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Abstract

Background: The structure and organisation of ecological interactions within an ecosystem is modified by the
evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped
this architecture is vital for understanding system responses to change at scales from the microbial upwards.
However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited
by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus
persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of
the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole?

Results: Here we answer this question by incorporating principles from connectionist learning, a previously
unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks.
Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a
simple type of connectionist learning, ‘unsupervised learning’, well-known in neural-network models of cognitive
systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise
in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned
by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives
the community to form a distributed ecological memory of multiple past states, causing the community to: a)
converge to these states from any random initial composition; b) accurately restore historical compositions from small
fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial
compositions according to their similarity to learned compositions. We examine how the formation of alternative
stable states alters the community’s response to changing environmental forcing, and we identify conditions under
which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts.

Conclusions: This work highlights the potential of connectionist theory to expand our understanding of evo-eco
dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian
unit, ecological communities can behave like connectionist learning systems, creating internal conditions that
habituate to past environmental conditions and actively recalling those conditions.
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Background
With ever-increasing anthropogenic pressure on natural
systems, it is vital to understand how the ecosystems we
depend upon have been conditioned by evolutionary pro-
cesses in historical environments which may have been
very different from those they experience in the present
day, and how any such conditioning may shape these sys-
tems’ responses to new pressures. However, as ecosystems
are not typically units of selection, we currently lack a
framework linking adaptive pressures on individuals and
populations to the dynamical properties of the systems
they inhabit. In this article we investigate how systems
above the Darwinian levels of selection may evolve collec-
tive behaviours, and observe a deep homology with emer-
gent properties well understood in connectionist models
of learning. We use this homology to develop theoreti-
cal analysis of emergent properties of natural selection in
ecosystems, and explore the implications for community
dynamics through Lotka-Volterra simulation.

Connections and collective behaviours in ecosystems
The structure and organisation of ecological interactions
within biological communities causes them to exhibit
many complex behaviours that are not straight-forwardly
attributable to the summative behaviour of the individuals
they contain [1–5]. For example, the structure of the net-
work of interactions in an ecosystem [6, 7] affects many
of the system’s dynamical behaviours including succes-
sion dynamics and community assembly rules [8, 9], the
stability, resilience and adaptive capacity of a community
[10–14], the presence of alternative stable states [15–17],
and the system’s susceptibility to regime shifts [18].
From some points of view these system-level behaviours

exhibit the appearance of design and/or characteristics in
common with organismic functions such as development
and complex phenotypes [19–23]. However, an ecologi-
cal community is not, in most cases, an evolutionary unit
[4, 23, 24]; it is an assemblage of species each individu-
ally adapted to their biotic and abiotic conditions. Thus
the complexity that an ecosystem exhibits is not the prod-
uct of Darwinian adaptation at the community level [25].
Furthermore, at present we lack general organisational
principles that can help us understand and predict how
system-level organisation and function results from the
many individualistic adaptations on which they depend
[3, 19, 23, 26–30], in particular, the reciprocity between
the ecological dynamics on the network and the evolu-
tionary changes to the nodes, and hence, connections
of the network [30–37]. In short, we do not know how
the coevolution of the parts affects the organisation and
subsequent behaviour of the whole, i.e. the ecosystem’s
dynamical properties such as the location and number of
its dynamical attractors; the trajectories it takes towards
its these attractors (assembly rules); its stability during

assembly and/or succession; and its sensitivity to initial
conditions during assembly.
Characterising how evolution and coevolution of the

parts affects community-level properties is vital to under-
standing the responses of ecological communities to
changes in environment at all scales. This issue is partic-
ularly acute in microbial community research, including
medical applications in gut flora, where rapid evolution
[38] has the potential to alter the function of those com-
munities we depend upon most intimately, and where
there is significant interest in how parental effects create a
footprint of community composition that may be remem-
bered throughout life [39]. Coevolutionary processes in
gut microbiota have shaped multiple alternative stable
states (termed enterotypes) [40], but it remains unclear
how the historical conditioning of different communities’
networks of interactions evolve in response to environ-
mental changes in cases such as the use of antibiotics [41]
and societal changes in diet [42], or how these changes
affect the emergent properties of community networks
[43] given the alternate enterotypes that act as attrac-
tors for these systems. At the macroscopic scale, Case
et al. speculate that co-evolutionary processes maintain
the distinct bird assemblages on the islands of Bali and
Lombok, either side of Wallace’s line [44–46]. Although
birds are relatively unimpeded by the short stretch of sea
that has separated terrestrial species, each island main-
tains distinct avian communities, and the conjecture is
that long periods of coevolution within each commu-
nity has created ‘coevolved’ biogeographic provinces; each
network maintains a stable state resistant to invasion by
members of the other [44]. Yet, without a framework link-
ing microevolutionary changes in interactions between
species pairs to dynamical behaviours of whole commu-
nities, it remains unclear as to whether a network of
coevolved interactions could be the explanation for the
observed dynamical stability.
The need to characterise the evolutionary and his-

torical determinants of ecological processes is identi-
fied as an important frontier in ecological research [29].
Understanding the evolution and adaptability of ecologi-
cal interactions is necessary, for example, to characterise
the response of an ecosystem to climate change or other
perturbations [14, 15, 47, 48] and, more generally, to
understand how the number and location of dynami-
cal attractors (alternative stable states) are affected by
the organisation of ecological interactions acquired over
evolutionary time [17].
These issues connect deeply with the phenomenon of

ecological memory [29, 49–51] defined by Thompson
et al. [29] as “the result of past environmental condi-
tions and subsequent selection on populations [which] is
encoded in the current structure of biological commu-
nities and reflected in the genetic structure of species”.
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As an illustrative example, consider the phenomenon of
character displacement, [52, 53] in which niche diver-
gence between pairs of isomorphic competitors leads
to (genetic) trait divergence and increased likelihood of
future coexistance; subsequent communities’ distribu-
tions are shaped by the “memory” of past competition.
Within ecosystems these genetic memories, distributed
amongst multiple populations, influence assembly pro-
cesses, stability, and resilience of the developing and
mature ecosystem [29]. However, there remainmany open
questions about exactly how the microevolutionary mod-
ification of interspecific relationships by natural selection
shapes any macroevolutionary memory at the community
level [29, 54]. For example:

1. How do changes to interactions evolved in past
environmental conditions alter the response of the
community to future changes or perturbations in
environmental conditions?

2. Is ecological memory merely a passive memory (like
an imprint in clay) where the persistent effects of the
most recent ecological states over-write or blend
with those of older states, or can an ecological
memory retain information about multiple distinct
past states without just averaging them?

3. Can the assembly rules and succession dynamics of a
community be systematically organised by selection
in past environmental states?

4. How does the formation of an ecological memory
affect the possibility of alternative ecological stable
states, and regime shifts under subsequent
environmental forcing?

The lack of a theoretical framework that links indi-
vidual adaptations to collective behaviours leaves such
questions unanswered. Our aim in this paper is thus to
introduce such a framework. We do this by converting
and exploiting theory that is already well-developed in
another domain, namely, connectionist models of mem-
ory and learning. Below, we discuss the characteristics
of connectionist models and their relationship to eco-evo
dynamics. We then show a formal equivalence between
these systems. We conclude that community-level organ-
isation does not require community-level selection. The
organisation of a community can be conditioned by past
experience (collectively habituated to past environmental
conditions) in the same sense, and with the same conse-
quences for collective behaviours at the community level,
as connectionist models of memory and learning. In order
to demonstrate how making this general link between
these disciplines leads to new insights about specific eco-
logical behaviours, we then simulate mathematical models
derived from this framework to address the above open
questions about ecological memory.

Connectionist models of memory and learning
Connectionism is an approach to modelling cognition,
in particular using neural networks, that explains how
complex system-level behaviours can arise via the appro-
priate organisation of many simple components. The first
important contribution of these models is to show that
although each unit in a network might be very simple (e.g.
the activation level of a neuron is simply a non-linear sum
of the weighted connections from other neurons [55–57]),
if appropriately organised/connected, a network of such
units can provide many remarkable collective behaviours,
including: a) forming a distributed memory for one or
more configurations; b) pattern recognition from par-
tial stimulus; c) the removal of noise from corrupted
compositions; and d) classification of ambiguous inputs
[55–58]. It has been noted in many different domains that
the collective behaviours that can be exhibited by neu-
ral networks are not exclusive to neural models and can
be exhibited by other types of dynamical systems (e.g.
gene regulation networks, immune systems, multi-agent
systems, economic systems and social networks) [59–65].
This includes ecological networks (where the growth rate
of a species is modelled as a non-linear sum of the
weighted fitness-interactions with other species) [64–66].
A deficit in the analogy between neural networks and

ecosystems is that whereas neural networks acquire the
organisation necessary for their collective behaviours
through learning mechanisms designed for that purpose,
ecological connections are modified by individual-level
natural selection with no such system-level purposes
in mind. Although there are similarities with activation
dynamics in neural networks, there has not been any rea-
son to expect that both systems may be organised in a
similar manner. However, connectionist models also show
that network organisations sufficient for many collective
behaviours can be generated via learning mechanisms
that modify the strength of connections according to only
very simple and local reinforcement principles – even by
mechanisms that do not require any system-level reward
or performance-based feedback. The full significance of
this for the evolution of ecological networks has not been
previously appreciated [67].
Learning mechanisms in neural network models have

