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Let CL(Z) (respectively SL(Z)) be the infinite general (respectively special) linear group and 

St(h) the infinite Steinberg group of Z. This paper studies the relationships between 

K,Z := n,BGL(Z)+, H,(SL(Z); Z) and H,(St(L); L) for i = 4 and 5 (they are well understood 

for i 5 3). The main results describe the Hurewicz homomorphism K,L+ H,(St(Z); if): it is an 

isomorphism if i = 4 and its cokernel is cyclic of order 2 if i = 5 (more precisely, the induced 

homomorphism K,Z i torsion + H,(St( L); L) / torsion is multiplication by 2). The relations 

between the integral homology of St(Z) and that of SL(L) in dimensions 4 and 5 are also 

explained. 

Introduction 

Let GL(Z) be the infinite general linear group, SL(Z) the infinite special linear 

group and St(Z) the infinite Steinberg group of the ring of integers 27. The 

relations between the groups K,Z := n,BGL(Z)‘, H,(SL(Z); Z) and H,(St(Z); Z) 

are well understood for i 5 3: K,Z s Z/2, H,(SL(Z); Z) = H,(St(Z); Z) = 0; 

K,Z g H,(SL(Z); Z) s Z/2, H,(St(Z); Z) = 0; K3Z z H3(St(Z); Z) g Z/48 and 

the Hurewicz homomorphism K3Z + H,(SL(Z); Z) z Z/24 is surjective [l, Satz 

1.51. The purpose of this paper is to study these relations for i = 4 and 5. 

1. Statement of the main results 

In this section we present the main results of the paper. 

Theorem 1.1. H,(SL(Z); Z) E H,(St(Z); Z)@Z/2. 

Theorem 1.2. Let g denote the surjective canonical homomorphism St(Z) ++ SL( Z) 

whose kernel is K,Z and g, the induced homomorphism H5 (St(Z); Z) -+ 

H,(SL(Z); 2’). Then H,(SL(Z); 27) z (Img,)@ L, where L E 2/2G32/2. 

Now let Hu denote the Hurewicz homomorphism K,L+ H,(St(Z); Z) 
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Theorem 1.3. Hu: K,Z-t H4(St(Z); Z) is un isomorphism. 

Theorem 1.4. There exists an exact sequence 

K,Z* H,(St(Z); Z)+Z/2-+ 0. 

Theorem 1.5. The homomorphisms 

and 

K,Zltorsion--+ H5(St(Z); Z)/torsion 

K,Zltorsion-+ H,(SL(Z); Z)/torsion, 

induced by the Hurewicz homomorphism, are multiplications by 2. (Recall that 
these three groups are infinite cyclic.) 

We shall prove Theorems 1.1 and 1.2 in Section 2, Theorems 1.3, 1.4 and 1.5 in 

Section 4. 

2. The group extension K,Z w St(Z) + SL(Z) 

In this section we study the relationships between the (co)homology of St(Z) 

and that of SL(Z) using the Serre spectral sequence of the universal central 

extension 

K,Z=Z/2&t(Z)&SL(Z). 

In particular we will prove Theorems 1.1 and 1.2. 

We start by restricting our attention to cohomology with Z/2_coefficients. Let 

us first recall the following lemma (cf. [7, p. 154, Corollary 8.121) which describes 

the structure of H*(SL(Z); Z/2), since the cohomology of the group SL(Z) is the 

same as that of the H-space BSL(Z)+. 

Lemma 2.1. Let X be a connected H-space of finite type, then H*(X; Z/2) = 
@y=, B,, where each 

Z /2[Xi] or 
Z/2[xj] /(x’l = 0) , where ej is a power of 2 . 0 

We want to look more precisely at the mod 2 cohomology classes of SL(Z). It is 

well known that all Stiefel-Whitney classes wi (deg wi = i) are non-zero (except 

w1 = 0) and algebraically independent in H*(SL(Z); 212) [6]. Because the space 

BSL(Z)’ is simply connected we have 
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and 
H’(SL(Z); Z/2) = 0 

H2(SL(Z); H/2) z Hom(K,Z, Z/2) z H/2, 

generated by wZ. 

