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Abstract

Motivation: The functional impact of small molecules is increasingly being assessed in different

eukaryotic species through large-scale phenotypic screening initiatives. Identifying the targets of

these molecules is crucial to mechanistically understand their function and uncover new therapeut-

ically relevant modes of action. However, despite extensive work carried out in model organisms

and human, it is still unclear to what extent one can use information obtained in one species to

make predictions in other species.

Results: Here, for the first time, we explore and validate at a large scale the use of protein hom-

ology relationships to predict the targets of small molecules across different species. Our results

show that exploiting target homology can significantly improve the predictions, especially for mol-

ecules experimentally tested in other species. Interestingly, when considering separately orthology

and paralogy relationships, we observe that mapping small molecule interactions among ortho-

logs improves prediction accuracy, while including paralogs does not improve and even some-

times worsens the prediction accuracy. Overall, our results provide a novel approach to integrate

chemical screening results across multiple species and highlight the promises and remaining chal-

lenges of using protein homology for small molecule target identification.

Availability and implementation: Homology-based predictions can be tested on our website http://

www.swisstargetprediction.ch.

Contact: david.gfeller@unil.ch or vincent.zoete@isb-sib.ch.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Small molecules provide remarkable tools to modulate molecular

mechanisms in cells, with therapeutic applications in human and

veterinary, biotechnological or agricultural applications in many

other species from animals, to plants, to microorganisms. Small mol-

ecules displaying bioactivity in a given organism typically bind spe-

cific proteins and modify their activity. Mapping the actual protein

targets of small molecules is therefore a key step toward a better

understanding of their mechanisms of action. In addition, several

molecules bind to more than one target, which can be unrelated in

terms of both sequence and function (Karaman et al., 2008; Mestres

et al., 2009). These secondary targets are typically responsible for

many favorable or unfavorable side effects of known drugs.

Unraveling small molecule secondary targets is helpful to predict

and elucidate these side effects (Lounkine et al., 2012; Young et al.,

2008). Moreover, it is a promising approach to repurpose existing

drugs toward new applications by exploiting their activity on other

proteins than those they were initially developed for (Keiser et al.,

2009).

Several experimental and computational strategies have been de-

veloped to determine the interacting partners and the activity of

small molecules (Ziegler et al., 2013). Small molecules can be

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2721

Bioinformatics, 31(16), 2015, 2721–2727

doi: 10.1093/bioinformatics/btv214

Advance Access Publication Date: 21 April 2015

Original Paper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serveur académique lausannois

https://core.ac.uk/display/77195344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.swisstargetprediction.ch
http://www.swisstargetprediction.ch
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv214/-/DC1
http://www.oxfordjournals.org/


screened in vitro against large arrays of proteins such as kinases or

G protein-coupled receptors (Davis et al., 2011; Karaman et al.,

2008). In parallel, in vivo screening approaches are increasingly

being developed using model organisms such as yeast (Giaever et al.,

2004) or zebrafish (Zon and Peterson, 2005). Several of these che-

mogenomics screens use the power of genetics to provide indirect in-

formation about the actual targets of small molecules, for instance

by comparing the activity of small molecules across different mutant

strains in yeast (Lee et al., 2014). From the computational point of

view, most target prediction approaches use similarity relationships

between a new molecule and known ligands (Dunkel et al., 2008;

Gfeller et al., 2014; Keiser et al., 2007; Liu et al., 2013). There top

predicted targets are identified as those with one or more ligands

that display high similarity with the query molecule. Different simi-

larity measures between molecules can be used for this purpose

(Armstrong et al., 2011; Ballester and Richards, 2007; Gfeller et al.,

2013; Rahman et al., 2009; Willett, 2011). Other studies have

explored the use of additional information, such as side-effect simi-

larity (Campillos et al., 2008) or gene expression profile similarity

(Iorio et al., 2010) to expand the similarity beyond features deter-

mined solely by the molecular structure of the compounds. Other

groups have also used protein structures to predict small molecule

targets and potential binding modes (Gao et al., 2008; Schomburg

et al., 2014; Wang et al., 2012a).

