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Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic
questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably
possible. The assessment of individual aspects of IQ is already a key component of routine quality control
of medical x-ray devices. These values together with standard dose indicators can be used to give rise
to ‘figures of merit’ (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes.
The demand for clinically relevant IQ characterisation has naturally increased with the development of
CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation
and evolution of assessment methods. The purpose of this review is to present the spectrum of various
methods that have been used to characterise image quality in CT: from objective measurements of phys-
ical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure
human observer approach. When combined together with a dose indicator, a generalised dose efficien-
cy index can be explored in a framework of system and patient dose optimisation. We will focus on the
1Q methodologies that are required for dealing with standard reconstruction, but also for iterative re-
construction algorithms. With this concept the previously used FOM will be presented with a proposal
to update them in order to make them relevant and up to date with technological progress. The MO that
objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of

radiologist sensitivity performance and therefore of most relevance in the clinical environment.
© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Diagnostic x-rays contribute to nearly 50% of the total annual
collective effective dose of radiations from man-made and natural
sources to the general population in western countries; computed
tomography (CT) is the largest single source of this medical exposure.

The contribution of CT to collective dose has significantly in-
creased in recent years and a considerable effort is required to control
this trend and ensure that the benefits from the use of this tech-
nology outweigh the risks [1]. For example, in 2007-2008 the average
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dose per inhabitant, due to CT, was about 0.8 mSv in France and Swit-
zerland, and about 0.7 mSv in Germany (as part of an average for
all x-ray imaging of about 1.2 mSv and 1.7 mSy, respectively) [2-4].
An update of the French and German data showed that in 2012 the
contribution of CT exposure had increased to approximately 1.15 mSy,
with a similar increase shown in the last Swiss survey performed
for 2013 [5].

In this context the radiation protection requirements in diag-
nostic radiology (justification of the examination and optimisation
of the imaging protocol) need to be re-enforced. Justifying a CT scan
is a clinical consideration and therefore will not be addressed in this
work. However, the optimisation of a CT examination is achieved
when image quality enables the clinical question to be answered
whilst keeping patient radiation dose as low as reasonably possi-
ble. For this purpose the clinical question needs to be formulated
as concretely as possible to enable a clear description of the image
quality level required. To achieve this, appropriate and clinically
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relevant image quality parameters and radiation dose indices must
be defined, described, and used. This paper concentrates on image
quality parameters.

The first step of the optimisation process should ensure that x-ray
conversion into image information is performed as efficiently as pos-
sible. In projection radiology such as radiology or mammography
one can use the DQE (Detective Quantum Efficiency as described
in [EC 62220-1/2) as a global figure of merit. Unfortunately, due to
the geometry and data processing required for CT, the use of such
a quantity is not feasible. In general, one will assess the amount of
radiation required to achieve a certain level of image quality. As a
surrogate of the radiation received by the detector one uses the stan-
dardised CT dose index (CTDI,y). This quantity represents the average
dose delivered in PMMA phantoms of 16 and 32 cm in diameter and
is related to the amount of noise present in an image. According
to its definition CTDI,, is different from the actual average dose de-
livered in a slice of a patient, and the latter should be estimated
using the Size Specific Dose Estimator (SSDE) proposed by the AAPM
(American Association of Physics in Medicine) [6]. For a given CTDI,;
level, image quality parameters are generally assessed using the
signal detection theory that considers the imaging system linear and
shift invariant.

The next step of the optimisation process should be done with
the clinical applications in mind. Direct determination of clinical
performance is, however, difficult, expensive, and time-consuming,.
Furthermore, the results in these studies can be strongly depen-
dent on the patient sample and on the radiologists involved. As an
alternative, one can assess image quality using task-oriented image
quality criteria. They will necessarily be simplistic in comparison
to the clinical situations but make it possible to predict the per-
ception of simple structures within an image. The phantoms available
for this type of study remain quite simple whilst trying to mimic
important disease-related structures in actual patients. It is likely
that 3D printing techniques will improve phantom and task realism
in the future [7-9]. To seek optimisation, task-oriented image quality
metrics could be studied as a function of CTDI,, or SSDE. Figure 1
summarises this optimisation process.

Part 1 of this review focuses on signal detection theory and
summarises the methods used to assess image quality in an objec-
tive way. When CT images are reconstructed using the standard
filtered back-projection (FBP), these methods are commonly used
to characterise a CT unit. The objective image quality metrics assess
separate aspects of the features of the image, and therefore need
to be combined to give an overall representation of the image quality.

Image quality
L CTDly Signal detection theory
Step 1 of the optimization process
Generic protocols
-- Simple phantom of one size
-- One spectral condition (kV)
CTDl, or Task-based image
Step 2 of the optimization process SSE quality assessment

Clinical protocols
-- Anthropomorphic phantoms
-- Several sizes per anatomical region
-- Several spectral conditions (kV)

Figure 1. CT optimisation process in two steps: generic acquisition optimisation and
clinical protocol optimisation.

To synthesise the information, and balance image quality with
radiation doses, several figures of merit have been developed by com-
bining image quality parameters such as the standard deviation in
aregion of interest (ROI) and the modulation transfer function (MTF).
They were applied for specific clinical protocols to enable appro-
priate comparison of systems. This approach was quite useful during
the development of CT technology, where performances between
different units could vary drastically. These figures of merit can be
based on simplified assumptions requiring caution in their inter-
pretation. However it appears that the sensitivity of such methods
is quite limited for newer systems, and, in addition, the effect of it-
erative reconstruction on the standard image quality parameters
would mean that this approach would be difficult to implement.

Both clinical and phantom images can be assessed using the ROC
paradigm or one of its derivatives (Localisation ROC, Free-response
ROC). These methods give an accurate estimate of clinical image
quality but, although carefully controlled measurements, they are
still subjective because human observers are involved. These methods
are time consuming and require large samples to obtain precise
results. In spite of these limitations these methods can be used either
by radiologists (when dealing with clinical images) or naive ob-
servers when dealing with phantom images. To avoid the burden
associated with ROC methods more simplified methods have been
developed; for example, VGA (Visual Grading Analysis) in which
image quality criteria can be used to give a relatively quick image
quality assessment, without the explicit need for pathology or a task.
Alternatively, phantom images can be assessed using the 2-AFC (two-
alternative forced-choice) or M-AFC (multiple-alternative forced-
choice) methods. Part 2 of this review discusses these methodologies,
and these methods are used to validate the results produced by
model observers presented in Part 3.

The introduction of iterative reconstruction in CT poses a new
challenge in image quality assessment since most of the standard
metrics presented in Part 1 cannot be used directly. In order to es-
tablish a bridge between radiologists and medical physicists, and
therefore between clinical and physical image qualities, task related
metrics can be used (even if the tasks are simplified versions of actual
clinical tasks). Mathematical model observers are particularly suited
to the routine image quality measurement of clinical protocols, with
the results indicated to the user together with the standard dose
report. Part 3 summarises the concepts behind these model ob-
servers, focusing on the anthropomorphic model observers that
mimic human detection of simple targets in images, since the aim
is to present tools for practical applications. The theory and de-
scription of the ideal observer can be found in the literature and a
brief introduction to this model is done at the beginning of Part 3.
Note that model observers can also be used when images are re-
constructed with FBP. The inconvenience associated with the use
of model observers is that they all lead to an overall outcome without
the separation of the image quality parameters as with signal de-
tection theory.

This paper is structured into three separate sections that provide
an overview of the most common approaches taken when dealing
with image quality in CT imaging. This structure is described in Fig. 2.

Traditional objective metrics

CT is a 3D imaging technique in which image quality assess-
ment must be approached with some caution. Objective assessment
of parameters that influence image quality is often made using phys-
ical metrics specified in either the spatial or spatial frequency
domain. This duality is due to the fact that some features will
produce overall responses which are independent of the location
in the image, whereas other features will produce responses that
are spatially correlated.
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Figure 2. Summary of the content of the review (*this part will not be presented).
Objective metrics in spatial domain SNR?4o1 = Neat = NEQ (4)

Image signal and image noise are key parameters in image quality
assessment. In the ideal and linear case, image signal (S) is direct-
ly linked to the detected number of photons N, whilst the noise (o)
may be seen as the pixel’s stochastic fluctuation around their mean
value. The photons are distributed according to Poisson’s law,
meaning that the quantity o is equal to +/N. The ratio of these two
quantities yields the signal-to-noise ratio (SNR), expressed as:

S N =
oK —=— = 1

In an ideal device, each quantum could be counted by the de-
tector and contributes towards the image. We could thus transpose
Eq. (1) as:

Nigea [
SNRldeal o< % = Nldeal (2)

However, due to the properties of the detector and its limited
efficiency, a real measurement of the SNR would give the follow-
ing result:

Nrgea f [
SNRReal:\/R—I: NReaI < Nldeal (3)

In Eq. (3), Ngea gives the number of quanta that contribute to
the image for the real device and is also called noise-equivalent
quanta (NEQ). Thus:

Based on those parameters, we can eventually estimate the ef-
ficiency of a device by making the ratio between the number of
photons actually used for the imaging and the incoming number
of photons to the detector. This quantity is called detective quantum
efficiency (DQE) and is defined as:

_ SNRz.q _ NEQ

= = (5)
SI\JRIZdeal Nldeal

DQE

In Eq. (5), the NEQ can be measured in a straightforward manner,
but some care must be taken when estimating quantity SNRZ.
Indeed, when considering a monochromatic beam, SNRZ,; is simply
the number of photons produced. However, for a polychromatic
beam, SNRZ., should be the summed variance of the number of
photons in each energy bin. In fact, some authors prefer to use an
energy weighted variance because most detectors integrate energy
[10] to form an image.

