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Abstract

Background

Neutrophils are the first line of defense against invading pathogens and are rapidly recruited

to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of

inflammatory cells significantly increases the parasite load whereas co-inoculation of neu-

trophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected mac-

rophages and neutrophils also induced parasite killing leading us to ask how neutrophils

alone respond to an L. braziliensis exposure. Herein we focused on understanding the inter-

action between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate.

Methods and Findings

Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil ac-

cumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory

or bone marrow neutrophils to L. braziliensismodulated the expression of surface molecules

such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing

L. braziliensis, we determined that such effects were mainly observed in infected and not in

bystander cells. Neutrophil activation following contact with L. braziliensis was also con-

firmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with

L. braziliensis but not with L.major displayed markers of early apoptosis.

Conclusions

We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed

to the parasite in vitro respond through activation and release of inflammatory mediators. This

outcomemay impact on parasite elimination, particularly at the early stages of infection.
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Author Summary

Leishmania is the parasite responsible for the disease leishmaniasis, present in all conti-
nents. Leishmania parasites are spread through infected sand-flies and, during transmis-
sion into the vertebrate host, neutrophils are among the first cells to arrive at the infection
site. Since neutrophils are key players at the frontline of defense against invading organ-
isms, we investigated their response to Leishmania braziliensis. Importantly, L. braziliensis
causes both Cutaneous and Mucocutaneous Leishmaniasis, two clinical manifestations
characterized by their chronic development and by the presence of skin lesions with tissue
destruction. Upon inoculation of mice with L. braziliensis, neutrophils rapidly arrive at the
site of infection. We then observed that culture of mouse neutrophils with L. braziliensis
induced the expression of adhesion molecules, production of Reactive Oxygen Species and
secretion of elastase and TNF-α, two important inflammatory mediators. Also, infection
with L. braziliensis induced neutrophil apoptosis, a cell death mechanism key for regulat-
ing inflammation. Our results show that neutrophils respond to presence of the L. brazi-
liensis parasites by becoming activated and undergoing apoptosis. We suggest that this
outcome modifies the local environment at the site of parasite inoculation and thus con-
tributes with parasite killing in the infected host.

Introduction
Neutrophils are essential components of the early inflammatory response, acting as the first
line of defense against invading pathogens (rev. in [1]). Neutrophil recruitment to the infection
site occurs in response to various stimuli and is followed by cell rolling and adhesion to the vas-
culature, processes mediated by interactions between selectins and integrins [2]. Pathogen
phagocytosis subsequently elicits the production of superoxide, which is quickly dismutated
into hydrogen peroxide and other secondary Reactive Oxygen Species (ROS), which are highly
toxic to the invading pathogen [3]. Phagocytosis stimulates the secretion of additional antimi-
crobial molecules such as neutrophil elastase, into the phagosome further contributing with
pathogen killing [4]. Resolution of inflammation requires efficient removal of apoptotic neu-
trophils by professional phagocytes such as resident macrophages [5]. Phagocytosis of apopto-
tic neutrophils prevents the release of potentially toxic molecules and, in parallel, regulates the
inflammatory response [6].

During experimental Leishmania infection, neutrophils play distinct roles depending on the
combination of mouse strain and parasite species. For L. donovani and L. infantum, neutro-
phils contributed to parasite killing [7,8]. For L.major, neutrophil and monocyte depletion en-
hanced disease in resistant mice [9–12] whereas, in susceptible mice, the absence of
neutrophils inhibited Th2 cell development [12]. Neutrophil depletion led to faster lesion de-
velopment in mice infected with L. amazonensis promastigotes [13] whereas amastigotes dis-
played resistance to the neutrophil microbicidal machinery [14]. Following phagocytosis, some
Leishmania spp can be found within non-lytic compartments [15]. This evasion strategy sug-
gests that Leishmania parasites may exploit neutrophils as to gain access to macrophages
where, ultimately, infection is established [16,17]. In vivo, neutrophils readily arrive at the site
of L.major [12,18] and L. infantum-chagasi inoculation [19] within minutes. Employing a nat-
ural transmission model, Peters et al. showed that neutrophils capture L.major parasites at the
site of sand fly bite, but the parasites remain viable [20]. In this model, the absence of neutro-
phils was unfavourable to infection. More recently, Ribeiro-Gomes et al. showed that in experi-
mental infection, the route of inoculation (intradermal, subcutaneous or intraperitoneal) also
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impacts on the capture of L.major parasites by neutrophils and on the establishment of infec-
tion [21].

Previously, we showed that L. braziliensis-infected macrophages co-cultured with live neu-
trophils display a reduced parasite load [22]. This outcome was dependent on the interaction
between macrophages and neutrophils and was associated with the production of TNFα and
superoxide. We suggested that clearance of neutrophils in L. braziliensis-infected mice pro-
motes a pro-inflammatory environment, contributing with parasite clearance. Herein we inves-
tigated how exposure to L. braziliensis and internalization or not of the parasite impacts the
neutrophil response.