Computational target prediction tools are especially useful to

analyze the results of high-throughput phenotypic assays that are in-

creasingly being used to identify bioactive compounds in different

species but do not provide direct information about their targets

(Clemons, 2004; Inglese et al., 2007). Data from thousands of such

assays are available in public repositories such as ChemBank

(Seiler et al., 2008) or PubChem (Wang et al., 2012b). In silico tar-

get predictions have been successfully applied to the results of

phenotypic screening assays performed in diverse systems ranging

from cell lines (Young et al., 2008) to zebrafish (Laggner et al.,

2012).

Unfortunately, most current experimental and computational

approaches to determine small molecule targets focus on one species

such as human, mouse or rat. As such, information about protein

orthology relationships to make predictions in less-studied species

or improve predictions in model organisms by integrating data from

other species has been mostly disregarded. For instance, only a

handful of recent studies investigated the properties of ligands bind-

ing to related proteins in distinct organisms (Klabunde, 2007;

Krüger and Overington, 2012; Paricharak et al., 2013) or within the

same organism (Schuffenhauer et al., 2003). This is in stark contrast

with many areas of biology and bioinformatics where the ability to

transfer results obtained in one organism to others is a central

dogma. For instance, mapping protein function based on orthology

has proved extremely useful (Loewenstein et al., 2009). Protein

structure predictions rely heavily on the existence of homologous

proteins with available crystal structures (Kiefer et al., 2009).

Protein–protein interaction predictions also strongly benefit from in-

formation obtained in orthologous species (Matthews et al., 2001).

All these studies have clearly established the use of homology rela-

tionships to better predict the properties of proteins.

This lack in conceptual understanding and computational tech-

niques to exploit target homology in small molecule–protein inter-

action predictions is strongly limiting the scope of chemoinformatics

approaches for two main reasons. First, beyond model organisms

such as human or rat, very few data are available in public databases

for other organisms (e.g. zebrafish and bacteria) and accurate

predictions would be very useful in these species. Second, it would

be highly desirable to integrate data obtained in close orthologous

species to improve existing techniques predicting small molecule–

protein interactions, even in well-studied organisms. Understanding

how small molecule targets can be mapped across species is also crit-

ically important for therapeutic applications since small molecules

of therapeutic interest are first tested in model organisms (e.g. mouse

or rat) before being considered for clinical trials in human.

Here, we introduce a new strategy to integrate data from differ-

ent species to improve small molecule-target predictions. Our results

reveal that protein orthology leads to improve prediction accuracy

and is powerful to uncover new small molecule–protein interactions,

especially in species with less experimental data. Interestingly,

paralogy relationships do not appear to improve prediction

accuracy. Finally, our findings provide a strong basis for expanding

small molecule–protein target predictions beyond well-studied

organisms.

2 Methods

2.1 Small molecule activity data
Small molecule interactions with protein targets were retrieved from

the ChEMBL database (Bento et al., 2014), including only molecules

with more than 5 and less than 60 heavy atoms. Interactions are se-

lected as activity relationships between a small molecule and a single

protein annotated as binding (‘B’) in ChEMBL with activity (e.g. Ki,

Kd, Km, IC50 or EC50) lower than 10 mM in all assays. In each spe-

cies, our dataset consists of small molecules with reported activity in

ChEMBL18 but absent from ChEMBL16, which is the reference

database behind the SwissTargetPrediction method to predict the

targets of small molecules. The list of interactions is available at

http://www.swisstargetprediction.ch/download.php. Molecular

scaffolds were determined using the OPREA definition (Pollock

et al., 2008).

