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ABSTRACT 

OBJECTIVE: Weight gain is  associated with psychiatric disorders and/or with psychotropic drug 

treatments. We analyzed in three psychiatric cohorts under psychotropic treatment the 

association of weighted genetic risk scores (wGRS) with Body Mass Index (BMI) by integrating 

BMI-related polymorphisms from Candidate Gene  approach and Genome Wide Association 

Studies (GWAS).  

MATERIALS AND METHODS: wGRS of 32 polymorphisms previously associated with BMI in 

general population GWAS and 20 polymorphisms associated with antipsychotics induced weight 

gain were investigated in three independent psychiatric samples. 

RESULTS: wGRS of 32 polymorphisms were significantly associated with BMI in the psychiatric 

sample 1 (n=425) and were replicated in another sample (n=177). Those at the percentile 95 

(p95) of the score had 2.26 and 2.99 kg/m2 higher predicted BMI compared to individuals at the 

percentile 5 (p5) in the Sample 1 and in the Sample 3 (p=0.009, p=0.04, respectively). When 

combining all samples together (n=750), a significant difference of 1.89 kg/m2 predicted BMI 

was found between p95 and p5 individuals at 12 months of treatment. Stronger associations 

were found among men (difference: 2.91 kg/m2 of predicted BMI between p95 and p5, 

p=0.0002) whereas no association was found among women. wGRS of 20 polymorphisms was 

not associated with BMI. The wGRS of 52 polymorphisms and the clinical variables (age, sex, 

treatment) explained 1.99% and 3.15%, respectively of BMI variability. 

CONCLUSION: The present study replicated in psychiatric cohorts previously identified BMI risk 

variants obtained in GWAS analyses from population-based samples. Gender specific analysis 

should be considered in further analysis. 
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INTRODUCTION 

Obesity has become a major public health concern, its prevalence increasing dramatically over 

the last decades. Obesity is a complex disease that results from imbalance of energy intake and 

energy expenditure, being highly influenced by an individual’s lifestyle or environment (i.e. diet, 

physical activity) and also by genetic predisposition [1]. Twin and family studies reported 40%-

80% of heritability in obesity [2, 3]. Several forms of monogenic obesity have been described, 

especially those related to leptin-melanocortin pathways [4, 5]. The most prevalent form of 

obesity, however, is the polygenic or common obesity, which results from the combined effect of 

common genetic variants as well as additional rare variants, copy number variants, and 

epigenetic changes [6]. Among psychiatric populations, the risk of developing obesity and 

related problems is increased compared to the general population [7]. Several factors have 

been attributed to this increased obesity risk, such as the illness, the lifestyle and/or the 

medication [8, 9]. 

Since their introduction onto the market, second generation antipsychotics (SGA) have been 

widely used over first generation antipsychotics (FGA), as they clearly show an advantage in 

terms of reduced risks of extrapyramidal side-effects, as well as some advantages for the 

treatment of negative symptoms. However, most SGA can induce strong metabolic disturbances 

in particular as a consequence of the dual antagonism on serotonin and dopamine receptors 

and its effect on food intake regulation [10]. Over the last decade, pharmacogenetics of 

psychotropic-induced weight gain has been widely studied through hypothesis-driven candidate 

gene approaches. The most studied and best-replicated polymorphisms focused on dopamine 

and serotonin receptors [11, 12]. Additionally, other genes implicated in leptin-melanocortin 

pathways (e.g. LEP, LEPR, MC4R, NPY), endocannabinoids (CNR1) or genes involved in fatty 

acids and cholesterol production (SCARB1, INSIG2) showed an association with weight gain 
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among psychiatric cohorts treated with antipsychotics (see review [13]). Recently, research 

conducted in our laboratory showed other candidate genes which could potentially induce 

weight gain among psychiatric populations under psychotropic treatment. These genes code for 

enzymes involved in metabolic pathways (PCK1, 11βHSD1) [14-16] for receptors (MCHR2, 

IRS2 and PPARGC1A) and for transcriptional co-activators (CRTC1, CRTC2) involved in 

energy balance, appetite regulation and glucose homeostasis [17-21]. 

With the emergence of genome wide association studies (GWAS), thousands of new 

polymorphisms associated with obesity and metabolic phenotypes have been elucidated. In 

particular, the associations with Body Mass Index (BMI) and/or obesity in the FTO [22-25], 

MC4R [26-28], and TMEM18 [23, 24, 28, 29] genes have been widely replicated in general 

populations. The largest BMI meta-analysis of GWAS conducted to date in general populations 

reported 97 polymorphisms [30]. These variants also included 32 previously reported loci [31] 

that have been replicated in other cohorts and different ethnicities [32-34]. Individually, these 

variants have shown little effect on the BMI [31]. As an alternative way of testing individual 

Single Nucleotide Polymorphisms (SNP) effects, Genetic Risk Scores (GRS) summarize risk-

associated variations across the genome by aggregating information from multiple-risk SNPs 

[35] with small effects increasing the consistency and power to determine genetic risk in 

polygenic diseases (i.e. obesity) [36]. To date, GRS methods have been used in diabetes [37], 

schizophrenia [38] and obesity [31] among other diseases. Studies on obesity have been 

conducted in adults [36, 39] or children from the general population [40, 41] and recently two 

studies were conducted among depressed patients [42, 43]. The aim of the present study was 

to determine if GRS built from previous BMI and/or weight gain related variants from GWAS and 

candidate genes (CG) were associated with BMI in three independent psychiatric samples. 

Additionally, we wanted to analyze if previous variants related to diabetes (21 SNPs) and 
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psychiatric disorders (9 SNPs) also showed an association with BMI, since these diseases 

seem to share some genetic components with obesity [8, 44, 45].  

MATERIALS and METHODS 

Samples Description 

Psychiatric samples 

Sample 1 (n=425) consisted of an on-going follow up study which started in 2007 in the 

psychiatric ward from the Lausanne University Hospital already described elsewhere [46]. 

Briefly, 425 Caucasian patients starting psychotropic treatment including atypical antipsychotics, 

mood stabilizers and/or mirtazapine were recruited. Anthropometric parameters such as weight, 

height and waist circumference were measured. Other demographic covariates (i.e. sex, age 

and ethnicity) as well as history of treatment (treatment duration, psychotropic treatment) were 

obtained from medical files or during the interview. Medical questionnaires were filled in and 

blood samples were collected at baseline and at 1, 2, 3, 6, 12 months after initiating 

psychotropic treatment according to guidelines [47, 48]. Patients switching to one of the studied 

treatments were also included. BMI (in kg/m2), the outcome in the present study, was used as a 

continuous variable and whenever required, stratified in 3 categories as normal (BMI<25 kg/m2) 

overweight (25 ≥BMI<30, kg/m2) and obese (BMI≥30 kg/m2). 21% of patients had the first 

psychotic episode and/or were diagnosed within the first year of study inclusion (first episode 

and newly diagnosed (FEND) patients).  

Two other psychiatric samples were used as replication. They consisted of two retrospective 

studies from outpatient settings in Geneva and in Lausanne (Sample 2=148, Sample 3=177, 

respectively). Both samples included patients receiving atypical antipsychotics and/or mood 
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stabilizers (i.e. aripiprazole, amisulpride, clozapine, olanzapine, quetiapine, risperidone, lithium 

and/or valproate). The Geneva study started in 2007 in an outpatient Geneva setting and 

patients recruited had been under psychotropic treatment for at least 3 months. In the Lausanne 

study (Sample 3 started in 2010, inclusions ongoing), most of the patients had been treated for 

more than one year in a Lausanne outpatient setting. For both studies, blood samples were 

collected and questionnaires were filled out during one of the routine checkup. Weight, height, 

waist circumference, serum lipids and/or glucose were measured and several clinical variables 

(e.g. treatment, treatment duration) were recorded. Baseline weight (before the current 

psychotropic treatment) was extracted from medical files or self-reported. Further description of 

these samples has been published elsewhere [46].  

Psychiatric diagnoses for the three samples were made according to ICD-10 classification 

criteria. The main diagnostic groups were [F20.0-F24.9] & [F28-F29]: psychotic disorders; 

[F25.0-F25.9]: schizoaffective disorders; [F30.0-F31.9]: bipolar disorders; [F32.00-F33.9]: 

depression. The latest introduced psychotropic medication was considered as the main 

psychotropic treatment. Written informed consent was provided by all individuals or by their 

legal representatives and the studies were approved by the ethics committee of the 

corresponding centers. 

General population-based sample 

The Genetic Investigation of Anthropometric Traits Consortium (GIANT) performed a meta-

analysis of GWAS data with a discovery set of 123,865 individuals of European ancestry from 

46 studies for height [49], BMI [31] and Waist to Hip Ratio (WHR) [50]. This general population-

based sample was used to obtain β-coefficients (allele effect) which assigned weights to each 

variant when building the genetic risk scores. 
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SNP selection, genotyping and construction of Genetic Risk Scores 

The Initial 32 polymorphisms selected for the present study had been associated with BMI in a 

GWAS meta-analysis conducted in an adult general population [31]. All selected variants 

reached GWAS significance (p<5x10−8) (S1 Table).  Another 20 SNPs which had been 

previously related to antipsychotic-induced weight gain through candidate gene approach were 

also selected [13]. From the reviewed variants, only SNPs or proxies of SNPs genotyped in our 

sample and in GIANT, and only those in the literature reaching significant results in both 

genders were retained for the analysis. A detailed description of the SNPs considered can be 

found in S2 Table.  

Finally, we considered two meta-analyses of GWAS based on 21 SNPs associated with type 2 

diabetes (8,130 cases and 38,987 controls, S3 Table) and another one based on 9 SNPs 

associated with 5 major psychiatric disorders (final dataset: 33,332 cases and 27,888 controls, 

S4 Table) including schizophrenia, bipolar disorder, major depressive disorder, autism and 

attention deficit-hyperactivity disorder [51, 52]. In order to avoid indirect correlation between 

variants (i.e. in high Linkage Disequilibrium (LD) correlation), which is one of the problems when 

constructing GRS [53], and to avoid overrepresentation of a particular gene, only one SNP per 

gene was considered. Selection was made by selecting the SNP with the lowest P-value. We 

verified that the resulting SNPs were not in LD. Note that this approach is analogous to an LD-

based pruning, but we typically select less SNPs by ignoring secondary (independent) SNP 

contributions from the same gene (allelic heterogeneity). The study protocol was approved by 

the ethics committees of the recruiting centers and all patients gave written informed consent for 

the genetic analysis. DNA was extracted from blood samples as described by the manufacturer 

protocols using Flexigene DNA kit and QIAamp DNA Blood Mini QIAcube Kit (Qiagen AG, 

Switzerland). 