two basic types [67]. Supervised learning utilises an exter-
nal reward signal, or error function, to direct incremental
changes to connections. We have recently demonstrated a
formal equivalence between supervised learning and the
evolution of connections in a network that is selected (at
the system level) to produce a particular target pheno-
type or phenotypes [60, 67]. However, in the absence of
a group selection mechanism there is no “target” phe-
notype directing selection at lower levels within ecolog-
ical communities; supervised learning does not occur at
this scale.
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The other type of learning in these systems is unsuper-
vised learning (Fig. 1), which operates without a reward
signal. This may seem counter-intuitive but, when learn-
ing correlations or associations, learning what things
“often go together” has many useful properties that can
be attained without a supervisory signal to indicate what
things “should go together” [56, 57], (Watson, R.A.,
Szathmáry, E.: “Learning in evolution”, opinion article.
Trends in Ecology & Evolution, forthcoming), [68]. Thus,
whereas supervised correlation learning reinforces corre-
lations that are good according to some external reward
signal, unsupervised correlation learning changes connec-
tions simply to reinforce correlations that are frequent.
Hebbian learning [69] is the simplest unsupervised cor-
relation learning mechanism and is well-understood in
neural network models of memory and knowledge repre-
sentation [56, 57, 68]. Under Hebbian learning, the change
in strength of a synaptic connection, �ωij, is propor-
tional to the co-activation of the neurons it connects:
i.e. �ωij = rxixj, where r > 0 is a learning rate, and
xk is the activation level of node k. This type of learn-
ing instantiates a very simple positive feedback principle
between behaviour and connections, often paraphrased
as “neurons that fire together wire together”. The effect
of such changes is that correlation becomes causation,
i.e. variables that happen to be both active at the same
time (e.g., because they are stimulated by the same exter-
nal conditions) become causally related by connections
internal to the system, and thus their behaviour becomes
more correlated in future. In this manner the network
habituates to the perturbations it experiences by internal-
ising information about the pattern of perturbation it has
experienced into the organisation of its connections.
This simple principle is capable of producing many

remarkable collective behaviours elucidated over more
than 50 years of neural network research [56, 57, 68].
Famously, this includes the ability to develop of a dis-
tributed associative memory which can store and recall
multiple patterns of activation in the organisation of
synaptic connections [57], facilitating the use of these net-
works use in pattern recognition, noise reduction and
classification (Fig. 1). A main contribution of this paper
is to show that in ecological communities, given heritable
variation in ecological relationships and certain condi-
tions on ecological constraints, these positive feedback
principles obtain from the action of individual natural
selection [70]. Table 1 sets out the full analogy we make
between connectionist learning in neural networks and
eco-evo dynamics in ecosystems, starting with the previ-
ously recognised dynamical equivalence (Table 1a-f ).
The biological evidence for positive feedback between

ecological and evolutionary dynamics is entirely intuitive
and already recognised in many areas where popula-
tions shape their future selective pressures (e.g. niche

construction [71] and refs. within) but the full implica-
tions of this feedback have not been realised [72]. For
example, this feedback is part of the backstory involved
in “invasional meltdown” [73–75] where species that have
been in prolonged contact with one another in one envi-
ronment facilitate one-another’s invasion into a new envi-
ronment because they “have had a long evolutionary time
to develop a cosy relationship with each other” [73].
Notice the simple positive feedback involved; species that
occur in high density at the same time and under the same
environmental conditions coevolve to become less com-
petitive with each other over time. In turn, this reduction
in niche overlap makes it more likely that they will coex-
ist in high-density together in future. Our first key result
is to formalise this principle with population genetics and
show its equivalence with unsupervised correlation learn-
ing (Table 1g). Then, to demonstrate how this opens-up a
transfer of concepts and results between these domains,
we use numerical simulation to show conditions where an
ecosystem can acquire, hold and recall distributed infor-
mation about past environmental conditions – i.e. form
a distributed ecological memory. This demonstrates sev-
eral phenomena that are well-understood in connectionist
models of memory and learning (Table 1h-m).
The formal link between the disciplines does not

depend on the specific scenarios relevant to investigat-
ing ecological memory nor on the simplifications that are
necessary for the simulation models; for this reason we
divide our work into two parts: I) an analytic model and
results concerning the general equivalence, II) simulation
methods and results concerning ecological memory.

Methods
Methods part I: a model
Ecological dynamics
We model an ecosystem state as a vector of population
densities over all N species, X = {x1, x2, . . . xN }, (xi ≥ 0),
and an interaction network, or “community matrix” [6],
�, where each element, ωij, represents the fitness effect of
species j on species i relative to i on itself (ωii = −1). We
assume ∀i, j : ωij ≤ 0, e.g. competitive (non-trophic) inter-
actions such as via competition for resources. A Lotka-
Volterra competition equation (Eq. 1) defines the rate of
change of density of a species as a function of its intrin-
sic growth rate and a weighted sum of interactions with all
other species [66]:

dxi
dt

= mixi
kie

+
⎛
⎝kie +

N∑
j=1

ωijxj

⎞
⎠ (1)

where xi is the density of species i, mi is the intrin-
sic net growth rate of species i, kie is the carrying
capacity of species i in environment e (i.e. its density
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Fig. 1 Training a Hopfield network using Hebb’s rule. Network training: Unsupervised learning processes as used to train a Hopfield network to store
two configurations, patterns A and B. Each unit in the Hopfield network corresponds to a pixel in the image display. Six units are highlighted to
illustrate the changes to connections during training in pattern A. Hebbs rule alters connections between units such that units of the same sign (1:1
or -1:-1) become more correlated (blue lines) and units of opposite signs (1:-1 or -1:1) become more anti-correlated (red lines). Network behaviour:
Training the network on both patterns results in a network with attractors (a.k.a. memories) for these patterns and system dynamics result in all
initial conditions converging to one of the trained patterns (a). This behaviour enables these systems to be used for a variety of functions, including:
(b) recovery of complete composition from partial input; (c) noise reduction; and (d) classification (the input image is a closer match for the plane
configuration than the bird configuration)

before interspecific competition), and N is the number
of species in the network. The dynamical equivalence
between models of this sort, where populations expe-
rience exponential growth asymptotically approaching a
threshold, and those models used in neural networks of
excitation/inhibition between neurons is well recognised
([64] and refs. within). We now turn our attention to the
selective pressures on interspecific interactions, and make

new comparisons with unsupervised learning in neural
networks.

Evolution of interactions under individual selection
Each interaction coefficient summarises how a variety
of structural, physiological and behavioural traits affect
the degree to which one species impacts the popula-
tion growth of another. Although subject to bio-physical
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Table 1 Mechanistic equivalence between evo-eco dynamics and learning neural networks, and a map for the comparisons and
analogies made in this paper

Unsupervised correlation learning Coevolution

Activation dynamics Population dynamics

a) Neural activation level Species density, xi

b) Neural activation pattern Ecological state, X = {xi , x2, ...xN}
c) Synaptic connection strength, ωij Inter-species fitness interaction, ωij

d) Neural network
(weight matrix, W).

Ecological network
(community matrix, �).

e) Neural activation dynamics: a non-linear weighted sum of inputs
from other neurons (and external inputs).

Ecological population dynamics (Eq. 1): species growth is a non-
linear function of the sum of weighted fitness interactions from
other species (and environmental changes to carrying capacities).

f) External input patterns Environmental forcing
(aka. ‘training set’). (in multiple environmental conditions)

Correlation learning (unsupervised) Evolution of interactions (individual selection only)

g) Positive feedback between activation strengths and connection
strengths – aka. neurons that fire together wire together.
Unsupervised correlation learning mechanism, Hebb’s rule:
�ωij = rxixj , where r > 0 is a learning rate.

Positive feedback between ecological densities and connections
– or species that occur together wire together. Direct effects of
individual natural selection on interactions: vij = rxixj , where r =
mi
kie
gμ describes the available mutation (Eq. 3).

Collective behaviours in neural networks
(arising from e.g., Hebbian learning, Fig. 1)

Collective behaviours in ecosystems
(arising from individual selection acting upon interspecific
correlations)

h) Memory formation (Fig. 1, top panel) Hebb’s rule organises
synaptic connections to reinforce the state of the system,
decreasing sensitivity to changes in input.

Ecological memory formation (Fig. 3): natural selection organises
ecological relationships in a manner that reinforces the current
ecological state, decreasing sensitivity to changes in environmen-
tal conditions. (Attractors due to environmental variables become
attractors of community dynamics [17].)

i) Distributed associative memory facilitates amemory of multiple
patterns (Fig. 1a): the capacity to store multiple patterns of
activation in the organisation of synaptic connections and recall
patterns from any initial conditions via activation dynamics.

Formation of alternative stable states (Fig. 5a): the creation of a
distributed ecological memory in the network of species interac-
tions results in a systemwith attractors that mimic past ecological
states.

j) Pattern reconstruction (Fig. 1b): the recall of a complete pattern
from a partial stimulus.

Ecological assembly dynamics (Fig. 5b): reconstruction of a
particular community composition, from a subset of that
community.

k) Error correction (Fig. 1c): the ability to remove noise from a
pattern, repair imperfections and restore a complete pattern.

Ecological resilience (Fig. 5c): the ability to recover from perturba-
tions in species densities and restore the complete community.

l) Recognition or classification of an input or stimulus (Fig. 1d):
return the nearest attractor from ambiguous initial conditions.

Ecological sensitivity to initial conditions (Fig. 5d): the switch-like
change in response to small variation in initial species densities.

m) Holding state in dynamics: Hopfield networks and other
recurrent networks have an internal state that allows them to
display temporal dynamics (independent of input).

