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Abstract  1 

 2 

At tripartite synapses, astrocytes undergo calcium signaling in response to release of 3 

neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-4 

glia interaction. Recent work has now firmly established that, in addition, neuronal activity also 5 

evokes sodium transients in astrocytes, which can be local or global depending on the number 6 

of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can 7 

be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. 8 

A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-9 

dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the 10 

well-described glial calcium signals both in terms of their temporal as well as spatial 11 

distribution. There are no known buffering systems for sodium ions, nor is there store-mediated 12 

release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators 13 

of the site and strength of neuronal inputs. As such they have an immediate influence on the 14 

activity of sodium-dependent transporters which may even reverse in response to sodium 15 

signaling, as has been shown for GABA transporters for example. Furthermore, recovery from 16 

sodium transients through Na+/K+-ATPase requires a measurable amount of ATP, resulting in 17 

an activation of glial metabolism. In this review, we present basic principles of sodium 18 

regulation and the current state of knowledge concerning the occurrence and properties of 19 

activity-related sodium transients in astrocytes. We then discuss different aspects of the 20 

relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting 21 

forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing 22 

an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and 23 

diseased brain.  24 

 25 

 26 

  27 
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1. Introduction 1 

Active neurons and glial cells dynamically interact in many ways. One of the most prominent 2 

and most widely known examples of such an interaction was described about 30 years ago, 3 

through studies demonstrating that transmitters released by active neurons result in the 4 

activation of transmitter receptors on astrocytes (Bowman and Kimelberg, 1984, Kettenmann 5 

et al., 1984). It took about another 10 years before the advent of imaging techniques enabled 6 

the detection of astrocyte calcium signals in response to neuronal transmitters (Nedergaard, 7 

1994). Astrocyte calcium signaling has since taken center stage in research efforts and interests. 8 

This is mainly because such signaling can result in the release of gliotransmitters and vasoactive 9 

substances by astrocytes, which thereby feedback onto and modulate the neuronal network (see 10 

chapters by Panatier/Robitaille and Volterra; this issue).  11 

 In addition to calcium signals, neuronal activity is, however, accompanied by a second 12 

type of ion signal in astrocytes: these are sodium transients, detected upon neuronal release of 13 

glutamate and -to a lesser extent- GABA. The existence of such activity-dependent sodium 14 

signals is surprising at first glance (Rose and Karus, 2013). First of all, they occur against a 15 

relatively high background sodium concentration (10-15 mM), which is fundamentally different 16 

from other ion species involved in signaling (e. g. baseline intracellular calcium or proton 17 

concentrations are roughly around 100 nM). Also, as compared to calcium changes, which 18 

usually occur in the low µM range, sodium changes are a thousand-fold larger, occurring in the 19 

mM range. Furthermore, sodium signals not only differ in their magnitude, but also in their 20 

spatial and temporal profiles from classical calcium signaling in astrocytes. Sodium changes 21 

are quite long lasting, exhibiting decay times in the range of tens of seconds. Given the high 22 

diffusion coefficient for sodium ions measured in mammalian cytosol (0.6 µm2/sec; 23 

(Kushmerick and Podolsky, 1969), sodium transients should, however, dissipate within 24 

fractions of a second. Apparently, free diffusion of sodium ions is considerably slowed because 25 

of increased tortuosity in the cytosol (Sykova and Nicholson, 2008), and/or binding to plasma 26 

membrane transporters such as the Na+/K+-ATPase. Moreover, a recent study has provided 27 

evidence for restricted molecular diffusion and the existence of subcellular compartments 28 

astrocytes (Nuriya and Yasui, 2013).  29 

There are no known classical buffering mechanisms for sodium ions inside cells and, 30 

apart from the Na+/K+-ATPase (see below), there are no explicit sodium-binding proteins 31 

present that activate enzymes and enzyme cascades. Because sodium ions are central charge 32 

carriers, channel- or transporter-mediated influx of sodium resulting in changes in intracellular 33 

sodium concentration in the mM range, directly influences the cellular membrane potential. In 34 
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contrast to the situation with calcium ions, there are no intracellular compartments or organelles 1 

which serve as storage compartments for sodium and thus there is no comparable release from 2 

stores.  3 

When considering sodium signaling, it is also important to bear in mind that many 4 

secondary active transport systems depend on the sodium gradient and that sodium transients -5 

that is, a decrease in the inwardly directed sodium gradient- have an immediate impact on the 6 

driving force and activity of these transporters. Among those are transporters for regulation of 7 

other ions (e. g. sodium/proton exchange (NHE) and sodium/calcium exchange (NCX)) as well 8 

as transporters for the re-uptake of transmitters (e. g. high-affinity, sodium-dependent 9 

transporters for glutamate or GABA). In fact, it is conceptually astonishing how many highly 10 

relevant transporters work close to their equilibrium potential and may reverse upon increases 11 

in intracellular sodium. This topic has been comprehensively discussed recently and the reader 12 

is kindly referred to these earlier reviews (Kirischuk et al., 2012, Rose and Karus, 2013). One 13 

might argue that this is an inherent “weakness” of the system, based on a somewhat faulty 14 

design. Instead of this rather unsatisfactory argument, we prefer the interpretation that sodium 15 

transients might serve as signals.  16 

A critical aspect in this argumentation is the question of what kind of information 17 

content such sodium signals might represent and encode. This point has not been fully been 18 

clarified yet and many questions still remain open. An established finding, however, is that 19 

extrusion of sodium ions is metabolically relevant because recovery from sodium signals 20 

requires a measurable amount of ATP. Thus, sodium increases will cause activation of glial 21 

metabolism. Consequently, activity-induced sodium transients are ideally positioned to take an 22 

essential signaling role in neuro-metabolic coupling between neurons and astrocytes.  23 

 24 

2. Sodium homeostasis and regulation 25 

Cellular sodium homeostasis is of the upmost functional importance for the brain and most of 26 

brain energy is in fact consumed by the Na+/K+-ATPases (Erecinska and Silver, 1994, Ames, 27 

2000, Howarth et al., 2012). By transporting sodium ions out of the cell in exchange for 28 

potassium, the activity of the Na+/K+-ATPase establishes a low intracellular sodium 29 

concentration against a high sodium concentration in the extracellular space (~145 mM; cf. Fig. 30 