10 

Genotyping of 895 Caucasian patients was performed using the Illumina 200K 

Cardiometabochip (Illumina, San Diego, CA). Briefly, the Cardiometabochip is a custom Illumina 

iSelect genotyping array designed to test DNA variation of 200’000 SNPs from regions identified 

by large scale meta-analyses of GWAS for metabolic and cardiovascular traits [54]. A Quality 

Control was done for the genotyped SNPs. Polymorphisms or proxies were chosen based on 

genotype availability in the Cardiometabochip and GIANT cohort. In addition, samples were 

excluded from the analysis if sex was inconsistent with genetic data from X-linked markers, and 

when genotype call rate was <0.96, gene call score <0.15 and minor allele frequency (MAF) 

<0.05. GenomeStudio Data Analysis Software was used to export results generated by Illumina 

CardiometaboChip. Additionally, the rs7799039 from the LEP gene largely associated with 

antipsychotic-induced weight gain [55] and which was not available in Cardiometabochip was 

genotyped by KBioscience Institute in United Kingdom using the novel fluorescence-based 

competitive allele-specific PCR technology (KASP™). Details about this technology are 

available at: http://www.lgcgenomics.com/genotyping/kasp-genotyping-chemistry/. Out of the 

895 Caucasian genotyped individuals, 750 were finally analyzed (145 patients excluded due to 

missing data). 

Among the several existing methods to build a GRS, it has been shown in disease risk modeling 

that weighted GRS methods are preferred to the simple count method when relative risks vary 

among SNPs  [56]. SFig 1 represents the distribution of the weighted genetic score by the 

number of risk alleles (unweighted score) calculated for each individual in the whole cohort 

showing that weighted and unweighted scores are not perfectly correlated, thus highlighting the 

importance of weighting each risk allele using weighted Genetic Risk Score (w-GRS) methods. 

The w-GRS for selected SNPs was calculated as previously described [31]. In summary, 

genotypes from each SNP were coded as 0, 1 or 2 according to the number of BMI risk alleles. 

Then, each polymorphism was weighted by its β-coefficient (allele effect) based on the 

http://www.lgcgenomics.com/genotyping/kasp-genotyping-chemistry/
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assumption that all SNP of interest have independent effects and contribute in an additive 

manner to BMI. Allele effect on BMI was obtained performing lookups from the summary 

statistics of an independent population sample (GIANT consortium, n=123,865), thus preserving 

homogeneity of β-coefficient calculations (S5 Table) for all SNPs included in the genetic score.  

Statistics 

Principal Components of Ancestry was used to assess ethnicity and only Caucasians were 

considered in the analysis. Hardy-Weinberg Equilibrium (HWE) was determined for each 

polymorphism by a chi-square test. HWE and genotype frequencies are shown in 

supplementary tables (S1 and S2 Tables). P-values equal or less than 0.05 were considered as 

statistically significant and Bonferroni correction for multiple tests was applied when necessary. 

Initially, individual SNP effects on BMI were calculated for Sample 1. Genotypes were analyzed 

in an additive model of inheritance except for one SNP (HSD11β1 rs3753519C>T) which had 

too few homozygous for the variant allele (n=7) and a dominant model was used. Secondly, a 

GRS was built and tested in Sample 1 and it was further tested for replication in 2 other 

psychiatric samples (samples 2 and 3). Finally, in order to determine the general effect of the 

GRS on BMI, we combined all samples since they were similar overall in terms of individual’s 

origin (Lausanne and Geneva regions), type of treatment, age, and diagnostic. Due to 

interdependence between observations (i.e. BMI) made on the same individual over time, a 

Generalized Linear Mixed Model (GLMM) was fitted using the MASS library of R language [57, 

58] to assess influence of genetic parameters on BMI in a model adjusted by age, sex, main

psychotropic treatment and treatment duration. The appropriate link function we chose for the 

BMI variable is the inverse function which is the canonical link function for the Gamma family. 

GLMMs combine both linear mixed models (which incorporate random effects) and generalized 

linear models (which deal with non-normal data by using link functions and exponential family) 
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[59]. The glmmPQL function of the MASS library uses the Penalized Quasi-Likelihood in order 

to estimate model parameters [60]. Finally, predicted BMI differences were calculated at 

baseline, 12 and 24 months of treatment between the percentile 95 (the upper extreme of an 

unfavorable genetic background) and percentile 5 (the lower extreme of an unfavorable genetic 

background) of the GRS. In order to preserve homogeneity within samples and to deal with 

treatment durations when combining all samples together (i.e. shorter treatment duration up to 

12 months in sample 1), predicted BMI was obtained at baseline and at 12 months of treatment. 

The corresponding 95% confidence intervals (95%CI) were calculated. Some exploratory 

analyses were also performed to obtain the explained variance of BMI by genetic and non 

genetic covariates in the psychiatric Sample 1 for a subgroup of individuals aged between 18 

and 65 years. A Generalized Additive Mixed Model (GAMM) was used to deal with complex and 

non-linear BMI evolution in time and presence of multiple observations per individual introducing 

interdependence among observations. A random effect at the subject level was also introduced 

to take the dependence structure of observed data into account. The GAMMs were fitted using 

the mgcv package of R (settings were fixed at package defaults). To be more conservative the 

uncertainty of estimated parameters was assessed by 10’000 bootstraps on individuals [57, 61, 

62]. Individuals with missing data or genotypes were excluded from the analysis (see 

supplementary methods for further details).  
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RESULTS 

Population description 

Table 1 presents the characteristics of Sample 1 (n=425) and replication Samples 2 and 3 (n1= 

148, n2= 177). All samples together consisted of 750 Caucasian individuals with 50% of men 

and a median age of 45 years (range: 13 - 97 years). Sample 2 had the highest obesity (BMI≥ 

30 kg/m2
) prevalence (35% compared to 18% in Samples 1 and 3, p=0.006). Sample 1 had the 

lowest olanzapine and clozapine prescription (11% and 8%, respectively compared to 16% and 

14% in Sample 2, respectively, and 12% and 9% in Sample 3, respectively, p=0.001) as well as 

the shortest treatment duration (6 months) when compared to samples 2 and 3 (27 and 36 

months, respectively). S6 and S7 Tables show the characteristics of the combined cohort 

stratified by gender and by FEND patients, respectively. Men were younger than women 

(median 40 years versus 49 years, respectively, p=0.0001) and had higher BMI at baseline 

(24.6 kg/m2 versus 24.1 kg/m2 in men and women, respectively, p=0.004). Besides, treatment 

duration was longer for men than women (9 months compared to 6 months, respectively, 

p=0.05) (S6 Table). 

Genetic analysis 

Genotype analysis 

S1 and S2 Tables list the 32 and 20 SNPs from GWAS and CG studies, respectively, analyzed 

in the psychiatric samples. All of them were in Hardy-Weinberg equilibrium after multiple test 

correction (p-corrected<0.001). Thirty-two previously reported SNPs associated with BMI in the 

general population [31] were analyzed in Sample 1. One SNP located in CADM2 gene showed 
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a nominal association with BMI over time (p-value=0.01) (Table 2). At 12 months of treatment, 

rs13078807 polymorphism showed a 1.04 BMI units increase per additional risk allele. Twenty 

other SNPs were selected from CG studies associated with psychotropic induced-weight gain 

and two of them (i.e. HSD11β1-rs3753519, CRTC2-rs8450) showed an association with BMI 

(difference of predicted BMI of -2.35 units for rs3753519 at 12 months of treatment between 

patients homozygous for the variant allele and wild types and 0.69 units of BMI increase per 

additional risk allele for rs8450, p-values: 0.00001, 0.04, respectively) (Table 2).  

Genetic Risk Score analysis 

When combining all 32 GWAS SNPs in a weighted GRS (w-GRS 32), the score was 

significantly associated with BMI in Sample 1 (p=0.009), in Sample 3 (p=0.04) and also in the 

three combined samples (p=0.002, see Table 3). In Sample 1, those at the percentile 95 (p95) 

of the GRS (i.e. a high genetic risk score) had 2.26 units more of predicted BMI when compared 

to those individuals at the percentile 5 (p5) of the GRS (low genetic risk score) at 12 months of 

treatment. Results were similar in Sample 3 and when all samples were combined together at 

24 and 12 months of treatment (difference of predicted BMI between p95 and p5 of the GRS: 

2.99 and 1.89 units, respectively). A higher effect on BMI was found among men when analyses 

were stratified by sex in the combined sample (interaction sex*GRS p<0.10): individuals at the 

p95 score had 2.91 units more of predicted BMI when compared to individuals at the p5 score at 

24 months of treatment (p-value: 0.0002). For the subgroup of FEND patients a difference of 

predicted BMI of 3.79 units was observed between individuals at the p95 and p5 of the GRS 

(p=0.008) (Table 3). Fig 1 shows the evolution of BMI (non adjusted) over time between 

extreme percentiles (low genetic risk; p5 versus high genetic risk; p95). Additionally, predicted 

BMI differences between p10 and p90 extremes are presented in S8 Table and S2 Figure.  
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When pooling all samples together, one unit increase of the risk allele at 24 months of treatment 

in the GRS was associated with an increase of BMI of 0.19 units (p=0.011). Among men, this 

increase in BMI was of 0.30 units (p=0.0001) whereas in women it was of 0.08 (p=0.38).    

Unlike to what we found with GWAS SNPs, when the 20 CG SNPs were combined in a 

weighted GRS (w-GRS 20), no association with BMI was observed in the whole sample 

(p=0.46) (S9 Table). 

Finally, the 20 CG SNPs were combined with the 32 GWAS SNPs in another w-GRS (w-GRS 

52) (S10 Table). w-GRS 52 was significantly associated with BMI in Sample 1 (p=0.01), Sample

3 (p=0.04) and when combining all samples (p=0.001). Only a trend was observed in Samples 2 

and 3 when pooled together (p=0.06). Thus, an individual in the p95 score had 2.08, 2.79 and 

1.94 more predicted units of BMI in Sample 1 (12 months of treatment), in Sample 3 (24 months 

of treatment) and in all samples combined together (12 months of treatment) when compared to 

individuals at the p5 of the score, respectively. When analyses were stratified by gender, a 

significant effect was found among men at the p95 of the score who showed 3.09 more units of 

predicted BMI when compared to men at the p5 (p=0.0001). FEND patients who were at the top 

percentile (p95) had also 3.66 more units of predicted BMI when compared to patients at the p5 

of the GRS (p=0.01).  

GLMM according to different quartiles showed significant differences between individuals within 

the 3rd and 4th quartile of the GRS as compared to the 1st quartile. At 24 months of treatment, 

those at the 3rd and 4th quartiles had 1.84 [0.40-3.29] and 1.91 [0.51-3.32] more units of 

predicted BMI when compared to the 1st quartile, respectively (results not shown). Table 4 

shows the characteristics for the four groups stratified by GRS quartiles. Those at the 4th 

quartile had higher BMI before starting and during the current psychotropic treatment (baseline 
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and current median BMI: 25.1 and 25.9 kg/m2, respectively) when compared to the 1st quartile 

(baseline and current median BMI: 23.2 and 24.3 kg/m2, respectively), which could be possibly 

explained by the interaction between genetics, previous psychiatric episodes and/or 

psychotropic treatments. The prevalence of baseline overweight and obesity increased in higher 

quartiles (i.e. 48% in 4th quartile versus 30% in 1st quartile, p=0.007). No differences of age, 

treatment, treatment duration, high waist circumference prevalence, diagnostic and FEND 

individuals distribution were observed between the different quartile groups (Table 4). 