Another commonly used global image quality index is the signal
difference-to-noise ratio (SDNR), defined for an object as the in-
tensity difference from the background divided by the standard
deviation:

SDNR = Jotieet = Isackgromna o
o

These metrics are extended to the spatial frequency domain in
the following section.
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Objective metrics in Fourier domain

Spatial resolution can be defined as the ability to distinguish two
separate objects and is directly linked to the pixel size, the recon-
struction kernel as well as the hardware properties of the imaging
device. In order to derive an expression for image resolution, it is
necessary to describe the imaging process generating a CT slice. Our
analysis will be restricted to the axial plane. I(x, y), which is the
image slice of an input object denoted by f(x,y), can be mathe-
matically expressed as:

1(x,y)=[[ f(x=x, y-y")PSF(x', y')dx'dy’ (7)

with PSF(x,y) being the point spread function in the axial plane
and describing resolution properties of the device. It corresponds
to the impulse response of a system, the response of the system to
a Dirac input (6(x, y)).

Resolution can also be estimated through the line spread func-
tion (LSF), which is the response of the system to a straight line. Thus,
the relationship between the LSF and the PSF can be derived from
Eq. (7) in which the input function is replaced by the equation of
a straight line in the axial plane (that is to say replacing f(x,y) by
4(x) in Eq. (7)), yielding:

LSF(x)= H(S(x —Xx')PSF(x’, y’)dx'dy’
leading to:

LSF(x) =TPSF(X, y)dy (8)

The point spread function needs to be similar at each location
in the image (shift invariance) in order to ensure that the LSF will
remain the same at every localisation. However, isotropy of the axial
plane is a hypothesis which is not always true, especially when
dealing with CT. In this case, the LSF will depend on the direction
of the straight line in the axial plane. Assuming the straight line is
positioned tilted with an angle ¢ the expression of the LSF will
become:

LSFy(x,y)= TTPSF(X’, ¥)6((x-x")cosO+(y—y’)sing)dx’dy’  (9)

Besides those two metrics, it is also possible to estimate the res-
olution using the edge spread function (ESF), that is to say the
response of the device to an edge. An edge can be mathematically

1 ifx>0
approached by the Heaviside function H(x,y)=1{1/2 if x=0. This

0 ifx<0
function has the property: dlé)((x) =4(x).

Using this property, injecting f(x, y)=H(x) in Eq. (7) and using
Eq. (8) we obtain:

_ 9ESF(x)

10
Py (10)

LSF(x)

Hence, PSF, LSF and ESF are all related to each other and it is pos-
sible to use their representation in the frequency space thanks to
the Fourier transform.

The Fourier representation of the PSF is the optical transfer func-
tion (OTF), which is defined as following:

OTF (u, v) ¥ FT{PSF (x, y)} (11)

1.2

0.8 \

0.6 \

0.4 \

" ¥

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Frequency (mm)

MTF

Figure 3. Example of a 1 dimension MTF curve of a GE VCT system with a 0.40 mm
pixel size.

What is commonly used in order to estimate the resolution is
the modulation transfer function (MTF), defined as the modulus of
the OTF normalised by its zero-frequency value:

4 [OTF (1, v)

MIF( V) = 57F 0.0)

(12)

Using Egs. (8), (11) and (12) together with the Fourier slice
theorem and assuming shift-invariance in the axial plane, we can
state that a normalised radial MTF of the system is given by:

FT{LSF(x)}

o (13)
__ LSF(x)dx

MTFp(f)=

This metric describes how well frequencies are transferred
through the system and is therefore used to make objective reso-
lution estimation (Fig. 3).

Practically, the MTF can be computed from the image of a point
(~PSF), a line (~LSF) or an edge (~ESF) [11-13]. In calculating MTF
from the image of a point source (effectively from the PSF), a metal
bead or taut wire fixed within a dedicated phantom is used to gen-
erate the signal [14]. Boone [12] used a tilted aluminium foil of
thickness 50 um to generate an oversampled LSF; the MTF is then
computed using Eq. (13). Judy [13] was the first to describe calcu-
lation of MTF from an edge method in which the ESF was
differentiated to give the LSF. This method has been developed over
the years by various authors to include the use of spheres from which
the oversampled ESF is built [15-17]. An older method was pro-
posed by Droege and Morin, in which MTF is estimated from line
pair test object images using the Coltman formula. Extensive details
on the practical implementation of these techniques are given in
ICRU Report 87 [18]. Several of these methods have been investi-
gated by Miéville et al. in order to compare and contrast the
advantages and drawbacks [19].

As with resolution, and of equal importance for SNR transfer,
image noise can also be estimated in the frequency space. There are
different sources of noise within the CT system, such as the elec-
tronic noise caused by the detector readout circuits (amplifiers) and
the primary quantum noise which is inherent to the statistics of the
limited quanta building the image. In a stationary system, the Wiener
spectrum or noise power spectrum (NPS) gives a complete descrip-
tion of the noise by providing its amplitude over the entire frequency
range of the image [20]. If the image noise is not stationary, the
Wiener spectrum is not a complete description and the whole co-
variance matrix would be needed for complete description. However,
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Figure 4. Example of a radially averaged NPS obtained on a GE revolution system
with a standard convolution kernel.

if applied with care - for example working with small ROIs, ex-
tracted from a restricted region of the image - the NPS can be applied
to both conventionally (i.e. FBP based) and iteratively recon-
structed images. For NPS calculation, the assumption of ‘small signal
linearity’ has to be made in order to apply Fourier analysis, which
requires system linearity in order to be valid. This is the case for
the logarithmic step applied to all reconstruction processes and also
to the explicitly non-linear iterative methods.

In order to compute the NPS of an image, it is necessary to acquire
homogeneous CT images and select region of interests (ROI) in this
stack. The 2D NPS can then be computed as:

NPSZD(fxvfy):

N _
i"fy N;leol iOI‘PTzD{ROIi (X,.V)_ROI"HZ (14)
Ly i1

where A,, A, are the pixel sizes in the x and y dimension, L,L, are
the ROI's lengths (in pixel) for both dimensions, N, is the number
of ROIs used in the average operation and ROI; is the mean pixel
value of the ith ROL

In practice, the NPS is largely affected by the detector dose, the
hardware properties and the reconstruction kernel and algorithm.
From each image of the stack a ROl is extracted and a custom com-
puter program is generally used to compute the NPS according to
Eq. (14). It is of common use to average the 2D NPS along a 1D radial
frequency using the equation f, =/fZ+ f? (Fig. 4). More details on
the NPS computing can be found in ICRU Report 87 [18]. In the end,
the NPS characterises the noise texture, thus giving a better and more
complete description of noise than the simple pixel’s standard de-
viation. Moreover, information about the pixel’s standard deviation
can still be retrieved with knowledge of the Wiener spectrum.
Indeed, the Parseval theorem ensures that the total energy is ob-
tained by summing the contribution of the different harmonics and
that its value does not depend on the chosen space (image or fre-
quency space). Since the NPS is a spectral decomposition of noise
over frequencies, we have:

GZ=J.J.NPSZD(fxvfy)dfxdfy (]5)

As explained before, MTF shows how well the signal frequen-
cies are transferred through an imaging system, that is to say it
exhibits the signal response of a system at a given spatial frequen-
cy. As for the spatial domain, the ratio of signal (i.e. MTF) and noise
(i.e. NPS) yields the output signal to noise ratio (the NEQ) and there-
fore the frequency dependent NEQ can be calculated as:

_ 2 _ a*MTF3(f)
NEQ (f)=SNRzea (f) = “NPSw(f)

where a? is the mean pixel value squared.
The DQE in the frequency space can therefore be estimated by:

SNR%..(f) _ a®MTF%(f)

U= SNR () NiaaNPS o)

(17)

Limitations of conventional and Fourier-based image quality metrics
for the assessment of IR images

In order to compute an MTF that represents the spatial resolu-
tion of the entire image, the assumption of shift-invariance has to
be made. That is to say that the device’s response has to remain the
same, whether measured at the image centre or periphery. If this
assumption is not fulfilled it is necessary to make the measure-
ments at the same location in different images to obtain an MTF that
can be used to compare the resolution of different devices. Fur-
thermore, the linearity hypothesis also needs to be fulfilled for the
MTF to be reliable. That is to say, the output signal has to remain
within the optimal range of response of the imaging system in terms
of Hounsfield units (HU), usually in the range from -200 to +200 HU
for clinical CT scanners [18]. Consequently, estimating the MTF with
a high Z material can give a signal outside this range, yielding an
incorrect assessment of resolution. In practice, estimating the MTF
with high Z materials generally leads to a resolution overestima-
tion because of the high SNR they generate [18].

Those two assumptions are approximately satisfied for CT images
reconstructed with filtered back projection (FBP) algorithms and a
standard reconstruction kernel, but the introduction of iterative re-
construction (IR) has changed the game [21]. Indeed, IR images
exhibit stronger non-linear and non-stationary properties that force
a change in the MTF measurement paradigm. Several authors have
already highlighted the non-linearity problem of these algo-
rithms, which manifests itself as contrast dependency of the
resolution [21-23]. Also, investigations on how Fourier-based metrics
are influenced by the characteristics of IR images have been de-
scribed [24,25]. They showed, for example, that the shape of the
NPS for some IR algorithms also depends on the dose level and that
the resolution not only depends on the contrast but also on the ra-
diation dose levels. These elements have highlighted the need to
adapt the existing metrics to IR algorithms.

Adaption of Fourier metrics

These difficulties in estimating resolution can be overcome by
using an adapted metric, such as the target transfer function (TTF),
which makes it possible to characterise the resolution even in the
presence of noise and contrast dependency [24,26]. MTF and TTF
are similar but differ from one another in the sense that MTF only
applies to a single given contrast level, whereas a TTF will exhibit
three different curves at three different contrasts (corresponding to
three different materials) for one measurement (Fig. 5). This enables
a characterisation of the resolution when dealing with non linear
algorithms for which contrast influences the resolution. As already
demonstrated by several authors this will make full characterisa-
tion of the resolution possible when dealing with IR [24,27].