Methods

Ethics statement
Female BALB/c mice, 6–8 weeks of age, were obtained from CPqGM/FIOCRUZ animal facility
where they were maintained under pathogen-free conditions. All animal work was conducted
according to the Guidelines for Animal Experimentation of the Colégio Brasileiro de Experi-
mentação Animal and of the Conselho Nacional de Controle de Experimentação Animal. The
local Ethics Committee on Animal Care and Utilization (CEUA) approved all procedures in-
volving animals (L-03/2011).

Parasites
L. braziliensis promastigotes (strain MHOM/BR/01/BA788) [23] or transgenic L. braziliensis
parasites expressing mCherry [24], kindly provided by Phillip Scott (University of Pennsylva-
nia), were grown in Schneider’s insect medium (LGC) supplemented with 10% FBS, 2 mM glu-
tamine, 100 U/ml penicillin, and 100 mg/ml streptomycin. Parasite cultures were seeded at 105

parasites/mL and were closely monitored to ascertain that parasites had reached the stationary
phase (7 days). Before co-culture experiments with neutrophils, stationary-phase parasites
were opsonized with 5% heat-inactivated fresh naïve serum for 30 min at 24°C. Metacyclic en-
riched promastigotes were obtained as described elsewhere [25]. In some experiments, we em-
ployed L.major (WHOM/IL/80/Friedlin) or dead parasites, prepared as described [26].

Neutrophil recruitment
BALB/c mice were inoculated in the ear dermis with 106 stationary phase promastigotes, in
10μL, using a 27 1/2G needle. Control mice were injected with serum-free DMEMmedium.
After 6, 24 and 48h post-inoculation, mice were sacrificed and the dorsal and ventral ear sheets
separated with forceps. The two leaflets were transferred to RPMI supplemented with 10% FCS
and antibiotics. After 16h the cells emigrating out of the ear explants were collected, counted
and stained for flow cytometry [27]. For cell surface molecules, mAb 24G2 was used to block
FcRs and cells were stained using anti-Ly6G-APC/Cy7 (clone 1A8) (BioLegend) and anti-
CD11b-eFluor 450 (clone M1/70) (eBioscience). All cell events were acquired on an LSRII flow
cytometer (BD Biosciences) and analyzed using FlowJo (Tree Star, Inc.).

Isolation of neutrophils
Peritoneal neutrophils (herein referred as inflammatory neutrophils) were obtained by i.p. in-
jection of 10% thioglycollate (SIGMA), as described [28]. Cells were collected 18 h later, by
peritoneal washings, counted, and were left to adhere for 1h at 37°C. Non-adherent cells were
recovered, washed and examined for purity by both FACS and H&E staining of cytospin prepa-
rations. Neutrophils of purity>90% were used in experiments. Bone marrow neutrophils were
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obtained from the tibia and femur of mice; labeled with neutrophil-specific mAbs anti-Ly6G
(clone NIMP-R14-FITC or clone-1A8-PE) (BD PharMingen) and purified by MACS-positive
selection, using using anti-FITC or anti-PE magnetic beads (Miltenyi Biotech). Alternatively,
neutrophils were labeled with anti-Ly6G (clone 1A8, conjugated to Biotin, Miltenyi Biotech)
and purified using anti-Biotin magnetic beads. Purity of neutrophils following either NIMP-
R14 or 1A8 positive MACS selection was>95%, as assessed by FACS. Control stainings with
CD11b and Ly6C were performed following magnetic separation and neutrophils (inflamma-
tory and bone marrow) were characterized as CD11b+1A8+Ly6Cint and Gr1high (S1 and S2
Figs, respectively).

Neutrophil culture with L. braziliensis
Inflammatory neutrophils or bone marrow neutrophils were cultured for 2h, in RPMI medium
supplemented with 10% FCS, 100 U/ml of penicillin and 100 μg/ml of streptomycin (all from
Invitrogen), in the presence or absence of serum-opsonized L. braziliensis (at a 2:1 parasite:cell
ratio). The infection rate of inflammatory or bone marrow neutrophils co-cultured with L. bra-
ziliensis-expressing mCherry was determined by flow cytometry. Data were acquired on a For-
tessa or an LSRII flow cytometer (BD Biosciences) and analyzed using FlowJo (Tree Star Inc.).