Finally, when comparing the distribution of genetic scores without adjusting by other covariates, 

no differences were found between men and women (S6 Table) or FEND patients (S7 Table).   

Genetic Risk Scores and GWAS genes for psychiatric diseases and diabetes 

The SNPs selected from GWAS associated with psychiatric diseases (i.e. schizophrenia, bipolar 

disorder, major depressive disorder, autism and hyper attention deficit) and diabetes were 

combined in two different w-GRS and tested for association with BMI. No significant results 

were found (results not shown). 

Explained variability 

We calculated the BMI variability explained by the clinical and genetic covariates in the Sample 

1, for individuals from 18 to 65 years old (n=263). Thus, in our model, the genetic component 

considering the w-GRS 32 explained 1.97% of BMI variability whereas non genetic components 

such as age, sex and treatment explained 2.23%, 0.42% and 0.6%, respectively, out of the total 

7.01% BMI variability explained by the model. Finally, the BMI explained variance of the 52 

SNPs (32 SNPs added to the 20 SNPs) was of 1.99% whereas the important clinical variables 
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known to influence weight (age, sex, treatment) represented altogether 3.15% of the BMI 

variability.  

DISCUSSION 

In the present study, we found that w-GRS built from 32 polymorphisms previously associated 

with BMI in the general population GWAS were also significantly associated with BMI in our 

Sample 1, being replicated in another sample. The stronger effects were found among men and 

FEND patients. Some studies have replicated the association of the 32 SNPs GRS with BMI 

and obesity-related genotypes in different cohorts and ethnicities [32-34]. Two cross-sectional 

studies using a Mendelian randomization approach [42] and a case-control design [43] 

replicated the association of w-GRS in depressed patients. However, type of treatment, 

treatment duration or BMI variation over time were not taken into account, while BMI at baseline 

and treatment duration are known moderators of weight gain in populations under psychotropic 

treatment [9]. Moreover, the number of patients treated was not described in the previous 

studies. The present study, in contrast, includes longitudinal data considering long treatment 

duration (i.e. analysis has been conducted up to 24 months), type of treatment and other 

diagnostics in addition to depression. Explained BMI variability by GRS when including 32-SNPs 

GWAS GRS in our model, was slightly higher than the one reported initially in general 

population cohorts in the literature (1.45%) [31] or than the one found in French and Chinese 

general populations (1%, 0.90%, respectively). Of note, adding the 20 CG in the model did not 

improve the explained BMI variability (1.97% versus 1.99%). The effect on BMI per risk allele 

increase of the 32-SNPs GWAS GRS was similar to those reported previously (0.11 [32], 0.13 

[34]) when considering both genders together. However, higher BMI increase per risk allele was 

found among men.     
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Individual SNP analyses showed few significant effects in Sample 1. Only one GWAS SNP

(rs13078807) located in CADM2 gene region was nominally associated with BMI. CADM2 has 

been previously associated with obesity in Caucasians and other ethnicities [31, 63, 64]. Among 

the CG polymorphisms, 2 SNPs (HSD11β1 rs3753519 and CRTC2 rs8450) were associated 

with BMI in Sample 1; however rs8450 did not survive Bonferroni correction. In addition to 

weight gain association in psychiatric samples [16], HSD11β1 has been associated with 

metabolic syndrome in a general population [14] and CRTC2 has been associated with type 2 

diabetes in Asian populations [65]. CRTC2 is a coactivator which binds to CREB and stimulates 

the expression of PEPCK and G6Pase and this increases hepatic gluconeogenesis through 

dephosphorylation [66, 67]. In addition, a deletion of CRTC2 impairs the expression of the 

gluconeogenic genes and the ability of glucagon to stimulate glucose production in hepatocytes 

[68]. On the other hand, HSD11β1 gene codes for a microsomal enzyme catalyzing tissue 

regeneration of active cortisol from the inactive form cortisone [69]. It is highly expressed in 

metabolic tissues such as liver and adipose tissue. Increased plasma cortisol levels have been 

associated with visceral obesity and metabolic syndrome. An overexpression of this gene has 

been associated with hyperphagia and obesity in mice [70, 71].  

The fact of finding stronger effects when combining all SNPs in a w-GRS could be explained by 

the fact that common variants have individually little effect on BMI and very large sample sizes 

are needed in order to detect small effects. Thus, when integrating many small variant effects in 

a w-GRS, the consistency and the power to detect these effects increase, even in smaller 

sample sizes [35]. In addition, the BMI explained variability in the whole model was 7.01%, with 

1.97% of it corresponding to the w-GRS. Of note, although this is not a high percentage, it 

represents a 28% of the total BMI variability explained by the model. The present study is in the 

same line as a very recently published study concerning GWAS meta-analysis of large 
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population data-sets (>300 000 individuals) where the genetic component (i.e. w-GRS) 

explained up to 2.7% of BMI variability [30]. 

The w-GRS 32 SNPs could not be replicated in Sample 2. This might be tentatively explained 

by the fact that BMI and overweight prevalence at baseline were the highest among the 3 

samples. Low BMI at baseline has been described as a risk factor for gaining weight [72]. In the 

same line, when analyzing the 20 CG variants previously associated with antipsychotic-induced 

weight gain in a w-GRS, no significant association was observed between the w-GRS and BMI. 

SNPs from CG studies that were selected included very heterogeneous studies, with small 

sample sizes and with different ethnicities, treatment and treatment durations (see S2 Table), 

which could explain the non significant results in our psychiatric samples. In addition, some very 

promising variants (i.e. 5HT2C receptor) could not be included in our weighted GRS model since 

the allele effect (β-coefficient) calculation was not available, but when calculating unweighted 

GRS (in which this variant was included) results did not change significantly (p=0.22). Finally, 

an a priori use of an additive model for the effect of all variants could contribute to the negative 

findings. 

We also found significant effects for the w-GRS 32 among FEND patients who had lower BMI 

and obesity prevalence at baseline and shorter treatment duration when compared to others. 

This is in agreement with previous studies showing that low baseline BMI and first-episode 

patients are known risk factors for important weight gain during psychotropic drug treatment [9]. 

To our knowledge, this is the first study reporting stronger effect in men when analyzing the 

influence of genetic scores on BMI despite the fact that gender differences regarding fat storage 

and metabolism have already been described [73]. This emphasizes the need to consider 

gender when studying obesity-related phenotypes such as BMI. In the present study, men were, 

on average, younger and had longer treatment duration when compared to women, which could 
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contribute to the observed gender effect as both young age and treatment duration are known 

risk factors for important weight gain [9]. Of note, when calculating genetic risk score and 

gender interaction, a trend was observed when all three samples where combined (p=0.09, 

n=750). Due to the exploratory nature of these findings, further analysis including gender 

stratification should be conducted in larger psychiatric cohorts. 

Finally, no association was found with BMI of GRS built from SNPs obtained from psychiatric 

disorders and diabetes GWAS. Although obesity, type 2 diabetes and psychiatric disorders are 

known to share common etiological pathways [8], these results could be considered as negative 

controls, since we only obtained significant BMI-GRS association results when we combined 

previously BMI-related SNPs. 

This study has some limitations which should be mentioned: weighted scores were calculated 

from β-coefficients obtained from general population samples and the relative influence of these 

genes might differ in psychiatric patients. Other factors influencing weight gain, such as 

previous treatment history, were not reported. This study has been conducted in Caucasians; 

therefore these results cannot be extrapolated to other ethnicities. Variants included in the 

genetic score model should be consistent with their effects (i.e. tested in large sample sizes and 

replicated effects). Finally, the 95%CI suggest that genetic effect is variable within the groups 

and sample size should increase in order to narrow CI and improve outcome precision.  

In conclusion, the present study replicated in psychiatric cohorts previously identified BMI risk 

variants obtained in GWAS analyses from population-based samples. GRS can be a useful tool 

to integrate multiple variants with low impact which, when tested individually, do not show any 

significant effect. This approach can contribute to a better understanding of the genetic 

variability of polygenic obesity in psychiatric patients and our results suggest that particular care 
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should be taken to sex-specific analyses when working with GRS. Thus, the clinical utility of the 

w-GRS in obesity-related traits needs to be further explored in prospective studies, especially 

among populations at high risk of developing metabolic disorders.  
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Table 1. Description of demographic and clinical psychiatric Caucasian samples. 

Characteristics 

Sample 1 Sample 2 Sample 3 Combined sample 

n = 425 n = 148 n = 177 n=750 

Male,% 43 55 62 50 

Age, median (range), years 51 (13-97) 42 (19-64) 42 (18-69) 45 (13-97) 
Diagnosis 

    Psychotic disorders,% 28.6 24.5 9.0 31.4 

Schizo-affective disorders,% 7.3 17.0 12.1 10.3 

Bipolar disorders,% 18.8 34.7 16.8 21.5 

Depression disorders,% 16.4 17.0 12.7 15.7 

Others diagnosis,% 28.9 6.8 14.5 21.2 

Initial BMI status ‡ 
    BMI, median (range), kg/m2  23 (13-44) 25 (15-46) 24 (16-46) 24 (13-46) 

25 kg/m2 ≥ Initial BMI<30 kg/m2, 
%  22 37 31 28 

Initial BMI≥ 30 kg/m2, %  13 16 15 14 

Current BMI status # 
    BMI, median (range), kg/m2 25 (15-50) 28 (16-40) 25 (17-43) 26 (15-50) 

25 kg/m2 ≥ Current BMI<30 
kg/m2, % 25 38 29 27 

Current BMI≥ 30 kg/m2, % 18 35 18 21 

Initial waist circumference  ‡         
WC, median (range), cm 87 (54-138) -- -- 87 (54-138) 
High WC ≥  94 cm (male), ≥ 88 
cm (female), %  41 -- -- 41 

Current waist circumference #         

WC., median (range), cm 93 (57 – 162) -- 92 (73-136) 90 (57-162) 
High WC ≥  94 cm (male), 88 cm 
(female), %  51 -- 53 51 

Initial Lipid status ‡         

High LDL cholesterol, % (n) a 9 -- -- 9 

High triglycerides, % (n) b 18 -- -- 18 

Low HDL cholesterol, % (n) c 23 -- -- 23 

Current Lipid status #         

High LDL cholesterol, % (n) a 15 -- -- 15 

High triglycerides, % (n) b 28 -- -- 28 

Low HDL cholesterol, % (n) c 26 26 17 26 

          

Smoker, % 46 59 76 56 



 

 

Characteristics 

Sample 1 Sample 2 Sample 3 Combined sample 

n = 425 n = 148 n = 177 n=750 

Prescribed psychotropic drug$         

Amisulpride, % 8 - 11 7 

Aripirazole, % 8 - 7 6 

Clozapine, % 8 14 9 9 

Olanzapine, % 11 16 12 12 

Quetiapine, % 35 20 24 29 

Risperidone, % 15 17 17 16 

Lithium, % 8 20 12 11 

Valproate, % 5 14 8 8 
Treatment duration, median 
(range), months 6 (1-12) 27 (3-333) 36 (1-390) 12 (1-390) 

