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Faculté des Lettres, Université de Lausanne
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Abstract. Spectral clustering is a procedure aimed at partitionning a weighted
graph into minimally interacting components. The resulting eigen-structure is de-
termined by a reversible Markov chain, or equivalently by a symmetric transition
matrix F . On the other hand, multidimensional scaling procedures (and factorial
correspondence analysis in particular) consist in the spectral decomposition of a
kernel matrix K. This paper shows how F and K can be related to each other
through a linear or even non-linear transformation leaving the eigen-vectors invari-
ant. As illustrated by examples, this circumstance permits to define a transition
matrix from a similarity matrix between n objects, to define Euclidean distances
between the vertices of a weighted graph, and to elucidate the “flow-induced” nature
of spatial auto-covariances.

1 Introduction and main results

Scalar products between features define similarities between objects, and re-
versible Markov chains define weighted graphs describing a stationary flow.
It is natural to expect flows and similarities to be related: somehow, the
exchange of flows between objects should enhance their similarity, and tran-
sitions should preferentially occur between similar states.

This paper formalizes the above intuition by demonstrating in a general
framework that the symmetric matrices K and F possess an identical eigen-
structure, where K (kernel, equation (2)) is a measure of similarity, and F
(symmetrized transition. equation (5)) is a measure of flows. Diagonalizing
K yields principal components analysis (PCA) as well as mutidimensional
scaling (MDS), while diagonalizing F yields spectral clustering. By theorems
1, 2 and 3 below, eigenvectors of K and F coincide and their eigenvalues are
simply related in a linear or non-linear way.

Eigenstructure-based methods constitute the very foundation of classical
multivariate analysis (PCA, MDS, and correspondence analysis). In the last
decade, those methods have been very extensively studied in the machine
learning community (see e.g. Shawe-Taylor and Cristianini 2004, and refer-
ences therein), in relationship to manifold learning and spectral clustering
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(Bengio et al. 2004). The general “K − F connection” described here hence
formalizes a theme whose various instances have already been encountered
and addressed in the classical setup (see section 2.2) or in the kernel setup,
at least implicitly. The relative generality of the present approach (weighted
objects, weighted variables, weighted graphs) might provide some guidance
for defining the appropriate objects (kernels, scalar products, similarities or
affinities, etc.). Also, the same formalism permits to characterize a broad
family of separable auto-covariances, relevant in spatial statistics.

Multi-dimensional scaling (MDS) in a nutshell: consider n objects
described by p features. Data consist of Φ = (ϕij) where ϕij is the value of
the j-th feature on the i-th object. Let ρj > 0 denote the weight of feature
j, with

∑p
j=1 ρj = 1, and define the diagonal matrix R := diag(ρ). Also,

let πi > 0 denote the weight of object i, with
∑n

i=1 πi = 1, and define
Π := diag(π). Also, define

Bii′ :=
∑

j

ρjϕijϕi′j Dii′ := Bii+Bi′i′−2Bii′ =
∑

j

ρj(ϕij−ϕi′j)2 (1)

The scalar product Bii′ constitutes a measure a similarity between objects i
and i′, while the squared Euclidean distance Dii′ is a measure of their dissimi-
larity. Classical MDS consists in obtaining distance-reproducing coordinates
such that the (total, weighted) dispersion ∆ := 1

2

∑
ii′ πiπi′Dii′ is optimally

represented in a low-dimensional space. To that effect, the coordinate xiα of
object i on factor α is obtained from the spectral decomposition of the kernel
K = (Kii′) with Kii′ :=

√
πiπi′Bii′ as follows:

K :=
√

ΠB
√

Π = UΓU ′ U = (uiα) Γ = diag(γ) xiα :=
√

γα√
πi

uiα

(2)
where U is orthogonal and contains the eigenvectors of K, and Γ is diagonal
and contains the eigenvalues {γα} of K. Features are centred if

∑
i πiϕij = 0.

In that case, the symmetric, positive semi-definite (p.s.d) matrices B and K
obey Bπ = 0 and K

√
π = 0, and will be referred to as a proper similarity

matrix, respectively proper kernel matrix. By construction

Dii′ =
∑
α≥2

(xiα − xi′α)2 ∆ =
∑
α≥2

γα (3)

where γ1 = 0 is the trivial eigenvalue associated with u1 =
√

π.

Spectral clustering in a nutshell: consider the (n× n) normalised, sym-
metric exchange matrix E = (eii′) where eii′ = ei′i ≥ 0, ei• :=

∑
i′ eii′ > 0,

and
∑

ii′ eii′ = 1. By construction, wii′ := eii′/ei• is the transition matrix of a
reversible Markov chain with stationary distribution πi := ei•. In a weighted
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graph framework, eii′ constitutes the weight of the undirected edge (ii′), mea-
suring the proportion of units (people, goods, matter, news...) circulating in
(ii′), and πi is the the weight of the object (vertex) i.