2.2 Homology relationships
Four species were considered in this work: human, rat, mouse and

cow. The selection was made based on the amount of data present

in ChEMBL, requiring especially to have at least 100 different tar-

gets with reported ligands to meaningfully evaluate prediction ac-

curacy. Orthology and paralogy relationships were retrieved from

Ensembl Compara (Vilella et al., 2009), Treefam (Schreiber et al.,

2014) and orthoDB (Waterhouse et al., 2013) databases, consider-

ing the union of all three databases and allowing both one-to-one

and one-to-many relationships. Including homology relationships

results in a much higher number of potential targets (Fig. 2B), espe-

cially in rat, mouse and cow. This is because many human targets

have orthologs that have no reported ligand in those species.

Therefore, considering target homology between these species and

human significantly increases the number of potential targets.

Homology relationships are available at http://www.swisstargetpre

diction.ch/download.php.

2.3 Target predictions
Target prediction was carried out by comparing new molecules pre-

sent only in the recent release of ChEMBL (ChEMBL18) with

known ligands in the SwissTargetPrediction database (referred to as

‘reference dataset’), which is derived from ChEMBL16 (Gfeller

et al., 2014). The method is similar to the one described in our previ-

ous work (Gfeller et al., 2013, 2014). In this approach, two kinds of

similarity values based on chemical similarity [FP2 Fingerprints

(Willett, 2011)] and shape similarity [Electroshape (Armstrong
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et al., 2011)] are combined using logistic regression. More precisely,

the similarity between each ligand of a target and the query molecule

is computed for both similarity measures. The most similar ligand

for each kind of similarity measure is used to compute the final score

between a ligand and a target. To combine the two similarity values,

the logistic regression model that had been trained with the refer-

ence dataset derived from ChEMBL16 (Gfeller et al., 2013) has been

used here. For this training procedure, the total number of interact-

ing ligand-target pairs was 347’889, and the number of negative

data (non-interacting pairs) was five times larger than positive data

[see Gfeller et al. (2013) for other details]. The final logistic regres-

sion scores between a query molecule and their potential targets

range between 0 for a mismatch and 1 for a perfect match and can

be used to rank the targets and identify the top predicted ones (see

below).

Predictions using target homology where implemented as follows

(see example in Fig. 1). The query molecule is compared to all lig-

ands in each species. Similarity values with ligands targeting hom-

ologous proteins are then mapped by homology to proteins in the

species were predictions are made. When testing the influence of

orthology relationships, especially interesting molecules are those

present in our reference dataset in one of the other organisms con-

sidered in this work (see example in Fig. 1C). Such molecules are ex-

pected to benefit most from orthology-based predictions, since their

targets can be directly mapped across species. Prediction accuracy

was therefore computed separately for this subset of molecules

(Figs 3B, 4B and 4D).

Including target orthology results in significantly more targets

that can be predicted, many of which have not been tested (Table 1).

For this reason, we also consider predictions that are restricted to

targets that are present in our reference set built from ChEMBL

version 16.

2.4 Performance evaluation
We used two metrics to evaluate the accuracy of the predictions.

First, the area under the ROC curve (AUC) was calculated for each

molecule in our datasets (i.e. ligands tested in ChEMBL18 but not in

ChEMBL16). Negative data were retrieved as interactions with

activity higher than 100 mM in all assays. These data were supple-

mented with randomly selected targets to have five times more nega-

tive than positive data for each molecule in our dataset (Gfeller

et al., 2013). AUC values were then averaged over the whole dataset

in each species. AUC values provide an unbiased global estimate of

the prediction accuracy over the entire range of potential targets.

However, for practical applications, one is often interested in top-

ranking predictions that can typically be tested experimentally. We

therefore also used the fraction of ligands in each species with at

least one reported target among the top 15 predicted proteins. It is

important to note that the number of potential targets is always

much larger than 15. Therefore, the probability to obtain a correct

target simply by chance is much lower than the numbers reported in

Figure 4. However, as noted in the main text, including homology

relationships significantly increases the number of targets, which

can contribute to the lower values obtained in Figure 4A compared

with Figure 4C.

