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Abstract: This paper presents some new results on algebraic K-theory with finite coefficients. The argument
is based on a topological construction of a space FmK(R), for any ring R and any integer m ≥ 2, having the
property that the ordinary homotopy theory of FmK(R) is isomorphic to the algebraic K-theory of R with
coefficients in Z/m: πn(FmK(R)) ∼= Kn(R; Z/m) for n ≥ 1. This space FmK(R) is called the mod m K-
theory space of R. The paper is devoted to the investigation of several properties of the groups Kn(R; Z/m),
for n ∈ Z, and to some calculations of the integral homology of finite K-theory spaces.

1. Introduction

Algebraic K-theory of rings with finite coefficients was introduced by Browder in [6] and has been very useful.
Browder used this technique in order to show that the group K3(Z) ∼= Z/48 occurs as a direct summand
in K8k+3(Z), for all positive integers k (see [6, Theorem 4.8]). More recently, the complete calculation of
the 2-torsion of K∗(Z) by Rognes and Weibel (see [26] and [22]) was possible because of the application of
Voevodsky’s proof of the Milnor conjecture to the investigation of the Bloch-Lichtenbaum spectral sequence
for computing K∗(Q; Z/2) and K∗(Z; Z/2). Several consequences of this important result are presented in
[3, Section 9], in particular the complete description of the homotopy type of the K-theory space BGL(Z)+

after completion at 2, the calculation of the 2-adic product structure of K∗(Z) and of the module structure
over the Steenrod algebra of the mod 2 cohomology of the infinite general linear group GL(Z). Many
other results in algebraic K-theory are based on arguments using K-theory with finite coefficients (see for
instance Suslin’s work on the K-theory of fields [23] and [24]). In [15], Karoubi and Lambre introduced the
Hochschild homology with finite coefficients, constructed the Dennis trace map from Hochschild homology
with finite coefficients and found an unexpected relationship with number theory. The mod m Tate-Farell-
Vogel cohomology of groups has been introduced in [11] having applications to mod m algebraic K-theory.

The purpose of the present paper is to establish a couple of new important properties of the groups
Kn(R; Z/m) for any ring R and any integer m ≥ 2.

Our investigation of the algebraic K-theory of rings with finite coefficients is based on a topological con-
struction of a space Fm(X) associated with any loop space X and any positive integer m with the property
that

πn(Fm(X)) ∼= πn+1(X; Z/m)
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for all n ≥ 0. This construction is presented in Section 2 and applied in Section 3 to the special case of the
classifying space BQP (R) of Quillen’s Q-construction on the category P (R) of finitely generated projective
left R-modules, for any ring R. This provides the mod m K-theory space of the ring R, which will be
denoted by FmK(R) and which satisfies

πn(FmK(R)) ∼= πn+1(BQP (R); Z/m) ∼= Kn(R; Z/m)

for all n ≥ 1.

The classical definition of the algebraic K-groups with coefficients in Z/m is a topological notion since
Kn(R; Z/m) is defined as the n-th homotopy group of the loop space ΩBQP (R) with coefficients in Z/m
(see [6] and [19] for the definition of homotopy groups with finite coefficients). On the other hand, Karoubi
and Lambre have produced a purely algebraic definition of the group K1(R; Z/m) (see [15]). We provide
an algebraic definition of the group K2(R; Z/m) and our argument enables us to show in Sections 4 and
5 that this algebraic definition coincides, for n = 1 and n = 2, with the usual topological definition (see
Theorems 4.2 and 5.3). Using similar techniques, we introduce in Section 5 the notion of the Steinberg group
St(R; Z/m) of a ring R with coefficients in Z/m which fits into the central extension

0 −→ K2(R; Z/m) −→ St(R; Z/m) −→ E(R) −→ 1 .

This Steinberg group St(R; Z/m) turns out to be quasi-perfect.

Section 6 extends the definition of Kn(R; Z/m) to the case of non positive integers n. Section 7 provides a
proof of the following result (see Theorem 7.1).

The mod m Fundamental Theorem. Let R be any unital ring and m any integer ≥ 2. For n ≥ 1 there

is a functorial isomorphism

Kn(R[t, t−1]; Z/m) ∼= Kn(R; Z/m)⊕Kn−1(R; Z/m)⊕NKn(R; Z/m)⊕NKn(R; Z/m) ,

where NKn(R; Z/m) denotes the cokernel of the homomorphism Kn(R; Z/m) → Kn(R[t]; Z/m) induced by

the inclusion R ↪→ R[t].

In [25], Weibel proved that excision holds and Mayer-Vietoris sequences exist for mod m algebraic K-theory
and Z[1/m]-algebras. We will provide another form of the Mayer-Vietoris sequences for mod m algebraic
K-theory in Section 8 (see Theorem 8.1 and Corollary 8.2).

Finally, we investigate in Section 9 homotopical properties of the connected mod m K-theory space FpK(R)
which is defined by FpK(R) = Fp(BE(R)+) in the special case where p is a prime number. Its homotopy
groups are πn(FmK(R)) ∼= Kn+1(R; Z/m) for n ≥ 1 and we approximate the order of its Postnikov k-
invariants and prove that the (2p − 3)-rd Postnikov section of FpK(R) is a generalized Eilenberg-Maclane
space. Consequently, we can calculate the integral homology of FpK(R)in dimensions ≤ 2p − 3 as follows
(see Corollary 9.4).

Theorem. For any unital ring R and any prime number p, one has

Hi(FpK(R); Z) ∼= Hi

( i+1∏
n=2

K(Kn(R; Z/p), n− 1); Z
)

for i ≤ 2p− 3.

Throughout the paper, for an abelian group A and the multiplication by m : A → A, we shall use the
following notations: A(m) = kerm and A/m = cokerm.
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2. The homotopy fiber of the m-th power map

Let X be a loop space and m any integer ≥ 2. The goal of this first section is to investigate the main
homotopical properties of the homotopy fiber Fm(X) of the m-th power map χm : X → X. Our first result
provides a strong relationship between the homotopy groups of Fm(X) and the homotopy groups of X with
coefficients in Z/m. Recall that the homotopy groups of a space Y with coefficients in Z/m are defined
by πn(Y ; Z/m) = [Pn(m), Y ] for n ≥ 2, where Pn(m) denotes the Moore space Sn−1 ∪m en which is the
cofiber of the degree m map Sn−1 → Sn−1 (cf. [19]); recall that πn(Y ; Z/m) has a group structure whenever
n ≥ 3. If X ' ΩY is a loop space, π2(X; Z/m) is a group and if Y itself is a loop space, one can extend the
definition to n = 1 by π1(X; Z/m) = π2(Y ; Z/m) which has a group structure.

Theorem 2.1. Let X ' ΩY be any connected loop space, m any integer ≥ 2 and Fm(X) the homotopy

fiber of the m-th power map χm : X −→ X. Then there is an isomorphism

θ : πn(Fm(X))
∼=−→ πn+1(X; Z/m) ,

for all n ≥ 0.

Proof. (We would like to thank Fred Cohen and Jérôme Scherer for discussions on that argument.) For any
space Y , it is known that the pointed mapping space functor map∗(−, Y ) sends a pushout into a pullback
and, since map∗(∗, Y ) ' ∗, sends a cofibration into a fibration (see for instance [5, p. 334, Proposition 4.1]).
Therefore, if we apply this functor to the cofibration

S1 degm−→ S1 ψ−→ P 2(m) ,

we obtain the fibration

map∗(P 2(m), Y ) −→ map∗(S1, Y ) −→ map∗(S1, Y ) .

It is clear that map∗(S1, Y ) ' ΩY and that the second map is the m-th power map χm : ΩY → ΩY because
it is induced by the degree m map S1 → S1. Consequently, we have a homotopy equivalence

Fm(ΩY ) ' map∗(P 2(m), Y )

and the assertion follows for any integer n ≥ 0 from the isomorphism

θ : πn(Fm(ΩY )) ∼= πn(map∗(P 2(m), Y )) ∼= [Sn,map∗(P 2(m), Y )] ∼= [ΣnP 2(m), Y ]
∼= [Pn+2(m), Y ] ∼= πn+2(Y ; Z/m) ∼= πn+1(ΩY ; Z/m) ∼= πn+1(X; Z/m) .

