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Abstract

Clines in life history traits, presumably driven by spatially varying selection, are widespread. 

Major latitudinal clines have been observed, for example, in Drosophila melanogaster, an 

ancestrally tropical insect from Africa that has colonized temperate habitats on multiple 

continents. Yet, how geographic factors other than latitude, such as altitude or longitude, affect 

life history in this species remains poorly understood. Moreover, most previous work has been 

performed on derived European, American and Australian populations, but whether life history 

also varies predictably with geography in the ancestral Afro-tropical range has not been 

investigated systematically. Here, we have examined life history variation among populations of 

D. melanogaster from sub-Saharan Africa. Viability and reproductive diapause did not vary with 

geography, but body size increased with altitude, latitude and longitude. Early fecundity covaried 

positively with altitude and latitude, whereas lifespan showed the opposite trend. Examination of 

genetic variance-covariance matrices revealed geographic differentiation also in trade-off 

structure, and QST-FST analysis showed that life history differentiation among populations is 

likely shaped by selection. Together, our results suggest that geographic and/or climatic factors 

drive adaptive phenotypic differentiation among ancestral African populations and confirm the 

widely held notion that latitude and altitude represent parallel gradients.
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Introduction

Understanding how spatially varying selection causes adaptation to heterogeneous 

environments is a long-standing issue in evolutionary biology (Endler 1986). A powerful 

approach towards this end is to study clines, i.e. changes in phenotypes or allele frequencies 

across environmental gradients (Huxley 1938; Slatkin 1973; Endler 1977; Barton 1999). The 

study of clines is especially informative with regard to adaptation when fitness-related 

phenotypes are associated with environmental gradients. Although clines can also result 

from population structure and demography, they are typically thought to be caused by 

spatially varying selection since clines are often consistently replicated across geographical 

regions, populations and species (Dobzhansky 1970; Endler 1977, 1986).

One of the premier models for investigating the adaptive role of clinality is the fruit fly 

Drosophila melanogaster (David & Bocquet 1975; De Jong & Bochdanovits 2003; 

Hoffmann & Weeks 2007). This species originated in sub-Saharan Africa and has 

subsequently migrated out of Africa, colonizing Eurasia, America and Australia (David & 

Capy 1988). As a result, clines have been formed on several continents, spanning temperate 

to subtropical/tropical regions, thus providing an excellent opportunity for studying 

adaptation to spatial and climatic heterogeneity in a naturally replicated system. The large 

body of work on clines in D. melanogaster makes this species a unique system for assessing 

the generality of clinal adaptation.

Latitudinal clines, presumably driven by gradients in temperature and/or seasonality, have 

been documented for many fitness-related and morphological traits in D. melanogaster, 

including pigmentation, developmental time, body size, ovariole number, fecundity, egg 

size, stress resistance, lifespan, diapause and overwintering ability, with many of them 

showing parallel differentiation on multiple continents (Capy et al. 1993; James & Partridge 

1995; Azevedo et al. 1996; James et al. 1997; Zwaan et al. 2000; Mitrovski & Hoffmann 

2001; Hoffmann et al. 2002; Schmidt et al. 2005a, b; Pool & Aquadro 2007; Schmidt & 

Paaby 2008). Genetic signatures of latitudinal clinality have also been identified, including 

on a genome-wide scale at the level of single nucleotide polymorphisms (SNPs) (Fabian et 

al. 2012; Reinhardt et al. 2014). Evidence supports the notion that temperature may be the 

most important factor underlying latitudinal clines (Partridge et al. 1994; Umina et al. 2005; 

Santos et al. 2006). Thus, latitudinal clines have been extensively studied, and ongoing 

efforts focus on understanding the genetic causes and consequences of this clinality 

(Schmidt et al. 2008; Paaby et al. 2010; Fabian et al. 2012; Kapun et al. 2014; Cogni et al. 

2014). In contrast, our knowledge of altitudinal and longitudinal clines is much more 

limited.

While elevational gradients have major effects on phenotypic differentiation in numerous 

organisms (Hodkinson 2005; Körner 2007; Yi et al. 2010; Bresson et al. 2011; Keller et al. 

2013; Hille & Cooper 2014), considerably less is known about altitudinal clines in 

Drosophila. Some notable exceptions include effects of altitude on pigmentation, 

developmental time, size-related traits, ovariole number, fecundity, desiccation resistance 

and cold tolerance in D. melanogaster (Louis et al. 1982; Munjal et al. 1997; Collinge et al. 
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2006; Pool & Aquadro 2007; Parkash et al. 2008; Rajpurohit et al. 2008; Pitchers et al. 

2013; Klepsatel et al. 2014).

Depending on geographical region, population or species, some studies have found that 

altitudinal clines exhibit opposite directionality (starvation resistance in D. buzzatii: 

Sørensen et al. 2005 versus Sarup & Loeschcke 2010; fecundity in D. yakuba versus D. 

teissieri: Devaux & Lachaise 1987). Others have failed to find clear altitudinal clines 

altogether: Bubliy & Loeschcke (2005) measured eight traits across an elevational transect 

in D. buzzatii and D. simulans but did not find clinality. Similarly, since temperature 

decreases with increasing altitude and latitude, the effects of altitude might mirror those of 

latitude (Lencioni 2004). Yet, this prediction has not always been confirmed. ‘Bergmann’s 

rule’, for instance, posits that body size is larger at both higher altitudes and latitudes 

(Partridge & Coyne 1997; Blanckenhorn & Demont 2004) but evidence for this pattern in 

insects is mixed (Shelomi 2012). Although many studies in Drosophila support 

‘Bergmann’s rule’, others have failed to do so (Norry et al. 2001; Bubliy & Loeschcke 2005; 

Dillon et al. 2006; Pitchers et al. 2013, Klepsatel et al. 2014).

