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Faculté des Lettres, Université de Lausanne
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Summary. Quotient dissimilarities constitute a broad aggregation-invariant fam-
ily; among them, f -dissimilarities are Euclidean embeddable (Bavaud 2002). We
present a non linear principal components analysis (NPA) applicable to any quo-
tient dissimilarity, based upon the spectral decomposition of the central inertia. For
f -dissimilarities, the same decomposition yields a non linear correspondence analysis
(NCA), permitting to modulate as finely as wished the contributions of positive or
negative deviations from independence. The resulting coordinates exactly reproduce
the original dissimilarities between rows or between columns; however, Huygens’s
weak principle is generally violated, as measured by some quantity we call eccen-
tricity.

1 Introduction and notations

Let njk be a (J×K) contingency table, with relative frequencies fjk := njk/n.
Marginal profiles (assumed strictly positive) are ρ∗j := nj•/n = fj• and ρk :=
n•k/n = f•k, where nj• :=

∑
k∈K njk are the row marginals, n•k :=

∑
j∈J njk

are the column marginals, and n := n•• is the grand total. The independence
quotients qjk are the ratios of the observed counts to the expected counts
under independence:

qjk :=
njk n

nj• n•k
=

fjk

ρ∗j ρk
with

∑
j∈J

ρ∗j qjk = 1 ∀k
∑
k∈K

ρk qjk = 1 ∀j.

(1)
One has qjk = 1 for all cells iff perfect independence holds. The chi-square
dissimilarity Dχ

jj′ between rows j and j′ expresses in terms of quotients as
Dχ

jj′ =
∑

k ρk (qjk − qj′k)2.

Quotient dissimilarities are of the form Djj′ :=
∑

k ρk F (qjk, qj′k), where
F (q, q′) ≥ 0, F (q, q′) = F (q′, q) and F (q, q) = 0; f-dissimilarities are quotient
dissimilarities with F (q, q′) = (f(q) − f(q′))2, whereas g-dissimilarities are
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quotient dissimilarities with F (q, q′) = (g(q) − g(q′))(q − q′) (Bavaud 2002).
Quotient dissimilarities are aggregation-invariant, f -dissimilarities are (Eu-
clidean) embeddable, that is representable as Djj′ =

∑
l(xjl − xj′l)2 (where

xjl is the coordinate of object j in dimension l), and g-dissimilarities obey
Huygens’s weak principle I1 = I2 where I1 :=

∑
j ρ∗j Djg is the central iner-

tia1 and I2 := 1
2

∑
jj′ ρ

∗
j ρ∗j′ Djj′ the pair inertia (Bavaud 2002); moreover, the

only member common to both families is (up to a constant) the chi-square
dissimilarity characterized by Fχ(q, q′) = (q − q′)2 (see Figure 1)2.

Figure 1. Types of categorical dissimilarities under consideration

Classical factorial correspondence analysis (FCA) consists in visualizing
the rows (and columns) of the contingency table in a low-dimensional space,
that is in representing row j by factorial coordinates xjα (respectively ykα)
such that Dχ

jj′ =
∑

α(xjα−xj′α)2; the first dimensions α = 1, 2 . . . are chosen
to express a maximum proportion of the central inertia3 I1 = I2 = 1

nχ2. Here
χ2 is the chi-square associated to the contingency table, measuring the total
rows/columns dependence, and reconstructed by the sum

∑m
α=1 λα (with m =

min(J−1,K−1)) of the eigenvalues of the associated spectral decomposition
problem.

The same eigen-structure is also well-known to arise as the solution to
a principal component analysis (PCA) applied on a particular variance-
covariance (m2 × m2) matrix Γ among m2 variables represented by the
columns, with Tr(Γ ) = I1.

In this paper, we propose a generalized factor analysis for contingency
tables -the non linear principal components analysis (NPA)- applicable to
any quotient dissimilarity. As a factor-analytic method, NPA determines the
projection (hyper-)planes maximizing the explained inertia, but choices must
first be made, since I1, I2, I∗1

4 or I∗2 are all candidates for defining inertia. As
a matter of fact, I1 = I∗1 for quotient dissimilarities5, while I2 = I∗2 (=I1 = I∗1 )

1 g is the average profile with associated quotient profile gk ≡ 1 (see Equation 1).
2 one cannot rule out a priori the possibility of discovering, besides the already

identified g- and f -dissimilarities, a new family F (q, q′) entailing both properties.
3 by contrast, classical MDS seeks maximizing the low-dimensional representation

of
∑

j
Djg, the total unweighted dispersion around g.

4 starred notations denote dual quantities obtained by rows-columns transposition;
for instance, n∗kj = njk and q∗kj = qjk.