Remark 2.2. The corresponding statement is wrong for the homology of loop spaces; more precisely, the
groups Hn(Fm(X); Z) and Hn+1(X; Z/m) do not coincide in general. Consider for instance the special case
where m = p is a prime number and X is the Eilenberg-MacLane space K(Z, k) for some positive integer
k: one has Fp(K(Z, k)) = K(Z/p, k− 1), but it turns out that Hn(K(Z/p, k− 1); Z) 6∼= Hn+1(K(Z, k); Z/p),
since it is well known that Hn(K(Z/p, k − 1); Z) may contain elements of order pr with r arbitrarily large
(see [8] or [9] and [10]).

Of course, the homotopy exact sequence of the fibration Fm(X) −→ X
χm

−→ X and the definition of the
homotopy groups with coefficients in Z/m (cf. [19, p. 3]) provide the exact sequences

· · · −→ πn+1(X) ·m−→ πn+1(X) −→ πn(Fm(X)) −→ πn(X) ·m−→ πn(X) −→ · · ·

and
· · · −→ πn+1(X) ·m−→ πn+1(X) −→ πn+1(X; Z/m) −→ πn(X) ·m−→ πn(X) −→ · · · .
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The next proposition shows that the isomorphism θ provided by the previous theorem is actually compatible
with these two exact sequences.

Proposition 2.3. For any loop space X, any integer m ≥ 2 and any positive integer n, the diagram

πn+1(X) ·m−−→ πn+1(X)
ϕ1−−→ πn(Fm(X))

ψ1−−→ πn(X) ·m−−→ πn(X)y =

y = θ

y ∼=

y =

y =

πn+1(X) ·m−−→ πn+1(X)
ϕ2−−→ πn+1(X; Z/m)

ψ2−−→ πn(X) ·m−−→ πn(X)

is commutative.

Proof. We just have to establish the commutativity of the two middle squares in the diagram. The cofibration

S1 degm−→ S1 ψ−→ P 2(m) provides a cofibration

S1 ψ−→ P 2(m)
ϕ−→ S2 .

By definition of the homotopy with coefficients, the homomrphisms ϕ2 and ψ2 are induced by the maps ϕ
and ψ respectively. Thus, the commutativity follows from the fact that the homomorphisms ϕ1 and ψ1 are
also induced by ϕ and ψ respectively. Indeed, ϕ produces a map

ϕ] : map∗(S2, Y ) → map∗(P 2(m), Y ) ' Fm(X)

which clearly induces the homomorphism ϕ1 : πn(map∗(S2, Y )) ∼= πn+2(Y ) ∼= πn+1(X) → πn(Fm(X)).
Similarly, ψ provides a map

ψ] : Fm(X) ' map∗(P 2(m), Y ) → map∗(S1, Y )

which induces the homomorphism ψ1.

Remark 2.4. Let m be an integer ≥ 2, X a loop space and D a discrete space. It is then obvious that
Fm(X ×D) ' Fm(X).

Remark 2.5. Let m be an integer ≥ 2, X a loop space and Z = ΩX its loop space. It is easy to check that
Fm(Z) ' ΩFm(X).

3. Finite K-theory spaces

For any unital ring R, apply Quillen’s Q-construction on the category P (R) of finitely generated projective
left R-modules and consider its classifying space BQP (R) whose loop space satisfies:

ΩBQP (R) ' BGL(R)+ ×K0(R) ,

where BGL(R)+ is the space obtained by performing Quillen’s plus construction on the classifying space of
the infinite general linear group GL(R). The higher algebraic K-groups of the ring R have been defined by
Quillen in [21] as follows:

Kn(R) = πn+1(BQP (R)) ∼= πn(ΩBQP (R)) for n ≥ 0 .
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It turns out that Kn(R) ∼= πn(BGL(R)+) for n ≥ 1. It is well known that the spaces BQP (R) and BGL(R)+

are infinite loop spaces. Browder investigated the algebraic K-groups with coefficients in Z/m for n ≥ 1 (see
[6]):

Kn(R; Z/m) = πn+1(BQP (R); Z/m) ∼= πn(BGL(R)+; Z/m) .

Remark 3.1. Them-th power map χm : BQP (R) → BQP (R) is actually induced by the map P (R) → P (R)
which sends a projective module P to the direct sum of m copies of P , because the homotopy associative and
commutative H-space structure of BQP (R) is actually given by the map BQP (R)× BQP (R) → BQP (R)
induced by the map P (R) × P (R) → P (R) which sends a pair of projective modules (P, P ′) to the direct
sum P ⊕ P ′.

Definition 3.2. For any unital ring R and any integer m ≥ 2, let us define the mod m K-theory space of
R by

FmK(R) = Fm(BQP (R)) ,

i.e., the homotopy fiber of the m-th power map χm : BQP (R) −→ BQP (R).

Theorem 2.1 immediately implies the following consequence.

Theorem 3.3. For any unital ring R, any integer m ≥ 2 and any integer n ≥ 1, one has an isomorphism

πn(FmK(R)) ∼= Kn(R; Z/m) .

Remark 3.4. For any unital ring R and any integer m ≥ 2, the homotopy exact sequence of the fibration

FmK(R) −→ BQP (R)
χm

−→ BQP (R)

provides the long exact sequence of algebraic K-functors (see also Proposition 2.3)

· · · −→ Kn(R) ·m−→ Kn(R) −→ Kn(R; Z/m) −→ Kn−1(R) ·m−→ Kn−1(R) −→ Kn−1(R; Z/m) → · · ·
−→ K2(R) ·m−→ K2(R) −→ K2(R; Z/m) −→ K1(R) ·m−→ K1(R) −→ K1(R; Z/m) −→ K0(R) ·m−→ K0(R) .

Remark 3.5. One can also consider the space Fm(BGL(R)+) and observe that

Fm(BGL(R)+) ' ΩFmK(R)

because Remarks 2.4 and 2.5 show that

Fm(BGL(R)+) ' Fm(BGL(R)+ ×K0(R)) ' Fm(ΩBQP (R)) ' ΩFm(BQP (R)) .

Again, one can apply Theorem 2.1 and deduce that

πn(Fm(BGL(R)+)) ∼= πn+1(BGL(R)+; Z/m) ∼= Kn+1(R; Z/m)

for n ≥ 0.

Notice that the spaces FmK(R) and Fm(BGL(R)+) are not necessarily connected. If one prefers to work with
a connected space, one can look at the universal cover BE(R)+ of BGL(R)+, where E(R) is the subgroup of
GL(R) generated by elementary matrices. The space BE(R)+ is simply connected and its homotopy groups
are πn(BE(R)+) ∼= Kn(R) for n ≥ 2.

Definition 3.6. For any unital ring R and any integer m ≥ 2, let us define the connected mod m K-theory
space of R by

FmK(R) = Fm(BE(R)+) ,
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i.e., the homotopy fiber of the m-th power map χm : BE(R)+ → BE(R)+. This space is a connected space
whose homotopy groups are

πn(FmK(R)) ∼= Kn+1(R; Z/m)

for n ≥ 1 because of Theorem 2.1.

Proposition 3.7. If f : R→ S is a ring homomorphism, then f induces continuous maps f∗ : FmK(R) →
FmK(S) and f∗ : FmK(R) → FmK(S) for any integer m ≥ 2.

Proof. It is well known that the homomorphism f : R → S induces an infinite loop map f] : BQP (R) →
BQP (S). Thus, we get the commutative diagram

BQP (R)
χm

−−−−−−→ BQPR)y f]

y f]

BQP (S)
χm

−−−−−−→ BQP (S)

which produces a map f∗ : FmK(R) → FmK(S) on the homotopy fibers of the m-th power maps χm. The
same argument provides the map f∗.

The first example to consider is the case of the finite field Fq for a prime q.

Proposition 3.8. For any prime number q, the mod q K-theory space FqK(Fq) is contractible.

Proof. Since the K-groups of the finite field Fq do not contain any q-torsion (cf. [20]), one can then deduce
from Definition 3.6 that all homotopy groups of FqK(Fq) vanish and that there is a homotopy equivalence
FqK(Fq) ' ∗.

