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CHARACTERISTIC CLASSES AND OBSTRUCTION THEORY 
FOR INFINITE LOOP SPACES 

Dominique Arlettaz 

The classical extension problem is to determine whether or not a given 
map g: A ~ Y, defined on a given subspace A of a space X,  has an extension 
X -~ Y. The present paper examines this question in the special case where 
the k-invariants of Y are cohomology classes of finite order (for instance if Y 
is an infinite loop space). 

I n t r o d u c t i o n  

Let (X, A) be a relative CW-complex and Y an (m - 1)-connected simple 

CW-complex (m > 1). The classical obstruction theory describes the primary 

obstruction 7m+l(g) E Hm+I(X, A; rrmY) to extend a map g: A ~ Y to a map 

X --* Y, in term of the characteristic class ira(Y) E Hm(y; 7rmY) as follows : 

7'~+1(g) = (-1)m6g*(im(Y)), where g* is the homomorphism induced by g in 

cohomology and 6 the coboundary operator of the cohomology sequence of the 

pair (X,A). If 7m+l(g) = 0, then there is an extension of g to the (m + 1)- 

dimensional skeleton of (X, A); but the vanishing of this primary obstruction 

is in general not sufficient in order to determine whether or not it is possible 

to extend the map g to X, and one must consider higher obstructions, which 

have a more difficult description. 

The purpose of this paper is to provide such a description for the case 

where Y is a space with Postnikov k-invariants of finite order (for example 

an infinite loop space). For these spaces we define in Section 1 n-dimensional 

characteristic classes j"(Y) 6 Hn(Y; 7rnY) for all positive integers n. Section 

2 gives some examples of these characteristic classes, in connection with the 

cohomology of certain classical groups. Finally, Section 3 is devoted to the 
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extension problem : for all positive integers n we define obstruction classes 

(n+i  (g) E H ~+1 (X, A; ~r,~Y) which are related to the characteristic classes of Y 

by the (similar) formula ~n+l(g) _ (_l)n~g.( j~(y)) ,  and we show that ,  under 

suitable conditions (for instance after localization of the target space Y), the 

extensibility of the map g is equivalent to the vanishing of these classes. 

I would like to thank Professor A. Dold for his valuable comments. 

1. C h a r a c t e r i s t i c  classes 

If Y is an (m - 1)-connected space (with ~rlY abelian if m = 1), its 

characteristic class 

ira(Y) e Hra(Y;~mY) 

is classically defined to be the element of Hm(Y; ~rmY) corresponding to the 

inverse of the Hurewicz isomorphism :tray ,,,,,,~- )Hm (Y; Z) under the isomorphism 

Hra(Y; ~rraY) '~ Hom(Hra(Y; Z), ~rmY) given by the universal coefficient theo- 

rem (eft [8, p.236]). The class i ra is natural in the following sense : if h: Y -+ Y~ 

is a map between two ( m -  1)-connected spaces, then h. (ira (Y)) = h* (im (Y~)), 

where the homomorphisms h. :  Hra(Y ; ~rraY) ---+ H'~(Z ; orraZ') and 

h*:Hra(Y';~r,~Y') --. Hra(Y;TrraY') are induced by h. Our objective is to 

define, for certain spaces, characteristic classes in all dimensions. 

Let us s tar t  by explaining our notation. All spaces we consider in this 

section are connected simple CW-complexes. For such a space Y and for any 

positive integer n, let a n : Y  --+ Y[n] denote the n-th Postnikov section of Y 

(i.e., Y[n] is a CW-complex obtained form Y by adjoining cells of dimension 

> n + 2, with ~riY[n] = 0 for i > n and (an),:rciY---~riY[n] for i < n), 

and kn+l(Y) the Postnikov k-invariant in H n + l ( Y [ n -  1]; ~r,~Y) : k~+l(Y)is  a 

homotopy class of maps Y[n - 1] --+ K(~r~Y, n + 1) such that ,  if K(~rnY, n) --+ 

PK(rc,~Y, n + 1)P-2--+K(~r,~Y, n + 1) is the path-fibration over K(~r,~Y, n + 1) and 

if W~ is the pull-back of (k'~+l(Y),p), there exists a (non-unique) homotopy 

equivalence 0: Y[n] ~- , Wn. 

