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Visual mental imagery during caloric vestibular stimulation
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Abstract

We investigated high-resolution mental imagery and mental rotation, while the participants received caloric vestibular stimulation. High-
resolution visual mental imagery tasks have been shown to activate early visual cortex, which is deactivated by vestibular input. Thus, we
predicted that vestibular stimulation would disrupt high-resolution mental imagery; this prediction was confirmed. In addition, mental rotation
tasks have been shown to activate posterior parietal cortex, which is also engaged in the processing of vestibular stimulation. As predicted,
w ance of a
l -level visual
s
©

K

1

s
s
v
t
t
s
h
w
u
r
u
I

m
T

ular
hown
tim-
01

l,
hat
rior

.
ory
lim-
slip
also
n of

ose
holds
ody

0
d

e also found that mental rotation is impaired during vestibular stimulation. In contrast, such stimulation did not affect perform
ow-imagery control task. These data document previously unsuspected interactions between the vestibular system and the high
ystem.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The vestibular system plays a fundamental role in human
patial orientation. For example, it activates the vestibulo-
pinal reflexes needed to control posture and affects gaze
ia the vestibulo-ocular reflex (VOR). The VOR connects
he vestibular end-organ to the eye muscles in such a way
hat moving the head in one direction induces a compen-
atory eye movement in the opposite direction. This reflex
elps stabilize the image of the world on the retina, when
e move our heads. Furthermore, vestibular information is
sed, when we perceive the orientation of objects (e.g., with
espect to gravity,Mittelstaedt, 1983), and it continuously
pdates the internal representation of space (e.g.,Berthoz,

srael, Georges-Francois, Grasso, & Tsuzuku, 1995).
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Numerous neuroimaging studies of the human vestib
system have now been reported, some of which have s
that early visual cortex is deactivated during vestibular s
ulation (Bense, Stephan, Yousry, Brandt, & Dieterich, 20;
Deutschl̈ander et al., 2002; Wenzel et al., 1996). This result is
consistent with findings reported byTiecks, Planck, Haber
& Brandt (1996), who, using Doppler sonography, found t
vestibular stimulation reduces blood flow in the poste
cerebral artery, which supplies the occipital cortex.Brandt,
Bartenstein, Janek, & Dieterich (1998)and Brandt et al
(2002)interpreted this finding as reflecting an inter-sens
interaction that helps prevent sensory conflicts (e.g., e
inates distracting visual information caused by retinal
during vestibular stimulation). In fact, researchers have
documented the complementary pattern, a deactivatio
vestibular areas during visually induced self-motion (Brandt
et al., 1998; Deutschl̈ander et al., 2004) and visual fixation
(Naito et al., 2003). These findings are consistent with th
from psychophysical studies that show increased thres
for detecting body acceleration during visually induced b
motion (Probst, Straube, & Bles, 1985).
028-3932/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neuropsychologia.2005.04.005
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The present study took advantage of the finding that
vestibular stimulation deactivates the occipital cortex in order
to study visual mental imagery. Many neuroimaging studies
of visual mental imagery have shown that early visual areas,
including area 17, are activated, when people form detailed,
high-resolution visual mental images (for review, seeKosslyn
& Thompson, 2003). However, neuroimaging is essentially a
correlational technique. Although one transcranial magnetic
stimulation study did show that deactivating medial occipital
cortex impairs imagery (Kosslyn et al., 1999), this finding
does not demonstrate deactivation via natural mechanisms of
sensory integration and would, therefore, be more compelling
if buttressed by convergent evidence using natural stimulation
and entirely different techniques (cf.Pylyshyn, 2002, 2003).
If early visual areas are in fact deactivated during vestibu-
lar stimulation, and high-resolution visual imagery relies on
such areas, then we expect to find impaired performance in
high-resolution imagery during such stimulation.