‡ Before the current psychotropic treatment         
# For Sample 2 and 3 : current observation ; for Sample 1 : last observed data  

-- Missing clinical values or obtained in non fasting conditions  
  

  
a High LDL cholesterol : equal or higher than 4.1 mmol/L 

  
  

b High triglycerides : equal or higher than 2.2 mmol/L 
  

  
c Low HDL cholesterol : less than 1 mmol/L         

W.C: Waist circumference     
$ 2% of the Sample 1, was under paliperidone treatment 
 



 

 

Table 2. Significant results obtained from individual SNP association with BMI in the psychiatric sample 1 at 
baseline and at 12 months of follow-up treatment. 
 

nearest gene SNP Major/minor allele 

Difference of predicted BMI per risk allele increase [95% CI] 

p-value 

at baseline at 12 month of treatment 

CADM2 rs13078807 A>G 0.93 [0.89 – 1.97] 1.04 [-0.14 – 2.22] 0.01# 

HSD11β1 rs3753519* C>T -2.11 [-3.22 – (-)1.00] -2.35 [-3.60 – (-)1.10] 0.00001 

CRTC2 rs8450 G>A 0.62 [0.28 – 1.62] 0.69 [-0.44 – 1.83] 0.04# 

 
CI: Confidence Interval. Predicted differences of BMI were calculated for polymorphisms that showed significant results (p-value<0.05).*a 
dominant model was used for this SNP(carriers of the variant allele were compared to wild type). #not significant after Bonferroni correction 
 



 

 

Table 3. Weighted GRS association with BMI obtained from 32 Genome Wide Association Studies SNPs.  
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 2.01 [0.52 - 3.51] 2.26 [0.48-4.04]   0.009 

Sample 2 ** 148 -0.51 [-3.02 – 2.00] -0.61 [-3.61 – 2.40] -0.73 [-4.67 – 3.22]  0.7 

Sample 3 ** 177 2.54 [0.26-4.81] 2.75 [0.23-5.27] 2.99 [-0.01 - 6.00] 0.04 

Samples 2 and 3 **  325 1.43 [-0.27 – 3.13] 1.61 [-0.33 – 3.56] 1.82 [-0.59 – 4.24] 0.1 

All samples combined 750 1.68 [0.65 - 2.72] 1.89 [0.71 - 3.06] 
 

0.002 

FEND patients* 116 3.29 [0.79-5.78] 3.79 [0.88-6.71] 
 

0.008 

Men  375 2.59 [1.45-3.74] 2.91 [1.06-4.22] 
 

0.0002 

Women  375 0.76 [-0.55 – 2.06] 0.84 [-0.63 – 2.32] 
 

0.3 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
FEND: First Episode and Newly Diagnosed Patients 
 



 

 

Fig 1. Evolution of BMI over time between Genetic Risk Score extreme percentiles  
 

 
 
 

 

 

 

 

 

 

 

 

 

Boxplots show median values of BMI for each time of the treatment duration (solid horizontal line), 25th and 75th 

percentile values (box outline), the lowest and upper value within 1.5 Interquartile range (whiskers) and outlier values 
(open circles). (n) corresponds to individuals. 



 

 

Table 4. Description of 4 quartiles of GRS for 32 SNP in the combined sample. 
 

GRS (n) 
1st quartile 2nd quartile 3rd quartile 4th quartile p-value 

  192 170 186 202 

Score, mean (SD) 0.87 (0.06) 0.97 (0.02) 1.05 (0.02) 1.16 (0.07) 0.0001 

Men, % 47 55 44 53 0.1 

Age, median (range), years 47 (17-96) 47 (13-90) 48 (14-97) 48 (15-93) 0.9 

Initial BMI (kg/m2), median (range) * 23.2 (13-46) 24.6 (15-39) 25.1 (16-46) 25.1 (14-39) 0.0005 

Current BMI (kg/m2) #, median (range) 24.3 (16-40) 25.2 (15-40) 25.9 (16-50) 25.9 (17-41) 0.04 
First episode and newly diagnosed 
patients;% 13 15 16 17 

0.6 

Treatment prescription           

Ami, Ari, Li, Quet, Risp 74 70                                        71 67                 
0.5 

Clo, Olan, Valp 26 30 29 33 
Treatment duration, median (range), 
months 6 (1-23) 3 (1-21) 3 (1-24) 3 (1-24) 

0.9 

High waist circumference (WC ≥ 94 cm men, 
88 cm women); %  40 47 49 53 

0.2 

Diagnostic, %           

   Psychotic disorders 42 42 38 46 
0.6    Bipolar disorders 21 22 21 21 

   Depression disorders 17 15 17 14 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: olanzapine, Valp: valproate 

* Before the current psychotropic treatment 

# Last observed data 

 



S1 Table. SNP description and HWE analysis of 32 SNPs previously associated with BMI in a 
Genome Wide Association Study [1]. 
 

nearest 
gene 

SNP 
Major/minor 

allele 
Chr position 

MAF  
(Caucasian) 

HWE in the  
Sample 1 
(p-value*) 

HWE in all psychiatric 
samples 

(p-value*) 

CADM2 rs13078807 A/G 3:85884150 0.20 0.34 0.08 

FTO rs1558902 T/C 16:53800954 0.44 0.88 0.45 

GPRC5B rs12444979 C/T 16:19933600 0.12 0.99 0.55 

LRP1B rs2890652 T/C 2:142959931 0.16 0.63 0.88 

BDNF rs10767664 C/A 11:27728539 0.24 0.19 0.28 

TFAP2B rs987237 A/G 6:50803050 0.20 0.02 0.08 

NRXN3 rs10150332 T/C 14:79936964 0.22 0.09 0.01 

MC4R rs571312 C/A 18:57839769 0.23 0.19 0.05 

MAP2K5 rs2241423 G/A 15:68086838 0.23 0.21 0.12 

PRKD1 rs11847697 C/T 14:30501885 0.05 0.06 0.13 

TNNI3K rs1514175 G/A 1:74991644 0.44 0.86 0.91 

SEC16B rs543874 A/G 1:177889480 0.20 0.79 0.99 

SLC39A8 rs13107325 C/T 4:103188709 0.08 0.42 0.16 

NUDT3 rs206936 A/G 6:34302869 0.20 0.07 0.35 

ZNF608 rs4836133 G/A 5:124330522 0.47 0.36 0.07 

MTIF3 rs4771122 A/G 13:28020180 0.26 0.91 0.87 

MTCH2 rs3817334 C/T 11:47650993 0.42 0.53 0.67 

FLJ35779 rs2112347 T/G 5:75015242 0.38 0.08 0.04 

TMEM18 rs2867125 C/T 2:622827 0.18 0.10 0.23 

TMEM160 rs3810291 A/G 19:47569003 0.34 0.82 0.01 

RBJ / POMC rs713586 T/C 2:25158008 0.46 0.33 0.14 

NEGR1 rs2815752 A/G 1:72812440 0.37 0.35 0.58 

KCTD15 rs29941 G/A 19:34309532 0.32 0.58 0.30 

PTBP2 rs1555543 C/A 1:96944797 0.42 0.40 0.14 

ETV5 rs9816226 C/T 3:185834290 0.22 0.10 0.98 

GNPDA2 rs10938397 A/G 4:45182527 0.42 0.66 0.32 

RPL27A rs4929949 T/C 11:8605739 0.50 0.78 0.89 

FAIM2 rs7138803 G/A 12:50247468 0.34 0.22 0.38 

FANCL rs887912 C/T 2:59302877 0.31 0.14 0.14 

QPCTL rs2287019 C/T 19:46202172 0.19 0.23 0.10 

LRRN6C rs10968576 A/G 9:28414339 0.31 0.13 0.31 

SH2B1 rs7359397 C/T 16:28885659 0.34 0.89 0.41 

HWE: Hardy-Weinberg Equilibrium. MAF: Minor Allele Frequency.*p-value corrected threshold < 0.001



S2 Table.  SNP description and HWE analyses of 20 Candidate Gene SNPs associated with antipsychotic induced 
weight gain. 

nearest gene SNP 
Major/Minor 

Allele 
MAF  

(Caucasian) 

HWE in 
the 

Sample 1  
(p-value*) 

HWE in all 
psychiatric 

samples 
(p-value*) 

mutation type 
effect 
allele 

Effect on BMI 

animal / in vitro 
studies related to 

obesity or metabolic 
parameters 

clinical 
studies 

CRTC1 rs6510997 C>T 0.17 0.16 0.23 Intron variant T-allele decreased weight [2] [3] 

HSD11β1 rs3753519 C>T 0.10 0.56 0.86 Intron variant T-allele decreased weight [4] [5] 

MCHR2 rs6925272 C>T 0.37 0.13 0.20 Intron variant T-allele decreased weight [6] [7] 

PCK1 rs11552145 G>A 0.16 0.10 0.02 
Missense variant 

(Glu -> Lys) 
AA decreased weight [8] [9] 

CRTC2 rs8450 G>A 0.30 0.71 0.03 
3 prime UTR 

variant 
AA increased weight [10] [11] 

IRS2 rs1411766 G>A 0.36 0.06 0.11 
Intergenic 

variant 
A-allele increased weight [12] [13] 

PPARGC1A rs8192678 C>T 0.36 0.52 0.20 
Missense variant 

(Gly -> Ser) 
T-allele decreased weight [14] [15] 

FAAH rs324420 C>A 0.21 0.60 0.75 
Missense variant 

(Pro -> Thr) 
A-allele 

More frequent in patients 
with 7% of weight gain 

[16] [17] 

INSIG2 rs17587100 A>C 0.10 0.68 0.47 
Intergenic 

variant 
C-allele change in BMI [18] [19] 

PPARG rs1801282 G>A 0.12 0.15 0.24 
Missense variant 

(Pro -> Ala) 
A-allele weight loss [20] [21, 22] 

PRKAA1 rs10074991 G>A 0.29 0.09 0.08 Intron variant A-allele change in weight [23] [24] 

SCARB1 rs4765623 C>T 0.32 0.78 0.50 Intron variant T-allele 
weight gain in the 

olanzapine-treated group 
[25] [26] 

TNF rs1800629 G>A 0.14 0.04 0.07 
Upstream gene 

variant 
GG weight gain [27] [28] 

ADRA2A rs1800544 C>G 0.26 0.52 0.63 
Upstream gene 

variant 
C-allele weight gain [29] [30, 31] 

CNR1 rs806378 C>T 0.27 0.31 0.65 Intron variant T-allele weight gain [32] [33, 34] 

DRD2 rs1800497 G>A 0.18 0.12 0.32 Intron variant C-allele weight gain [35] [36] 

HTR2A rs6313 G>A 0.44 0.32 0.32 
Synonymous 

variant (Ser -> 
Ser) 

A-allele weight gain [37] [38, 39] 

LEPR rs1137101 A>G 0.49 0.12 0.11 
Missense variant 

(Gln -> Arg) 
G allele weight gain [40] [41] 

ADIPOQ rs17300539 G>A 0.07 0.63 0.64 
Upstream gene 

variant 
G-allele decreased risk of obesity [37] [24, 42] 

LEP rs7799039 G>A 0.46 0.18 0.24 
Upstream gene 

variant 
A-allele weight gain [37] [37] 

HWE: Hardy-Weinberg Equilibrium. MAF: Minor Allele Frequency.*p-value corrected threshold < 0.001



S3 Table. Description of SNPs previously associated with Diabetes in GWAS [43]. 
 