Expression of surface molecules and measurement of oxidative burst
Neutrophils were co-cultured L. braziliensis, as described, for 2 h. For cell surface staining, neu-
trophils were incubated with FcBlock (CD16/CD32) (BD Pharmingen) followed by anti-
CD18-FITC (clone M18/2) or anti-CD62L-PE (clone MEL-14) (all from E-bioscience, includ-
ing isotype control Rat IgG2a). For the detection of Reactive Oxygen Species, cells were co-
cultured with L. braziliensis for 2 h and were later stained with Dihydroethidium (DHE) (Invi-
trogen), a superoxide indicator, at 3 μM for 30 minutes. As a positive control, neutrophils were
incubated with phorbol 12-myristate 13-acetate (PMA) (100nM) (SIGMA) for 30 minutes.
Data were acquired with a FACSAria or FACScan (BD Biosciences) and analyzed with FlowJo
(Tree Star Inc.).

Measurement of Elastase activity and of TNF-α production
Neutrophils were co-cultured with L. braziliensis, as explained above, for 4h. Elastase enzymat-
ic activity was measured as described [10]. Briefly, cell culture supernatants were harvested and
added (20 μL) in triplicate to ELISA plates. Following addition of Elastase reaction buffer
(55μL) (0.1 M HEPES, 0.5 M NaCl, 10% dimethylsulfoxide, pH 7.5) and 0.2 mM Elastase sub-
strate I (MeOSuc-AAPV-pna; Calbiochem) (150 μL), samples were incubated at 37°C for
3 days. Elastase activity was determined by reading absorbance at 410 nm, using serial dilutions
of human elastase (Calbiochem), as standards. For the detection of TNF-α, neutrophils were
co-cultured with L. braziliensis for 24h. Cell culture supernatants were collected and TNF-α
levels were determined by ELISA, using a commercial kit (R&D Systems).

Measurement of neutrophil apoptosis
Inflammatory neutrophils were co-cultured with L. braziliensis or L.major (at a 5:1 parasite:
cell ratio) for 18 h. Neutrophils were then stained with Annexin V-FITC and PI (both from BD
Biosciences). Bone marrow neutrophils were co-cultured with mCherry-L. braziliensis, as de-
scribed above, for 18 h. Apoptotic neutrophils were obtained by ultraviolet irradiation exposure
(245nm) for 10 minutes [10]. Cells were stained with Annexin V-FITC (Biolegend) and DAPI
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(SIGMA) and apoptosis was assessed by flow cytometry. Data were acquired with a FACSAria
or FACScan (BD Biosciences) and analyzed with FlowJo (Tree Star. Inc.).

Transmission electron microscopy
Inflammatory neutrophils were co-cultured with L. braziliensis or L.major (at a 5:1 parasite:
cell ratio) for 18 h. Cells were fixed with 2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4,
and post-fixed in 1% OsO4 and 0.8% potassium ferricyanide and 5 mM calcium chloride in the
same buffer. Cells were dehydrated in a graded series of acetone and embedded in Poly/Bed
812 (Polysciences, Inc.) resin. Ultrathin sections were stained with uranyl acetante and lead cit-
rate and examined on a Zeiss109 transmission electron microscope operating at 80 KV.

Statistical analysis
The significance of the results was calculated using non-parametrical statistical tests [Mann
Whitney (two-sided t-test) or Kruskal-Wallis followed by Dunn’s post test]. Analyses were
conducted using Prism (GraphPad software) and a p-value of<0.05 was
considered significant.

Results

Neutrophil recruitment to the site of L. braziliensis inoculation
Previously, we reported that neutrophils are present throughout the course of lesion develop-
ment in BALB/c mice inoculated with L. braziliensis [22]. Herein, we initially evaluated the ki-
netics of neutrophil recruitment at the early moments following L. braziliensis infection. Mice
were inoculated in the ear dermis with L. braziliensis parasites and recruited cells were selected
based on size and granularity; within this population, we defined Ly6G+ neutrophils (Fig. 1A).
Six hours following parasite inoculation, we did not see differences in the number of Ly6G+

neutrophils comparing mice inoculated with L. braziliensis and control mice, inoculated with
saline (Fig. 1B). Twenty-four hours later, the number of Ly6G+ cells recruited to the inocula-
tion site significantly increased in experimental mice and 48h later, this number decreased
(p<0.05, compared to the 24 h time-point). These results show that neutrophil recruitment
peaks one day after L. braziliensis inoculation.