Moreover, we had a second reason for studying mental
imagery during vestibular stimulation. Neuroimaging stud-
ies have revealed activation in parietal cortex during certain
imagery tasks, particularly those involving mental rotation
(Alivisatos & Petrides, 1997; Cohen et al., 1996; Kosslyn,
DiGirolamo, Thompson, & Alpert, 1998; Richter et al.,
2000). It is noteworthy that some of the areas found to be
engaged in mental rotation tasks are also activated, when
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2. Methods

2.1. Participants

Eight volunteers participated (five males and three fe-
males, ages 24–42 years) in two separate sessions. They re-
ceived monetary compensation. Each participant was tested
clinically and was verified to have normal vestibular and
oculo-motor functions. None of the participants reported any
history of vestibular problems or disease. This study was
approved by the Institutional Review Boards at the Mas-
sachusetts Eye and Ear Infimary and Harvard University.

2.2. Tasks

2.2.1. High-resolution mental imagery
The participants began by memorizing 40 line drawings of

common objects prior to the task (e.g., a grasshopper, a castle
or a wrench). These pictures were taken from the standard-
ized set developed bySnodgrass and Vanderwart (1980). The
participants were instructed to memorize the objects so that
they could later generate vivid mental images of the pictures,
the same size as the original with all features. Neuroimaging
revealed that early visual areas 17/18 typically are activated,
when people visualize these objects (Ganis, Thompson, &
Kosslyn, 2004; Kosslyn, Thompson, Kim, & Alpert, 1995).
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C red
eople perceive rotation during vestibular stimulation (
he intra-parietal sulcus;Lobel, Kleine, Bihan, Leroy-Willig

Berthoz, 1998; Lobel et al., 1999). Therefore, it is likely
hat such processing may be affected by vestibular stim
ion. However, based on previous research, it is possible
imultaneous vestibular stimulation might not interfere,
ather could act to facilitate mental rotation. This alterna
s supported by the report that mental imagery deficits
owing hemispatial neglect can be temporarily attenuate
estibular stimulation (Rode & Perenin, 1994; Rode, Perenin
Boisson, 1995). This finding suggests that vestibular inf
ation is important in constructing a representation of sp
nd hence vestibular stimulation conceivably could facil
patial imagery tasks.

Thus, our goal was to investigate the mechanisms sh
y visual mental imagery and vestibular processes.
licited a relatively constant vestibular response, while

icipants performed either a high-resolution mental ima
ask, a mental rotation task, or a control task that did
equire imagery, but instead required participants to e
ate statements about abstract entities. We did not e
estibular stimulation to affect performance of the con
ask. In this study, we employed caloric stimulation to e
estibular stimulation. Caloric stimulation occurs, whe
old or warm temperature is applied to the outer ear c
hich in turn induces a thermoconvection within the fluid

he horizontal semicircular canal (Barany, 1906; Formby &
obinson, 2000). This stimulates the horizontal semicircu
anal of the vestibular system as if the head were act
otating.
uring the learning phase, each object was presented
ately on a computer screen and the participants had as
ime as they needed to memorize it. Once, they felt that
ad memorized the object, they pushed a button and the o
isappeared. They then formed the mental image of the o

hey just saw. When the participants had formed the m
mage as accurately as possible, they pushed a button a
bject reappeared on the screen. They checked whethe

mage matched the original, visualized again, and corre
he image if necessary. This procedure was repeated
or each of the 40 pictures. It took the participants roug
0 min to complete the learning phase.

During the experiment proper, the participants listene
he names of the objects they studied. As soon as they
n object’s name, they visualized the appropriate obje
ividly as possible and retained this image until they h
cue that indicated a specific judgment. The judgment
ere presented 2 s after they heard the name of the o
hese questions directed the participants to “look” for on

