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Abstract 

Purpose 

Thoracic fat has been associated with an increased risk of coronary artery disease (CAD). As 

endothelium-dependent vasoreactivity is a surrogate of cardiovascular events and is early 

impaired in atherosclerosis, we aimed at assessing the possible relationship between thoracic fat 

volume (TFV) and endothelium-dependent coronary vasomotion. 

Methods 

Fifty healthy volunteers without known CAD or major cardiovascular risk factors (CRF) 

prospectively underwent a 82Rb cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, 

and MBF response to cold pressor testing (CPT-MBF) and adenosine (stress-MBF). TFV was 

measured by a 2-D volumetric CT method and common laboratories (glucose and insulin levels, 

HOMA-IR, cholesterol, triglyceride, hsCRP) were checked. Relationships between CPT-MBF, 

TFV and other CRF were assessed using non-parametric Spearman rank correlation test and 

multivariate linear regression analysis. 

Results 

All of the 50 participants (58±10y) had normal stress-MBF (2.7±0.6 mL/min/g; 95%CI: 2.6-2.9) 

and myocardial flow reserve (2.8±0.8; 95%CI: 2.6-3.0) excluding underlying CAD. Univariate 

analysis revealed a significant inverse relation between absolute CPT-MBF and sex (ρ=–0.47, 

p=0.0006), triglyceride (ρ=–0.32,p=0.024) and insulin levels (ρ=–0.43,p=0.0024), HOMA-IR 

(ρ=–0.39,p=0.007), BMI (ρ=–0.51,p=0.0002) and TFV (ρ=–0.52,p=0.0001). MBF response to 

adenosine was also correlated with TFV (ρ=–0.32,p=0.026). On multivariate analysis TFV 

emerged as the only significant predictor of MBF response to CPT (p=0.014). 

Conclusions 



4 

 

TFV is significantly correlated with endothelium-dependent and -independent coronary 

vasomotion. High TF burden might negatively influence MBF response to CPT and to adenosine 

stress, even in persons without CAD, suggesting a link between thoracic fat and future 

cardiovascular events. 

 

Keywords: thoracic fat; endothelial function; myocardial blood flow; PET 
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Introduction 

Endothelial dysfunction is widely recognized as the key-step toward atherosclerosis and as a 

surrogate predictor of cardiovascular event. Numerous studies highlighted the influence of 

diabetes, insulin resistance, uncontrolled hypertension, smocking as well as menopause upon the 

impairment of endothelium-dependent vasomotion using quantitative cardiac PET/CT analysis. 

Thoracic fat is defined by the sum of intra-pericardial fat derived from splanchnopleuric 

mesoderm plus extra-pericardial fat surrounding the pericardium within the mediastinum [1]. 

Recent studies reported that pericardial fat correlated with coronary plaque [2] and might 

promote coronary artery disease (CAD) development by influencing microvascular function [3]. 

In fact, although pericardial fat has been independently associated to an increase risk of CAD [4-

6], the exact mechanism is not known yet. Some studies suggest a direct influence of adipokines 

by an outside-to-inside pathway from epicardial fat contributing to vascular inflammation and 

plaque progression. Two recent studies showed an association between intra-pericardial fat and 

hyperemic coronary blood flow measured by PET/CT [7] and between epicardial fat thickness 

measured by echocardiography and flow mediated dilation [8]. Nevertheless no relation between 

endothelium-dependent coronary vasoreactivity and thoracic fat has been demonstrated yet.  

Our aim was to assess whether thoracic fat, at an early stage, may influence endothelium-

dependent vasomotion in patients without CAD or detectable cardiovascular risk factor. 

 

Methods 

Study design 

In this monocentric study, volunteers were prospectively enrolled from January 2009 to June 

2009. Before inclusion, they all underwent a medical examination to screen for cardiovascular 
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risk factor. Inclusion criteria were (1) volunteers with no cardiovascular risk factor and (2) no 

medication. Participants with diabetes mellitus (fasting plasma glucose level >126mg/dL), past or 

present smoking, hypertension (≥140/90 mmHg), low density lipoprotein (LDL) level 

≥160mg/dL, high density lipoprotein (HDL) level <30mg/dL, triglyceride (TG) level 

(>400mg/dL), peripheral artery disease, known coronary artery disease or myocardial infarction, 

cardiomyopathy, renal failure, peripheral neuropathy, systemic disease, or contraindication to 

adenosine (asthma, chronic obstructive bronchitis, 2nd and 3rd degree atria-ventricular bloc) were 

thus excluded. Weight was not a exclusion criteria. 