The technological evolution of CTs has also led to changes in the
way NPS must be computed. The 2D axial NPS was well suited for
the first generations of devices where only one CT image per axial
scan could be acquired without noise correlation between slices.
Now that the acquisitions are also made in helical mode and that
the number of detectors along the z-axis is higher, a 3D NPS is re-
quired to fully characterise the noise (Fig. 6) [12,28]. 3D NPS can
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Figure 5. Resolution estimation through the TTF on a GE HD 750 system with a
0.4 mm pixel size and three different materials (Teflon polyethylene and plexiglass).
Differences are observed on the resolution depending on the material. Such changes
could not be observed when using the MTF.

be measured in a similar manner to the 2D NPS, but working with
volumes of interests (VOI) instead of ROIs:

AAA, 1K VoI
LR ST {Von(x.y.2)-VOLY  (18)
xLylz Nyor i5

NPS3D(fxv fyv fz):

For this case, the units of NPS are HU?mm?®.
In this particular paradigm, Eq. (15) becomes:

02:J'JJNPS3D(fx, fy, fz)dfxdfydfz (]9)

z(px)

c)

3D NPS

calculation ‘

How to synthesise the information towards a figure of merit

Combining image quality and dose

In the clinical setting the focus for optimisation is balancing image
quality and radiation dose in the context of the clinical question.
Statistical noise, spatial resolution and imaged slice width are the
fundamental parameters which describe the amount of object in-
formation retrievable from an image, and give rise to the perceived
image quality. X-ray dose can be regarded as the cost of this infor-
mation. It is meaningless to quote any of these image quality
quantities without reference to the others, or to the radiation cost.
The ‘holy grail’ is to try to find a way to combine the relevant pa-
rameters objectively and appropriately in a dose efficiency factor.

A dose efficiency factor, or figure of merit, can take a number
of forms depending on how the various parameters are measured
and quoted. Correctly developed and applied it can be used as a tool
to compare scanner models, or simply different scan settings to
optimise the balance of image quality and radiation dose.

How these parameters, resolution and noise in particular, are bal-
anced is dependent on the clinical question and examination type.
An important aspect that must be addressed is the influence of scan
and protocol parameters that can be adjusted by the operator and
how they affect image quality and radiation dose performance.

Clinical scanner settings — scan and protocol parameters

Any consideration of a theoretical approach to investigate a dose
efficiency value needs to be in the scenario of the clinical ques-
tion and the parameters used to create the image (Fig. 1).

Image quality and dose can be affected by the scanner design
and also by the scan settings in the selected protocol (Table 1). The
effect of the scan parameters, which form the examination proto-
col for the clinical question, can be seen in Table 2.

0
4
zoo° 1 (mm’) B,
HU*mm®

d)

Figure 6. (a) The 3D homogeneous volume from which the 3D NPS is extracted. (b) The 3D NPS and the NPS sectioned in the (c) x-y (axial) and (d) the x-z (sagittal) planes.

Figures extracted from Reference 22.
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Table 1
Scanner design and scanner settings which can affect image quality and dose on
scanner settings (courtesy of ImPACT [29]).

Scanner design factors Scan protocol factors

Detectors material

Detector configuration

Numbers of detectors, rows

Data acquisition rates

Software corrections

Filtration

Focal spot size

Geometry (i.e. focus-axis,
focus-detector distances)

Clinical application

Tube current, tube voltage, focal spot size
Image reconstruction algorithms

X ray Collimation width, detector
acquisition width

Reconstructed image slice thickness
Helical pitch

Interpolation algorithms

Combining image quality and dose metrics — theoretical background

The basic starting premise for a figure of merit for a dose effi-
ciency parameter is that a dose efficient scanner will produce good
resolution at minimum dose and noise.

There are a number of mathematical relationships that can be
found in the scientific literature, both in terms of general imaging
theory and for CT in particular [30-32]. The two of interest for CT
are Brooks and Di Chiro [33] and Riederer et al. [34]. These were
used in the development of the ImPACT Q value which became a
useful, and relatively widely known, approach for comparing CT
systems in the 1990s [35,36]. It was also explored by Fuchs and
Kalender [37], more recently Kalender devoted a section to this
subject in his book Computed Tomography: Fundamentals, System
Technology, Image Quality, Applications [37,38]. However the fun-
damental relationship can also be found in standard textbooks on
imaging with radiation [39,40]. The core of all these approaches is
that the noise squared is inversely proportional to dose, and also
inversely (in real or image space) proportional to the spatial reso-
lution to the power 4. This encompasses spatial resolution in the
X,y (to power 3) plane and also the z plane and quoted either as a
size or frequency. In some equations the resolution is separated out
into frequency for the x and y plane resolution, and the image thick-
ness for the z-axis (z,x and z,y planes).

The relationship can be explored in more detail using the Brooks
and Di Chiro equation [33]:

o) ="120007D (20)

Here o is the statistical error in the reconstructed image (i.e.
the image noise); g is a beam spreading factor (non-parallel rays),
y(E) is the average depth dose factor for photon energy (E), e“ is
the logarithmic attenuation, p., is the energy absorption coeffi-
cient, E is the photon energy,  is the detector aperture, h is the
slice width, and D is the radiation dose.

For the purposes in this chapter, this can be simplified to:

Table 2
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Similarly the Reiderer, Pelc and Chesler relationship is given as
[33]:
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where m is the number of projections, N, is the number of photons
per projection, and G(k) is the convolution function with frequen-
cy. The product mN, could be regarded as a measure of radiation
dose.

This essentially becomes o2 «k.2/mN, (where k. is the cut-off
frequency, i.e. the limiting resolution). Or, indeed as the paper states;
‘for all valid correction filters ... 62 varies with the cube of the
resolution’.

This is, in effect, the relationship of:

o-zocl ie. cle (23)

D
where N is the number of photons and D is a measure of radiation
dose for a fixed value of tube voltage. This can also be seen as a direct
result from Eq. (1), assuming Poisson noise and without additive
electronics noise.

Combining image quality and dose metrics — a practical approach

The discussion that follows is the approach taken by the UK CT
scanner evaluation facility ImPACT [36]. It is a pragmatic solution
to a complicated scenario of practical and computational effects
on resultant image quality and dose for the operational CT scanner.
This approach was reasonably successful for a number of years,
and many scanner comparison reports were produced using this
factor [32]. There is no other known work in this area covering a
number of decades of scanner development. All measurements
were undertaken according to a procedure with strict criteria, and
in consultation with manufacturers as to the nature of their scan
protocols, scanner features and reconstruction parameters. Mea-
surements and analysis were carried out using typical clinical
protocols, using the same image quality and dose assessment and
calculation methods, and the same team of people. As scanners
developed it became harder to apply such strict criteria, and with
the development of adaptive filtration, and iterative reconstruc-
tion methods, it became very difficult to minimise the effects of
other variables on ascertaining a dose efficiency value for a
typical scan protocol.

0| (24)

o?zD

Dependence of image quality and dose parameters on scanner settings (courtesy of ImPACT, adapted from Reference 29).
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Detector configuration (e.g. 16 x 1.25 versus 32 x 0.62)
Scan time (for a given mAs)
Interpolation algorithm
Convolution kernel
Reconstructed slice thickness
Use of iterative reconstruction

Slice width Scan plane resolution Dose

The dark blue represents a major dependence of image quality and dose on scanner settings and the soft blue represents a minor dependence.
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where o is the image noise, f is a measure of the in-plane spatial
resolution (in frequency space), z is a measure of the spatial reso-
lution along the z-axis (in image space, and a measure of the
z-sensitivity), and D, as indicated above, a is measure of the radi-
ation dose. This is the approach used by the ImPACT CT scanner
evaluation facility [32,36] and first proposed in 1978 by Atkinson
[35]. Initially one form of the generic equation was used, and then
altered some of the definitions of the parameters involved, to create
what became known as Q2 [31,41] as shown in Eq. (25).

The Q-factor (Q- factor) is in part empirical, it was used with
caution and with strict adherence to the calculation procedure, which
included standardising certain scan and protocol variables. Since it
is not an absolute figure, it cannot be applied to the overall scanner,
only to the examination protocol. Each set of image quality and dose
parameters was therefore focussed on a typical clinical type of ex-
amination; for example a standard brain or standard abdomen.

The first step in the process was to ascertain this scan protocol
in conjunction with the manufacturer. Consideration of the effects
of the scanner settings, as shown in Table 1, required some adjust-
ment of the protocol. This was in order to minimise the effects of
scan parameters whose effects confounded the aim of comparison
of image quality and dose, in the context of dose efficiency of the
system. The associated challenge was to maintain the integrity of
the suggested protocol for that type of examination. The second step
was to undertake the various image quality and dose measure-
ments and calculations, and then finally to apply the Q2 relationship.

3
0= | dow (25)
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The specific parameters used in calculating this value were mea-
sured using standard techniques and quoted parameters, such as
would be used for quality control or acceptance testing:

o =the image noise, the standard deviation from the CT numbers
of a specified sized region of interest (5 cm?), expressed as a per-
centage (for water, standard deviation in HU divided by 10),
measured at the centre of the field of view in a standard water
phantom.

f.y = spatial resolution, given as (MTFso + MTF0)/2, where MTFs
and MTF, are the spatial frequencies corresponding to the 50%
and 10% modulation transfer function values respectively (in line
pairs per cm).

z1 = the full width at half maximum (FWHM), (mm), of the imaged
slice profile (z-sensitivity). This is measured using the inclined
high contrast plates method (mm).

CTDlIyo = volume weighted CT dose index (mGy).

To understand the dose efficiency relationship further in a prac-
tical manner, it can be helpful to consider the basic equation (Eq. 24)
to be formed of three components:

O'ZOC%, sz% and o2 f3 (26)

which, in the Q; relationship, translate to:

2 1 o? ocl and o?e f,} (27)
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Each of these relationships will be addressed more fully in the
following sub-sections.

Dose value. The dose value in an earlier formulation of Q was the
surface dose to a phantom, measured using thermoluminescent do-
simeters. This was changed for Q. with the introduction of the

standardised CTDI,, parameter. The cross-sectional averaging that
contributes to the creation of the CTDI,, is more representative of
the overall dose to the phantom and therefore a more appropriate
value to be used.

1

vol
be carefully considered with multi-slice CT beams. In CT it is gen-
erally acknowledged that the CTDI,, is a suitable dosimetry
parameter; however the proportionality breaks down in MSCT since
the penumbra contribution to the beam width is a constant value,
and as such is a factor that affects the relative dose, and is not ac-
counted for in the relationship. Therefore to accommodate this, the
beam width needs to be kept as a constant when comparing one
scanner to another, or to take it into account separately with a beam
width correction factor.