Ecosystems hold state in population dynamics (Fig. 6): in systems
with multiple attractors this results in a communities capable of
hysteresis with tipping points between states.

a-f) The basic components of the analogy made in the introduction to this paper. g) The main contribution of this paper (discussed in part I) – the equivalence of individual
natural selection acting on inter-species interactions with a simple associative learning rule such as Hebbian learning. Thus ecological networks evolve like neural networks
learn (Fig. 4). h-m) From this the phenomenology shown in our experiments follows (simulation results, Figs. 3 and 5)

constraints, e.g., stoichiometric constraints on resources,
these interactions can often be modified by the evolved
characteristics of the constituent species, e.g. traits that
alter the overlap of habitat preference or resource utilisa-
tion profiles [76] or the time, effort or energy expended on
a particular ecological resource or relationship.
We assume that only individual-level selection acts on

these interactions. We do not model selection on whole
ecosystems (e.g., via a population of ecosystems), nor on
species. Thus only changes to traits that directly affect
the growth rate of an individual compared to the rest

of the individuals in the species can be selected. Indi-
vidual selection acts to decrease the competitive effects
from others by changing ωij; but note that an individ-
ual has no intrinsic interest in altering the growth rate of
others by changing ωji. Changes that decrease the den-
sity of a competitor, for example, cannot be selected for
under individual selection as (in the absence of group
selection) such changes benefit all individuals in a species
[77]. Therefore any changes to a species growth rate that
occur as a side-effect of altering the density of some
other species (e.g., via changes to ωji or via ecological
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trade-offs below) are not affected by individual selection
(Appendix A).

Analysis of individual-level natural selection acting on
ecological interactions
We analyse the rate of accumulation of favourable muta-
tions, v, in each interaction coefficient, ωij. In order to
study the dynamical interaction between evolutionary and
ecological dynamics, we are particularly interested in how
the evolution of ωij is sensitive to the current species den-
sities. The qualitative picture is as follows: Occasionally,
mutants arise in species i that are identical to i except for
the modification of an interaction coefficient with another
species j′ in the ecosystem. The origin and establishment
of such a mutant can be modelled by applying popula-
tion genetics theory [78, 79] to the particular case. From
the ecological dynamics it follows that the selective coef-
ficient, s, conferred by the change, g, in the interaction
coefficientωij′ , is the change in the invasion rate per capita
of a mutant type of species i relative to the growth rate per
capita of species i without the mutation:

s = mi
kie

⎛
⎝kie +

N∑
j=1

ωijxj + gxj′

⎞
⎠

− mi
kie

⎛
⎝kie +

N∑
j=1

ωijxj

⎞
⎠ = mi

kie
gxj′

(2)

(Simplified as s = mi
kie gxj henceforth). Since m, k and x

are positive, a favourable mutation requires only g > 0.
Qualitatively, this means that a mutation to an individ-
ual of one species, e.g. a change in its habitat or resource
usage, is selected for if the mutation reduces the nega-
tive influence of another species on its growth rate. We
assume that in all species such mutations occur at rate μ

per individual per generation. In general, the rate of accu-
mulation of such mutations is equal to the product of the
number of individuals, xi, the beneficial mutation rate, μ,
and the average probability that a single newmutation will
ultimately fix, P̄, such that: v = xiμP̄ [79]. In large sex-
ual populations with linked loci, P̄ will depend on v, and
in different ways depending on the type of recombination,
recombination rate, population size, the mutation rate
and magnitude of mutations [78, 79]. For unlinked loci,
in small populations, or under strong selection and weak
mutation wheremutations occur serially, P̄ is proportional
to the selection coefficient, s [79]. Since the effects we
want to investigate do not depend on the effects of sexual
recombination it is sufficient for our purposes to model
the rate of adaptation in this simple manner. In this case,
the rate of adaptation, vij, in an interaction coefficient, ωij,
is given by:

vij = xiμs = mi
kie

gμxixj (3)

In more complex cases, where there is interference
between alleles at different loci, vij may not be linearly
proportional to xixj as it is in Eq. 3, but in all cases, the
rate of evolutionary change in an interaction coefficient
increases with the product of xi and xj since mutations
must be both created and selected in order for an interac-
tion coefficient to evolve. This is robust to the choice of
underlying model (Appendix B). This is entirely intuitive:
a) if suitable heritable variation in relationships is avail-
able, natural selection always acts to reduce the negative
effects of others, and b) the rate of adaptation of the inter-
action coefficient between two species, e.g. by character
displacement, is driven by their co-occurrence [54].
This is our first key result, describing how selection acts

on inter-species relationships as a function of the current
ecological state (Table 1g). Equation 3 tells us that the
rate of adaptation on inter-species relationships is propor-
tional to the co-occurrence of the species involved: Hence,
species that occur together (arise in high density at the
same time and under the same conditions), “wire” together
(and there will be selection for changes to interactions that
makes those species more likely to co-occur in future) -
as per the principle of unsupervised correlation learning.
(Correlation learning can be produced either by a reduc-
tion in negative interactions, as here, or by an increase
in positive interactions, with the same effect on system
dynamics, i.e. either will increase the future co-occurrence
of the species that have co-occurred in the past.) We now
investigate the consequences of this finding for collective
behaviours in an ecological community, using ecological
memory as a case study.

Methods part II: simulation
In general, Eq. 1 may exhibit unstable or even chaotic
behaviour. In the following investigations we restrict our
simulations to interactions that are symmetric (∀i, j : ωij =
ωji) as per competition for shared resources or for com-
petition coefficients estimated from utilisation functions
[80], in which case the dynamics have only fixed point
equilibria [81]. During simulation we allow the ecological
dynamics to equilibrate at each time step (over τ iterations
of Eq. 1). Then all interaction coefficients are updated
according to the direct effect of natural selection in pro-
portion to the rate of adaptation (Eq. 3). Then ecological
constraints are applied to these interactions as follows,
and the process is repeated.

Ecological constraints/evolutionary trade-offs on changes
to ecological interactions
In ecosystems where niche space is saturated, the capac-
ity of natural selection to alter interactions is subject to
inevitable ecological constraints and evolutionary trade-
offs that prevent selection from eliminating all compe-
tition. Individuals with traits that cause them to avoid
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competition with one species may be forced to com-
pete more with others. Thus the interaction between
two species is more generally governed by a) the evolv-
able characteristics of the species as described by Eq. 3,
and b) evolutionary trade-offs or ecological constraints
applied by the physical properties of the environment (e.g.,
energy spent on exploiting one resource cannot also be
spent exploiting another). Here these trade-offs are repre-
sented by normalisation conditions that conserve the sum
of interactions to and, by symmetry, from each species.
Specifically, for all species i and j (j �= i),

∑N
j=1 ωij(t) = Qi

and
∑N

j=1 ωji(t) = Qj, where Qi = Qj < 0 is a constant
(the sum of interaction terms in row/column i at time
t = 0) (see Appendix C). Such normalisation represents
ecological niches that resist change in width more than
change in location, e.g. individuals can more easily change
which resources they depend on than how dependent they
are overall [82].
Although natural selection always acts to reduce com-

petitive impacts from others, the fact that the rate of adap-
tation is greater for some competitive interactions than
others (Eq. 3), together with these normalising evolution-
ary trade-offs, will mean that the competition between
some species will increase.When the interaction,ωij, from
some species j to a given species i is, for example, made
less competitive (decreased in magnitude) by the evolu-
tion of heritable traits, all the other interactions involving
i, i.e., ωih (h �= j) and ωhi (h �= i), are made more competi-
tive by these normalising evolutionary trade-offs. This, in
turn, leaves all interactions not involving i relatively less
competitive. Self-interactions are not modified by either
evolutionary or normalisation mechanisms (ωii = −1).

Environmental forcing
To investigate ecological memory we are interested in
how the evolution of ecological interactions is influenced
by past ecological states. To model the evolution of an
ecosystem under varying environmental conditions that

force or drive the ecosystem to adopt different ecolog-
ical states, we define two environmental conditions, E1
and E2, that have differing effects on the carrying capac-
ities of the species (Appendix C). Relative to a default
environment E0, environment E1 increases the carrying
capacity of some species and decreases others, whilst in
E2, a different subset of species is increased/decreased. E1
and E2 may represent hot-dry and cold-wet climates, for
example; or high/low levels of some key broadly-utilised
resource such as phosphorous input rates for a lake habitat
[48]. Given that individuals from each species experi-
ence both conditions over evolutionary timescales, these
conditions could vary in space (e.g. geographic locali-
ties, [33]), rather than in time (e.g. seasonal change). To
make the effects of these two conditions on community
composition easily identifiable we utilise environmen-
tal forcing patterns corresponding to two arbitrary but
easily identifiable pictograms (Fig. 2). Here the hot and
cold pictograms describe two different configurations of
species densities representing, for example, hot dry savan-
nah and cold wet/temperate ecological states, respectively.
The environment is switched between E1 and E2 every T
evolutionary updates.
Model parameters of the simulations and methods

used for assessing ecological attractors are described in
Appendix C.