In order to introduce the notion of n-dimensional characteristic classes for 

a space Y, we must assume that  n is a positive integer such that  the k-invariant 

kn+l(Y) is an element of finite order, say s~, in the group g ' + l ( Y [ n  - 1]; ~rnY) 
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(notice that  k'~+i(Y) is trivial for all n < m if Y is (m - 1)-connected). For 

instance, this condition is satisfied for all n _> 1 if Y is an H-space of finite 

type (cf. [1, Proposition 4.1]). Other examples are given in [3] where the 

following theorem is proved : there exist positive integers St (t E Z) such that  

Sn_ra+ikn+i(Y) = 0 for n <_ r + 2m - 2 if Y is an (m - 1)-connected r-fold 

loop space (m > 1,r >_ 0); in particular, all k-invariants of an infinite loop 

space have finite order. 

Under this hypothesis, it is possible to construct a map 

f ~ : Y  --+ K(~rnY, n) 

Y which induces multiplication by s,~ on rr.Y (of. [2, Lemma 4]). Look at the 

commutative diagram 

K(rr.~Y,n) 

K(rr.Y, n) 

, K(rr,~r,n) 

~Wn �9 

Y[n -- 1] 

' PK(rrnY, n + 1) 

Y kn+i (Y) 
, K(~r,~Y, n + 1) 

where each column is a fibration and E~ the pull-back of (sYk'~+l(V),p); this 

implies the existence of the map r and the fact that  s Y k n+l(Y) is homotopic to 

the constant map produces a homotopy equivalence En ~- Y [ n -  1] x K(~rnY, n). 
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Observe that  r induces multiplication by s Y on ~r~Y since sYnkn+l(Y) is actu- 

Y identity: K(Tr,~Y, n + 1) ally the composition of k~+l(Y) with s,~ �9 

K(Tr~Y, n + 1). We write f~Y for the composition 

Y ~-4 Y[n] ~ W,~ r E,  ~_ Y[n - 1] x K(r ,Y ,  n) -L K(TrnY, n) ~ K(r,,Y, n) 

where 7r denotes the projection onto the second factor and r] a map inducing an 

isomorphism on 7r~Y such that  the induced homomorphism ( f ~ ) . :  7r.Y ~ 7r, Y 

is exactly multiplication by s,~. Y This map fY is no~ unique. 

Def in i t i on  1.1. If Y is a connected simple CW-complex and n a pos- 

itive integer such that  k'~+l(Y) is a cohomology class of finite order s Y, an 

n-dimensional characteristic map for Y is a map 

/V:y  - - ,  K( J, n) 

Y which induces mutliplication by s ,  on 7rnY. The n-dimensional characteristic 

class of Y associated with f ~  is 

j " ( Y ) : =  (fY)*(i"(K(Tr, Y,n))) E Hn(Y;rcnY) , 

where (f~Y)* is the homomorphism induced by f~Y in cohomology (in other 

words, j " (Y)  is the cohomology class corresponding to the homotopy class of 

The characteristic class jn (y)  is not uniquely defined since it depends on 

the map fY.  The fibre of the Postnikov section Y[n I --+ Y[n - 1] is g(Tr~Y, n) 

and we call p the inclusion map K(Tr,~Y, n) ~ Y[n]; because of the isomorphism 

(a,~)*:Hn(y[n]; 7r~Y) --~ H~(Y;Trr~Y), we may consider the induced homo- 

morphism p*: Hn(y;  7r, Y) --* Hn(K(Tr~Y, n); 7r,~Y). It is then obvious that  all 

n-dimensional characteristic classes jn (y )  of Y have the same image under p. 

