of Ptch1 expression, providing a potential explanation for the 

induction of β-cell proliferation. Taken together, these results suggest that exosomes from 

insulin-resistant skeletal muscles permit the transfer of miRNAs to β-cells, favoring their 

compensatory response to a pre-diabetic state. Additional in vitro and in vivo studies will be 

needed to better define the importance of this miRNA-mediated crosstalk between skeletal 

muscles and pancreatic β-cells. 

 Despite the fact that liver and adipose tissues liberate microvesicles in the circulation, 

there is currently no available information about their possible impact on β-cell function [70-

73]. Of interest, the release of miRNAs and exosomes from these insulin-sensitive tissues is 

increased under conditions of excess of lipids. Wang and colleagues [74] reported that the 

level of circulating miR-130b correlates with the body-mass index of obese individuals. This 

miRNA was also higher in blood, in adipocytes and, to a lesser extent, in muscles of obese 

mouse models. Interestingly, miR-130b was found to be released by the fat tissue and to be 

transferred to muscle cells were it represses the peroxisome proliferator-activated receptor γ 

coactivator-1α (PGC1α), leading to a reduction in the expression of genes controlling the 

oxidative capacity [74]. These results suggest that miR-130b mediates a crosstalk between the 

adipocytes and muscle cells. The adipose tissue of mice fed high-fat diet or of ob/ob mice 

release also larger amounts of exosomes compared to control animals [70]. The exosomes 
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derived from fat tissue of ob/ob mice are taken up by monocytes, leading to their activation 

and to the initiation of an inflammatory response. Moreover, injection of these exosomes in 

wild type mice led to the increase of plasma inflammatory cytokines and to the development 

of glucose intolerance and insulin resistance [70]. These effects may potentially by linked to 

differences in the miRNA content. Indeed, the exosomes produced from visceral adipose 

tissue of obese and lean individuals have been shown to display different miRNA profiles 

[75]. In liver, the production of microvesicles from mouse, rat and human hepatocytes is 

stimulated upon exposure to palmitate but not following incubation with the unsaturated fatty 

acid oleate [71]. In agreement with these observations, the blood of mice fed on a Western 

diet contain higher amounts of hepatocyte-derived microvesicles compared to mice kept on a 

regular chow diet. The microvesicles produced by the hepatocytes under lipotoxic conditions 

were found to transport the protein TRAIL that leads to the activation of macrophages and 

triggers pro-inflammatory responses. Collectively, these findings suggest that the lipotoxic 

conditions associated with obesity and Type 2 diabetes can affect the number and the content 

of the microvesicles released by hepatocytes and adipocytes resulting in functional changes in 

the recipient cells and in major systemic effects. Future studies investigating the potential 

impact of liver and fat miRNAs and exosomes on β-cell function will help understanding 

whether this communication mode contributes to the adaptive response to insulin resistance 

conditions.  

Circulating miRNAs as potential biomarkers of β-cell mass and/or function? 

Besides being major regulators of gene expression, circulating miRNAs are now viewed as a 

novel generation of biomarkers to monitor the development of several diseases, including 

Type 1 and Type 2 diabetes [76-79]. The advantages of using circulating miRNAs as 

biomarkers include convenient non-invasive methods for sample collection from different 

body fluids such as blood, urine, saliva and breast milk and high resistance to harsh laboratory 

conditions enabling long-term storage of the samples. However, it is very difficult to 

determine the precise origin of most circulating miRNAs and the level of the same miRNA is 

often affected by numerous physiological and pathophysiological conditions [80, 81]. β-cells 

constitute only a tiny fraction of the cells in our body and their contribution to the plasma 

miRNA profile is most probably marginal. Indeed, although very abundant in islet cells and 

highly enriched in the endocrine pancreas compared to other tissues, only about 1% of 

circulating miR-375 was estimated to originate from β-cells [82]. Erener and colleagues [83] 
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attempted to monitor the loss of β-cells during the initial steps of diabetes development by 

measuring the level of miR-375 in plasma samples of two models of Type 1 diabetes, the 

NOD and streptozotocin-treated mice. In both models, circulating miR-375 levels were 

significantly increased prior to hyperglycemia and diabetes onset, probably reflecting massive 

β-cell death. A rise in miR-375 plasma levels in streptozotocin-treated mice as well as in 

hyperglycemic db/db mice lacking the leptin receptor was also observed in an independent 

study [82]. However, the circulating levels of this miRNA were decreased in two pre-diabetic 

but still normoglycemic animal models that are characterized by a strong expansion of the β-

cell mass, the ob/ob mice and mice fed high-fat diet. miR-375 levels were also found to be 

higher in Type 1 diabetes patients, but not in MODY (Maturity Onset Diabetes of the Young) 

and in Type 2 diabetic patients compared to control subjects with no metabolic disorder. 