2; (Skou and Esmann, 1992, Kaplan, 2002, Somjen, 2004)). In hippocampal neurons, baseline 31 

sodium concentrations of about 12 mM were reported, whereas data obtained from hippocampal 32 

astrocytes indicate a sodium concentration of about 11 mM (e. g. (Rose and Ransom, 1996a, 33 

1997b, Chatton et al., 2001, Sheldon et al., 2004, Langer and Rose, 2009). This indicates that, 34 
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at least in this preparation, there is no significant difference in intracellular sodium 1 

concentrations between neurons and astrocytes. The cellular uptake of potassium by the 2 

Na+/K+-ATPase results in a high intracellular potassium concentration (>100 mM) as compared 3 

to that of the extracellular space (~2 mM; (Erecinska and Silver, 1994, Kofuji and Newman, 4 

2004)). In light of the essential role of sodium homeostasis for cellular function, it is remarkable 5 

that the sodium pump is the only transport mechanism for efficient extrusion of sodium across 6 

the plasma membrane. Regulation of most other ions, in contrast, involves at least two 7 

mechanisms (e. g. plasma membrane Ca2+-ATPase works together with sodium/calcium-8 

exchangers (NCX) to extrude calcium ions and several other transporters in addition to the 9 

Na+/K+-ATPase mediate uptake of potassium).   10 

Low intracellular sodium concentrations together with the about 10-fold higher 11 

extracellular sodium concentration and negative cellular membrane potentials result in inwardly 12 

directed electro-chemical gradients for sodium ions across the plasma membrane of both 13 

neurons and glial cells. Thus, most of the basic currency of cellular metabolism, ATP, is 14 

converted into -and stored as- a strong inward driving force for sodium ions. This enables 15 

sodium-dependent electrical signaling and serves to energize many secondary transport 16 

processes across the plasma membrane (Rose and Karus, 2013). Changes in intracellular 17 

sodium will ultimately feed back on the activity of such sodium-dependent transport processes. 18 

Among these are transporters for the re-uptake of glutamate as well as of GABA and glycine, 19 

and the latter two may even reverse in response to sodium elevations (Kirischuk et al., 2012, 20 

Rose and Karus, 2013). There is also increasing evidence that sodium transients directly 21 

modulate intracellular calcium signaling through reversal of NCX (Kirischuk et al., 2012).  22 

 The transport cycle of the Na+/K+-ATPase has been characterized in great detail in cell 23 

culture models and heterologous expression systems, and new crystal structures of defined 24 

binding states are continuously being published (Morth et al., 2011, Kanai et al., 2013, Nyblom 25 

et al., 2013). Despite its central importance, the pump’s functional properties in astrocytes and 26 

neurons in the intact brain, including basic attributes such as ion binding affinities or 27 

intracellular interaction partners, are poorly understood. One problem that arises in studies 28 

addressing these issues is that manipulation of sodium and the Na+/K+-ATPase in the intact 29 

tissue directly alters basic physiological cellular parameters and influences extracellular ion 30 

homeostasis. Moreover, “the sodium pump” is in fact a protein complex comprised of different 31 

subunits (α, β) of which different isoforms and binding partners (γ/FXYD subunits) exist, and 32 

each of the possible combinations may result in different functional properties (Blanco and 33 

Mercer, 1998, Kaplan, 2002, Crambert and Geering, 2003). Furthermore, the Na+/K+-ATPase 34 
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is subject to additional regulation and modulation by endogenous ouabain-like compounds 1 

binding to α1-subunits (Kala et al., 2000).  2 

It is widely held that both neurons and astrocytes ubiquitously express a Na+/K+-ATPase 3 

complex containing the α1-subunit and that the activity of this complex mediates 4 

“housekeeping” functions by setting the baseline sodium concentration and counteracting 5 

constitutive sodium influx. In addition to α1, neurons seem to preferentially express the α3 and 6 

astrocytes the α2 subunit, both of which have been suggested to handle sodium loads imposed 7 

during periods of high activity (Pellerin and Magistretti, 1997, Zahler et al., 1997, Azarias et 8 

al., 2013). Earlier studies also suggest that astrocytes are able to efficiently take up potassium 9 

from the extracellular space following activity, which is attributed to a higher Kd for 10 

extracellular potassium in astrocytes compared to neurons (Kofuji and Newman, 2004, Hertz 11 

et al., 2013, Rose and Karus, 2013). While the functional relevance of this property was long 12 

acknowledged in the light of the necessity for extracellular potassium clearance only, recent 13 

work has established that activation of glial Na+/K+-ATPase by extracellular potassium is also 14 

involved in neuro-metabolic coupling and the stimulation of glycolysis by potassium (Bittner 15 

et al., 2011).  16 

A third major difference in the mechanisms of sodium homeostasis and regulation 17 

between astrocytes and neurons arises from a fundamental difference in the intercellular 18 

coupling between these two cell types. In astrocytes, an additional pathway for the recovery 19 

from local sodium loads exists. This additional pathway is represented by gap junctions, which 20 

can mediate the rapid diffusion and distribution of sodium to neighboring cells (Rose and 21 

Ransom, 1997a, Langer et al., 2012). 22 

 23 

 24 

 25 

3. Dynamic changes in extra- and intracellular sodium during neural activity 26 

 27 

3. 1. Sodium signals in the extracellular space and in neurons 28 

Experiments with ion-selective microelectrodes performed in the vertebrate brain in vivo and 29 

in acute tissue slices, have demonstrated that activity-related opening of sodium-permeable 30 

voltage- or ligand-gated ion channels, and the flux of sodium through these channels, can alter 31 

the sodium concentration in the extracellular space. At the existing high extracellular baseline 32 

sodium concentration, the response characteristics of ion-selective microelectrodes are not 33 

favourable for the study of sodium signals evoked by minor or moderate levels of activity. With 34 



7 
 

prolonged afferent stimulation or with induction of epileptiform discharges or spreading 1 

depression, however, this technique enabled detection of decreases in the extracellular sodium 2 

by up to about 15 mM (Dietzel et al., 1982, Zanotto and Heinemann, 1983, Hablitz and 3 

