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Abstract

A fuzzy partition assigns to each among n objects a distribution over a categories.
Elementary linear algebraic methods permit to introduce and investigate concepts and
properties such as a) variance and inertia decomposition; b) coarse- and fine-graining
(nestedness); ¢) iteration of fuzzy partitions; d) stability of a group in regard to another
partition; e) (euclidean embeddable) dissimilarities between objects; f) (euclidean em-
beddable) dissimilarities between partitions. Unweighted (R) or weighted (T, P) object
similarities are further investigated, and found to be related to the chi-square as well
as to the indices of Gini, variety and Mirkin-Cherny-Rand. Weighted versions 7" and P
differ for fuzzy partitions, allowing various non-equivalent constructions characterizing
differing aspects of fuzzy partitions and possessing no formal analog at the crisp level®.

1 Introduction and notations

Partitioning (deterministically) n objects consists in assigning each object i to a group j,
among a possible groups; see e.g. Saporta pp. 210-224 (1990) or Mirkin pp. 229-246 (1996)
for a classical, formal approach. A fuzzy partition consists of a probabilistic assignment of
object i to group j, specified with z;; = “probability that object i belongs to group j”,
obeying z;; > 0, 2?21 zij =1and ) ;" | z; > 0 (absence of empty groups); see e.g. Bezdek
(1981) for a presentation of the fuzzy context.

Elementary algebra allows characterizing the combination, iteration or nesting of fuzzy
partitions; associated operators, whose projective or Markov-like properties are exploited,
possess simple interpretations in terms of dissimilarities between objects, yielding in turn
euclidean embeddable dissimilarities between objects and even between partitions them-
selves.

The present general framework suggests a certain view of the multivariate analysis of
fuzzy partitions (=fuzzy categorical variables), that is of multiple fuzzy correspondence
analysis.

2 Membership matrices

Definition 1 A (fuzzy) partition A of a set of n objects in a groups is defined by a (n x a)

!The work has benefited from stimulating discussions with M.Rajman in the framework of the joint
UNIL-EPFL “Clavis” project (2001).
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(fuzzy) membership or indicator matrix such that z F>0, > =1foralli=1,.

andn] =0z ”>0forallj—1,...,

le

Definition 2  a) A deterministic or crisp partition obtains when z;; = 1 or z;; = 0 for
all 7, j, or equivalently Z?j = z;;. In the case of a crisp partition, j(¢) will denote the
group to which 7 belongs.

b) A partition is said to be full if Rank(Z) = a, and defective if Rank(Z) < a.

Crisp partitions are full (since nj; > 0). The uniform partition in a groups U(a) is defined
by the (n x a) matrix zz(a) = % for all ¢ and j = 1,...,a. Uniform partitions are defective
for a > 2; the full case a = 1 defines the one-group partition O = U(1), with associated
(n x 1) membership matrix z§ = 1. The n-groups partition N is defined by the (n x n)

identity matrix zN = 0;; (or a permutation of it).

2.1 Variance decomposition

Let X be a numerical variable with scores x;, i = 1,...,n. Define the (fuzzy) average for

the j-th group as z; := > 1 | 2 x;, and the total average as ¥ = > o1 fi T = LS @,

=1 n;

where f; := % Define the total, within- and between-groups variances as

a

var(z) 1= 1 Z vary (z Z Z zij(xi—3)* varg(z) = Z fi(z;—1)?

]111 7=1

3

Then the (fuzzy) variance decomposition formula var(z) = vary (z) + varg(z) holds. In
particular, for fixed values {z;}, vary (z) is maximum for A = U(a) (for any a), and
minimum for A = O.