The minimal normalized cut problem consists in partitioning the vertices
into two disjoints sets A and Ac as little interacting as possible, in the sense
that

h := min
A

e(A,Ac)
min(π(A), π(Ac))

(with e(A,Ac) :=
∑

i∈A,i′∈Ac

eii′ , π(A) :=
∑
i∈A

πi)

(4)
where the minimum value h is the Cheeger’s constant of the weighted graph.

The eigenvalues of W = (wii′) are real and satisfy 1 = λ1 ≥ λ2 ≥ . . . λn ≥
−1, with λ2 < 1 iff the chain is irreducible and λn > −1 iff the chain is not of
period two (bipartite graphs). The same eigenvalues appear in the spectral
decomposition of the symmetrized transition matrix F = (fii′) defined as
fii′ = eii′/

√
πiπi′ :

F := Π− 1
2 EΠ− 1

2 = UΛU ′ U = (uiα) Λ = diag(λ) (5)

where U is orthogonal and Λ diagonal. By construction, F
√

π =
√

π. A
symmetric, non-negative matrix F with eigenvalues in [−1, 1] and F

√
π =

√
π

will be refereed to as a proper symmetrized transition matrix.
In its simplest version, spectral clustering (see e.g. Ng et al. (2002); Verma

and Meila (2003)) consists in partitioning the graph into two disjoints sub-
sets A(u) := {i|ui2 ≤ u} and Ac(u) := {i|ui2 > u}, where ui2 is the
second eigenvector and u a threshold, chosen as u = 0, or as the value
u making

∑
i∈A(u) u2

i2
∼=

∑
i∈Ac(u) u2

i2, or the value minimising h(u) :=
e(A(u), Ac(u))/ min(π(A(u)), π(Ac(u))). Minimal normalized cut and spec-
tral clustering are related by the Cheeger inequalities (see e.g. Diaconis and
Strook (1991); Chung (1997))

2h ≥ 1− λ2 ≥ 1−
√

1− h2 (6)

where the spectral gap 1 − λ2 controls the speed of the convergence of the
Markov dynamics towards equilibrium.

Theorem 1. (F → K). Let E be an (n×n) exchange matrix with associated
symmetrized transition matrix F = UΛU ′ and vertex weight π. Then any
(n× n) matrix K = (Kii′) of the form

K := (a− b)F + (a + b)I − 2a
√

π
√

π
′ (7)

constitutes, for a, b ≥ 0, a centred proper kernel with spectral decomposition
F = UΓU ′ with eigenvalues γα = (a− b)λα + (a + b)− 2a δα1.

Proof : the eigenvectors uα of I and
√

π
√

π
′ are identical to those of F ,

with associated eigenvalues µα ≡ 1 and µα = δα1 respectively. In particular,
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K
√

π = [(a − b) + (a + b) − 2a]
√

π = 0, making K centred. It remains to
show the positive-definiteness of K, that is γα ≥ 0. Actually, γ1 = 0 and, for
α ≥ 2, γα = a(1 + λα) + b(1− λα) ≥ 0 since −1 < λα < 1. 2

Aγ∗

B
1

− π∗

− π∗/(1−π∗)

π∗/(1−π∗)0 1

Fig. 1. domain of possible values Aγ∗ and B insuring the existence of a proper
symmetrized transition F from a kernel K by (8). Although allowing for non-
trivial values A, B 6= 0, the domain is not optimal, and degenerates into A = 0
and B ∈ [0, 1] for n → ∞ in view of π∗ → 0. The point (1, 0) depicts the values
corresponding to the FCA example of section (2.2).

Theorem 2. (K → F). Let K be an (n×n) centred kernel with trivial eigen-
vector

√
π. Then any (n× n) matrix F = (fii′) of the form

F = AK + BI + (1−B)
√

π
√

π
′ (8)

constitutes, for A ∈ [−π∗
γ∗

, π∗
(1−π∗)γ∗

] and B ∈ [−π∗+min(A,0)γ∗
1−π∗

, π∗−|A|γ∗
π∗

] (where
γ∗ := maxα γα and π∗ := mini πi), a non-negative symmetrized transition
matrix with associated stationary distribution π (see figure 1).