Heinemann, 1989, Kohr and Heinemann, 1989); Fig. 1A).  4 

Based on earlier studies in invertebrate preparations, it was long assumed that 5 

physiological activity is not accompanied by measurable changes in intracellular sodium 6 

concentrations (e. g. (Hodgkin and Huxley, 1952); many current text books). In intracellular 7 

compartments which have a high surface-to-volume ratio such as in vertebrate neurons and glial 8 

cells, the situation is quite different. Indeed, dynamic measurements using sodium-sensitive 9 

fluorescent dyes have now established that action potentials cause an increase in the sodium 10 

concentration in axons due to sodium influx through TTX-sensitive, voltage-gated channels 11 

(Lasser-Ross and Ross, 1992, Kole et al., 2008, Fleidervish et al., 2010, Baranauskas et al., 2013). 12 

In cortical pyramidal neurons, maximal amplitudes for sodium increases were obtained in the 13 

axon initial segment, and computer simulations indicated an increase by about 10 mM with trains 14 

of 10-12 action potentials (Kole et al., 2008).   15 

Activity-induced sodium transients can also arise in dendrites in response to the opening 16 

of voltage-gated sodium channels during back-propagating action potentials, as is the case in 17 

hippocampal and cortical neurons ((Jaffe et al., 1992, Rose et al., 1999, Lamy and Chatton, 2011); 18 

Fig. 1B; cf. Fig. 2). Action potential-induced sodium transients reached values of 4 mM in apical 19 

dendrites of hippocampal neurons following a train of 20 action potentials and monotonically 20 

decayed with a time constant of several seconds (Rose et al., 1999). Particularly prominent 21 

postsynaptic sodium transients are seen with glutamatergic synaptic activity and opening of 22 

ionotropic glutamate receptors generating long-lasting, substantial currents across the membrane 23 

((Callaway and Ross, 1997, Rose and Konnerth, 2001, Bennay et al., 2008, Langer and Rose, 24 

2009); Fig. 1C; cf. Fig. 2). In apical dendrites of hippocampal CA1 pyramidal neurons, sodium 25 

increases rose by about 10 mM were detected in response to short-burst stimulation (5 pulses at 26 

50 Hz) (Rose and Konnerth, 2001). In active spines, stimulus-induced sodium increases even 27 

reached to up 35-40 mM following this stimulation paradigm (Rose and Konnerth, 2001). Such 28 

activity-induced influx of sodium into neurons through ionotropic glutamate receptors and 29 

voltage-gated channels in fact represents the main energy-consuming process in the brain and 30 

requires most of the ATP produced (Erecinska and Silver, 1994, Lennie, 2003, Harris et al., 2012).  31 

 32 

3. 2. Sodium signals in astrocytes  33 



8 
 

The main mechanism for the inactivation of synaptically released glutamate is its fast binding 1 

to and cellular reuptake by high-affinity transporters (Danbolt, 2001, Tzingounis and Wadiche, 2 

2007). In the rodent hippocampus, this task is mainly accomplished by astrocytic glutamate 3 

transporters (EAATs; excitatory amino acid transporters), namely GLAST 4 

(glutamate/aspartate-transporter) and GLT-1 (glutamate-transporter-1; rodent analogues of 5 

EAAT1 and EAAT2, respectively; (Gegelashvili and Schousboe, 1998, Bergles et al., 1999, 6 

Anderson and Swanson, 2000, Maragakis and Rothstein, 2004, Marcaggi and Attwell, 2004); 7 

Fig. 2). High-affinity glutamate uptake is energized by the concomitant inward transport of 8 

three sodium ions and a proton, while one potassium ion is transported outward. Consequently, 9 

its activation is accompanied by an inward current as well as intracellular acidification and an 10 

increase in the intracellular sodium concentration of astrocytes (Rose and Ransom, 1996b, 11 

Deitmer and Rose, 2010, Kirischuk et al., 2012).  12 

This uptake mechanism was first demonstrated in cultured astrocytes, in which 13 

application of glutamate or its transportable agonist D-aspartate readily evoke substantial 14 

increases (> 10 mM) in intracellular sodium concentration (Kimelberg et al., 1989, Rose and 15 

Ransom, 1996b, Chatton et al., 2000, Chatton et al., 2001). These are suppressed by the glutamate 16 

uptake blocker TBOA (Chatton et al., 2001, Bernardinelli and Chatton, 2008) or its higher-17 

affinity version TFB-TBOA (Tsukada et al., 2005, Bozzo and Chatton, 2010). Cytosolic sodium 18 

elevations induced by glutamate are accompanied by sodium signals in mitochondria as well, 19 

indicating a link between glutamate-evoked sodium signalling and mitochondrial function as 20 

discussed below (see chapter 4. 3., this article; (Bernardinelli et al., 2006)). Sodium-dependent 21 

glutamate uptake also represents a powerful pathway for the induction of astrocyte sodium 22 

signals in situ, including astrocytes in cerebellum (Kirischuk et al., 2007, Bennay et al., 2008), 23 

hippocampus (Langer and Rose, 2009), neocortex ((Lamy and Chatton, 2011, Unichenko et al., 24 

2013); Fig. 1D), and at the Calyx of Held (Uwechue et al., 2012). Sodium typically increased 25 

by several mM in the cell bodies with exogenous application of glutamate or D-aspartate. 26 

GABA transporters provide another pathway for sodium influx into astrocytes. GABA uptake 27 

is, however, coupled to co-transport of two sodium ions only (Gadea and Lopez-Colome, 2001), 28 

and evokes significantly smaller sodium increases as compared to glutamate (Chatton et al., 29 

2003, Unichenko et al., 2012). In cultured mouse cortical astrocytes for example, the maximum 30 

amplitude of sodium increases in response to 500 µM GABA was 4-6 mM, compared with an 31 

increase by 25-30 mM in response to an application of glutamate at comparable concentrations 32 

(Chatton et al., 2003). 33 
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Astrocytes undergo sodium signaling with stimulation of excitatory synaptic activity 1 

and synaptic glutamate release. In acutely isolated tissue slices of the cerebellum, brief 2 

stimulation of parallel fibers caused sodium transients of up to 9 mM in Bergmann glial cells 3 

((Kirischuk et al., 2007, Bennay et al., 2008); Fig. 1E). Stimulation of climbing fibers, in contrast, 4 

induced global sodium signals in Bergmann glial cells, the amplitude and time course of which 5 

did not significantly differ between different branches and the soma (Bennay et al., 2008). 6 