Expression of CD62L and CD18 in L. braziliensis-exposed neutrophils
Following the observation that neutrophils rapidly accumulate at the site of L. braziliensis inoc-
ulation (Fig. 1), we investigated the expression of molecules important for cell rolling such as
CD62L (L-selectin) and adherence and transmigration such as CD18 (β2 integrin). We also
employed serum-opsonized L. brazilensis since Leishmania is delivered into the host in a blood
pool, where promastigotes likely encounter serum and the complement system. Inflammatory
neutrophils were co-cultured with serum-opsonized mCherry L. brazilensis and neutrophils
were selected by size and granularity and, subsequently, by expression of Ly6G (Fig. 2A). In
parallel, we also compared infected neutrophils (Ly6G+mCherry+) and bystander neutrophils
(Ly6G+mCherry-), the latter defined as neutrophils that remained uninfected in spite of expo-
sure to L. braziliensis (Fig. 2A). Following co-culture of inflammatory neutrophils with L. bra-
ziliensis, the percentage of infected (mCherry+) neutrophils was approximately 36% (Fig. 2B)
whereas 49% of cells remained uninfected (mCherry-). The percentage of CD18+ cells among
infected (mCherry+) neutrophils was higher (p<0.01) in comparison to bystanders (mCherry-)
(Fig. 2B) whereas in control cultures (not exposed to neutrophils) the percentage of CD18+

cells was very low (Fig. 2B). In non-exposed neutrophils, the percentage of CD62L+ cells was
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high (Fig. 2C) and differently from CD18, the percentage of CD62L+ cells was lower (p<0.05)
among infected (mCherry+) neutrophils compared to bystanders (mCherry-) (Fig. 2C). Incuba-
tion of inflammatory neutrophils with Zymozan did not significantly alter the percentage of
CD18+ cells (S3 Fig).

To expand on these findings, we performed experiments with bone marrow neutrophils,
which, comparatively have an enhanced capacity to become primed [29]. Bone-marrow neu-
trophils were also selected by size, granularity and Ly6G expression (Fig. 3A) and following co-
culture with L. braziliensis, the percentage of mCherry+ neutrophils was approximately 48%
(Fig. 3A) whereas 43% of cells were mCherry-. As with inflammatory neutrophils (Fig. 2), the
percentage of CD18+ cells was also very low in control non-exposed cultures and significantly
higher (p<0.05) among infected (mCherry+) neutrophils compared to bystanders (mCherry-)
(Fig. 3B). Also replicating our findings with inflammatory neutrophils (Fig. 2), the percentage
of CD62L+ cells was highest in non-exposed neutrophils (Fig. 3C), and significantly higher
(p<0.05) in bystanders (mCherry-) compared to infected (mCherry+) neutrophils. These data
indicate that neutrophils infected with L. braziliensis upregulate CD18 and downregulate
CD62L, regardless of their activation state.

Fig 1. Neutrophil recruitment following L. braziliensis inoculation. Individual BALB/c mice were injected
with L. braziliensis in the ear dermis. At different time points, cells were prepared and stained for Ly6G and
analyzed by flow cytometry. (A) Representative dot plots and gating strategy of neutrophils. (B) Bar graph
representation of the number of Ly6G+ cells in naïve mice (grey bars), in mice inoculated with saline (white
bars) or inoculated with L. braziliensis (black bars). Data shown (mean ± SEM) are from one experiment
representative of two. ***p<0.001, *p<0.05.

doi:10.1371/journal.pntd.0003601.g001
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Production of superoxide in neutrophils exposed to L. braziliensis
Neutrophils produce Reactive Oxygen Species (ROS), which form a central component of the
defense mechanism against foreign pathogens during infection. Inflammatory neutrophils co-
cultured with L. braziliensis displayed a significant increase in superoxide production (Fig. 4A),
which was attributed mostly to neutrophils harboring L. braziliensis-mCherry. With bone mar-
row neutrophils, superoxide production was also significantly higher in cells harboring
mCherry, however, ROS was also observed in bystanders (mCherry-) (Fig. 4B). Additionally,

Fig 2. Inflammatory neutrophils infected with L. braziliensis up-regulate CD18 and down-regulate CD62L. Inflammatory neutrophils were co-cultured
with mCherry L. braziliensis. (A) Representative dot plot and bar graph depicting the percentage of non-infected (mCherry-) and infected (mCherry+)
neutrophils. Representative histograms depicting CD18 (B) and CD62L (C) staining in control neutrophils cultured alone (gray), bystander neutrophils
(mCherry-) (blue, shown as% of Max) and infected neutrophils (mCherry+) (red, shown as% of Max). Bar graphs represent the percentages of control,
bystander and infected neutrophils expressing CD18 (B) and CD62L (C). Data shown (mean ± SEM) are pooled from two independent repeats. **p<0.01;
*p<0.05.

doi:10.1371/journal.pntd.0003601.g002

Neutrophil Response to L. braziliensis

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003601 March 10, 2015 7 / 19



superoxide production was similar upon co-culture of inflammatory neutrophils with either
stationary phase or metacyclic L. braziliensis (Fig. 5A and B). Co-culture with dead parasites
also did not change superoxide production in relation to neutrophils cultured alone (Fig. 5A
and B). Similar results were obtained regarding the percentage of CD18+ cells (Fig. 5C and D).

