
Secure Information Flow: Analysis
and Enforcement

Adedayo Oyelakin Adetoye

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
The University of Birmingham
United Kingdom
April 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/77188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

When a computer program requires legitimate access to confidential data, the
question arises whether such a program may reveal sensitive information to an
unauthorised observer. There is therefore a need to ensure that a program, which
processes confidential data, is free of unwanted information flow. This thesis
presents a formal framework for the analysis and enforcement of secure informa-
tion flow in computational systems such as computer programs.

An important aspect of the problem of secure information flow is the develop-
ment of policies by which we can express intended information release. For this
reasoninformation latticesand maps on these lattices are presented as models,
which capture intuitive notions aboutinformationand information flow. A defi-
nition of security is given, based on the lattice formalisation ofinformationand
information flow, that exploits the partial order of the information lattice. The lat-
tice formalisation gives us a uniform way to enforce information security policies
under various qualitative and quantitative representations of information.

An input-output relational model, which describes how a system transforms
its input to publicly observable outputs with respect to a given attacker model, is
presented as a primitive for the study of secure information flow. By using the re-
lational model, various representations of information, which are shown to fit into
the lattice model of information, are derived for the analysis of information flow
under deterministic and nondeterministic system models. A systematic technique
to derive the relational model of a system, under a given attacker model, from the
operational semantics in a language-based setting, is also presented. This allows
the development of information flow analyses parametrised by chosen attacker
models.

A flow-sensitive and termination-sensitive static analysis calculus is presented
for the analysis of information flow in programs written in a deterministicWhile
language with outputs. The analysis is shown to be correct with respect to an
attacker model that is able to observe all program outputs and which can deter-
mine the termination or nontermination of program execution. The static analysis
also detects certain disjunctive information release. A termination-sensitive de-
pendency analysis is developed which demonstrates how, by employing abstract
interpretation techniques, other less precise but possibly more efficient informa-
tion flow analysis may be obtained. The thesis concludes with further examples to
highlight various aspects of the information flow analysis and enforcement frame-
work developed.

Contents

1 Introduction 1
1.1 Modelling Information Flow . 2
1.2 Deriving Information Flow . 4
1.3 Enforcing Secure Information Flow 5
1.4 Overview of Thesis . 5
1.5 Mathematical Preliminaries . 8

2 Language-based Security 13
2.1 Language-based Approach to Security 13
2.2 Multilevel security . 15
2.3 Type-based Certification . 17
2.4 Dependency Analysis . 21
2.5 Equational Characterisation . 24
2.6 PER Model of Information Flow . 26
2.7 Abstract Noninterference . 28
2.8 Language-based declassification . 32
2.9 Information-theoretic Characterisation 35

3 Lattice Model of Information and Information Flow 39
3.1 Modelling Information and Information Flow 40

3.1.1 A Lattice Model of Information 40
3.1.2 Information Flow . 41

3.2 Information Flow Policies . 43
3.2.1 Information Flow Policy Patterns 43

3.3 Secure Information Flow . 47
3.4 System Models and Information Representation 48
3.5 Information Flow in Deterministic Systems 49

3.5.1 An Equivalence Relation Representation of Information . . 50
3.5.2 Lattice of Equivalence Relations 51
3.5.3 A PER Representation of Information 54
3.5.4 Lattice of PERs . 56

i

3.5.5 PERs and Disjunctive Information 58
3.6 Information Flow in Nondeterministic Systems 62
3.7 A Qualitative Representation . 63

3.7.1 Possibilistic Information Representation 63
3.7.2 Lattice of Possibilistic Information 65

3.8 A Quantitative Representation . 69
3.8.1 Probability Measures and Entropy 69
3.8.2 Lattice of Probabilistic Information 75
3.8.3 Deriving Probabilistic Information Flow 77

4 Information Flow in Computational Systems 82
4.1 Operational Semantics and Observational Power 83

4.1.1 Labelled Transition Systems and Interaction 84
4.1.2 Attacker Models . 85
4.1.3 Deriving the Relational Model 87

4.2 TheWhileLanguage . 88
4.2.1 WhileExpressions and Program States 89
4.2.2 WhileCommands . 90
4.2.3 The Operational Semantics ofWhile 90

4.3 Semantic Information Flow Property 94
4.3.1 The Semantic Attacker Model 95
4.3.2 Defining the Information Flow Property 98
4.3.3 Termination Properties . 99
4.3.4 Noninterference . 101

4.4 Other Semantic Definitions of Information Flow 103
4.4.1 The PER Security Model . 103
4.4.2 Gradual Release . 107
4.4.3 Abstract Noninterference Attacker Model 109

4.5 Information Flow in Nondeterministic Systems 113
4.5.1 Possibilistic Nondeterminism 114
4.5.2 Probabilistic Nondeterminism 119

5 Information Flow Analysis of While Programs 127
5.1 Motivating Examples . 127
5.2 Information Flow Analysis with PERs 135

5.2.1 The Attacker Model . 137
5.3 Inducing PERs by Expression Evaluation 137

5.3.1 Conditional Information Flow 139
5.4 Static Analysis of Information Flow with PERs 140

5.4.1 Information Configurations 141
5.4.2 Context-based PERs . 141

ii

5.5 The Information Flow Rules . 149
5.5.1 Analysis ofwrite Statements 150
5.5.2 Analysis ofif statements . 153
5.5.3 Analysis of Assignment Statements 155
5.5.4 Analysis ofwhileStatements 160

5.6 Static Information Flow Property . 165
5.7 Correctness of Static Analysis . 166

5.7.1 Flow Sensitivity . 192
5.7.2 Termination Properties . 192
5.7.3 Dead Code Analysis . 195
5.7.4 Implicit Flow Approximation 196

5.8 Relational Correctness . 197
5.8.1 Judgements . 199
5.8.2 Relational Hoare Logic . 202
5.8.3 Static Analysis . 204
5.8.4 Improving the Precision of Information Flow Analysis . . 205

6 Abstract Information Flow Analysis 207
6.1 Abstract Interpretation . 208

6.1.1 Design Space for Approximate Analyses 209
6.2 Dependency Analysis . 210

6.2.1 Dependency Abstractions 210
6.2.2 Semantics-Based Dependency Analysis 216
6.2.3 Disjunctive Dependency, Nontermination, Dead Code . . . 218
6.2.4 A Dependency Type System 220
6.2.5 Sample Analyses . 222
6.2.6 Correctness of Dependency Analysis 226

6.3 Flow-Sensitive Type Systems . 230
6.3.1 Comparing the Type Systems 231

6.4 Improving the Precision of Expression Types 233

7 Analysis and Discussion 238
7.1 Policies for Authentication . 238

7.1.1 Authentication Attack . 242
7.1.2 Information-theoretic Characterisation 243

7.2 Policies For Encryption . 248
7.2.1 Nondeterministic Encryption 251
7.2.2 Disjunctive Key-Ciphertext Release 252
7.2.3 Perfect Secrecy . 255

7.3 Policies for Statistical Analysis . 256
7.4 Electronic Wallet . 258

iii

7.5 Conclusions . 260
7.5.1 Main Contributions and Achievements 260
7.5.2 Future Work . 263

Appendix 266

A Proofs from Chapter 5 266

iv

List of Figures

2.1 The Volpano-Smith-Irvine Typing rules 20
2.2 The Volpano-Smith-Irvine Subtyping rules 21
2.3 Amtoft-Banerjee Independency Logic 24
2.4 Language-based Declassification 33
2.5 Robustness Typing Rules . 34