 

Chr position SNP 
Major/Minor 

Alleles 
MAF in 

Caucasians Gene Position 

10:114758349 rs7903146 C>T 0.17 TCF7L2 intron-variant 

11:72433098 rs1552224 A>C 0.07 ARAP1 utr-variant-5-prime 

2:227020653 rs7578326 A>G 0.30 IRS1 intron-variant 

10:94465559 rs5015480 T>C 0.42 - intergenic 

2:60584819 rs243021 A>G 0.48 - intergenic 

11:92673828 rs1387153 C>T 0.41 - intergenic 

11:2691471 rs231362 G>A 0.25 KCNQ1 intron-variant 

5:76424949 rs4457053 A>G 0.12 ZBED3 intron-variant 

9:22133284 rs10965250 G>A 0.23 - intergenic 

X:152899922 rs5945326 A>G 0.25 - intergenic 

10:104844872 rs7092200 T>C 0.38 - intergenic 

6:152790573 rs9371601 T>G 0.37 SYNE1 intron-variant 

8:95960511 rs896854 C>T 0.46 TP53INP1 intron-variant 

3:185529080 rs1470579 A>C 0.46 IGF2BP2 intron-variant 

7:28196222 rs849134 A>G 0.30 JAZF1 intron-variant 

12:66174894 rs1531343 G>C 0.22 HMGA2 intron-variant 

8:118185025 rs3802177 G>A 0.29 SLC30A8 utr-variant-3-prime 

16:53845487 rs11642841 C>A 0.17 FTO intron-variant 

17:36098040 rs4430796 A>G 0.46 HNF1B intron-variant 

12:71634794 rs4760790 G>A 0.24 - intergenic 

6:20686996 rs9368222 C>A 0.30 CDKAL1 intron-variant 

7:130438214 rs13234407 G>A 0.34 - intergenic 

9:107669073 rs13284054 T>C 0.12 ABCA1 intron-variant 

4:6293350 rs10012946 C>T 0.19 WFS1 intron-variant 

 Chr: Chromosome. MAF: Minor Allele Frequency



S4 Table. Description of SNPs previously associated with Psychiatric disease in GWAS [44]. 

 

chr: position SNP 
Major/Minor 

Alleles 
MAF in 

Caucasians Genes Position 

11:125550049 rs556884 A>G 0.12 ACRV1 intron-variant 

3:52818579 rs2239551 G>A 0.41 ITIH1 intron-variant 

10:104844872 rs7092200 T>C 0.38 - intergenic 

6:152790573 rs9371601 T>G 0.37 SYNE1 intron-variant 

8:4188511 rs10866968 C>T 0.41 CSMD1 intron-variant 

10:62181128 rs10994338 G>A 0.13 ANK3 intron-variant 

10:104660004 rs11191454 A>G 0.12 AS3MT intron-variant 

10:104906211 rs11191580 T>C 0.14 NT5C2 intron-variant 

8:89574375 rs13263450 G>T 0.13 - intergenic 

Chr: Chromosome. MAF: Minor Allele Frequency



S5 Table. Allele effects (β-coefficients) calculated from the general population for 
the 52 SNPs.  

Gene SNP Allele Effect 
Per allele effect 
(β-coefficient*) 

p-value 

BDNF rs10767664 A 0.048 1.2E-19 

CADM2 rs13078807 G 0.033 5.4E-10 

ETV5 rs9816226 T 0.048 4.7E-18 

FAIM2 rs7138803 A 0.035 5.2E-16 

FANCL rs887912 T 0.026 2.4E-08 

FLJ35779 rs2112347 T 0.028 1.6E-10 

FTO rs1558902 A 0.080 2.9E-75 

GNPDA2 rs10938397 G 0.042 5.4E-21 

GPRC5B rs12444979 C 0.050 2.7E-15 

KCTD15 rs29941 G 0.032 2.6E-12 

LRP1B rs2890652 C 0.036 2.0E-10 

LRRN6C rs10968576 G 0.029 3.8E-10 

MAP2K5 rs2241423 G 0.037 5.4E-13 

MC4R rs571312 A 0.056 2.0E-28 

MTCH2 rs3817334 T 0.030 2.0E-12 

MTIF3 rs4771122 G 0.029 1.3E-08 

NEGR1 rs2815752 A 0.038 1.7E-18 

NRXN3 rs10150332 C 0.031 1.4E-09 

NUDT3 rs206936 G 0.022 2.2E-05 

PRKD1 rs11847697 T 0.070 1.0E-09 

PTBP2 rs1555543 C 0.024 1.5E-08 

QPCTL rs2287019 C 0.037 2.0E-09 

RBJ POMC rs713586 C 0.026 6.9E-10 

RPL27A rs4929949 C 0.024 3.2E-08 

SEC16B rs543874 G 0.044 2.4E-16 

SH2B1 rs7359397 T 0.028 1.5E-10 

SLC39A8 rs13107325 T 0.055 2.9E-08 

TFAP2B rs987237 G 0.049 3.9E-19 

TMEM160 rs3810291 A 0.029 2.8E-09 

TMEM18 rs2867125 C 0.060 2.2E-26 

TNNI3K rs1514175 A 0.030 4.9E-12 

ZNF608 rs4836133 A 0.023 3.0E-07 

CRTC1 rs3746266# T 0.015 2.2E-02 

HSD rs3753519 C 0.003 6.5E-01 

PCK1 rs6070157# T 0.003 6.3E-01 

CRTC2 rs8450 C 0.004 3.7E-01 

IRS2 rs1411766 A 0.001 8.9E-01 

PPARGC1A rs8192678 T 0.0001 9.9E-01 

PRKAA1 rs10074991 A 0.006 2.3E-01 



Gene SNP Allele Effect 
Per allele effect 
(β-coefficient*) 

p-value 

LEPR rs1137101 A -0.006 0.14 

INSIG2 rs17587100 A -0.006 0.42 

DRD2 rs1800497 A 0.014 0.01 

TNF rs1800629 A 0.003 0.60 

PPARG rs2197423# A 0.015 0.02 

FAAH rs324420 A 0.002 0.68 

ADRA2A rs1800544 A 0.003 0.51 

HTR2A rs6313 A -0.006 0.14 

SCARB1 rs7954697# A 0.006 0.18 

CNR1 rs806378 T -0.014 0.00 

MCHR2 rs7749425# T 0.003 0.47 

ADIPOQ rs17300539 A 0.013 0.18 

LEP rs7799039 A -0.003 0.56 

* β-coefficients are obtained from GIANT consortia # rs3746266 is a proxy of rs6510997 (r2=0.70), 
rs6070157 is a proxy of rs11552145 (r2=1), rs2197423 is a proxy of rs1801282 (r2=1), rs7954697 is a 
proxy of rs4765623 (r2=0.62), rs7749425 is a proxy of rs6925272 (r2=0.93) 

 

 



S6 Table. Detailed characteristics of the combined sample stratified by gender. 
 

 
Men Women p-value 

  
 

375 375 

Score, mean (SD) 1.02 (0.13) 1.02 (0.13) 0.8 

  1st quartile of GRS, % 24 26 

0.1 

  2nd quartile of GRS, % 26 20 

  3th quartile of GRS, % 22 28 

  4th quartile of GRS, % 29 26 

Newly diagnosed and first episode, (%)** 23 30 0.1 

Age, median (range), years 40 (13-97) 49 (15-96) 0.0001 

Baseline BMI (kg/m2) * 24.6 (16-44) 24.1 (13-46) 0.004 

Current BMI (kg/m2) # 25.5 (17-50) 24.2 (15-47) 0.1 

Treatment prescription       

Ami, Ari, Li, Quet, Risp 70 70   
0.9 Clo, Olan, Valp 30                          30  

Treatment duration, median (range), months 9 (1-24) 6 (1-23) 0.05 

High waist circumference (WC ≥94 cm men, 88 
cm women); %  50 53 0.5 

Diagnostic, %       

   Psychotic disorders  49 34 

<0.001    Bipolar disorders  22 21 

   Depression  11 21 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: 
olanzapine, Valp: valproate. WC: waist circumference 
* Before the current psychotropic treatment 
** Only for Sample 1 

# Last observed data 
 

   



S7 Table. Detailed characteristics of the combined sample by first episode and 
newly diagnosed (FEND) patients. 
 

 
FEND Others 

p-value 

 
116 309 

Score, mean (SD) 1.02 (0.12) 1.01 (0.13) 0.2 

  1st quartile of GRS, % 21 26 

0.4 

  2nd quartile of GRS, % 22 22 

  3th quartile of GRS, % 26 25 

  4th quartile of GRS, % 30 26 

Men, % 37 46 0.10 

Age, median (range), years 58 (14-96) 51 (13-97) 0.4 

Baseline BMI (kg/m2) * 22.3 (13.4-38.2) 24.2 (14.3-44.5) 0.09 

Current BMI (kg/m2) # 23.4 (16.5-37.7) 26.0 (14.7-50.2) 0.01 

Treatment prescription       

Ami, Ari, Li, Quet, Risp 79 73                   
0.2  Clo, Olan, Valp 20 27 

Treatment duration, median (range), months 3 (1-12) 4 (1-23.8) 0.002 

High waist circumference (WC ≥94 cm men, 
88 cm women); %  41 50 0.2 

Diagnostic, %       

   Psychotic disorders  32 40 

<0.001    Bipolar disorders  8 22 

   Depression  20 16 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: 
olanzapine, Valp: valproate.WC: waist circumference 

* Before the current psychotropic treatment 

# Last observed data 
 



S8 Table. Weighted GRS association with BMI obtained from 32 SNPs of Genome Wide Association Studies. 
 