Corollary 2.2. H*(SL(Z); Z/2) = Z/2[w,]@(@~=, Bj), where each Bj is as in 
Lemma 2.1 and generated by one element of degree ~3. 0 

We know that 

H3(SL(Z); Z/2) = H/2cBZ/2 

(since H,(SL(H); H) z H/24 [l, Satz 1.51); one copy of Z/2 is generated by wj and 
we define the generator o of the other copy as follows: let h be the homomor- 
phism SL(Z) + SL(IF,) induced by the reduction mod 3 (F, is the field of three 
elements) and h* : H3(SL(ff3); iZ/2) g H/2+ H3(SL(H); Z/2) the induced 
homomorphism which is injective because of the surjectivity of 
h, : H,(SL(H); Z) = Z/24 -+ H,(SL(ff,); Z) =2/8 (cf. [l, $31). 

Definition 2.3. Let us call (Y the image of the generator of H3(SL(F3); Z/2) under 
the homomorphism h* ((Y E H3(SL(Z); h/2)). 

We shall use the following notation: p : H*(-; H/2)--+ H*+‘(-; H) denotes the 
Bockstein homomorphism and red, : H*(-; Z)--+ H*(-; Z/2) the reduction mod 2 
associated with the short exact sequence Z w Z + Z/2; we also need the Steenrod 
square operations Sq’: H*(-; Z/2)+ H*+i(-; Z/2) (Sq’ = red,op). 

Remark 2.4. (a) We deduce from the definition of LY and from the commutative 
diagram 

h’ 

I 

h’ 

H3(SL(E); H/2)AH4(SL(Z); E) 

H3(SL(F3); Z/2) -% 

I 
H4(=@3); z> 

that P(Q) # 0. On the other hand since w3 = Sq’w, (by Wu’s formula) one has 
p(w,) = 0. Consequently (Y # w3. 

(b) Sq’a = red,( p(o)) = 0 because p((.y) is the element of order 2 in 
H4(SL(Z); H) = Z/24. 

Definition 2.5. Let z be a generator of the infinite cyclic group Hom(H,(SL(Z); Z), 
h) and f an element of H’(SL(Z);E) such that p( 0 = z, where p is the 
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homomorphism N’(SL(Z); Z) +Hom(H,(SL(Z); Z), Z) given by the universal 

coefficient theorem. Finally we define q := red,(<) E H5(SL(Z); Z/2). 

Remark 2.6. (a) Sq’q = 0 since P(T) = 0. 

(b) Let p denote now the homomorphism H’(SL(Z); 2/2)+Hom(H,(SL(Z); 

Z), Z/2), then p(n) # 0 (because p(q) = red,(z) # 0). 

Lemma 2.7. The cohomology classes wg, w2 w3, w2a and q are linearly indepen- 
dent in H’(SL(Z); Z/2). 

Proof. Let r, s, t, u E (0, l} such that rwg + sw2w3 + tw,cu + UT = 0. Using Wu’s 

formula we obtain Sq’(rw, + sw2w3 + tw,a + q) = SW: + tw,a = 0 and we may 

conclude, according to Lemma 2.1, that s = t = 0. We apply the homomorphism p 

to the remaining equation rwg + uq = 0: since wg = Sq’w, we get p(wg) = 0 and 

up(~) = 0; Remark 2.6(b) then implies that u = 0 and r = 0. 0 

We are now able to work with the Serre spectral sequence of 

Z/2MSt(Z)&SL(Z), whose &-term is H*(SL(Z); H*(Z/2;Z/2))= 

H*(SL(Z); Z/2) @Z/2[x] (x denotes the generator of H*(Z/2; 212) = Z/2[x], 

deg x = 1); in particular El,’ = 0 VjliO. Because H’(St(Z); Z/2) =0 we get 

d2(x) = w2 and, Vn 2 0 and Vy E H*(SL(Z); Z/2), d,(x*“y) = 0, d,(x*“+‘y) = 
xZnw2y; it follows from Corollary 2.2 that d,(x’“+‘y) # 0 if y # 0. Consequently 