Some of these discrepancies might be due to the fact that temperature is not the only 

variable correlated with elevation. Other factors related to altitude but not latitude include 

decreased atmospheric pressure (entailing reduced pressure of oxygen); increased incoming 

and outgoing radiation (including higher UV-B radiation); absence of seasonality in tropical 

high-altitude environments as compared to temperate high-latitude habitats; altitudinal 

gradients in humidity and vapor pressure; and relatively high levels of gene flow across 

relatively short distances (Blanckenhorn 1997; Körner 2000; Hodkinson 2005; Körner 

2007). Altitudinal gradients are thus not as well understood as latitudinal clines, and this is 

especially true for Drosophila.

Even less is known about longitudinal clines. Some studies have identified longitudinal 

clines in planktonic foraminifers, plants and humans (Samis et al. 2008, 2012; 

Ramachandran & Rosenberg 2011; Ujiié et al. 2012; Kooyers et al. 2014), and Wittkopp et 

al. (2011) have found a longitudinal cline for pigmentation in Drosophila americana. In D. 

melanogaster, longitudinal clines have been observed for allozymes and chromosomal 

inversions (Smith et al. 1978; Knibb 1982; Aulard et al. 2002), but phenotypic longitudinal 

clines are largely unknown. Factors that might vary predictably with longitude include 

gradients with respect to humidity, ‘continentality’, or the seasonal phenology of plants 

(Wittkopp et al. 2011; Samis et al. 2008, 2012.

Another aspect of clinal variation that is understudied is the extent of clinality in the tropics 

(~23°N to 23°S). A few studies have examined clinal variation in- and outside the Australian 

tropics (Mitrovski & Hoffmann 2001; Sgrò et al. 2013), and others have investigated 

clinality on the Indian subcontinent, which includes both tropical and subtropical regions 

(Rajpurohit & Nedved 2013). In addition, a handful of studies have investigated altitudinal 

clines for size-related traits in Afro-tropical populations (Louis et al. 1982; Pitchers et al. 

2013, Klepsatel et al. 2014). However, whether life history traits other than size vary 

predictably with geographic or climatic factors within the ancestral Afro-tropical range of D. 

melanogaster remains unclear.
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Clinality in the tropics is an important issue since the effects of climatic factors might differ 

from those seen in subtropical or temperate regions. For example, within the narrow band of 

the tropics one might expect to find weaker latitudinal gradients as compared to the much 

steeper ones that span across temperate and subtropical/tropical regions, as is the case for the 

North American and Australian clines in D. melanogaster. In contrast, elevational gradients 

might be ‘physiologically’ (not topographically) steeper for tropical organisms, which are 

adapted to constantly warm ambient conditions, than for temperate species (Janzen 1967; 

Ghalambor et al. 2006). More generally, since tropical terrestrial ectotherms live in 

relatively stable aseasonal climates, they tend to have more narrow thermal tolerance than 

higher-latitude species (Tewksbury et al. 2008). Consistent with this notion, Australian D. 

melanogaster populations from higher altitudes have greater cold tolerance at temperate but 

not tropical latitudes (Collinge et al. 2006).

Here, we have examined variation in life history (viability, body size, early fecundity, 

lifespan, reproductive diapause) among a total of 14 populations of D. melanogaster from 

sub-Saharan Africa under common garden conditions in the laboratory. Our study represents 

the first systematic attempt of characterizing geographic and clinal patterns of life history 

variation within the ancestral subtropical/tropical range of this species, thus extending 

previous efforts investigating derived European, American or Australian populations. We 

had four specific objectives. First, we aimed to examine geographic differentiation and 

clinality of African populations for life history. Second, we examined reproductive diapause, 

a plastic life history syndrome induced by low temperature and short photoperiod and 

known to be clinal across latitude in North American and Europe (Saunders et al. 1989; 

Schmidt & Paaby 2008). Preliminary data indicate that cold-induced diapause might be 

absent or at low frequency in ancestral African populations (Schmidt 2011), suggesting that 

it represents a ‘derived’ temperate adaptation, but Afro-tropical high-elevation populations 

have not yet been examined. Third, we investigated whether clinality shapes trade-off 

structure by examining genetic variance-covariance (G) matrices, which might be expected 

if constraints on trait evolution depend upon the environment. Finally, we aimed to test 

whether geographic life history divergence is likely caused by selection or drift by 

contrasting phenotypic and genetic differentiation using QST-FST analysis (Leinonen et al. 

2013). This approach might indicate whether clinally varying traits are – as expected – 

shaped by clinal selection due to environmental gradients or rather shaped by drift. 

Similarly, for non-clinally varying traits, such an analysis might reveal if differences among 

populations are likely shaped by spatially varying selection due local adaptation or by drift.

Materials and Methods

Fly populations and maintenance

We used multiple wild-derived isofemale lines from each of 14 sub-Saharan populations of 

D. melanogaster (Fig. 1, Table S1). For practical reasons, we could not measure all traits for 

all populations; for each trait we measured a total of 62 to 119 isofemale lines from a total of 

8 to 10 populations (Tables S1, S2). For most populations individual-line whole-genome and 

admixture data are available (Pool et al. 2012). The coordinates of the populations ranged 

from 11.85°N to 31.06°S latitude, 9.75° to 39.18°E longitude, and 17 m to 3070 m above 
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mean sea level (AMSL), covering a major portion of tropical sub-Saharan Africa and also 

including three subtropical South African populations (Fig. 1). Isofemale lines were 

maintained and measured under standard laboratory conditions at 25°C (12:12 L:D) and 

60% relative air humidity in uncrowded vials on standard cornmeal-agar-yeast medium with 

dry yeast sprinkled on top.