Fig 3. Bone-marrow neutrophils infected with L. braziliensis up-regulate CD18 and down-regulate CD62L. Bone-marrow neutrophils were co-cultured
with mCherry L. braziliensis. (A) Representative dot plot and bar graph representing the percentage of non-infected (mCherry-) and infected (mCherry+)
neutrophils. Representative histograms depicting CD18 (B) and CD62L (C) staining in control neutrophils cultured alone (gray), bystander neutrophils
(mCherry-) (blue, shown as% of Max) and infected neutrophils (mCherry+) (red, shown as% of Max). Bar graphs represent the percentages of control,
bystander and infected neutrophils expressing CD18 (B) and CD62L (C). Data shown (mean ± SEM) are pooled from two independent repeats. *p<0.05.

doi:10.1371/journal.pntd.0003601.g003
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Production of TNF-α and elastase by neutrophils exposed to L.
braziliensis
Neutrophils display granules enriched with antimicrobial molecules, including serine proteases
such as elastase [30]. Additionally, cytokines secreted by neutrophils, such as TNF-α, influence
macrophage and dendritic cell function, with important effects on the adaptive immune re-
sponse [28]. Herein, co-culture with L. braziliensis, triggered the release of elastase by both in-
flammatory (Fig. 6A) and bone marrow neutrophils (Fig. 6B). In the same manner, the
presence of TNF-α was significantly higher in cultures of inflammatory (Fig. 6C) and bone
marrow neutrophils (Fig. 6D) co-cultured with L. braziliensis. We did not detect IL-10 nor IL-
12p40 in the culture supernatants.

Neutrophil apoptosis following exposure to L. braziliensis
At infection sites, cells dying by apoptosis express phosphatidylserine (PS) and PS exposure
can be detected by Annexin V staining and quantified by flow cytometry. Inflammatory neu-
trophils were co-cultured for 18 h with L. braziliensis parasites and we investigated whether
this interaction resulted in apoptosis. In these co-cultures, there was a significant (p<0.05) in-
crease in the percentage of early apoptotic (Annexin V+/PI-) neutrophils (Fig. 7A and B), com-
pared to neutrophils cultured alone, whereas the percentage of late apoptotic/necrotic
(Annexin V+/PI+) neutrophils was similar (Fig. 7A and B). On the other hand, upon co-culture
with L.major, we detected a lower percentage of both early (Annexin V+/PI-) and late

Fig 4. Exposure to L. braziliensis induces ROS production. Neutrophils were co-cultured with mCherry L.
braziliensis, cells were stained with DHE and ROS production was analyzed by FACS. (A) Histograms
represent inflammatory neutrophils cultured alone (gray), bystander neutrophils (mCherry-) (blue) and
infected neutrophils (mCherry+) (red). (B) Histograms represent bone marrow neutrophils cultured alone
(gray), bystander neutrophils (mCherry-) (blue) and infected neutrophils (mCherry+). Bar graphs represent the
MFI of neutrophils cultured alone (PMN), bystanders (mCherry-) (blue) or L. braziliensis-infected (mCherry+)
(red). Data (mean ± SEM) are from one experiment representative of two. *p<0.05.

doi:10.1371/journal.pntd.0003601.g004
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apoptotic/necrotic (Annexin V+/PI+) neutrophils, compared to neutrophils cultured with
L. braziliensis (Fig. 7A and B). Analysis of neutrophils by transmission electron microscopy
confirmed apoptosis of L. braziliensis-infected neutrophils as seen by the presence of pyknosis,
chromatin condensation as well as remnants of internalized degenerated parasites (Fig. 8).
Moreover, internalized L. braziliensis parasites presented chromatin condensation, cytoplasmic
disorganization and vacuolization (Fig. 8). In co-cultures performed with L.major, however,
the neutrophils remained with a well preserved cytoplasm and viable parasite were observed in-
side the parasitophorous vacuole (Fig. 8), reinforcing the finding that L.major delays neutro-
phil apoptosis [31], differently from L. braziliensis.

Following the observation that L. braziliensis induced apoptosis in inflammatory neutro-
phils, we then examined whether this would also occur with bone marrow neutrophils. Indeed,
upon co-culture with L. braziliensis, a significant increase in the percentage of late apoptotic/
necrotic (Annexin V+/DAPI+) neutrophils (Fig. 9A and B) was observed. As a control of late
apoptosis/necrosis, neutrophil exposure to UV increased the percentage of cells positive for
Annexin V+/DAPI+. Importantly, late apoptosis/necrosis (AnnexinV+/DAPI+) was mostly

Fig 5. Exposure to dead L. braziliensis does not modulate CD18 expression or ROS production.
Inflammatory neutrophils were co-cultured with L. braziliensis and stained with anti-CD62L. (A,C)
Representative histograms depicting ROS production or CD18 staining in neutrophils cultured alone (gray),
neutrophils exposed to stationary L. braziliensis (black), metacyclic L. braziliensis (blue) or dead L. braziliensis
(green). Dotted orange line depicts unstained neutrophils. (B, D). Bar graphs represent the percentage of
neutrophils positive for CD18. Data shown (mean ± SEM) are from one experiment representative of two.
*p<0.05.

doi:10.1371/journal.pntd.0003601.g005
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detected in infected neutrophils (mCherry+) when compared with bystanders (mCherry-)
(Fig. 9C). At this time point, the percentage of mCherry+ neutrophils was ~28% (Fig. 9D).