In fact, we write p for the composition of this map with a self-equivalence of 

K(TrnY, n), such that  

p*(j"(Y)) = s~ i'~K(~r,~Y, n)) . 
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Def in i t i on  1.2. J~(Y)  is the image of any n-dimensional characteristic 

class j '~ (Y) of Y under the homomorphism H n (Y; ~rn Y)  --* g n (Y; ~rn Y)/Kerp*. 

J'~(Y) is uniquely determined. 

The remainder of this section establishes some elementary properties of 

these classes. 

P r o p o s i t i o n  1.3. If  Y is an (m-1)-connected simple CW-complex, *hen 

j m ( y )  is uniquely determined and ira(Y) = j m ( y )  = din(y).  

Pro@ I f Y  is ( m -  1)-connected, km+t(Y) is trivial (s Y = 1) and Y[m] = 

Is m); thus, p* is an isomorphism, f in (y)  is unique and j m ( y )  = j,,~(y). 

Since any m-dimensional characteristic map fY:  Y --+ K(~rmY, m) induces iden- 

tity on 7r,~Y, the naturality of i "~ implies : 

j m ( y )  = (fY),(im(K(Trmy, m))) = i'~(Y). 

Let us discuss the naturality of d '~. 

P r o p o s i t i o n  1.4. Let Y and Y~ be connected simple CW-complexes, n a 
y~ 

positive integer such that kn+l(Y) and k~+l(Y ') have finite order s y and s,~ 

respectively, h: Y -+ Y~ a map, and 

h,: H'~(Y; lrnY)/gerp* -+ H"(Y;  ~r,Y')/Kerp* and 

h*: H~(Y'; ~rnY')/ ger  p* ~ H'~(Y ; 7r, Y ' ) /  Ker p* 

the homomorphisms induced by h. Then 

= 

Proof. Look at the commutative diagram 

h. h* 
n'~(y;r,~y) -----+ H~'(y;z,~y ') , H'~(y';~r,,y ') 

H'~(K(~rr, Y,n);TrnY) ~ H~(K(Tr,~Y,n);Tr~Y ,) , h# n,~(K(~r,,Y,,n);rny,) 
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where the homomorphisms h, ,  h*, h#,  h # are induced by h. It follows from 

h#(i'~(K(rc,~Y, n))) = h#(i~(K(~r~Y ', n))) that  p* (s~ Y' h,(3"'~ ( Y ) ) ) =  
y t  * "n Y~ Y "n _QY I~.#(~Y~ s,~ h#p (3 (Y))= = (in(Is s .  _ . . . . o .  

= sYh#p*(ff(Y')) = p*(sYh*(jn(Y')))for all i f (Y)  and f f (Y') .  This becomes 

s Y' h, (J~ (Y)) = s Y h* (J'~ (Y')) in the quotient Hn (Y; ~r, Y ' ) /Ker  p*. 

R e m a r k  1.5. Let Y be a connected simple CW-complex, n a positive 

integer with kn+l(Y) of finite order s Y, R a subring of the field of ratio- 

nals Q such that  s y is invertible in R, t: Y ~ YR the localization map, and 

g,: H'~(Y; ~r,~Y) ---+ Ha(Y; ~,~Y | R) and g*: Hn(YR; ~nY | R) ---* H '~ (Y; ~rnY | 
R) the homomorphisms induced by g. The behaviour of J "  under the lo- 

calization map is desciibed by the previous proposition : since s localizes 

the k-invariants (cf. [7, Theorem 2.3]), k'~+l(Yn) is trivial and t,(J'~(Y)) = 

The same is actually true for jn : if i f (Y)  �9 Hn(Y;~rnY) is an n- 

dimensional characteristic class of Y, there exists an n-dimensional charac- 

teristic class j'~(YR) e g~(Yn; r,~Y | R) satisfying the relation 

g, (jn (y)) = s~g* (jn (YR)). 