Life history measurements

We measured viability (proportion egg-to-adult survival); thorax length (a proxy of body 

size); early fecundity; lifespan; and reproductive diapause under common garden conditions 

in the laboratory. Tables S1 and S2 give details of sample sizes; raw data are available from 

Dryad (doi:10.5061/dryad.738bp).

For assays of viability and thorax length, we placed ~10–20 adults from each line into vials, 

containing apple juice-agar medium with dry yeast sprinkled on top, and allowed females to 

oviposit overnight. The next day, eggs from each line were gently brushed off the surface of 

the medium and allocated to vials (15–22 eggs per vial) containing standard medium with 

yeast sprinkled on top. Vials were checked every 12 h for eclosing adults until all flies had 

emerged. Thorax length of 1–3 day old adult females was measured, as described by French 

et al. (1998), with a stereo dissecting microscope (Leica M205 FA; Leica Microsystems 

GmbH, Wetzlar, Germany) connected to a digital camera (DFC 300 FX) and using the Leica 

Application Software (LAS v.3.8).

To measure early fecundity and lifespan, we collected flies within 12 h upon eclosion and 

allocated virgin females individually to vials together with two males, following brief CO2 

anesthesia. Within the first 10 days of adulthood, flies were transferred to new vials with 

fresh food every 24 h and dead males were replaced. We counted the number of eggs laid by 

each female in each 24-h period over the first 10 days of adulthood and, from these egg 

counts, estimated daily per capita fecundity between days 1–5, 6–10, and 1–10. After the 

first 10 days, flies were transferred to fresh vials every second day. Throughout the assay, 

female age death was recorded when flies were transferred to new vials.

We also examined reproductive diapause, following the method of Saunders et al. (1989). 

Reproductive diapause is a plastic state of female ovarian arrest, triggered by low 

temperature and short photoperiod, associated with increased stress resistance and improved 

survival, and known to be clinal in North America and Europe (Schmidt & Paaby 2008; 

Schmidt 2011). Females were collected from each isofemale line within 2 h post-eclosion, 

transferred to fresh vials containing standard cornmeal-molasses medium, and placed in 

photoperiodic chambers on a photoperiod of 10L:14D at 11°C and >50% relative air 

humidity. Four weeks later, we dissected flies in PBS and determined the stages of ovarian 

development according to King (1970). A given line was classified as expressing diapause if 

the majority of individuals exhibited reproductive quiescence, as determined by the most 

advanced stage being ≤ stage 7.
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Analysis of single traits

Analyses were performed using JMP v.10 (SAS, Raleigh, NC, USA), unless stated 

otherwise. We did not analyze data on diapause since the majority of populations did not 

exhibit diapause (see Results; Supporting Information File, Table S3). To examine among-

population variation in viability, thorax length and fecundity we performed two-way mixed 

effects ANOVA, with ‘population’ as a fixed factor and ‘line’ nested in ‘population’ as a 

random factor. The random effect was modeled using restricted maximum likelihood 

(REML); see Table S4 for variance component estimates of the ‘line’ effect. Data for 

viability were arcsine transformed to achieve normality of residuals (as tested with Shapiro-

Wilk test; not shown).

Next, we examined whether traits are clinally differentiated using multiple linear mixed 

model regression by fitting the intercept (β0), regression coefficients for altitude (β1Alt), 

latitude (β2 Lat) and longitude (β3 Long) as continuous predictors, and ‘line’ as a random 

effect using REML (see Table S4 for variance component estimates). Simultaneously fitting 

the effects of altitude, latitude and longitude allows to model population structure without 

the need for specifying a population term while at the same time reducing potential 

collinearity between these individual factors and population (Pitchers et al. 2012). 

Geographic parameters were fitted by using meters (m) as a unit for altitude, absolute 

degrees for latitude, and degrees east (°E) for longitude. Given the geographical distribution 

of our populations, we did not have sufficient power for estimating two- and three-way 

interactions among altitude, latitude and longitude. Degrees of freedom were calculated 

using Satterthwaite’s approximation, implemented in JMP.

To examine among-population variation in lifespan we used Cox (proportional hazards) 

regression with ‘population’ as a categorical predictor and ‘line’ nested in ‘population’ as 

random effect, using the package ‘coxme’ in R (Therneau 2012). Similarly, to investigate 

clinality of lifespan, we performed Cox regression using altitude, latitude and longitude as 

continuous predictors and modeling ‘line’ as random effect. To visualize the effects of these 

predictors, we plotted range risk ratios showing the change in hazard ratio over the range of 

a given regressor from Xmin to Xmax (exp[estimate(Xmax - Xmin)]).

Finally, to determine which climatic factors covary with altitude, latitude and longitude, we 

performed multiple regression (fitting all three predictors as main effects) of 6 climatic 

variables (mean annual air temperature [°C]; diurnal temperature range [°C]; relative 

humidity [%]; precipitation [P50, mm]; number of days with rainfall; and wind velocity 

[m/s]; data from ‘International Water Management Institute’, http://www.iwmi.cgiar.org/). 

Only one climatic factor, mean annual air temperature, covaried with altitude and latitude; 

none of the factors covaried with longitude. We therefore repeated all above-mentioned 

analyses of trait variation using temperature as a predictor variable (i.e., instead of fitting 

geographic parameters). To further identify if trait variation can be explained by other 

climatic variables we also fit a ‘full model’ containing all six climatic variables as 

predictors.
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Analysis of trait relationships

To survive and reproduce organisms must function as phenotypically integrated wholes, not 

as single traits assumed to be separable from others (Stearns 1984, 1989). Indeed, life 

history traits are often tightly integrated through developmental, physiological and genetic 

mechanisms, resulting in life history correlations and trade-offs (Stearns 1992; Flatt & 

Heyland 2011). We therefore examined how geography affects (1) overall multi-trait life 

history and (2) genetic variance-covariance (G) matrices.