2.2 Connected components

Define the (a X a) matrices B = (b;j») and N = (n;j) as

B:=27'Z ie bjy:= Zzijzij’ N :=diag(1'Z) ie. njj =4y n, (2)
i
where 1 is the (n x 1) unit vector. Note that Z1 =1 and Z'1 = N1, where [ is the (m x 1)
unit vector. Also, B~ exists iff A is full.

bj;» > 0 constitutes an index of overlapping between groups j and j" and measures their
common sharing of objects. Distinct groups j and j" with bj; > 0 are said to be adjacent.
Distinct groups j and j' related by a path bji, bik, --.bg,;7 > 0 of adjacent groups are
connected. A set of connected groups constitutes an (irreducible) component, indexed by
J=1,...,c¢(A), where ¢(A) < m is the number of irreducible components of the partition
A, or, equivalently, the number of irreducible blocks of Z. One has:



(A

)= is crisp & B=N
Rank(Z) m

s A
& Aisfull & B! exists
2.3 Iterated partitions

In view of the previous section, the matrix G := N~!'B is the identity iff is A crisp. In
general, G generates iterated partitions:

Definition 3 The r-th iterated membership Z (") defining partition A obtains as
1
720 =z g1 G:=N"'B=(g;) Gy =— > Zj zijt (3)

Indeed, identity G I = 1 ensures the normalization Z (") 1 = 1: that is, Z(") is the mem-
bership matrix associated to some (fuzzy) partition denoted A

G 1 = 1 with gj; > 0 also shows G to be the (a x a) transition matrix of a Markov
chain among groups j = 1,...,a: gj; is the probability that, starting from group j in which
one selects an individual ¢, one precisely gets group j when further selecting a group from
individual i. Identity 1’ZN~'Z'Z = 1'Z ensures n =5, z(r) = n;: the group sizes are
thus unchanged by iteration.

G is doubly stochastic, and made up of J = 1,...,¢(A) irreducible doubly stochastic

matrices G(/), each with stationary distribution f;J) = nj/ny where ny = Zje] n;. It-

erating partitions mixes the objects ¢ among the various classes j of the same connected
2 _

component J; for instance, 2 = Zi/j, Zijr Zivjr Zivj/nj. In the limit » — oo, objects inside
the same component J possess the same group membership:
(o) _ g 1(J" € J(5)) - (c0) _ i I(i € J(4))

(4)

L implying 2
Y () K ()

where I(E) denotes the characteristic function for event E, and J(j) denotes the component
to which group j belongs. Partition A(>) thus obtains by

1. first assigning individuals i to their component J(); we denote this partition as A
with (n x ¢(A)) associated membership matrix ZZ( J) =1(elJ)

2. then choosing group j € J(i) with probability n;/n;u) = fi/fu); the (c(A) x a)
membership matrix associated to this component-group partition is z?,% = % I(j € J).

By construction
z(>) = 70) zc& 7O =778 where 25 :=1I(j€J) (5)

Partition A is defective iff A is fuzzy (since Rank(Z(>)) = ¢(A) < a), and full iff A is
crisp. Crisp partitions are characterized by g;;; = g](]2 =d;;r and z;; = z( " = I1(i € j).

3



Example 1 Consider the fuzzy partition A of n = 5 objects in a = 4 classes with

0 0
02 08 0 0 2 0 0 0 1.04 016 0 0
zZA 0 1 0 0 N 018 0 0 p_| 016 164 0 o0
| o 0 06 o4 =1 o0 008 0 = 0 0 04 04
00 02 08 0 0 0 1.2 0 0 04 08

5 00 04 06 0 0 04 06 0 0

28R 4 01 06 0 0 04 06 0 0

G = o457 G — . . Z(0) 04 0.6 0 0

0 0 5 5 0 0 04 06 SO

1 2 . .
0 0 35 3 0 0 04 06 00 o4 oc

3 Object comparisons

3.1 Object similarities

Let S = (s;7) denote a general (n x n) similarity matrix between objects, obeying s;» > 0,
Siir = Sir; and s;r < \/S;; Sy Three natural candidates for S are provided by the (n x n)
matrices R := ZZ', T := ZN~'Z’ and (assuming the partition to be full, that is B~! exists)
P := ZB7'Z' namely?

a

a a
Zij 2 (-1)
Tiit = E Zij Zitj tiyr i= E o Piir 1= E zij b zvy (6)
j=1 =1 j,j'=1

e R = (r;) (the relation similarity matrix) yields, for a crisp classification, the indicator
matrix of the relation “objects i and ' belong to the same group”.