The inverse relationship of dose with ¢?, (02 o< ) has to

Image slice width (z;) — z-axis resolution. The effect on noise from
the thickness of the slice (z;) is from the imaged, as opposed to the
nominal, slice width, with a dependence on the inverse propor-
tionality of photons contributing to the image. For testing purposes
the full width at half maximum (FWHM) of the imaged slice profile
is a suitable parameter to use. However this does not fully de-
scribe the imaged slice profile, in terms of the photon distribution
contributing to the reconstructed image. For ease of application the
FWHM is used, even though a fuller description of this sensitivity
profile would be better.

Spatial resolution (f,y,). A similar approach is taken with the spatial
resolution parameter. Rather than using a single value from the mod-
ulation transfer curve, a more complete description of the resolution
takes into account the full function over all frequencies, and a res-
olution value based on an average of the 50% and the 10% values
of the modulation transfer function is therefore used. These values,
averaged, do not completely describe the spatial resolution func-
tion, however they are common values automatically extracted from
MTF curves as part of a standard testing process, and together were
deemed to provide a better indication of the compromise between
high and low spatial resolutions, compared to only one of the pa-
rameters alone.

The derivation of the cubed relationship of noise with spatial res-
olution ( 62 = f,,*) relies on assumptions of the shape of the
convolution filter used (for example in Brooks and Di Chiro [33],
the convolution filter is a ramp filter). In this way comparisons
between scanners are likely to be more reliable when comparing
images reconstructed with similar convolution filters and, in par-
ticular, algorithms that best represent ramp filters. These are in
general, the filtered back projection filters named for ‘standard’ ap-
plications, providing reasonably low spatial resolution in order to
preserve the contrast detectability in an image. Filters that are slightly
smoothed or slightly enhanced would be considered as close;
however those with strong smoothing or strong edge enhancing
would not be suitable. Reconstruction filters with ‘standard’ spatial
resolution values were therefore chosen to minimise the depen-
dency of Q, upon non-ramp like reconstruction filters. Fortunately,
or appropriately, these were also the algorithms usually used in the
standard clinical protocols under investigation. This aspect of the
Q, equation is a pragmatic solution for the complexity of modern
reconstruction algorithms. The reconstruction filter with MTFso and
MTF;o values as close as possible to 3.4 Ip/cm and 6.0 Ip/cm was used.

When investigating the empirical relationship with actual re-
construction filters, which range from ramp-like standard filters with
conventional apodisation functions, to edge-enhancing high spatial
resolution filters, it was found that the relationship was closer to
a power of 4 or 5 [29,42].
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Figure 7. (a) Example for body algorithms, of logarithmic image noise against spatial resolution, with normalised dose (CTDI), demonstrating the deviation from the ex-
pected relationship. (The ‘power’ is the power to which f,y is raised against 62) (courtesy of ImPACT). (b) Head algorithms showing associated image noise against spatial
resolution, with normalised dose (CTDI), demonstrating, particularly for scanner4, how small changes in spatial resolution give rise to large changes in measured noise [from

data in Reference 41].

,

28
ol (28)

This is illustrated in the following graph (Fig. 7a), for the body
scans. The different points on the graph relate to different recon-
struction algorithms. This reinforces the need to compare the ‘Q
for scanners with image quality parameters measured using standard

algorithms only, as the cubed power relationship is not valid across
the whole range of spatial resolutions.

However, with modern scanners and reconstruction algo-
rithms, even with a ‘standard’ algorithm there can be anomalies in
the expected relationships. With adaptive filtration and special re-
construction techniques, even selecting the lower spatial resolution
algorithms, inconsistencies in the ‘straight line’ relationship can
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Figure 8. Q2 values for several 16-slice scanners for standard head scans (courte-
sy of ImPACT).

appear, where a small increase in spatial resolution may not bring
the expected associated increase in image noise, as shown in Fig. 7b
[41,43].

The uncertainty in the Q value was estimated to be about 15%,
and therefore, even once the confounding variables are standard-
ised, it cannot be used to look for fine differences in the image quality
and dose relationship [36,41,43], as shown for a set of 16-slice scan-
ners in Fig. 8 [41].

However, it can demonstrate larger differences — such as with
the difference between the dose efficiency of xenon gas and solid
state detectors. Figure 9 shows data from the original ‘Q’ value, where
surface phantom dose measurements were used (giving the surface
multiple scan average dose (MSAD)). By normalising for the spatial
resolution both in the z-axis (the image slice thickness) and the scan
plane, this can be shown graphically as a relative dose.

Alternative method for combining parameters. Another approach to
define CT dose efficiency was suggested by Nagel [44]. This ap-
proach for image quality determination is based on a statistical
method of determining low contrast detectability (LCD) as previ-
ously suggested by Chao et al. [45]. In this method, a uniform
phantom is scanned with specified dose and parameter settings. An
array of square regions of interest (ROIs) is defined on the uniform
image that is covering approximately a third of the central image
area. By measuring the distribution of mean CT numbers of the ROIs
and assuming a normal distribution, a prediction can be made of

w.

o ame image quality

Normalised for noise (0:4%) and
resolution (3.6 cvcles/cm at 50%
MTF) using Q equation
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Figure 9. The use of a pervious version of Q to illustrate the relative dose, normalised
by the other factors (courtesy of ImPACT) [slide 36 from Reference 29].

the CT number threshold of a low contrast detail having the same
size as the ROIs in order to detect it at a 95% confidence level. This
threshold contrast C is 3.29 times the standard deviation c. This pa-
rameter is obtained by measuring the mean CT numbers of the ROIs
before calculating their standard deviations. There is a 95% prob-
ability that a low contrast object of the same size as the ROIs is
missed if the contrast is within the normal variation in the ROI
means, i.e. if C<3.29 o. Similarly, with a probability of 5%, a ran-
domly high fluctuation of some ROI numbers could be mistaken for
an actual low contrast object if the contrast of interest is suffi-
ciently small. According to the Nyquist theorem, the ROI size limits
the noise power spectrum (NPS) at a relatively low spatial frequen-
cy (here, approximately 1 Ip/cm). Therefore, a measure of the
detectability of low contrast objects having the same size as the ROIs
suppresses spectral noise components at high spatial frequencies
that are strongly affected by the detector and reconstruction
algorithm.

The CT dose efficiency value (CTDEV) puts all parameters that
are relevant for the specification of LCD into a single number that
is based on the fundamental theory of Rose [46]:

0207(Deq-16)

CIDEV =10° ———
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(29)

with the diameter d of the low contrast detail (here, d =5 mm), the
slice thickness he (in mm), the volume CT dose index CTDI,o 1 for
the 16 cm head phantom, the PMMA-equivalent phantom diame-
ter (in cm) Deg, and the detail contrast (in %, with 1% =10 HU)
C=3290.

The method of Chao et al. can be easily implemented by apply-
ing customary CT phantoms and reduces the variability in LCD
visually specified by human observers in conventional image quality
assessments [45]. Chao’s method has been applied by two CT manu-
facturers for the assessment of low contrast specifications [47]. The
result of the method, however, depends on the size of the pre-
defined ROJ, the location of the CT image slice within the cone beam,
and the filter used for image reconstruction [48]. As with other
figures of merit, such as the Q, value, to apply the CTDEV for CT
benchmarking, certain features must be standardised in detail. These
are the protocol parameter set, reconstruction filter, phantom and
method used.

Measures of diagnostic performance
Visual grading analysis (VGA)

Complementing the physical measurements of image quality, the
assessment by observers is a subjective way to evaluate the image
quality. Several general principles apply to all subjective observer
studies: patients should be selected to have a wide range of body
habitus, they should involve as many observers as possible, and they
should cover the range of expected competencies in the field [49].
When these assumptions are verified, the visual grading analysis
(VGA) based on observer scorings can be used to assess image quality.

VGA provides two types of information [50]:

Firstly, this subjective analysis provides information on the ac-
ceptability of the appearance (i.e. image noise level) of the clinical
images and how the anatomical structures are visualised. For
example the VGA grades the visibility of important structures
for different noise levels, because the detectability of low con-
trast structures is affected by noise, decreasing as the noise level
increases.

Secondly, the subjective evaluation provides a context to
interpret the physical metrics (i.e. MTF, NPS). Human
observer evaluation is subject to change depending on context
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(i.e. brightness, tiredness), so the variability is not negligible and
it is important to have a sufficient number of observers. For in-
stance if a CT has 40% better MTF at high frequencies than another,
but both CTs are rated by a single observer the difference between
both systems will not become significant.

The VGA paradigm is split into two categories: relative grading
and absolute grading.

Relative grading: The observer grades the image quality com-
pared to a reference image or to the other images. The images should
be displayed in random order to avoid any bias (i.e. first image read
bias) and the viewing conditions should reproduce the darkened
environment of the reading diagnosis room [51]. The parameter
studied should be as specific as possible, but it is possible to ask
more than one question in order to evaluate several specifica-
tions. The rating scale used in relative grading can have 3, 5, or more
steps/ranks. The scale with 3 steps is not ideal because it is impos-
sible to differentiate sufficiently. But when the degree of difference
is small, a two step scale can be a possibility. The quality of the test
is dependent on the reference image.

For instance, a scale with 5 steps can be represented by:

—-2: A is much better than B
—1: A'is slightly better than B
0: A and B are equal

+1: B is slightly better than A
+2: B is much better than A

Absolute grading: The observers do not have any references and
the images are displayed one by one. The evaluation is performed
for one image at a time unlike the relative grading. To avoid bias
from observer learning, the reading sessions must be separated in
time. The grading scale should be numerical (i.e. from 1 to 10) or
adjectival. With the adjectival scale, the descriptor should be ex-
pressive in order to create a difference between the worst and best
cases. For instance, the Likert scale is a non-comparative ordinal scale
used especially in psychometric studies where the participants
express their level of agreement with a given statement. Note that
reproducibility is low with this type of study [52-54].

The results of a VGA study can be summarised with the VGA Score
(VGAS):

S
VGAS :L (30)

itNo

where Sc = the given individual scores for observer (o) and image
(i), Ni = total number of images, and No = total number of observ-
ers. In a VGA study to analyse the statistical difference, the analysis
of variance (ANOVA) is calculated, associated with procedures for
multiple comparisons.