To investigate whether geography/clinality affect variation in multi-trait life history we used 

MANOVA, which accounts for phenotypic correlations among traits. MANOVA was 

performed on the combination of dependent variables (isofemale line means for viability, 

thorax length, early fecundity, lifespan), using ‘geographic effect’ and ‘population’ nested in 

‘geographic effect’ as factors. This analysis was done for each geographic effect (altitude, 

latitude, longitude) separately, classifying data as ‘low’ or ‘high’ for altitude; as ‘above’, ‘at’ 

or ‘below’ equator for latitude; or as ‘east’ or ‘west’ for longitude (Table S5).

To estimate pairwise genetic correlations among traits we calculated Pearson’s product-

moment correlation coefficients using isofemale line means, separately for each level within 

altitude (low, high), latitude (above, at, below equator), and longitude (east, west). Genetic 

correlations based on line means often provide similar estimates to those based on variances 

and covariances (Via 1984; Geber 1990; Donovan & Ehleringer 1994; Schmidt et al. 2005b; 

David et al. 2005). Our analysis indicated that several genetic correlations might differ 

between levels of particular geographic factors (Table S6); to verify whether line mean 

genetic variance-covariance (G) matrices differ significantly between levels of altitude, 

latitude, or longitude, we performed MANOVA on G pseudo-estimates obtained from the 

jackknife method (Roff 2002; Schmidt et al. 2005b; Roff et al. 2012), using ‘geographic 

effect’ and ‘population’ nested in ‘geographic effect’ as factors. Jackknife pseudo-values 

were created in R v.3.0.0.

QST-FST analysis

We also aimed to test whether among-population life history differentiation is likely due to 

selection by using QST-FST comparisons. QST quantifies the between-population proportion 

of quantitative trait variation (Lande 1992; Spitze 1993). For individuals raised in the same 

environment, QST can be estimated directly from within- and between-population 

phenotypic differences (Kohn et al. 2008). QST is often compared against neutral estimates 

of population genetic differentiation (FST) from multi-locus or genomic data to determine 

whether phenotypic differences among populations exceed that expected from genetic drift 

(Merilä & Crnokrak 2001; Leinonen et al. 2013). Values of QST that fall in the upper tail of 

the genomic distribution of FST values between two populations indicate that divergent or 

directional selection is likely to be acting on the trait (or on another trait pleiotropically 

correlated with it), whereas QST values in the lower tail suggest the possibility of stabilizing 

selection.

We used previously published genomes studied by Pool et al. (2012) and Lack et al. (2015) 

to generate genome-wide distributions of FST between all pairs of populations. The 
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assembly of these genomes is detailed in the above-cited papers, and all sequences used here 

are available as part of the Drosophila Genome Nexus (http://www.johnpool.net/

genomes.html). While these sequences were not generated from the same lines examined for 

life history characteristics in this study, they are representative samples of genetic diversity 

in the focal populations. The resulting genome-wide FST distributions were contrasted with 

pairwise QST values estimated from means of isofemale lines.

A critical factor in QST-FST comparisons is to ensure that the neutral variance of QST is no 

larger than that of FST (Miller et al. 2008). We sought to fulfill this requirement in two 

ways. First, the number of (homozygous) genomes analyzed for FST did not exceed the 

number of strains phenotyped from each population (hence the sampling variance of QST 

will not exceed that of FST). Second, the genomic distribution of FST between each pair of 

populations was obtained from short windows, defined by 10 non-singleton segregating sites 

from the full Rwanda RG population sample (Pool et al. 2012). These windows, each 

containing 10 SNPs, have an average length of 500 bp while scaling with the diversity along 

chromosomes (i.e., window-sizes are larger in regions of low diversity); they should have a 

lower neutral variance than a quantitative trait with a mutational target size greater than the 

mean FST window length, which seems plausible for the complex traits studied here. Also 

note that FST between African populations shows little broad-scale genomic variation and is 

similar for sites with higher and lower levels of constraint (Pool et al. 2012). P-values were 

estimated using an outlier approach by determining the position of a given value of QST in 

the FST distribution (i.e., a QST value falling into the upper or lower 0.5% of the FST 

distribution corresponds to P < 0.01 in a two-tailed comparison). Diapause was omitted from 

analysis due to negligible geographic variation.

Results

Geographic and clinal variation in life history

We first asked whether populations vary in life history and detected substantial phenotypic 

differentiation among populations for 3 out of 5 fitness-related traits. While viability did not 

vary among populations (ANOVA; ‘population’: F9, 67.54 = 1.98, P = 0.06), we found strong 

geographic differentiation for thorax length (F7, 54.15 = 15.18, P < 0.0001), early fecundity 

(daily per-capita fecundity between days 1–5: F9, 76.71 = 5.93, P < 0.0001; days 6–10: 

F9,68.81 = 2.45, P < 0.05; and days 1–10: F9,71.27 = 2.95, P < 0.01), and lifespan (Cox 

regression; ‘population’: likelihood ratio [LR] χ2 = 60.39, df = 11, P < 0.0001). We also 

investigated the incidence of diapause within and among populations (Table S3). Only two 

populations showed weak evidence for a diapause response: 1 line from the South African 

SP population (diapause frequency among lines: 1/5 lines = 0.2; incidence within the single 

diapausing line: 0.6) and 1 line from the Zambian ZI population (1/37 lines ≈ 0.03; 

incidence within the line: 0.57). Hence, among the 119 lines examined across populations, 

only 1.7% (2/119) showed a diapause response (Table S3). Thus, when measured using the 

standard assay (Saunders et al. 1989), cold-induced diapause is rare among ancestral sub-

Saharan populations and, when present, exhibits a very low frequency within populations.