Taken together, these results suggest that a rise in the plasma levels of miR-375 can be a good 

indicator of acute β-cell destruction, but cannot be used as a faithful reflection of β-cell 

function or mass. Additional studies are needed to determine if particular miRNAs coming 

from islet cells can mirror the loss of β-cell function and/or mass preceding the onset of Type 

2 diabetes. Other alternative strategies may turn out to be more fruitful as the design of 

approaches to specifically isolate the exosomes released by β-cells or the measurement of 

other non-coding RNA classes, such as the long non-coding RNAs, that are also carried by 

blood vesicles and are likely to display a higher cell specificity [84].    

 

Open questions and future directions 

The discovery of miRNAs has added a new layer of complexity to the mechanisms regulating 

the activities of the β-cells. Thanks to intensive efforts, our knowledge about the contribution 

of these non-coding RNAs in the differentiation and in the control of specialized functions of 

insulin-secreting cells is continuously improving. However, so far we have probably only 

scratched the surface of the problem and many aspects concerning the role of miRNAs remain 

to be elucidated. The studies carried out during the last decade were based on the assumption 

that changes in miRNA level are paralleled by corresponding modifications in miRNA 

activity and vice versa. We now know that this is not necessarily the case. In fact, only a small 

fraction of the miRNAs is bound to Ago2 [85] and in primary tissues most of them are 

associated with inactive low molecular weight Ago2 complexes [86]. This inactive miRNA 

reservoir can be recruited to high molecular weight complexes engaged on target repression 

upon activation of the phosphoinositide 3-kinase/AKT or of the mTOR signaling pathways. 
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These findings indicate that the level of a given miRNA is not always predictive of his 

repressive activity. Thus, some of the changes in miRNA expression observed in the islets of 

diabetic animals may be without consequence for the β-cells while the silencing activity of 

other miRNAs may be induced without detectable modifications in the level of the non-

coding RNAs.  

Another aspect that has been largely neglected is the compartmentalization of certain 

miRNAs within the cells. In fact, miRNAs are usually viewed as cytosolic molecules. 

However, several miRNAs, including miRNAs that play important roles in β-cell physiology, 

are present in other subcellular compartments including the mitochondria and the nucleus 

where they may accomplish specific and still incompletely understood regulatory tasks going 

beyond translational silencing (Fig.3) [87-89]. Moreover, there is emerging evidence for the 

association of specific miRNAs with the endoplasmic reticulum, the Golgi complex and 

multivesicular bodies, possibly explaining the selective release of some miRNAs from the 

cells [87, 90]. The subcellular distribution of the miRNAs is probably regulated by the 

association with components of the miRNA-induced silencing complex, including Ago family 

members and the Ago-binding protein GW182. The phosphorylation of these proteins can 

modify their localization and is likely to drive the targeting of the miRNAs to specific 

organelles. Because of their compartmentalization certain miRNAs may be unable to interact 

with a subset of their potential targets strongly affecting their repressive activity.  

Another important factor that may influence the availability of the miRNAs is their 

capacity to interact with other RNA species such as long non-coding RNAs and circular 

RNAs (Fig.3). The presence of multiple binding sites in these molecules has been proposed to 

sequester specific miRNAs and to prevent their interaction with endogenous targets [91]. For 

instance CiRS-7, a circular RNA that is expressed also in β-cells [92], contains over 60 

conserved binding sites for miR-7 and could potentially affect the availability of this 

important miRNA. Stoichiometric considerations and mathematical modeling indicate that 

efficient target competition can only be achieved for miRNA families displaying particular 

miRNA:target ratios [93, 94]. However, this general rule may have to be reconsidered in case 

of compartmentalization of the miRNAs, of their targets or of the competing RNAs.  

These findings about the distribution and the mode of action of the miRNAs 

emphasize the need for novel experimental strategies permitting to monitor the changes in the 

activities rather than in the level of specific miRNAs. These approaches would provide a more 
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reliable picture of the contribution of these non-coding RNAs in the regulation of β-cell 

functions.    

Different issues about the role of miRNAs in intercellular communication remain also 

to be addressed. A key unsolved question concerns the process controlling the loading of 

miRNAs inside exosomes for subsequent release. Several studies have demonstrated major 

differences between the exosomal miRNA profile and the repertoire of the parental cells [48, 