For VGA, clinical images are required, which increases the im-
plementation difficulties and also forces the avoidance of naive
observers. Indeed, to assess image quality in the VGA paradigm, the
observer experience is very important if we want the obtained results
to be as little distorted as possible. Nonetheless, VGA results are sub-
jective and the analysis may be influenced by the experience of the
radiologist, for instance in visualising different noise textures.

Decision theory: the statistical approach

It is common practice to specify the performance of diagnostic
systems in physical terms as described in Part 1. However, it is com-
plicated to translate these results to clinical performance. For
instance, in detection tasks, certainty is rarely present. When an ob-
server is asked to detect a signal on a medical image g, the result
is a degree of belief that the signal is present. This degree of belief

Signal absent
P(A]Ho)

»

>
observer response A

FNF
Signal present

p(A[Hy)

probability density function

»

>
observerresponse A

Figure 10. Probability density function of the observer response A when pre-
sented with signal-absent images (top) or signal-present images (bottom). The vertical
line A indicates the threshold response above which the observer gives a positive
response. TNF: true negative fraction; FPF: false positive fraction; FNF: false nega-
tive fraction; TPF: true positive fraction.

is commonly called the response A(g) of the observer: a low value
denotes a confidence that the signal is absent, whereas a high value
corresponds to the conviction that the signal is present. As shown
in Fig. 10, the probability of obtaining a response can be plotted over
all possible responses for two categories of images: those that do
not contain a signal (top) and those that do contain a signal (bottom).
These two curves are called probability density functions (pdf): re-
spectively P(A|Ho) and P(A|H:), where Hy is the null-hypothesis
corresponding to signal absent and H; is the alternative hypothe-
sis corresponding to signal present. In radiology, the observer is
forced to make a decision. In the present framework, this means
that the observer chooses a threshold A, above which a positive de-
cision is made. Below A. the observer makes a negative decision.
The integral of the distribution P(A|Ho) that is below the thresh-
old is called the true negative fraction (TNF), or specificity. On the
other hand, the integral of the distribution P(A|H,) that is above the
threshold is called the true positive fraction (TPF), or sensitivity. If
the detection strategy is good, one expects both specificity and sen-
sitivity to be as high as possible. However, Fig. 10 shows that
changing the threshold changes the balance between specificity and
sensitivity: increasing one parameter leads to a decrease of the other.
There are mainly two ways to quantify the effectiveness of the
strategy. The first is the signal to noise ratio defined as follows:

SNR, =% (31)
%(00 + O )

where Lo and p; are the means of P(A|Ho) and P(A|H;), respective-
ly, and 6, and o are the corresponding standard deviations. SNR;,
is a global figure of merit that broadly describes how two distri-
butions are separated. This equation is similar to Eq. (6) about SDNR
and its purpose is to compare two situations (with and without
noise). However, Eq. (31) characterises the response of an observ-
er and not a signal or a noise directly measurable on an image.

SNR;, = 0 corresponds to the situation where the two pdfs have
the same mean. If their shapes are the same, the decision based on
such a strategy will be just guessing, and therefore the image does
not transfer any information about the presence of the signal. A large
SNR; corresponds to well-separated pdfs. If the threshold is chosen
between the distributions, then a large number of correct re-
sponses are expected.

A second way to quantify the effectiveness of the strategy is the
receiver operating characteristics (ROC) curve, which displays all the
possible combinations of sensitivity and specificity obtainable whilst
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Figure 11. The ROC curve displays the true positive fraction versus the false posi-
tive fraction. If both response distributions are Gaussian with the same variances,
then the intercept between the ROC curve and the second diagonal corresponds to
SNRj.

we vary the threshold from the lowest to the highest possible values
[55].

For historical reasons, the ROC curve displays the TPF versus the
FPF, which is the sensitivity versus the (1 - specificity). If the pdfs
are superimposed, the ROC curve is the straight line TPF = FPF. If the
pdfs are well separated then the ROC curve has a square shape that
passes close to the perfect point defined by sensitivity = 1 and speci-
ficity = 1. If pdfs are Gaussian with equal variances (this is often
assumed in practice), the ROC curve is symmetrical and its inter-
cept with the secondary diagonal corresponds to SNR;, (Fig. 11). The
value computed from the intercept between the ROC curve and SNR;,
is called the detectability index and usually represented with the
symbol d’.

In practice, the observer (e.g. the radiologist) chooses a given
threshold that corresponds to an operating point on the ROC curve.
An objective way to define an optimal combination of sensitivity
and specificity consists of computing the mean cost associated with
all possible combinations of decision (negative or positive) and reality
(signal absent or present):

C:Coop(Do‘Ho)P(Ho)"’C()]P(D()‘Hl)P(H]) (32)

+ CyoP (Dy|Ho )P (Hy ) + C44P (D4 |H, )P (H;)
where Cj is the cost associated with decision D; and reality H;, P(Di|H;)
is the pdf to make a decision D; when the reality is H;, and P(Hy) is
the probability to have a signal present. The latter is called preva-
lence in the case of the disease present in a population. By taking
into account the basic properties of probabilities (e.g.
P(H1)=1-P(Ho)), Eq. (31) can be easily rewritten in terms of the
four costs, sensitivity, specificity and prevalence.

All measures of clinical image quality using the decision theory
are based on the truth. This truth can either be the ground truth
(the truth is known exactly) or a gold standard (based on for in-
stance the pathology outcome or experts opinion). Human observer
studies are valuable as they are able to directly measure clinical
image quality. Unfortunately, these methods are time consuming,
expensive, and the inter- and intra-observer variability is often large.
As a result assessment of clinical image quality is only applied in-
cidentally. These limitations, together with the growing awareness
of the importance of the evaluation of clinical image quality, make
it more relevant to investigate whether model observers can be
used as an objective alternative to human observers. This section
is however limited to the discussion of rating scale experiments

and m-AFC experiments using human observers. Part 3 provides
an in-depth discussion about the use of model observers for this
purpose. To gain insight into the decision making process rating
scale experiments where observers are asked about their decision
confidence can be performed. By varying variation in the decision
threshold ROC curves can be drawn. The section “Rating Scale Ex-
periments” provides more in-depth background of rating scale
experiments. Another way to deal with observer decision criteria
is by using multiple-alternative forced choice (m-AFC) experi-
ments. In m-AFC experiments multiple alternatives are shown to
the observer who is asked (forced) to choose the m-alternative which
is most likely to contain the signal. This type of experiment will
be discussed in detail in the section “Alternative Forced Choice
Experiments.”

Rating scale experiments

ROC analysis is a quantitative method applicable to a binary de-
cision task. The method results in a graphical plot, the so-called ROC
curve (Fig. 11), that illustrates the performance of observers (either
humans or computer models) in the detection or classification tasks
[50,56-58]. In this chapter we focus on the use of ROC analysis with
respect to diagnostic imaging. In diagnostic imaging ROC studies,
observers are asked to evaluate different cases and give a confi-
dence about the presence or absence of an abnormality in each case.
The TPF and the FPF depend on the choice of the confidence level
which results in a positive decision (threshold). Generally, the ROC
curve will be determined from the continuous confidence scale by
varying the discrimination threshold. However, discrete binary con-
fidence intervals can also be used in ROC analysis. An example of
a continuous data experiment could be the assessment of the average
CT number of pulmonary nodules from CT images to classify benign
from malignant nodules (nodules with higher CT numbers are more
likely to be calcified which is a sign of benignity; the average CT
number will generate the continuous data). Discrete data could be
obtained, for example, in a study with radiologists providing a five-
point discrete confidence rating of abnormality concerning a set of
normal and abnormal diagnostic images. For examples of ROC anal-
ysis used in computed tomography see References 59-61.

Theoretically, ROC curves are continuous and smooth. Unfortu-
nately, the empirically derived ROC curves are most often jagged.
Fitting algorithms can aim to create the smoothest curve accord-
ing to the available data points. A wide range of algorithms is
available for this purpose [56]. Often the area under the ROC curve
(AUC or Az) is determined as figure of merit for ROC studies. This
AUC provides a summary measure of the accuracy of the diagnos-
tic test that is independent of class prevalence (in contrast to accuracy
measures mentioned earlier). The AUC would be 1.0 for a per-
fectly performed test. A test performance that is equal to chance
results in an AUC value of 0.5. Sometimes it can be more useful to
look at a specific region of the ROC curve rather than at the whole
curve. In these scenarios, it is possible to compute partial AUC. For
example, one could focus on the region of the curve with a low false
positive rate, which could be relevant for population screening tests
[56]. The detectability, da, related to a rating scale experiment can
be derived from the AUC:

d, =~207'(AUC) (33)
where, cI):j_X o(y)dy is the cumulative Gaussian function and

1 2 : .
o= \/Ee is a Gaussian function.
If the decision variable distribution is Gaussian under both hy-
potheses (signal present and signal absent), and their variances are
equal, then d, is equivalent to d’.
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Figure 12. Related methodologies: ROC, LROC, FROC. The task in each of the methods is to give a confidence level concerning the presence of a true target (ROC) eventually
in combination with the perceived location (LROC/FROC). In these examples the confidence level scale runs from 1 to 5. A rating of 4 on this scale is given as 4/5 (4 out of

5). Arrows indicate the perceived location.

Several advantages of ROC analysis can be considered. Among
these is for instance the fact that the ROC approach provides a
simple graphical plot that facilitates visual interpretation of data.
Furthermore, depending on the implications of false positive and
false negative results, and the prevalence of the condition, one
can choose the optimal cut-off for a test from this graph, as the
method provides a description of diagnostic accuracy for the full
range of sensitivity and specificity. Moreover, two or more tests
(for instance radiologists and a Computer Aided Diagnosis (CAD)
system) can be compared, for example, analysing the area under
each curve (where the better test has the largest AUC) [62].
Shortcomings of ROC analysis are related to its need for special-
ised computer software (regarding the curve fitting, AUC value
calculation and confidence analysis on the ROC curve). Also, large
sample sizes may be needed to generate reliable ROC curves.
Finally, the ROC methodology does not optimally take the localisation
task or the option of multiple abnormalities into account. For this
purpose the so-called localisation ROC (LROC) and free response
ROC (FROC) have been introduced. Figure 12 gives a graphical
impression of the different methods and their concepts. Figure 13
gives a decision tree that illustrates the application of the differ-
ent methods.