3.1 Information flow under two nondeterministic systems 68

4.1 TheWhileLanguage with Output 89
4.2 Operational semantics ofWhile . 92
4.3 Reasoning about program secrets . 93
4.4 ExtendingWhilewith Possibilistic Nondeterminism 114
4.5 The Operational Semantics ofWhile-PND 120

5.1 Explicit Information Flow . 128
5.2 Implicit Flow and a binary-valued Explicit Flow 129
5.3 Implicit Flows could be as dangerous as Explicit Copying 129
5.4 Assignments on all program paths must be considered 130
5.5 Program Output, or the lack of it, on all control-flow paths must

be considered . 131
5.6 Accuracy: Semantic Analysis against Static Typing 133
5.7 Dead Code and Information Flow 133
5.8 Information Flow in the Presence of Nontermination 134
5.9 Disjunctive Information Flow . 135
5.10 A program revealing the parity of its input. 138
5.11 Conditional Information Flow . 139
5.12 Calculus of Information Flow . 151
5.13 PER joins capture information flow via equation solving 152
5.14 Illustratingassignment, conditional, andwrite analysis. 158
5.15 Linear search using awhile loop . 162
5.16 Analysis of thewhile loop . 162
5.17 Nontermination and unreachable code 193

v

5.18 A dead code scenario. 195
5.19 Core DDCC System [Ben04]. 200
5.20 Core Relational Hoare Logic [Ben04]. 201

6.1 Dependency Analysis and Flow Sensitivity 218
6.2 Disjunctive Dependency . 219
6.3 Nontermination and Dependency . 220
6.4 An Algorithmic Dependency Type System 223
6.5 Assignments and Disjunctive Dependency 224
6.6 Outputs and Disjunctive Dependency 224
6.7 Nontermination and Dependency . 224
6.8 Flow-Sensitivity of Dependency Analysis 226
6.9 Hunt-Sands Flow-Sensitive Type Rules (Algorithmic Version) . . . 231

7.1 A Model of Authentication . 239
7.2 A rogue authentication program . 242
7.3 Secure versus Insecure Data Backup 250
7.4 The Occlusion Problem . 251
7.5 Disjunctive Key-Ciphertext Release 253
7.6 Non-Disjunctive Key-Ciphertext Release 254
7.7 Separate Key-Ciphertext Release . 254
7.8 Average Salary Calculation . 258
7.9 Insecure Average Salary Calculation 258
7.10 Electronic Wallet Check . 259
7.11 Electronic Wallet Attacks . 260

vi

List of Tables

5.1 Analysis of awhilestatement . 162

vii

Acknowledgements

I must first thank my supervisor, Eike Ritter, who masterfully introduced me to
formal research. Thank you for your constant support and for always throwing in
the right questions that have helped me immensely to clarify and discipline my
thoughts.

I thank Mark Ryan and Volker Sorge, members of my Thesis Group, for all
your very helpful suggestions and friendly words of advice.

I am fortunate to have a loving and supporting wife, Nike, who endured with
me throughout my academic studies. Thank you darling. Damilola, my beautiful
daughter, has been a constant source of pleasant distractions from academic work.

Many friends and colleagues at the school have made my study here a pleasant
one. Thank you all.

Finally, I thank my Father and Mother, who made many sacrifices that got me
to where I am today.

viii

Chapter 1

In troduction

Today, society is highly-dependent on information and computer networks. The

convenience of connecting computers and other personal devices, and the ease

with which this can be done, has made it ever more difficult to protect sensitive

information from being released in unwanted ways. The security of information

release has thus become a very important problem.

Secure information release orsecure information flowis not a new problem,

but the current standard security techniques do not provide a satisfactory solu-

tion to it. For example, techniques such as cryptography and operating system

access control lists, which can be used to limit access to sensitive information in

computer systems, are of little use once information has been decrypted and re-

leased to a program which requireslegitimate accessto such information. Such

a program can release sensitive information maliciously, or inadvertently due to

programming flaws in it. There is a need for mechanisms through which we can

specify what information we want to release, and whereby we can check whether a

program that has access to such information conforms to the required information

1

flow specification.

This thesis develops a formal framework whereby we can model information

and information flow, which allows us to specify security policies to capture in-

tended information release. The analysis techniques developed allow us to check

whether a system that processes sensitive data conforms to the information release

specifications in a given policy. By these, we are able to enforce secure informa-

tion flow requirements, which is achieved by preventing programs from process-

ing data for which they have not been certified as having secure information flow

with respect to the release policy of that data.

1.1 Modelling Information Flow

The traditional approach to modelling information flow, or rather, the lack of in-

formation flow for the enforcement of security, is through thenoninterferencere-

quirement [GM82]. Noninterference preventsanyconfidential information from

propagating to unauthorised observers and is useful in multilevel security sys-

tems, where information must not flow fromhigh levels of security classifications

to low levels of security classifications. However, in practice (for example, during

authentication, encryption, and when performing statistical analyses), we often

have to, or want to release some information in a controlled manner. Noninterfer-

ence is not suitable under such circumstances. Noninterference as a policy model

is of limited use in practice [RMMG01, Vol99a]. There is thus a need for a general

model for the specification of what information we intend to release.

In [SS05], a taxonomy of declassification mechanisms is introduced based on

what, where, when, and bywhom information is released. This thesis focuses

2

on thewhatdimension, where we are interested in regulatingwhat information an

observer can gain from a system that is processing sensitive data. For this purpose,

a lattice-theoretic model of information and information flow is introduced based

on the observation that securing what information an observer can gain alludes

to a notion of thelevel of information that is considered safe to be released to

the observer. Furthermore, information is intuitivelyordered, whereby we say

that one piece of information isgreater or more informativethan another one.

This suggests an ordering of information, which we exploit in the lattice model of

information to define a notion of secure information flow.

The associated partial order of the information lattice captures the intuition

of information levels or the information order. This allows us to model the flow

of information as maps on the lattice of information, which describe how an ob-

server’s knowledge changes when observing a system that is causing information

flow. By using only the lattice structure in the definition of information flow and

security, we open up the possibility to use the same enforcement technique or

mechanism, regardless of the particular representation of information. Although

lattice-based techniques are often used in language-based security [SM03a], the

lattices are usually of security classes or security types in a multilevel system,

rather than lattices of information. The use of lattices as a general model of in-

formation has the advantage that it unifies various representations of information

under the same model for the enforcement ofwhatdeclassification policies. This

makes it possible to use the same enforcement mechanism under different lattice-

based information representations.

3

1.2 Deriving Information Flow

Once a choice ofinformation representationhas been made, we need to be able

to derive the information that a system may release in order to check whether the

system is secure with respect to an information flow policy. In this thesis,informa-

tion representationsbased onEquivalence Relationsor, more generally,Partial

Equivalence Relations, as well asFamilies of Setsare considered asqualitative

representations of information. Underquantitativerepresentations, information-

theoretic measures are considered as representations of information. These repre-

sentations are all shown to fit into the lattice model of information.