5 I∗1 =
∑

k
ρk D∗

kg∗ =
∑

k
ρk

∑
j
ρ∗j F (q∗kj , 1) =

∑
j
ρ∗j

∑
k

ρk F (qjk, 1) = I1
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for g-dissimilarities. In general, Huygens’s weak principle is violated, which
can be measured by the eccentricity ε and the dual eccentricity ε∗ we define as
ε := (I1 − I2)/I2 = I1/I2 − 1 and ε∗ := (I∗1 − I∗2 )/I∗2 = I1/I∗2 − 1. In general,
ε∗ 6= ε. By construction, ε∗ = ε = 0 for g-dissimilarities, while ε ≥ 0 and
ε∗ ≥ 0 for f -dissimilarities (see Section 3).

To preserve the rows-columns symmetry, we make the choice of defining
NPA as a low-dimensional projection of the central inertia I1. The associated
spectral decomposition yields factor-variables correlations or loadings repre-
senting the rows (and the columns) in the unit hypersphere (see Section 2).
Moreover, when restricted to f -dissimilarities, the same procedure yields rows
(and columns) coordinates defined by coordinates= loadings × distance
to the origin (see Equation 8 below), whose squared Euclidean distances
restore the (embeddable) dissimilarities Djj′ , as expected. We call this pro-
cedure non linear factorial correspondence analysis (NCA). Most of the usual
properties of ordinary FCA are still valid, with a notable exception, matching
the non-vanishing of the eccentricities: the weighted average of rows or column
coordinates is generally not zero anymore (see Section 3).

The search for exotic, non chi-square dissimilarities but yet endowed
with attractive formal properties possesses a long tradition in the classi-
fication and data analysis community; let us mention the Hellinger dis-
similarity investigated by Escoffier (1978) (defined in our set-up as the f -
dissimilarity F (q, q′) = (

√
q −

√
q′)2), or the logarithmic dissimilarity (with

F (q, q′) = (ln q − ln q′)2) occurring in the statistical analysis of composi-
tional data (Aitchison and Greenacre (2002)): non-chi square dissimilarities
F (q, q′) 6= (q− q′)2 allow to distort and modulate the contributions of profiles
to the global measures of dependence, and to over- or underweight, as finely
as wished, the effect of attractions (q > 1) and/or repulsions (q < 1) (see
also Bavaud (2002) for additional examples). To that extent, the construction
of factorial decompositions applied to exotic dissimilarities (NPA and NCA)
constitutes a natural continuation of this tradition, aimed at visualizing the
rows (and columns) in a way corresponding to the chosen distortion.

2 Non linear PCA for quotient dissimilarities (NPA)

The goal is to express I1 = I∗1 as the trace of some positive semi-definite
(p.s.d.) (J × J) symmetric matrix Γ of components γjj′ , interpretable as
a variance-covariance matrix between variables {Vj}J

j=1 associated to the J
rows. Define the (J ×K) matrix C with components

cjk := sgn(qjk − 1)
√

ρ∗j F (qjk, 1) ρk. (2)

Then, by construction, Γ := CC ′ is p.s.d. It satisfies

γjj = ρ∗j
∑

k

ρk F (qjk, 1) = ρ∗j Djg (3)
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and Tr(Γ ) = I1. Decreasingly ordered eigenvalues λα and associated eigenvec-
tors ujα (where α = 1, . . . ,m := min(J,K)) are obtained from the spectral
decomposition Γ = UΛU ′ with U orthogonal and Λ diagonal, that is

cov(Vj , Vj′) = γjj′ =
m∑

α=1

λα ujα uj′α

∑
α

ujα uj′α = δjj′

∑
j

ujα ujβ = δαβ .

The term sgn(qjk − 1) in Equation (2) insures that feature k contributes pos-
itively to cov(Vj , Vj′) > 0 iff quotients qjk and qj′k are either both superior
to 1 or both inferior to 1. By construction, the factors Fα :=

∑
j Vj ujα are

uncorrelated: cov(Fα, Fβ) = δαβ λα; moreover,

cov(Vj , Fα) = λα ujα sjα := corr(Vj , Fα) =
√

λα√
γjj

ujα. (4)

As usual in PCA, the variables Vj can be represented by their loadings sjα

on the factors Fα (see Section 4). Loadings reproduce original correlations
in that

∑
α sjα sj′α = corr(Vj , Vj′). Also, the identities

∑
α s2

jα = 1 and∑
j γjj s2

jα = λα permit defining the contributions of factors Fα to the propor-
tion of explained variance of the variables Vj (communalities) and vice-versa.

The above NPA is applicable for any quotient dissimilarity D (provided
γjj > 0 for all j), irrespectively of its possible metric properties. In the chi-
square case, sgn(q − 1)

√
F (q, 1) = q − 1 and the vector ujm :=

√
ρ∗j is

well-known to constitute a normalized eigenvector of Γ with associated trivial
eigenvalue λm = 0; this property is false for quotient dissimilarities where
λm > 0 in general.