For every participant, fasting glucose plasma, insulin plasma, LDL, HDL, TG, high-

sensitivity C-reactive protein (hsCRP) levels were measured, and insulin resistance was assessed 

by calculating homeostasis model assessment (HOMA-IR) index (HOMA-IR = fasting plasma 

glucose (mmol/L) × fasting plasma insulin (µU/mL) / 22.5). Volunteers were refrained at least 6h 

from any food and ≥24h from caffeine intake before PET studies. The study was approved by the 

Ethic Committee of The University of Lausanne. Every participant signed a written consent form. 

 

PET studies 

All the volunteers fulfilling the inclusion criteria (n=50) underwent 82Rb cardiac PET/CT 

measurements of myocardial blood flow (MBF). After a rest study, the participant underwent 

cold pressor testing (CPT) to assess MBF changes mainly due to endothelium-dependent 

vasomotion [9]. CPT was performed by a 2-min immersion of the left lower limb in iced water 

starting one minute before the administration of 82Rb. Finally, a pharmacological stress was 

carried out by adenosine (140µg/kg/min) infusion over 6 minutes to determine myocardial blood 

flow increase (stress-MBF) mainly due to endothelium-independent vasomotion and myocardial 
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flow reserve (MFR) in order to exclude underlying coronary artery disease. For each study, after 

a 10-second infusion of 82Rb (1450MBq) 6-min dynamic (12x8 s, 5x12 s, 1x30 s, 1x60 s, 1x120 

s) cardiac PET (Discovery LS, GE Medical Systems, Milwaukee, WI, USA) was acquired. A 

cardiac computed tomography (CT) was also performed to correct for photon attenuation by soft 

tissues.  

Data were reconstructed using OSEM (8 subsets, 2 iterations) and processed with the 

fully-automatic Flowquant 1.2.3 software using a previously described [10] two-compartment 

modeling approach to derive myocardial blood flow at rest, during the cold pressor test and 

during the pharmacological stress. Stress/rest uptake images were also analyzed in a semi-

quantitative way (summed rest score and summed difference score) to exclude myocardial 

ischemia/scar using a 17-segment model. Before processing, good alignment between PET and 

CT series was verified to avoid attenuation correction artifact.  

Blood pressure, heart rate and a 12-lead ECG were recorded at 1-minute intervals during 

each procedure. To correct for cardiac workload, rest and CPT myocardial blood flow were also 

normalized using the rate-pressure product (RPP = heart rate ×systolic blood pressure). 

The radiation dose for each patients was estimated to be 3×1.8 mSv for rest, CPT and 

stress Rb-82 [11] and 3×0.2 mSv for the low-dose attenuation correction CT [12] resulting in a 

total dose of 6 mSv. The product of the CT dose index (CTDI= 0.7±0.1 mGy) and the z-axis scan 

coverage (18 cm) provides the dose-length product (DLP= 12.6±1.7 mGy.cm), which was 

subsequently multiplied by the conversion factor for the chest (k= 0.017 mSv. mGy-1.cm-1) to 

obtain the effective dose for the CT acquisitions. 

 

Thoracic Fat Volume Quantification 
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CT studies were performed using an unenhanced, low-dose protocol (120 kV tube voltage, 10 

mA tube current, 1.0 sec/rotation, 4 x 5mm detector configuration, 50 cm scan field-of-view, 18 

cm z-axis coverage) on the 4-slice CT scanner (Light Speed Plus, GE Medical Systems, 

Milwaukee, WI, USA) of our PET/CT (Discovery LS; GE Medical Systems, Milwaukee, WI, 

USA). Data were reconstructed by filtered back projection with a 512x512 pixels matrix and slice 

thickness of 5 mm resulting in a spatial resolution of 1x1x5mm. Thoracic fat volume was 

determined using a threshold 2-D short axis based method after transferring patient imaging data 

on a dedicated workstation (Advantage Windows 4.4; GE Medical Systems, Milwaukee, WI, 

USA) [13]. Reformatted images were obtained from the raw data of axial images to the 2D short 

axis views with 5-mm slice thickness and 5-mm intersection gaps. Thoracic fat volume was 

defined as the adipose tissue from the surface of the heart to the adjacent organ into the inferior 

mediastinum. Thus, in a volume of interest extending from the pulmonary trunk bifurcation to the 

diaphragm, a CT attenuation threshold (–200 to –30 HU) was used to isolate thoracic fat. Finally 

thoracic fat volume in mL was automatically measured using a histogram-based analysis (Figure 

1). 