4. Algebraic interpretation of K1(R; Z/m)

In [15], Karoubi and Lambre introduced algebraically a first mod m algebraic K-functor for any unital ring
R and any integer m ≥ 2, which we will denote by K

′

1(R; Z/m). Let us briefly recall the construction of this
abelian group.

Let m : P (R) → P (R) be the m-th power functor which sends a projective module to a direct sum of m copies
of it (cf. Remark 3.1). Then define the category C(m) whose objects are triples (P, α,Q), where P and Q are
objects of P (R) and α : m(P ) ∼= m(Q) is an isomorphism of R-modules. A morphism (P, α,Q) → (P ′, α′, Q′)
is a pair (f, g) of R-homomorphisms f : P → P ′ and g : Q→ Q′, such that m(g)α = α′m(f). The sum in the
category C(m) is defined in a natural way and we get the abelian monoid of isomorphism classes of objects
of C(m). Let K(C(m)) be the Grothendieck group of C(m) and N its subgroup generated by elements of
the form

(P, α,Q) + (Q, β, S)− (P, βα, S) .

Definition 4.1. K ′
1(R; Z/m) = K(C(m))/N for any unital ring R and any integer m ≥ 2.
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The goal of this section is to show that this algebraic definition coincides with the topological definition of
the K1-group with coefficients in Z/m.

Theorem 4.2. For any unital ring R and any integer m ≥ 2, there is an isomorphism

K ′
1(R; Z/m) ∼= π1(FmK(R)) ∼= K1(R; Z/m) .

Proof. Denote by Q(m) : QP (R) → QP (R) the functor induced by m : P (R) → P (R). Take the pullback
co(Q(m)) of the following diagram of categories (look at [4, Chapter 7, Definition 3.1], for the definition of
the pullback of categories and for the notation we use):

QP (R)y Q(m)

QP (R)
Q(m)−−−−−−→ QP (R)

(1)

We also need the pullback Y of the following diagram of spaces:

BQP (R)y BQ(m)

BQP (R)
BQ(m)−−−−−−→ BQP (R)

(2)

which is the geometric realization of Diagram (1). It is easily checked that the functor Q(m) is an additive
cofinal functor, where for unital rings A and B a functor ϕ : QP (A) → QP (B) is called cofinal if any object
S of QP (B) is a direct summand of ϕ(P ) for some object P of QP (A). Since the isomorphisms in QP (R)
are the same as in P (R), it follows from [4, Chapter 7, Theorem 5.3], that there is an exact sequence

K1(R) ·m−→ K1(R) −→ K ′
0(Q(m)) −→ K0(R) ·m−→ K0(R) ,

in which the group K ′
0(ϕ) defined by Bass in [4] for any additive cofinal functor ϕ between additive categories

is in fact the group K ′
1(R; Z/m) of Karoubi and Lambre, in the case where ϕ = Q(m).

Diagrams (1) and (2) induce the commutative diagrams

K(co(Q(m))) −−−−−−→ K(QP (R))y y K(Q(m))

K(QP (R))
K(Q(m))−−−−−−→ K(QP (R))

(3)

and
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π1(Fm(BQP (R)))y
π1(Y ) −−−−−−→ π1(BQP (R))y y π1(BQ(m))

π1(BQP (R))
π1(BQ(m))−−−−−−→ π1(BQP (R)) ,

(4)

in which the right column is exact. Denote by

∆ : K(QP (R)) → K(co(Q(m)))

and
∆ : π1(BQP (R)) → π1(Y )

respectively the diagonal maps which are the split homomorphisms induced by the pullback diagrams (1)
and (2). Diagrams (3) and (4) and the isomorphism K(QP (R)) ∼= π1(BQP (R)) provide a homomorphism
K(co(Q(m))) → π1(Y ) and finally a homomorphism

η : K(co(Q(m)))/Im∆ −→ π1(Y )/Im∆ .

Let M be the subgroup of K(co(Q(m))) generated by the elements of the form

[(P, αα1α2, Q)] + [(P, α,Q)]− [(P, αα1, Q)]− [(P, αα2, Q)] ,

where (P, α,Q) ∈ co(Q(m)), i.e., m(P ) ∼= m(Q), and α1 ∈ AutR(m(P )), α2 ∈ AutR(m(Q)). Then we have
the equalities K ′

0(Q(m)) = K(co(Q(m)))/(M + Im∆) and η(M) = 0 according to [4, Chapter 7, Section 5].
Thus, we have constructed a homomorphism

ψ : K ′
1(R; Z/m) ∼= K ′

0(Q(m)) −→ π1(Fm(BQP (R)))

induced by η by taking into account the obvious homomorphism π1(Y )/Im∆ → π1(Fm(BQP (R))). This
homomorphism ψ fits in the middle of the following commutative diagram with exact rows:

K1(R) −−→ K1(R) −−→ K ′
1(R; Z/m) −−→ K0(R) −−→ K0(R)y ∼=

y ∼=

y ψ

y ∼=

y ∼=

π2(BQP (R)) −−→ π2(BQP (R)) −−→ π1(Fm(BQP (R))) −−→ π1(BQP (R)) −−→ π1(BQP (R))

and the five lemma implies the assertion

K ′
1(R; Z/m) ∼= π1(Fm(BQP (R))) = π1(FmK(R)) ∼= K1(R; Z/m) .

5. Algebraic interpretation of K2(R; Z/m)

Let us first define mod m algebraic K-functors for rings which are not necessarily unital (i.e., with identity).
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Remark 5.1. Let R be an arbitrary ring. Consider the ring with identity R+ = R+ Z, where the sum is as
usual and the product is given by (r, z) · (r′, z′) = (rr′ + rz′ + zr′, zz′). One gets a short split exact sequence
of rings

0 −→ R
i−→ R+ p−→ Z −→ 0 ,

where i denotes the inclusion and p the projection. Then define the space BQP (R) to be the homotopy fibre
of the map BQP (p) : BQP (R+) → BQP (Z). The continuous map BQ(m) : BQP (R+) → BQP (R+), given
by the m-th power functor m, induces a continuous map BQ(m) : BQP (R) → BQP (R) and we denote
again by Fm(BQP (R)) the homotopy fibre of this map BQP (m). Now, one can define

Kn(R; Z/m) = πn(Fm(BQP (R)))

for any n ≥ 1, any m ≥ 2 and any ring R (not necessarily with identity). Moreover, the long exact sequence
of algebraic K-functors given by Remark 3.4 holds for any arbitrary ring. If R is unital (with identity e),

one has an isomorphism ϕ : R+
∼=−→ R× Z given by ϕ(r, z) = (r + ze, z), and we recover Definition 3.2.

Now, let R be a unital ring and τ : F −→ R a free presentation of R. This means that F is a free ring and
τ a surjective homomorphism of rings. Let us consider the short exact sequence of rings

0 −→ I
σ−→ F

τ−→ R −→ 0 ,

where I = ker τ and where σ is the natural inclusion. According to Remark 3.4, we have a long exact
sequence

· · · −→ K1(I)
·m−→ K1(I) −→ K1(I; Z/m) −→ K0(I)

·m−→ K0(I) ,

where K1(I; Z/m) is defined by Remark 5.1.

Let us introduce the following algebraic definition of the K2-functor with coefficients in Z/m.

Definition 5.2. For any unital ring R and any integer m ≥ 2, let K ′
2(R; Z/m) be the pushout of the

following diagram:

K1(I)/m −−−−−−→ K ′
1(I; Z/m) ,y

K2(R)/m

where K ′
1(I; Z/m) = ker (p∗ : K ′

1(R
+; Z/m) → K ′

1(Z; Z/m)) and in which the homomorphism K1(I)/m →
K2(R)/m is induced by the composition of the surjection K1(I) → K1(F, I) with the isomorphism
K1(F, I) ∼= K2(R). By Theorem 4.2 it is clear that K ′

1(I; Z/m) is naturally isomorphic to K1(I; Z/m)
and the construction of K ′

2(R; Z/m) is purely algebraic.