The spectral decomposition applied on the (K ×K) matrix Γ ∗ := C ′C =
V ΛV ′ instead on Γ yields a factorial representation of the columns variables
V ∗

k , with identical eigenvalues λα and with normalized eigenvectors vkα related
to normalized eigenvectors ujα of Γ by

vα =
1√
λα

C ′ uα uα =
1√
λα

C vα. (5)

In summary, matrices U and V (orthogonal) and Λ (diagonal) satisfy:

C = U
√

ΛV ′ C ′ = V
√

ΛU ′ Γ = CC ′ = U ΛU ′ Γ ∗ = C ′C = V ΛV ′. (6)

3 Non linear FCA for f-dissimilarities (NCA)

The f -dissimilarities obey sgn(qjk − 1)
√

F (qjk, 1) = f(qjk)− f(1). It is con-
venient to calibrate f(q) (defined up to an affine transformation) so that
f(1) = 1. Moreover, if f(q) is smooth enough, the choice f ′(1) = 1 ensures
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f(q) = q − 1 + κ(q − 1)2 + 0((q − 1)3), where κ := 1
2f ′′(1) is the reference

curvature (measured at the independence value q = 1). One then has

γjj′ =
√

ρ∗j ρ∗j′
∑

k

ρk f(qjk) f(qj′k) =
m∑

α=1

λα ujα uj′α. (7)

NCA coordinates xjα for row j (aimed at metrically embedding the cate-
gories) are obtained by multiplying the loadings sjα(4) (used to represent the
variables in the associated NPA) by the distance to the average profile

√
Djg,

that in view of (3) and (4):

xjα :=
√

Djg sjα =
√

γjj√
ρ∗j

sjα =
√

λα√
ρ∗j

ujα. (8)

As claimed, and using (7), the xjα are Euclidean coordinates for objects j ∈ J :

∑
α

(xjα − xj′α)2 =
m∑

α=1

λα[
u2

jα

ρ∗j
+

u2
j′α

ρ∗j′
− 2

ujαuj′α√
ρ∗jρ

∗
j′

] =
γjj

ρ∗j
+

γj′j′

ρ∗j′
− 2

γjj′√
ρ∗jρ

∗
j′

=

=
∑

k

ρk (f2(qjk) + f2(qj′k)− 2f(qjk)f(qj′k)) =
∑

k

ρk (f(qjk)− f(qj′k))2 = Djj′ .

Proceeding analogously with columns leads to representing feature k in di-

mension α by the coordinate ykα defined as ykα :=
√

λα√
ρk

vkα =
√

γ∗
kk√

ρk
s∗kα =√

D∗
kρ∗ s∗kα, where s∗kα = corr(V ∗

k , F ∗
k ) is the corresponding column loading.

Using (5) yields the transition formulas{
ykα = 1√

λα

∑
j∈J ρ∗j f(qjk) xjα

xjα = 1√
λα

∑
k∈K ρk f(qjk) ykα.

(transition formulas) (9)

High- versus low-dimensional coordinates: formula
∑

k ρk (f(qjk)−
f(qj′k))2 = Djj′ shows categories j = 1, . . . , J to be metrically embedded by
the coordinates xjα (low-dimensional, factorial embedding) or equivalently
by the coordinates x̃jk :=

√
ρk f(qjk) (high-dimensional, original embedding).

The two systems of coordinates are linearly related by

xjα =
∑

k

√
ρk x̃jk x̃jk =

∑
α

√
ρk xjα (10)

that is, X = X̃ V , where V is a rotation6. Similarly, factorial column coordi-
nates Y = (ykα) are related to original column coordinates Ỹ = (ỹkj) (with
ỹkj :=

√
ρ∗j f(qjk)) as Y = Ỹ U and Ỹ = Y U ′.

6 Proof: denoting by Φ the (J × J) diagonal matrix containing the ρ∗j , one has

X
(a)
= Φ−1 U

√
Λ

(b)
= Φ−1 C V

(c)
= X̃ V , where (a) follows from (8), (b) from (6), and

(c) follows from the definition X̃ = Φ−1C (since cjk =
√

ρ∗j ρk f(qjk) =
√

ρ∗j x̃jk).
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As an application, consider a supplementary row a with quotient profile
ak ≥ 0 obeying

∑
k ρk ak = 1. Its factorial coordinates xaα can be obtained

from its original coordinates
√

ρkf(ak) by transformation (10), yielding xaα =∑
k

√
ρk f(ak) vkα and obeying

∑
α(xjα − xaα)2 =

∑
k ρk (f(qjk)− f(ak))2 =

Dja by construction. In particular, the factorial coordinates of the average
profile g with gk = 1 ∀k are xgα = 0, since f(1) = 0: as in usual CA, the
average profile is represented at the origin.