In order to prove this, consider an n-dimensional characteristic map fY: 

Y ---+ K(~rnY, n) corresponding to i f (Y)  and call f~  | R: YR ~ Is @ R, n) 
its localization. The composition of fY | R with a map K(~rnY | R, n) ---+ 
Is174 n) inducing multiplication by 1/s Y on ~rnYQR is an n-dimensional 

characteristic map for YR. Therefore, the induced homomorphism (fY | R)*: 

Hn(K(~rnY | R, n); ~nY @ R) ~ Hn(YR; ~rnY @ R) maps in(g(~nY | R, n)) 
onto sYjn(Yn) for some n-dimensional characteristic class j'~(Yxt) of YR. The 

commutative diagram 

H'~(K(rnY, n);v:,~ Y)  2.#) H'~(K(~.Y,n);~:. Y|  ~# H'~(K(v:,~Y|174 R) 

~(fY~ )* l ( f Y )  * l ( f Y |  

g, t* 
H'~(y;Tr,~y) . > H'~(Y;~r .Y |  ~ H'~(YR;~r,,Y| 

completes the argument : g,(j"(Y)) = (fY)*g#(in(K(~rnY, n))) = 
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(fY)*s | R, n))) = s Y "~ (sn3 (YR)). 

We determine finally the relationship between the characteristic classes of 

a space Y and those of its loop space f~Y. The cohomology suspensiona* 

induces the commutative diagram 

Hn(Y;  nY) ""  

Hn(K(Trny, n);~rny) ~" 

and a homomorphism 

Hn- I (gY;  7rn-lf~Y) 

cr*: Hn(Z; 7rnZ)/Kerp* --+ H n-l(f~v; rrn_lf~V)/Kerp* . 

P r o p o s i t i o n  1.6. Let Y be a connected simple CW-complex and n a 

positive integer such that kn+l(Y) has finite order y Then Sr~. 

O.* ( jn (y ) )  = {sY /si2Y ~ j n - l { ~ y ]  
~, n /  n - - l )  \ ] 

where sn_ iS the order of kn(f~Y). 

Proof. Since kn(f~Y) is the image of kn+l(Y) under the cohomology sus- 

pension (cf. [8, p. 438]), it has finite order sn_ lay dividing s n y .  Let j n ( y )  E 

Hn(y;  rrnY) be an n-dimensional characteristic class of Y. It follows from 

p. ( jn(y) )  = sYi,(K(rrnY, n)) that  p*a*(j~(Y)) = a*(sr~i~(K(Tr~Y,n))) = 
sY in- l (K(rrn_ l~Y ,n  1)) Y aY * .n-1 - = (Sn/S,~_I)p 0 (~Y))  for any (n -- 1)-dimen- 

sional characteristic class of ~Y.  Therefore we ge t :  r = 
sY lsnY 
n l n--l} \ }" 

2. E x a m p l e s .  

(a) Consider the infinite loop space BU. There exist characteristic classes 

jn(BU) 6 Hn(BU;TrnBU) for all positive integers n, but  if n is odd, the 

vanishing of rrnBU implies clearly that  jn(BU) = 0; more interesting are the 

even dimensions since ~r2,BU ~- Z for any t >_ 1. As usual let us call c, the t-th 

universal Chern class in H2t(BU; Z). 
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P r o p o s i t i o n  2.1. Let t be a positive integer. If  j2*(BU) is any 2t- 

dimensional characteristic class of BU, then j2*(BU) = +ct + decomposable 

elemenr 

Proof. It is known that  k2t+I(BU) has order ( t -  1) ! (cf. [6, Lemma 4.4]). 

Thus, if p*: H2t(BU; Z) --+ H2t(K(Z, 2t); Z) is the homomorphism defined in 

Section 1, p*(j2t(BU)) = ( t -  1)! i2t(K(Z, 2t)). On the other hand it is also 

proved in [6, Lemma 4.5] that  p* (ct) = =l:(t - 1)! i2t(K(Z, 20). Consequently, 

j 2 t~  c, belongs to the kernel of p*, which is generated by products of the Chern 

classes al, e2, �9 �9 �9 et- 1 �9 

(b) Let A be the field of rationals Q or the ring of integers Z, SL(A)  its 

infinite special linear group, and Y: = BSL(A)  + the simply connected space 

obtained by performing the plus construction on the classifying space of SL(A) .  