 

  n  
BMI difference between GRS (p90) and GRS (p10) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 1.38 [0.21 – 2.57] 1.55 [0.21 – 2.88] 

 
0.01 

Sample 2 ** 148 -0.42 [-2.75 – 1.91] -0.49 [-3.29 – 2.29] -0.59 [-4.3 – 3.11] 0.8 

Sample 3 ** 177 2.02 [-0.002 – 4.04] 2.19 [-0.06 – 4.44] 2.38 [-0.35 – 5.13] 0.04 

Samples 2 and 3 **  325 1.14 [-0.38 – 2.68] 1.29 [-0.47 – 3.06] 1.46 [-0.76 – 3.69] 0.06 

All samples combined 750 1.31 [0.39 – 2.24] 1.47 [0.42 – 2.52] 

 
0.001 

FEND patients* 116 2.52 [0.31 – 4.73] 2.91 [0.32 – 5.50] 

 
0.01 

Men  375 2.05 [1.04 – 3.05] 2.29 [1.15 – 3.45] 
 

0.0001 

Women  375 0.59 [-0.53 – 1.71] 0.65 [-0.62 - 1.93] 
 

0.3 

GRS: Genetic Risk Score, p90: percentile 90 of GRS, p10: percentile 10 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
 FEND: First Episode and Newly Diagnosed Patients



S9 Table. Weighted GRS association with BMI obtained from 20 Candidate Genes SNPs. 
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 -0.03 [-1.39 – 1.32] -0.03 [-1.55 – 1.48]   0.96 

Sample 2 ** 143 1.66 [-1.22 – 4.55] 1.97 [-1.48 – 5.43] 2.37 [-2.10 – 6.85] 0.28 

Sample 3 ** 175 1.26 [-1.03 – 3.54] 1.36 [-1.17 – 3.89] 1.48 [-1.53 – 4.48] 0.31 

Samples 2 and 3 **  318 1.19 [-0.59 – 2.97] 1.33 [-0.71 – 3.38] 1.51 [-1.00 – 4.04] 0.21 

All samples combined 743 0.53 [-0.90 – 1.99] 0.42 [-0.65 – 1.51] 
 

0.46 

FEND patients* 116 -1.53 [-4.00 – 0.94] -1.75 [-4.62 – 1.11] 
 

0.22 

Men  374 1.16 [-0.05 – 2.38] 1.30 [-0.08 – 2.69]  0.11 

Women  369 -0.37 [-1.76 – 1.02] -0.41 [-1.97 – 1.15] 
 

0.66 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment.  
FEND: First Episode and Newly Diagnosed Patients 
 



S10 Table. Weighted GRS association with BMI obtained from 20 SNPs of Candidate gene approach and 32 SNPs 
of Genome Wide Association Studies (52 SNPs). 
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 1.87 [0.49-3.26] 2.08 [0.53 - 3.63]   0.01 

Sample 2 ** 143 -0.20 [-2.79 – 2.39] -0.24 [-3.35 – 2.87] -0.29 [-4.36 – 3.79] 0.8 

Sample 3 ** 175 2.37 [0.13-4.61] 2.57 [0.08-5.06] 2.79 [-0.19-5.78] 0.04 

Samples 2 and 3 **  318 1.71 [-0.03 – 3.45] 1.92 [-0.07 – 3.92] 2.18 [-0.29 – 4.66] 0.06 

All samples combined 743 1.74 [0.68-2.80] 1.94 [0.75-3.14] 
 

0.001 

FEND patients* 116 3.19 [0.54-5.84] 3.66 [0.58-6.73] 
 

0.01 

Men  374 2.75 [1.57-3.93] 3.09 [1.74-4.45] 
 

0.0001 

Women  369 0.85 [-0.49 – 2.21] 0.94 [-0.57 – 2.47] 
 

0.3 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
 FEND: First Episode and Newly Diagnosed Patients
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S1 Fig. Relationship between weighted genetic risk score and number of alleles 
(unweighted genetic risk score)
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S2 Fig. Evolution of Body Mass Index between Genetic Risk Score extreme percentiles (10%  
and 90%): 

 

Boxplots show median values of BMI for each time of the treatment duration (solid horizontal line), 25th and 75th 

percentile values (box outline), the lowest and upper value within 1.5 Interquartile range (whiskers) and outlier values 
(open circles). (n) corresponds to individuals.  

 



Supplementary Methods 

The choice of Generalized Linear Mixed Models which is a general form of Linear Mixed Models 

has been made to take into account the canonical behavior of BMI values; exploratory analysis 

of the data strongly suggested an inverse link function which is the canonical link function for the 

Gamma family. The mathematical model has such a form: 

                             

where   represents the inverse function. The Generalized additive model on the other hand is 

adjusted by the identity link function and the effect of time is a smooth function: 

                                  

where a() represents a smooth function adjusted by the mgcv package of R. This function is 

semi-parametric and does not have a fixed number of parameters which is the reason for the 

choice of this type of model: its flexibility allows to capture the BMI evolution over time and to 

detect any differences among group with a higher precision. 

 

 



 

 

Table 1. Description of demographic and clinical psychiatric Caucasian samples. 

Characteristics 

Sample 1 Sample 2 Sample 3 Combined sample 

n = 425 n = 148 n = 177 n=750 

Male,% 43 55 62 50 

Age, median (range), years 51 (13-97) 42 (19-64) 42 (18-69) 45 (13-97) 
Diagnosis 

    Psychotic disorders,% 28.6 24.5 9.0 31.4 

Schizo-affective disorders,% 7.3 17.0 12.1 10.3 

Bipolar disorders,% 18.8 34.7 16.8 21.5 

Depression disorders,% 16.4 17.0 12.7 15.7 

Others diagnosis,% 28.9 6.8 14.5 21.2 

Initial BMI status ‡ 
    BMI, median (range), kg/m2  23 (13-44) 25 (15-46) 24 (16-46) 24 (13-46) 

25 kg/m2 ≥ Initial BMI<30 kg/m2, 
%  22 37 31 28 

Initial BMI≥ 30 kg/m2, %  13 16 15 14 

Current BMI status # 
    BMI, median (range), kg/m2 25 (15-50) 28 (16-40) 25 (17-43) 26 (15-50) 

25 kg/m2 ≥ Current BMI<30 
kg/m2, % 25 38 29 27 

Current BMI≥ 30 kg/m2, % 18 35 18 21 

Initial waist circumference  ‡         
WC, median (range), cm 87 (54-138) -- -- 87 (54-138) 
High WC ≥  94 cm (male), ≥ 88 
cm (female), %  41 -- -- 41 

Current waist circumference #         

WC., median (range), cm 93 (57 – 162) -- 92 (73-136) 90 (57-162) 
High WC ≥  94 cm (male), 88 cm 
(female), %  51 -- 53 51 

Initial Lipid status ‡         

High LDL cholesterol, % (n) a 9 -- -- 9 

High triglycerides, % (n) b 18 -- -- 18 

Low HDL cholesterol, % (n) c 23 -- -- 23 

Current Lipid status #         

High LDL cholesterol, % (n) a 15 -- -- 15 

High triglycerides, % (n) b 28 -- -- 28 

Low HDL cholesterol, % (n) c 26 26 17 26 

          

Smoker, % 46 59 76 56 



 

 

Characteristics 

Sample 1 Sample 2 Sample 3 Combined sample 

n = 425 n = 148 n = 177 n=750 

Prescribed psychotropic drug$         

Amisulpride, % 8 - 11 7 

Aripirazole, % 8 - 7 6 

Clozapine, % 8 14 9 9 

Olanzapine, % 11 16 12 12 

Quetiapine, % 35 20 24 29 

Risperidone, % 15 17 17 16 

Lithium, % 8 20 12 11 

Valproate, % 5 14 8 8 
Treatment duration, median 
(range), months 6 (1-12) 27 (3-333) 36 (1-390) 12 (1-390) 

‡ Before the current psychotropic treatment         
# For Sample 2 and 3 : current observation ; for Sample 1 : last observed data  

-- Missing clinical values or obtained in non fasting conditions  
  

  
a High LDL cholesterol : equal or higher than 4.1 mmol/L 

  
  

b High triglycerides : equal or higher than 2.2 mmol/L 
  

  
c Low HDL cholesterol : less than 1 mmol/L         

W.C: Waist circumference     
$ 2% of the Sample 1, was under paliperidone treatment 
 



 

 

Table 2. Significant results obtained from individual SNP association with BMI in the psychiatric sample 1 at 
baseline and at 12 months of follow-up treatment. 
 

nearest gene SNP Major/minor allele 

Difference of predicted BMI per risk allele increase [95% CI] 

p-value 

at baseline at 12 month of treatment 

CADM2 rs13078807 A>G 0.93 [0.89 – 1.97] 1.04 [-0.14 – 2.22] 0.01# 

HSD11β1 rs3753519* C>T -2.11 [-3.22 – (-)1.00] -2.35 [-3.60 – (-)1.10] 0.00001 

CRTC2 rs8450 G>A 0.62 [0.28 – 1.62] 0.69 [-0.44 – 1.83] 0.04# 

 
CI: Confidence Interval. Predicted differences of BMI were calculated for polymorphisms that showed significant results (p-value<0.05).*a 
dominant model was used for this SNP(carriers of the variant allele were compared to wild type). #not significant after Bonferroni correction 
 



 

 

Table 3. Weighted GRS association with BMI obtained from 32 Genome Wide Association Studies SNPs.  
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 2.01 [0.52 - 3.51] 2.26 [0.48-4.04]   0.009 

Sample 2 ** 148 -0.51 [-3.02 – 2.00] -0.61 [-3.61 – 2.40] -0.73 [-4.67 – 3.22]  0.7 

Sample 3 ** 177 2.54 [0.26-4.81] 2.75 [0.23-5.27] 2.99 [-0.01 - 6.00] 0.04 

Samples 2 and 3 **  325 1.43 [-0.27 – 3.13] 1.61 [-0.33 – 3.56] 1.82 [-0.59 – 4.24] 0.1 

All samples combined 750 1.68 [0.65 - 2.72] 1.89 [0.71 - 3.06] 
 

0.002 

FEND patients* 116 3.29 [0.79-5.78] 3.79 [0.88-6.71] 
 

0.008 

Men  375 2.59 [1.45-3.74] 2.91 [1.06-4.22] 
 

0.0002 

Women  375 0.76 [-0.55 – 2.06] 0.84 [-0.63 – 2.32] 
 

0.3 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
FEND: First Episode and Newly Diagnosed Patients 
 



 

 

Table 4. Description of 4 quartiles of GRS for 32 SNP in the combined sample. 
 

GRS (n) 
1st quartile 2nd quartile 3rd quartile 4th quartile p-value 

  192 170 186 202 

Score, mean (SD) 0.87 (0.06) 0.97 (0.02) 1.05 (0.02) 1.16 (0.07) 0.0001 

Men, % 47 55 44 53 0.1 

Age, median (range), years 47 (17-96) 47 (13-90) 48 (14-97) 48 (15-93) 0.9 

Initial BMI (kg/m2), median (range) * 23.2 (13-46) 24.6 (15-39) 25.1 (16-46) 25.1 (14-39) 0.0005 

Current BMI (kg/m2) #, median (range) 24.3 (16-40) 25.2 (15-40) 25.9 (16-50) 25.9 (17-41) 0.04 
First episode and newly diagnosed 
patients;% 13 15 16 17 

0.6 

Treatment prescription           

Ami, Ari, Li, Quet, Risp 74 70                                        71 67                 
0.5 

Clo, Olan, Valp 26 30 29 33 
Treatment duration, median (range), 
months 6 (1-23) 3 (1-21) 3 (1-24) 3 (1-24) 

0.9 

High waist circumference (WC ≥ 94 cm men, 
88 cm women); %  40 47 49 53 

0.2 

Diagnostic, %           

   Psychotic disorders 42 42 38 46 
0.6    Bipolar disorders 21 22 21 21 

   Depression disorders 17 15 17 14 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: olanzapine, Valp: valproate 

* Before the current psychotropic treatment 

# Last observed data 

 



 

 

Fig 1. Evolution of BMI over time between Genetic Risk Score extreme percentiles  
 

 
 
 

 

 

 

 

 

 

 

 

 

Boxplots show median values of BMI for each time of the treatment duration (solid horizontal line), 25th and 75th 

percentile values (box outline), the lowest and upper value within 1.5 Interquartile range (whiskers) and outlier values 
(open circles). (n) corresponds to individuals. 