Synaptically-induced sodium transients in the mM range were also detected in astrocytes of the 7 

CA1 stratum radiatum of the juvenile mouse hippocampus (Langer and Rose, 2009). With low 8 

stimulation intensities, hippocampal astrocytes displayed differences in amplitude and time 9 

course of activity-induced sodium signals between different cellular regions. Under these 10 

conditions, sodium signals amounted to 1-2 mM, were confined to one or two primary branches 11 

and adjacent fine processes and only weakly invaded the soma. Increasing the number of activated 12 

synapses by increasing the stimulation intensity increased the amplitude of sodium transients to 13 

up to 6.0 mM and resulted in global sodium transients that included the soma (Langer and Rose, 14 

2009). Sodium signals in astrocytes thus seem to represent indicators of the location and strength 15 

of synaptic activity.  16 

Pharmacological approaches have indicated that the sodium influx pathways activated by 17 

synaptic stimulation differ between Bergmann glial cells and hippocampal astrocytes, although 18 

both express sodium-dependent glutamate transporters (Danbolt, 2001, Schousboe et al., 2004, 19 

Schreiner et al., 2014). The glutamate uptake blocker TBOA virtually eliminated sodium 20 

transients in hippocampal astrocytes, indicating that they were predominately mediated by this 21 

pathway (Langer and Rose, 2009). Further, application of D-aspartate, an agonist of glutamate 22 

transport, reliably induced sodium signals in processes of hippocampal astrocytes (Langer and 23 

Rose, 2009). In Bergmann glia, in contrast, synaptically-induced sodium signals were reduced by 24 

only ~60% with TBOA. The remaining signal was blocked by blockade of AMPA receptors 25 

(Bennay et al., 2008), which are highly sodium-permeable, glutamate-gated ion channels, and 26 

expressed by these cells (Lalo et al., 2011).  27 

While glutamate uptake and opening of ionotropic glutamate receptors seem to represent 28 

the predominant mechanisms for generating sodium signals in astrocytes, additional pathways for 29 

sodium influx are clearly present (Rose and Karus, 2013), but their contribution to activity-30 

induced sodium signaling in astrocytes has not been investigated yet. Two interesting candidates 31 

are the Na+-K+-2Cl--cotransport (NKCC; (Jayakumar and Norenberg, 2010) and the electrogenic 32 

sodium-bicarbonate cotransport (NBC, (Parker and Boron, 2013). Both are stimulated by 33 

increases in extracellular potassium, albeit at different concentration levels. Direct activation of 34 
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NKCC apparently requires relatively large increases in extracellular potassium (to more than 10 1 

mM, (Hertz et al., 2013), indicating that sodium influx through this pathway will only be relevant 2 

during periods of strong synchronized activity. Inward NBC, in contrast, is activated by increases 3 

in the extracellular potassium in the low mM range (Pappas and Ransom, 1994), and might 4 

therefore generate measurable sodium influx into astrocytes during activity-induced increases in 5 

extracellular K+, also independent from glutamatergic signaling.   6 

 7 

3. 3. Propagation of sodium signals in the astrocyte network 8 

Sodium signals are not restricted to the site of sodium influx. In hippocampal slices, locally-9 

induced sodium signals spread along processes of individual astrocytes at an initial velocity of 10 

>60 µm/s (Langer et al., 2012), a value several times higher that of classical calcium waves 11 

(Scemes and Giaume, 2006). Furthermore, sodium signals evoked in individual cells spread in a 12 

radial manner to virtually all neighboring astrocytes within a distance of 100 µm. Intercellular 13 

spread of sodium in hippocampal slice preparations has been demonstrated to be primarily based 14 

on sodium diffusion through gap junctions composed of Cx30 and Cx43 ((Langer et al., 2012); 15 

Fig. 2). In addition, pharmacological inhibition of mGluR1/5 slightly dampened the spread of 16 

sodium, whereas inhibition of glutamate uptake or purinergic receptors had no effect, indicating 17 

the involvement of gliotransmission and glia-derived glutamate in the spread of sodium signals 18 

in the astrocyte network. A prominent role for gliotransmitter release has been demonstrated for 19 

the propagation of regenerative sodium waves between astrocytes in primary cell culture 20 

(Bernardinelli et al., 2004).  21 

Thus, astrocytes possess efficient pathways for the fast redistribution of sodium in the 22 

gap-junction coupled network. This sodium diffusion through gap junctions following local 23 

synaptic activity and local sodium transients could serve to lower the metabolic load of single 24 

cells. With more extensive activity and global sodium increases in neighboring astrocytes, 25 

however, this diffusion-based pathway will no longer function effectively. Under these 26 

conditions, the generation of global calcium signals and regenerative sodium waves based on 27 

gliotransmission might together promote glucose uptake from the blood by enhancing the activity 28 

of GLUT1 at astrocyte endfeet (Barros and Deitmer, 2010). Gap junctions will then still enable 29 

diffusion of glucose from endfeet to active sites providing the fuel for increased glycolysis 30 

((Rouach et al., 2008); Fig. 4). Accordingly, such sodium signals might not only serve to activate 31 

astrocyte metabolism, but also promote neurometabolic coupling as discussed below.  32 

 33 

 34 
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4. Sodium signals and neuro-metabolic coupling  1 

4. 1. Glutamate transport and energy metabolism 2 

As introduced above, maintenance of the transmembrane sodium gradient in brain cells comes 3 

with a large energy cost, estimated to account for approximately 40-60% of brain ATP 4 

hydrolysis (Hevner et al., 1992). It is therefore expected that any cellular process involving 5 

substantial sodium movements into the cell will increase the energy load of cells, which is the 6 

case for glutamate transport. Extracellular glutamate clearance constitutes one of the most 7 

crucial roles of astrocytes in the brain, notably by continuously preventing a buildup of 8 

extracellular glutamate concentration during neuronal activity thereby avoiding excitotoxicity 9 

and enabling high frequency glutamatergic signaling. However, glutamate transport activity is 10 

also associated with substantial sodium influx into astrocytic cells (Fig. 1D, E; Fig. 2). This 11 

increased sodium influx has been proposed to constitute a pivotal element of a mechanism 12 

enabling astrocytes to increase the local availability of metabolic substrates in response to 13 

neuronal activity, through so-called “neurometabolic coupling”. 14 

In vitro studies have indicated that glutamate uptake into astrocytes cause a significant 15 

increase in their glucose uptake (Pellerin and Magistretti, 1994), which depends on the activity 16 

of the Na+/K+-ATPase. This observation prompted subsequent studies, which suggested that 17 

the glutamate transporter-mediated sodium influx constituted was causal to enhanced ATP 18 

consumption. It was for instance estimated from both experimental and modeling data (Chatton 19 

et al., 2000) that glutamate, applied at physiologically relevant concentrations, increases 20 