the &-term has the following properties: E:,’ = Ei.’ = 0 Vj 20, E:2n+1 = 0 
Vi, n 2 0, E:,*’ = Ei,2n Vn L 0. In order to understand the action of d, we use the 

fact that the Sq’ operations commute with the transgression: d,(x*) = d,(Sq’x) = 

Sq’(d,(x)) = Sq’w, = wj and, Vy E I?;“, d,(x*y) = w3y; again the structure of 

H*(SL(Z); Z/2) implies that d,(x*y) # 0 if y # 0. Obviously d,(x4) = 0, d,(x4) = 0 
but, as above, d,(x4) = d,(Sq2x2) = Sq2(d,(x2)) = Sq2w3; by Wu’s formula 

Sq*w, = wg + wZw3 and we conclude that d,(x4) = wg since w2w3 = 0 in Ez,‘. 
We summarize the information we have on E? for i + j 5 5: Eb’ = 0 for 

i+j%5, j > 0; Eke = E2’ = 0; E:’ E N3(SL(Z); Z/2)/(w, = 0); E:’ z 
H4(SL(Z); Z/2)l(wi = 0); E;’ z H5(SL(Z); Z/2)l(w, = w2w3 = W~(Y = 0). This 

implies the following result: 

Lemma 2.8. The homomorphism g : St(Z) --, SL(Z) induces a surjective homomor- 

phism g* : H’(SL(Z); Z/2)-, H’(St(Z); Z/2) for i 5 5. 
For i = 2 ker g* s 212, generated by w2; for i = 3 ker g* z Z/2, generated by 

w3; for i=4 ker g*z U/2, generated by wi; for i = 5 ker g* ~Z/2G32/2@32/2, 

generated by wg, w2w3 and w*(Y. 0 

For the next step of our argument we look at the Serre spectral sequence for 

integral cohomology of the central extension Z I2 w St(Z) -% SL(Z). Since E:’ z 
H’(SL(Z); H5(Z12;Z)) fulfils E’;’ =0 for j odd, we have E,= E,. 
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Lemma 2.9. H’(St(Z); Z) g HS(SL(Z); Z)/(Z/2). 

Proof. The unique non-zero terms E:’ of the line i + j = 5 are E:,* z H3(SL(Z); 

2/2)~ZL/2CT32/2 and Ez.“zH’(SL(Z); Z). W e can show that the differential 

d,: E;,‘* E 5,” is injective by reducing the spectral sequence mod 2 and looking 

at the corresponding differential of the mod 2 spectral sequence, which is 

injective; consequently E22 = 0. For the same reason d,: Ei,4 = E:.” z 

L/2+ E:.’ is injective and E;‘z Ez,“/(Z/2). It is possible to deduce from 

IH4(St(Z); Z)] =21E4_,‘) (I 1 d enotes the order of the group) that E2.O = E:,‘; 

therefore E2’s H”(SL(Z); Q/(2/2) and the lemma is proved. 0 

We finally consider the Serre spectral sequence for integral homology of the 

central extension Z/2++ St(Z) %SL(Z): Ey,, g H,(SL(Z); H,(Z/2; Z)) satisfies 

EF,j = 0 for i = 1 or i even, i 2 2. We will need the following information: 

Lemma 2.10. The differential d”: E:,, + E:., z Z/2 is zero. 

Proof. Suppose d’ : E:,, -+ E;‘,,, is surjective. Then E& = 0 and, because ET,, = 0, 
]H3(St(L); Z)l = 21E;,,,l, we must have E;,, gZ/2 which implies that 

d= : E; ,,- E; , zZ12 is zero and that ET,o = Ez,,z H,(SL(Z); Z). Thus the 

induced homomorphism g, : H,(St(Z); Z)+ H,(SL(Z); Z) is surjective. 