Eccentricity: while the coordinates xgα of the average profile g are zero,
the average components of the row coordinates x̄α :=

∑
j ρ∗j xjα are not zero

in general: the square of its norm is instead∑
α

x̄2
α =

∑
k

ρk f̄2
k where f̄k :=

∑
j

ρ∗j f(qjk).

The latter is directly related to the eccentricity ε (see Section 1), measuring
the violation of Huygens’s weak principle:

I1 − I2 =
∑

j

ρ∗j Djg −
1
2

∑
jj′

ρ∗j ρ∗j′ Djj′

=
∑
jk

ρ∗j ρk f2(qjk)− 1
2

∑
jj′k

ρ∗j ρ∗j′ ρk (f(qjk)− f(qj′k))2

=
∑
jj′k

ρ∗j ρ∗j′ ρk f(qjk) f(qj′k) =
∑

k

ρk f̄2
k .

In first approximation, eccentricities behave as ε ∼= cκ2 and ε∗ ∼= c∗κ2 (where
κ := 1

2f ′′(1) is the reference curvature and c and c∗ two constants), and thus
constitute a measure of distortion between the “exotic profile” f(q) and the
“classical profile” fχ(q) = q − 1.

4 An example

hair color k → black brunette red blond total ρ∗

eye color j ↓ W X Y Z

A = brown 68 119 26 7 220 .37

B = hazel 15 54 14 10 93 .16

C = green 5 29 14 16 64 .11

D = blue 20 84 17 94 215 .36

total 108 286 71 127 592 1

ρ .18 .48 .12 .22 1

hair color k → W X Y Z

eye color j ↓

A 1.69 1.12 .99 .15

B .88 1.20 1.26 .50

C .43 .94 1.82 1.17

D .51 .81 .66 2.04

Table 1: cross counts njk of eye and hair color of 592 subjects (left), with associated

quotients qjk (right). Source: Snee (1974).

Consider the power dissimilarity fβ := 1
β (qβ − 1) (with β > 0), such that

f(1) = 0, f ′(1) = 1 and κ := 1
2f ′′(1) = 1

2 (β − 1). The case β = 1 yields
the chi-square dissimilarity; β = 0.5 yields the Hellinger dissimilarity. Table
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2 gives the matrices of squared distance between rows Dβ and columns D∗
β

for the three cases β = 1, β = 3 and β = 0.2, associated with the (4 × 4)
contingency table of table 1.

D1 =

A B C D
A 0 .16 .61 1.08

B .16 0 .20 .65

C .61 .20 0 .34

D 1.08 .65 .34 0

D∗
1 =

W X Y Z
W 0 .20 .43 1.82

X .20 0 .10 .98

Y .43 .10 0 1.09

Z 1.82 .98 1.09 0

D3 =

A B C D
A 0 .37 .89 2.21

B .37 0 .33 1.78

C .89 .33 0 1.58

D 2.21 1.78 1.58 0

D∗
3 =

W X Y Z
W 0 .53 1.09 3.81

X .53 0 .34 2.67

Y 1.09 .34 0 3.04

Z 3.81 2.67 3.04 0

D0.2 =

A B C D
A 0 .28 1.04 1.51

B .28 0 .27 .60

C 1.04 .27 0 .22

D 1.51 .60 .22 0

D∗
0.2 =

W X Y Z
W 0 .21 .38 2.55

X .21 0 .07 1.53

Y .38 .07 0 1.56

Z 2.55 1.53 1.56 0

Table 2: squared distances for the power dissimilarity between rows and between

columns, for β = 1, β = 3 and β = 0.2.

Figure 2. Usual NPA and NCA, with I1 = .23 and eccentricities ε = ε∗ = 0.

Figures 2 to 4 depict the simultaneous visualization of loadings sjα and s∗kα

(lower case letters: NPA) lying inside the circle of unit radius, and coordinates
xjα and x∗kα (upper case letters: NCA), reproducing the distances of ta-
ble 2. Loadings and coordinates are not on the same scale: for instance, the
transformation f(q) → a f(q) entails xjα → a xjα but leaves sjα unchanged;
however, the figures clearly demonstrate the common factorial structure as-
sociated to both NPA and NCA, making xj and sj (as well as x∗k and s∗k)
parallel. The proportion of explained variance associated to dimension α is
λα/I1.
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Figure 3. Power dissimilarities with β > 1 increase the contributions of large

quotients, namely qDZ = 2.04. One gets I1 = .67, ε = .28 and ε∗ = .13.

Figure 4. Power dissimilarities with β < 1 increase the contributions of small

quotients, namely qAZ = 0.15. One gets I1 = .35, ε = .12 and ε∗ = .05.
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