Results
We use the series of four open questions concerning eco-
logical memory listed above to exemplify some of the
implications of our general result.

i) Changes to interactions evolved in past ecological states
“canalise” the response of the community to subsequent
changes in environmental conditions or future
perturbations
Experiment 1 investigates how evolution in fixed environ-
mental conditions changes the ecological dynamics of the

Fig. 2 The carrying capacities of 400 species are affected differently by two different environmental conditions, E1 and E2. For our purposes, the
specific patterns of carrying capacities for the two conditions are arbitrary and can thus be depicted by 20 × 20 pixel ‘hot’ (a) and ‘cold’ (b)
pictograms where a black pixel at location x, y indicates an elevated carrying capacity, (k0 + α), and a white pixel a depressed carrying capacity,
(k0 − α), for the (20x + y + 1)th species in the ecosystem, Appendix C (the two-dimensions of the pictogram are abstract and do not imply any
spatial arrangement of the species)
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Fig. 3 Ecological dynamics before and after evolution in E1. a-b Before evolution of interactions, when forcing is applied, some species densities
increase, others decrease. a Four species responding differently to E1 and E2 (H=‘high’, L=‘low’). b Vectors of all species population densities are
displayed in a pixel array as per Fig. 2. Under a given pattern of environmental forcing (top row), an initially random pattern of species densities
(middle row), equilibrates at a pattern of species densities (after τ timesteps) (bottom row). Initial species densities do not alter the attractor attained
(5 independent examples). c After evolution of interactions in E1, equilibrium states are governed by that past pattern of environmental forcing and
not by the current environment. This ecological memory is a stable attractor, reached from any initial pattern of species densities, regardless of the
pattern of environmental forcing (some distortion is visible under E2 forcing)

community. Before the evolution of interactions, during
the ecological phase of simulation, the ecosystem arrives
at a stable equilibrium corresponding to the pattern pre-
scribed by the current environmental forcing (Fig. 3a and
b). Inter-species interactions are then evolved in envi-
ronment E1, i.e., without changes to the environmental
forcing during evolution. The process is repeated for 800
ecological and evolutionary cycles. We then assess how
evolved interactions have altered the sensitivity of the
ecosystem to subsequent environmental forcing. We find
that the ecosystem now arrives at a stable equilibrium
corresponding to the E1 pattern (the pattern it experi-
enced when interactions were evolving) even when the
environmental forcing is subsequently changed to E0 or E2

(Fig. 3c). Experiment 1 thus shows that the effect of evolv-
ing ecological interactions by individual natural selection
under fixed environmental conditions is to create a sta-
ble attractor for the specific ecological state experienced
in that past environment, reducing the responsiveness of
the ecosystem to respond to subsequent environmental
forcing, and increasing the adaptive capacity of the sys-
tem to withstand changes to environmental conditions
or perturbations to population densities. This behaviour
demonstrates the basics of an ecological memory, but
only a memory of one pattern. Even passive systems can
remember one pattern, e.g. an imprint in clay, but connec-
tionist models show that a dynamical network is capable
of storing and recalling multiple patterns.
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ii) Ecological memory can retain and recall information
about multiple distinct past states
In Experiment 2 varying environmental conditions are
applied to cause the ecosystem to adopt two different eco-
logical states (E1 and E2) repeatedly whilst inter-species
interactions are evolving. The effect of these evolved
changes plus normalising evolutionary trade-offs are illus-
trated in Fig. 4. We see that their evolution is identical
to Hebbian learning (again this is robust to the choice of
underlying model, Appendix D).
After evolution we find that, in the absence of fur-

ther environmental forcing, the ecological dynamics have
two stable attractors corresponding to E1 and E2, reached
from any initial species densities (Fig. 5a, Appendix C).
An ecological memory can thus retain information about
multiple distinct past states without just averaging them
or blending them (for example, the system does not have
an attractor for the union of both patterns).

iii) The assembly rules of a community can self-organise to
recreate past environmental states
After evolution in the varying environment (Experiment
2) either of the two patterns can be completely recalled
or assembled from an initial subset of species. That is,
when the initial species densities have just a few species
present in a density that matches one of the previous
patterns, the ecological dynamics act to recreate the full
pattern to which that ‘partial stimulus’ belonged (Fig. 5b).
This experiment also reveals more about how the sta-
bility and resilience of the community is affected by the
presence of multiple memories. When the initial condi-
tions are ‘corrupted’ versions of a previous pattern, the
complete pattern is restored, even when the corruption is
severe (Fig. 5c.) (thus maintaining/re-creating the current
ecological pattern), and when the initial species densities
partially resemble both patterns, the population dynamics
‘break symmetry’, causing all species to adopt the pattern
to which the initial conditions are closest (thus ‘choosing’
between two ecological states - not blending them).

iv) Ecological memory can create multiple ecological stable
states, andmay exhibit critical transitions between them
under subsequent environmental forcing
Figure 6 examines the response of the ecosystem to pat-
terns of environmental forcing that change linearly from
E1 to E2. Before the evolution of interactions, the response
of the ecosystem is proportional to the environmental
forcing applied (Fig. 6a). In contrast, after the evolution of
interactions (Experiment 2), the response of the system is
discrete or switch-like and exhibits significant hysteresis
(Fig. 6b). That is, as the pattern of environmental forcing
moves incrementally from E1 to E1, the response of the
system is to stay on E1 considerably past the mid-point
and then suddenly switch to E1. Conversely, when the

environmental forcing is reversed, the ecosystem retains
a configuration matching E1 considerably past the mid-
point before switching back to E1. The dynamics under-
lying this hysteresis loop are shown by the vector field of
species densities changes (Figs. 6c, 9a). This also shows
that the response of the population dynamics to pertur-
bations in species densities slows down near the critical
transition (consistent with early-warning signals for a tip-
ping point [83, 84]). Figure 6d. shows how the response of
the ecosystem to forcing changes over evolutionary time.
Around generation 470, the ecosystem exhibits non-linear
but non-catastrophic transitions [18]. The catastrophic
regime change is not a general instability property of the
evolved system – it only occurs when the environmental
forcing is similar to a past state that is remembered by
the ecosystem – unstructured forcing results in a linear
response (Appendix E).
These observations demonstrate a conversion of one

type of ecological alternate stable state into another.
Beisner et al. [17] describe the “ecosystem” perspective on
alternate stable states, which involves changes driven by
abiotic environmental conditions, and the “community”
perspective, which involves multiple attractor states that
can exist under fixed environmental conditions. Figure 6
shows a system that converts alternate “ecosystem states”
into alternate “community states”; thus converting pat-
terns from past environmental states into ecological mem-
ories.
Figure 10 shows a ‘bestiary’ of ecological attractors

changing over evolutionary time, showing some diversity
before settling down to the two-attractors shown in Figs. 5
and 6. During long-term simulation we find that, as the
forcing used to switch the system between attractors is
of fixed value, while the effect of the evolved changes
to interactions is ever-increasing, eventually the level of
forcing applied is insufficient to shift the system from its
current attractor.When this happens, the system becomes
‘stuck’ at one attractor, effecting a breakdown in observed
behaviour (Appendix F, Figs. 10 and 11).

Discussion
Our results formalise the intuitive idea that individ-
ual selection on ecological interactions produces positive
feedback on species co-occurrence. By recognising an
equivalence between this feedback and principles of
unsupervised correlation learning we are able to use
concepts from connectionist models to understand and
illustrate the consequences of these changes for system-
level behaviours. This makes several contributions to our
understanding of evo-eco interactions:
Evo-eco dynamics have predictable consequences for

collective behaviours. The worked example developed
in our simulations converts informal notions about the
evolutionary and historical determinants of ecological
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Fig. 4 Evolved interactions are identical to Hebbian interactions. Change in interactions between the first 16 species are shown. a-b Some of the
competitive interaction coefficients are decreased by the direct effects of selection in E1 and E2, respectively. c The combined effect of selection in
the two environments is that some interactions are decreased in both environments, some in only one environment and others in neither
environment. This depicts the relative rate of change due to direct selection effects. dWhen normalising ecological constraints are taken into
account, some interactions are decreased, some left unchanged, and others are increased. The resulting changes are identical to (e). e The result of
Hebb’s rule applied to the interactions between the first 16 species summed over E1 and E2 (r is scaled to give the same mean magnitude as (d))

processes into a model that makes specific predictions
about how past ecological conditions alter the selective
pressures on the component species and hence modifies
their future ecological behaviours. This presents a spe-
cific model for non-trivial ecological memory that can
be empirically tested (Appendix G). From this model
we better-understand the necessary conditions for a dis-
tributed ecological memory to form, such as the presence
of evolutionary trade-offs that cause species to become
more dependent on other species [85] rather than just
becoming less competitive with them (Appendix H).
Ecological communities can exhibit organised collective

behaviours. Under certain conditions, memories of past
ecological states can be stored in a distributed way in
the organisation of evolved ecological relationships. Such
memories are not simply the summative or average result
of multiple species each with individually alternate sta-
ble states. The connections that produce these behaviours
are organised not by evolutionary adaptation at the com-
munity level, but rather by evolutionary adaptation at the
individual level and ‘past experience’ of historic environ-
mental conditions. The organisation of the system is thus
conditioned by past environmental conditions, causing it
to collectively habituate to the patterns of perturbation it
has experienced [47].
Community assembly rules can be organised to re-

assemble specific past states. The assembly of complete
and specific past ecological states may be triggered by
partial environmental cues or a small number of founders
(as in invasional meltdown) (Fig. 5b) or, similarly, the sys-
tem can recover each specific state from corruptions of
that state (Fig. 5c). The learned assembly rules result in
a system that ‘classifies’ initial compositions according to
their similarity to past ecological states and will return
community composition to the state that most closely
resembles initial conditions (Fig. 5d). Ecological memo-
ries can thus direct subsequent community assembly to

recreate multiple past ecological states in a complex and
collective, but predictable, manner.
Stability and resilience tends to increase but instabil-