In LROC studies the observers’ task is to mark a single location
of a suspicious region in each case with a confidence level regard-
ing the observed suspiciousness [56,57,63]. If the marked region is
“close enough” to the true abnormal location, the observers’ mark
is considered a correct localisation. The definition of closeness is
not uniformly defined and changes from study to study. Images with
no targets (controls, benign, or negative cases) are also scored by
marking a “most suspicious” area in the image and by giving this
suspicious area a rating (forced localisation choice). To create an LROC
curve, the TPF of decisions with correct localisation versus the FPF
are plotted. It should be noted that the LROC curve does not nec-
essarily pass the point (1, 1). Unlike the ROC methodology, in LROC
the TPF of decisions with correct localisation may well be less than
1.0 at FPF = 1.0 because of incorrect localisations. Similar to the ROC

methodology, the area under the LROC curve is considered to be a
figure of merit for task performance.

To account for both the localisation and detection of abnormali-
ties in images containing an arbitrary number of them, the free-
response ROC (FROC) methodology can be used [56,57,63]. If the
localisation mark is within a tolerance range around the true lo-
cation and the rating of this mark is above a threshold, then a TP
is realised. Otherwise a FP decision occurs. The free-response ROC
curves are plotted by plotting the TPF (y-axis) versus the number
of FP detections per image (x-axis) [64,65].

Is location important?

no yes

ROC Are multiple
lesions important?

no yes

LROC  poes jt matter if

There are multiple FP marks?

no yes

Alternative
FROC methods (*)

FROC

Figure 13. Decision tree illustrating the application of the different methods. The
figure is a simplification of a figure provided by Wunderlich and Abbey [63]. Alter-
native methods (*) concern so-called Alternative FROC (AFROC) methods [54].



836 ER. Verdun et al./Physica Medica 31 (2015) 823-843

Alternative forced choice experiments

In forced choice experiments the observer has to make the de-
cision ‘signal present’ between alternatives which are offered, even
if this means that he has to guess. Compared to ROC studies, m-AFC
experiments are faster and easier to perform [66]. However, m-AFC
experiments do not provide insight into the underlying distribu-
tion functions and the trade-off between sensitivity and specificity
[56]. Therefore, m-AFC is sometimes referred to as a poor measure
of sensitivity [67].

The natural outcome of m-AFC experiments is a proportion of
correct (PC) response. In m-AFC experiments and under assump-
tion of Gaussian distribution of the decision variables (1), d” and
PC,, of a m-AFC task are related by:

PC, = [ o™ (d)g(d) (34)

2 .
where ¢(x)= %6’7 and ®(x) =_[ o(y)dy are respectively Gauss-
p -

ian and cumulative Gaussian functions [68].

This formula can be solved using tabulated values or numeri-
cal analysis (standard root finding methods) [69-72]. In the 2AFC
experiment, this can be rewritten to:

d’ =207 (PC,) (35)

For 2-AFC experiments, the PC is equal to the AUC but with
human observers, the detectability obtained with the alternative
forced-choice paradigm is larger than the detectability obtained with
the ROC paradigm [50].

An example of setting for 2-AFC Signal Known Exactly/
Background Known Exactly detection experiments is depicted in
Fig. 14, where samples with signal present or absent are dis-
played together with a template of the target.

A detailed comparison and discussion about the use of ROC and
AFC experiments as well as the optimum selection of m has been
presented by Burgess [66]. This paper concludes that depending on
the research question, a deliberate choice between ROC - m-AFC

Figure 14. Interface of a 2-AFC human observer SKE/BKE detection experiment.
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Figure 15. Selecting SNR range for a 2-AFC experiment (dotted black line) and a 4-AFC
experiment (solid grey line).

experiments and the value of m is possible. In general m-AFC ex-
periments are chosen if the study goal is to determine how well a
certain task can be performed and when there is full control over
both the ground truth and the SNR associated with the task. Most
commonly m has a value of 2 or 4 but any scalar number larger than
two is possible [73]. Burgess has demonstrated that a higher value
of m will result in a smaller coefficient of variance. Besides this, he
has shown that if d’, for experiments with different values of m, is
plotted against the signal to noise ratio (SNR) of the task they will
fall on a the same line, independent of m [74]. From this it can be
concluded that the choice of m depends essentially on the SNR range
for the experiments and the accuracy needed. The SNR range which
can be used for an experiment is dictated by the SNR related to the
lower threshold (halfway between chance and 1) and 0.95-0.98. This
upper level is advised to avoid issues due to observer inattention
and their impact on d’ [66,75]. This means that in a 2-AFC exper-
iment, the SNR range should be chosen to result in d” values between
0.95 and 2.33, whilst this should be between 1.23 and 2.92 for 4-AFC
(Fig. 15).

m-AFC experiments can be designed with m independent image
combinations or single images which are divided into m areas in which
the task can either be signal detection (present-absent) or classifi-
cation (benign-malignant) [76,77]. Sample sizes for m-AFC
experiments are based on the comparison of the expected differ-
ence between the PCs of the settings under evaluation for which
standard statistical approaches can be followed. m-AFC experi-
ments are based on the signal-known-exactly (SKE) paradigm, which
implies that clues should be provided regarding the signal and its po-
sition. Therefore, a template of the signal should be visualised together
with the m alternatives and an indication of the possible position of
the lesion should be indicated. Failure to provide clues on the signal
position will result in non-linearity between SNR and observer d’ [66].
Finally, when designing m-AFC experiments care should be taken to
avoid bias. For this purpose, the signal should be randomly assigned
to one of the m alternatives and the observer PCs should be inves-
tigated for the tendencies to favour certain alternatives (e.g. the observer
tends to choose left when he is unsure) [66].

Simulated and phantom images are generally well suited to
conduct m-AFC experiments because of the full control of ground
truth and SNR related to the task [66]. Phantom studies with the
m-AFC paradigm are used to evaluate image quality of CT with both
human and model observers [77-79]. But also for other modali-
ties m-AFC methodologies are adapted into phantoms for quality
control procedures like the CDMAM test object in mammography
[80] or the CDRAD for general radiology [81,82].

Yes—no detectability experiments

In yes—no experiments observers only need to decide about the
presence of an abnormality. Since yes-no experiments do not provide
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insight into the decision-making process of the observer they are
not often used for measuring clinical performance very often. In the
yes—no experiment the observer inspects one displayed image at
a time and must indicate if the signal is present or absent. For a
model observer, the yes-no performance is computed by compar-
ing the decision variable to a threshold [50]. If the decision variable
is higher than a threshold, the decision is: the signal is present. If
the decision variable is less than the same threshold, the decision
is: the signal is absent. In this test we assume that the case where
the decision variable is equal to a threshold is negligible. With this
performance it is possible to obtain four outcomes: true positive
(the signal is present and the observer outcome is present), false
positive (the signal is absent and the observer outcome is present),
true negative (the signal is absent and the observer outcome is
absent) and finally false negative (the signal is present and the ob-
server outcome is absent). In the yes-no experiment the detectability
index is given by:

dyy = @' (TPF) - &' (FPF) (36)

The TPF represents the True Positive Fraction, and it means the
probability given that the signal is truly present in the image. The
False Positive Fraction represents the probability that when the signal
is absent the observer indicates that the signal is present.

Model observers

ICRU Report 54 suggests that methodologies based on statisti-
cal decision theory should be used in medical imaging [58]. Under
this framework it is understood that the imaging performance
depends on various factors: (1) measures describing the image con-
trast, image sharpness and the quantity and character of noise; (2)
the detailed nature of the diagnostic task, including the clinically
important details and the figure of the patient, and the complexi-
ties arising from variability between patients; and (3) the degree
to which information provided in the image is perceived by the cli-
nician. Points (1) and (2) above are related to the information that
is being recorded in the image data, but the ability of the human
observer to extract the image information (Point 3 above) may also
be an important or even the single limiting factor affecting diag-
nostic outcome.

Related to this, to simplify image quality assessment, the imaging
process is often divided into two separate stages: the first stage con-
sists of the image data acquisition and image formation stage; the
second stage consists of the further processing of these data and
their actual display to the human observer [58,83]. The first stage
can be analysed rigorously by using the concept of the ideal ob-
server, at least in principle and also in practice in simple cases. The
ideal observer uses all available information in an optimal way for
its decision; the performance of the ideal observer in a given imaging
task can then be taken as a measure of the image information related
to this task. The ability of the human observer to extract this image
information can be measured separately; if the human observer is
not able to use the recorded image information this implies leeway
-and a need- to improve the image processing or display stage to
be better suited to the human observer. This chapter will mainly
concentrate on the imaging stage and leave the display stage largely
outside the scope; the main aim of this paper is to review methods
for evaluating CT scanners and their performance and not the quality
of display equipment and display conditions. However, some
methods which try to include features of human observers are
shortly presented.

The performance of the ideal observer can usually be evalu-
ated only for simplified classification tasks, such as the signal-
known-exactly/background-known-exactly case, denoted as SKE/
BKE. In this case the ideal observer has all a-priori information of

the task, and its performance for classifying images to signal-
present and signal-absent cases depends only on the amount of
information in the image [58]. The performance of the ideal ob-
server can therefore be taken as a measure of the task-related image
information. Other tasks, involving uncertainty of the signal and the
background, would be better related to clinical image quality as-
sessment than the SKE/BKE. In such tasks the performance of the
observer is not just dependent on the information in the image. The
amount of a-priori information about the task that the observer has
needs to be taken into account and will affect the performance. It
may then sometimes be difficult to quantify the actual effect that
this a-priori image information has in the task performance.