o T = (t;ir) (the transition similarity matrix) satisfies ), t; = 1: it is thus the transi-
tion matrix among objects of a doubly stochastic Markov chain; ¢;; is the probability
to jump from object ¢ to object i’ when first selecting class j with probability z;; and
then selecting object 7’ inside class j with probability z;;/n;.

e P = (py)(the projection similarity matrix) is a projection matrix (see theorem (1)).
Also, P = T iff A is crisp; in other words, similarity matrices can be made simulta-
neously markovian and projective for crisp partitions only. Note that p;;; > 0 can be
violated (since B~! possesses negative components); however, |p;| < /Pii Diriv holds.

Theorem 1  a) T is a Markov transition matrix, with stationary uniform distribution
7; = 1/n; its iterate obeys T2 = T iff A is crisp (that iff T = P as well).

*Equations (2) and (6) are somewhat reminiscent of the “Burt-Condorcet” duality in multiple correspon-
dence analysis (see e.g. Marcotorchino (2000)). Recall however the latter to refer to p > 2 crisp partitions,
rather than one fuzzy partition as in the present case.



b) In general, however, 1 < Tr(T?) < Tr(T) < a, with Tr(T) = 1 iff A is the uniform
partition U(a) (for any a), and Tr(7T") = a iff A is crisp, in which case T' = P.

c) P exists iff A is full, in which case P? = P and Tr(P) = a.

Proof of theorem 1  a) obtains from c¢) below; recall 7= P in the crisp case.

22
b) by definition, Tr(T) = .., 2. Tr(T) = a holds as a consequence of z?

ij S Zij

ij
with equality iff A is crisp. Tr(T) = 1 obtains from Jensen’s inequality * =D zizj >
{13, z;}% with equality iff A is the uniform partition.

Inequality (z;; — zi/j)inj/zi/j/ > 0 holds in general, while (z;; — zi/j)inj/zi/j/ =0 for all
i,1,7,7 iff Ais crisp. Summing the latter yields
2

2
Zij Rl Ziq! Zil 51 25 %55 2t Z5
ng My n; N n;

it j ii'j ij
which demonstrates that T2 # T if A is not crisp. On the other hand, T = P if A is
crisp, and thus 72 = T.

¢) P2=7ZB'Z2'ZB7'Z' = ZB 'BB~'Z' = ZB~1'Z' = P; also, Tx(P) = Tr(ZB~'Z') =
Tr(B~1Z2'Z)=Te(B'B)=Tr I = a.
3.2 Iterated object similarities

Higher order similarities can be constructed as R(") := Z(”)(Z(T))’, T) = Z(’")( ) 1(Z )'
and (for a full partition) P := 2z (BM)=1 (Z") where Z" = Z G*~1, B(") .=
(ZM)Y Z) and N := diag(1'Z(M).

Theorem 2 For r > 0, T") = T?"~! and (for a full partition) P(") = P.

Proof of theorem 2

Pl — Z(+1) (B~ (Z0+)y — Z(0) NI B[BN 1B NI B BN (2 =
= ZONTIBBINBNINBIBNY(zMY = 20 (B~ (2 = p(r)

Using N(") = N, identity T = 7%~ is proved similarly.

3.3 Object distances

Matrices R, T and P are three instances of positive-definite similarity matrices S = (s;;)
between objects 7 and 4/, from which a squared euclidean distance can be constructed as
Dfi, = (dfj,)2 = 8i; + Syy — 28 (Schoenberg 1935; Gower 1982). Explicitly

(255 — zir7)?2 .
D=3 (g —z) D=3 = D=3 (e — z)bi g = zy)

j j J i7
(7)



Theorem 3 : for a crisp partition:

1
ri =1ty = piyr = o Df;, = D;-";, = Dg, =0 for i,7 € j
J
rii’:tii’:pii’zo Dﬁ:Z Dz;/:Dg:%—i—nijl fOriEj,iIEj/Withj#j/

In particular, T{X = t“l/;// = pﬁc = Oy Tioi/ =1and tg/ = pff/ =

1
o
Proof of theorem 3 : straightforward.