our features on the image. After the learning phase, the
icipants were familiarized with the four different judgmen
1) Higher than wide: for this judgment, the participants co
idered the relative width of the imagined object from
eftmost point to its rightmost point (in a straight line), th
ompared that distance to that from the topmost extrem
he bottommost extreme (again in a straight line). If the
ance from top to bottom was greater than the distance
eft to right, they were asked to push the Yes-button o
and-held device. Otherwise, they pushed the No-butto
enter higher: for this judgment, the participants conside
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that object’s topmost point, and decided whether the topmost
point was higher than both the leftmost and rightmost points.
They again responded by pushing one of the two buttons.
(3) Right higher: the participants judged whether the object’s
rightmost extreme was higher than its leftmost extreme, and
responded accordingly. (4)Enclosed space: the participants
judged whether the object had an enclosed space. An object
has an enclosed space if there is a space that is completely
surrounded by the object but is not part of the object. For
example, on a picture of a doughnut, the hole in the middle
of the doughnut would be an enclosed space.

2.2.2. Mental rotation
The participants saw a set of ten different letters prior

to the task. Each letter was presented individually and the
participants studied the letter so that they were later able to
generate a vivid image, when they heard its name. The letters
the participants memorized were either uppercase or lower-
case (e.g., b, N, or P). When the participants had memorized
the letters, they learned three different cue words, which they
heard immediately after the name of the letter during the ex-
periment proper. When they heard the word “right,” the par-
ticipants were to mentally rotate the letter 90◦ clockwise and
decide whether or not the rotated letter looks like any other
uppercase or lowercase upright letter from the alphabet. For
example, the letter “Z” looks like an “N”, when rotated 90◦
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ability. This questionnaire consists of descriptions of four
familiar scenes, and required the test-taker to visualize four
specific aspects of each scene (e.g., a rising sun: the sky clears
and surrounds the sun with blueness). The items are rated on
a five-point scale, indicating how vivid each image is. The
VVIQ has a high-reliability (Marks, 1973) and is relatively
unaffected by social-desirability biases (Richardson, 1979).

2.3. Apparatus

The participants were tested individually. Each was posi-
tioned in a tilt device (“Markham chair”) located at the Jenks
Vestibular Physiology Laboratory at Massachusetts Eye and
Ear Infirmary, and was firmly seated and secured by safety
belts. The participant’s head was held in place by a head re-
straint. The seat was suspended in a frame, which could be
tilted thus pitching the participant forward and/or backward.
The participants wore a blindfold throughout the experiment
and all stimuli were presented via loudspeakers attached to
the tilt chair. The sound files were prerecorded and pre-
sented via Psyscope Software (Cohen, MacWhinney, Flatt,
& Provost, 1993) installed on a Macintosh Powerbook. The
participants responded by pushing two buttons on a hand-
held device. The computer program recorded which button
was pushed as well as the response time.

Caloric stimulation was delivered via a closed-loop
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lockwise. Correspondingly, they had to rotate the letter◦
ounterclockwise, when they heard the cue word “left,”
otated the letter upside down, when they heard the cue
down.” The participants were specifically instructed to p
orm all mental rotations in the picture plane. The font of e
etter they studied was chosen to ensure that those rotate
ions that form a new upright letter were clearly recogn
s such. The participants had 4 s to respond, again pu
ne button for “Yes” and another for “No” (using the sa
esponse keys as in the high-resolution imagery task).

.2.3. Low-imagery task
We also administered a control task that did not req

he participants to use visual mental imagery. The pa
ants verified low-imagery statements by pushing on

wo response buttons to indicate whether the statemen
true” or “false” (e.g., “the Portuguese language is m
elated to Spanish than to German” or “a whale is a fis
ost of the low-imagery questions were taken from

et developed byGoldenberg et al. (1989) and Goldenbe
teiner, Podreka, and Deecke (1992). Goldenberg et a

1992)found lower cerebral blood flow in the left occipi
egion and higher flow in the right anterior frontal region
hese statements compared to high-imagery questions
igh-imagery sentences fromGoldenberg et al. (1992)were
ot used in this study.