Relying on stylised imaging tasks based on the SKE/BKE para-
digm may not always be reasonable; see, e.g., Myers et al., where
the problem of aperture-size optimisation in emission imaging was
considered and it was shown that the optimal aperture would be
highly different for the detection of a simple signal in a known back-
ground and in a lumpy background [84]. Often, however, it may be
considered plausible that the performance of an imaging system in
tasks involving incomplete a-priori information could be mono-
tonically related to the outcome in similar detection tasks in the
case of full a-priori information (SKE/BKE) [85-88]. This appears to
be the case in the paper of Brown et al., where the ideal obser-
ver’s performance was studied for the signal position unknown case
[89]. However, we are still far from completely understanding how
a-priori information and the actual image information interact in
medical imaging.

In phantom measurements the variability and non-uniformity
of real patient images are not usually present. In the SKE/BKE par-
adigm any background structure is treated as being a deterministic
known structure, which does not impair detail detectability. This
may not always be realistic for a human observer, whose detec-
tion performance may in some cases be more impaired because of
background variability than because of actual stochastic noise
[90-94], but is certainly applicable to the ideal observer. Human ob-
servers seem to operate somewhere between two interpretations:
background variability appears to function as a mixture of noise and
deterministic masking components. For a more detailed discus-
sion on this matter, see, e.g. Burgess and the references therein [91].

For a thorough presentation of modern image science, see the
book by Barrett and Myers [57] and by Samei and Krupinski [56].
Another useful handbook on imaging systems, image quality and
measurements has been published by the International Society for
Optical Engineering [50]. Also, a discussion and review of task-
based methods for assessing the quality of iteratively reconstructed
CT images have been published recently [25]. They conclude that
Fourier-based metrics of image quality are convenient and useful
in many contexts, e.g., in quality assurance, but the assessment of
iteratively reconstructed CT images requires more sophisticated
methods which do not rely on assumptions of system linearity and
noise stationarity; these assumptions are prerequisites in the Fourier-
based methods [95-97].

Linear observers

Mathematical theory

A linear observer can be described with a decision statistic A(g)
which is a linear function of the image data, instead of being a more
general function. In the vector notation of images this can be written
as an inner product of a template w and the image g

rg)=w'g (37)

The non-zero elements of the template correspond to image lo-
cations where the pixel value needs to be taken into account, and
by what weight. The weight can be either positive or negative. Pixels



838 ER. Verdun et al./Physica Medica 31 (2015) 823-843

with the value zero in the template do not influence the decision
statistic at all, and the observer considers the data in those pixels
to be irrelevant for the decision.

The importance and frequent use of linear observers stems mainly
from their manageability and ease of use. Further, as was seen in
the preceding chapter, the ideal observer of many cases may be ob-
tained in a linear form. This is not the case for all detectability tasks,
however. For example, the ideal detection in the case involving un-
certainty of the signal position will result in a non-linear test statistic
(see, e.g., Brown et al. [89]). A linear observer for this task would
consist just of a template which is obtained as the convolution of
the pdf of the signal position and shape. Therefore, essentially, this
observer would measure only the mean brightness of the image and
it seems clear that it would be much less efficient than a human
observer, for example.

In order to compute the SNR of a linear observer, we first need
to express the mean response under hypothesis Hj as well as its as-
sociated variance:

A =(M(g)H;)=w'(g[H;)

2 T T 2 T (38)

67 :<(w g-(w'gH;)) ‘Hj>:w Kw
This allows us to easily express the signal to noise ratio of a linear

observer by injecting Eq. (38) into Eq. (31):

(W' ((g]H:) - (g[Ho))’ (39)

SNR? =
P WK, + K )w

Here, it is important to recall the assumptions required for Eq. (39)
to be meaningful. First, this requires that the conditional distribu-
tions of A are normal. This is the case at least when the noise in
the images is multivariate normal. Secondly, if the covariance ma-
trices for the signal and background cases are different, the SNR does
not define the entire ROC curve, but the area under the ROC curve
and the percentage of correct answers in a two-alternative forced-
choice test using the same images are still specified by the SNR. An
inequality of covariance matrices K, and K; would also infer that
a linear observer is not ideal, and may fall far beyond the true ideal
observer [98]; however, if measured covariance data are used, it is
useful to improve the precision of the K-estimate by including both
measured covariance, Ko and K;.

By inserting the w-templates of the PWMF and the NPWMF
to Eq. (39) we obtain the well-known expressions for their
SNR

SNRZpyur = S"K's =STW-'S (40)
and
SNR2ypwyr = (s"s)’ /sTKs — (SS)’ /STW'S (41)

where we have denoted the Fourier transform of s by S and that
of matrix K by W. If the noise is stationary, W is a diagonal matrix
and its diagonal values represent the NPS. Then, decomposing the
SNR? to components: each frequency k contributes by amount

SNRZpwiex = 1[Sk|* /Wi (42)

to the total SNR?pwy. This simplicity is lost if W is not diagonal.
The best possible linear observer is called the Hotelling observ-
er. The Hotelling observer is equal to the PWMF in the case of
signal-independent (additive), normally distributed noise and both
of these reduce to the NPWMF, when the noise is white. As
discussed above, the Hotelling observer may also fall far below
ideal performance, for example, in the signal position unknown

case, where the ideal decision statistic is not a linear function of
image data [89].

The strategy of the ideal observer may be complicated by K not
being diagonal. However, in the case of uncorrelated image noise
the strategy is self-evident: the ideal observer then just looks more
keenly to image pixels where the presence of the signal is known
to have a strong effect and where the uncertainty of the measure-
ment (noise) is small. Image areas that are not affected by signal
presence need not be observed at all. This same interpretation applies
to the case of coloured, stationary noise as well; then the Fourier
transformed data will have a diagonal covariance matrix, where the
diagonal elements constitute the noise power spectrum. In this case
the ideal observer puts more emphasis on spatial frequencies where
the signal presence makes a large contribution and less emphasis
on frequencies which contain more noise.

If the image noise is not white, the NPWMF observer is sub-
optimal because it does not take into account the noise correlations
between pixels, or equivalently, the different noise power at various
spatial frequencies. Therefore, in this case, the observer is not tuned
against the noise similarly as the ideal observer and it shows a penalty
of this in its performance. However, if the frequency spectrum of the
signal is concentrated on a relatively narrow band of frequencies where
the frequency dependence of the NPS is modest, one can expect the
NPWMEF observer to perform nearly as well as the ideal PWMF does.
This may happen, for example, when the signal to be detected does
not have sharp details and is of a relatively large size.

However, note that by definition, the NPWMEF believes that the
background level is equal in all images and therefore needs not be
observed. The NPWMF measures the image intensity only in the
pixels that belong to the expected signal position and discards the
data in all other pixels. For a disk signal this would be equivalent
to observing just the total image intensity of the signal disk area
and masking away all other image areas: no reference to the con-
trast between the signal and the background is made. If in fact, there
is any — even small - variation in the background level from image
to image, or if there is any low-frequency background variability
(e.g., variable lumpy background structures) which in reality can
have an effect on the image intensity in the signal detail area, the
NPWMF can be considered as being a misled observer, which will
perform extremely poorly and often performs worse than human
observers. This was the case, for example, in a paper that consid-
ered signal detection in added low-pass correlated noise and found
that the NPWMF observer was very inefficient and even humans
significantly outperformed it [99]. This and other similar results
greatly diminished the interest in the NPWMF observer.

To improve this situation, Tapiovaara and Wagner [98] intro-
duced the DC-suppressing observer, which leaves the average
brightness of the image (or the zero-frequency channel) outside of
the decision." This observer is achieved by subtracting the mean pixel
value of the NPWMF-template from every pixel of the template

Aocs =[s—(N"'=s5,)1]' g (43)

Here, N is the number of pixels in the analysed image area and
1 denotes a vector with all elements equal to unity. In the Fourier
domain this observer is:

hocs =[S-50€°] G=Y " ISIG, (44)

1 In practical imaging measurements one often does not analyse the whole image
area, but considers only a relatively small sub-area containing the signal and a rea-
sonable surround of it. Then the image vector g corresponds to this sub-area, and
the zero-frequency of this image data includes contributions from very low-
frequencies in addition to the strict zero-frequency of the whole image data.
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This modification of the NPWMF-observer turned out to be crucial
for the performance of the observer in measurements of fluoro-
scopic imaging, where excess noise in the mean image brightness
strongly and variably impaired the performance of the NPWMF [100].
This zero-frequency variability can be assumed to be common in
other fields of radiology as well: the exact mean image brightness
is not probably an important diagnostic feature in any imaging mo-
dality, and, on the other hand, if there is excess variability in the
brightness, including it — as the NPWMF does - will result in a
notable performance penalty. Such a variability in average bright-
ness can be seen as a delta spike at the origin of the NPS and can
be properly weighted by the PWMEF, of course. However, in many
recipes for measuring the NPS, the DC-component is normalised out
and therefore equals zero in the NPS results (e.g. Boedeker et al.
[101]). Whilst noiseless data in real systems are not realistic, it is
then important not to include the zero frequency signal compo-
nent in the SNR calculation either.

Non-prewhitening with eye filter

Another modification of the NPWMF includes filtering of the
image with an eye-filter, intended to obtain a better agreement of
the performance of this model observer and human observers. The
observer is often denoted as NPWE [102] (a similar observer model
has been presented earlier by Loo et al. [103]). This observer is usually
expressed in the spatial frequency domain and the eye filter E mimics
the visual spatial frequency response function (or the contrast sen-
sitivity function) of the human eye. The application of E requires
knowing the dimension of the image and the viewing distance. The
decision function of this observer is then:

Mowe =[ES]'EG =S"E'EG (45)

It is noted here that the eye filter also suppresses the zero-
frequency, like the DCS-observer above, but the NPWE observer also
takes very low frequencies into account with a low weighting. This
is the main factor for the NPWE observer performing much better
than the NPWMF in studies involving excess noise in very low fre-
quencies [25,102]. This means that the usefulness of this observer
model may actually be more related to its suppressing of low-
frequency noise than in its attempt to mimic human vision.

As an example of NPWE performance, Fig. 16 shows the detect-
ability index (d”) or SNR as a function of object diameter for the 0.5%
contrast group of the Catphan and three mAs levels acquired in a
Toshiba Aquilion ONE 320 detector-row CT scanner. The NPWE de-
tectability improved with increasing mAs, as the noise level of the
images decreased, for all the objects [50].