ity and regime shifts are also predictable. We find that
evolutionary pressures on ecological interactions tend to
increase ecosystem resilience (recovery after perturba-
tions to species densities) (Fig. 3) and adaptive capac-
ity (robustness to environmental forcing) (Figs. 3 and 6)
[10, 11, 13, 16, 47]. However, if the evolutionary history of
an ecosystem has included a multi-modal distribution of
environmental conditions, then this can result in alterna-
tive stable states (rather than universal stability) and may
exhibit critical transitions in changing from one state to
another [10]. This switch-like change in the community
(Fig. 6) is only exhibited when the forcing that is applied is
similar to past forcing – when arbitrary forcing is applied
the response may remain linear (Appendix E, Fig. 9). Crit-
ical transitions between alternate stable states may thus
reflect memories of specific past states and are not neces-
sarily arbitrary non-linear responses to the current forcing
pattern. Past experience of distinct environmental condi-
tions (e.g. temperatures) may thus make future responses
to related forcing (e.g. climate change) more likely to
exhibit discrete changes in ecological states, critical tran-
sitions or tipping points [15, 18]. This suggests that critical
transitions are not necessarily the arbitrary failure of an
ecological community but can be a matter of ‘recalling’
alternate states familiar from past conditions.
Future work should explore the ultimate equilibrium of

these evo-eco feedbacks (Appendix F, Figs. 10 and 11), and
investigate relaxation of some of the simplifying assump-
tions utilised in the memory behaviours illustrated here
(Appendix H). In particular, this paper has not inves-
tigated the effect of evo-eco feedbacks on trophic (e.g.
predator-prey) interactions or mutualisms, nor have we
investigated the ecological analogues of other behaviours
that can be produced by unsupervised learning in more
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Fig. 5 Ecological dynamics after evolution in varying environmental conditions. The evolved ecosystem exhibits two attractor states (rightmost
frames) that are reached from various initial species densities (leftmost frames). a Random initial species densities develop into one of two possible
attractors corresponding to the patterns of forcing experienced in the evolutionary past. b Initial configurations that resemble a small part of E1 (i
and ii) or E2 (iii and iv) develop into equilibria that fully recreate E1 and E2 respectively. c Initial configurations that are partially randomised versions
of E1 (i. 20%, ii. 80%) or E2 (iii. 80%, iv. 20%) develop into equilibria that ‘repair’ the corresponding state. e For initial conditions between E1 and E2,
(E1 : E2 ratio = i.80:20, ii.55:45, iii.45:55 iv.20:80) the dynamics ‘recognise’ the pattern that is resembled most closely

general neural networks (e.g. with multi-layered or asym-
metric connection structures). Some intriguing further
research directions are also suggested:
Do brains learn in the same way that ecosystems evolve?

We have shown that ecosystems evolve in the same
way that brains learn, but recognising evo-eco dynamics
and connectionist learning models as different instan-
tiations of the same underlying adaptive mechanisms
also sheds light in the other direction, i.e. on cognitive
processes [86, 87].

Can an ecosystem gain from experience? The idea
of sequential selection, where non-arbitrary organisation
arises in a system over evolutionary time without selec-
tion being applied at the system level [21, 88] suggests
that a biological community “may gain from experience”
by using “a system ‘memory’ carried in the gene pool”
[19]. Our work in other domains has shown that the more
specific sense of systemmemory demonstrated in the cur-
rent paper can improve the ability of an adaptive network
[32] to solve constraint problems or optimise resource
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Fig. 6 Response to environmental forcing before and after evolution in varying environmental conditions. a-b Population dynamics under
slowly-changing environmental forcing, changing first from E1 to E2 (middle row, left-to-right), and then back again from E2 to E1 (bottom row,
right-to-left). a Before evolution of interactions, changes in species densities are proportional to forcing. b After evolution (Experiment 2), species
densities show an abrupt switch between attractors with hysteresis. c Vector field for the population dynamics. The unstable equilibrium is revealed
at the boundary of the shaded region indicating where species densities move away from E1. Points near the critical transition (solid circle) have
slower population dynamics than points far from critical transition (dashed circle). d Evolution of two-attractor system. Initially, change in species
densities is proportional to environmental forcing. Around generation 470 non-linear but non-catastrophic transitions are observable. Finally, two
stable attractors with a catastrophic transition and hysteresis

allocation problems (without an external reward signal)
[58]. This suggests that adaptation at the ecosystem level
is possible in a formal sense without group selection;
not adaptation in a Darwinian sense, but rather in the
same sense and by the same mechanism as connectionist
models of organismic adaptation [60].
Similarly, demonstration that ecosystems exhibit col-

lective adaptive behaviours without being units of selec-
tion prompts inquiry as to whether these systems are
capable of more complex computational tasks. For exam-
ple, natural ecosystems are under very many constraints
that limit species abundance (e.g. phosphate availability).
Does selection on individuals improve a system’s abil-
ity to resolve these constraints? Hopfield networks are

known to be able to solve complex constraint satisfaction
problems [89]. Do these abilities translate to ecological
networks?

Conclusions
We have introduced the framework of connectionist
learning as a tool to expand our understanding of evo-
eco dynamics and collective ecological behaviours.Within
this framework we find that, despite not being an evolu-
tionary unit, an ecological community can behave like an
(unsupervised) learning system, creating internal organ-
isations that collectively habituate to past environmental
conditions, and actively recalling past responses to those
conditions.



Power et al. Biology Direct  (2015) 10:69 Page 14 of 24

Previously there have only been two choices in how
to interpret collective behaviours in ecosystems – i.e.
either they have no system-level organisation or some
mechanism of group selection must be involved. Our
findings demonstrate that there is a third possibility. Eco-
logical organisations that produce collective behaviours
can arise from the positive feedback of individual natu-
ral selection and ecological population dynamics without
invoking group selection. Specifically, given the presence
of evolutionary trade-offs, the effect of individual-level
natural selection acting on interspecific relationships is
dynamically equivalent to a mechanism of unsupervised
correlation learning and ecosystems can thereby exhibit
organised collective behaviours via the same principles
of connectionist learning that apply to neural networks.
What is it that ecosystems learn? We find that they have
the potential to learn where to go (i.e. evolved ecological
attractors recreate past ecological states, where an attrac-
tor may be the climax community resulting from a succes-
sional process [90]), how to get there (i.e. the successional
or assembly process) and how to stay there (i.e. the rela-
tionships that increase the resilience and stability of those
mature ecological states). Of course, interpreting evo-eco
dynamics as a connectionist learning system is not obliga-
tory. A description in terms of individual natural selection
and ecological population dynamics only is entirely com-
patible – indeed, we have provided this level of description
for all the results in this paper. But recognising the equiv-
alence with connectionist models enables us to convert
and exploit well-understood concepts and results from
this discipline to understand the organisation of ecolog-
ical communities in new ways, and thereby to recognise
the potential for predictable collective behaviours.

Reviewers’ comments
Reviewer report 1: Prof. Ricard V Solé Universitat Pompeu
Fabra, Barcelona
Reviewer 1: This is a rather intriguing paper, suggest-
ing a novel view of ecosystems as a special class of
neural-like networks. The underlying idea is that sev-
eral relevant features of ecological networks, as well as
the assembly dynamics of ecosystems and their resilience
against different classes of perturbations, can be under-
stood in terms of the attractor dynamics associated
to unsupervised neural networks. Such a connection
would make possible to rethink community dynamics and
the emergence of complex ecosystems as connectionist
objects.
Authors:We thank Prof. Sole for a clear summary of our

work.
Reviewer 1: The authors make a detailed comparison

between both classes of networks and the key dynamical
features shared by both. Some of the reported similarities
are rather generic. They include the presence of attractor

dynamics or the robustness against stochastic changes.
These are almost inevitable components of most com-
plex adaptive systems. Due to their dissipative behaviour,
attractors are expected to occur, and given the nature of
the interactions among neurons or species (described by
connectionist models sharing several structural proper-
ties) multiple attractors are inevitable.
Authors: Yes, the existence of multiple attractors is

indeed a generic property of dynamical systems. However,
it is not the attractors per se that we claim are interesting –
it is their location with respect to the history of the system.
The emergence of attractor states that resemble past eco-
logical states is not a property of complex adaptive systems
in general.
Reviewer 1: The list of mechanistic equivalences given

in table I is systematic, and several specific ingredients
are very valuable and non-trivial. This is the case, for
example, of the weights of trophic (or mutualistic) interac-
tions among species. Could these connections incorporate
some class of learning driven by evolutionary forces?
Authors: This point concerns the symmetry of connec-

tions – addressed separately below.
Reviewer 1: Some other items in the list could be col-

lapsed into a single one: points h-k all correspond to the
expected properties of associative memory.
Authors: We retain the separate table entries to empha-

sise how each of these associative memory properties is
equivalent to distinct properties within natural ecosystems,
and to indicate the separate experiments we have used to
demonstrate these phenomena.
Reviewer 1: There is one very important assumption