.2.4. Questionnaire
We also administered the vividness of visual imag

uestionnaire (VVIQ) to assess individual mental imag
-

aloric irrigator manufactured by Brookler Grams. With
rrigator, there was no direct exposure to water, which
irculating in closed-loop tubes. We used bithermal ca
timulation with 21◦ in the right ear and 44◦ in the left ear
tronger stimulation can be elicited with temperatures co

han 21◦ (e.g., with ice water), but we used this tempera
ecause it is much more tolerable for the participants. In o

o deliver the stimulation, we inserted a small silicone rub
alloon into each ear canal. The balloon expands, filling
ar canal, as soon as the water pressure builds up as the
irculates through the closed-loop tubes. A properly infl
alloon produces a contact area within the outer ear c

hus transmitting thermal energy to the mastoid and inne
aloric stimulation can be maintained relatively constan

ong periods of time, and can selectively activate the ves
ar system. Such constant and selective stimulation woul
e possible with protocols using true motion, in which the
lways a possibly confounding influence from other sen
ources (e.g., tactile cues due to wind or caused by force
ng on the skin surface during acceleration or decelerat

Influences from extra-vestibular information also mak
ifficult to design an appropriate control condition, in wh

he participants do not experience motion. For caloric s
lation, an adequate control condition consists of appl
ody temperature to the outer ear canal. This results in
timulation, which does not elicit a vestibular response.
hermal energy provided to the mastoid and inner ear i
nly difference between caloric and sham caloric stimula

he rest of the experimental protocol is identical, includ
he tilted body position, which has been shown to influe
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performance in mental imagery tasks (Mast, Ganis, Christie,
& Kosslyn, 2003).

We also recorded eye movements in order to ensure that
nystagmus (a signature of caloric stimulation) was in fact
elicited by the caloric irrigation. We did so by attaching elec-
trodes (by adhesive bond) to the outher canthi of the eyes to
record horizontal nystagmus, and placed the ground electrode
on the forehead. The data were first preamplified, sampled at
a rate of 200 Hz via an analog-to-digital converter using Lab-
view software, and stored in digital format on a hard drive.
We calibrated the eye movement recordings by having the
participants look at targets displaced±10◦ from center.

2.4. Protocol

For this study, we used a novel caloric step stimulus that
was described byFormby and Robinson (2000). The stimu-
lus induces a step force to the horizontal semicircular canal
by allowing the peripheral thermal dynamics of the caloric
transmission to reach steady-state before tilting the partici-
pants. The heat flow in the temporal bone reaches a steady-
state thermal gradient at about 120 s. Therefore, we applied
an initial 2 min period of irrigation, in which the participant
was positioned with his/her head pitched forward by 30◦.
This brings the horizontal semicircular canals roughly into
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by means of electronystagmography. We used the VOR to en-
sure that caloric stimulation was properly applied. We knew
from clinical screening that each participant showed a nor-
mal VOR response during the clinical caloric exam. We used
bithermal stimulation to yield binaural vestibular stimulation
like that normally elicited by physical body motion.

As soon as the final tilt position was reached, one of the
three experimental tasks began. Upon completion of the task,
caloric stimulation was switched off and the participant was
rapidly moved back to the upright body position. The par-
ticipants rested for at least 5 min, and we removed the blind-
fold, while the participant rested in the laboratory (with room
lights on). All three tasks were administered in one session, in
a counterbalanced order across participants. Each participant
completed two separate sessions, one session with binaural
caloric stimulation (21◦C to the right ear, and 44◦C to the
left ear) and one with sham stimulation. We chose to use the
right ear for cold stimulation and the left ear for warm stim-
ulation on the basis of a study reported byShuren, Harley,
and Heilman (1998), which showed no neglect-like behavior
after rightward real rotation as opposed to leftward real rota-
tion. Despite their use of real physical motion, the binaural
vestibular stimulation during motion is similar to the binaural
caloric stimulation, we applied in this study. The sham stim-
ulation procedure was identical to caloric stimulation, except
that the water was set to normal body temperature (37◦C),

ula-
ular

lated.
rbal-
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an earth-horizontal plane, such that the canals are not s
lated by thermoconvection. After this phase, the partici
was abruptly reclined backward by 90◦ (in this final position
the participant is pitched back by 60◦ with respect to gravity)
Now, the horizontal canal is in an earth-vertical plane, w
it is maximally stimulated by caloric stimulation (Barnes
1995). Caloric irrigation continued during the change in bo
position and while the participant performed one of the t
described previously while tilted backwards. Each task
completed within 200 s. Our specific protocol is summar
in Fig. 1.