It is known by Borel's computation [4] that  the rational cohomology of Y is an 

exterior algebra generated by elements of degree 4t + 1, t > 1 : 

H*(BSL(A)+;Q)  = A(Xh, x g , . . . , x 4 , + I , . . . ) .  

Since Y is an infinite loop space, we may consider characteristic classes j~ (Y) E 

H~(Y; ~r~Y) for all n > 1. We want to show that  the classes provide a descrip- 

tion of the generators x4,+x, t > 1. Consider the localization map *:Y -~ YQ 

(i.e., the rational type of Y). According to [4], 7rnYQ -~ Q if n - 1 mod 4, 

n > 5, and ~rnY Q = 0 otherwise. Therefore, the map ~ induces the homomor- 

phism ~.: H 4~+ 1 (y ;  ~q,+ 1 Y) ~ H 4t+ 1 (y ;  Q) for t > 1. 

P r o p o s i t i o n  2.2. For t >_ 1, it is possible to choose 

x4t+l = ~, (j4t+l ( B S L ( A + ) ) .  

Proof. For any t > 1, let j4t+l (y)  be a (4t + 1)-dimensional charactersitic 

class of Y and j4,+l(yQ) the corresponding characteristic class of YQ given 

Y for all by Remark 1.5. Since the k-invariants k'~+l(Y) have finite order s n 

n > 1, YQ is a product of Eilenberg-MacLane spaces: YQ = YI~I K(Q, 4 t +  1). 

Its rational cohomology is then an exterior algebra generated by the classes 

j4t+l(yQ), t > 1. Using the isomorphism **:H*(YQ;Q) -~ H*(Y;Q),  we 
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may choose x4t+l = sY+I~*(j4~+t(YQ)) and deduce from Remark 1.5. that  

=4,+~ = e . ( j 4 ' + l ( Y ) )  for t > 1. 

Notice that  e,(ff(BSL(A)+)) = 0 if n ~ 1 rood 4. 

The same argument produces analogous assertions for the generators of 

the rational cohomology of Sp(A) and O(A) (cf.[4]) : 

H* (BSp(A)+; q )  = Q[y2, y6, -- �9 y4t-2,...], 

H* (BO(A)+;Q) = Q[z4, zs, . . . ,  z4t,...]. 

P r o p o s i t i o n  2.3. For t > 1, it is possible to choose 

Y4t-2 = ~.(j4t-2(BSp(A)+)) and z4t = ~,(j4t(BO(A)+)). 

Remark finally that  similar results are obtained when A is an imaginary 

quadratic number field or its ring of integers. 

3. Obstruct ion  theory. 

The classical obstruction theory (cf. [5] or [8, w 5-6]) examines the 

following problem : let (X, A) be a relative CW-complex, Y a connected simple 

CW-complex and g a map A -+ Y; the question is to determine whether or 

not g can be extended over X.  

I fY  is (m-1)-connected  (m > 1), it is possible to extend g over Xm, the m- 

dimensional skeleton of (X, A). If ~: X,~ ~ Y is such an extension, one defines 

a cocycle cm+l(~) E H'~+I(X,~+I, Xm; ~mY) whose vanishing corresponds to 

the extensibility of ~ over X,~+I, and one shows that  if .~ and ~: X,~ --+ Y are 

extensions of g, then cm+l(~) N cm+~(~): consequently, there is a uniquely 

defined element 

7"~+1(g) E H'~+I(X,A; ~rmY) 

which is the cohomology class of cm+l(~) for any extension ~: Xm ~ Y of g; 