Theorem 5.3. For any unital ring R and any integer m ≥ 2, there is an isomorphism

K ′
2(R; Z/m) ∼= π2(FmK(R)) ∼= K2(R; Z/m) .

Proof. For any surjective homomorphism of rings f : A → B, let us denote by hBQP (f) the homotopy
fibre of the map BQP (f) : BQP (A) → BQP (B) induced by f . It is known that the homotopy group
πn(hBQP (f)) is isomorphic to the relative algebraic K-functor Kn(A, J) for n ≥ 1, where J = ker f . The
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commutative diagram

BQP (A)
BQP (f)−−−−−−→ BQP (B)y BQ(m)

y BQ(m)

BQP (A)
BQP (f)−−−−−−→ BQP (B)

yields a continuous map hBQP (f,m) : hBQP (f) → hBQP (f) and let Fm(hBQP (f)) be the homotopy fibre
of hBQP (f,m). Define Kn(A, J ; Z/m) = πn(Fm(hBQP (f))) for n ≥ 1. We obtain a long exact sequence of
relative algebraic K-functors

· · ·→ K2(A, J) ·m→ K2(A, J)→ K2(A, J ; Z/m)→ K1(A, J) ·m→ K1(A, J)→ K1(A, J ; Z/m)→ K0(J) ·m→ K0(J).

Let us return to the particular case of the free presentation 0 −→ I
σ−→ F

τ−→ R −→ 0 of the unital ring R
and consider the commutative diagram with exact rows

0 −−→ I −−→ I+ −−→ Z −−→ 0y =

y y
0 −−→ I −−→ F+ −−→ R+ −−→ 0 ,

where the homomorphism I+ → F+ is induced by the inclusion σ : I → F , F+ → R+ is induced by τ , and
Z → R+ is given by z 7→ (0, z). This diagram produces homomorphisms πn(BQP (I)) → πn(hBQP (τ)) and
πn(Fm(BQP (I))) → πn(Fm(hBQP (τ))) for n ≥ 1, such that we get the following commutative diagram
with exact rows

K1(I)
·m−−→ K1(I) −−→ K ′

1(I; Z/m) −−→ K0(I)
·m−−→ K0(I)y y y y =

y =

K1(F, I)
·m−−→ K1(F, I) −−→ K1(F, I; Z/m) −−→ K0(I)

·m−−→ K0(I) .

Since K1(F, I) ∼= K2(R), the above diagram and Definition 5.2 provide a homomorphism η : K ′
2(R; Z/m) →

K1(F, I; Z/m) and we obtain from the isomorphism K0(I) ∼= K1(R) the following commutative diagram
with exact rows

K2(R) ·m−−→ K2(R) −−→ K ′
2(R; Z/m) −−→ K1(R) ·m−−→ K1(R)y ∼=

y ∼=

y η

y ∼=

y ∼=

K1(F, I)
·m−−→ K1(F, I) −−→ K1(F, I; Z/m) −−→ K0(I)

·m−−→ K0(I) ,

which shows that η is an isomorphism. It remains to show that K1(F, I; Z/m) ∼= K2(R; Z/m).

It is easily checked that the homotopy fibre hFm(BQP (τ)) of the map Fm(BQP (τ)) : Fm(BQP (F )) →
Fm(BQP (R)) is homeomorphic to the space Fm(hBQP (τ)). Therefore, the long exact homotopy sequence
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of the homotopy fibration

hFmBQP (τ) −→ Fm(BQP (F )) −→ Fm(BQP (R))

yields the isomorphisms Kn+1(R; Z/m) ∼= πn(hFmBQP (τ)) ∼= Kn(F, I; Z/m) for n ≥ 1 by taking into
account that πn(Fm(BQP (F ))) = 0 for n ≥ 1, since F is a free ring. This completes the proof.

Corollary 5.4. The group K ′
2(R; Z/m) does not depend on the free presentation of the ring R.

The end of this section will be devoted to the definition of the Steinberg group modulo m. Let us start with
the following topological definition.

Definition 5.5. For any unital ring R and any integer m ≥ 2, let St(R; Z/m) be the pushout of the diagram

K2(R) −−−−−−→ St(R)y
π2(FmK(R)) ∼= K2(R; Z/m)

We get a short exact sequence

0 −→ K2(R; Z/m) −→ St(R; Z/m) −→ E(R) −→ 1

which is a central extension of E(R).

It is also possible to provide a purely algebraic definition of the Steinberg group St(R; Z/m) without the use
of the group K2(R; Z/m) ∼= π2(FmK(R)). For this, take the pushout Stm(R) of the diagram

K2(R) −−−−−−→ St(R)y
K2(R)/m

One gets a short exact sequence

0 −→ K2(R)/m −→ Stm(R) −→ E(R) −→ 1

which is a universal m-central extension of E(R); that means that this extension is universal between all
central extensions α : X → E(R) of E(R) such that (ker α)(m) = 0. Therefore H2(E(R); Z/m) ∼= K2(R)/m
(see [7]).

Definition 5.6. For any unital ring R and any integer m ≥ 2, let us denote by St′(R; Z/m) the pushout of
the diagram

K1(I)/m −−−−−−→ K ′
1(I; Z/m)y

Stm(R)

11



where 0 → I
σ→ F

τ→ R → 0 is a free presentation of R and where the homomorphism K1(I)/m→ Stm(R)
is the composition of the epimorphism K1(I)/m → K2(R)/m with the injection K2(R)/m → Stm(R).
Theorem 5.3 enables us to check easily the following assertion.

Theorem 5.7. For any unital ring R and any integer m ≥ 2, there is an isomorphism

St′(R; Z/m) ∼= St(R; Z/m) .

It follows that the group St′(R; Z/m) does not depend on the free presentation of the ring R.

The above given pushouts induce an injection α : Stm(R) → St(R; Z/m) such that there is an exact sequence

0 −→ Stm(R) α−→ St(R; Z/m) −→ (K1(R))(m) −→ 0 .

Remark 5.8. The Steinberg group St(R; Z/m) is a quasi-perfect group, which means that its commutator
subgroup is perfect. In order to prove this assertion, consider the commutative diagram

0 −−→ K2(R) −−→ St(R) −−→ E(R) −−→ 0y y y =

0 −−→ K2(R)/m −−→ Stm(R) −−→ E(R) −−→ 0y y α

y =

0 −−→ K2(R; Z/m) −−→ St(R; Z/m) −−→ E(R) −−→ 0 ,

which induces the exact sequence

0 −→ K2(R)/m −→ K2(R; Z/m)× Stm(R)
β−→ St(R; Z/m) −→ 0 .

Because α is injective and Stm(R) is a perfect group, the restriction of α to the commutator subgroups

α] : Stm(R) −→ [St(R; Z/m), St(R; Z/m)]

is injective. In order to show that α] is also surjective, take an element

xyx−1y−1 ∈ [St(R; Z/m), St(R; Z/m)] ,

choose (a, u) and (b, v) in K2(R; Z/m)× Stm(R) such that β(a, u) = x and β(b, v) = y, and observe that

β((a, u)(b, v)(a, u)−1(b, v)−1) = xyx−1y−1

and α](uvu−1v−1) = xyx−1y−1. Therefore, [St(R; Z/m), St(R; Z/m)] ∼= Stm(R) is a perfect group.

Moreover, it follows that (K1(R))(m) is the abelianization of St(R; Z/m).

Remark 5.9. It would be interesting to give a presentation of St(R; Z/m) by generators and relations
extending the Steinberg relations to the mod m case.

Remark 5.10. For any ring R, we can define the groups K ′
1(R; Z/m) and K ′

2(R; Z/m) as the kernels of the
canonical homomorphisms K ′

1(R
+; Z/m)

p∗−→ K ′
1(Z; Z/m) and K ′

2(R
+; Z/m)

p∗−→ K ′
2(Z; Z/m) respectively,

and it is then clear that Theorems 4.2 and 5.3 hold for any ring R and any integer m ≥ 2.
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6. Non positive algebraic K-functors with finite coefficients

Recall the definition of the cone C(R) and of the suspension S(R) of a ring R with identity (see [17, Section
1.4 and 2.3]). The ring C(R) is the ring of all infinite matrices with entries in R such that each row and each
column has at most finitely many non-zero entries. Denote by J(R) the ideal of C(R) consisting of finite
matrices. We have a canonical inclusion R ↪→ J(R). The ring S(R) = C(R)/J(R) is called the suspension
of the ring R. These definitions are extended in a natural way to any ring R, not necessarily with identity,
using the short exact sequence

0 −→ R −→ R+ p−→ Z −→ 0

and the definitions J(R) = ker (J(p) : J(R+) → J(Z)), C(R) = ker (C(p) : C(R+) → C(Z)) and S(R) =
ker (S(p) : S(R+) → S(Z)).