 

Statistical analysis 

All statistical analyses were carried out with Stata 11.1. Continuous variables are presented as 

mean ± standard deviation (SD). Wilcoxon rank sum test was used to compare characteristics 

according to sex (male=1, female=0). Relations between variables were assessed using non-

parametric Spearman's rank correlation test (ρ). For sex, significance or non-significance of the 

relations was confirmed using logistic regression that is more suitable for categorical variables 

(data not shown). Multivariate linear regression analysis and stepwise multiple linear regression 
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analysis were performed using significant univariate predictors to determine independent 

relationship to TFV or MBF response. Before performing multivariate analysis, collinearity of 

variables was searched. A threshold of >0.7 for absolute correlation coefficient was considered to 

remove collinear variables [14]. Weight was thus judged collinear with sex and BMI, and 

insulin/glucose were judged collinear with HOMA-IR. Consequently, only sex, BMI and 

HOMA-IR were included in the multivariate analysis model. A p-value <0.05 was considered as 

significant. 

 

Results 

Population Characteristics 

In total, 50 volunteers (19F/31M) were included. All of them successfully underwent complete 

PET/CT studies and laboratories. There were no unexpected side effects during adenosine 

infusion. All the patients had normal stress/rest perfusion study with a summed difference score 

and a summed rest score of zero. Baseline characteristics are summarized in Table 1. There was 

significant difference between men and women for weight, BMI, insulin, glucose, HDL, LDL 

levels, but not for hsCRP and TG (data not shown). Among baseline characteristics fasting 

insulin levels were highly correlated with sex (ρ= 0.45, p=0.0012), weight (ρ= 0.79, p<0.0001), 

BMI (ρ= 0.82, p<0.0001), plasma glucose levels (ρ= 0.62, p<0.0001), hsCRP (ρ= 0.60, 

p<0.0001) and HDL (ρ= –0.57, p<0.0001). On multivariate linear regression analysis (sex, BMI, 

glucose, hsCRP and HDL levels), BMI, glucose and hsCRP emerged as independently related to 

fasting insulin levels (p<0.03). 
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Thoracic Fat Volume 

All of the 50 CT series were successfully processed. Mean thoracic fat volume was 250±156 mL. 

Men had a significantly higher TFV than women (317±154 vs. 141±83 mL, p<0.0001). Among 

clinical and biological characteristics, shown in Table 2, TFV was significantly correlated with 

sex (ρ= 0.59, p<0.0001), weight (ρ= 0.84, p<0.0001), BMI (ρ= 0.85, p<0.0001), insulin levels 

(ρ= 0.68, p<0.0001), glucose plasma levels (ρ= 0.52, p=0.0002), HOMA-IR (ρ= 0.67, p<0.0001), 

HDL levels (ρ= –0.61, p<0.0001), triglyceride levels (ρ= 0.53, p=0.0001) and hsCRP (ρ= 0.41, 

p=0.005). Relationships between TFV and age or LDL level were not statistically significant 

(p>0.4). Including variables significantly correlated with TFV in univariate analysis (sex, BMI, 

HOMA-IR, HDL, TG and hsCRP), multiple linear regression analysis highlighted that sex 

(p=0.005) and BMI (p<0.001) were independently correlated with TFV. 

 

Myocardial Blood Flow Response 

Fifty participants significantly increased myocardial blood flow from baseline conditions (rest-

MBF= 1.0±0.4 mL/min/g) in response to pharmacological stress (stress-MBF= 2.7±0.6 

mL/min/g, p<0.0001). For all of them myocardial flow reserve was >2 and stress-MBF was > 2 

mL/min/g, excluding hemodynamically significant coronary artery disease, balanced ischaemia 

or microvascular disease. Using non-parametric Spearman's rank correlation test, MBF response 

to adenosine was only associated with weight (ρ=–0.31, p=0.029) and TFV (ρ=–0.32, p=0.026). 

TFV was the only variable independently associated with MBF response to adenosine on 

stepwise multiple linear regression analysis (p=0.012). 