Discussion
Numerous studies have demonstrated that neutrophils play a crucial role in immunity against
bacterial, fungal [1] and intracellular pathogens [32]. Earlier on, we demonstrated that L. brazi-
liensis inoculation into the ear dermis of BALB/c mice leads to the development of a cutaneous
ulcer, which heals spontaneously after ten weeks of infection [23]. Additionally, co-inoculation
of L. braziliensis and neutrophils decreased lesion size whereas depletion of neutrophils and
monocytes had an opposing effect, significantly increasing parasite load and lesion size [22].
Given that neutrophils are among the first cells to encounter the parasite at the site of the sand
fly bite [20] and, thus, will readily encounter Leishmania parasites, the purpose of the current
study was to investigate how neutrophils respond to L. braziliensis exposure, evaluating neutro-
phil activation and downstream events such as apoptosis.

Sand flies probe the human host to obtain blood and, in this process, lacerate capillaries
forming a blood pool into which Leishmania promastigotes are inoculated. Following this

Fig 6. Production of Elastase and TNF-a by L. braziliensis-exposed neutrophils. Inflammatory or bone
marrow neutrophils were co-cultured with L. braziliensis for 24h. Culture supernatants were assayed for the
presence of TNF-α (A,B) and for the presence of free elastase activity (C,D). Data shown (mean ± SEM) are
pooled from two independent repeats. **p<0.01, *p<0.05.

doi:10.1371/journal.pntd.0003601.g006

Neutrophil Response to L. braziliensis

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003601 March 10, 2015 11 / 19



event, there is rapid accumulation of neutrophils [20] and it has been shown that the co-inocu-
lated salivary molecules can modulate neutrophil function [33,34]. Herein, we confirmed neu-
trophil infiltration to the site of L. braziliensis inoculation by syringe and showed maximal
accumulation at 24h. Of interest, syringe inoculation of L. amazonensis, also induced maximal
neutrophil accumulation at 24 h [13], indicating a common kinetic for neutrophil recruitment
for these two NewWorld Leishmania species.

Following our observation that neutrophils are recruited in response to L. braziliensis inocu-
lation, we then performed a series of in vitro experiments to investigate how neutrophils re-
spond to this type of stimulation and, in addition, we compared the responses of inflammatory
and bone marrow neutrophils. Initially, we evaluated the expression of adhesion molecules. β2
integrins are leukocyte-specific integrins required for neutrophil adhesion and transmigration
across the activated endothelium [35] and CD18 is the common β2 integrin present in LFA1
(CD11aCD18), Mac-1/ CR3 (CD11bCD18) and p150/94/CR4 (CD11cCD18). In the presence
of L. braziliensis we detected an increase in the percentage of neutrophils (inflammatory and
bone marrow) expressing CD18 and this increase was associated with infected neutrophils
(mCherry+), indicating that L. braziliensis were readily internalized. Indeed, Mac-1/CR3
(CD11bCD18) plays a major role in the phagocytosis of complement-opsonized L.major pro-
mastigotes by both macrophages [36–38] and human neutrophils [39].

Fig 7. Exposure to L. braziliensis but not to L.major triggers neutrophils apoptosis. Inflammatory neutrophils were co-cultured with L. braziliensis. After
18h, neutrophils were labeled with Annexin V and PI and analyzed by FACS. (A) Representative zebra plots of Annexin V+/PI+ neutrophils (PMN) and of
neutrophils co-cultured with L. braziliensis (PMN+Lb) or with L.major (PMN+Lm). (B) Percentage of Annexin V+/PI- neutrophils alone (PMN) or neutrophils
cultured with parasites (PMN+Lb and PMN+Lm). Data shown (mean ± SEM) are pooled from two independent repeats. *p<0.05; **p<0.01.