Definition 6.1. For any ring R and any integer m ≥ 2, define

K−n(R; Z/m) = π1(FmK(Sn+1(R))) ∼= K1(Sn+1(R); Z/m)

for n ≥ 0, where Sn+1(R) = S(Sn(R)).

Our definition of mod m non positive algebraic K-functors differs from Weibel’s definition for which
K0(R; Z/m) = K0(R)⊗ Z/m and Kn(R; Z/m) = 0 for n < 0.

An equivalent algebraic definition of mod m non positive algebraic K-functors could be given by using
Karoubi-Lambre’s definition of the first mod m algebraic K-functor.

Definition 6.2. For any unital ring R, any integer m ≥ 2 and any integer n ≥ 0, K ′
−n(R; Z/m) =

K ′
1(S

n+1(R); Z/m).

Theorem 6.3. For any unital ring R and any integer m ≥ 2, there are a long exact sequence

· · · −→ K2(R; Z/m) −→ K1(R) ·m−→ K1(R) −→ K1(R; Z/m) −→ K0(R) ·m−→ K0(R) −→ K0(R; Z/m)

−→ K−1(R) ·m−→ K−1(R) −→ K−1(R; Z/m) −→ K−2(R) ·m−→ K−2(R) −→ · · ·

and isomorphisms

Kn(S(R); Z/m) ∼= Kn−1(R; Z/m)

for n ≥ 1.

Proof. For any unital ring R one has K−n(R) = K0(Sn(R)) for n ≥ 1 by definition (see [14]). Since
K0(C(R)) = K1(C(R)) = 0 (see [12] and [14]), one has K1(Sn(R)) ∼= K0(J(Sn−1(R))) ∼= K0(Sn−1(R)) =
K−n+1(R) for n ≥ 1. Therefore, for any n ≥ 1, the fibration

Fm(BQP (Sn(R))) −→ BQP (Sn(R))
χm

−→ BQP (Sn(R))

yields the following exact sequence

K−n+1(R) ·m−→ K−n+1(R) −→ K−n+1(R; Z/m) −→ K−n(R) ·m−→ K−n(R) .

By splicing these exact sequences for all n ≥ 1 we obtain the required long exact sequence of algebraic
K-functors.

The map BGL(R)+ → BGL(J(R))+ induced by the inclusion R ↪→ J(R) is a homotopy equivalence (see
[12, Chapter 2]) implying the isomorphism Kn(R; Z/m) → Kn(J(R); Z/m) for all n ∈ Z, since K−n(R) →
K−n(J(R)) is an isomorphism for all n ≥ 0 (see [13]). Therefore the short exact sequence of rings

0 −→ J(R) −→ C(R)
γ−→ S(R) −→ 0
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induces a homotopy fibration (see [12, Chapter 3, Section 3])

BQP (R) −→ BQP (C(R)) −→ BQP (S(R)) ,

where the left map is induced by the natural inclusion R ↪→ C(R), and which provides a long exact sequence
of algebraic K-functors

· · · −→ K3(S(R)) −→ K2(R) −→ K2(C(R)) −→ K2(S(R)) −→
K1(R) −→ K1(C(R)) −→ K1(S(R)) −→ K0(R) −→ K0(C(R)) −→ K0(S(R)) .

It follows that the well-defined homomorphism Kn(R) → πn+1(hBQP (γ)) is an isomorphism for n ≥ 1,
where hBQP (γ) is the homotopy fibre of BQP (γ). Therefore, the fibration

hFm(BQP (γ)) −→ Fm(BQP (C(R))) −→ Fm(BQP (S(R)))

yields a long exact sequence

· · · → K3(S(R); Z/m) → K2(R; Z/m) → K2(C(R); Z/m) → K2(S(R); Z/m) → K1(R; Z/m)

→ K1(C(R); Z/m) → K1(S(R); Z/m) → K0(R; Z/m) → K0(C(R); Z/m) → K0(S(R); Z/m).

It is well known (see [12, Chapter 2, Section 2, D]) that the space BGL(C(R))+ is contractible and it is
shown in [14] that Kn(C(R)) = 0 for n ≤ 0. It follows that Kn(C(R); Z/m) = 0 for all n ∈ Z. We finally

deduce that the above given exact sequence implies an isomorphism Kn(S(R); Z/m)
∼=−→ Kn−1(R; Z/m) for

n ≥ 1.

Remark 6.4. Theorem 6.3 holds for any ring R, not necessarily with identity.

Remark 3.4 and Theorem 6.3 imply that m2Kn(R; Z/m) = 0 for any ring R and any integer n ∈ Z. The
following result is actually known.

Theorem 6.5. For any unital ring R and any integer m ≥ 2 one has mKn(R; Z/m) = 0 if m 6≡ 2 mod 4,

and 2mKn(R; Z/m) = 0 if m ≡ 2 mod 4 for all n ≥ 1.

This theorem was proved topologically by Browder for n ≥ 2 (see [6, Proposition 1.5]) and later algebraically
by Karoubi and Lambre for n = 1 (see [15]).

It is obvious that Theorem 6.5. holds for any ring R, since Kn(R; Z/m) is a subgroup of Kn(R+; Z/m).
By Definition 6.1, it is also clear that the same holds for non positive algebraic K-functors Kn(R; Z/m),
n ≤ 0. Moreover, observe that for an exact category A and for the H-space BQ(A) as in [21], we may define
Kn(A; Z/m) = πn(Fm(BQ(A))) for n ≥ 1 and m ≥ 2. Then Kn(A; Z/m) is isomorphic to the mod m
K-group of A defined in [25] for n ≥ 1. Theorem 6.5 holds then also for Kn(A; Z/m), n ≥ 1 (see Theorem
2.1 of [25]). The proof of Theorem 6.5 for K1(A; Z/m) can be found in [15].

Another immediate consequence of Theorem 6.3 is the following assertion.

Corollary 6.6. For any ring R, any integer m ≥ 2 and any integer n ≥ 1, there is an isomorphism

K−n(R; Z/m) ∼= K0(Sn(R); Z/m) .

Theorem 6.7. For any short exact sequence of rings 0 −→ R′ α−→ R
β−→ R′′ −→ 0 and any integer m ≥ 2,

there is a long exact sequence

K1(R′; Z/m) → K1(R; Z/m) → K1(R′′; Z/m) δ1→

K0(R′; Z/m) → K0(R; Z/m) → K0(R′′; Z/m) δ0→ K−1(R′; Z/m) → K−1(R; Z/m) → · · ·

→ Kn+1(R′′; Z/m) δ
n+1

→ Kn(R′; Z/m) → Kn(R; Z/m) → Kn(R′′; Z/m) δ
n

→ Kn−1(R′; Z/m) → · · · ,
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for n ≤ 0.

Proof. Since the sequence 0 → S(R′) → S(R) → S(R′′) → 0 is exact, it suffices to show the exactness of

K1(R′; Z/m) → K1(R; Z/m) → K1(R′′; Z/m) → K0(R′; Z/m) → K0(R; Z/m) → K0(R′′; Z/m) .