Rate pressure product significantly increased by 28±3% during cold pressor testing 

compared to rest conditions (10433±2792 mmHg.min-1 vs. 8137±1885 mmHg.min-1, p<0.0001). 
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Myocardial blood flow significantly increased from 1.0±0.4 mL/min/g to 1.2±0.3 mL/min/g 

(p=0.01) in response to cold pressor testing. Furthermore, absolute CPT-MBF was significantly 

correlated (Table 3) with sex (ρ=–0.47, p=0.0006), weight (ρ=–0.58, p<0.0001), BMI (ρ=–0.51, 

p=0.0002), triglyceride level (ρ=–0.32, p=0.024), fasting blood insulin (ρ=–0.43, p=0.0024), 

HOMA-IR (ρ=–0.39, p=0.007) and TFV (ρ=–0.52, p=0.0001) (Figure 2). On stepwise multiple 

linear regression analysis, after exclusion of weight and fasting blood insulin, TFV emerged as 

the only independent predictor of MBF response to CPT (β=–0.38, p=0.014).  

 

Discussion 

To our knowledge, it is the first study reporting a direct and independent correlation between 

thoracic fat volume and endothelium-dependent coronary vasomotion in patients without 

previously known cardiovascular risk factor, medication or biological significant risk factor. 

 

Thoracic Fat Volume Relation To Baseline Characteristics 

Thoracic fat volume has recently been related to cardiovascular risk [4]. Whilst global fat burden 

is well known to be involved in the development of metabolic syndrome, there are increasing 

evidences that thoracic fat independently contributes to coronary artery disease genesis due to its 

function as well as its anatomical position. In accordance with previously published study [15], 

we found a strong correlation between weight and TFV (ρ= 0.84, p<0.0001) as well as between 

BMI and TFV (ρ= 0.85, p<0.0001). Moreover, BMI was independently correlated with thoracic 

fat volume (p<0.001), hence confirming the underlying relation between global fat burden and 

thoracic fat. As other white adipose tissue, it was reported that thoracic fat acts as an independent 

endocrine organ secreting hormones such as adiponectin, leptin, or resistin [16]. By secreting 
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adipokines, adipose tissue may promote insulin plasma production and insulin resistance [17]. 

Supporting this hypothesis, our analysis highlighted the correlation between insulin plasma levels 

(ρ= 0.68, p<0.0001), HOMA-IR (ρ= 0.67, p<0.0001) and TFV. Insulin resistance hence results in 

a increased triglyceride releasing in the peripheral circulation due to adipocyte lipolysis, as the 

relation between TFV and triglyceride levels might suggest (ρ= 0.53, p=0.0001). Thoracic fat 

may also promote systemic inflammation by local macrophages secretion of cytokines and 

chemokines such as hsCRP [16]. This is supported by the correlation between hsCRP and TFV 

(ρ= 0.41, p=0.005). Thus, by early contributing to chronic systemic inflammation that has 

extensively been reported as a key-step toward atherosclerosis [18, 19], thoracic fat may act in 

the development of coronary artery disease. 

 

Thoracic fat relation to endothelium-dependent vasomotion 

Endothelial function as well as myocardial blood flow has extensively been studied using cardiac 

PET/CT for the past few years. Endothelium-dependent vasoreactivity is a surrogate marker of 

cardiovascular events [20], which can be significantly impaired by smoking, uncontrolled 

diabetes or hypertension, dyslipidemia, or menopause. Therefore, numerous studies demonstrated 

the need for a control of cardiovascular risk factor to normalize response to cold pressor testing 

as a sign of conserved endothelium-dependent vasomotion [21-25]. In accordance with those 

results we report a significant inverse correlation between MBF response to CPT and triglyceride 

levels (ρ=–0.32, p=0.024) fasting insulin plasma levels (ρ=–0.43, p=0.0024) or HOMA-IR (ρ=–

0.39, p=0.007), even in a population of healthy volunteers. As reported above, numerous studies 

demonstrated that adiponectin plasma levels were negatively correlated with visceral fat burden 

and that low adiponectin contributed to insulin resistance [17, 26]. Prior et al. [27] showed that 
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insulin resistance had a direct negative influence upon endothelium-dependent vasoreactivity. 

Thus, our results suggest that an increased TFV may be related to insulin resistance and impaired 

endothelial response to cold pressor test, potentially by reducing adiponectin plasma levels. This 

point needs confirmatory studies, however. 

Although we did not find any correlation between hsCRP and CPT-MBF, the relation 

between TFV and hsCRP (ρ= 0.41, p=0.005) suggest that thoracic fat may contribute to chronic 

systemic inflammation, which results in an impairment of basal endothelial NO synthesis [18]. 