An extensional input-outputrelational modelis presented in the thesis as a

primitive for the analysis of information flow, which derives the information that

a system releases and links the system’s input-output semantics to its information

flow properties under a given representation of information. The simple idea is

that information released by a system is ultimately linked to how the system trans-

forms its secret inputs to publicly observable outputs. The relational model itself

may be defined parametric to a specified attacker model by relating inputs to the

outputs which that particular attacker can observe. Using the relational model,

analyses of information flow under deterministic and nondeterministic system

models are presented. Furthermore, the thesis demonstrates, in a language-based

setting, that the relational model-based analysis copes very well with information

flows due to nontermination.

4

1.3 Enforcing Secure Information Flow

Our objective is to enforce secure information flow by ensuring that only programs

with secure information flow have access to sensitive data. Thus, given an infor-

mation flow policy, which specifies our intentions about what information we al-

low to be released, an enforcement framework is needed that can decide whether a

system is safe with respect to that policy. A semantics-based approach to the anal-

ysis of information flow, which uses the system’s input-output relational model, is

proposed in this thesis. We demonstrate how to derive the relational model from

the operational semantics in a language-based setting. We also present a static

information flow analysis and a dependency analysis for a deterministic impera-

tive Whilelanguage with outputs. The analyses are used to check whether a given

program has secure information flow with respect to given policies. By this, we

can enforce the security of information flow by granting access only to programs

which have secure information flow.

1.4 Overview of Thesis

The objective of this thesis is to study the problem of secure information flow

and to develop techniques to model, analyse, and enforce secure information flow

in computer systems. The current chapter concludes by introducing some of the

mathematical definitions and notations used in the thesis. In Chapter 2, important

language-based techniques for the analysis and enforcement of secure information

flow are reviewed.

The goal of Chapter 3 is to model the notions of information and information

5

flow suitable for the definition of information flow policies. The lattice-based def-

inition agrees with the intuitive notions of information ordering and provides the

basis for the enforcement of secure information flow, where information release

is considered insecure with respect to a policy when it is greater than the levels

permitted in the policy. The notion of information levels is captured by the lattice

order. This approach has the advantage that the enforcement relies only on the

lattice properties, which can be applied independently of the particular represen-

tation of information that is used. Representations of information based on partial

equivalence relations, families of sets, and information-theoretic characterisations

are all shown to fit into the lattice model. Furthermore, Chapter 3 presents an

extensional, semantics-based, relational model approach to the analysis of infor-

mation released by a system, where the relational model describes how the system

transforms its inputs to publicly observed outputs. The relational model links the

input-output semantics of the system being analysed to the lattice-based represen-

tation of information that the system releases.

Chapter 4 shows how to derive the input-output relational model of a system

from the operational semantics in a language-based setting. It starts by consider-

ing interactive systems formalised as labelled transition systems, where the labels

capture what the attacker can observe during each state transition of the system.

This provides a formalism for studying attackers with different observational pow-

ers. As a concrete example, theWhile language is introduced as a programming

language for deterministic systems with interactive outputs and buffered input. A

specificsemantic attackermodel, which is able to observe program outputs as

prescribed by the standard operational semantics ofWhile and can additionally

determine whether the program terminates or not, is introduced in Chapter 4 to

6

illustrate the definition of an attacker model, and the definition of termination-

sensitive analyses. Extensions to the coreWhile language are also presented to

demonstrate analyses of information flow in possibilistic and probabilistic nonde-

terministic systems.

In Chapter 5, a static analysis of the imperativeWhile language is presented.

The analysis, which uses PERs on the set of program states as the representation

of information, is flow-sensitive and termination-sensitive, and is also capable

of detecting certain disjunctive information flows. The static analysis is shown

to be sound with respect to the semantic definition of information flow that the

semantics attacker gains as defined in Chapter 4.

Since the static analysis using PERs may be computationally prohibitive when

the set of states considered is very large, or we may otherwise not want the level

of detail of information that may be represented by PERs over program states,

Chapter 6 demonstrates how the machinery of abstract interpretation may be used

to reduce or simplify the domain over which static analysis is performed, while

maintaining correctness. A flow-sensitive and termination-sensitive dependency

analysis is presented, which is shown to be an abstract interpretation of the con-

crete PER-based analysis of Chapter 5. The dependency analysis also identifies

some disjunctive dependencies.

Chapter 7 concludes the thesis with examples, which highlight various lessons

learnt in the thesis. The chapter reviews the main contributions of the thesis and

suggests areas of future work.

7

1.5 Mathematical Preliminaries

The mathematical developments in this thesis rely on the basic theory of sets and

relations [End77, AGM92], as well as principles from ordered sets and maps be-

tween them [DP03, GHK+03]. This section briefly reviews the important defini-

tions and results, and introduces some of the notations that we shall use.

Sets, Binary Relations, and Functions

A setX = {x0, x1, ..., xn} is a collection of objectsx0, x1, ..., xn, which are called

its elements, and no other elements. The membership relation∈, such asx0 ∈ X,

asserts which element belongs to a set. The opposite relation∉ asserts that an

object does not belong to a set. The Cartesian product of two setsX andY is the

set of pairsX × Y = {(x, y) ∣ x ∈X,y ∈ Y }. Sometimes,X ×X is written asX2.

If X andY are sets,X ⊆ Y asserts thatX is a subset ofY , which means that

x ∈ X impliesx ∈ Y . The empty set, which has no element, is denoted by∅. The

powerset of a setX is P(X) = {Y ∣ Y ⊆ X}, which is the set of all subsets of

X. A family of sets overX is a subset of the powersetP(X). The family of sets

{Yi ⊆ X ∣ i ∈ I} is sometimes denoted byYi∈I or simplyYI , whereI is an index

set. The union and intersection of the family of sets denoted byYi∈I is given by

⋃i∈I Xi and⋂i∈I Xi respectively.

The set-theoretic difference between the setsX andY is the set of elements

in X, but not inY , and is denoted byX/Y = {x ∈ X ∣ x ∉ Y }. The set of natural

numbers is denoted byN = {0,1,2,3, . . .}, and the set of integers is denoted by

Z = {. . . ,−2,−1,0,1,2, . . .}.

We writeR ⊆X × Y to denote abinary relationwhich associates elements of

8

the setX with elements of the setY . Whenx ∈ X is related toy ∈ Y by R, we

write x R y or (x, y) ∈ R. The assertion(x, y) ∉ R means thatx is not related to

y by R. Thegraphof the binary relationR ⊆ X × Y is the set of pairs, which is

defined asgraph(R) ≜ {(x, y) ∈X × Y ∣ x R y}.

A binary relationf ⊆X×Y is afunctionor mapif for any y, y′ ∈ Y andx ∈ X,

x f y andx f y′ implies thaty = y′. The usual notation for functions is to write

f(x) = y wheneverxf y holds. It is also customary to writef ∶X → Y to say that

f is a total function from the setX to the setY . The set of all total functions from

the setX to the setY is denoted by[X → Y].

Partially Ordered Sets

A setX is apartially ordered set(poset) if it is equipped with a binary relation≤,

such that for allx, y, z ∈ X the relation≤ has the following properties:

• x ≤ x, (reflexivity)

• x ≤ y andy ≤ x impliesx = y, (antisymmetry)

• x ≤ y andy ≤ z impliesx ≤ z. (transitivity)

If the relation≤ onX is not necessarily antisymmetric, thenX is apre-orderwith

respect to≤. When we wish to lay emphasis on the order relation of a poset we

write ⟨X,≤⟩ to say that the elements ofX are partially ordered by≤.