Let a; > 0 with Zj a; = 1 be the membership profile of some object a; for instance,

g; = % > %= % represents the membership profile of the gravity center g. Then squared
distances D7, can be defined by the substitution z;; — a; in (7). Define

1 1
Iy =: oz Z D3, (pair inertia) I} (a) = - Z D3 (central inertia with center a)
1,0 i

(8)
Then, for S = R, T or P,

IY(a) = If(g)—l—Dgg (strong Huygens principle) I5 =1I7(g) (weak Huygens principle)

9)
(see e.g. Bavaud (2002)). The pair inertia I = I} (g) constitutes an index of classificatory
diversity; for crisp partitions A, one gets I = Z;‘:l fi(1 = f;) (Gini diversity index) and
II'=10 =(a—1)/n.

As it it well known (classical MDS), coordinates xfa realizing an euclidean representation
of the objects i = 1,...,n in dimensions & = 1,...,a—1 (that is satisfying Dg, = Za(xfa —
z5,)?) can be obtained as z2, = \/AS uS , where the \J are the eigenvalues and the u3

the eigenvectors occurring in the spectral decomposition S = USAS(U®)'.

Example 1, continued: the (5 x 5) corresponding similarity matrices are

12 0 0 0 83 17 0 0 0 98 .12 —.10
2 68 8 0 O A7 039 440 0 12 .40 .48
R = 0 8 1 0 0 T = 0 .44 .56 0 0 P = —.10 .48 .62
0 0 0 .52 .44 0O 0 0 .58 .42 0 O 0
0 0 0 .44 .68 0 0 0 .42 .58 0 O 0
with associated squared distances between objects
0 1.28 2 152 1.68 0 .89 1.39 142 142 0 1.14
1.28 0 .08 1.2 1.36 89 0 .06 .97 .97 1.14 0
DE = 2 08 0 152 168 D=1 139 06 0 114 114 D = | 179 07
152 1.2 1.52 0 .32 142 .97 1.14 0 .33 1.98 1.40
1.68 1.36 1.68 .32 0 142 .97 114 .33 0 1.98 1.40

o= O O O

1.79

1.62
1.62

o o o O

1.98
1.40
1.62
0
2

1.98
1.40
1.62
2
0



Spectral decomposition of S yields the corresponding (5 x 4) coordinates X* = (z£):
24 97 0 0 58 .71 0 0 —.12
.82 0 0 0 b8 .24 0 0 .61
Xf=| 97 -24 0 o X'=|58 47 0 0| XxF=]| 719 -
0 0 .66 —.30 0 0 -7 .29 0
0 0 .79 .25 0 0 —71 -.29 0

4 Nested partitions: coarser and finer

Definition 4 Partition B (defined by the (n x b) membership matrix Z5) is coarser than
partition A (defined by the (n x a) membership matrix Z4), or, equivalently, A is finer
than B, noted B < A, if Z8 = ZAWAB where WA = (w ;‘,‘f) is a (a x b) class membership

matriz such that wjk >0 and Ek:l wjk =1.

Theorem 4  a) The relation “B < A” is a partial order
b) its minimal element is the one-group partition O
¢) its maximal element is the n-groups partition N
d) if B < A (with A and B both full) then PAPB = pBpA = pP5B,

Proof of theorem 4  a) By definition, 4 < A (with wAA = ;). Also, B < A and
C < Bentail C < A (with WAC = WAB W5,

b) for any A, Z° = ZAWAC with w"‘o =1forall j=1,.

c) for any B, Z8 = ZNWNBW1tthB zj

d) ZAWAB = 78 and BA = (Z4) ZA yield
PAPB Z.A(BA) (ZA)/ZB(BB)—I(ZB)/ _
— Z.A (BA)fl(ZA)/ZA WAB(BB)f (ZB) — ZB(BB)fl(ZB)/ _ PB
I

Identity PBPA = PB is demonstrated analogously.