7m+l(g) is called the primary obstruction to extending g. It is related to the 

characteristic class ira(Y) E H'~(Y; ~rmY) of the target space Y by the formula 

7m+l(g) = (-1)'~bg*(i'~(y)), 
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where g* denotes the homomorphism H * ( Y ; - )  --+ H * ( A ; - )  induced by g, 

and 5: H * ( A ; - )  --* H*+~(X, A ; - )  the coboundary operator of the cohomology 

sequence of the pair (X, A). The primary obstruction 7m+l(g) gives a partial 

solution to the extension problem : 7"~+i(g) is trivial if and only if g can 

be extended over X,~+i. But in general, there exist higher obstructions to 

extending g over X, and it is hard to describe them. 

The purpose of this section is to consider the extension problem in the fol- 

lowing special situation : we assume that  g: A ~ Y has an extension 9: X~ --+ Y 

Y (but we do not assume and that  the k-invariant k '~+i (Y) of Y has finite order s ,  

that  Y is (n - 1)-connected). The basic idea is to apply the classical theory 

to the composition of g (respectively 9) with any n-dimensional characteristic 

map fY: Y --* K0rnY, n) introduced in Section 1. 

L e m m a  3.1. cn+i(fY o 9) = sY cn+I(9) E Hn+I(xn+i, Xn; ~rnY). 

Proof. An elementary property of the cocycle c n+i is that  : + i ( f y  o ~) = 

(fY),(cn+i(9)) , where (fY),:Hn+l(X~+i,Z~;Tr, Y) --+ Hn+i(Xn+i,Z~; 

r n)) is induced by f~Y. But, by definition, ( f ~ ) ,  is multiplication by 
Y .  n + l  Y 

s..c o = 

It follows from this lemma that  c~+i(f  y o g) does not depend on the choice 

of fY. If y and ~: Xn --+ Y are extensions of g, then c"+l(f~o 9) N e=+ i ( f ~ o  g) 

since K(Tr~Y, n) is (n - 1)-connected. Thus, we may give the following 

Def in i t i on  3.2. (,~+i(g) E H'~+i(X,A;cr~Y) is the cohomology class 

o f  Y n + l  - s,~c (g) for any extension 9:X~ ~ Y o f g : A  -+ Y. It turns out that  

(=+i(g) = 7= + i ( fy  o g) for any n-dimensional characteristic map fY. Observe 

that  this obstruction class (,~+i(g) is well defined, although f ~  (respectively 

j~(Y)) is not uniquely determined. 

P r o p o s i t i o n  3.3. (n+i(g) = (_l),hg,(j ,~(y)) E H~+i(X,A; ~r.Y) for 

any n-dimensional characteristic class i f ( Y )  E Hn(Y; ~r,~Y). 

Proof. If fY is an n-dimensional characteristic map corresponding to 

i f (Y ) ,  then (,~+l(g) = 7,~+l(fY o g) = (_l),@*(fY)*(i~(K(~r,y, n))) = 
(-1)'~hg*(jn(Y)). 
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R e m a r k  3.4. The obstruction class (~,~+1 has the following properties. 

a) If go,gl:A ---* Y are homotopic maps, extensible over X~, then  

b) Let Y'  be another connected simple space with kn+l(Y ') of finite or- 
y '  

der s~ , h a map Y --+ Y' and h,:H'~+~(X,A;Tr, Y )  ---* H~+I(X,A;r ,~Y ' )  

the homomorphism induced by h. Then sY(n+l(ho g) = sylh,(r �9 

H'~+I(X,A;r,~Y ') because both terms are equal to the cohomology class of 

sY~Y'~n+t lh  o ~7) y yI  n+l  - 

c) If h' is a cellular map (X',  A') -~ (X, A), then (n+l(g 0 h']A,) = 

(h')*((n+l(g)) �9 H'~+I(X',A';~r~Y), where (h')* is the homomorphism in- 

duced by h' in cohomology. 

Our objective is now to exhibit the relationships between the obstruction 

classes cn+l(g)  and the solution of the extension problem. 