There is a continuous map BQP (R′) → hBQP (β) such that the composite of BQP (R′) → hBQP (β) →
BQP (R) is equal to BQP (α) and which induces a homomorphism Kn(R′; Z/m) → Kn(R, I; Z/m) for all
n ≥ 1, where I = ker β (see the proof of Theorem 5.3). First we will show that the sequence

K1(R′; Z/m) −→ K1(R; Z/m) −→ K1(R′′; Z/m)

is exact. The commutative diagram with exact rows

K1(R′) −−→ K1(R′) −−→ K1(R′; Z/m) −−→ K0(R′) −−→ K0(R′)y y y y =

y =

K1(R, I) −−→ K1(R, I) −−→ K1(R, I; Z/m) −−→ K0(R′) −−→ K0(R′) ,

in which the two left vertical arrows are surjective, implies that the map K1(R′; Z/m) → K1(R, I; Z/m) is
an epimorphism. The homotopy fibration

hFm(BQP (β)) −→ Fm(BQP (R)) −→ Fm(BQP (R′′))

yields the exact sequence

· · · −→ π2(Fm(BQP (R′′))) −→ π1(hFm(BQP (β))) −→ π1(Fm(BQP (R))) −→ π1(Fm(BQP (R′′))) ,

where π1(hFm(BQP (β))) = K1(R, I; Z/m). It follows that the sequence

K1(R′; Z/m) −→ K1(R; Z/m) −→ K1(R′′; Z/m)

is exact.

Then, let us consider the following commutative diagram with exact rows

K0(R′) −−→ K0(R′) −−→ K0(R′; Z/m) −−→ K−1(R′) −−→ K−1(R′)y y y y y
K0(R, I) −−→ K0(R, I) −−→ K0(R, I; Z/m) −−→ K−1(R, I) −−→ K−1(R, I) .

Since there are isomorphisms K0(R′) ∼= K0(R, I) and K−1(R′) ∼= K−1(R, I), the homomorphism
K0(R′; Z/m) → K0(R, I; Z/m) = π1(Fm(hBQP (S(β)))) is an isomorphism.

The homotopy fibration

hFm(BQP (S(β))) −→ Fm(BQP (S(R))) −→ Fm(BQP (S(R′′)))

provides an exact sequence

π2(Fm(BQP (S(R)))) −→ π2(Fm(BQP (S(R′′)))) −→
π1(hFm(BQP (S(β)))) −→ π1(Fm(BQP (S(R)))) −→ π1(Fm(BQP (S(R′)))) .
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Since hFm(BQP (S(β))) ' Fm(hBQP (S(β))), it follows that

π1(hFm(BQP (S(β)))) ∼= π1(Fm(hBQP (S(β)))) ∼= K0(R′; Z/m) .

Therefore the sequence

K1(R; Z/m) −→ K1(R′′; Z/m) −→ K0(R′; Z/m) −→ K0(R; Z/m) −→ K0(R′′; Z/m)

is exact. This completes the proof.

Theorem 6.8. There is only one (up to equivalence) sequence (Tn, ∂n, n ≤ 0) of functors Tn and connecting

homomorphisms ∂n from the category of rings to the category of abelian groups satisfying the following

conditions:

a) (Tn, ∂n, n ≤ 0) is a connected sequence of functors.

b) The functor T0 is equivalent to the functor K0(−; Z/m).
c) For any short exact sequence of rings 0 → R′ → R→ R′′ → 0, the sequence

T0(R′) −→ T0(R) −→ T0(R′′) ∂0−→ T−1(R′) −→ T−1(R) −→ T−1(R′′)
∂−1−→

· · · −→ Tn(R′′) ∂n−→ Tn−1(R′) −→ Tn−1(R) −→ Tn−1(R′′)
∂n−1−→ Tn−2(R′) −→ · · ·

is exact (n ≤ 0).

d) Tn(R) = 0 for n ≤ 0 and any ring R of the form C(A).
e) The inclusion R ↪→ J(R) induces an isomorphism Tn(R) ∼= Tn(J(R)) for all n ≤ 0 and any ring R.

Proof. The existence is obvious since Theorem 6.7 provides the sequence of functors (Kn(−; Z/m), δn, n ≤ 0)
which satisfies conditions (a) – (e) of the theorem. The proof of the uniqueness is standard, similar to the
case of classical negative algebraic K-functors (see [16]) and left to the reader.

Beside the definitions of K−n(R; Z/m) and K ′
−n(R; Z/m) (see Definitions 6.1 and 6.2), there is another

way to introduce negative algebraic K-functors with coefficients. Remember that the negative algebraic
K-functors were first introduced by Bass in [4], by induction as follows:

K−n(R) = coker (K1−n(R[t])⊕K1−n(R[t−1]) → K1−n(R[t, t−1]))

for n ≥ 1. It was shown in [13] that both definitions are equivalent. This equivalence was realized using the
homomorphism ρ : R[t, t−1] → S(R) defined by

ρ :
∑
i∈Z

rit
i 7−→


r0 r1 r2 · · · · · ·
r−1 r0 r1 r2 · · ·
r−2 r−1 r0 r1 · · ·
· · · · · · · · · · · · · · ·


Following Bass [4], we may also introduce an algebraic inductive definition of the negative mod m K-functors
as follows.

Definition 6.9. For any ring R, any integer m ≥ 2 and any integer n ≥ 1, let us define

KB
−n(R; Z/m) = coker (KB

1−n(R[t]; Z/m)⊕KB
1−n(R[t−1]; Z/m) → KB

1−n(R[t, t−1]; Z/m))

for n ≥ 1, where KB
0 (R; Z/m) = K0(R; Z/m) and R[t, t−1] is the ring of Laurent polynomials over R.

Proposition 6.10. For any ring R and any integer m ≥ 2, there is an isomorphism KB
−n(R; Z/m) ∼=

K−n(R; Z/m) for n ≥ 1.

Proof. It is known (see [4]) that there is an exact sequence

0 −→ K0(R) → K0(R[t])⊕K0(R[t]) −→ K0(R[t, t−1])
p0−→ K−1(R) −→ 0 ,
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where p0 splits. Since Sn(R[t]) ∼= Sn(R)[t], Sn(R[t, t−1]) ∼= Sn(R)[t, t−1] and Kn(R) ∼= K0(Sn(R)) for
n ≥ 1, this splitting holds for any negative algebraic K-functor Kn, n ≤ −1. Denote by S0(R) the long exact
sequence

K0(R) m−→ K0(R) −→ K0(R; Z/m) −→ K−1(R) m−→ K−1(R) −→ · · · ,

by S2
0(R[t]) the long exact sequence S0(R[t])⊕ S0(R[t]) and by SB−1(R) the long sequence

K−1(R) m−→ K−1(R)
ϕ−1−→ KB

−1(R; Z/m)
ψ−1−→ K−2(R) m−→ K−2(R) −→

· · · −→ K−n(R)
ϕ−n−→ KB

−n(R; Z/m)
ψ−n−→ K−n(R) −→ · · · ,

where ϕ−n and ψ−n are induced by α−n+1(t, t−1) : K−n+1(R[t, t−1]) → K−n+1(R[t, t−1]; Z/m) and
β−n+1(t, t−1) : K−n+1(R[t, t−1]; Z/m) → K−n(R[t, t−1]) respectively. Under these notations one has the
following exact sequence of sequences

0 −→ S0(R) −→ S2
0(R[t]) −→ S0(R[t, t−1]) −→ SB−1(R) −→ 0 .

It is easily checked that this exact sequence implies the exactness of the sequence SB−1(R). On the other
hand, the composite of the homomorphisms K0(R[t]; Z/m) ⊕ K0(R[t]; Z/m) → K0(R[t, t−1]; Z/m) and
K0(R[t, t−1]; Z/m) → K0(S(R); Z/m), is trivial and therefore there is a natural homomorphism

ω−1 : KB
−1(R; Z/m) −→ K0(S(R); Z/m) ∼= K−1(R; Z/m)

induced by the homomorphism ρ which provides the following commutative diagram with exact rows

K−1(R) −−→ K−1(R) −−→ KB
−1(R; Z/m) −−→ K−2(R) −−→ K2(R)y =

y =

y ω−1

y =

y =

K−1(R) −−→ K−1(R) −−→ K−1(R; Z/m) −−→ K−2(R) −−→ K2(R)

and shows that the groups KB
−1(R; Z/m) and K−1(R; Z/m) are isomorphic. Moreover for n > 1 we obtain

isomorphisms

KB
−n(R; Z/m) ∼= KB

−1(S
n−1(R); Z/m) ∼= K−1(Sn−1(R); Z/m) ∼= K−n(R; Z/m) .