Theorem 5 For r > 1, the sequence of partitions A(") associated with the iterated mem-
berships Z(") (definition 3) is decreasing (that is AT+Y < AM). Tts limit A(°) is given by
the membership matrix Z(°) defined in (4). Also, A(>®) < A0) < A

Proof of theorem 5 The first two assertions follow from Z"+Y) = Z(") G (equation (3)),
where G is a (a X a) non-negative matrix obeying Z?,:l g;+ = 1 together with properties
listed in section (2.3). The last assertion is a direct consequence of (5).

98
19
.24

O = O O O

_ o O o O



5 Comparison and representation of partitions

5.1 The general case: euclidean visualization

Definition 5 Let S4 = (s7}), respectively S® = (s5,), be the (n x n) similarity matrix

i
associated to partition A, respectively partition B. The corresponding (squared) distance
Di,B between two partitions A and B is defined as

DY p = Z(s;;‘, —s8)2 = Tr(SA — 85)? = Te((SH?) + Tr((S%)?) — 2Tx(SA SB)  (10)

The distance Dfl,B possesses all the properties of a squared euclidean distance, in par-

ticular the embeddability property. Then classical MDS applied on matrix D yields a
low-dimensional euclidean visualization of the distances between partitions, each partition
being represented by a point (see figure 1).

Example 2 Consider n = 5 objects. Define
e A as the fuzzy partition of example 1
e B as the partition A©® in connected components (namely (123;45))

e C as the crisp partition (12;345)

D = N as the n-groups partition (1;2;3;4;5)
e £ = O as the one-group partition (12345)

F = A®) as the limiting iterated partition:

1 0 0 O 10 10
02 08 0 0 10 10
ZA = 0 1 0 0 ZB=11 0 =10 1
0 0 06 04 0 1 0 1
0 0 02 0.8 0 1 0 1
10000 1 04 06 0 0
01000 1 04 06 0 0
ZP=10 0 1 0 0 z€=11 zF=| 04 06 0 0
00010 1 0 0 04 06
0000 1 1 0 0 04 06



The corresponding dissimilarities (10) D® between partitions (listed in alphabetical order)

ar63

0 442 7.62 2.18 16.42 1.43
4.42 0 8 8 12 3.00
7.62 8 0 12 7.16
2.18 8 8 0 20 3.32

16.42 12 12 20 0 15.00
1.43 3.00 7.16 3.32 15.00 0

02¢)

Df =

0 0.63 137 1.74 1.74 0.63

063 0 111 3 3 0 0 2263 11
137 111 0 3 3 111 2 0 111 3 3

pr =1 =, ' pP=| 263 111 0 3 3
1.74 3 3 0 0 3 | 5 s o b
74 3 3 0 0 3 L3300
063 0 111 3 3 0

5.2 The full case for S = P

When A and B are both full, P* and P? are well defined and theorem (1) yields Di,B =

Tr(PA 4 PB — 2 PA PB). If B < A in addition, the distance further expresses (theorem
(4)) as DA 5 = Tr(PA) — Tr(PB) = a — b: the distance between two nested, full partitions
is measured by the difference of their number of groups. In particular

o Die=Dis+DE.ifC<B<Aor A<B<C
e for A full, D} A—a—landDNA_n_a

e for A full, D =a—c(A)

A0 A

5.3 The crisp case: chi-square and Mirkin-Cherny-Rand indices

Let A and B be two crisp partitions possessing respectively a and b non-empty classes. Let
“-4 = A be the number of objects in class j of A, nf = izﬁ be the number of

obJectS in class k of B, and define njk : Zl z; zk as the number of objects both in class
j of Aand k of B.

Definition 6' : NJ‘4,B Do 2oy 2t zl,] 5, zl?], =Y arirE = Z]k(n ) denotes the
number of pairs (distinct or not) Wthh are simultaneously classfled in the same group j of

A and k of B.