Na+/K+-ATPase activity by a factor of two to three. If one considers that the pump, at rest, is 21 

responsible for about half of the consumption of cellular ATP (Hevner et al., 1992) this large 22 

increase in ATP hydrolysis is bound to have important consequences on the energy budget of 23 

the cells, and the subsequent adjustment of their metabolic pathways. 24 

It should be pointed out that other elements in addition to glutamate transporters could 25 

potentially be involved, in particular ionotropic glutamate receptors, which function as ligand-26 

gated channels for cations such as sodium, and are expressed by some astrocytes and Bergmann 27 

glia (David et al., 1996, Lalo et al., 2006, Brennan et al., 2009). Indeed, sodium signals in 28 

Bergmann glial cells in response to parallel fiber stimulation are reduced by 40% by blockers 29 

of AMPA receptors as described above (Bennay et al., 2008). Consequently, one would expect 30 

that their activation might significantly draw on the cell's energy. While this question has not 31 

yet been addressed for Bergmann glial cells, in astrocytes expressing relatively low levels of 32 

AMPA receptors, the rapid transition of this receptor-channel to a non-conducting inactive state 33 

following glutamate binding (Wyllie and Cull-Candy, 1994) limits the rise in intracellular 34 
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sodium concentration. It follows that Na+/K+ ATPase activity and its associated ATP hydrolysis 1 

remain close to basal levels as reported in cortical astrocytes (Chatton et al., 2000).  2 

Enhancement of glucose capture occurs within seconds following glutamate application 3 

(Loaiza et al., 2003, Porras et al., 2008). The stimulation involves glutamate transporters and is 4 

not mimicked by AMPA receptor or metabotropic glutamate receptor activation (Porras et al., 5 

2008). Interestingly, a co-signaling of sodium and Ca2+ was found to be required for glucose 6 

transporter stimulation (Fig. 3A), which may indicate the involvement of a signaling event such 7 

as Ca2+-dependent phosphorylation occurring on one of the kinase-recognition sites of the 8 

glucose transporter 1 (Porras et al., 2008).  9 

Several studies have reported the existence of a physical as well as a functional 10 

association between glutamate transporters and the Na+/K+-ATPase α2 subunit (Cholet et al., 11 

2002, Porras et al., 2008, Rose et al., 2009, Genda et al., 2011, Bauer et al., 2012, Matos et al., 12 

2013). The physical proximity of the two elements implies that after entering the cell through 13 

the glutamate transporter, sodium can be readily handled and extruded by the Na+/K+-ATPase. 14 

It should be kept in mind, however, that in spite of the proposed close functional interaction 15 

between glutamate transporters and the Na+/K+-ATPase, substantial cytosolic sodium transients 16 

are detected (see above). This shows that a substantial number of sodium ions escape the 17 

binding to, and export by, the Na+/K+-ATPase and diffuse from their point of entry at the 18 

membrane into the cytosol. Nonetheless, because sodium ions entering through glutamate 19 

transporters have to be expelled again by the ATP-consuming sodium pump, there should not 20 

only be a functional interaction between the two transport systems themselves, but also between 21 

glutamate transport and astrocyte energy metabolism in general.  22 

This tight dynamic connection was further demonstrated by experiments in which 23 

intracellular sodium and ATP hydrolysis were simultaneously measured in primary astrocyte 24 

cultures (Chatton and Magistretti, 2005). Glutamate application caused a rapid intracellular 25 

sodium rise which was accompanied, without significant delay, by a sharp increase in ATP 26 

hydrolysis, the two processes occurring with the same kinetics (Fig. 3B). In the presence of 27 

glutamate, inhibition of the Na+/K+-ATPase using the cardiac glycoside ouabain caused the 28 

expected rapid intracellular sodium rise due to the absence of sodium efflux mechanisms, and 29 

interestingly, it also caused a concomitant large decrease in ATP hydrolysis, which reversed 30 

once the pump activity was restored (Fig. 3B).  31 

Apart from activity-dependent stimulation of Na+/K+-ATPase and glial metabolism by 32 

intracellular sodium, alternative pathways were described in neuro-metabolic coupling, 33 

involving electrogenic sodium bicarbonate cotransport (NBC; (Ruminot et al., 2011, Choi et 34 
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al., 2012). It has long been known that inward NBC is activated by increases in extracellular 1 

potassium and the subsequent depolarization of astrocytes, respectively, resulting in an 2 

alkalinization of astrocytes (Deitmer and Rose, 1996, Chesler, 2003). This so-called 3 

depolarization-induced alkalinization has been shown to stimulate the phophofructokinase, and 4 

thereby activate glycolysis, bypassing the need for increases in sodium and activation of 5 

Na+/K+-ATPase for metabolic stimulation of astrocytes (Ruminot et al., 2011). These pathways 6 

might be especially important at for neural activity not involving glutamate.  7 

While the neurometabolic coupling model, referred to as the "astrocyte-neuron lactate 8 

shuttle" hypothesis (Fig. 4) was initially deduced from studies using primary cultured cells, 9 

evidence that the coupling occurs in vivo and including the key role of glutamate transporters 10 

has been demonstrated as well,. In particular, quantitative autoradiographic studies using 14C-11 

2-deoxyglucose as a tracer were performed by stimulating the whisker-to-barrel pathway in 12 

anesthetized rodents while measuring local cerebral glucose utilization (Cholet et al., 2001). A 13 

significant increase in glucose utilization was seen in the activated cortical area, specifically in 14 

the barrels corresponding to the mechanically stimulated whisker. This somatotopic 15 

relationship between enhanced local neuronal activity and glucose capture and utilization 16 

disappeared when antisense GLAST oligonucleotide sequences were injected in the rat cortex 17 