3 Results

The workflow of our method is illustrated on Figure 1A. As in other

ligand-based approaches, it relies on the observation that similar

bioactive compounds tend to have similar targets. In this frame-

work, the predicted targets for a query molecule are those interact-

ing with ligands displaying the highest similarity with this molecule.

To integrate target homology, a small molecule with reported bio-

activity in a given species S is compared with all known ligands of

proteins from other organisms that have at least one homolog in S.

Predicted targets are determined as those with homologous proteins

binding to the most similar ligands in other species. In the absence

of small molecule–protein interaction data in S, predictions rely only

on target orthology. Alternatively, if some ligands are reported in S,

ligands of homologous proteins are added to the list of similar mol-

ecules. When considering paralogy relationships, potential predicted

targets are proteins from S either with known ligands or having a

paralog in S with known ligands similar to the query molecule (see

example in Fig. 1A). An example of a successful prediction in human

using similarity with a ligand binding to a mouse orthologous

protein is shown in Figure 1B.

A special situation arises when a query molecule has been al-

ready tested in another organism (Fig. 1C). In this case, the most
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Fig. 1. (A) Schematic description of the homology-based prediction method

in species S. The most similar ligands (L1 and L2) to a query molecule are first

determined (cyan dashed arrows), the targets of these ligands are identified

in different species (black arrows) and their homologs in S are determined

(green and orange arrows) (see Section 2.3). Here, targets in species S where

predictions are carried out are shown in white (T2) and targets in other spe-

cies are shown in dark (T1’ and T3’). Orthologs (green dashed lines) and

paralogs (orange dashed lines) are mapped considering both one-to-one and

one-to-many homology relationships. Target prediction without homology

results in T2; with orthology in T1, T2, T3, T3b; with paralogy in T2, T2b; with

orthology and paralogy in T1, T2, T2b, T3, T3b. (B) Example of a successful

orthology-based prediction in human using similar ligands of rat proteins

(Sugane et al., 2013). (C) Example of a successful orthology-based prediction

in human when the query molecule itself is a known ligand of a mouse pro-

tein in our reference dataset (Boumendjel et al., 2002)

A B

Fig. 2. Distribution of the number of molecules and targets. (A) Gray bars

show the total number of ligands for each organism in our dataset (i.e. in

ChEMBL18 but not in ChEMBL16). Black bars show the number of ligands

tested in at least one of the three other organisms in the reference dataset.

(B) Number of targets available for predictions when considering different tar-

get homology relationships. Including target orthology relationships signifi-

cantly increases the number of potential targets in rat, mouse and cow
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similar ligand will be the molecule itself and the top predicted tar-

gets will be the orthologs of the targets in the species where the mol-

ecule has been tested.

To explore the use of homology-based target predictions, we used

the SwissTargetPrediction method to assess similarity between mol-

ecules and predict their targets (Gfeller et al., 2013, 2014). This algo-

rithm was built using the ChEMBL database version 16 as a reference

dataset of small molecule–protein interactions (Bento et al., 2014) and

includes data from human, mouse, rat, cow and horse. Since horse

has only three targets with reported ligands, it was not included in this

work. Thus, homology-based predictions were tested considering four

different organisms: human, rat, mouse and cow. To test the use of

homology relationships, we used for each organism separately all

compounds in ChEMBL18 that do not appear in our reference dataset

derived from ChEMBL16 (see Section 2 for more details). The total

number of small molecules in this dataset is displayed in Figure 2A

(gray bars). For each species, the number of molecules that were tested

in ChEMBL16 in one of the three other organisms is shown in black

bars in Figure 2A. Apart from cow, most compounds of our dataset

are not found in ChEMBL16 in any of the four organisms.