Sas F is defective, P is not defined.
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Figure 1: Euclidean visualization (classical MDS) of the distances between partitions Di,&
for S = R (top left), S = T (top right) and S = P (down). Coordinates for D and £ are
identical in the T— and P—representation; also, coordinates for B and F are identical in

the T'—representation. Recall that F is defective and hence not P—representable.
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B
;}C < nAA (nf)Q, and thus Nag < Nga = Z](nf)2 (and Nap < Npp = Zk(nf)z),

with equahty iff the two (crisp) partitions A and B are identical.

Theorem 6

9
D% 5 =Naa+ Npps—2Naps Dip=Dip=(a-1)+0b-1)=>x4s (1)

. MjeMek 2
where X?A,B = Z?Zl 22:1 (n’knj,in,"k) is the chi-square associated to the contingency

n

_ _AB
table nj = njk .

The quantity -5 . DE Ap is called “relative symmetric-difference distance” by Mirkin and

Cherny (1970). Its complement to unity* is known as the “Rand similarity index” (Rand
1971).

Proof of theorem 6 : the first identity follows from

Dig = (rip =) =D QO+t - Z Zhiy)’ =

;!

i1 i1/ i
= Z ZZU ,L] /Z/ -/ —i—Zszz /kzlk/?f{k/ QZZ,LJ i'j Zkz /k =
i’ 7K
Z(S /n 53]/7’[, —I—Zékk/nkékkznk—QZ Z(nf) +Z nk —22 nk
kK’ J k gk
and the second from Dﬁ,B = Tr(PA) + Tr(PB) — 2Tr(PAPB) = a + b — 2 Tr(PASB) and
A,B\2
Z Z/ ZA (n . ) 1
A pB ik ik ik 2
r(P7PT) ZZ “ znl = nitns =1+ - Xas
1% j k ik 7 "k

5.4 The crisp case: instability of a group relatively to another partition

Let A and B be two crisp partitions whose non-empty groups are respectively indexed by
j=1,...,aand k=1,...,b; let n; := n;“ > (0 denote the number of objects i € j.

Theorem 7

a
R B B._ .2 B B B ._ B B ._ B
i=1

1,4 € 1€5;1

a
P B B B B B B
Dﬂ,B = D.A,B = ZT] Tj =1 2’}/] + 5] Z Dii 6] = Zp“ (13)

j=1 1,0/ €j €7

4at least in the variant restricted to the contribution of distinct pairs only.

11



pf and 7']5 constitute measures of the instability of group j (of partition .A) relatively to
partition B; by construction, their sum over the groups j = 1,...,a yields the (squared)
distance between partitions A and B. Note that:

. n]2 is the number of (distinct or not) pairs of objects in j

o

]B is the number of pairs in j which are also classified in the same group k of B

o ﬁJB is the number of pairs classified in the same group k of B, such that the first object

of the pair belongs to j.

As n2 > aJB and ﬂB > aB one has p > 0 with equality iff n = 04] (all pairs in j are pairs
for B) and ﬂB = a (all pairs (i,4") for B such that i € j satlsfy i’ € j). Also:

° fyf is a measure of the pair cohesion in B “as seen from j”
. 553 is a measure of the fineness of groups of B “as seen from j”.
Properties pm < p“ and ), pu, = 1 entail 'yj < 553 and nyB <1, and thus TJB > 0.

Proof of theorem 7

Dﬁ,B:Z( ZZZ Tl n T -I—T”]:Zn _22 74 +Z 71

i’ i€g i i,i'€j €558

DZ{,B = Z(piz pn’ = Z me - 2me’pn + Zpu = Z 1 o Z Pii + Zpu
J

i1/ €] €] 1€J 1,0/ €J 1€]

where (r7})? =77 and Y, (p7)? = pi = 1/n;(;) have been used.
Example 3 : the instability of class j with regard to the n-groups partition B = N is:
o pé\/’ =n; (nj —1) (large groups are unstable)

o N =n,—1

; (large groups are unstable)

Its instability with regard to the one-group partition B = O is:

o pg? = (n —n;j)n; (medium groups are unstable)
. TJO = % =1-f; (small groups are unstable).

12
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