Proof : treating separately the cases A ≥ 0 and A ≤ 0, and using (in
view of the positive-definite nature of K) maxi Kii ≤ γ∗, mini Kii ≥ 0,
maxi 6=i′ Kii′ ≤ γ∗ and mini 6=i′ Kii′ ≥ −γ∗ as well as mini,i′

√
πiπi′ = π∗

demonstrates that F as defined in (8) obeys mini 6=i′ fii′ ≥ 0 and mini fii ≥ 0.
Thus eii′ :=

√
πiπi′fii′ is symmetric, non-negative, and satisfies in addition

ei• = πi in view of K
√

π = 0. 2

The coefficients (A,B) of theorem 2 are related to the coefficients (a, b)
of theorem 1 by A = 1/(a− b) and B = (b+ a)/(b− a), respectively a = (1−
B)/2A and b = −(1 + B)/2A. The maximum eigenvalue γ∗ := maxα γα > 0
of K is γ∗ = a(1 + λ2) + b(1− λ2) = (λ2 − B)/A for a > b (i.e. A > 0), and
γ∗ = a(1 + λn) + b(1− λn) = (λn −B)/A for a < b (i.e. A < 0).
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2 Examples

2.1 Spectral clustering: Swiss commuters
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Fig. 2. Two-dimensional factorial towns configuration xiα for α = 2, 3 for the initial
network (n = 55, left) and, for the largest sub-network obtained after four minimal
normalized cuts (n = 48, right).
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Fig. 3. Determining the minimal normalized cuts minu h(u) along the “second-
eigenvalue path” with discrete values ui =

√
πi xi2. Left: 55 towns, from which

Ticino (4 towns, 1st iteration) and Graubünden (3 towns, 2nd and 3rd iteration)
are removed. Right: the resulting 48 towns, split into (VS-VD-GE) and (NE-FR-
JU-BE-SO) for the first group, and the rest of the German-speaking towns for the
second group.
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The number of daily commuters nij from place i to place j (between
n = 55 extended Swiss towns) yields (after symmetrization) a weighted graph
with associated transition matrix F .

Eigenvalues are λ1 = 1 > λ2 = .9947 > . . . > λ55 = .5116. Factor
coordinates xiα (figure 2) define “flow-revealed” distances Dii′ . In view of
theorem 1 (and in view of the arbitrariness of γ(λ), and of the closeness
between the eigenvalues λα) the coordinates are simply defined (see equation
(2)) as xiα = uiα/

√
πi = uiα/ui1. They are obviously reminiscent of the

geographical map, but the precise mechanism producing the factor maps of
figure 2 remains to be elucidated. The spectral clustering determination of
the threshold u minimizing h(u) (section 1) is illustrated in figure 3.

2.2 Correspondence analysis: educational levels in the region of
Lausanne

Let N = (nij) be a (n×m) contingency table counting the number of indi-
viduals belonging to category i of X and j of Y . The “natural” kernel matrix
K = (Kii′) and transition matrix W = (wii′) associated with factorial corre-
spondence analysis (FCA) are (Bavaud and Xanthos 2005)

Kii′ =
√

πi
√

πi′

∑
j

ρj(qij − 1)(qi′j − 1) wii′ := πi′

∑
j

ρjqijqi′j (9)

where πi = ni•/n•• are the row profiles, ρj = n•j/n•• the columns profiles,
and qij = (nij n••)/(ni•n•j) are the independence quotients, that is the ratio
of the counts by their expected value under independence.

Coordinates xiα (2) obtained from the spectral decomposition of K are
the usual objects’ coordinates in FCA (for α ≥ 2), with associated χ-square
dissimilarities Dii′ and χ-square inertia ∆ = chi2/n•• (Bavaud 2004). On
the other hand, wii′ is the conditional probability of drawing an object of
category i′ starting with an object of category i and “transiting” over all
possible modalities j of Y . The resulting Markov chain on n states is reversible
with stationary distribution π, exchange matrix eii′ = ei′i = πiwii′ and
symmetrized transition matrix fii′ =

√
πi
√

πi′
∑

j ρjqijqi′j .
Here K and F are related as K = F −

√
π
√

π
′, with values A = 1 and

B = 0 (respectively a = −b = 1/2) and γ∗ = 1 in theorems 2 and 1. The
corresponding value lie outside the non-optimal domain of figure 1.

Data1 give the number of achieved educational levels i (8 categories)
among 169′836 inhabitants living in commune j (among p = 12 communes
around Lausanne, Switzerland). Eigenvalues are γ1 = 0 and 1 > γ2 = λ2 =
.023 > . . . λ8 = .000026 with inertia ∆ = .031. While significantly non-zero
(n••∆ >> χ2

.99[77]), those low values are close to the perfect mobility case
(section 4), that is regional educational disparities are small in relative terms.

1 F.Micheloud, private communication
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Figure 4 depicts the factor configuration (α = 2.3) with coordinates (2) as
well as dual regional coordinates. The biplot confirms the existence of the
well-attested West-East educational gradient of the region.