Duality Principle

The duality principle says that there is a correspondingdualstatement (S≥) to each

statement (S≤) about an ordered set⟨X,≤⟩, which can be obtained by replacing

9

each occurrence of≤ in S≤ by ≥ and vice versa. IfS≤ is true in all ordered sets

then so also isS≥.

Upper and Lower Bounds

Let ⟨X,≤⟩ be a poset and letS ⊆ X. An elementx ∈ X is anupper boundof S if

for all s ∈ S, s ≤ x. A lower boundis dually defined. The set of upper bounds of

S in X is Su ≜ {x ∈ X ∣ x is an upper bound ofS}. The set of lower boundsSℓ of

S in X is dually defined.

An elementx ∈ Su, if it exists, is said to be theleast upper boundor supremum

of the setS if for all y ∈ Su, x ≤ y. Thegreatest lower boundor infimumof the set

S, if it exists, is defined dually on the setSℓ of lower bounds. Thedown-set↓S of

the setS is defined as↓S = {x ∈X ∣ s ∈ S,x ≤ s}.

Joins and Meets

Let ⟨X,≤⟩ be a poset. Thejoin of two elementsx, y ∈ X, if it exists, is the least

upper bound of the set{x, y}u in X. This is usually written asx ∨ y. Similarly,

themeetof these elements is written asx ∧ y and is the greatest lower bound of

the set{x, y}ℓ in X. More generally, for any subsetS ⊆ X, the join is denoted as

⋁S, and the meet as⋀S, both of which are assumed to be elements of the setX

whenever they exist. If the elements ofS = {si ∣ i ∈ I} are indexed, an alternative

notation is⋁i si and⋀i si for the join and meet ofS respectively.

Top and Bottom

A poset⟨X,≤⟩ is said to have atop or greatestelement, written as⊺ if for all

x ∈ X,x ≤ ⊺. Dually, thebottomor leastelement� ∈ X, when it exists, has the

10

property that for allx ∈ X,� ≤ x.

Pointwise Function Ordering

Let X be a set and let⟨Y,≤⟩ be an ordered set. The order relation≤ on Y in-

duces an order on the set of all maps[X → Y] from X to Y , which is called

the pointwise order, which for anyf, f ′ ∈ [X → Y] we havef ≤ f ′ iff for all

x ∈X,f(x) ≤ f ′(x).

Operators on Partially Ordered Sets

An operator on a poset⟨X,≤⟩ is a functionf ∶X →X, which may have any of

the following properties

• extensivity: if ∀x ∈ X. x ≤ f(x)

• reductivity: if ∀x ∈X. f(x) ≤ x

• idempotency: if ∀x ∈ X. f(f(x)) = f(x)

• monotonicity: if ∀x,x′ ∈X. x ≤ x′ Ô⇒ f(x) ≤ f(x′)

Closure operators

An operator on a poset is anupper closure operatorif it extensive, monotoneand

idempotent. A lower closure operatoris an operator which isreductive, monotone

andidempotent.

11

Fixpoints and Chain Conditions

Let ⟨X,≤⟩ be an ordered set and letf ∶X →X be a map. We say thatx ∈ X is

a fixpoint of f if f(x) = x. The set of fixpoints off is denoted byfix(f). The

ordered setX is said to satisfy theascending chain condition(ACC) if for any

given sequencex1 ≤ x2 ≤ ⋯ ≤ xn ≤ ⋯ of elements ofX, there existsk ∈ N such

thatxk = xk+1 = ⋯. The dual notion to the ACC is thedescending chain condition.

Lattices and Complete Lattices

A non-empty ordered set⟨X,≤⟩ is a lattice if for all x,x′ ∈ X, the joinx ∨ x′

and the meetx ∧ x′ exist. If, furthermore, for allS ⊆ X, ⋁S and⋀S exist,X

is a complete lattice. In order to show that a poset⟨X,≤⟩ is a complete lattice,

it is sufficient to show that⋁S exists for arbitrary subsetsS of X, because the

existence of arbitrary joins guarantees the existence of arbitrary meets [GHK+03].

12

Chapter 2

Language-based Security

This chapter reviews language-based approaches to the problem of secure infor-

mation flow. Language-based approaches to security seek to determine or ensure

program security by analysing the programming language constructs or by using

the language constructs to enforce security.

2.1 Language-based Approach to Security

The term security in this thesis generally refers to the security of information flow

in systems. Although language-based approaches have been used for the protec-

tion of security other than the confidentiality of information, this thesis focuses on

the application of language-based techniques to the problem of secure information

flow.

A traditional approach to the protection of resources in computer systems is

through the use ofaccess control. Access control mechanisms prevent a princi-

pal, such as a user program, from having unauthorised access to resources. How-

13

ever, when a user program requires alegitimateaccess to a resource, such as a

database or file, which contains confidential data, how can we ensure that such

a program does not reveal sensitive information illegally? A language-based ap-

proach to security, which seeks to determine the security of a program by the

analysis of the language-based constructs used in the program, is attractive in

this regard. The semantics of the language constructs provides us with primi-

tives through which we can understanding what a program does with informa-

tion. This makes language-based techniques very powerful. Other techniques

such as those which introduce new security constructs, for example explicit de-

classification constructs [MZZ+08, ZM01, Zda04b, MSZ06, AS07, BNR08], into

the programming language, to ensure safe release of information also fall under

language-based approach to information flow security.

Language-based techniques to security have been used in other areas which are

not necessarily related to information-flow security. Examples include language

and compiler mechanisms to prevent buffer overflow, which may lead to privilege

escalation [NCH+05, CPM+98] vulnerabilities in C programs; andbytecode ver-

ification, stack inspection, andsandboxingtechniques to protect local resources

from networked applications and applets [LY99, Ler03, FG03, Gon99, MF97].

Another language-based approach to security is theproof-carrying code[NL97,

CLN00] mechanism, which uses the premise that checking that a proof (of soft-

ware security) is correct is easier to do than directly verifying the security of a

software. Under the proof-carrying code approach, the program author generates

a proof that his or her software has certain security properties, which the program

consumer can easily verify.

For secure information flow, language-based approaches include static typing

14

systems and dependency analyses [VSI96, VS97, AB04, HS06] where well-typed

programs are guaranteed to satisfy a noninterference property, semantics-based

analysis of secure information flow [JL00, SS01, GM04], information-theoretic

measures of information flows [Den82, CHM02, PHW02], and specialised lan-

guages with explicit declassification constructs [MZZ+08, ZM01, Zda04b, MSZ06,

AS07, BNR08]. Other language-based approaches to information security include

complexity-theoretic analyses [VS00, Lau01, Lau03, BL06] that characterise the

security of information based on the complexity of extracting such information

from a protected system, and runtime monitor-based approaches where monitors

are attached to a program to prevent insecure executions [BD03, GBJS06, SST07,

CC08].

2.2 Multilevel security

One of the first approaches, which uses static analysis for the enforcement of non-

interference in programs, is due to Denning and Denning [Den76, DD77]. In their

work [DD77], a security policy is a pair⟨S,→⟩, whereS is a finite set of security

classes arranged on a lattice, and→⊆ S ×S is a flow relation, which specifies per-

mitted information flow between pairs of security classifications. Objectsx andy

in a system are assigned security classesx andy respectively, and information is

permitted to flow fromx to y if and only if (x, y) ∈→ (written asx → y). The flow

relation→ is reflexive (so that information may flow within the same class) and

transitive.