Second, to examine whether life history traits vary clinally, we analyzed the effects of 

altitude, latitude and longitude (Table 1). Viability did not vary with geography, but thorax 
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length increased with altitude, latitude and longitude (Table 1, PFig. 2). Early fecundity over 

the first 5 days of adulthood covaried positively with altitude and latitude, and early 

fecundity over the first 10 days increased with latitude (Table 1, Fig. 3). In contrast, early 

fecundity between days 6 to 10 did not exhibit clinality (Table 1, Fig. 3). This suggests that 

early fecundity, especially within 5 days post-eclosion, is most strongly influenced by 

latitude and more weakly by altitude. Longitude did not measurably affect early fecundity 

estimates. Opposite to the pattern for fecundity, lifespan tended to decrease with altitude and 

latitude (multiple Cox regression; ‘altitude’: z = 2.02, < 0.05; ‘latitude’: z = 1.81, P = 0.07, 

marginally non-significant); moreover, lifespan covaried positively with longitude (z = 

−2.26, P < 0.05) (Fig. 4). Thus, geography has significant effects on life history 

differentiation among sub-Saharan African populations.

Climatic effects on life history variation

Next, we tested whether clinality might be explained by geographic differences in climatic 

factors. As predicted, mean annual air temperature decreased with altitude (F1,6 = 37.39, P < 

0.001) and latitude (F1,6 = 8.36, P < 0.05), whereas the other five climatic variables did not 

covary with geography (not shown). Notably, we did not find any climatic component to be 

significantly correlated with longitude. We therefore first asked whether variation in 

temperature explains clinal life history differences. Consistent with our clinal analyses 

above, thorax length (F1,58.93 =16.61, P < 0.001) and fecundity between 1–5 days (F1,85.07 = 

12.26, P < 0.001) decreased with temperature (Fig. S1), while lifespan increased with 

temperature, although this trend was not significant (Cox regression; z = −1.68, P = 0.09) 

(Fig. S1). Clinality of these traits is thus likely driven by variation in temperature or by 

factors that covary with temperature.

To identify (also non-clinal) climatic factors potentially important for local adaptation, we 

analyzed trait variation by fitting all six climatic variables as predictors. Using this full 

model, variation in fecundity between 1–5 days was best explained by temperature, while 

lifespan tended to be affected by temperature and diurnal temperature range, thus confirming 

our above analysis of temperature effects (not shown). In contrast, thorax length showed a 

significant increase with wind velocity (F1,54.56 = 6.15, P < 0.01), whereas the effect of 

temperature became non-significant in the full model. Fecundity between 6–10 days, a trait 

that did not exhibit any clinality, decreased with the amount of rainfall (P50 mm) (F1,72.69 = 

5.2, P < 0.01). Thus, wind velocity and the amount of rainfall (or correlated factors) might 

represent climatic variables responsible for local adaptation independent of climatic (clinal) 

gradients.

Variation in multi-trait life history and trade-off structure

We also asked whether geography affects multi-trait life history by using MANOVA, which 

accounts for trait interrelationships. Both latitude and longitude, but not altitude, influenced 

multivariate life history (Table S7). This indicates that latitudinal and longitudinal effects 

separate out distinct geographic combinations of trait values; it also suggests that geography 

might structure correlations between life history traits.
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Overall, altitude, latitude or longitude did not affect G matrices for the multivariate 

combination of all traits (not shown), but MANOVA on G matrices for specific trait pairs 

revealed two cases where geography structures genetic correlations. First, early fecundity 

between days 1–5 and lifespan were genetically negatively correlated at low elevation (r = 

−0.53, P < 0.001) but uncorrelated at high elevation (r = 0.03, P > 0.05), a difference 

confirmed by MANOVA (‘altitude’: exact F3,75 = 3.69, P < 0.05; ‘population’ nested in 

altitude not significant). Second, while viability and early fecundity between days 6–10 were 

genetically positively correlated among West African populations (r = 0.50, P < 0.05), they 

were uncorrelated among East African populations (r = 0.08, P > 0.05), with MANOVA 

confirming an effect of longitude (‘longitude’: exact F3,65 = 3.27, P < 0.05; ‘population’ 

nested in longitude non-significant). Hence, geography and/or climate shape genetic 

correlation structure, with different local conditions favoring distinct combinations of trait 

values.

QST-FST comparisons

The above results imply the existence of major clinal differentiation in fitness-related traits 

and correlations among them, but they do not conclusively demonstrate that these patterns 

are driven by selection. We therefore aimed to distinguish between the effects of selection 

and drift in shaping life history divergence by using QST-FST analysis. QST-FST analysis 

supports an important role for selection in promoting life history divergence among 

populations (Table S8). We detected numerous QST outliers in the upper tail of the FST 

distribution (range of FST values: 0.01 to 0.16, average: 0.09) (Table S8). Even those traits 

with the fewest outlier QST values, viability (QST range: 0–0.92; mean: 0.17) and early 

fecundity between days 6–10 (range: 0–0.91; mean: 0.18), still had 18 and 23 pairwise QST 

values (out of 45 population comparisons), respectively, in the upper 2.5% tail of the FST 

distribution. For viability, this suggests that – even though we were unable to find 

geographic/clinal variation – this character could be shaped by geographically variable 

selection. For the other two fecundity estimates (days 1–5, range: 0–0.92; mean: 0.20; and 

days 1–10, range: 0–0.86; mean: 0.20) and for lifespan (range: 0.01–0.82; mean: 0.16), we 

identified even more outlier QST values: 26, 26, and 27 out of 45 pairwise comparisons, 

respectively; and for thorax length (range: 0–0.98; mean: 0.18) we found 22 significant QST 

outliers out of 28 comparisons. Across all traits, a majority of QST values with P < 0.05 also 

gave P < 0.01, with extreme QST values around 0.9 or higher observed in some cases (Table 

S8). Some populations contributed more heavily than others to outlier QST values for certain 

traits (e.g., EA for viability and fecundity between days 6–10), but in general QST outliers 

came from diverse geographic comparisons, thus potentially indicating that multiple 

selection pressures act on life history traits across geography.