that might limit the potential generality of this work. At
some point the authors choose a symmetric connectivity
matrix. This is certainly appropriate to develop theoret-
ical models, as successfully shown by the classic work
of John Hopfield. It guarantees the existence of stable
solutions (fixed points) that are the minima of a multidi-
mensional landscape and this is the reason such choice of
Hebbian learning rules has been studied in detail. Under
these assumptions, a large class of nonlinear networks
(neural or not) can be fully understood in terms of a
potential-derived description of the dynamics. Powerful
results, such as the Cohen-Grossberg theorem, can be
easily applied to a broad range of multidimensional mod-
els including both neural end ecological ones. But we
should not forget that such a situation needs to be consid-
ered as an exception, not the rule. Symmetry allows us to
assume a landscape with multiple valleys, each one har-
bouring a stable attractor with a more or less large basin.
Unfortunately, as soon as we abandon this assumption,
we get into a much more complex universe plagued by
oscillatory and chaotic solutions, far away from the sim-
ple attractor metaphor grounded on stable fixed points.
Both neural and ecological dynamics are known to exhibit
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complex fluctuations, which makes proper analysis (and a
comparative one) difficult.
Authors: The second reviewer, Professor Knight, makes

similar comments regarding symmetry in his review below.
We respond to both reviewers’ comments on this topic
together (see below).
Reviewer 1: A robust response is parameter depen-

dent in both classes of systems, but some qualitative
traits make them considerably different and these differ-
ences should be taken into account. Ecological systems are
strongly driven by the fact that they are dissipative struc-
tures connected to energy flows. Here, energy and matter
dominate over information, whereas the later is a crucial
component. Perhaps for this reason the network motifs
(and other structural patterns) differ between neural nets
and food webs. Ecosystems also display some special
properties that are difficult to map into a neural coun-
terpart. Species can be located in different levels along
food chains, and some species are specially relevant when
dealing with network fragility against species removals.
Such keystone species, if removed or reduced in popu-
lation, can trigger deep rearrangements in the network,
affecting multiple levels or even causing extinction. These
are important features and connect our understanding of
ecosystems with their evolutionary and ecological dynam-
ics. Although both neural nets and ecological webs can
experience shifts and catastrophes, the implications and
the nature of these transitions are rather different.
Authors: We agree – these are good points. Certainly,

there will be cases where energy and matter flows dom-
inate the dynamics of ecological communities. This has
been the only way to think about ecological dynamics thus
far. We think it is significant, therefore, to demonstrate
that there are any conditions where ecological dynam-
ics become information-based, as shown. More work is
needed to investigate the exact nature of the conditions
that are important in distinguishing when energy andmat-
ter dominate information, and vice versa. We think that
the presence of normalising ecological constraints, having
the effect of forcing the evolution of fitness ‘dependencies’
between species, is one of the important features of such
conditions (Appendix H).
Reviewer 1: If we consider as valid the concept of Red

Queen dynamics, we should also expect the propagation
of changes resulting from pairwise coevolution through
the food web. It has been shown that indirect effects have
a relevance at least as large as direct links. The possibil-
ity that learning, in a Hebbian sense, might be difficult to
be sustained under this indirect, changing effects needs to
be seriously considered. Other components of ecological
organization, such as the stabilizing effects of space, might
also need to be taken into account.
Despite the previous criticisms, I still find the pro-

posed comparison very intriguing. I think it deserves

serious inspection and in the future it might play an
important role in understanding a very important class
of complex ecosystems: those associated to the micro-
biome. Here we have a system dominated by mutual-
istic interactions, which might be more suitable to be
modeled (on a first approximation, and with some cau-
tion) with nonlinear neural networks. In this context,
we do know that coevolutionary forces have shaped
the interactions between microbiome partners and the
host niche. Moreover, the microbiome might not escape
from a description grounded in a complex system
that adapts and learns. More importantly, engineered
approaches targeting special components of the micro-
biome could benefit from the picture provided in this
paper.
Authors:We thank Prof Sole for his generous review.

Reviewer report 2: Prof. Rob Knight, University of
Colorado, Boulder
Reviewer 2: This interesting manuscript uses the con-
nectionist paradigm from artificial intelligence to provide
a new theoretical framework describing how ecosys-
tems can maintain “memory”, or nonlinear interactions
between current inputs and past states. It addresses an
important need in the field for a better theoretical under-
standing of how complex microbial communities are
assembled and behave in the face of a changing environ-
ment, including ever-changing hosts.
Authors: We thank Prof Knight for this encouraging

introduction. We agree that while our results can be
applied in a range of scenarios (including plant and ani-
mal communities) they may be of particular interest in
microbial communities.
Reviewer 2: The model is based on a generalization

of the classic Lotka-Volterra model, updated to include
the possibility of allelic evolution. Although this model
is sufficiently general to support many kinds of dynamic
behaviour, the simulations are restricted to the specific
case where interactions are symmetric. Although this
makes the simulations easier to interpret, it is unlikely to
be a good model for real microbial communities where
many interactions are known to be asymmetric (e.g. pro-
duction of an antimicrobial by species A where species
B does not have a retaliation strategy against that partic-
ular species, or differential responses to depletion of the
same nutrient). However, it could reasonably be argued
that relaxing this constraint should be a topic of future
work.
Authors: Professor Sole has made similar comments on

symmetry in his review above. We aggregate our response
to both reviewers together (see below).
Reviewer 2: However, even in this simplified model,

the simulation results are interesting, for example pro-
viding instances of canalization into alternative states.



Power et al. Biology Direct  (2015) 10:69 Page 16 of 24

Additionally, the demonstration of “ecological memory”,
where the response to a current perturbation depends
on past states of the community, is convincing. It would
be useful to see a more detailed exploration of how
much evolution is required for this (i.e. can you still
get the same results from ecological changes even with-
out evolution, and, for example, would heritable gene
expression changes e.g. through epigenetic modifica-
tion have the same effect?). Again, these points could
be discussed briefly rather than necessarily adding a
lot of new experiments to the present manuscript. It
would also be useful to connect this work to the liter-
ature on microbial co-occurrence and what the impli-
cations are for our ability to detect meaningful ecolog-
ical interactions using currently used techniques, and
perhaps to point the way to what kinds of technical
developments would be needed in future to do this
right.
Authors: When changes to interaction coefficients are

provided by genetic evolution, the separation in timescales
with ecological population dynamics is clear (as is neces-
sary for the perspective taken in this paper - see Beisner
2003 for discussion on fast and slow variables). If changes
in interaction coefficients were provided by non-genetic
inheritance this could facilitate similar behaviours, in
principle, but only if they persisted on timescales that were
significantly longer than population dynamics. We appre-
ciate the suggestion to connect our work with that onmicro-
bial co-occurrence. Appendix G discusses some empirical
tests for distributed learning that could be applied in that
context.
Reviewer 2: Overall, this is an interesting theoretical

development and provides an exciting new way to look at
ecosystem assembly and evolution.
Authors: We thank Prof Knight for this enthusiastic

review.

Response to reviewer comments on symmetry
Authors: Both reviewers correctly note that our simula-
tions are carried out under the assumption of symmetrical
interactions, and we agree that this is a limitation of our
computational models. However, the analysis, in Methods
Part 1, where we show that evolved changes in interac-
tions are Hebbian, does not rely upon this assumption.
Moreover, whilst the computer simulations do employ the
assumption of symmetrical interactions to facilitate anal-
ysis of emergent dynamical behaviours, it is not the case
that interesting dynamics in neural networks in general
depend upon this symmetry. Very many important col-
lective behaviours take place in non-symmetric neural
networks, many of which also incorporate Hebbian learn-
ing. We strongly agree with both reviewers that relaxing
this assumption during future modelling is an important
direction for future research.

Appendices
Appendix A: Individual selection in ecosystems
Amutation to an individual in species i that decreases the
competitive effect, ωij, of species j on species i directly
affects the fitness of the individual carrying the mutation
and not other individuals in species i, and can thus be
favoured by individual selection. It is only changes to traits
that directly affect the growth rate of an individual com-
pared to the rest of the individuals in the species can be
affected by individual-level selection. Traits that increase
the growth rate of all individuals in the species equally
have no differential individual benefit (despite conferring
benefit to the species as a whole). In particular, a mutation
to a trait in an individual in species i that changes its com-
petitive effect, ωji, on some other species j, e.g. decreasing
the density of a competitor species, may thereby indirectly
increase the growth rate of species i. But this will benefit
all individuals in species i, not just the mutant, and there-
fore has no differential selective benefit to the individual
that bears the mutation [77]. Likewise, the competitive
effect of species j on species i may, by virtue of normalis-
ing ecological constraints, be decreased as a side-effect of
increasing the competitive effect of species k on species i.
But again this would not be favoured by individual selec-
tion as the benefit is felt by all individuals in species i
(conversely, changes to ωij could be selected under indi-
vidual selection even though, as a result of indirect effects
through changes in density of other species or through
normalising ecological constraints, their net effect is to
decrease the density of their own species). It is therefore
only direct effects on individual fitness that are taken into
account by the selection coefficient described here; i.e.,
Eq. 2. evaluates the change in growth rate of individuals
in species i due to changes in ωij and not ωji, and fur-
thermore, only changes to ωij caused by positive selection
coefficients, not those caused by indirect normalisation
effects. This correctly disregards any changes to a species
growth rate that occurs as an indirect side-effect of alter-
ing the density of some other species.

Appendix B: The relationship between rate of adaptation
and product of species densities in more complex cases
In the main text, the rate of adaptation, vij, of each inter-
specific interaction coefficient is modelled with Eq. 3
corresponding to the case where there is no interference
between simultaneously segregating alleles at different
loci. In large sexual populations with linked loci, the rate
of adaptation will depend on the type of recombination,
recombination rate, population size, themutation rate and
magnitude of mutations. Here we compare the rate of
adaptation of an interaction coefficient for three different
models. In each case, the rate of adaptation, vij, of an inter-
specific interaction coefficient describing the fitness effect



Power et al. Biology Direct  (2015) 10:69 Page 17 of 24

of species j on species i, is vij = xiμP̄, where xiμ is the rate
with which beneficial mutations arise in species i, and P̄
is the average probability that a single new mutation will
ultimately fix (see main text). In all cases, P̄ is a function
of the selection coefficient si = mi

kie gxj (Eq. 2, main text)
wheremi is the intrinsic net growth rate of species i, kie is
the carrying capacity of species i in environment e, and g
is the change in the interaction coefficient due to an indi-
vidual mutation. Here we write si = βxj, for clarity of the
comparisons that follow.