S1 Fig. Relationship between weighted genetic risk score and number of alleles 
(unweighted genetic risk score)

.6
.8

1
1
.2

1
.4

1
.6

w
e

ig
h
te

d
 s

c
o

re
 (

5
1

 S
N

P
s
)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

number of allelesnumber of alleles (unweighted score) 



S2 Fig. Evolution of Body Mass Index between Genetic Risk Score extreme percentiles (10%  
and 90%): 

 

Boxplots show median values of BMI for each time of the treatment duration (solid horizontal line), 25th and 75th 

percentile values (box outline), the lowest and upper value within 1.5 Interquartile range (whiskers) and outlier values 
(open circles). (n) corresponds to individuals.  

 



S1 Table. SNP description and HWE analysis of 32 SNPs previously associated with BMI in a 
Genome Wide Association Study [1]. 
 

nearest 
gene 

SNP 
Major/minor 

allele 
Chr position 

MAF  
(Caucasian) 

HWE in the  
Sample 1 
(p-value*) 

HWE in all psychiatric 
samples 

(p-value*) 

CADM2 rs13078807 A/G 3:85884150 0.20 0.34 0.08 

FTO rs1558902 T/C 16:53800954 0.44 0.88 0.45 

GPRC5B rs12444979 C/T 16:19933600 0.12 0.99 0.55 

LRP1B rs2890652 T/C 2:142959931 0.16 0.63 0.88 

BDNF rs10767664 C/A 11:27728539 0.24 0.19 0.28 

TFAP2B rs987237 A/G 6:50803050 0.20 0.02 0.08 

NRXN3 rs10150332 T/C 14:79936964 0.22 0.09 0.01 

MC4R rs571312 C/A 18:57839769 0.23 0.19 0.05 

MAP2K5 rs2241423 G/A 15:68086838 0.23 0.21 0.12 

PRKD1 rs11847697 C/T 14:30501885 0.05 0.06 0.13 

TNNI3K rs1514175 G/A 1:74991644 0.44 0.86 0.91 

SEC16B rs543874 A/G 1:177889480 0.20 0.79 0.99 

SLC39A8 rs13107325 C/T 4:103188709 0.08 0.42 0.16 

NUDT3 rs206936 A/G 6:34302869 0.20 0.07 0.35 

ZNF608 rs4836133 G/A 5:124330522 0.47 0.36 0.07 

MTIF3 rs4771122 A/G 13:28020180 0.26 0.91 0.87 

MTCH2 rs3817334 C/T 11:47650993 0.42 0.53 0.67 

FLJ35779 rs2112347 T/G 5:75015242 0.38 0.08 0.04 

TMEM18 rs2867125 C/T 2:622827 0.18 0.10 0.23 

TMEM160 rs3810291 A/G 19:47569003 0.34 0.82 0.01 

RBJ / POMC rs713586 T/C 2:25158008 0.46 0.33 0.14 

NEGR1 rs2815752 A/G 1:72812440 0.37 0.35 0.58 

KCTD15 rs29941 G/A 19:34309532 0.32 0.58 0.30 

PTBP2 rs1555543 C/A 1:96944797 0.42 0.40 0.14 

ETV5 rs9816226 C/T 3:185834290 0.22 0.10 0.98 

GNPDA2 rs10938397 A/G 4:45182527 0.42 0.66 0.32 

RPL27A rs4929949 T/C 11:8605739 0.50 0.78 0.89 

FAIM2 rs7138803 G/A 12:50247468 0.34 0.22 0.38 

FANCL rs887912 C/T 2:59302877 0.31 0.14 0.14 

QPCTL rs2287019 C/T 19:46202172 0.19 0.23 0.10 

LRRN6C rs10968576 A/G 9:28414339 0.31 0.13 0.31 

SH2B1 rs7359397 C/T 16:28885659 0.34 0.89 0.41 

HWE: Hardy-Weinberg Equilibrium. MAF: Minor Allele Frequency.*p-value corrected threshold < 0.001



S2 Table.  SNP description and HWE analyses of 20 Candidate Gene SNPs associated with antipsychotic induced 
weight gain. 

nearest gene SNP 
Major/Minor 

Allele 
MAF  

(Caucasian) 

HWE in 
the 

Sample 1  
(p-value*) 

HWE in all 
psychiatric 

samples 
(p-value*) 

mutation type 
effect 
allele 

Effect on BMI 

animal / in vitro 
studies related to 

obesity or metabolic 
parameters 

clinical 
studies 

CRTC1 rs6510997 C>T 0.17 0.16 0.23 Intron variant T-allele decreased weight [2] [3] 

HSD11β1 rs3753519 C>T 0.10 0.56 0.86 Intron variant T-allele decreased weight [4] [5] 

MCHR2 rs6925272 C>T 0.37 0.13 0.20 Intron variant T-allele decreased weight [6] [7] 

PCK1 rs11552145 G>A 0.16 0.10 0.02 
Missense variant 

(Glu -> Lys) 
AA decreased weight [8] [9] 

CRTC2 rs8450 G>A 0.30 0.71 0.03 
3 prime UTR 

variant 
AA increased weight [10] [11] 

IRS2 rs1411766 G>A 0.36 0.06 0.11 
Intergenic 

variant 
A-allele increased weight [12] [13] 

PPARGC1A rs8192678 C>T 0.36 0.52 0.20 
Missense variant 

(Gly -> Ser) 
T-allele decreased weight [14] [15] 

FAAH rs324420 C>A 0.21 0.60 0.75 
Missense variant 

(Pro -> Thr) 
A-allele 

More frequent in patients 
with 7% of weight gain 

[16] [17] 

INSIG2 rs17587100 A>C 0.10 0.68 0.47 
Intergenic 

variant 
C-allele change in BMI [18] [19] 

PPARG rs1801282 G>A 0.12 0.15 0.24 
Missense variant 

(Pro -> Ala) 
A-allele weight loss [20] [21, 22] 

PRKAA1 rs10074991 G>A 0.29 0.09 0.08 Intron variant A-allele change in weight [23] [24] 

SCARB1 rs4765623 C>T 0.32 0.78 0.50 Intron variant T-allele 
weight gain in the 

olanzapine-treated group 
[25] [26] 

TNF rs1800629 G>A 0.14 0.04 0.07 
Upstream gene 

variant 
GG weight gain [27] [28] 

ADRA2A rs1800544 C>G 0.26 0.52 0.63 
Upstream gene 

variant 
C-allele weight gain [29] [30, 31] 

CNR1 rs806378 C>T 0.27 0.31 0.65 Intron variant T-allele weight gain [32] [33, 34] 

DRD2 rs1800497 G>A 0.18 0.12 0.32 Intron variant C-allele weight gain [35] [36] 

HTR2A rs6313 G>A 0.44 0.32 0.32 
Synonymous 

variant (Ser -> 
Ser) 

A-allele weight gain [37] [38, 39] 

LEPR rs1137101 A>G 0.49 0.12 0.11 
Missense variant 

(Gln -> Arg) 
G allele weight gain [40] [41] 

ADIPOQ rs17300539 G>A 0.07 0.63 0.64 
Upstream gene 

variant 
G-allele decreased risk of obesity [37] [24, 42] 

LEP rs7799039 G>A 0.46 0.18 0.24 
Upstream gene 

variant 
A-allele weight gain [37] [37] 

HWE: Hardy-Weinberg Equilibrium. MAF: Minor Allele Frequency.*p-value corrected threshold < 0.001



S3 Table. Description of SNPs previously associated with Diabetes in GWAS [43]. 
 
 

Chr position SNP 
Major/Minor 

Alleles 
MAF in 

Caucasians Gene Position 

10:114758349 rs7903146 C>T 0.17 TCF7L2 intron-variant 

11:72433098 rs1552224 A>C 0.07 ARAP1 utr-variant-5-prime 

2:227020653 rs7578326 A>G 0.30 IRS1 intron-variant 

10:94465559 rs5015480 T>C 0.42 - intergenic 

2:60584819 rs243021 A>G 0.48 - intergenic 

11:92673828 rs1387153 C>T 0.41 - intergenic 

11:2691471 rs231362 G>A 0.25 KCNQ1 intron-variant 

5:76424949 rs4457053 A>G 0.12 ZBED3 intron-variant 

9:22133284 rs10965250 G>A 0.23 - intergenic 

X:152899922 rs5945326 A>G 0.25 - intergenic 

10:104844872 rs7092200 T>C 0.38 - intergenic 

6:152790573 rs9371601 T>G 0.37 SYNE1 intron-variant 

8:95960511 rs896854 C>T 0.46 TP53INP1 intron-variant 

3:185529080 rs1470579 A>C 0.46 IGF2BP2 intron-variant 

7:28196222 rs849134 A>G 0.30 JAZF1 intron-variant 

12:66174894 rs1531343 G>C 0.22 HMGA2 intron-variant 

8:118185025 rs3802177 G>A 0.29 SLC30A8 utr-variant-3-prime 

16:53845487 rs11642841 C>A 0.17 FTO intron-variant 

17:36098040 rs4430796 A>G 0.46 HNF1B intron-variant 

12:71634794 rs4760790 G>A 0.24 - intergenic 

6:20686996 rs9368222 C>A 0.30 CDKAL1 intron-variant 

7:130438214 rs13234407 G>A 0.34 - intergenic 

9:107669073 rs13284054 T>C 0.12 ABCA1 intron-variant 

4:6293350 rs10012946 C>T 0.19 WFS1 intron-variant 

 Chr: Chromosome. MAF: Minor Allele Frequency



S4 Table. Description of SNPs previously associated with Psychiatric disease in GWAS [44]. 

 

chr: position SNP 
Major/Minor 

Alleles 
MAF in 

Caucasians Genes Position 

11:125550049 rs556884 A>G 0.12 ACRV1 intron-variant 

3:52818579 rs2239551 G>A 0.41 ITIH1 intron-variant 

10:104844872 rs7092200 T>C 0.38 - intergenic 

6:152790573 rs9371601 T>G 0.37 SYNE1 intron-variant 

8:4188511 rs10866968 C>T 0.41 CSMD1 intron-variant 

10:62181128 rs10994338 G>A 0.13 ANK3 intron-variant 

10:104660004 rs11191454 A>G 0.12 AS3MT intron-variant 

10:104906211 rs11191580 T>C 0.14 NT5C2 intron-variant 

8:89574375 rs13263450 G>T 0.13 - intergenic 

Chr: Chromosome. MAF: Minor Allele Frequency



S5 Table. Allele effects (β-coefficients) calculated from the general population for 
the 52 SNPs.  