Predictions were carried out as described in Figure 1 in each or-

ganism, considering no homology, orthology, paralogy and both

orthology and paralogy relationships. It is important to note that

including homology, and especially orthology relationships increases

significantly the number of potential targets available for prediction

for rat, mouse and cow, as observed in Figure 2B (green bars). This

is because the number of targets on which ligands have been tested

in these species is much smaller than in human. Therefore, including

orthology-based predictions with orthologous human targets ex-

pands significantly the number of potential predictable targets. In

human, the number of proteins without ligands in our reference

dataset but with orthologs in mouse, rat or cow that have known

ligands is much smaller. Therefore, including orthology relation-

ships does not increase much the total number of targets available

for predictions in human. Paralogy relationships provide on average

a 30–40% increase in the number of potential predictable targets

(Fig. 2B, orange bars).

For each molecule in our dataset, the performance was assessed

using AUC, as well as the fraction of ligands with at least one correct

target among the top 15 predictions (see Section 2). In terms of AUC

values, Figure 3A indicates that including orthology relationships

between targets leads on average to better AUC, especially for rat,

mouse and cow. Interestingly, we observe that the use of paralogy

relationships in general does not result in better AUC values and

most often give rise to lower values. Considering both target orthol-

ogy and paralogy gives similar performance as when only target

orthology is used.

As noted in previous studies, small molecule–protein interaction

data display strong biases and redundancies in part because of the

systematic exploration of sidechain replacements that preserve the

compounds’ scaffold in medicinal chemistry experiments. This

makes target prediction much easier for molecules belonging to

chemical series intensively explored. As a consequence, the AUC

value calculated from the entire dataset does not reflect the predict-

ive ability of the approach for molecules belonging to new chemical

series (Gfeller et al., 2013; Rohrer and Baumann, 2008). One way

of addressing this issue consists in preventing comparisons between

ligands with the same scaffold (see Section 2) (Gfeller et al., 2013).

As expected, AUC values are lower when preventing comparison be-

tween the same scaffolds, but the same trend is visible

(Supplementary Fig. S1A).

We further investigate the situation where molecules in our data-

set have been previously tested in another species (Fig. 1C). This cor-

responds to the case where target orthology relationships are

expected to be most beneficial. We observe that AUC values are

higher and, as before, target orthology leads to improved AUC val-

ues, while paralogy relationships result in few changes (Fig. 3B). The

same results hold when preventing comparisons between ligands

with the same scaffolds (Supplementary Fig. S1B).

AUC values provide an unbiased measure of prediction accuracy.

However, for practical purposes, only the top predicted targets are

typically tested experimentally. We therefore consider a second

measure of performance defined as the fraction of ligands for which

at least one of the top 15 predicted targets is a known one (i.e. true

positive) in our dataset. This can be seen as the probability of having

at least one hit when experimentally testing top predicted targets,

which is most useful to guide experimental approaches. In the gen-

eral case, although orthology relationships gave better AUC values,

we observe that the likelihood of obtaining a correct hit among the

top predicted targets decreases for rat, mouse and cow and is only

very slightly higher in human when considering orthology-based

predictions (Fig. 4A). Target paralogy also results in lower perform-

ance. However, if we only consider molecules that have been tested

in other species (Fig. 4B), the fraction of query molecules with at

least one known target in the top 15 is higher for human, rat and

mouse when using protein orthology relationships. This result con-

firms that target orthology relationships are especially useful to map

the targets of molecules that have been directly tested in another

organisms.

The apparent discrepancy between AUC values and the fraction

of compounds with at least one known target among the top
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predicted ones can be understood by observing that the number of

potential predictable targets is much larger when orthology-based

mapping is allowed (Fig. 2B and Table 1, last column), suggesting

that for many new targets that can be predicted by homology, no lig-

and has simply been tested experimentally. Moreover, most of the

targets in our dataset are already present in previous assays even

without considering target homology (Table 1, column 3). To ex-

plore the effect of this potential bias, we restricted the predictions to

targets that are present in our reference dataset. Remarkably, in this

case, we see a constant improvement when including orthology rela-

tionships for all four organisms (Fig. 4C and D, green versus gray

bars). The same results hold when considering the sensitivity (see

Supplementary Fig. S2). This suggests that the lower performance of

orthology-based predictions observed in Figure 4A also comes from

the much larger number of targets that are available for predictions

when considering orthology relationships. Because for many of these

‘new’ targets no ligand has been tested, a larger number of data

annotated as negative are present in our dataset, which is known to

affect measures considering the top predictions, such as the one used

in Figure 4. Overall, these results suggest that orthology-based pre-

dictions work especially well for compounds tested in some other or-

ganism. In our benchmarks, we further observe that ligands of ‘old’