This reorienting maneuver allows the thermal gradien
induce a step force on the cupula, as if there were a st
angular head acceleration. The step force on the cupula im
diately triggers a strong VOR response, which was meas

Fig. 1. The caloric step protocol. Caloric stimulation is indicated by th
(the horizontal canal is in the earth-vertical position). A period of 120 s
in the earth-horizontal position) preceded each experimental task (se
-

f
-

and both ears were stimulated the same way. This stim
tion does not induce a thermoconvection in the semicirc
canals, and therefore, the vestibular system is not stimu
The order of the test and sham conditions was counte
anced over participants All eight participants completed
sessions.

3. Results

First, we consider the analysis of the error rates (E
We conducted a 3 (task type: high-resolution mental imag
mental rotation, low-mental-imagery sentences)× 2 (stimu-
lation type: sham, caloric) ANOVA with both task type a

hed line. The participant is pitched backward by 60◦ during the experimental tas
ric stimulation with the participant pitched forward by 30◦ (the horizontal canal
for details).
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Fig. 2. Error rates for the high-resolution mental imagery task during sham (©) and real (�) caloric stimulation shown separately for each participant.

stimulation type as repeated measures and ER as the depen-
dent variable. There was no main effect of task,F < 1, and no
main effect of stimulation per se,F < 1. Thus, the error rates
suggest that the tasks were of comparable difficulty. However,
the two variables interacted,F(2,6) = 5.30,p = .047. Contrast
analysis revealed impaired performance, when the partici-
pants received caloric stimulation during the high-resolution
mental imagery task,t(7) = 6.33,p < .0005. The mean ERs
were 29% for the caloric stimulation and 21% for the sham
stimulation.Fig. 2 illustrates the ERs for each participant
separately. The individual ERs in the high-resolution mental
imagery task were higher under caloric stimulation for all but
one participant.

In addition, contrast analysis of the ERs revealed that par-
ticipants were impaired in the mental rotation task, when
they received caloric stimulation,t(7) = 11.14,p < .0001. The
participants made 33% errors under caloric stimulation and
19% under sham stimulation. Finally, caloric stimulation did
not affect performance, while participants evaluated the low-
mental-imagery sentences, which served as control; the ERs
under caloric (30%) and under sham stimulation (29%) were
virtually identical,t(7) < 1.

For the analysis of the response times (RTs), we again
conducted a 3 (task type: high-resolution mental imagery,

mental rotation, low-mental-imagery sentences)× 2 (stimu-
lation type: sham, caloric) ANOVA with both task type and
stimulation type as repeated measures and RTs as the depen-
dent variable. We found a significant main effect of task type,
F(2,7) = 5.90,p = .038, indicating that the participants were
faster in the mental rotation task (M = 3111 ms) than in the
high-resolution mental imagery task (M = 3828 ms, post hoc
analyses with Bonferroni adjustment,p = .011). There were
no significant differences between RTs in the low-mental-
imagery sentences (M = 3332 ms) and the two other tasks.
The fact that the control task required about the same amount
of time as the two imagery tasks implies that the control task
was of comparable difficulty. There was neither an effect of
the type of stimulation,F < 1, nor an interaction between task
and stimulation,F < 1. Note that these findings allow us to
rule out the possibility that the effects of caloric stimula-
tion reflect task difficulty per se. The participants responded
fastest in the mental rotation task, which was most disrupted
in terms of ERs under caloric stimulation.Table 1summarizes
the mean RTs and the mean ERs for all three tasks separately
for stimulation type.