Case a) No interference
In simple cases when there is no interference between
simultaneously segregating alleles at different loci (e.g.
where genes are under weak selection per locus, free
recombination and the linkage disequilibria among alleles
sweeping to fixation are negligible), the probability of
fixation, P̄ = si. Thus, as per Eq. 3 main text:

vij = βμxixj (4)

where xi is the density of species i, xj is the density of
species j and μ is the beneficial mutation rate.

Case b) Linked genes on a linear genome
Weissman & Barton [79] consider the effects of interfer-
ence between linked genes on a linear genome. Here the
genomic rate of fixation of beneficial mutations is ([79]
Eq. 7):

v = v0
1 + 2v0/R

(5)

where, v0 is the genomic rate of fixation of beneficial
mutations in the absence of interference and R is the
total genetic map length in Morgans. The authors use the
approximation v0 = 2xμs, where x is species density and

s is the selection coefficient. With si = βxj as before, this
gives the rate of adaptation on an interaction:

vij = 2βμxixj
1 + 4βμxixj/R

(6)

Case c) Occasional outcrossing
Neher et al. [78] study the rate of adaptation in unlinked
loci in facultative sexuals where the rate of outcrossing is
very small. Whereas Weissman and Barton examine the
case of obligately sexual populations, this case represents
occasionally/facultatively sexual populations (e.g. plants).
On condition that r2/s2 � 4xμ, the rate of accumulation
of beneficial mutations in this case is given by ([78] Eq.
12b):

v ≈ xμs2
(
1 − 4xμs2

r2

)
(7)

where r is the outcrossing rate. With si = βxj as before,
this gives the rate of adaptation on an interaction:

vij ≈ xiμ(βxj)2
(
1 − 4xiμ(βxj)2

r2

)
(8)

Comparison of the three cases
Figure 7 plots the rate of adaptation vij as a function of
xi and xj for these three different cases. We observe that
case a, where the rate of adaptation is directly propor-
tional to the product xixj as modelled in our simulations,
and the two more complex cases (b and c) are all qualita-
tively similar. Although in some cases the absolute rate of
adaptation is more strongly limited by the recombination
rate than the mutation supply or the strength of selec-
tion, for example [79], the relative rates of adaptation are
still determined largely by the product of xi and xj. More
specifically, all three cases have the essential characteris-
tic that the rate of adaptation is zero when either xi or xj

Fig. 7 Rate of adaptation vij as a function of xi and xj for three different models. a Eq. 3 frommain text. b Eq. 7 fromWeissman & Barton [79], c Eq.12b
from Neher et al. [78]. We observe that (b) is very close to a linear scaling of (a) and, although (c) shows slight qualitative differences in the shape of
the function, it maintains the essential qualitative characteristic. In all cases, the rate of evolutionary change in an interaction coefficient increases
with the product of xi and xj . (As per our simulation experiments: kie = 10,mi = 0.5, g = 0.1, μ = 1.0 × 10−5. For case (b), the map length, R = 1.
For case (c), the out-crossing rate, r = 0.01)
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is zero, and otherwise, the greater the value of one, the
greater the rate of increase with the other. Thus, although
the shape of the alternate functions differs from ours,
the essential behaviour is preserved. Intuitively, muta-
tions must be both created and selected for an interaction
coefficient to evolve.

Appendix C: Additional methods: Normalisation, variable
environments, measuring ecological attractors andmodel
parameters
Normalisationmethods
In each evolutionary step, all interaction terms in �(t) are
updated by natural selection according to Eq. 3 to produce
�′(t) and then renormalised to produce �(t + 1). Renor-
malisation preserves the conditions that for each species
i and all other species j(j �= i),

∑N
j=1 ωij(t) = Qi, and∑N

j=1 ωji(t) = Qi, where Qi < 0 is a constant for each
species. Specifically, an iterative row and column nor-
malisation (below) is applied to M(k = 0) = �′, until
the values of M converge within a specified accuracy, i.e.
(
∑

ij(mij(k+1)−mij(k))2 < 10−5, where k is the iteration
counter, as follows:

M(k + 1) = column_norm(row_norm(M(k))) (9)

where row_norm(mii) =mii, column_norm(mii) =mii, i.e.
self-interactions are unaffected, and

row_norm(mij(i�=j) = mij(k)∑N
j=1(j �=i) mij(k)

(10)

and

column_norm(mij(i�=j) = mij(k)∑N
i=1(i�=j) mij(k)

(11)

Variable environments
We investigate the effect of variable environments as fol-
lows. The carrying capacity of the ith species in a default
ecological environment, E0, is ki0. For simplicity in our
simulations we let ki0 = k0, for all i, where k0 is a con-
stant. Prior to the evolution of interactions, this causes
all species to equilibrate at the same density. To model
the evolution of an ecosystem under varying environ-
mental conditions that force or drive the ecosystem to
adopt different ecological states, we define two other envi-
ronmental conditions that alter carrying capacities. The
pattern of equilibrium species densities under one envi-
ronmental condition, E1, increases the carrying capacity
of some species to k0 + α and decreases others to k0 − α,
where α = 0.1. In E2, a different subset of species is
increased/decreased in a similar manner. See Fig. 2 main
text.

Measuring ecological attractors
We examine the ecological attractors in the ecosystem
by Monte Carlo sampling, i.e., by repeatedly setting the

species densities to random initial conditions and run-
ning to an equilibrium. Tomeasure the inherent attractors
induced by evolutionary changes, this sampling is carried
out in the absence of environmental forcing – i.e., in E0. In
some experiments we also investigate the amount of envi-
ronmental forcing required to push the ecosystem out of
equilibrium in one pattern of species densities and into the
attractor basin of another stable equilibrium. Whenever,
as here, interactions control the correlation of species
densities and not their absolute densities, the complement
of any attractor pattern is also necessarily an attractor
[57, 58, 67]. However, so long as initial conditions are
more similar to the past states experienced during evolu-
tion than the opposite of those past states these unnatural
attractors are precluded. Accordingly, we examine initial
conditions, x, satisfying the condition (|x−E1| < |x−E′

1|)
and (|x − E2| < |x − E′

2|) where E′ is the inverse of E (i.e.
E′ = 2Ē − E).

Model parameters
N = 400, number of species.
mi = 0.5, growth rate of all species.
s(t = 0) = 0.1, initial species densities.
k0 = 10, a parameter governing the extrinsic component
of carrying capacity in E0.
α = 0.1 increment/decrement of particular carrying
capacities in environments E1 and E2.
T = 1, number of evolutionary changes applied in each
environment before switching.
τ = 5000, number of ecological timesteps (Eq. 1) between
‘initial’ and ‘final’.
g = 0.01, constant of proportionality in selection-limited
evolution (Eq. 3)
Interaction coefficients are initialised as follows:

ωij(t = 0) =
{ −1, if i = j(i.e. self interactions)

−0.2, otherwise

Qi = ∑N
j=1(j �=i) ωij(t = 0), normalisation constant (the

sum of the non-self interactions in any one row/column
remains equal to their sum at time t = 0).
The quantitative values of these parameters will nat-

urally have quantitative effects on the behaviour of the
eco-evolutionary dynamics that we simulate. Since the
simulations are a phenomenological model of ecosystem
evolution, what matters is the relative rather than absolute
rates of adaptation on different interaction coefficients –
in particular, which interactions increase, which decrease
and which remain largely unchanged. This pattern, and its
sensitivity to different modelling choices, is investigated in
Appendix D.
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Appendix D: Equivalence of Hebbian and evolved changes
in more complex cases
In the main text the rate of adaptation of each inter-
specific interaction coefficient is modelled with Eq. 3
corresponding to the case where there is no interference
between simultaneously segregating alleles at different
loci. Appendix B shows that the characteristics of the
rate of adaptation in more complex cases is qualita-
tively similar although they are quantitatively different.
Here we simulate evolution using these alternative mod-
els and incorporating normalising ecological constraints.
Figure 8 shows that the quantitative differences in the
three equations do not alter the pattern of positive, nega-
tive and neutral changes that are produced in the evolving
interaction matrix. Specifically, the pattern of changes in
interactions have the same direction as theHebbianmodel
in all cases. Accordingly, there will be parameter ranges
where they produce the same distributed memory phe-
nomena in the ecosystem. Investigations of quantitative
differences remain for future work.

Appendix E: Response to environmental forcing that is not
similar to environments experienced during evolution
Figure 9 shows that an ecosystem can exhibit a non-
catastrophic response when forced in arbitrary directions
(b) and simultaneously exhibit hysteresis and catastrophic

regime shifts when forced in directions that have been
experienced previously over evolutionary time (a). This
emphasises that the evolved ecological memory causing
the switching behaviour is conditioned by the systems’
evolutionary history, and thus causes recall (or recogni-
tion) of a specific point in a multi-dimensional space of
species densities, rather than a general stability/instability
property resulting from unorganised or arbitrary evolu-
tionary changes.