The lattice properties of the setS are exploited to make program certification

more efficient. Theleast upper boundoperation (∨) and thegreatest lower bound

15

operation (∧) on S are defined so that for any index setI such that for alli ∈

I, xi → y then(⋁i∈I xi)→ y. Similarly, if for all j ∈ J,x → y
j
, thenx → (⋀j∈J yj).

The class⋁i∈I xi is viewed as a common class via which information flows from

the various classesxi to the classy, and similarly the class⋀j∈J yj is a common

class through which information flows fromx to the various classesyj. Under this

framework, information is said to flow from objectx to another objecty (written

asx⇒ y), when the information stored inx is transferred to, or is used to derive

the information that is transferred to the objecty. Information flow is said to be

explicit if the value assigned to objecty is computed directly from the value of the

objectx such as during the function assignmenty ∶= f(⋯, x,⋯), or implicit when

the subprogram that assigns a value toy is executed conditionally onx such as in

the programif(x = 0)then y ∶= 0 else y ∶= 1.

A programP is said to be secure when the information flowx⇒ y is specified

by P only if x → y. A certification mechanismpresented in [DD77] checks this

security condition. The certification mechanism uses the observation that check-

ing whether a programP specifies the flowx⇒ y can be efficiently done through

a staticcertification conditionwhich checks when informationmight flow from

x to y. For example, the programif(x ≥ 10 & x = 9)then y ∶= 0 else skip

suggests that information might flow fromx to y becausey may be assigned in a

control-flow context that is predicated on the value ofx. However, no information

actually flows fromx to y because there is no execution of this program under

which the assignment toy is reached. The certification conditions are purely

syntactic, and they are computed from the security classes of the objects used

in each construct. For example, the certification condition for the assignment

y ∶= x requires that the classification ofx must be strictly below or at most equal

16

to the classification ofy, that is,x ≤ y. For implicit flows such as in the pro-

gram if(x ≤ y)then z1 = 0 else z2 ∶= 1, the certification condition is that

x ∨ y ≤ z1 ∧ z2 - that is, the least upper bound of the classifications ofx andy

is at most equal to the greatest lower bound of the classifications of the assigned

variablesz1 andz2. The purely syntactic nature of the certification conditions and

the use of lattice operation on the security classes of the objects involved makes

it possible to certify programs quickly. However, a stronger, but generally unde-

cidable variant of the security condition above is also proposed in [DD77], which

says thatP is secure if and only if no execution ofP results in a flowx⇒ y unless

x → y.

2.3 Type-based Certification

An established language-based approach for the certification of programs for se-

cure information flow is by the use of a security type system [VSI96, HR98, VS00,

Aga00, HS06], where well-typed programs are guaranteed to have a security prop-

erty. For example, the type system of Volpano, Smith, and Irvine [VSI96] proves

the soundness of the lattice-based multilevel-security analysis of [Den76, DD77]

as a statement of the noninterference property of the program. By proving the

soundness with respect to standard program semantics, well-typed programs are

shown in [VSI96] to have the required noninterference property.

Under the type system of [VSI96], program phrases are assigned security

types which are drawn from a partially ordered set⟨S,≤⟩. The primitive types

τ ∈ S are the so-called “data types”, which are similar to the security classes of

Denning [Den76, DD77].Program phrases, which are expression phrases and

17

command phrases, are assigned phrase typesρ. Expression phrases may be ordi-

nary program identifiers or memorylocations. The language does not have input-

output primitives, however input is achieved by dereferencing an explicit location

and output is achieved by assignment to an explicit location. The syntax of the

block-structured language is the following.

(phrases) P ∶∶= e ∣ c

(expressions) e ∶∶= x ∣ l ∣ n ∣ e + e′ ∣ e − e′ ∣ e = e′ ∣ e < e′

(commands) c ∶∶= x ∶= e ∣ c; c′ ∣ if(e)then c else c′ ∣

while(e) do c ∣ letvar x ∶= e in c

Variables are ranged over byx, andl ranges over locations. All expressions

are integers, wheren is an integer literal, and, 0 and 1 are used as conditional

guards. The phrase types are defined as follows.

(data type) τ ∶∶= s

(phrase type) ρ ∶∶= τ ∣ τ var ∣ τ cmd

The metavariables ranges over of security classes inS, and the typeτ var is the

type of variables and locations, whereas the typeτ cmd is the type of commands.

Under the proposed type system, typing judgements have the form

Λ;Γ ⊢ P ∶ ρ. (2.1)

The finite mapsΛ and Γ, which are respectively calledlocation and identifier

typing, assign types to locations and identifiers. These maps may be updated as

18

usual, where

Γ[x ∶ ρ](x′) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ if x = x′

Γ(x′) otherwise.

The judgement of (2.1) means that the phraseP has typeρ under the assump-

tion thatΛ andΓ respectively prescribe types for the locations and the free iden-

tifiers in P . If the phrase is an expressione, with the typing judgementτ , the

intuition is thate contains expressions at levelτ or lower. However, if the phrase

is a commandc the typeτ cmd means thatc only assigns to variables at levelτ

or higher. These properties, called thesimple securityand theconfinementprop-

erties are enforced by the typing rules. The full typing rules and the subtyping

conditions are given in Figure 2.1 and Figure 2.2 respectively. Using both the

simple security and the confinement properties of the typing system, well-typed

programs can be shown to satisfy a noninterference property.

In order to ensure that explicit information flows are secure, the typing rule

for the assignment statement requires that the variable (x) assigned to, and the as-

signed expression (e), must agree on their security levels (τ). An upward flow is

still allowed during assignment since the type ofe can be coerced up by the sub-

typing rule. Conditional commands are made secure with respect to implicit infor-

mation flow by requiring that the type of the conditional guard and the branch(es)

must agree. As the subtyping judgements of Figure 2.2 shows, the subtyping rule

for commands isantimonotone, since ifτ ⊆ τ ′, and if a command phrase is judged

to have a typeτ ′ cmd, then that command phrase only assigns to variables which

are judged to have typeτ ′ or higher.Thus, an even stronger statement is that the

19

(INT) Λ;Γ ⊢ n ∶ τ

(VAR) Λ;Γ ⊢ x ∶ τ var if Γ(x) = τ var

(VARLOC) Λ;Γ ⊢ l ∶ τ var if Λ(x) = τ var

(ARITH-op)

Λ;Γ ⊢ e ∶ τ,
Λ;Γ ⊢ e′ ∶ τ
Λ;Γ ⊢ e ope′ ∶ τ

op ∈ {+,−,=,<}

(R-VAL)
Λ;Γ ⊢ e ∶ τ var
Λ;Γ ⊢ e ∶ τ

(ASSIGN)

Λ;Γ ⊢ x ∶ τ var,
Λ;Γ ⊢ e ∶ τ
Λ;Γ ⊢ x ∶= e ∶ τ cmd

(COMPOSE)

Λ;Γ ⊢ c ∶ τ cmd,
Λ;Γ ⊢ c′ ∶ τ cmd
Λ;Γ ⊢ c; c′ ∶ τ cmd

(IF)

Λ;Γ ⊢ e ∶ τ,
Λ;Γ ⊢ c ∶ τ cmd,
Λ;Γ ⊢ c′ ∶ τ cmd
Λ;Γ ⊢ if(e)then c else c′ ∶ τ cmd

(WHILE)