Four participants were tested with the caloric stimulation
first, followed by the sham stimulation in a separate session,
and the other four participants were tested with the sham stim-
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ean response times and error rates

Mean response t

igh-resolution mental imagery Caloric 3854
Sham 3803

ental rotation Caloric 3103
Sham 3120

ow-imagery task Caloric 3280
Sham 3384
s) Standard error Mean error rate (%) Standar

218 29 .04
150 21 .02

195 33 .05
280 19 .05

114 30 .04
159 29 .02
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ulation first followed by the caloric stimulation in a separate
session. There were no main effects of order revealed by two
separate ANOVA’s for the mental rotation task,F(1,6) = 1.53,
p = .26 for ERs andF(1,6) = 0.23,p = .65 for RTs, and for the
high-resolution mental imagery task,F(1,6) = 1.92,p = .22
for ERs andF(1,6) = 2.72,p = .15 for RTs.

We also recorded eye movements during the tasks, which
ensured that a caloric nystagmus, a hallmark of vestibular
stimulation, was in fact elicited in all participants during
caloric stimulation. Visual inspection of the recorded eye
movements showed little or no nystagmus during the sham
stimulation. Warm water stimulation of the left ear and cold-
water stimulation of the right ear caused a caloric nystagmus
to the right (direction of slow phase). The mean velocity of
the slow phase was 8.2◦/s (S.D. = 5.2◦/s) during the high-
resolution mental imagery task, 8.4◦/s (S.D. = 5.5◦/s) during
the mental rotation task, and 7.5◦/s (S.D. = 5.0◦/s) during the
low-imagery task. The eye movement data for three out of
24 sessions with caloric stimulation (each of the eight partic-
ipants completed three tasks) had to be discarded because of
technical problems in data acquisition (one session with tech-
nical difficulties occurred for each of the three tasks). There
was no difference in slow phase velocity during caloric stim-
ulation between the three different types of tasks, as revealed
by a one-way ANOVA,F(2,5) < 1.

We verified that the caloric stimulation was effective by
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resolution imagery task. Previous studies found that caloric
stimulation deactivates early visual cortex (Bense et al., 2001;
Deutschl̈ander et al., 2004; Tiecks et al., 1996; Wenzel et al.,
1996), which led us to predict that such stimulation would
impair high-resolution visual mental imagery; numerous
studies have shown that high-resolution imagery activates
early visual areas (for review, seeKosslyn & Thompson,
2003). Thus, these findings provide convergent evidence
that high-resolution visual mental imagery does in fact rely
in part on early visual cortex. The question of whether visual
mental imagery is affected by vestibular stimulation was
previously addressed primarily in the context of patients
with hemispatial neglect (e.g.,Guariglia, Padovani, Pantano,
& Pizzamiglio, 1993). Under ordinary conditions, these
patients were unable to report any information located in the
neglected part of their mental images. However, with caloric
stimulation the left-sided neglect was temporarily reduced,
both in perception (Cappa, Sterzi, Vallar, & Bisiach, 1987;
Rubens, 1985; Storrie-Baker, Segalowitz, Black, McLean, &
Sullivan, 1997) and imagery (Rode & Perenin, 1994; Rode,
Perenin, & Boisson, 1995). Even though these findings
demonstrate compellingly that caloric vestibular stimulation
influences performance in mental imagery, the nature of the
neurophysiological mechanisms that underlie the temporary
remission of neglect are not yet understood. For example,
it is possible that horizontal eye movements elicited during
c the
p side.
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bserving the VOR, which was always evident during
ondition. Moreover, all participants reported some sen
otion during caloric stimulation, but often they were
ble to describe their perception precisely. The stimula

nduced a leftward rotation, in terms of vestibular stimula
n the semicircular canals. However, this stimulation confl
ith the direction of gravity, given that the otoliths did not s
al a change in orientation with respect to gravity. There

he participants often feel not only rotation, but also tra
ation, which is the result of an internal conflict resolut
as described byPeterka, Gianna-Poulin, Zupan, & Merfe
004).