Discussion

Despite decades of work on clinality in D. melanogaster (De Jong & Bochdanovits 2003), 

whether life history varies predictably with geography within the ancestral African range 

remains largely unknown. Here, we have characterized life history differentiation among 14 

populations of D. melanogaster from sub-Saharan Africa. We found that three out of five 

life history traits (body size, early fecundity, lifespan) vary clinally across altitude, latitude 
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or longitude, suggesting that they might be shaped by spatially varying (clinal) selection. In 

contrast, viability and reproductive diapause did not exhibit major geographic differentiation 

or clinality.

Viability and diapause are not clinal in African populations

The absence of clinal patterns for viability is in agreement with the findings of Van’t Land 

et al. (1999) for populations from the South American west coast, but inconsistent with 

reports demonstrating that viability increases with altitude and/or decreases with latitude in 

populations from Cameroon (Louis et al. 1982) and Argentina (Folguera et al. 2008). Since 

we failed to detect variation for viability among populations, one explanation for our 

inability to detect clinality may simply be a lack of geographic differentiation. However, 

QST-FST comparisons revealed that populations have experienced differential selection 

affecting viability, so insufficient statistical power is a more likely explanation. 

Alternatively, viability may be truly non-clinal among African populations and shaped by 

local adaptation independent of altitude, latitude or longitude.

For reproductive diapause, we also failed to detect clinality: in fact, the majority of 

populations and lines were unable to enter diapause under cold temperature and short 

photoperiod. Our results parallel those of a preliminary survey of African lines (Schmidt 

2011): among isofemale lines from Zimbawe, Kenya, Gabon, and Malawi none exhibited 

diapause. However, these lines were from low-altitude localities, thus leaving open the 

possibility that African high-altitude flies might be able to undergo diapause. However, we 

found that African flies, even those from high elevations, do not typically enter diapause in 

response to cold temperature and short day length. Overall, only 2 lines from 2 out of 10 

populations exhibited diapause (2/10 = 20% of all populations; 2/119 = 1.7% of all lines). 

Our results thus support the hypothesis that winter diapause in D. melanogaster is a 

‘derived’ trait of recent evolutionary origin, which evolved as an adaptation to temperate 

habitats after the out-of-Africa expansion of this species (Saunders & Gilbert 1990; Schmidt 

2011; Flatt et al. 2013). The results further suggest a limited phenotypic influence of 

admixture from non-African temperate populations, which are known to have diapause 

ability (Saunders et al. 1989; Tauber et al. 2007; Schmidt & Paaby 2008). However, even 

though we believe this to be unlikely, we cannot exclude that diapause is ancestral: it might 

be an exaptation segregating at very low frequencies in African populations, or it might be 

deleterious and thus have been purged from these populations. Similarly, we cannot rule out 

that diapause in Afro-tropical populations might be regulated by environmental cues other 

than low temperature and short photoperiod, for example by humidity/aridity.

Body size clines are consistent with Bergmann’s rule

While there are many reports of clines for size-related traits in D. melanogaster, few have 

examined clinality of such traits within the ancestral African range. Our analysis of thorax 

length revealed clear patterns of altitudinal and latitudinal clinality among African 

populations, and QST-FST analysis indicated that among-population differentiation is likely 

shaped by selection. Our data confirm recent findings of Pitchers et al. (2012) and Klepsatel 

et al. (2013) who have analyzed clinality of wing size and thorax length among sub-Saharan 

African populations, including a subset of populations we have studied here. Together with 
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these observations, our results are consistent with ‘Bergmann’s rule’ (Partridge & Coyne 

1997) and suggest that altitude and latitude represent parallel gradients (Lencioni 2004).

Our analyses further show that simple linear regression with mean temperature explains size 

variation as well as multiple regression with altitude, latitude and longitude (R2 = 0.5 for 

both analyses). Temperature is therefore the most parsimonious candidate for the selective 

agent underlying latitudinal and altitudinal clines for size-related traits, a notion that is 

supported by experimental evolution studies of thermal adaptation (Partridge et al. 1994). 

However, the mechanisms underlying evolutionary divergence in body size in ectotherms 

are generally not well understood (Partridge & Coyne 1997); one explanation for the 

latitude-size correlation in Drosophila might be that, due to increased competition, larval 

food resources might be more ephemeral in the tropics, causing selection to favor rapid 

development, whereas temperate habitats might favor longer developmental time and thus 

larger adult size (James & Partridge 1995).

Early fecundity and lifespan show opposite clinality

Early fecundity and lifespan showed opposite clinal patterns among Afro-tropical 

populations: fecundity increased with latitude and altitude, whereas lifespan covaried 

negatively with both predictors (with the effect of latitude being marginally not significant). 

Thus, as with body size, altitude and latitude had parallel effects on each trait. Moreover, 

QST-FST analysis showed that for both traits population divergence is likely driven by 

spatially varying selection and/or local adaptation.