Λ;Γ ⊢ e ∶ τ,
Λ;Γ ⊢ c ∶ τ cmd
Λ;Γ ⊢ while(e) do c ∶ τ cmd

(LETVAR)

Λ;Γ ⊢ e ∶ τ,
Λ;Γ[x ∶ τ var] ⊢ c ∶ τ ′ cmd
Λ;Γ ⊢ letvar x ∶= e in c ∶ τ ′ cmd

Figure 2.1: The Volpano-Smith-Irvine Typing rules

command assigns to variables atτ or higher, and henceτ ′ cmd ⊆ τ cmd. This

fact is exploited for upward flows from the guard to the branches, which allows

branches typed at a higher level to be predicated on a lower guard, by either coerc-

20

(BASE)
⊢ τ ≤ τ ′

⊢ τ ⊆ τ ′

(REFLEX) ⊢ ρ ⊆ ρ

(TRANS)
⊢ ρ ⊆ ρ′, ⊢ ρ′ ⊆ ρ′′

⊢ ρ ⊆ ρ′′

(CMD−)
⊢ τ ⊆ τ ′

⊢ τ ′ cmd ⊆ τ cmd

(SUBTYPE)

Λ;Γ ⊢ P ∶ ρ,
⊢ ρ ⊆ ρ′

Λ;Γ ⊢ P ∶ ρ′

Figure 2.2: The Volpano-Smith-Irvine Subtyping rules

ing the type of the branches downwards using the antimonotonicity of commands,

or by using the usual (upward) coercion subtyping rule for the conditional guard.

Various extensions to the programming language and the type system have been

proposed [SV98, VS00, Smi01, Smi03, Smi06].

2.4 Dependency Analysis

Another static approach to checking whether a program satisfies noninterference

is via a dependency analysis of variables in the program [ABHR99, AB04, HS06].

This is based on the premise that in a setting where the attacker can only observe

the final values of public variables on program termination, the static indepen-

dency of the final value of a public variable on the initial secret values stored

in other variables of a program is a static approximation of the noninterference

property of that program.

Amtoft and Banerjee [AB04] presented a framework for the static enforcement

21

of noninterference policies via a variable-independency analysis. The analysis is

based on an abstract interpretation of program traces that makes explicit the inde-

pendencies between program variables. Being a data-flow analysis, the inference

logic deems more program secure than security type systems such as [VSI96].

For example, under the [VSI96], if we haveΓ(h) = H andΓ(l) = L for some

variablesh andl, and whereL < H the program, the programl ∶= h; l = 0 is not

typable because the first statement directly assigns a higher security-typed expres-

sion to a variable that has a lower security type. Although the program contains

an insecure subprogram, however the program as a whole is secure because the

high content ofl is overwritten by the constant0 during the second assignment

before the attacker can observe the content ofl (on termination). This property is

calledflow-sensitivity, where the order of commands matters. Such a secure com-

position of insecure programs is detectable in type systems of [AB04, HS06], for

example, but the type system of [VSI96] cannot detect this. This is because the

type system of [VSI96] does not take into account the order of program execution,

and is therefore flow-insensitive.

The inference rules of [AB04] are presented in a Hoare-like logic, which de-

rives independencies between program variables on termination of a program frag-

ment, given the independencies before the execution of that fragment. In the pre-

vious example,l becomes dependent onh after the first assignment, but becomes

independent after the second assignment (written as[l#h], which means that the

value of variablel is independentof the initial value of variableh). The anal-

ysis of [AB04] conservatively extends the type system of [VSI96], where well-

typed programs in the system of [VSI96] satisfy the invariant[l#h] in the system

of [AB04], which asserts that, on program termination, the value of anL-typedl

22

variable is independent of the initial value of anH-typed variableh.

Judgements in the system of [AB04] are of the form

G ⊢ {T#
1 } P {T

#
2 }. (2.2)

Given the setVar of variables, the setsT#
1 , T

#
2 ∈ Independ= P(Var ×Var) are

sets of variable independencies, andG ⊆ Var is animplicit-flow contextdescrib-

ing the set of variables, values of which the program control flow might depend on.

The setG is used to eliminate implicit information flows. The meaning of (2.2) is

now that if the independencies inT#
1 holdbeforethe programP is executed under

the control contextG, then, provided thatP terminates, the independencies inT#
2

hold after the execution ofP . The intended meaning of any[z#x] ∈ T#
2 is that

thefinal value ofz after executingP is independent of theinitial value ofx from

the computation precedingP .

The independency inference logic of [AB04] is shown in Figure 2.3. In the

rulesFV (e) ⊆ Var is the set of free variables of the expressione and the partial

order relation⪯ on sets of independencies is defined as the reverse subset inclusion

order on independencies:T#
1 ⪯ T

#
2 iff T#

2 ⊆ T
#
1 .

An equivalent derivation to [AB04] was presented by Hunt and Sands [HS06],

which is based on standard semantics. As opposed to the approach of [AB04],

which computesindependenciesof variables, the inference rules of [HS06] com-

putes variabledependenciesdirectly when the lattice of dependency is chosen to

be the powerset latticeP(Var) of variables. The dependency result of [HS06]

is the De-Morgan’s dual of the independency computation of [AB04], and both

type systems enforce a partial correctness noninterference property for well-typed

23

[Assign]G ⊢ {T#
0 } x ∶= e {T#} if ∀[y#w] ∈ T#.

x ≠ y Ô⇒ [y#w] ∈ T#
0 ,

x = y Ô⇒ w ∉ G ∧ ∀z ∈ FV (e).[z#w] ∈ T#
0

[Seq]
G ⊢ {T#

0 } c {T
#
1 } G ⊢ {T#

1 } c′ {T
#
2 }

G ⊢ {T#
0 } c; c′ {T

#
2 }

[If]
G0 ⊢ {T

#
0 } c {T#} G0 ⊢ {T

#
0 } c′ {T#}

G ⊢ {T#
0 } if(e)then c else c′ {T#}

if G ⊆ G0 and
w ∉ G0 Ô⇒ ∀z ∈ FV (e).[z#w] ∈ T#

0

[While]
G0 ⊢ {T#} c {T#}

G ⊢ {T#} while(e) do c {T#}

if G ⊆ G0 and
w ∉ G0 Ô⇒ ∀z ∈ FV (e).[z#w] ∈ T#

[Sub]
G1 ⊢ {T

#
1 } c {T

#
2 }

G0 ⊢ {T
#
0 } c {T

#
3 }

if G0 ⊆ G1 andT#
0 ⪯ T

#
1 andT#

2 ⪯ T
#
3

Figure 2.3: Amtoft-Banerjee Independency Logic

programs. The algorithmic version of the dependency type system of [HS06] is

presented in Chapter 6, where it is compared with a dependency analysis proposed

in this thesis.

2.5 Equational Characterisation

Joshi and Leino [JL00] proposed a semantics-based equational characterisation

of the noninterference property of a system, via a special program constructHH

(also known as “havoc onh”, which stands for the “destruction” of thehigh por-

tion of memory). Under this approach, in the simplest case, it is assumed that

program memory is partitioned to two, namely, thehigh-securityportionh (which

is a tuple over the domains of high-security variables) and thelow-securitypor-

24

tion l (which is a tuple over the domains of low-security variables). Furthermore,

it is also assumed that the attacker has the program sources and can observe the

l-portion of the memory before and after program execution, but cannot directly

observe theh-portion. The intention is that, in a secure program, information

should not flow from theh-portion of the memory to thel-portion, although the

reverse flow is permitted.