Regarding the imagery questionnaire, the mean sco
he VVIQ was 54.5 (range: 42–78, maximum score: 80)
ignificant correlations were found between the VVIQ sc
nd performance in any of the three tasks, except for the

n the mental rotation task,r(6) = .64,p = .006.

. Discussion

The results indicate that participants perform two type
ental imagery tasks poorly, when they experience si

aneous vestibular input via caloric stimulation. In contr
hey performed a low-imagery task as well with and with
aloric stimulation, which indicates that the observed eff
id not reflect overall impaired cognitive performance du
aloric stimulation.

Perhaps the most important result of this study is
aloric stimulation impaired performance in the hi
aloric vestibular stimulation could help one to inspect
arts of the image that fall on the otherwise neglected
espite the effects shown in neglect patients, only a few

es have been conducted to investigate how caloric vesti
timulation affects performance in healthy participants (
arnath, Himmelbach, & Perenin, 1993). We must not

hat the present study was not designed to illuminate
echanisms underlying the temporary remission of the
lect syndrome; our tasks involve primarily object-cente
epresentations whereas vestibular stimulation in unila
eglect is more likely to manifest itself in space-based co
ates. It is unlikely that the vestibular stimulation we used

his study induced any neglect-like behavior (Shuren et al
998); our data do not suggest any tendency in that direc
e were primarily interested in studying mental imager

he context of a mutually inhibitory relation between vis
including visually imagined) and vestibular information

However, given our design, we cannot rule out
ossibility that our methods induced a conflict between
emicircular canals signalling body rotation and all o
ues indicating no change in body position (e.g., sen
nformation from the otoliths or the participants’ knowled
bout the stationary body position). None of the participa
owever, reported any signs of motion sickness. More

here was no decline in the low-imagery condition, and
t is unlikely that the caloric stimulation simply distract
he subjects from performing the tasks. What poss
echanisms might be responsible for impaired perform

n the high-resolution imagery task? The temporary de
ation of early visual areas during caloric stimulation co
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result from inhibition of remote feedback projections that
converge on early visual areas. These feedback projections
are massive; indeed, the visual cortex receives roughly
the same amount of input from higher areas as it projects
to higher areas (e.g.,Van Essen, 1985). The functioning
of these recurrent connections has been demonstrated in
a variety of tasks using attentional selection, perceptual
grouping, and visual mental imagery (for review, seeTong,
2003). In the context of this study, no perceptual input was
present, and the participants were in complete darkness,
when they generated mental images. However, it remains
to be determined whether and how the mechanisms of
this type of feedback activity are related to the inhibitory
inter-sensory mechanism, which leads to a deactivation of
early visual areas during vestibular stimulation (Bense et al.,
2001; Brandt et al., 1998, 2002; Wenzel et al., 1996).

In this context, it is worth mentioningKolev’s (1995)
study, which showed that caloric stimulation evoked visual
hallucinations in 67% of the participants. After the experi-
ment, during verbal debriefing, none of the participants from
the present study reported any visual hallucinations, which
could have interfered with imagery processing (our specific
stimulation paradigm differs from Kolev’s, which may ex-
plain why we did not find any hallucinations). But even if
our participants did experience subtle hallucinations,Kolev
(1995) reported that they decayed relatively quickly, after
2 tim-
u

ric
s ask.
T at
l ution
i also
a . Be-
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i
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a gery
t ual
m en-
t
T sso-
c
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w

n im-
p psy-
c ects
i
H )
a rior
p ted
m f re-

cent results byFasold et al. (2002)that show a right-sided
dominance during caloric vestibular stimulation, regardless
of the stimulated side. However, in light of reports of bilateral
activation in several neuroimaging studies of mental rotation,
we must be cautious in assuming that only the right hemi-
sphere contributes to such processing (Alivisatos & Petrides,
1997; Cohen et al., 1996; Thompson & Kosslyn, 2000).