T h e o r e m  3.5. Let (X,  A) be a relative CW-complez, Y a connected sim- 

ple CW-complex, g a map A --~ Y ,  and n a positive integer such that the 

k-invariant k"+l (Y)  has finite order Y 8n* 

(a) I f  g can be extended over X,~+I, then (,~+l(g) = O. 

Y (b) Assume that g has an extension [;: Xn --~ Y ,  that multiplication by s~ 

on H ~ + I ( X , A ; r ~ Y )  is injective, and that ('~+~(g)= O, then g can be extended 

over X ,+I .  

Proof. Assertion (a) is obvious since the extensibility of g (and conse- 

quently of fY o g, for any n-dimensional characteristic map fY)  over Xn+l 

implies the vanishing of 7n+l ( fY o g) = r In order to prove (b), we de- 

duce from the hypothesis and Definition 3.2 that  sYcn+i(9 ) ..~ 0, and therefore 

that  cn+l(~) .-~ 0. It is then a consequence of [5, Extension theorem I] that  

.q]x.-1 can be extended over X,~+I. 

C o r o l l a r y  3.6. Let (X, A) be a d-dimensional relative CW-complex, Y an 

( m -  1)-connected simple CW-complex (m > 1), and g a map A ~ Y.  Assume 

Y and that multiplication for m + 1 < n < d -  1 that k~+l(Y) has finite order 8, 
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by sVn on Hn+I(X,A;  ~rnY) is injective. Then g can be extended over X if and 

only i f  ~n+l(g) = 0 in H ~ + I ( X , A ; r ~ Y )  f o r m  < n < d -  1. 

Proof. Suppose that  (n+l(g) = 0 for m _< n < d -  1. Observe first that  

7rn+l(g) = (--1)m~g*(im(Y)) = 0 by Propositions 1.3 and 3.3 : thus g may be 

extended over Xm+l.  We then apply inductively (for n = r e + l ,  m + 2 , . . . ,  d - l )  

assertion (b) of the previous theorem and obtain an extension ofg over Xa = X.  

The converse is trivial. 

We consider finally the extension problem in the case where Y is an ( m -  1)- 

connected infinite loop space : the obstruction classes ~ + l ( g )  may be defined 

because each k-invariant k~+l(Y) of the space Y is a cohomology class of 

Y satisfies the inequality p < Y (note that  any prime p dividing s,~ finite order s~ 

(n - m + 3)/2 according to [3, Corollary 1.9]). For a positive integer t, let us 

call Mt the product  of all primes p < t /2 + 1. 

C o r o l l a r y  3.7. Let (X,A)  be a d-dimensional relative CW-complex, 

Y an (m - 1)-connected infinite loop space (m > 1), and g a map A --* 

Y .  Let R denote the ring Z[1/Md-m], g the localization map Y ~ Yrt, and 

~. :H~+I(X,  A; r~Y)  --+ Hn+I (X,  A; rrnY | R) the homomorphism induced by 

~. Then the composition g o g: A ~ Yrt is extensible over X if and only if  

= 0 in | R) for  m <_ n < d -  1. In particular, 

if  j n ( Y )  is an n-dimensional characteristic class satisfying ~g*(j'~(Y)) = 0 in 

H'~+I(X,A; Ir,~Y) f o r m  < n < d -  1, then s  has an eztension X ---+YR. 

Proof. Since the map ~ localizes the k-invariants, one has sn vR = 1 for 

n < d - 1 .  The previous corollary asserts that  g0g can be extended over X if and 

only if (n+l(~og) = 0 in Hn+I(X,A;Tr,~Y| for m < n < d - l ;  but ~'~+l(gog) 

vanishes if and only if ~ , ( (n+l(g))  = s y ( n + l ( i  o g) = 0. (cf. Remark 3.4 (b)). 

Finally, if 5g*(jn(Y)) = 0, then g,(~n+l(g)) __ (_ l )n i , (hg , ( j ,~ (y ) ) )  = O. 
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