(Cholet et al., 2001) and was absent in transgenic mice lacking GLAST or GLT-1 isoforms of 18 

the glutamate transporter ((Voutsinos-Porche et al., 2003); Fig. 3C). Such neurometabolic 19 

interactions were also shown to occur in vivo in brain regions other than cortex. The 20 

enhancement of intrinsic optical signal measured in the olfactory glomeruli caused by odor 21 

application was abolished by a glutamate transporter inhibition (Gurden et al., 2006). On the 22 

contrary, the intrinsic optical signals were found to be independent of postsynaptic transmission 23 

through ionotropic or metabotropic glutamate receptors. These data indicate that neuronal 24 

glutamate release and subsequent sodium-dependent uptake by astrocytes form a critical 25 

pathway through which neural activity is linked to metabolic processing.  26 

The precise nature of the local regulation of energy metabolism is not only important 27 

for the understanding of brain function under normal physiological and pathological conditions, 28 

but also for a correct interpretation of functional brain imaging approaches, that use one or the 29 

other form of local metabolic responses to neuronal activity to generate activation maps of the 30 

brain (Figley and Stroman, 2011). In particular, the technique of 18F-2DG positron emission 31 

tomography (2DG-PET) yields images of brain regions with increased glucose utilization that 32 

are correlates of increased neuronal electrical activity. Therefore, the cellular localization of 33 

glucose uptake, as well as its link with electrical activity, are of prime importance. One of the 34 
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important issues to clarify is whether the measured metabolic signals assumed to reflect 1 

excitatory activity, i.e. glutamate release and reuptake, and the ensuing metabolic response, also 2 

encompasses inhibitory activity. Indeed, after release from inhibitory neurons, GABA is 3 

removed from the extracellular space by sodium-dependent transporters expressed to a large 4 

extent by astrocytes (Larsson et al., 1980, Gadea and Lopez-Colome, 2001). The sodium influx 5 

associated with GABA uptake could in principle lead to the same metabolic response as 6 

glutamate. However, it has been demonstrated that the neurometabolic coupling mechanism 7 

described for glutamate cannot be directly transposed to GABA (Chatton et al., 2003), the main 8 

reason being a strikingly different kinetics of transport, rendering GABA transporters unable to 9 

sufficiently activate Na+/K+-ATPase.  10 

 11 

4. 2. Sodium as an intracellular second messenger 12 

At the cellular level, sodium is most commonly viewed as essential for providing a driving force 13 

for transmembrane transport systems, for the generation and maintenance of membrane 14 

electrical potential, and for being a key component in the generation of fast inward currents in 15 

excitable cells. However, to some extent, it can be argued that sodium can be considered as a 16 

second messenger, a role more commonly attributed to Ca2+. This less conventional view of 17 

sodium is prompted by the analysis of the initial hypothesis of intracellular signal transduction 18 

presented by Earl Sutherland in his Nobel lecture (Sutherland, 1972). As discussed by Orlov 19 

and Hamet (2006), any intracellular molecule can be considered a potential second messenger 20 

as long as it fulfills three main criteria. (a) The modulation of the intracellular concentration of 21 

this molecule following the onset of an external stimulus precedes the cellular responses, and 22 

normalizes upon cessation of the stimulus. (b) In the absence of the investigated external 23 

stimulus, the transient modulation of intracellular second messenger is per se sufficient to evoke 24 

cellular responses. (c) The interaction of second messengers with their intracellular targets is 25 

necessary for the manifestation of cellular responses.  26 

Thus, intracellular sodium, increasing in response to glutamate stimulation, causing an 27 

increased energy demand and leading to enhanced glucose uptake and utilization, could 28 

arguably be considered an intracellular second messenger for energy metabolism. In support of 29 

this notion, the signaling role of intracellular sodium has been demonstrated in an entirely 30 

different context, namely that of the sensing of peripheral circulating sodium levels by neurons 31 

of the subfornical organ (SFO), one of the circumventricular organs (Shimizu et al., 2007). This 32 

specialized structure lacks a blood-brain barrier and the neurons that comprise it are exposed to 33 

the chemical environment of the peripheral circulation. Astrocytes in the SFO express the Nax 34 
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channel, an atypical type of sodium channel that enables these specialized cells to act as sensors 1 

of sodium in the extracellular medium. A physiological increase of sodium level in body fluids 2 

activates a sodium signaling pathway in astrocytes, similar to that of the ANLS, triggering an 3 

enhanced glucose uptake and glycolytic response, leading to release of lactate. Lactate then 4 

increases the firing rate of local GABAergic neurons, which in turn regulate the activity of SFO 5 

efferent neurons involved in the central control of peripheral natriuremia. 6 

Recently, the concept of sodium-glutamate transporter-mediated signaling via its 7 

associated lactate release has been extended beyond a purely energy metabolic mechanism. It 8 

was shown that lactate can spread far beyond the area of neural activity and the associated 9 

domain of glucose consumption (Cruz et al., 2007). Furthermore, released lactate has been 10 

shown to activate a class of Gi-protein coupled receptor, termed the hydrocarboxylic acid 11 

receptor 1 (HCAR1, formerly GPR81) first described in adipose tissue (Ahmed et al., 2009, Liu 12 

et al., 2009). HCA1 is expressed by brain cells (Bozzo et al., 2013, Lauritzen et al., 2014) and 13 

has been demonstrated to underlie a lactate-mediated negative modulation of neuronal activity 14 

(Bozzo et al., 2013). Evidence for a lactate-mediated signaling mechanism, possibly engaging 15 

another kind of receptor, was found in the locus coeruleus (Tang et al., 2014). Furthermore, 16 

lactate released as a consequence of enhanced glycogenolysis and glycolysis is also critical for 17 

long-term memory formation by inducing molecular changes, including the induction of 18 

phospho-CREB, Arc, and phospho-cofilin (Suzuki et al., 2011, Yang et al., 2014). Such lactate-19 

mediated signaling between glial cells and neurons may constitute a signal for a multicellular 20 

metabolic recruitment (Barros, 2013) or for providing a metabolic feedback on neuronal activity 21 