Although we have focused on early visual cortex and
posterior parietal cortex, we must point out that vestibular
information is processed in multiple cortical loci. Animal
studies have revealed that such information is received
by areas in the parietal (area 2v, area 3aV, area 7, and the
parieto-insular vestibular cortex, PIVC), temporal and frontal
cortices (area 6pa, area 8a;Grüsser, Pause & Schreiter,
1982, 1990; Guldin, Akbarian & Gr̈usser, 1992; Schwarz
& Fredrickson, 1971). More recently, neuroimaging studies
(Bense et al., 2001; Bottini et al., 1994, 2001; Deutschl̈ander
et al., 2002; Dieterich et al., 2003; Lobel et al., 1998, 1999;
Suzuki et al., 2001; Wenzel et al., 1996) have documented
that vestibular stimulation activates the left parieto-temporal
junction (e.g., in the posterior insular region, which could be
the human analog of the PIVC), the left intra-parietal sulcus
and posterior lateral sulcus, and bilaterally activates the
central sulcus and the premotor regions of the frontal lobe
(BA 44, BA6). Cortical areas with vestibular input were also
assessed by electrical stimulation in patients with epilepsy
(
s bove
a

tion
o rfor-
m most
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t
f rtex
a ding
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nals
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a etter
u ma-
t in
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t e we
s

A

x-
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a ful
a enks
V ric
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0 s, a relatively short duration compared to the 200 s of s
lation, we administered in the present study.

Another important finding of this study was that calo
timulation impaired performance in a mental rotation t
his task did not require high-resolution imagery (or

east did so to a much lesser extent than the high-resol
magery task), which suggests that caloric stimulation
ffected the mental rotation transformation processes
avioral research suggests that at least some processes

ransforming objects in mental images are distinct from th
nvolved in maintaining and inspecting images (Hegarty

Kozhevnikov, 1999; Mast & Kosslyn, 2002; Wallace &
ofelich, 1992). Therefore, it is unlikely that the impaire
erformance in the mental rotation task had the same or
s the impaired performance in the high-resolution ima

ask. The visual cortex is not involved in all types of vis
ental imagery, and is typically not drawn upon during m

al rotation (Cohen et al., 1996; Thompson & Kosslyn, 2000).
he processes underlying mental rotation are primarily a
iated with parietal areas (Alivisatos & Petrides, 1997; Harris
Miniussi, 2003; Richter et al., 2000), which partly overlap
ith those areas activated during vestibular stimulation.
In addition, the right hemisphere has sometimes bee

licated in mental rotation. For example, several neuro
hological studies report impaired mental rotation of obj
n patients with right-sided lesions (Corballis, 1997; Farah &
ammond, 1998). Furthermore,Harris and Miniussi (2003
pplied transcranial magnetic stimulation to the poste
arietal lobe, and only stimulation to the right side affec
ental rotation. These findings are interesting in light o
in

Kahane, Hoffmann, Minotti, & Berthoz, 2004). Vestibular
ensations could be easily elicited in an area exending a
nd below the Sylvian fissure (BA 21, BA 22, BA 40).

Thus, in principle, any of these areas (or any combina
f these areas) could have contributed to the impaired pe
ance we observed in the two imagery tasks. That said,
f these areas are not typically activated during the ima

asks we used (Kosslyn & Thompson, 2003), returning the
ocus to the early visual cortex and posterior parietal co
s most likely sites to explain the sensory interaction lea

o the observed performance impairment.
The results from this study show that vestibular sig

nfluence two types of visual mental imagery but
nother cognitive task. More research is needed to b
nderstand the cortical processing of vestibular infor

ion; investigation of the role of vestibular information
ognitive processing is important in order to unders
he mechanisms underlying spatial tasks such as thos
tudied in the domain of visual mental imagery.
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