A relational semantics is used to describe the properties of programs such that

for any programP , σ ⟨P ⟩ σ′ signifies that there is an execution ofP from the

initial stateσ to the final stateσ′. A special “looping state”∞ is also considered,

which has the property that for all programsP , ∞ ⟨P ⟩∞ holds, preventing any

program from exiting the looping state. For any variablex, the evaluation ofx

at the looping state∞ is∞(x) = �x, which is taken to be a special value outside

the domain ofx. The semantics ofHH is defined such that for all statesσ,σ′, we

haveσ ⟨HH⟩ σ′ iff σ(l) = σ′(l).

Using the programHH, the security property of a programP is formalised as

a total correctness program equivalence as follows.

A programP is secure iff

HH ;P ;HH =l P ;HH. (2.3)

The relation=l in this definition may be viewed as comparing only thel-portions

of the memory. The intuition behind definition (2.3) is that regardless of the initial

values in theh-portion of the memory in the two programs, as long as the initial

l-portion is the same, then the finall-portions of memory agree. The trailingHH

on both sides of=l means that we do not care about the final values in theh-

25

portions of memory, since it cannot be observed by the attacker. If programs are

replaced by their relational semantics in (2.3) and; stands for the relation compo-

sition operator, then the relation=l is simply the equality of relations. This simple

semantic definition captures the noninterference property of the programP be-

cause the initialh-portion of the memory is noninterfering with the final result of

the l-portion of memory wheneverP is secure. This definition has motivated the

work of [BGM07], and is related to the PER-based semantic definition of [SS01].

2.6 PER Model of Information Flow

It is a well-known fact in language-based information security that the notion of

noninterference in security is closely related to the notion of (in)dependencies.

Motivated by the work of Hunt, which used PERs to construct the abstract in-

terpretation of strictness properties in higher-order functional programs [Hun91a,

Hun91b], and, in particular, to model dependencies inbinding time analyses[HS91],

Sabelfeld and Sands proposed a PER model for the analysis of secure informa-

tion flow [SS01, Sab01]. The PER model, which is semantics-based, was shown

in [SS01] to generalise the semantic characterisation of security of [JL00].

The idea behind the PER-based characterisation is the observation that the

variation (or lack of it) in the publicly observable output of a program relative

to thevariation in the private input to the program can be modelled by PERs on

the output and input domains of the program respectively. By fixing all other

inputs in a deterministic program, if no variation is observable in a given public

output under all variations of a confidential input, then there is no information

flow from that input to that output via the program. This intuition is captured by

26

PER-transformer relation,_ (defined below), between PERs over the program’s

input and output domains.

For simplicity, it is assumed that program inputs and outputs are partitioned to

two parts, namely, ahigh-securitypart (whose domain is the setH, say), which

is not publicly observable. The second part is alow-securitypart (whose do-

main is the setL) that is observable publicly only before and after, but not dur-

ing, program execution. Programs (P) whose denotations are maps of the form

JP K ∶ H ×L →H ×L are considered. Now letPER(S) be the set of all PERs over

the setS, and for any two PERsR1 ∈ PER(S1) andR2 ∈ PER(S2), define the PER

R1 ● R2 such that for any(s1, s2), (s′1, s
′
2) ∈ S1 × S2, (s1, s2)R1 ● R2 (s′1, s

′
2) iff

s1R1s
′
1 ands2R2s

′
2. The security property of the programP is described in terms

of its denotational semantics, such that ifQ,Q′ ∈ PER(H) andR,R′ ∈ PER(L),

thenLP M ∶ (Q ●R)_ (Q′ ●R′) holds iff for all (h, l), (h′, l′) ∈H ×L

(h, l)Q ●R (h′, l′) Ô⇒ JP K(h, l)Q′ ●R′ JP K(h′, l′). (2.4)

The intuition behind (2.4) is that under the PERsQ ● R andQ′ ● R′ defined

respectively over the input and output domains ofP , any pair of inputs that is

indistinguishableby Q ● R (that is, pairs of inputs that are are related by this

PER), lead to outputs ofP that are also indistinguishable by the PERQ′ ●R′. The

definition is compositional so that for two programsP andP ′ we have

LP M ∶ A_ B, LP ′M ∶ B _ C

LP ;P ′M ∶ A_ C

Let idS,allS ∈ PER(S) be PERs overS defined such that for alls, s′ ∈ S,

27

s idS s′ iff s = s′ ands allS s′. Using (2.4) the noninterference security condition

for the programP is now the following.

The programP is secure iff

LP M ∶ (allH ● idL)_ (allH ● idL). (2.5)

This means that if an attacker can observe the value of the public input only (the

idL part of the PER over the input domain), then for each possible value of the

public output (theidL part of the PER over the output domain), all the values of

the secret input are possible (theallH part of the PER over the input domain). That

is, if the public input is fixed, any variation in the secret input is not observable

by the attacker in a secure program. This is a statement of the noninterference

requirement of [GM82]. The security definition of (2.5) is termination-sensitive

by requiring that the termination properties of a secure program must not be in-

fluenced by the values of secret inputs. By defining the PERs over appropriate

powerdomains, the definition of (2.5) is shown to also describe the security prop-

erties of nondeterministic systems.

2.7 Abstract Noninterference

Giacobazzi and Mastroeni introduced in [GM04, GM05] a notion of abstract non-

interference as a semantic description of the information released by a program

based on standard techniques from abstract interpretation [CC77, CC79]. The

core idea is that instead of observing the concrete values of the public input and

output data in a program, the attacker is modelled as anabstract interpretation

28

that can observe only the properties of these data, that is, theabstract seman-

tics of the program. By weakening the observational capability of the attacker

so that the attacker is only able to observepropertiesof data, the noninterference

requirement can be weakened since an otherwise offending program under non-

interference may become safe in the presence of an attacker that cannot observe

public input and output precisely.

The concrete domainC is taken to be the powerset lattice of concrete program

values with the subset order relation. As usual, the concrete domain is partitioned

to two setsH andL, which are the domains of confidential and public values

respectively. Letuco(P(C)) be the set of allupper closure operatorson the or-

dered set⟨P(C),⊆⟩, the abstract domains are based on upper closure operators

η,ρ ∈ uco(P(L)) andφ ∈ uco(P(H)), which are defined over the concrete do-

main of program values. Under this framework, the attacker is modelled as a pair

of abstractions⟨η,ρ⟩, whereη andρ model respectively the attacker’s observa-

tional power over the public input and output values. The concrete semantics of

the programP is formalised usingangelic denotational semantics, which asso-

ciates an input-output function,JP K ∶ H ×L→H ×L, with P and ignores nonter-

mination. Furthermore, the observation of (public) values occur at the beginning

of program execution and on program termination. To slightly simplify the no-

tations, we shall denote the concrete semantics ofP as a mapJP K ∶ H ×L → L,

throwing away theH projection of state on termination, which is not used. Addi-

tionally, for singleton sets we shall writeη(l) instead ofη({l}) for the image of

{l} underη. A programP is said to satisfy thenarrow abstract noninterference

29

(NANI), written as[η]P (ρ), when for allh,h′ ∈H andl, l′ ∈ L

η(l) = η(l′) Ô⇒ ρ(JP K(h, l)) = ρ(JP K(h′, l′)). (2.6)

The intuition behind definition (2.6) is that if the attacker can only observe the

propertiesη and ρ respectively of the public input and public output, then no

information about the secret input flows viaP whenever[η]P (ρ) holds.