On the other hand we consider the following commutative diagram: 

K,Z -!!!-L H,(BSt(.Z)+; Z) 

II I R* 

llu 

K4Z -H,(BSL(Z)‘; Z)- Z/4- K,ZL H,(BSL(Z)+; Z) 

where Hu denotes the Hurewicz homomorphism. The bottom sequence is the 

Whitehead exact sequence of BSL(Z)+ and the kernel of 

Hu: K3Z+ H,(BSL(Z)‘; Z) is cyclic of order 2 (cf. [8] and [l, Satz 1.51). Since 

BSt(Z)’ is 2-connected, Hu: K4Z-+ H4(BSt(Z)+; Z) is surjective and g, cannot 

be surjective: that gives us a contradiction. 0 

Lemma 2.11. There exist the following exact sequences: 

(4 
(b) 

o- ff,(St(Z); Z)A H,(SL(Z); Z)+‘Z/2~0) 

H,(St(Z); Z)A H,(SL(Z); 2)+2/2CT32/2+0. 

Proof. It follows from the previous lemma that Ey,, = Ei., and, since 

IH,(St(Z); Z)l = 2]E;.,], that EY,O is the kernel of a surjective homomorphism 

H,(SL(Z); Z) *Z/2. Obviously Ey.O = E:,, = ker d2 : E:,,+ E:,,. (Note that 

G.0 = H,(SL(Z); Z) and Et,, g H,(SL(Z); Z/2) zZ/2@2/2.) We obtain the 
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exact sequence 

We deduce from the universal coefficient theorem and Borel’s theo- 
rem that H’(SL(Z); Z) z Z’@Ext(N,(SL(h); Z), H) and H’(St(Z); Z) z 
Z@Ext(H,(St(Z); Z), Z). Lemma 2.9 then implies the injectivity of 
g, : H,(St(Z); Z)-, Hq(SL(Z); H). cl 

Proof of Theorem 1.1. Since we know from Lemma 2.8 that H4(St(H); Z/2) z 
H4(SL(Z); Z/2)/(2/2), the universal coefficient theorem gives us: 
Hom(H,(St(E); Z), H/2) z Hom(H,(SL(Z); Z), Z/2)l(Z/2). Therefore we may 
conclude that the short exact sequence of Lemma 2.11(a) splits. 0 

Proof of Theorem 1.2. It follows again from Lemma 2.8, the universal coefficient 
theorem and Theorem 1.1 that Hom(H,(St(Z); Z), Z/2) s Hom(H,(SL(Z); Z), 
2/2)/(2/2@2/2). The assertion of Theorem 1.2 is then a consequence of 
Lemma 2.11(b). 0 

Remark 2.12. Recall that by Borel’s theorem H5(St(Z); Z)/torsion and 
H,(SL(Z); Z)/torsion are infinite cyclic groups. According to Theorem 1.2, 
g, : HS(St(Z); Z)-, H,(SL(Z); Z) induces an isomorphism 

H,(St(E); H)ltorsionZ H,(SL(H); Z)/torsion . 

Remark 2.13. It is possible to show that the order of the kernel of g, : H5(St(Z); 
Z)+ H,(SL(Z); Z) divides 4. 

3. Homological relations between the spaces BSt(E)+ and BSL(F3)+ 

We consider now the commutative triangle 

BSt(Z)+ 
f 

*BSL(lF,)+ 

where f and h are induced by the reduction mod 3 and g is the map induced by the 
canonical homomorphism of Section 2 (recall that St(lF,) = SL(lF,) and that 

BSLK) + is 2-connected since K2F3 = 0). In order to prove our main results 
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in Section 4 we need to examine the image of f++:HJBSt(Z)+; Z)+ 

H,(BSL(E,)+; Z). 