The indirect effect of thoracic fat upon endothelium could be mediated by an increased insulin 

resistance and a pro-inflammatory cytokine production. Although a direct vasocrine outside-to-

inside effect of some adipokines from perivascular fat has been reported in a swine model [28], 

we cannot confirm its reality in humans based on our study. The independent correlation between 

TFV and CPT-MBF (p=0.014) found on multivariate analysis may suggest that TFV could 

participate in those different pathways that lead to significantly impair coronary endothelial 

function. However, the respective role of epicardial and paracardial fat in this process cannot be 

deduced from our study. 

 

Thoracic fat relation to endothelium-independent vasomotion 

Bucci et al. [7] recently reported that both intra-pericardial fat and extra-pericardial fat was 

significantly associated with hyperemic MBF (R=–0.36 and R=–0.44, respectively; p<0.0005). 

Supporting the direct influence of TFV upon endothelium-independent vasomotion, we found a 

negative correlation between TFV and hyperemic MBF (ρ=–0.32, p= 0.026). Bucci et al. [7] 

concluded that the independent predictive value of intra-pericardial fat volume upon hyperemic 

MBF support the hypothesis of an outside-to-inside direct paracrine/vasocrine effect. It has also 
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been reported that perivascular fat could stimulate smooth muscle cell proliferation [29]. Though 

we were not able to discriminate respective contribution of epicardial and paracardial fat, our data 

suggest that thoracic fat could early contribute to atherosclerosis by impairing endothelial 

function and modifying smooth vessel musculature reactivity. Moreover, a direct effect of 

thoracic fat upon coronary wall from the intima to the adventice could contribute to the formation 

of arterial plaque, and promote plaque inflammation as recently suggested by Saam et al. [30]. 

From endothelial dysfunction to coronary artery disease, mounting evidences thus suggest that 

thoracic fat is a crucial actor of coronary atherosclerosis due to his pro-inflammatory and 

vasoactive role.  

 

Study limitations 

Although our study demonstrated an independent correlation between TFV and MBF response to 

CPT as well as between TFV and MBF response to adenosine, we recognize some limitations. 

For our volunteers had no cardiovascular risk factor, and for everyone had thoracic fat, it 

was not possible to use a normal control population for comparison. Nevertheless, a prospective 

study assessing the evolution of TFV and CPT-MBF could be planed to sustain the results we 

showed by taking the person as his own control. In the same time, by prospectively measuring 

adipokine plasma changes over time, the exact effect of this cytokine upon endothelium-

dependent vasomotion could be specified. 

Moreover, because both intra-pericardial fat and extra-pericardial fat have different 

embryologic origin, they may have different contribution to atherosclerosis process. Due to 

ungated acquisition and low-dose parameters of CT acquisition, image spatial resolution was not 

sufficient to separately measure epicardial (or intra-pericardial) and paracardial (or extra-
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pericardial) fat volume, hence its relation to CPT-MBF. Nevertheless, it may be difficult to 

distinguish their exact influence, since both can contribute to systemic inflammation and insulin 

resistance leading to impair baseline endothelial function. To avoid misinterpretation on the 

nature of our data, we strictly compared our results to previous studies that used the same 

definition for thoracic fat or that reported results applying to both epicardial and paracardial fat. 

As spatial resolution was different from Cheng et al. [1], a comparison with TFV normal value 

previously published was not possible. 

Finally, as TFV could easily be quantified, it could be easily implemented in daily 

practice. While endothelium-dependent coronary vasomotion is a surrogate of future 

cardiovascular events, the prognostic value of TFV as compared to CPT-MBF remains unknown. 

The clinical relevance of initial TFV quantification should therefore be investigated, especially in 

patients with low likelihood of developing cardiovascular event, as well as the impact of TFV 

decrease on cardiac event occurrence. TFV monitoring could thus constitute an attractive 

complementary tool to assess patients’ cardiovascular risk. 

 

Conclusions 

TFV significantly correlated with both endothelium-dependent and independent coronary 

vasomotion, even in persons with normal hyperemic myocardial perfusion imaging. Since 

endothelium-dependent vasomotion has been recognized as a surrogate marker for cardiovascular 

events, our results suggest a responsibility of thoracic fat toward future cardiovascular events. 