55, 57, 58, 95]. Moreover, the exosomal miRNA content can be selectively modified in 

response to physiological or pathological conditions [58, 69, 75]. This clearly points to the 

existence of sophisticated mechanisms permitting the retention of specific miRNAs inside the 

cells and the packaging of others in exosomes for extracellular release (Fig.2). Different 

mechanisms have been proposed to explain the preferential release of certain miRNAs, but 

this issue has not yet been addressed in β-cells. In T lymphocytes, sumoylation has been 

shown to regulate the binding of the ribonucleoprotein hnRNPA2B1 to the GGAG sequence 

of certain miRNAs and to favor their trafficking toward exosomes [96]. In macrophages, an 

inverse correlation was observed between the level of the miRNAs sorted in exosomes and 

the cellular abundance of their respective targets, suggesting a selective release of miRNAs 

not involved in translational repression [97]. A different regulatory process was proposed in a 

study carried out in B cells in which the uridylation of the 3’end of the miRNAs was found to 

increase whereas the adenylation to decrease the release in exosomes [98]. Another 

mechanism potentially explaining the selective release of a subset of miRNAs rely on the 

existence of specific motifs in the 3’UTR of the target mRNAs that promote the export of 

mRNA/miRNA complexes into exosomes [99]. Finally, the abundance and/or the activity of 

two components of the miRNA silencing machinery, Ago2 and GW182, which are co-

released in exosomes was suggested to contribute to the regulation of the sorting of the 

miRNAs [100, 101]. Additional studies will be required to verify these observations and to 

determine whether the mechanisms directing the release of miRNAs are ubiquitously 

conserved or are specific to each cell type. 

Another important issue that will need to be addressed concerns the potential 

heterogeneity of the circulating exosomes. Indeed, quantitative analysis of the 

miRNA/exosome ratio led to the puzzling conclusion that, if distributed homogenously across 

the entire exosome population, even the most abundant miRNAs would be present at less than 

a copy per vesicle [102]. This observation would suggest that most individual exosomes are 

unlikely to support intercellular miRNA-based communication. However, it can be 
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hypothesized that the population of exosomes released by the cells is heterogeneous and 

includes rare miRNA-rich vesicles carrying the signals directed to other cells. The 

identification and the characterization of these exosome subpopulations would significantly 

improve our understanding of this newly discovered intercellular communication mode.  

Conclusion 

More than a decade of intensive investigations have attributed to miRNAs a central place in 

the mechanisms regulating β-cell gene expression. We now know that these small non-coding 

RNAs contribute to the control of various aspects of β-cell physiology and that their 

dysregulation can lead to the failure of insulin-secreting cells and to the development of 

diabetes. Beside these well-established tasks, miRNAs are now emerging as signaling 

components of a new intercellular communication system and as attractive disease 

biomarkers. A better understanding of these newly discovered tasks will help elucidating the 

etiology of diabetes and will hopefully provide new tools to prevent and treat this very 

common metabolic disorder.  
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Figure legends 

Fig.1) MiRNAs control the expression of key metabolic genes. Mature pancreatic β-cells 

express a particular repertoire of genes involved in glucose metabolism. They contain high 

levels of glycolytic enzymes and of mitochondrial shuttles (Gpd2 and Mdh1) that permit a 

tight coupling between glucose metabolism and insulin secretion. The expression of several of 

these genes are controlled by miRNAs (in yellow) that are down-regulated during the post-

natal maturation of the β-cells [25]. In contrast, fully differentiated β-cells express extremely 

low levels of Ldh1 and Mct1, preventing the generation and the uptake of lactate. One of the 

miRNAs that is up-regulated during the maturation of the β-cells, miR-29 (in blue) 

contributes to the silencing of Mct1 [25, 103]. 

Fig.2) miRNA biogenesis and function. 1) Precursor miRNAs (pre-miRNAs), produced by 

the Drosha complex, are transported from the nucleus to the cytoplasm by exportin-5 where 

they are cleaved by Dicer to form imperfect miRNA duplexes. Mature miRNA strands are 

then loaded on RNA-induced silencing complex (RISC) in association with Ago2. The RISC 

complex guided by the mature miRNA binds to the 3’untranslated region (3’UTR) of target 

mRNAs and represses their translation. 2) miRNAs can also be sorted toward exosomes and 

be released by the cell upon fusion of multivesicular bodies (MVB) with the plasma 

membrane. 3) The released miRNAs can interact with recipient cells by binding to a receptor 

or be taken up in active form by endocytosis or by fusion of exosomes with the plasma 

membrane. 

Fig.3) Factors controlling the distribution and the availability of the miRNAs for target 

interaction. Many miRNAs can be found not only in the cytosol but also in other subcellular 

compartments, including the nucleus, the mitochondria, the endoplasmic reticulum (ER), the 

Golgi apparatus and the multivesicular bodies. Moreover, a fraction of the miRNAs can be 

sequestered by circular RNAs (circRNAs) or by long non-coding RNAs (lncRNAs) 

containing multiple high affinity miRNA binding sites. The compartmentalization of part of 

the miRNAs is likely to affect their capacity to interact with certain targets and may be 

required to accomplish some organelle-specific tasks.  
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Figure 3 
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Highlights 

 MiRNAs are critical regulators of pancreatic β-cell development and maturation.

 Deregulation of miRNA expression can alter the mass and function of β-cells.

 MiRNAs interact with other non-coding RNAs forming a complex regulatory network.

 MiRNAs released by β-cells are part of a new cell-to-cell communication mode.
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