We shall use throughout this section the following notation. We define F 

(respectively F) as the fibre of h (respectively f) and get the commutative diagram 

F1- BSL(L)+ABSL(IF,)+ 

where both rows are fibrations. As usual we shall denote by j*, f *, i”, h*, k*, g* 

the induced homomorphisms in cohomology. If y is an element of 

H*(BSL(Z)+;Z/2) let us define f:= i*(y)~H*(F;2/2) and r:= g*(y)E 

H*(BSt(Z)‘; Z/2). According to [5] the ring H*(BSL(E,)+; 212) is generated by 

cohomology classes e, and ci, i 2 2, where deg e, = 2i - 1 and deg c, = 2i. 

Remark 3.1. (a) The space F is simply connected and F is 2-connected. The 

groups H,(F; Z) are finite for i = 2, 3, 4 and H,(F; Z) zZCB(finite group), 

because the same results hold for BSL(Z)’ and all homology groups of BSL(IF,)+ 

are finite (this is also true for F). Note that a Serre spectral sequence argument 

shows that H,(F; Z) s Z/2 and H,(F; Z) z Z/3. 

(b) The relation between F and the classifying space of the congruence 

subgroup of SL(Z) of level 3 is explained in [2, Section 11. 

We start by looking at mod 2 cohomology. Obviously G2 # 0 in H2(F; 212) 

and, since h*(e,) = CY E H”(BSL(Z)+; Z/2) (cf. Definition 2.3), 6 = 0 but wj # 0 

in H3(F; Z/2). Because h is an H-map, F is an H-space and, by Lemma 2.1, 

Wzw3 # 0 in H5(F; Z/2). 

Lemma 3.2. Let y,,, denote the homomorphism H*(F;Z/2)+ H*(F; Z/2”‘) in- 
duced by the inclusion Z I2 + Z 12”. Then yln(GzW3) # 0 for all m 2 1. 

Proof. Let m 2 1 be a given integer and 6, the homomorphism H*(F; Z/2”) 
+ H*(F; Z/2) induced by the surjection Z/2” + Z /2. We call a (respectively b) 
the generator of H’(F; Z/2”) z Hom(H,(F; Z), Z/2”) g Z/2 (respectively of 

H3(F; Z/2m) z Ext(H,(F; Z), Z/2”) E Z/2). It is clear that 8,(b) = G3 which 

implies actually the equality W,b = W2G3 in H’(F; 212). On the other hand we 

deduce from ym(W2) = a that y,(W*b) = ab; therefore ?/m(W2Wj) = ab. 
We complete the proof by showing that ab #O in H5(F; 212”). Let 

p*: H*(F; h/2m)-+ H*(F x F; Z/2m) denote the homomorphism induced by the 

H-space structure of F. Since F is simply connected we have obviously p*(a) = 
a@l+l@a and p*(b) = b@l+ l@b. If ab =O, then 0= p*(ab) = 
p*(a)p*(b) = a@ b + b @ a in H’(F x F; Z/2m), which is not the case. Cl 
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Corollary 3.3. Let p: H5(F; Z/2)*Hom(H,(F; Z), Z/2) be the homomorphism 
given by the universal coejjicient theorem. Then p(WzW3) # 0. 

Proof. Suppose p(G,,w,) = 0; then the exactness of the sequence Ext(H,(F; Z), 

Z/2) & H5(F; Z/2) &Hom(H,(F; Z), Z/2) implies the existence of an element 

(T E Ext(H,(F; Z), Z/2) such that v(a) = wzGg. Let 2m-1 be the exponent of the 

2-torsion subgroup of H,(F; Z) and let us consider the commutative diagram 

” Ext(H,(F; Z), Z/2) - Ext(H,(F; Z), Z/2”) 

H5(F; Z /2) ym 
I 

) H5(F; Z /2”) 

where y,,, and y: are induced by the inclusion Z I2 + Z/2”. It follows from the 

Horn-Ext-sequence that -yA = 0; therefore r,(W,G;,) = r,(v(a)) = 0, which con- 

tradicts the previous lemma. 0 

Lemma 3.4. The element ~(6~6~) belongs to the image of the reduction mod 2 

Hom(H,(F; Z), Z)-+ Hom(H,(F; Z), Z/2). 