doi:10.1371/journal.pntd.0003601.g007
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L-selectin (CD62L) participates in neutrophil tethering and rolling [40] but it is cleaved
from the leukocyte surface following cellular activation and exposure to inflammatory stimuli
[41,42]. Upon co-culture with L. braziliensis, we detected a lower percentage of inflammatory
CD62L+/mCherry+ neutrophils, compared to bystanders (mCherry-). Similar results were ob-
tained with bone marrow neutrophils, indicating that L. braziliensis phagocytosis induced
more CD62L shedding, marking neutrophil activation [43]. With regards to bystanders, the
percentage of inflammatory CD62L+/mCherry- neutrophils was lower compared to bone mar-
row (CD62L+/mCherry-) neutrophils, possibly reflecting their already primed nature and their
extravasation to the peritoneum following thyoglycollate stimulation. Such difference may also
be related to the priming potential of bone marrow neutrophils vs. inflammatory, as shown by
fMLP stimulation and induction of ROS [29]. Also, we cannot presently attribute CD62L shed-
ding to the infection rate since mCherry staining was similar for both bone marrow (~48%)
and inflammatory (~36%) neutrophils. Although we do not know which molecules may be ac-
tivating bystander neutrophils, it has been shown that L. amazonensis LPG activates human
neutrophils in levels similar to those observed with promastigotes [44].

In the presence of L. braziliensis, both inflammatory and bone marrow neutrophils dis-
played a significant increase in the production of superoxide, a hallmark of neutrophil activa-
tion, and ROS detection was significantly higher in infected (mCherry+) neutrophils. Similar
results were obtained in experiments with other Leishmania spp. [14,44–46]. Neutrophils ex-
posed to ROS also up-regulate the production of TNF-α and MIP-2 [47,48] and TNF-α primes
murine neutrophils to become activated, an effect that is concomitant with the mobilization of
CR3-containing granules to the plasma membrane [49]. Since TNF-α and CD18 expression
were increased upon neutrophil-co-culture with L. braziliensis, we can suggest that ROS pro-
duced by infected cells contributed with TNF-α secretion and CD18 (a Mac1/CR3 component)
expression. Furthermore, elastase production was also elevated in neutrophils cultured with
L. braziliensis and, importantly, elastase was associated with the killing of intracellular Leish-
mania in macrophages cultured with neutrophils [10], a process dependent on TLR4 signaling

Fig 8. Ultrastructural analysis of neutrophils infected with L. braziliensis or L.major. Inflammatory neutrophils were co-cultured with L. braziliensis (at a
5:1 parasite:cell ratio), for 18 h. Cells were fixed with 2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, and post-fixed in 1%OsO4 and 0.8% potassium
ferricyanide and 5 mM calcium chloride in the same buffer. Cells were dehydrated in a graded series of acetone and embedded in Poly/Bed 812
(Polysciences, Inc.) resin. Ultrathin sections were stained with uranyl acetante and lead citrate and examined on a Zeiss109 transmission electron
microscope operating at 80 KV. (A) Uninfected neutrophils exhibiting multilobular nucleus (N). (B) Neutrophil infected with L. braziliensis showing condensed
nucleus (N) and unpreserved intracellular parasite structures (P). Insert shows Leishmaniamicrotubule (arrow). (C) Neutrophil infected with L.major showing
preserved parasite structures (P) and nucleus (N). Insert shows Leishmaniamicrotubule (arrow).

doi:10.1371/journal.pntd.0003601.g008
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[50]. IL-10 production, on the other hand, was not modulated in our experiments, as seen in
previous studies [14,51].

Cell death and the subsequent clearance of apoptotic neutrophils is crucial for maintaining
homeostasis and, at the same time, necessary for resolution of inflammation. At inflammatory
sites, neutrophils can undergo spontaneous apoptosis [52] or apoptosis due to the recognition
of cell-death mediators such as TNF-α and FasL [53]. Co-culture with L. braziliensis induced
neutrophil apoptosis, findings that were confirmed by transmission electron microscopy analy-
sis. Indeed, infected neutrophils displayed condensed chromatin and degraded intracellular
parasites. Similar results were obtained with bone marrow neutrophils: Annexin+/DAPI+ stain-
ing was significantly higher in infected cells (mCherry+) compared to bystanders (mCherry-)
and the percentage of infected neutrophils (mCherry+) was lower compared to bystanders
(mCherry-). We can suggest that phagocytosis of L. braziliensis results in apoptosis and, in par-
allel, parasite destruction, hence the lower percentage of infected cells. In addition, ROS [54]
and TNF-α [55] also trigger neutrophil apoptosis, two mediators that were produced upon cul-
ture with L. braziliensis.