This completes the proof.

7. The mod m fundamental theorem

Confirming Weibel’s Remark [25] suggesting that all the results of Quillen higher algebraic K-theory [21]
hold for the mod m K-theory, this section is only devoted to the proof of the following important result.

Theorem 7.1. Let R be any unital ring. For n ≥ 1 there is a functorial isomorphism

Kn(R[t, t−1]; Z/m) ∼= Kn(R; Z/m)⊕Kn−1(R; Z/m)⊕NKn(R; Z/m)⊕NKn(R; Z/m) ,

where NKn(R; Z/m) denotes the cokernel of the homomorphism Kn(R; Z/m) → Kn(R[t]; Z/m) induced by

the inclusion R ↪→ R[t].

The property expressed by the mod m Fundamental Theorem will be called algebraic periodicity in mod m
algebraic K-theory.
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Proof. The homomorphism ρ : R[t, t−1] → S(R), given at the end of Section 6, induces a homomor-
phism Kn(R[t, t−1]; Z/m) → Kn(S(R); Z/m) for n ≥ 1. Since we have an isomorphism Kn(S(R); Z/m) ∼=
Kn−1(R; Z/m) by Theorem 6.3, one gets natural homomorphisms

ρn,m : Kn(R[t, t−1]; Z/m) → Kn−1(R; Z/m)

for n ≥ 1. On the other hand, we have also natural homomorphisms Kn(R; Z/m) → Kn(R[t, t−1]; Z/m),
NKn(R; Z/m) → Kn(R[t, t−1]; Z/m) and NKn(R; Z/m) → Kn(R[t, t−1]; Z/m) for n ≥ 1, induced by the
inclusions R ↪→ R[t, t−1], R[t] ↪→ R[t, t−1] and R[t−1] ↪→ R[t, t−1] respectively. Thus we obtain the following
sequence

0 −→ Kn(R; Z/m)⊕NKn(R; Z/m)⊕NKn(R; Z/m) −→ Kn(R[t, t−1]; Z/m)
ρn,m−→ Kn−1(R; Z/m) −→ 0

for n ≥ 1. Our aim is to show the split exactness of this sequence.

Let us write NKn(R) for the cokernel of Kn(R) → Kn(R[t]) and consider the following commutative diagram

0 0 0 0 0y y y y y
Kn(R) ·m−−→ Kn(R)

βn−−→ Kn(R; Z/m) αn−−→ Kn−1(R) ·m−−→ Kn−1(R)y y y y y
Kn(R[t]) ·m−−→ Kn(R[t])

βn(t)−−→ Kn(R[t]; Z/m)
αn(t)−−→ Kn−1(R[t]) ·m−−→ Kn−1(R[t])y y y y y

NKn(R) ·m−−→ NKn(R)
β′n−−→ NKn(R; Z/m)

α′n−−→ NKn−1(R) ·m−−→ NKn−1(R) ,y y y y y
0 0 0 0 0

where the columns and the two top rows are exact. This implies clearly the exactness of the bottom row,
where α′n and β′n are induced by αn(t) and βn(t) respectively. Let us use the following notation for n ≥ 1:
Wn(R) = Kn(R)⊕NKn(R)⊕NKn(R) and Wn(R; Z/m) = Kn(R; Z/m)⊕NKn(R; Z/m)⊕NKn(R; Z/m).
Then we have a long exact sequence

· · · −→Wn(R) ·m−→Wn(R)
β̄n−→Wn(R; Z/m) ᾱn−→Wn−1(R) ·m−→Wn−1(R) −→ · · · ,

where the homomorphisms ᾱn and β̄n are defined in a natural way. Let us consider the following commutative
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diagram with exact rows

0 0 0 0 0y y y y y
Wn(R) ·m−−→ Wn(R) −−→ Wn(R; Z/m) −−→ Wn−1(R) ·m−−→ Wn−1(R)y y y y y

Kn(R[t, t−1]) ·m−−→ Kn(R[t, t−1])
β̃n−−→ Kn(R[t, t−1]; Z/m) −−→ Kn−1(R[t, t−1]) ·m−−→ Kn−1(R[t, t−1])y ρn

y ρn

y ρn,m

y ρn−1

y ρn−1

Kn−1(R) ·m−−→ Kn−1(R)
βn−1−−→ Kn−1(R; Z/m)

αn−1−−→ Kn−2(R) ·m−−→ Kn−2(R) ,y y y y y
0 0 0 0 0

where the right and left two columns are functorially split. It follows that the middle column is exact. It
remains to show that the homomorphism ρn,m splits for n ≥ 1. To this end, we define a homomorphism

δn−1,m : Kn−1(R; Z/m) −→ Kn(R[t, t−1]; Z/m)

as follows. Because of the corresponding theorem with integral coefficients, there is a functorial homomor-
phism δn−1 : Kn−1(R) → Kn(R[t, t−1]), for n ≥ 1, such that the composition ρnδn−1 is the identity. Then,
let x ∈ Kn−1(R; Z/m). Since mδn−2αn−1(x) = 0, there is an element y ∈ Kn(R[t, t−1]; Z/m) such that
αn−1ρn,m(y) = αn−1(x). Consequently, there is a z ∈ Kn−1(R) such that βn−1(z) = x − ρn,m(y). Finally,
define

δn−1,m(x) = β̃nδn−1(z) + y .

It is easily to check that we obtain a correctly defined homomorphism which satisfies

ρn,mδn−1,m(x) = ρn,mβ̃nδn−1(z) + ρn,m(y) = βn−1(z) + ρn,m(y) = x .

8. The mod m Mayer-Vietoris sequence

As mentioned in the introduction, Weibel proved in [25] the existence of a Mayer-Vietoris sequence for
Browder’s mod m algebraic K-functors if we restrict ourselves to Z[1/m]-algebras. We will provide another
form of the Mayer-Vietoris sequence for any rings expanding the classical Mayer-Vietoris sequence of [18]
to algebraic K-theory with coefficients in Z/m and for Z[1/m]-algebras prolonging and completing Weibel’s
Mayer-Vietoris sequence.

Theorem 8.1. Let

R′ i1−−−−−−→ R1y i2

y j1

R2
j2−−−−−−→ R
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be a pullback square of rings with j2 a surjective homomorphism. Then there is a long exact sequence

K2(R′; Z/m) −→ K2(R2; Z/m)⊕K2(R1; Z/m) −→ K2(R; Z/m) −→
K1(R′; Z/m) −→ K1(R2; Z/m)⊕K1(R1; Z/m) −→ K1(R; Z/m) −→

K0(R′; Z/m) −→ K0(R2; Z/m)⊕K0(R1; Z/m) −→ K0(R; R/m) −→ K−1(R′; Z/m) −→
K−1(R2; Z/m)⊕K−1(R1; Z/m) −→ K−1(R; Z/m) −→ K−2(R′; Z/m) −→ · · · .

Proof. Since ker j2 ∼= ker i2, by splicing the two long exact sequences of Theorem 6.7 for j2 and i2 respectively,
one obtains the following long exact sequence

K1(R′; Z/m) −→ K1(R2; Z/m)⊕K1(R1; Z/m) −→ K1(R; Z/m) −→
K0(R′; Z/m) −→ K0(R2; Z/m)⊕K0(R1; Z/m) −→ K0(R; Z/m) −→ K−1(R′; Z/m) −→ · · · . (5)

Now consider the pullback squares of topological spaces

X −−−−−−→ BQP (R1)y y
BQP (R2) −−−−−−→ BQP (R)

and

Y
q′1−−−−−−→ Fm(BQP (R1))y q′2

y q1

Fm(BQP (R2))
q2−−−−−−→ Fm(BQP (R))

(6)

induced by the homomorphisms j1 and j2. It is easily checked that Fm(X) ' Y . One has a natural
continuous map BQP (R′) → X which yields the commutative diagram with exact rows