Proof. We look at the commutative diagram 

H”(B;L(Z)+; Z/2) AH”(ySL(L)+; Z) 

I i* I I* 
H’(F; Z /2) 

P 
’ H6(F; Z) 

where p denotes again the Bockstein homomorphism. It is easy to check that 

p(w,w,) = c3(SL(.Z)), i.e., the third Chern class of the inclusion SL(Z) += GL(C) 

(cf. [l]), because this equality holds in the cohomology of BSO. We then deduce 

from i*(c,(SL(Z))) = 0 [3] that p(W,W,) = j3(i*(w2w3)) = i*(/3(wzw,)) = 0. Con- 

sequently w2G3 belongs to the image of the reduction mod 2 and the same is true 

for p(WzW,). 0 

Lemma 3.5. k*(W2G3) = 0 in H5(F; Z/2). 

Proof. This follows from g*(w,w,) =0 (cf. Lemma 2.8) since k*(G,G,,) = 

j*(g*(w2w3)). 0 

We are now able to prove the main result of this section. Recall that 

H@SL(IF,)+; Z) = 2/2@2/13 [4]. 

Proposition 3.6. The 2-torsion subgroup of the image of the homomorphism 
f*: HS(BSt(Z)+; Z)+ H,(BSL(5,)+; Z) is cyclic of order 2. 
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Proof. The homomorphisms g, i, j, k induce the commutative diagram 

H5(F; Z)/torsionzZA HS(BSt(Z)+; Z)/torsion z Z 

I 
k, 

I 
g. 

I 
H5 (F; Z) /torsion g Z * H5(BSL(Z)+; Z)/torsion z Z 

and we know that g, is an isomorphism (Remark 2.12). It follows from Corollary 

3.3. and Lemmas 3.4 and 3.5 that k, is multiplication by an even number (or 0); 

thus j, is also multiplication by an even number (or 0). 

Gn the other hand the Serre spectral sequence of the fibrati,on 

FL BSt(Z)’ s BSL( 5,)’ produces an exact sequence H,(F; Z)A 

H,(BSt(Z)+; Z) *\ H,(BSL([F,)+ ; Z). Therefore the 2-torsion subgroup of the 

cokernel of j, is cyclic of order 2 and the proof is complete. 0 

Our next objective is to examine the image of the torsion subgroup of 

H,(BSt(Z)+; Z) under the homomorphism f.+. We first consider the homomor- 

phism h* : H*(BSL(lF,)+; Z/2)+ H*(BSL(Z)‘; Z/2); recall that by Definition 

2.3 h*(e,) = a E H3(BSL(Z)‘; Z/2). 

Lemma 3.7. h*(c*) = w:, h*(e,) = Sq*n, h*(cj) = wt. 

Proof. Since ei = c3 [5, p. 5651 ( an d consequently Sq’e, = e3) we get h*(c3) = a2 
and h*(e,) = Sq’a. 

We use the Eilenberg-Moore spectral sequence of the fibration 

F>BSL(Z)+: BSL([F,)+ which converges to H*(F; Z/2). Let R be the polyno- 

mial ring H*(BSL(E,)+; Z/2). In order to get the E,-term of this (second 

quadrant) spectral sequence we choose an R-free resolution of the field of two 

elements IF,: 

where U: = 0 Vk 2 1 and bideg u1 = (-1,3), bideg uz = (-1,4), bideg ug = 

(-1,5), bideg uq = (-1,7), . . . . We obtain E, by tensoring this resolution with 

H*(BSL(Z)+; Z/2) over R; in particular Ey,* z H*(BSL(Z)+; Z/2). 