Neutrophil apoptosis was also observed upon culture of neutrophils with L. amazonensis
[14] but L.major, on the other hand, delays neutrophil apoptosis [31], enhancing cell lifespan
[56]. Parasites survive within infected neutrophils [39,57] and viable parasites have been recov-
ered by cell sorting [20]. Indeed, in our hands, the frequency of late apoptotic (Annexin+/PI+)

Fig 9. Apoptosis in neutrophils infected with L. braziliensis. Bone-marrow neutrophils were co-cultured with L. braziliensis. After 18h, neutrophils were
labeled with Annexin V and DAPI and analyzed by FACS. (A) Representative zebra plots of neutrophils (PMN), neutrophils cultured with L. braziliensis (PMN
+Lb) or neutrophils exposed to UV (UV). (B) Percentage of DAPI+/Annexin V+ neutrophils (PMN) or neutrophils cultivated with L. braziliensis (PMN+Lb). (C)
Representative zebra plots of bystander neutrophils (mCherry-) and of infected neutrophils (mCherry+) expressing DAPI and Annexin V. (D) Representative
dot plots of neutrophils infected with mCherry L. braziliensis after 18h, bar graph represents the percentage of non-infected (mCherry-) and infected
(mCherry+) neutrophils. Data (mean ± SEM) are from one experiment representative of three experiments. **p<0.01.

doi:10.1371/journal.pntd.0003601.g009
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staining was low in neutrophils cultured with L.major in contrast to neutrophils cultured
alone and to neutrophils cultured with L. braziliensis, both of which were positive for Annexin/
PI (Fig. 6). Electron microscopy confirmed the presence remnants of L. braziliensis parasites
while in contrast, intact parasites were found within L.major infected neutrophils (Fig. 7).
Clearance of apoptotic neutrophils by macrophages promotes parasite replication in vitro [58],
indicating that L.majormay exploit neutrophil apoptosis as means to ascertain infection.
Moreover, the phagocytosis of apoptotic neutrophils inhibits the response to L.major [59].
Therefore, for L.major, current literature indicates that neutrophils are rapidly and massively
recruited to the site of Leishmania inoculation, where they phagocytose the parasites. Depend-
ing on the source of neutrophils, species and strains of Leishmania, internalized parasites can
survive and neutrophils would thus provide a transient safe shelter prior to parasite entry into
macrophages, the definitive host cell (rev. in [17,60]). In experiments with L. braziliensis, how-
ever, co-culture of infected macrophages with UV-treated neutrophils did not modulate the
parasite load [22], also suggesting that differences within Leishmania species may induce dis-
tinct outcomes regarding neutrophil apoptosis and downstream effects.

We showed that neutrophils are recruited to the site of L. brazilensis inoculation and upon
contact with promastigotes, in vitro, neutrophils become activated producing superoxide,
TNF-α and elastase. Later, we observed neutrophil apoptosis, particularly of infected cells.
However, once amastigotes become predominant, a different scenario may ensue since this
stage is more resistant to these same effector mechanisms, as recently described for L. amazo-
nensis [14], impacting on disease development. Indeed, BALB/c mice infected with L. brazilien-
sis develop cutaneous ulcers, despite the presence of neutrophils [23]. However, in this
experimental model lesions heal spontaneously and parasites are eliminated from the infection
site. Neutrophils could also play a role at the chronic stages of infection, through cooperation
with L. braziliensis-infected macrophages, as previously shown in vitro [22]. Neutrophils have
been shown to cross-talk with dendritic cells [27,61,62] and such cross talk may also be related
to the development of the adaptive immune response to L. braziliensis. However this remains
to be investigated. Thus, the strong impact of L. braziliensis on neutrophils phenotype and
function reported here in vitro are likely to occur at the onset of infection with the parasite,
suggesting that these cells are playing a crucial role following infection.

Supporting Information
S1 Fig. Characterization of inflammatory neutrophils by flow cytometry. Inflammatory
neutrophils were purified using MACS and the 1A8 (Ly6G) mAb. In this sample cells were first
gated for size and granularity (SSC x FSC). The gated cells were further analyzed for expression
of CD11b/1A8 or 1A8/Ly6C.
(TIF)

S2 Fig. Characterization of bone marrow neutrophils by flow cytometry. Bone marrow neu-
trophils were purified using MACS and the 1A8 (Ly6G) mAb. In this sample cells were first
gated for size and granularity (SSC x FSC). The gated cells were further analyzed for expression
of CD11b/1A8 or Gr-1/Ly6C.
(TIF)

S3 Fig. Modulation in CD18 expression is associated with L. braziliensis exposure. Inflam-
matory neutrophils were co-cultured with L. braziliensis or with Zymozan (SIGMA (100ug/
ml). (A) Representative dot plots showing the gating strategy used to identify neutrophils
(Ly6G) following exposure to L. braziliensis. Cells were stained with anti-CD18 (B) and were
analyzed by FACS. Orange histograms: isotype control. Gray histogram: neutrophils cultured
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in medium only. Red histograms: neutrophils cultured with Zymozan. Black histograms, neu-
trophils exposed to L. braziliensis. Bar graphs represent the percentage of neutrophils positive
for CD18. Data shown (mean ± SEM) are pooled from two independent repeats. �p<0.05 (One
Way ANOVA).
(TIF)
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