10
9 0O50mAs @100mAs @200mAs
8
7
£6
a
S T
°
4
3 T
2 4
1 4
O 4
2 3 4 5 6 7 8 9

Object diameter (mm)

Figure 16. Detectability index (d”) as a function of object diameter for the differ-
ent levels of mAs for the 0.5% contrast group (2-9 mm) in the Catphan 600 Phantom
(Phantom Laboratories, New York).
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Figure 17. Detectability index (d’) of the average human observer as a function of
the NPWE model observer d’, both squared, for 1% contrast objects and all dose values.
The efficiency, n, tallies the slope of the linear fit.

The detectability index is given when two assumptions are veri-
fied [73]. Firstly the template responses must be Gaussian and
secondly the template responses are statistically independent [90].
This performance is given in terms of distance in standard devia-
tion units between the signal distribution and the noise distribution.

2 Fe)=Cn) 46)

O,

where 4 is the mean model response to the signal, and 4, is the
mean model response to the background. o; is the standard devi-
ation of the model response.

The advantage of this metric is that it computes directly from
the image statistic.

Model observers can also be otherwise modified in order to mimic
human performance better, for example, by including internal noise
[104,105]. Internal noise degrades the model’s performance, and
takes into account the fact that human observers have “noise” by
not giving necessarily the same answer when a certain image is pre-
sented twice or more to be scored [106]. Many approaches can be
used to decrease the model’s performance, and each has pros and
cons [105,107]. Such models are of interest in efforts to reproduce
the efficiency of the visual detection performance of humans, but
are not explained in this review. In Fig. 17 the PC values were trans-
lated into d” and an efficiency (1) was calculated to normalise the
model observer results, fitting d” human as a function of d’'NPWE,
both squared. As the curve representing d” as a function of PC satu-
rates above 3 (PC = 0.98) for 2-AFC experiments, only the values
below this threshold were taken into account [108].

Channelised Hotelling Observer

Another type of linear observer models is the Channelised
Hotelling Observer [109] (CHO) either with or without internal noise;
only the latter model is considered here. A thorough treatment of
both can be found in Abbey and Barrett [110]. The motivation for
this observer results both from its effect in reducing the image data
from a large number of pixels to a much lower number of scalars,
called channel responses and by the ability of such models to mimic
the detectability results of human observers. If the channels in the
model are selected such that they help in the tuning against the noisy
frequencies without losing too much of the signal energy they may
also provide an improvement over the non-prewhitening observ-
er types and a useful approximation for the ideal observer. The
reduction of dimensionality especially simplifies computing and
inversing the covariance matrix.
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The CHO does not have access directly to the pixel values (or the
Fourier transform) of the image. Instead, first the image data (g) are
linearly combined to a small number of channelised data (u) by mul-
tiplication with a matrix T:

u=T'g (47)

Here the column vectors of T represent the spatial profiles of the
channels. These channelised data are then combined with a weight-
ing template v to a linear decision function:

A=v'u (48)

If the noise in the image data g is Gaussian, it is also Gaussian
in the channel u, and we already know that the ideal observer
(which, however, has access only to the channelised data) is ob-
tained with weighting v’ = (u; — up)'K, ', and the decision function
of this observer is:

Aaor = (W —p) K, 'u=(u; —up) K, 'T'g (49)

Above, the channels were presented in the image domain. Usually,
however, the channels are specified in the frequency domain, and
may be either non-overlapping frequency intervals or overlapping
functions of various forms, such as sparse or dense difference-of
Gaussians, Laguerre-Gauss polynomials or other functions [109,111].

Note that in the case of stationary image noise the non-
overlapping channel models result also to a diagonal covariance
matrix, because the frequency channels remain independent,
whereas the overlapping channels cause correlations in the noise.
If one prefers working in the image domain, one can obtain the
spatial representations of the frequency selective channels by taking
the inverse Fourier transforms of the latter.

In image quality assessment when using these channelised
models it is important to note that the channelised Hotelling ob-
server can adapt to the signal and the image covariance only after
they have passed through T. Then, for example, the observer is sen-
sitive only to signals that cause a change in the channelised signal
T's (or, equivalently, in the frequency domain representation). For
sparse channel models with just a few channels, a significant loss
of information may occur in the formation of the channel re-
sponses [110].

Also, these observers are typically zero-frequency suppressing,
although, being tuned against the noise in the different channels,
they could also otherwise handle variability in the average image
brightness better than the NPWMF. This would require, however,
that if zero-frequency is included in the lowest frequency channel,
not much of the important signal energy shall be included in this
channel.

Usually, in applications related to medical imaging, the chan-
nels are defined to be cylindrically symmetric and are specified in
terms of the radial frequency. The use of such models is usually re-
stricted to image signals that are also cylinder-symmetric.
Channelised Hotelling observers have been used with good success
to predict the performance of human observers in detection tests.

As an example, Fig. 18 shows the CHO performance (detectabil-
ity index (d’)) with dense of difference of Gaussian for an 8 mm
sphere at 20 HU of the QRM 401 phantom and three CTDI,, levels
acquired in GE HD 750 CT scanner.

Agreement between observers

The first step to compare model observers and model/human ob-
servers is to have the same metrics to measure their performance.
For a specific task, background, signal and model the investigator
must choose between the area under the curve (AUC), sensitivity/
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Figure 18. Detectability index (da) as a function of CTDly for the different algo-
rithms for a sphere of @ 8 mm and a contrast with background of 20 HU in the QRM
401 Abdomen Phantom (QRM, Moehrendorf, Germany).

specificity pairs, the percent correct (PC), the signal to noise ratio
(SNR) or the detectability index (d”), then a comparison is possible.

Kappa test

To measure the agreement between observers it is common to
use the Kappa coefficient. When observers are two or more the inter-
observer variation can be computed. The Kappa test is based on the
difference between the observer agreement (percentage where ob-
servers agree among themselves) and the expected agreement
(agreement obtain just by chance). The formula for the Kappa test
is then as follows:

Do —Pe
_ 50
K=o (50)

where py is the relative observed agreement among reviewers, and
D. is the probability of chance agreement.

The Kappa scale ranges from -1 to 1. 1 represents a perfect agree-
ment; O, the agreement is obtained just by chance; and -1 represents
a systematic disagreement. A generic scale proposed by Landis and
Koch is used to help the investigator to interpret the Kappa coef-
ficient (Table 3) [112].

The Kappa coefficient estimated itself could be obtained just by
chance, so a P value can be calculated to interpret the result of the
Kappa test. The P value is sensitive to sample size, so another Kappa
test can be used to interpret the result, the weighted Kappa assigns
weighting more or less important to different categories, to focus
on categories where the difference is significant. But the weight-
ing is defined by the investigator, and the expert can disagree on
the tuning of the weighted Kappa. The Kappa test is used to inter-
pret the agreement, but this test is affected by the prevalence of the
disease [50] (Fig. 19); in rare cases a low Kappa test does not reflect
a low agreement. Moreover, the Kappa test can give strange results
when the observers have a high degree of agreement and when they
are close to PC=1.

Table 3
Genetic scale investigator to interpret the Kappa
coefficient.
0.01-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-0.99 Almost perfect agreement
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Figure 19. Kappa coefficient in terms of prevalence.

Bland-Altman test

A Bland-Altman plot is often used to compare results between
model observers and human observers [113]. When both observ-
ers measure the same parameter (i.e. d” or PC) with the same images,
most of the time the correlation is good [57,108]. A good correla-
tion for two observers that measure the same parameter does not
imply a good agreement between the two observers.

A Bland-Altman plot shows the mean of the two observers in
the abscissa, and the difference between the two observers in the
ordinate. The limits of agreement are defined by the mean of the
difference and the standard deviation of the difference. If a method
is the gold standard then d represents the bias, whereas if any
methods are standard, d represents only systematic differences.
Figure 20 shows an example comparing the performance of the
NPWE model and human observers for a given detection task.

Conclusion and perspectives

Since the introduction of CT many efforts have been made to
balance image quality with patient exposure. Image quality was first
assessed using signal detection theory, and basic parameters such
as image noise and spatial resolution, which made it possible to eval-
uate the strengths and weaknesses of acquisition protocols. With
the technological developments of CT it became necessary to assess
units in order to objectively enhance the benefit of new techno-
logical solutions. Global figures of merit of image quality were

Difference of PC (%) (human-NPWE)
o

-

o
o
wn

0,6 0,7 0,8 0,9 1
Mean of PC
o NPWE —— A=(0.3%20.9%) ----- A% 26 =[-4.2%, 4.9%]

Figure 20. Bland-Altman plot of proportion correct (PC) difference between human
and NPWE for 1% contrast and all mAs. The straight line represents the average dif-
ference (A) and the dash lines, the range of the differences [A + 26], where ¢ is the
standard deviation of the differences. The NPWE model was corrected by an effi-
ciency of 0.38.

derived, still using signal theory functions, normalising the result
by a standardised dose indicator: the CTDI,. If this approach seems
enticing one has to remember that the use of one number to judge
image quality is a simplified solution that can lead to false conclu-
sions. Moreover, image quality assessment methods based on signal
theory only do not include a clinically relevant task. With this kind
of approach one could optimise aiming at getting the best theo-
retical image quality, rather than ensuring that images convey the
relevant clinical information to make a correct diagnosis. In such
a context, image quality assessment in the field of medical imaging
should be task oriented and clinically relevant.

The use of mathematical model observers may be an appropri-
ate solution, opening a way forward, even if the tasks investigated
remain very simple and far from clinical reality. As shown in the
review, there are several types of model observers, and the choice
of a single solution might not be optimal. The disadvantage of model
observers is that they are defined for simple situations, like the de-
tection of a representative signal in a given phantom, and surely
do not cover the whole range of characteristics that define image
quality at the clinical level. This drawback can nonetheless become
an advantage because their calculation can be kept relatively simple;
they are objective and compatible with new image reconstruction
techniques such as iterative reconstruction. They also lead to re-
producible results which can be representative of human perception
whilst avoiding the burden of actual studies with human observ-
ers. They could be used to compare clinical protocols in terms of
image quality and dose levels to initiate an optimisation process.
Nevertheless, more studies should be performed in the future on
correlations between model observer outcomes and human diag-
nostic accuracy.
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