We know that i*(a) =0 and we deduce from [3] that i*(wz) =O, i*(wt) =0 

(because wi (respectively w:) is the reduction mod 2 of the second (respectively 

the third) Chern class of the inclusion SL(Z) it GL(C)). This implies that 

(Y E Eyz3, wi E Ei,4 and w: E EyTh have to be killed by some differential: for 

placement reasons these three classes belong to the image of the differential d, of 

bidegree (l,O). Since U, and u2 generate E,‘,3 and E,‘,4 respectively, we have 

d,(u,) = (Y and d,(u,) = wi (that gives us h*(c2) = wz). ETls6 is generated by 
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yl, au,, wzuz and therefore Im d, : Ey136+ E:‘36 is generated by W~CY, cx2 and 

w2. We then may conclude that w: = TW~(Y + scx2 + twz for some r, s, t E (0, l}. 
But it follows from Lemma 2.1 that r = t = 0, s = 1: wf = CY’; consequently 

h*($) = w;. 0 

Definition 3.8. 5 := wj + cx E H3(BSL(Z)+; Z/2). 

Remark 3.9. (a) t2 = 0 since wi = cx2. 

(b) h*(e,) = Sq 2~ = Sq2(w, + 5) = w2w3 + w5 + Sq2[ by Wu’s formula. 

(c) Since f* = g* 0 h* it follows from Lemmas 2.8 and 3.7 that f*(e,) = 6 = g 

(ZO) generates H’(BSt(Z)‘; Z/2) and that f*(c,) = 0, f*(e,) = Sq2i, f*(c3) = 0. 

Lemma 3.10. Let us call t3 a generator of H6(BSL([F3)‘; Z)EZ7/26, then 
h*(C13) = c3(SL(Z)) E H6(BSL(Z)+; Z) (c3(SL(Z)) is the third Chern class of the 
inclusion SL( Z) c, GL( C)). 

Proof. Let p denote again the Bockstein homomorphism H*(-; Z/2)+ H*+l(- 
; Z). The element W~(Y of HS(BSL(Z)+; Z/2) satisfies i*(w,a) = 0 since i*(o) = 0. 
We define r := p(w2cx); of course i*(T) = 0 in H6(F; Z). Moreover we know from 

[3] that i*(c3(SL(Z))) = 0; note that 7 # c3(SL(Z)) because red,(r) = Sq’(w,a) = 

w3cx # w: = red,(c,(SL(Z))). W e can conclude by looking at the Serre spectral 

sequence of F> BSL(Z)’ 5 BSL(F,)+ that the kernel of i*: H’(BSL(Z)+; 
Z)+H6(F; Z) is generated by r and c3(SL(Z)). But h*(c3) belongs to this kernel, 

i.e., h*(c^,) = r-7 + sc3(SL(Z)) w h ere r, s E (0, l}. We apply red, to this equation 

and obtain h*(c3) = rw30 + SW:. On the other hand, since h*(c3) = w: by Lemma 

3.7, we get r = 0, s = 1, so h*(c^,) = c3(SL(Z)). 0 

Corollary 3.11. Let p : HS(BSL(Z)‘; Z/2) ++Hom(H,(BSL(Z)+; Z), Z/2) be the 
homomorphism given by the universal coefficient theorem and 77 the cohomology 

class introduced in Definition 2.5. Then p(Sq2t) = p(q). 

Proof. The commutative diagram 

H’(BSL(Q+; Z/2) 
f’ 

’ H’(sSt(Z)+; Z/2) 

fQ 
Hom(H,(BSL(ff,)‘; Z), Z/2) - Horr!(N,(BSt(h)+; Z), Z/2) 

where f Q. 1s induced by f *, and the injectivity off tl (consequence of Proposition 

3.6) give us: p(Sq2i) = p( f *(e,)) = f ‘( p(e,)) # 0; since Sq2i = g*(Sq25) we get 

p(Sq2[) # 0 in Hom(H,(BSL(Z)+; Z), Z/2). 