targets can be predicted using target orthology. For the other pre-

dicted protein targets, it is important to realize that many of them

have not been considered in experimental assays. Therefore, some of

the orthology-based predictions may be correct but do not appear as

true positives in our dataset because of the lack of experimental data

for these targets.

To explore the potential of the proposed framework in other

species, we display in Figure 5 the number of targets available for

predictions in a wide range of organisms. As expected, this number

is lower for invertebrates, since there exist less orthologs in these

species. Nevertheless, a significant number of proteins can still be

accessed by orthology in these distant species. We also note that the

higher number of targets in zebrafish compared with other verte-

brates likely arises because of the whole genome duplication event in

teleosts (Howe et al., 2013; Taylor et al., 2001). Most importantly,

Figure 5 indicates that orthology-based predictions have the poten-

tial to significantly impact small molecule-target discovery well be-

yond the four species considered in this work.

4 Discussion

Mapping the properties of proteins across different species using

orthology is a well-established way of harnessing the wealth of data

available in some organisms to make new and accurate predictions in

others. However, this property has not been exploited to predict inter-

actions between proteins and small molecule ligands. Here, we ob-

serve that target prediction accuracy is improved, both in terms of

AUC and of the fraction of molecules with at least one correct target

among the top predicted ones, when including data from other organ-

isms in all four species analyzed in this work. This is especially striking

when the query molecule has been already tested in some other spe-

cies, which corresponds to the most straightforward way of mapping

small molecule–protein interactions across species (Fig. 1C).

The much larger number of potential targets that can be pre-

dicted using orthology (Fig. 2B and Table 1) can sometimes result in

lower number of correct predictions among the top 15 predicted tar-

gets (Fig. 4A). However, when including only targets on which lig-

ands have been tested in previous assays (here in version 16 of

ChEMBL), we observe that target orthology relationships lead to a

clear improvement, especially in rat, mouse and cow (Fig. 4C and

D). This is likely because targets used in older assays are often

reused in new ones, as observed in Table 1. First many of these ‘old’

targets have been selected based on their therapeutic or biotechnolo-

gical interest and therefore are more likely to be studied. Second,

when planning new experiments, researchers are typically guided by

previous successful studies and therefore tend to preferentially study

targets with already known ligands. Last, and possibly most import-

antly, ‘old’ targets often have well-established experimental assays,

possibly commercially available, that are more likely to be reused by

experimentalists, rather than setting up a whole new assay for new

targets. For these reasons, it is not surprising that orthology-based

predictions resulting in many more potential targets give lower per-

formance in terms of the fraction of ligands with validated targets

among the top predictions (Fig. 4A and B). However, when correct-

ing for the bias toward reusing the same targets in experimental

studies, we see a clear improvement in the predictions (Fig. 4C and

D). Based on the improved accuracy when considering only ‘old’ tar-

gets, it is tempting to speculate that many of the orthology-based

predictions for new targets, especially in rat, mouse and cow, may

actually be correct, but simply have not been tested.