While outside-to-inside adipokines secretion through the arterial wall has been described, our 

results might suggest an effect upon NO-dependent and -independent vasodilatation, as well as an 
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influence of insulin resistance and chronic systemic inflammation mediated by thoracic fat. 

Further studies are needed to elucidate the putative mechanism. 
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Figure titles and legends 

 

Fig. 1. CT images processing for thoracic fat volume. 

(A) Axial 2D images; (B) Drawing of a ROI from myocardium to adjacent organs for each slice 

from the pulmonary trunk bifurcation to the diaphragm; (C) Selection of the threshold (from –

200 HU to –30 HU) leading to isolate fat in green in the predefined VOI; (B) Histogram based 

analysis to determine thoracic fat volume (473 mm3 in this case). HU= Hounsfield Unit; ROI= 

region of interest; VOI= volume of interest.  
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Fig. 2. Relationship between myocardial blood flow response to cold pressor testing and 

thoracic fat volume. 

CPT= cold pressor test; MBF= myocardial blood flow. 
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Tables 
 
Table 1. Study population characteristics.  

Abbreviations: BMI= body mass index; CPT= cold pressor test; HDL= high-density lipoprotein; 

HOMA-IR= homeostasis model assessment-insulin resistance; hsCRP= high-sensitivity C-

reactive protein; IQR= interquartile range; LDL= low-density lipoprotein; MBF= myocardial 

blood flow; MFR= myocardial flow reserve; TFV= thoracic fat volume; SD= standard deviation; 

TG= triglyceride levels. 

 

Characteristics n= 50 Mean±SD or Median (IQR) 

Age (years) 58±10 

Weight (kg) 75.5±15.9 

BMI (kg/m2) 25.7±4.9 

Insulin (mUI/L) 11.3 (7.4–14.8) 

Glucose (mg/dL) 103 (95–108) 

HOMA-IR (1) 2.9 (1.5–4.0) 

LDL (mg/dL) 132±43 

HDL (mg/dL) 62±16 

TG (mg/dL) 105 (79–132) 

hsCRP (mg/L) 1.9 (0.9–3.8) 

TFV (mL) 214 (125–338) 

Rest MBF (mL/min/g) 1.0±0.4 

Stress MBF (mL/min/g) 2.7±0.6 

MFR (1) 2.8±0.8 

CPT-MBF (mL/min/g) 1.2±0.3 
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Table 2. Univariate (ρ) and Multivariate (β) correlations between TFV and population 

characteristics. 

Abbreviations: As in Table 1. 

 

Characteristics ρ p-value β p-value 

Sex 0.59 <0.0001 0.35 0.005 

Age (years) 0.10 0.4   

Weight (kg) 0.84 0.0001 *  

BMI (kg/m2) 0.85 <0.0001 0.76 <0.001 

Insulin (mUI/L) 0.68 <0.0001 *  

Glucose (mmol/L) 0.52 0.0002 *  

HOMA-IR (1) 0.67 <0.0001 — 0.09 

LDL (mmol/L) – 0.04   0.8   

HDL (mmol/L) – 0.61   <0.0001 — 0.4 

TG (mmol/L) 0.53 0.0001 — 0.7 

hsCRP (mg/L) 0.41 0.005 — 0.3 

* Although significant at the univariate level, these variables have not been included in the 

multivariate analysis because of collinearity (between weight and BMI, as well as between 

insulin, glucose and HOMA-IR). 
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Table 3. Univariate (ρ) and Multivariate (β) correlations between cold pressor testing 

myocardial blood flow (CPT-MBF) and population characteristics.  

Abbreviations: As in Table 1. 

 

Characteristics ρ p-value β p-value 

Sex – 0.47 0.0006 — 0.06 

Age (years) 0.09 0.6   

Weight (kg) – 0.58 <0.0001 *  

BMI (kg/m2) – 0.51 0.0002 — 0.2 

Insulin (mU/L) – 0.43 0.0024 *  

Glucose (mmol/L) – 0.24 0.1   

HOMA-IR (1) – 0.39 0.007 — 0.9 

LDL (mmol/L) 0.09 0.5   

HDL (mmol/L) 0.27 0.06   

TG (mmol/L) – 0.32 0.024 — 0.8 

hsCRP (mg/L) – 0.10 0.5   

TFV (mL) – 0.52 0.0001 –0.38 0.014 

* Although significant at the univariate level, these variables have not been included in the 

multivariate analysis because of collinearity (between weight and BMI, as well as between 

insulin, glucose and HOMA-IR). 

 