Gene SNP Allele Effect 
Per allele effect 
(β-coefficient*) 

p-value 

BDNF rs10767664 A 0.048 1.2E-19 

CADM2 rs13078807 G 0.033 5.4E-10 

ETV5 rs9816226 T 0.048 4.7E-18 

FAIM2 rs7138803 A 0.035 5.2E-16 

FANCL rs887912 T 0.026 2.4E-08 

FLJ35779 rs2112347 T 0.028 1.6E-10 

FTO rs1558902 A 0.080 2.9E-75 

GNPDA2 rs10938397 G 0.042 5.4E-21 

GPRC5B rs12444979 C 0.050 2.7E-15 

KCTD15 rs29941 G 0.032 2.6E-12 

LRP1B rs2890652 C 0.036 2.0E-10 

LRRN6C rs10968576 G 0.029 3.8E-10 

MAP2K5 rs2241423 G 0.037 5.4E-13 

MC4R rs571312 A 0.056 2.0E-28 

MTCH2 rs3817334 T 0.030 2.0E-12 

MTIF3 rs4771122 G 0.029 1.3E-08 

NEGR1 rs2815752 A 0.038 1.7E-18 

NRXN3 rs10150332 C 0.031 1.4E-09 

NUDT3 rs206936 G 0.022 2.2E-05 

PRKD1 rs11847697 T 0.070 1.0E-09 

PTBP2 rs1555543 C 0.024 1.5E-08 

QPCTL rs2287019 C 0.037 2.0E-09 

RBJ POMC rs713586 C 0.026 6.9E-10 

RPL27A rs4929949 C 0.024 3.2E-08 

SEC16B rs543874 G 0.044 2.4E-16 

SH2B1 rs7359397 T 0.028 1.5E-10 

SLC39A8 rs13107325 T 0.055 2.9E-08 

TFAP2B rs987237 G 0.049 3.9E-19 

TMEM160 rs3810291 A 0.029 2.8E-09 

TMEM18 rs2867125 C 0.060 2.2E-26 

TNNI3K rs1514175 A 0.030 4.9E-12 

ZNF608 rs4836133 A 0.023 3.0E-07 

CRTC1 rs3746266# T 0.015 2.2E-02 

HSD rs3753519 C 0.003 6.5E-01 

PCK1 rs6070157# T 0.003 6.3E-01 

CRTC2 rs8450 C 0.004 3.7E-01 

IRS2 rs1411766 A 0.001 8.9E-01 

PPARGC1A rs8192678 T 0.0001 9.9E-01 

PRKAA1 rs10074991 A 0.006 2.3E-01 



Gene SNP Allele Effect 
Per allele effect 
(β-coefficient*) 

p-value 

LEPR rs1137101 A -0.006 0.14 

INSIG2 rs17587100 A -0.006 0.42 

DRD2 rs1800497 A 0.014 0.01 

TNF rs1800629 A 0.003 0.60 

PPARG rs2197423# A 0.015 0.02 

FAAH rs324420 A 0.002 0.68 

ADRA2A rs1800544 A 0.003 0.51 

HTR2A rs6313 A -0.006 0.14 

SCARB1 rs7954697# A 0.006 0.18 

CNR1 rs806378 T -0.014 0.00 

MCHR2 rs7749425# T 0.003 0.47 

ADIPOQ rs17300539 A 0.013 0.18 

LEP rs7799039 A -0.003 0.56 

* β-coefficients are obtained from GIANT consortia # rs3746266 is a proxy of rs6510997 (r2=0.70), 
rs6070157 is a proxy of rs11552145 (r2=1), rs2197423 is a proxy of rs1801282 (r2=1), rs7954697 is a 
proxy of rs4765623 (r2=0.62), rs7749425 is a proxy of rs6925272 (r2=0.93) 

 

 



S6 Table. Detailed characteristics of the combined sample stratified by gender. 
 

 
Men Women p-value 

  
 

375 375 

Score, mean (SD) 1.02 (0.13) 1.02 (0.13) 0.8 

  1st quartile of GRS, % 24 26 

0.1 

  2nd quartile of GRS, % 26 20 

  3th quartile of GRS, % 22 28 

  4th quartile of GRS, % 29 26 

Newly diagnosed and first episode, (%)** 23 30 0.1 

Age, median (range), years 40 (13-97) 49 (15-96) 0.0001 

Baseline BMI (kg/m2) * 24.6 (16-44) 24.1 (13-46) 0.004 

Current BMI (kg/m2) # 25.5 (17-50) 24.2 (15-47) 0.1 

Treatment prescription       

Ami, Ari, Li, Quet, Risp 70 70   
0.9 Clo, Olan, Valp 30                          30  

Treatment duration, median (range), months 9 (1-24) 6 (1-23) 0.05 

High waist circumference (WC ≥94 cm men, 88 
cm women); %  50 53 0.5 

Diagnostic, %       

   Psychotic disorders  49 34 

<0.001    Bipolar disorders  22 21 

   Depression  11 21 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: 
olanzapine, Valp: valproate. WC: waist circumference 
* Before the current psychotropic treatment 
** Only for Sample 1 

# Last observed data 
 

   



S7 Table. Detailed characteristics of the combined sample by first episode and 
newly diagnosed (FEND) patients. 
 

 
FEND Others 

p-value 

 
116 309 

Score, mean (SD) 1.02 (0.12) 1.01 (0.13) 0.2 

  1st quartile of GRS, % 21 26 

0.4 

  2nd quartile of GRS, % 22 22 

  3th quartile of GRS, % 26 25 

  4th quartile of GRS, % 30 26 

Men, % 37 46 0.10 

Age, median (range), years 58 (14-96) 51 (13-97) 0.4 

Baseline BMI (kg/m2) * 22.3 (13.4-38.2) 24.2 (14.3-44.5) 0.09 

Current BMI (kg/m2) # 23.4 (16.5-37.7) 26.0 (14.7-50.2) 0.01 

Treatment prescription       

Ami, Ari, Li, Quet, Risp 79 73                   
0.2  Clo, Olan, Valp 20 27 

Treatment duration, median (range), months 3 (1-12) 4 (1-23.8) 0.002 

High waist circumference (WC ≥94 cm men, 
88 cm women); %  41 50 0.2 

Diagnostic, %       

   Psychotic disorders  32 40 

<0.001    Bipolar disorders  8 22 

   Depression  20 16 

Ami: amisulpride, Ari: aripiprazole, Li: lithium, Quet: quetiapine, Risp: risperidone, Clo: clozapine, Olan: 
olanzapine, Valp: valproate.WC: waist circumference 

* Before the current psychotropic treatment 

# Last observed data 
 



S8 Table. Weighted GRS association with BMI obtained from 32 SNPs of Genome Wide Association Studies. 
 
 

  n  
BMI difference between GRS (p90) and GRS (p10) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 1.38 [0.21 – 2.57] 1.55 [0.21 – 2.88] 

 
0.01 

Sample 2 ** 148 -0.42 [-2.75 – 1.91] -0.49 [-3.29 – 2.29] -0.59 [-4.3 – 3.11] 0.8 

Sample 3 ** 177 2.02 [-0.002 – 4.04] 2.19 [-0.06 – 4.44] 2.38 [-0.35 – 5.13] 0.04 

Samples 2 and 3 **  325 1.14 [-0.38 – 2.68] 1.29 [-0.47 – 3.06] 1.46 [-0.76 – 3.69] 0.06 

All samples combined 750 1.31 [0.39 – 2.24] 1.47 [0.42 – 2.52] 

 
0.001 

FEND patients* 116 2.52 [0.31 – 4.73] 2.91 [0.32 – 5.50] 

 
0.01 

Men  375 2.05 [1.04 – 3.05] 2.29 [1.15 – 3.45] 
 

0.0001 

Women  375 0.59 [-0.53 – 1.71] 0.65 [-0.62 - 1.93] 
 

0.3 

GRS: Genetic Risk Score, p90: percentile 90 of GRS, p10: percentile 10 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
 FEND: First Episode and Newly Diagnosed Patients



S9 Table. Weighted GRS association with BMI obtained from 20 Candidate Genes SNPs. 
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 -0.03 [-1.39 – 1.32] -0.03 [-1.55 – 1.48]   0.96 

Sample 2 ** 143 1.66 [-1.22 – 4.55] 1.97 [-1.48 – 5.43] 2.37 [-2.10 – 6.85] 0.28 

Sample 3 ** 175 1.26 [-1.03 – 3.54] 1.36 [-1.17 – 3.89] 1.48 [-1.53 – 4.48] 0.31 

Samples 2 and 3 **  318 1.19 [-0.59 – 2.97] 1.33 [-0.71 – 3.38] 1.51 [-1.00 – 4.04] 0.21 

All samples combined 743 0.53 [-0.90 – 1.99] 0.42 [-0.65 – 1.51] 
 

0.46 

FEND patients* 116 -1.53 [-4.00 – 0.94] -1.75 [-4.62 – 1.11] 
 

0.22 

Men  374 1.16 [-0.05 – 2.38] 1.30 [-0.08 – 2.69]  0.11 

Women  369 -0.37 [-1.76 – 1.02] -0.41 [-1.97 – 1.15] 
 

0.66 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment.  
FEND: First Episode and Newly Diagnosed Patients 
 



S10 Table. Weighted GRS association with BMI obtained from 20 SNPs of Candidate gene approach and 32 SNPs 
of Genome Wide Association Studies (52 SNPs). 
 

  n  
BMI difference between GRS (p95) and GRS (p5) [95% CI] 

p-value  

  at baseline at 12 months at 24 months 

Sample 1*  425 1.87 [0.49-3.26] 2.08 [0.53 - 3.63]   0.01 

Sample 2 ** 143 -0.20 [-2.79 – 2.39] -0.24 [-3.35 – 2.87] -0.29 [-4.36 – 3.79] 0.8 

Sample 3 ** 175 2.37 [0.13-4.61] 2.57 [0.08-5.06] 2.79 [-0.19-5.78] 0.04 

Samples 2 and 3 **  318 1.71 [-0.03 – 3.45] 1.92 [-0.07 – 3.92] 2.18 [-0.29 – 4.66] 0.06 

All samples combined 743 1.74 [0.68-2.80] 1.94 [0.75-3.14] 
 

0.001 

FEND patients* 116 3.19 [0.54-5.84] 3.66 [0.58-6.73] 
 

0.01 

Men  374 2.75 [1.57-3.93] 3.09 [1.74-4.45] 
 

0.0001 

Women  369 0.85 [-0.49 – 2.21] 0.94 [-0.57 – 2.47] 
 

0.3 

GRS: Genetic Risk Score, p95: percentile 95 of GRS, p5: percentile 5 of GRS.  
*follow-up to 12 months of treatment. **follow-up to 24 months of treatment. 
 FEND: First Episode and Newly Diagnosed Patients
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Supplementary Methods 

The choice of Generalized Linear Mixed Models which is a general form of Linear Mixed Models 

has been made to take into account the canonical behavior of BMI values; exploratory analysis 

of the data strongly suggested an inverse link function which is the canonical link function for the 

Gamma family. The mathematical model has such a form: 

                             

where   represents the inverse function. The Generalized additive model on the other hand is 

adjusted by the identity link function and the effect of time is a smooth function: 

                                  

where a() represents a smooth function adjusted by the mgcv package of R. This function is 

semi-parametric and does not have a fixed number of parameters which is the reason for the 

choice of this type of model: its flexibility allows to capture the BMI evolution over time and to 

detect any differences among group with a higher precision. 
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