We observed that mapping small molecule targets between paral-

ogs is often detrimental to the predictions. This likely reflects several

factors. First, evolutionary studies indicate that paralogs have

diverged more than orthologs. As a consequence, protein function is

often more conserved among orthologs than paralogs (Altenhoff

et al., 2012). In terms of protein–ligand interactions, previous work

also suggested that orthologous proteins share more of their ligands
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Table 1. Number of targets in different organisms

Organisms Targets No homology Total Orthology Total

Human 1132 1028 1768 1032 1937

Rat 179 158 469 168 2569

Mouse 127 105 342 119 2296

Cow 49 46 104 47 2263

Column 2 shows the number of different targets in our dataset. Column 3

shows how many of them are available in our predictions without including

homology relationships. Column 4 shows how many in total are available for

predictions (Fig. 2B, gray bars). Column 5 shows how many of the targets in

our dataset are available in our predictions when including target orthology

relationships. Column 6 shows how many in total are available for predic-

tions when considering target orthology relationships (Fig. 2B, green bars)
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compared with paralogs (Krüger and Overington, 2012). Second,

small molecules are often designed to target only some specific mem-

bers of a protein family (e.g. specific kinase inhibitors). Therefore,

mapping their interactions within a family of paralogs may often

lead to false positives. Although some of these results might have

been guessed, our work demonstrates for the first time that paralogy

relationships are in general not appropriate for transferring small

molecule–target interactions within an organism.

To validate and compare predictions with and without orthology

relationships, we used AUC and the fraction of ligands with at least

one correct target among the top 15 predictions. This strategy does

not require fixing an arbitrary threshold on the target scores, which

may not be the same for all ligands, and takes a more pragmatic ap-

proach (correct prediction among the top predicted targets), which

corresponds to what can be reasonably tested experimentally. Other

studies have used measures such as sensitivity and specificity assum-

ing a fixed and uniform threshold to separate interacting from non-

interacting pairs (Liu et al., 2013).

A natural question is whether orthology-based predictions will

be as successful in more distant species, such as those displayed in

Figure 5. Unfortunately, much less data are available in most species

apart from human, rat, mouse and cow. For instance, horse, zebra-

fish or worm have less than five targets each with reported binding

data in ChEMBL. When attempting to check the predictions in these

species with little interaction data, we could not find significant val-

idations of the predictions. However, because of the sparsity of

data, we expect that this observation may not truly reflect the real-

ity. In particular, orthology-based target predictions are likely to be

useful in species like zebrafish, as attested by many biological studies

that map small molecule activity across vertebrate species (Gebruers

et al., 2013; Ridges et al., 2012).

Our work is the first attempt to establish the use of protein hom-

ology for bioactive small molecule target predictions at a large scale.

Overall, we observe that clear improvement can be achieved by

using target orthology, whereas paralogy relationships do not result

in significantly better predictions. In this work, we used our previ-

ously published method (Gfeller et al., 2013) to determine ligand

similarity and ligand–target interaction scores. However, the idea of

integrating orthology relationships into target predictions can be

easily generalized to other small molecule similarity metrics. Our

analysis also reveals a strong bias in recent small molecule–protein

interaction datasets where the same targets are used over and over.

This aspect should be considered when benchmarking cross-species

target prediction approaches. Although there are many practical rea-

sons for this bias, this work could serve as a guide to develop new

assays to test potentially interesting targets in different species.

These would increase our sampling of the ligand space for many

proteins, which could then further improve the in silico predictions

from model organisms to humans. Homology-based predictions can

be tested at our website: http://www.swisstargetprediction.ch.
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Krüger,F.A. and Overington,J.P. (2012) Global analysis of small molecule

binding to related protein targets. PLoS Comput. Biol., 8, e1002333.

Laggner,C. et al. (2012) Chemical informatics and target identification in a

zebrafish phenotypic screen. Nat. Chem. Biol., 8, 144–146.

Lee,A.Y. et al. (2014) Mapping the cellular response to small molecules using

chemogenomic fitness signatures. Science, 344, 208–211.

Liu,X. et al. (2013) HitPick: a web server for hit identification and target pre-

diction of chemical screenings. Bioinformatics, 29, 1910–1912.

Loewenstein,Y. et al. (2009) Protein function annotation by homology-based

inference. Genome Biol., 10, 207.

Lounkine,E. et al. (2012) Large-scale prediction and testing of drug activity on

side-effect targets. Nature, 486, 361–367.