(Bozzo et al., 2013, Tang et al., 2014). 22 

 23 

4. 3. Mitochondrial sodium and energy metabolism 24 

When considering the role of intracellular sodium in cellular energy metabolism, it should be 25 

kept in mind that the main powerhouses of cells are the mitochondria that host the tricarboxylic 26 

acid cycle and are the site of the oxidative phosphorylation. Whereas the glycolysis discussed 27 

above yields only two ATP molecules per glucose consumed, oxidative phosphorylation 28 

produces seventeen-fold more ATP per glucose molecule. In astrocytes, glutamate transporters 29 

co-compartmentalize with the Na+/K+-ATPase, as well as with glycolytic enzymes and 30 

mitochondria (Genda et al., 2011, Bauer et al., 2012). In addition, it has been demonstrated that 31 

movements of mitochondria stabilize at sites of glutamate uptake (Jackson et al., 2014). This 32 

raises the question of the functional purpose of this proximity of mitochondria with the major 33 

membrane sodium influx pathway.  34 
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Energized mitochondria generate and maintain a large electrical gradient –of typically 1 

of -180mV— across their inner membrane. As a consequence, cations such as sodium should 2 

have a strong tendency to be taken up into the mitochondrial matrix. However, it has been long 3 

thought that mitochondria possess a very low permeability for monovalent cations, a property 4 

enabling them to generate the large proton motive force necessary for oxidative phosphorylation 5 

(Bernardi, 1999). Nevertheless, measurements of intramitochondrial sodium performed inside 6 

living astrocytes have revealed that cytosolic sodium changes are faithfully transmitted to the 7 

mitochondrial matrix (Fig. 3D) (Bernardinelli et al., 2006). Despite the large electronegativity 8 

of mitochondria, the resting intramitochondrial sodium levels are maintained only slightly 9 

higher (~19 mM) than in the cytosol mainly by the activity of the mitochondrial Na+/H+ 10 

exchanger (Pozzo-Miller et al., 1997, Bernardi, 1999, Bernardinelli et al., 2006). The 11 

consequence of the mitochondrial sodium influx following cellular glutamate uptake is not 12 

obvious. A likely action is through the ensuing acidification of mitochondria, which reduces 13 

mitochondrial respiration, therefore contributing to the glycolytic metabolic response (Azarias 14 

et al., 2011, Perreten Lambert et al., 2014). 15 

The roles of mitochondrial sodium influx may extend beyond the glutamate-evoked 16 

responses discussed above. Indeed, it was observed, that single mitochondria in astrocytes 17 

display spontaneous sodium spiking activity (Azarias et al., 2008) that coincide with rapid 18 

mitochondrial transients of pH and reactive oxygen species, possibly related to the availability 19 

of ATP in the mitochondrial microdomain (Azarias et al., 2011). Similar single mitochondrial 20 

spiking events were found in a variety of cell types and organisms, including plants 21 

(Schwarzlander et al., 2012) and C. elegans (Shen et al., 2014). However, the mechanistic 22 

nature and function of these events is still debated (Schwarzlander et al., 2012, Schwarzlander 23 

et al., 2014). Mitochondrial spiking activity is increasingly thought to represent a novel 24 

frequency-coded readout of metabolism at the single mitochondria level (Schwarzlander et al., 25 

2014). 26 

While mitochondria do not appear to accumulate sodium, their ability to take up and 27 

release sodium ions may enable them to influence the kinetics of local sodium fluctuations as 28 

proposed for Ca2+ in neuronal presynaptic boutons (Scotti et al., 1998). Other subcellular 29 

compartments may be relevant for cellular sodium regulation, such as the endoplasmic 30 

reticulum, a major Ca2+ store critically involved in the fast release and reuptake of Ca2+ ions 31 

during agonist-evoked responses or calcium-induced calcium release. While experimentally 32 

difficult to address, quantitative X-ray microanalysis studies of cryosections of hippocampal 33 

slices estimated that ER sodium levels in dendrites are somewhat higher than in the cytoplasm 34 
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(~19 mM) and can substantially increase during trains of action potentials (Pozzo-Miller et al., 1 

1997).  2 

 3 

 4 

5. Consequences of sodium homeostasis disturbances in the diseased brain 5 

Disturbance of the cellular sodium handling is highly likely to impact the functional integrity 6 

of neurons and other brain cells and hence may plausibly play a causal role in the generation of 7 

pathophysiological neurological or psychiatric conditions. Conversely, altered sodium 8 

homeostasis is known to result from pathological brain conditions, in particular during cerebral 9 

ischemia. These situations may be connected to specific sodium-dependent membrane 10 

transporters or linked with intracellular homeostasis. Several plasma membrane transport 11 

systems, such as the sodium-glutamate transporters or those involved in brain pH regulation 12 

(Na+/H+ exchangers and Na+/HCO3
- cotransporters), critically depend on the integrity of brain 13 

sodium homeostasis. Other sodium-dependent transporters stand out for their involvement in 14 

certain brain pathologies. 15 

The Na+/Ca2+ exchanger (NCX) that contributes to a large extent to the establishment 16 

of the large inwardly directed Ca2+ gradient, is expressed by both neurons and glia (Annunziato 17 

et al., 2013). When intracellular sodium rises to abnormal concentrations, the transporter 18 

reverses its mode of operation and drives the entry of Ca2+ from the extracellular milieu. This 19 

so-called reversal mode of NCX (Philipson and Nicoll, 2000) may have several deleterious 20 

consequences for brain cells. In particular, excessive intracellular Ca2+ rise leads to 21 

mitochondrial dysfunction (Putney et al., 2002) or further glutamate release by glia (Paluzzi et 22 

al., 2007), which in turn contributes to the worsening of pathological conditions such as those 23 

found in ischemic insults. The Na+/K+/2Cl- co-transporters (NKCC) are expressed in neurons, 24 

where they regulate the intracellular Cl- concentration and therefore neuronal excitability. In 25 

astrocytes, this transporter plays an important role in the control of extracellular K+ 26 

concentration as well as cell volume regulation (Kofuji and Newman, 2004, Jayakumar and 27 

Norenberg, 2010). As introduced above, stimulation of NKCC1 activity such as that occurring 28 

during ischemia, may lead to the loss of sodium homeostasis with the consequence of increasing 29 

cytoplasmic Ca2+ following stimulation of NCX reverse mode activation (Lenart et al., 2004). 30 