Appendix F: Development and breakdown of multiple
attractors over long evolutionary timescales
Figure 10 shows how the attractors of the ecosystem
change over evolutionary time in Experiment 2. Interest-
ingly, we see that in the long term the two-attractor state
is unstable because, rather than reinforcing the ecological
patterns that are ‘forced’ by the external environment, the
system begins to reinforce its own patterns of behaviour
[58], and positive feedback causes one (slightly stronger)
attractor to outcompete the other (Fig. 11).

Appendix G: Empirical tests for distributed learning in
ecosystems
The dynamical behaviours we observe in the evolved
ecosystem are consistent with ecological memory, alter-
nate ecological states, succession dynamics, assembly

Fig. 8 Evolved changes to interactions are Hebbian in more complex population conditions. Change in interactions between the first 16 species are
shown under evolution in a changing environment. Rate of adaptation is controlled by our equation (top row), that from Weissman & Barton [79]
(middle row) and Neher et al. [78] (bottom row). a-c the change in interactions due to direct selection effects (see Fig. 4 main text). dWhen
normalising ecological constraints are taken into account, some interactions are decreased, some left unchanged, and others are increased. The
resulting direction of change is the same in all three cases and identical to Hebbian changes (Fig. 4e. main text). (kie = 10,mi = 0.5, g = 0.1,
μ = 1.0 × 10−5, α = 3.5. For case ii, the map length, R = 1. For case iii, the out-crossing rate, r = 0.01). For visualisation, the magnitude of changes
in (d) are multiplied by 5
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Fig. 9 Response to environmental forcing in different directions. a Environmental forcing that is similar to environments experienced during
evolution (i.e. toward E2, see thumbnail pictogram), b Environmental forcing that is not similar to environments experienced during evolution (i.e.
toward an arbitrary pattern, see thumbnail pictogram)

rules, regime changes and founder effects observed in
natural ecosystems. These behaviours follow from simple
component principles (i.e. the availability of heritable
variation in inter-specific interactions, and the pres-
ence of ecological constraints or evolutionary trade-offs)
and direct evidence for these behaviours is testable. For
example, consider the evolution of a small microbial
community. Given a culturable community with stable
coexistence dynamics, we could first test whether it has i)
one or ii) alternative stable states. This requires sampling
many different initial species compositions and allowing
species densities to equilibrate. i) If a single state, we
can then force the system into a different state (‘alter-
nate ecosystem state’, [17]) – e.g. by changing temperature,
nutrient influx – and hold it there for evolutionary time.
Then remove the forcing and retest for multiple attractors
(‘alternate community states’). If a memory has been con-
ditioned by this forcing then a new attractor will be exhib-
ited. ii) If the system initially has more than one attractor
state, then we can estimate the basin size for each attrac-
tor by counting the number of different initial conditions
that arrive at one or the other. By leaving the system in
one attractor over evolutionary time this should increase
the relative basin size in proportion to the time spent in
that attractor. Next we need to assess the extent to which
such a memory is collective or merely the sum of individ-
ual memories. This can be done by swapping-in evolved
species for species in the original community one-by-one
and assessing the relative contribution of individual and
collective genetic changes on the dynamical behaviour of
the system.

Appendix H: Asymmetric interactions, the importance of
normalising ecological constraints, and other future work
One important aspect of evo-eco dynamics that is high-
lighted by this model is the importance of normalising
ecological constraints or evolutionary trade-offs for col-
lective behaviours. These constraints prevent a species A
from benefiting from the presence of species B without
also becoming dependent on B. That is, it is not just the
case that A grows faster in the presence of B, but that
A’s growth is slower when B is absent. Under these con-
ditions, changes to interactions do not merely increase
the growth of each species in a manner that is sensitive
to its ecological context, but more specifically, they mod-
ify correlations between species densities. We assume in
the present model that an adaptation that, for example,
decreases the niche overlap with one species increasing
the niche overlap with others. But the extent to which
species evolve dependencies rather than just (context-
sensitive) individual advantages in natural ecosystems is
an empirical matter – and from this work we recognise it
as a matter that is centrally important to the possibility of
collective behaviours that are more than the sum of the
individual behaviours.
This paper has investigated only competitive interac-

tions and has not investigated mutualistic interactions or
asymmetric interactions such as characteristic of trophic,
e.g. predator-prey, relationships. The observation that
selected changes to interactions are Hebbian does not
depend on them being symmetric (or competitive). That
is, Eq. 3 is not sensitive to any assumptions about the
initial values of interaction coefficients, e.g., whether ωij
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Fig. 10 ‘Bestiary’ of ecological attractors changing over evolutionary time. From an array of different random initial species densities (left-most
column), the ecological states reached in the population dynamics changes over evolutionary time. a Initially, all initial conditions lead to the same
ecological attractor (with all species at the same carrying capacity). b New attractor states begin to appear and become established. c In the long
term, the two-attractor state is unstable and positive feedback causes one of the attractor states to ‘out-compete’ the other. d Eventually the one
remaining attractor breaks down as only the strongest species (those that were high density in both patterns) take over [65]

Fig. 11 In the long term the two-attractor system breaks down. Monte Carlo sampling of the ecological attractor states from random initial species
densities during evolutionary time. Initially, all attractor states contain species densities that are only minor deviations from the default attractor (E0)
in Euclidean distance. The signed pattern of the attractor state, i.e. in terms of +/− with respect to the mean species densities, either matches E1
(blue) or E2 (green). As the two-attractor state emerges, at around generation 525 (a classic pitchfork bifurcation, but the unstable fixed point is not
shown), the magnitudes (as well as signs) of the attractor states closely match the two targets. In the long term, one of the attractors, in this case E1,
outcompetes the other and becomes the only attractor. Eventually (after ∼575 generations), this attractor also degrades, i.e. the equilibrium
magnitudes no longer match the original target closely (Fig. 10)
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and ωji are equal or even have the same sign, and therefore
applies to predator-prey relationships as well as symmet-
ric competitive interactions. Eq. 3 also shows that the
selective pressures on changes to interactions are sym-
metric i.e., �ωij = �ωji (except for the influence of
individually-varying carrying capacities), so there is no
systematic reason for interactions to become asymmetric
over evolutionary time. In the examples investigated in
this paper the interaction coefficients are initialised sym-
metrically and, accordingly, they remain approximately
symmetric. The evolutionary model could be applied
to asymmetric interactions, but asymmetric interactions
introduce the possibility of non-fixed point attractors,
e.g. cycles, that complicate the behaviour of the eco-
evolutionary dynamics and their measurement consider-
ably. (We note that where ωij and ωji differ, the addition
of multiple symmetric changes through natural selection
will make them less asymmetric over evolutionary time,
i.e., bring the ratio of these terms closer to 1, and could
evolve them to take the same sign even when they started
out with opposite signs. This implies that the effect of
evolutionary change would be to increase the stability of
the ecological dynamics and reduce or remove chaotic or
cyclic attractors over time).
We have assumed that each interaction coefficient is

independently modifiable whereas in natural populations
traits may affect many interactions simultaneously. Here
we chose to investigate scenarios where none of the inter-
action coefficients reach zero or go positive (which is
possible in principle despite the normalisation employed).
The equations used exhibit unstable behaviour in this case
and a different approach to modelling would be required
to handle mutualistic interactions. In natural populations
one member of a population can gain selective advantage
by changing its relationship to other members of its own
species, but our simulations have fixed self-interactions
at –1 and have investigated only the evolution of interac-
tions with members of other species.
A key technical distinction between the recent work

on associative memory in gene networks [67] and the
models utilised here is that the Lotka-Volterra equations
represent unsigned (positive) state variables, as is nat-
ural for species densities, rather than signed (positive
and negative) state variables representing under- or over-
expressed gene activity (compared to some normal level).
Although it is possible and common to model interest-
ing dynamical behaviours using either signed or unsigned
state variables in neural networks, the use of unsigned
variables means that Hebb’s rule, or natural selection, will
only alter interactions in one direction, i.e., the prod-
uct xixj is always positive (although crucially it may
have different magnitudes). The assumption of normal-
ising constraints that cause some interactions to become
more competitive as a side effect of others becoming less

competitive is thus important to the results that we have
shown.
In particular, as mentioned above, the assumption of

these normalising constraints means that changes to
interactions, although motivated by increases in individ-
ual growth rates, have the effect of (also) altering the
dependency of one species on another. Without these
constraints, the effect of unconstrained changes to inter-
actions is to make high density species fitter in all
conditions, rather than making them dependent on the
simultaneous high density state of specific species (and
hence less fit in some conditions). It is therefore important
for future work to investigate how different ways of mod-
elling such constraints impact the behaviours illustrated
here. For example, rather than a Lotka-Volterra model, a
stoichiometric model of species interactions may alleviate
the need for an explicit normalisation mechanism.
Assuming that ecological dynamics (i.e., changes in

species density) are much more rapid than evolutionary
changes (i.e., genetic changes affecting the coefficients of
inter-species fitness dependencies) [91], most evolution
occurs whilst ecological dynamics are at or near equilib-
rium, as modelled here. The behaviour of evo-eco dynam-
ics when these processes have more similar timescales
[35] deserves attention. However, the fact that we model
varying ecological conditions, causing the ecosystem to
visit more than one ecological equilibrium, means that
the interaction of ecological and evolutionary dynamics
is non-trivial even though their timescales are kept sep-
arate in our simulations (following [24]). Moreover, any
model assuming a single ecological attractor will over-
look the interesting behaviours modelled here, regardless
of whether the timescales are separated or similar.
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