Matthews,L.R. et al. (2001) Identification of potential interaction networks

using sequence-based searches for conserved protein-protein interactions or

“interologs”. Genome Res., 11, 2120–2126.

2726 D.Gfeller and V.Zoete

http://www.vital-it.ch


Mestres,J. et al. (2009) The topology of drug-target interaction networks: im-

plicit dependence on drug properties and target families. Mol. Biosyst., 5,

1051–1057.

Paricharak,S. et al. (2013) Are phylogenetic trees suitable for chemogenomics

analyses of bioactivity data sets: the importance of shared active compounds

and choosing a suitable data embedding method, as exemplified on kinases.

J. Cheminform., 5, 49.

Pollock,S.N. et al. (2008) Scaffold topologies. 1. Exhaustive enumeration up

to eight rings. J. Chem. Inf. Model., 48, 1304–1310.

Rahman,S.A. et al. (2009) Small molecule subgraph detector (SMSD) toolkit.

J. Cheminform., 1, 12.

Ridges,S. et al. (2012) Zebrafish screen identifies novel compound with select-

ive toxicity against leukemia. Blood, 119, 5621–5631.

Rohrer,S.G. and Baumann,K. (2008) Impact of benchmark data set topology

on the validation of virtual screening methods: exploration and quantifica-

tion by spatial statistics. J. Chem. Inf. Model., 48, 704–718.

Schomburg,K.T. et al. (2014) Facing the challenges of structure-based target

prediction by inverse virtual screening. J. Chem. Inf. Model., 54,

1676–1686.

Schreiber,F. et al. (2014) TreeFam v9: a new website, more species and orthol-

ogy-on-the-fly. Nucleic Acids Res., 42, D922–D925.

Schuffenhauer,A. et al. (2003) Similarity metrics for ligands reflecting the simi-

larity of the target proteins. J. Chem. Inf. Comput. Sci., 43, 391–405.

Seiler,K.P. et al. (2008) ChemBank: a small-molecule screening and chemin-

formatics resource database. Nucleic Acids Res., 36, D351–D359.

Sugane,T. et al. (2013) Atropisomeric 4-phenyl-4H-1,2,4-triazoles as selective

glycine transporter 1 inhibitors. J. Med. Chem., 56, 5744–5756.

Taylor,J.S. et al. (2001) Comparative genomics provides evidence for an an-

cient genome duplication event in fish. Philos. Trans. R. Soc. Lond. B Biol.

Sci., 356, 1661–1679.

Vilella,A.J. et al. (2009) EnsemblCompara GeneTrees: Complete, duplication-

aware phylogenetic trees in vertebrates. Genome Res., 19, 327–335.

Wang,J.-C. et al. (2012a) idTarget: a web server for identifying protein

targets of small chemical molecules with robust scoring functions and a

divide-and-conquer docking approach. Nucleic Acids Res., 40,

W393–W399.

Wang,Y. et al. (2012b) PubChem’s BioAssay Database. Nucleic Acids Res.,

40, D400–D412.

Waterhouse,R.M. et al. (2013) OrthoDB: a hierarchical catalog of animal,

fungal and bacterial orthologs. Nucleic Acids Res., 41, D358–D365.

Willett,P. (2011) Similarity searching using 2D structural fingerprints.

Methods Mol. Biol., 672, 133–158.

Young,D.W. et al. (2008) Integrating high-content screening and ligand-

target prediction to identify mechanism of action. Nat. Chem. Biol., 4,

59–68.

Ziegler,S. et al. (2013) Target identification for small bioactive molecules:

finding the needle in the haystack. Angew. Chem. Int. Ed. Engl., 52,

2744–2792.

Zon,L.I. and Peterson,R.T. (2005) In vivo drug discovery in the zebrafish.

Nat. Rev. Drug Discov., 4, 35–44.

Homology-based small molecule target predictions 2727


	btv214-TF1