It follows from Lemma 3.10 and from /3(e,) = 132, that B(h*(e,)) = 
h*( B(e,)) = 13c,(SL(Z)) = c,(SL(Z)) because c3(SL(Z)) is an element of order 2 
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[l]. On the other hand, according to Remark 3.9(b), /3(h*(e,)) = p(w,w,) + 

p(wg) + p(Sq*t) = c,(SL(H)) + p(Sq’[) (/I(w,) = 0 since wg = Sq’w,). Thus we 

get /3(Sq*t) = 0; therefore p(Sq’t) belongs to the image of the reduction mod2 

Hom(H,(BSL(Z)+; Z), Z)+ Hom(H,(BSL(Z)+; Z), Z/2). We then deduce from 

Definition 2.5 that p(Sq’t) = p(7). 0 

Remark 3.12. The previous corollary implies that p(Sq2i) = p(q) in 

Hom(H,(BSt(Z)‘; Z), Z/2). 

We consider again the homomorphism f.+ : HS(BSt(Z)+; Z)+ H,(BSL(F,)+; Z). 

Proposition 3.13. Let T denote the torsion subgroup of HS(BSt(Z)+; Z). Then the 
2-torsion subgroup off*(T) is trivial. 

Proof. Because p(e) is by definition an element of the image of the reduc- 

tion mod 2 Hom(H,(BSt(Z)‘; Z), Z)-+Hom(H,(BSt(Z)‘; Z), Z/2), one has 

p(q)(T) = 0. Observe that, by commutativity of the diagram introduced in the 

proof of Corollary 3.11, f”(p(e,)) = p(Sq2$) = p(t). Consequently 

f ?&e,))(T) = 0 an4 since f q is induced by f *, p(e,)( f ,( T)) = 0, which implies 

that there is no 2-torsion in f*(T). 0 

4. The Whitehead sequence of the space B%(Z)’ 

Proof of Theorems 1.3 and 1.4. We use the map f: BSt(Z)+-+ BSL(F,)+ in order 

to compare the Whitehead exact sequence (cf. [7, p. 5.55, Theorem 3.121) of 

BSt(Z)+ with that of BSL(F,)+ (both spaces are 2-connected). We get the 

following commutative diagram where both rows are exact (Hu denotes the 

Hurewicz homomorphism): 

K$Hu- HS(BSt(Z)+; Z)-K,Z@Z/2-, KJzH,(BSt(Z)+; Z)-0 

I 

f* 
= z/2 

I 
* 

K&A H5(BSL(F,)+; Z)“- K,ff, @Z/2+ K4F3 = 0 

=Z/2092/13 =z/2 

Note that the Whitehead exact sequence can also be obtained from the Serre 

spectral sequence of the fibration A(Z)+ BSt(Z)+ -$ K(K,Z, 3) (respectively 

A([F,)+ BSL(F,)+ -+ K(K,IF,, 3)), where p is the Postnikov approximation map 

and A(Z) the fibre of p. 
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The homomorphism $ is actually f * @ 1 and, since f .+ : K,Z z Z/48+ K,lF, E 
Z/8 is surjective (cf. [l, §3]), $ is an isomorphism. Proposition 3.6 says that x 0 f * 
is surjective and, by commutativity of the diagram, that cp is surjective. The proof 

is then complete because the group St(Z) and the space BSt(Z)’ have the same 

homology. 0 

Proof of Theorem 1.5. The above diagram and Proposition 3.13 show that 

q(T) = 0 (Tdenotes the torsion subgroup of HS(BSt(Z)+; Z)). Therefore we have 

an exact sequence 

K,Z/torsion% H5(BSt(Z)+; Z)/torsionAZ/2 

where Hu’ (respectively cp’) is induced by Hu (respectively cp). It follows from the 

surjectivity of cp that cp’ is also surjective. Consequently Hu’ is multiplication by 2. 

The analogous statement for the space BSL(Z)+ is then a consequence of Remark 

2.12. 0 
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