Aberrant activation of NKCC1 is also believed to cause deleterious astrocyte swelling during 31 

epileptic activity (Hochman, 2012).  32 

Finally, the most important regulator of sodium homeostasis, the Na+/K+-ATPase, is 33 

critically susceptible to ATP depletion, such as that which occurs during ischemic stroke or 34 
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severe hypoglycemia, which ultimately leads to the loss of the sodium and K+ transmembrane 1 

gradients in these conditions. Na+/K+-ATPase gene mutations have also been linked to familial 2 

hemiplegic migraine (Capendeguy and Horisberger, 2004). Impaired Na+/K+ ATPase activity 3 

is inevitably accompanied by the failure of transporters discussed above (NCX, NKCC, etc.) 4 

that are critical for the proper brain function at the cellular and network level. 5 

 6 

 7 

 8 

  9 
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Figure Captions 1 

 2 

Fig. 1. Activity-induced sodium signals. (A) extracellular sodium signals in the sensorimotor 3 

cortex (depth 600 µm) of cats induced by electrical stimulation of the cortical surface with 20 4 

Hz, 0.2 ms for 10 s. (B), (C) sodium signals in neurons. (B) Left: 3D reconstruction of a layer 5 

2/3 pyramidal neuron patched with ANG-containing electrolyte. Scale bar, 30 μm. Right: 6 

Dendritic fluorescence transients recorded during backpropagation of action potentials (top). 7 

Space over time display of the matching linescan recording (bottom). (C) Top left: Image of a 8 

spiny dendrite of a CA1 pyramidal cell. Closed arrowheads indicate "active" and open 9 

arrowheads "passive" spines from which measurements were taken; scale bar: 5 µm. Top right: 10 

Suprathreshold stimulation (5 pulses at 50 Hz) induced 5 APs as measured at the soma. Upper 11 

traces: Average activity-induced sodium transient in spines (average of 19) and in the dendrite. 12 

Middle traces: sodium transients in 3 single "passive" spines. Lower traces: sodium transients 13 

in 3 single "active" spines. (D), (E) sodium signals in astrocytes. (D) Top: Fluorescence image 14 

of astrocytes in a cortical slice double-stained with sulforhodamine 101 (left panel) and ANG 15 

(center panel). Scale bar, 30 μm. Magnification of an ANG stained astrocyte (right panel). Scale 16 

bar, 5 μm. Bottom: Sample trace of astrocytic fluorescence response to glutamate puffs of 17 

increasing durations. (E) inward current and sodium transients in different processes of a 18 

Bergmann glial cell during parallel fibers stimulation (50 Hz, 100 ms). Signals were largest in 19 

processes that were located close to the stimulation pipette. Taken from: (A) Dietzel et. al. 20 

(1982), (B) Lamy & Chatton 2011, (C) Rose et al. 2001, (D) Lamy & Chatton 2011, (E) Bennay 21 

et al. 2008.  22 

 23 

Fig. 2. Pathways for sodium influx at glutamatergic synapses. At glutamatergic synapses, 24 

action-potentials induce sodium influx into neurons through TTX-sensitive voltage-gated 25 

sodium channels. If dendrites carry back-propagating action-potentials, these mediate sodium 26 

influx through voltage-gated channels, too. At the postsynaptic site, ionotropic glutamate 27 

receptor channels (NMDA and AMPA) represent major sodium influx pathways into dendrites 28 

and spines. At the same time, activation of high-affinity, sodium-dependent glutamate 29 

transporters results in sodium uptake into astrocytes, resulting in sodium signals in these cells, 30 

which can spread to neighboring astrocytes through gap junctions.  31 

 32 

Fig. 3: Sodium signals and astrocyte metabolism. (A) Upper traces: calcium (filled symbols) 33 

and sodium (open symbols) signals in astrocytes in culture, induced by application of 34 



31 
 

endothelin-1 and/or gramicidin during the periods indicated. The lower traces show that only 1 

coincidence of both signals causes stimulation of glucose transport (as monitored by uptake of 2 

6-NBDG). (B) Interrelationship between intracellular magnesium concentration (determined by 3 

fluorescence imaging with MagnesiumGreen) and sodium (determined by imaging with SBFI). 4 

Whereas application of glutamate causes an increase in both sodium and magnesium (the latter 5 

indicating a reduction in ATP content), inhibition of the sodium pump by ouabain causes a 6 

further rise in sodium, but a decrease in free magnesium, indicative of a recovery of intracellular 7 

ATP levels. (C) Enhancement of glucose utilization and lactate formation induced by glutamate 8 

application depend on the expression of glutamate transporters. Glucose utilization, evaluated 9 

by intracellular accumulation of 2-Deoxyglucose (top), and lactate release (bottom) under 10 

control conditions and after application of glutamate (Glu) in cortical astrocytes in culture 11 

derived from wildtype (+/+), heterozygous (+/-), and GLAST mutant mice (-/-). (D) Sodium 12 

signals in mitochondria. Glutamate induces an increase in cytosolic sodium (determined by 13 

SBFI) as well as intramitochondrial sodium (determined by CoroNaRed) in cultured astrocytes. 14 

Diazoxide, a KATP channel opener caused an increase in mirochondrial sodium only. Taken 15 

from: (A), Porras et al (2008); (B), Magistretti & Chatton (2005); (C), Voutsinos-Porche et al. 16 

(2003); (D), Bernardinelli et al (2006).  17 

 18 

Fig. 4: Major pathways involved in neuro-metabolic coupling between astrocytes and neurons. 19 

At glutamatergic synapses, activation of glutamate transport generates sodium signals in 20 

astrocytes which are also transmitted to mitochondria. Cytosolic sodium increases cause 21 

activation of Na+/K+-ATPase, which results in increased consumption of ATP. In addition, 22 

protons entering cells during glutamate transport activity are transmitted to mitochondria where 23 

they weaken the respiratory chain. The enhanced ATP consumption by astrocytes is followed 24 

by increased uptake of glucose from the blood. Lactate dehydrogenase (LDH) converts the 25 

resulting pyruvate to lactate which is then shuttled from astrocytes to active neurons, where it 26 

serves as metabolite substrate for ATP production after its conversion to pyruvate by the LDH. 27 

In addition, release of K+ by active neurons into the extracellular space, causes astrocyte 28 

membrane depolarization and influx of bicarbonate through Na+-bicarbonate cotransporters. 29 

The resulting glial alkalinization further stimulates glycolytic enzymes toward the production 30 

and release of lactate. 31 

 32 
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