Fig. 4. Biplot: FCA rows and columns objects’ coordinates. The symmetric quan-
tity sii′ := wii′/πi′ is a size-independent measure of similarity with average 1
(Bavaud and Xanthos 2005), defining strong (s ≥ 1.05), weak (1.05 > s ≥ 1) or no
(s < 1) links between distinct education levels.

3 Non-linear transformations

Theorem 3. i) Let K be a proper kernel. Then Kr (for r = 1, 2, . . .) and
h(K) :=

∑
r≥1 hrK

r (where hr ≥ 0 and
∑

r≥1 hr = 1) are proper kernels.
ii) Let F be a proper symmetrized transition. Then F r (for r = 0, 1, 2, . . .),

f(F ) :=
∑

r≥1 frF
r (where fr ≥ 0 and

∑
r≥1 fr = 1) and cf(F ) + (1 − c)I

(where 0 < c ≤ 1) are proper symmetrized transitions.
iii) K and F can be put in non-linear correspondence by

h(K) = (a− b̃)f(F ) + (a + b̃)I − 2a
√

π
√

π
′

a, b̃ ≥ 0 (10)

Proof : i) and ii) are immediate. Part iii) follows from theorem (1) and
definition b̃ := (1− c)a + cb. 2
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Since h(UΓU ′) = Uh(Γ )U ′ and f(UΛU ′) = Uf(Λ)U ′, theorem 3 exhibits
a broad class of MDS - spectral clustering correspondences (see the examples
of section 4), differing by their eigenvalues spectrum but sharing the same
eigenvectors, in particular u1 and hence the weights vector π = u2

1.

4 Separable auto-covariances

The present formalism turns out to be relevant in spatial statistics, where
spatial autocorrelation is defined by a covariance matrix between the objects
(= regions).

To that extent, consider a spatial field {Xi}n
i=1 measured on n regions,

with common expectation E(Xi) = µ and associated weights {πi}n
i=1. Let

X̄ :=
∑

i πiXi. The auto-covariance matrix Σ = (σii′) is said to be separable
if, for any i, the variables Xi − X̄ and X̄ − µ are not correlated.

Theorem 4. Σ is separable iff Σπ = σ21, where σ2 = E((X̄ − µ)2) and 1
is the unit vector. In this case, the (n× n) matrices

K :=
1
σ2

√
ΠΣ

√
Π −

√
π
√

π
′

B =
1
σ2

Σ − J (11)

(where J := 11′ is the unit matrix) constitute a proper kernel, respectively
dissimilarity.

Proof : Σπ = σ21 iff σ2 =
∑

i′ πi′ [E((Xi − µ)(Xi′ − X̄)) + E((Xi − µ)(X̄ −
µ))] = E((Xi− X̄)(X̄−µ))+E((X̄−µ)(X̄−µ)) iff E((Xi− X̄)(X̄−µ)) = 0
and E((X̄ − µ)2) = σ2. 2

Under separability, equations (1) and (11) show the variogram of Geo-
statistics to constitute a squared Euclidean distance since Var(Xi − Xi′) =
σ2Dii′ . Observe that Σ or B as related by (11) yield (up to σ2) the same
distances. Together, theorem 3 (with h(x) = x) and theorem 4 imply the
following

Theorem 5. Let f(F ) the function defined in theorem 3 and a, b̃ ≥ 0. Then
the (n× n) matrix

1
σ2

Σ := (a− b̃)Π− 1
2 f(F )Π− 1

2 + (a + b̃)Π−1 + (1− 2a)J (12)

constitutes a separable auto-covariance.

Theorem 5 defines a broad class of “flow-induced” spatial models, among
which (deriving the relations between parameters is elementary):

• the auto-regressive model Σ = σ2(1− ρ)(I − ρW )−1Π−1
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• equi-correlated covariances σ−2Σ2 = ãΠ−1 + c̃J , with associated geo-
statistical distances Dii′ = ã(1/πi + 1/πi′) for i 6= i′. This occurs un-
der contrasted limit flows, namely (A) perfect mobility flows wii′ = πi′

(yielding f(F ) = F =
√

π
√

π
′) and (B) frozen flows wii′ = δii′ (yielding

f(F ) = F = I).

Irrespectively of the function f , any auto-covariance Σ defined in theorem
5 must be separable, a testable fact for a given empirical Σ. Also, the facto-
rial configuration of the set of vertices in a weighted graph or of states in a
reversible chain can be obtained by MDS on the associated geostatistical dis-
tances Dii′ . As demonstrated by theorem 3, all those configurations are iden-
tical up to dilatations of the factorial axes; in particular, the low-dimensional
plot α = 2, 3 is invariant up to dilatations, provided f is increasing.
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