The clinal pattern of fecundity is consistent with previous studies, even though African 

populations have not yet been systematically examined. For example, early fecundity 

increases with altitude in D. buzzatii (Norry et al. 2006), and in terms of latitude, temperate 

populations of D. melanogaster are often more fecund than tropical ones (Boulétreau-Merle 

et al. 1982; Klepsatel et al. 2013). Similarly, fecundity increases linearly with latitude-of-

origin in Australian populations when flies are measured under tropical winter conditions 

(Hoffmann et al. 2003), and is also positively correlated with latitude on the Indian 

subcontinent (Rajpurohit & Nedved 2013). In contrast to fecundity, lifespan decreased with 

altitude and – more weakly – with latitude in our study. Similar results with respect to 

altitude have been reported for Californian Melanoplus grasshoppers (Tatar et al. 1997) and 

for Argentinian D. buzzatii populations (Norry et al. 2006). Latitudinal clines have also been 

documented for lifespan (see below). Together, these results for fecundity and lifespan are 

compatible with the ‘slow-fast continuum’ or ‘pace-of-life’ framework, which posits that 

high extrinsic mortality selects for a fast pace of life, i.e. high early reproductive effort and 

accelerated senescence (Promislow & Harvey 1990).

While our results agree with several previous reports, clinal patterns for fecundity and 

lifespan are often inconsistent across studies. For fecundity, no relationship with elevation 

has been found for Indian populations (Rajpurohit & Nedved 2013), and flies from Florida 

have higher fecundity than flies from Maine, with flies from the mid-Atlantic region being 

intermediate (Schmidt et al. 2005a; Schmidt & Paaby 2008). Moreover, when Australian 

flies are assayed in field cages under temperate conditions, the relationship between 

fecundity and latitude is curvilinear and opposite to that seen under tropical winter 
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conditions (Mitrovski & Hoffmann 2001). For lifespan, clinal patterns also appear to be 

complex. For the Australian cline, the association between latitude and longevity is concave-

upward when flies are assayed under temperate conditions (Mitrovski & Hoffmann 2001) 

but concave-downward when flies are assayed under laboratory conditions (Sgrò et al. 

2013). For the North American cline, in contrast, lifespan increases linearly with latitude 

(Schmidt & Paaby 2008). A caveat is that here we have measured these (and other) traits 

under common garden conditions at a specific temperature in the laboratory; our results 

therefore capture real differences among populations, but we do not know whether they 

reflect general patterns across other environments.

Despite the fact that for many traits qualitatively identical clines have been observed on 

multiple continents (De Jong & Bochdanovits 2003), discrepancies are not uncommon, in 

particular for complex traits (Introduction; Sgrò et al. 2013). Several factors might account 

for such differences, but their precise causes are unknown. For clinal patterns of fecundity 

and lifespan in Australia, inconsistencies might be due to differences in assay conditions 

between studies, e.g. seasonality or genotype by assay environment interactions (Hoffmann 

et al. 2003; Sgrò et al. 2013). Furthermore, the few studies that have identified clinality of 

fecundity and lifespan in D. melanogaster vary substantially in the latitudinal ranges 

examined: ~16°S to 43°S for Australia (Mitrovski & Hoffmann 2001; Hoffmann et al. 2003; 

Sgrò et al. 2013); ~25°N to 44°N for North America (Schmidt & Paaby 2008); and ~31°S to 

12°N for the African cline reported here. Thus, existing studies differ markedly in their 

relative coverage of temperate, subtropical and tropical regions. A related issue is that, even 

across comparable latitudinal ranges, climatic conditions can be very distinct across 

continents: for North American high-latitude populations, for example, winter conditions are 

likely much more extreme than those experienced by southeastern Australian populations. In 

addition, clines might also differ between ancestral African and derived populations in 

unknown ways.

Temperature might be the major factor underlying altitudinal and latitudinal clines, but how 

thermal gradients affect fecundity and lifespan is not well understood (Klepsatel et al. 2013; 

Rajpurohit & Nedved 2013; Sgrò et al. 2013). In our study, simple linear regression with 

average temperature explained clinality of early fecundity between 1 and 5 days post-

eclosion and lifespan (R2 = 0.51 and 0.28, respectively) equally well as more complex 

multiple regression fitting effects of altitude, latitude and longitude (R2 = 0.50 and 0.28, 

respectively). The significant effects of temperature on these traits were confirmed when 

simultaneously fitting all six climatic predictors. Moreover, while fecundity between days 

6–10 did not vary clinally with our geographic variables, this trait was negatively correlated 

with the amount of rainfall. We conclude that, at least in our dataset, clinal effects of altitude 

and latitude on fecundity and lifespan are most parsimoniously explained by temperature. In 

addition to temperature, the amount of rainfall might also represent an important (but still 

poorly understood) selective factor that may be relevant for non-clinal local adaptation, 

especially in terms of its effects on fecundity (this study; see above) but potentially also by 

influencing morphology (Klepsatel et al. 2013).

It is noteworthy that fecundity and longevity varied inversely across altitude, latitude and 

temperature in our study. Although for lifespan the effects of latitude and temperature were 
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not nominally significant, likely due to a lack of statistical power, both effects showed a 

clear trend in the same direction. Importantly, our observed pattern qualitatively matches 

results from the North American cline where fecundity and lifespan also covary inversely 

across geography (Schmidt & Paaby 2008). Although in our study the directionality of this 

association is reversed as compared to North America, the spatially tight negative coupling 

of these traits is consistent with a genetic trade-off between reproduction and survival 

(Stearns & Partridge 2001; Flatt 2011). Thus, while we do not yet understand differences in 

directionality among distinct clines, the available data suggest that fecundity and lifespan 

co-evolve antagonistically in response to spatially varying selection, leading to a trade-off 

across geography (Paaby & Schmidt 2009; Flatt et al. 2013). The notion that clinal gradients 

structure trade-offs is also underscored by our finding that early fecundity and lifespan are 

negatively genetically correlated for low-altitude populations but uncorrelated for high-

elevation populations. A likely reason is that the genetic basis of adaptation to low versus 

high altitude is different, so that different loci might be under selection in both 

environments; this in turn, might differentially affect patterns of pleiotropy and thus genetic 

covariances. Yet, due to the scarcity of studies describing such phenomena, it remains 

presently difficult to explain why certain genetic correlations change across environmental 

gradients.