K1(R′) −−−−−−→ K1(R′) −−−−−−→ K1(R′; Z/m) −−−−−−→ K0(R′) −−−−−−→ K0(R′)y ∼=

y ∼=

y y ∼=

y ∼=

π2(X) −−−−−−→ π2(X) −−−−−−→ π1(Fm(X)) −−−−−−→ π1(X) −−−−−−→ π1(X)

showing that there is an isomorphism K1(R′; Z/m)
∼=−→ π1(Fm(X)) ∼= π1(Y ). Diagram (16) induces the

commutative diagram with exact rows

π2(hq′1) −−→ π2(Y ) −−→ K2(R1; Z/m) −−→ π1(hq′1) −−→ K1(R′; Z/m) −−→ K1(R1; Z/m)y ∼=

y y y ∼=

y y
π2(hq2) −−→ K2(R2; Z/m) −−→ K2(R; Z/m) −−→ π1(hq2) −−→ K1(R2; Z/m) −−→ K1(R; Z/m)
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which yields the following exact sequence

π2(Y )→K2(R2; Z/m)⊕K2(R1; Z/m)→K2(R; Z/m)→K1(R′; Z/m)→K1(R2; Z/m)⊕K2(R1; Z/m) . (7)

On the other hand the continuous map BQP (R′) → X induces the commutative diagram with exact rows
and columns

K2(R′) −−→ K2(R′) −−→ K2(R′; Z/m) −−→ K1(R′) −−→ K1(R′)y y y y ∼=

y ∼=

π2(X) −−→ π2(X) −−→ π2(Fm(X)) −−→ π1(X) −−→ π1(X)y y y y y
0 0 0 0 0

which provides a surjection K2(R′; Z/m) → π2(Fm(X)) ∼= π2(Y ). Therefore by gluing the exact sequences
(5) and (7), we obtain the required Mayer-Vietoris sequence.

Corollary 8.2. Let

R′ i1−−−−−−→ R1y i2

y j1

R2
j2−−−−−−→ R

be a pullback square of Z[1/m]-algebras with j2 surjective. Then there is a long exact sequence

· · · −→ Kn+1(R; Z/m) −→ Kn(R′; Z/m) −→ Kn(R2; Z/m)⊕Kn(R1; Z/m) −→
Kn(R; Z/m) −→ Kn−1(R′; Z/m) −→ · · ·

for all n ∈ Z.

Proof. It suffices to splice the long exact sequences of Theorem 8.1 and of Corollary 1.3 of [25].

9. Postnikov invariants of finite K-theory spaces

Let us consider again the connected mod m K-theory space FmK(R) for any unital ring R and any integer
m ≥ 2 (cf. Definition 3.6). Although the integral homology of the space FmK(R) does not coincide with
the mod m homology of the group of elementary matrices E(R) (cf. Remark 2.2), the connected mod m
K-theory space FmK(R) plays an important role in the understanding of the mod m K-theory of R and it
makes sense to investigate its homotopy type. In this section, we’ll concentrate our attention to the special
case, where m = p is a prime number.

For any connected CW-complex X and any integer n ≥ 1, let us denote by X[n] the n-th Postnikov section of
X (i.e., X[n] is the CW-complex obtained from X by attaching cells of dimension ≥ n+2 with the property
that πi(X[n]) = 0 for i ≥ n+ 1 and πi(X[n]) ∼= πi(X) for i ≤ n). If X is simple, the Postnikov k-invariants
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of X are cohomology classes kn+1(X) ∈ Hn+1(X[n−1];πn(X)) which explain how the space X can be built
up from its homotopy groups (n ≥ 2).

We shall consider the connected mod p K-theory space FpK(R) of any unital ring R and our purpose is to
investigate the k-invariants of FpK(R). Because of Definition 3.6, kn+1(FpK(R)) is an element of the group
Hn+1(FpK(R)[n− 1];Kn+1(R; Z/p)).

Proposition 9.1. For any unital ring R, any prime number p and any integer n ≥ 2, the order of the

k-invariant kn+1(FpK(R)) in Hn+1(FpK(R)[n− 1];Kn+1(R; Z/p)) is a power of p.

Proof. The mod p K-theory space FpK(R) is a connected infinite loop space, because it is the fiber of the
p-th power map which is an infinite loop map. Consequently, all k-invariants of FpK(R) are cohomology
classes of finite order, according to [1] and [2]. The statement then follows from the fact that the group
Kn+1(R; Z/p) is a p-torsion abelian group.

One can actually give a universal upper bound for this power of p.

Theorem 9.2. For any unital ring R, any prime number p and any n ≥ 2, the k-invariant

kn+1(FpK(R)) in Hn+1(FpK(R)[n− 1];Kn+1(R; Z/p)) satisfies

a) kn+1(FpK(R)) is trivial if 2 ≤ n ≤ 2p− 3,

b) the order of kn+1(FpK(R)) divides pn−2p+3 if n ≥ 2p− 2.

Proof. According to [2], the k-invariants kn+1(X) of a connected infinite loop space X have the following
property for n ≥ 2: the order of kn+1(X) in the group Hn+1(X[n− 1];πn(X)) divides the integer Rn which
is defined by Rn = L2 · L3 · L4 · · ·Ln, where the integer Lk is the product of some primes q satisfying
2 ≤ q ≤ k

2 + 1; therefore, Rn is only divisible by prime numbers q ≤ n
2 + 1. Consequently, if n ≤ 2p − 3, p

does not divide Rn and the previous theorem shows that

kn+1(FpK(R)) = 0 ∈ Hn+1(FpK(R)[n− 1];Kn+1(R; Z/p)) .

On the other hand, if n ≥ 2p − 2, Lk can only be divisible by p if k ≥ 2p − 2 and is never divisible by p2.
One can conclude that the p-primary part of the integer Rn is at most pn−2p+3. Again, Assertion (b) then
follows from Proposition 9.1.

Since all k-invariants of the Postnikov section FpK(R)[2p − 3] of the connected mod p K-theory space
FpK(R) are trivial, FpK(R)[2p − 3] is a generalized Eilenberg-MacLane space (GEM) whose non-trivial
homotopy groups are πn(FpK(R)) ∼= Kn+1(R; Z/p) for 1 ≤ n ≤ 2p− 3.

Corollary 9.3. For any unital ring R and any prime number p,

FpK(R)[2p− 3] '
2p−2∏
n=2

K(Kn(R; Z/p), n− 1) .

This corollary and the isomorphism Hi(FpK(R); Z) ∼= Hi(FpK(R)[2p − 3]; Z) for i ≤ 2p − 3 enable us to
deduce the following consequence on the integral homology of the connected mod p K-theory space of R:

Hi(FpK(R); Z) ∼= Hi

(2p−2∏
n=2

K(Kn(R; Z/p), n− 1); Z
)

for i ≤ 2p − 3. However, since Hj(K(G,n − 1); Z) vanishes if j < n − 1, one can deduce the following
assertion.
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Corollary 9.4. For any unital ring R, any prime number p and any integer i ≤ 2p− 3, one has

Hi(FpK(R); Z) ∼= Hi

( i+1∏
n=2

K(Kn(R; Z/p), n− 1); Z
)
.

This assertion is of particular interest in order to compute the integral homology of FpK(R) in low dimensions
(relatively to p) since the integral homology of Eilenberg-MacLane spaces is competely known by [8] (see
also [9] and [10]).

Example 9.5. By taking i = 2, one can deduce that for p ≥ 3, one has

H2(FpK(R); Z) ∼= H2

(
K(K2(R; Z/p), 1)×K(K3(R; Z/p), 2); Z

)
∼= H2(K(K2(R; Z/p), 1); Z)⊕H2(K(K3(R; Z/p), 2); Z)

and consequently
H2(FpK(R); Z) ∼= Λ2(K2(R; Z/p))⊕K3(R; Z/p) ,

where Λ2(−) denotes the exterior square.

The isomorphism given by Corollary 9.4 provides the following consequence.

Corollary 9.6. For any unital ring R, any prime p and any integer i ≤ 2p − 3, the group Hi(FpK(R); Z)
contains Ki+1(R : Z/p) as a direct summand.

Proof. This follows directly from Corollary 9.4 since the group Hi(FpK(R); Z) contains

Hi(K(Ki+1(R; Z/p), i); Z) ∼= Ki+1(R; Z/p)

as a direct summand.
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