Longitudinal life history clines are poorly understood

Interestingly, we also found evidence that body size increases with longitude and that 

longitude modulates the sign of the genetic correlation between viability and early fecundity. 

To date, unfortunately, extremely little is known about longitudinal clines: some examples 

have been reported in foraminifers, plants and humans (Ramachandran & Rosenberg 2011; 

Ujiié et al. 2012; Kooyers et al. 2014), for instance longitudinal clines for flowering time in 

Eurasian and North American Arabidopsis thaliana (Samis et al. 2008, 2012). In D. 

melanogaster, longitudinal clines have been found for chromosomal inversions (Knibb 

1982; Aulard et al. 2002), but whether such clines are associated with phenotypes is unclear. 

Known phenotypic gradients in Drosophila include longitudinal clines for pigmentation in 

D. americana (Wittkopp et al. 2011) and for wing shape among African D. melanogaster 

(Pitchers et al. 2012).

However, the climatic variables that covary with longitude are poorly understood. In fact, 

our analyses failed to reveal any climatic factor clearly associated with longitude. 

Nevertheless, several other factors might underlie longitudinal gradients, including spatial 

variation in ‘continentality’, or the seasonal phenology of plants (Wittkopp et al. 2011; 

Samis et al. 2008, 2012). Moreover, since fruit flies are commensal with humans, 

longitudinal differences among African D. melanogaster populations might potentially be 

due to well-known east-west differences in human land use, agriculture, and so forth 

(Gomez et al. 2014). Indeed, eastern and western African populations of D. melanogaster 

are genetically distinct groups (Pool & Aquadro 2006), which is in line with the phenotypic 

differences across longitude. Clearly, the effects and causes of longitudinal gradients 

deserve much more attention; they should be relatively easy to investigate in well-studied 

models such as Arabidopsis or Drosophila.
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Conclusions

Here we have provided evidence for major patterns of clinality in several important fitness-

related traits among sub-Saharan African populations of D. melanogaster. Our main findings 

are that (1) body size, early fecundity and lifespan exhibit strong clinality among subtropical 

and tropical African populations, especially with respect to altitude and latitude; (2) 

altitudinal and latitudinal clines are best explained by temperature gradients, and for most 

traits altitude and latitude represent parallel gradients; (3) in contrast to derived, temperate 

populations, winter diapause is absent – or at least extremely rare – among ancestral African 

populations; (4) clinality structures the genetic trade-off between early fecundity and 

lifespan and the genetic correlation between viability and early fecundity, suggesting that the 

genetic basis of life history adaptation varies across tropical clines; and (5) QST-FST analysis 

supports an important role for selection in shaping life history differentiation among African 

populations.

A potential drawback of our isofemale line approach is that we cannot rule out that the 

measured populations, which have been kept under laboratory conditions for different 

periods of time, vary in levels of inbreeding and/or laboratory adaptation. We believe this to 

be unlikely for the following reasons (also see discussion in David et al. 2005). First, trait 

means and variances obtained from isofemale lines have previously been shown to remain 

stable across generations (Gibert et al. 1998). Second, our results on size-related traits and 

Bergmann’s rule are entirely consistent with those obtained by Klepsatel et al. (2014) who 

measured several outbred populations constructed from a subset of the isofemale lines we 

have measured here. Third, if present at all, we would expect laboratory adaptation and/or 

variation in inbreeding levels to act against (or even erase) the clinal signals we have 

detected here.

A major implication of our study is that life history clinality, presumably driven by spatial 

differences in climatic factors, can be very pronounced in the tropics, not just across 

continental gradients that span temperate, subtropical and tropical regions, as might often be 

assumed. While this has to some extent been appreciated for the effects of tropical 

elevational gradients, the effects of latitude and longitude within tropical environments have 

received much less attention. Importantly, our findings from African populations suggest 

that even within tropical environments thermal gradients can have a major selective 

influence on life history differentiation.
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Figure 1. 
Sampling locations of sub-Saharan African populations examined in this study. Open 

symbols: low-altitude populations (17–900 m AMSL); filled symbols: high-altitude 

populations (1661–3070 m AMSL). Dashed horizontal line: equator (0° latitude); vertical 

dashed line: meridian (0° longitude).
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Figure 2. 
Clinal variation in female thorax length (mm), a major proxy of body size. The plots show 

regression of size against (A) altitude, (B) latitude, and (C) longitude. The grey line 

represents the regression line for each geographic factor, obtained from the multiple 

regression mixed model.
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Figure 3. 
Clinal variation for two different estimators of early fecundity. Upper panel (A–C): early 

daily per capita fecundity between days 1–5. Lower panel (D–F): early daily per capita 

fecundity between days 1–10. The plots show regression of fecundity against (A, D) 

altitude, (B, E) latitude, and (C, F) longitude. The grey line represents the regression line for 

each geographic factor as obtained from the multiple regression mixed model.
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Figure 4. 
Clinal variation in adult mortality. The figure shows the range risk ratio between the lowest 

and highest value of each of the geographic factors (altitude, latitude, longitude) as 

estimated from Cox regression. Risk ratios < 1 indicate a decrease in the hazard ratio with 

increasing values of the geographic factor (i.e., a negative slope), whereas risk ratios > 1 

correspond to an increase in the hazard ratio (i.e., a positive slope). Error bars represent 95% 

confidence intervals.
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