A problem with this definition is the so-called notion ofdeceptive flows, where

a program that fails to satisfy the NANI property may still not reveal any in-

formation about secrets. To see why, let the set ofeven, odd, positive(includ-

ing 0), and negativeintegers be respectively defined asEven ≜ {2i ∣ i ∈ Z},

Odd ≜ {2i + 1 ∣ i ∈ Z}, Pos ≜ {i ∈ Z ∣ i ≥ 0}, Neg ≜ {i ∈ Z ∣ i < 0}. Now

supposeh ∈ H ≜ Z and l ∈ L ≜ Z and consider the programl ∶= l × h2 under

theparity andsignabstraction pair⟨η,ρ⟩ ≜ ⟨Par,Sgn⟩, which are given by their

set of fixpoints1 fix(Par) = {Z,Even,Odd,∅} andfix(Sgn) = {Z,Pos,Neg,∅}.

If an attacker can only observe the parity ofl before executing this program and

its sign afterwards, then that attacker cannot gain any information abouth since

the sign ofh has been destroyed in the final value ofl by taking the square of

h. However, the property[Par]l ∶= l × h2(Sgn) does not hold. This is due to

Par-indistinguishablel-input values that areSgn-distinguishable causing the “de-

ceptive flow”. To eliminate this flow, a check is performed instead on theset of

outputs, with a fixedη-property on the input. This is denoted as(η)P (ρ), which

1Closure operators are completely determined by their set of fixpoints.

30

holds if for allh,h′ ∈H andl ∈ L

ρ(⋃
l′∈η(l)

{JP K(h, l′)}) = ρ(⋃
l′∈η(l)

{JP K(h′, l′)}). (2.7)

The definition of NANI, can further be weakened to allow information flow

about secret inputs. This information flow about secret is specified by the upper

closure operatorφ ∈ uco(P(H)) on secrets. The resulting notion is calledab-

stract noninterference(ANI), written as[η]P (φ ↝ 8ρ), which holds if for all

h,h′ ∈H andl ∈ L

ρ(⋃
h1∈φ(h)
l′∈η(l)

{JP K(h1, l
′)}) = ρ(⋃

h2∈φ(h
′)

l′∈η(l)

{JP K(h2, l
′)}). (2.8)

The meaning of the ANI definition of (2.8) is that under the fixed attacker model

⟨η,ρ⟩, the attacker cannot gain the information characterised by the upper closure

operatorφ. The idea is that by fixingl to the propertyη (to eliminate “deceptive

flows”) and evaluatingP under all variations ofh that are constrained by the

propertyφ, the attacker observing theρ property of the public output cannot see

any difference. This is referred to as “declassified ANI via blocking” in [Mas05],

since the propertyφ cannot be observed. A related notion, called “declassified

ANI via allowing”, allows the propertyφ to be observed. This is denoted as

(η)P (φ Ô⇒ ρ) and is defined as∀h,h′ ∈ H and∀l ∈ L

φ(h) = φ(h′) Ô⇒ ρ(⋃
l′∈η(l)

{JP K(h, l′)}) = ρ(⋃
l′∈η(l)

{JP K(h′, l′)}). (2.9)

Under this notion, we only check that the attacker cannot observe a difference

31

under pairs ofh-values with the sameφ property. Since the attacker may be able

to observe a difference inρ whenφ(h) ≠ φ(h′) information aboutφ mayflow.

2.8 Language-based declassification

Another language-based technique for the enforcement of secure information flow

uses explicitdeclassificationconstructs that are added to the programming lan-

guage, so that intentional release of information may only be performed by us-

ing a declassification construct. This approach has been well studied [MZZ+08,

ZM01, SM03b, CM04, Zda04b, MSZ06, AS07, BNR08].

Zdancewic, Myers, and Sabelfeld introduced a notion ofrobust declassifica-

tion [ZM01, Zda04b, MSZ06], which features a language-based declassification

construct for the controlled release of information. However, the provision of an

information downgrading construct raises the question of whether the declassifi-

cation mechanism can be exploited by attackers to launder information. A notion

of robustnessensures the safety of the declassification mechanism so that neither

attacker-injected values nor attacker-inserted code can be used to controlwhat in-

formation is released, orwhetherinformation is released. This means that, due

to robustness, anactiveattacker, which can both modify and observe a system

cannot gain more information than apassiveattacker that can merely observe the

system.

The security model is based on a latticeL ≜ LC ×LI derived from the product

of a confidentialitypolicy latticeLC and anintegrity policy latticeLI , which are

used to reason about both the confidentiality and integrity of data as well as the

integrity of code in the system. The notion of integrity is a dual notion of con-

32

fidentiality. High-integrity data (and code) are trusted and are assumed not to be

under the control of attackers, whereas low-integrity ones are not trusted and are

assumed to be under the control of the attacker. The latticeL is partially ordered

by ⊑, and attackers are assigned security levels such that an attackerA, charac-

terised by its levelℓA ∈ L, may only view information at confidentiality level2

π1(ℓA) and below on the confidentiality latticeLC . Furthermore, this attacker can

only modify data at integrity levelπ2(ℓA) and above on the integrity latticeLI .

Under this framework, a typing environment,Γ ∶Var → L, assigns security types

to variables. Expression types are derived by taking the least upper bound of the

types of the free variables of that expression. With the exception of the declas-

sification expression, the programming language is largely standard as shown in

Figure 2.4.

e ∶∶= n ∣ x ∣ e1 op e2 ∣ declassify(e, ℓ)

c ∶∶= skip ∣ x ∶= e ∣ c1; c2 ∣
if(e)then c1 else c2 ∣ while (e) do c

Figure 2.4: Language-based Declassification

The operationopstands for the usual arithmetic and boolean operations on ex-

pressions andℓ ∈ L is a security level. The declassification expressiondeclassify(e, ℓ)

has the same operational semantics as the expressione. However,declassify(e, ℓ)

allows the security level ofe to be declassified to the levelℓ ∈ L. Thus, the

declassification mechanism is used to control the security level of information,

which is checked statically, and is intended to have no semantic effect on pro-

2The notationπi(⋅) is theith projection, and the confidentiality lattice is arranged from top to
bottom with the highest confidentiality at the top, whereas the integrity lattice is arranged with the
lowest integrity at the top.

33

gram execution. Since information may flow from variablex to another variable

y only if Γ(x) ⊑ Γ(y), the choice of latticeL and the typing environmentΓ spec-

ifies asecurity policy. The security framework is formalised as a type system so

that well-typed programs satisfy the robustness property. The full type system is

shown in Figure 2.5.

Γ ⊢ n ∶ ℓ
Γ(x) = ℓ
Γ ⊢ x ∶ ℓ

Γ ⊢ e ∶ ℓ Γ ⊢ e′ ∶ ℓ
Γ ⊢ e op e′ ∶ ℓ

Γ ⊢ e ∶ ℓ ℓ ⊑ ℓ′

Γ ⊢ e ∶ ℓ′

Γ, pc ⊢ skip
Γ ⊢ e ∶ ℓ ℓ ⊔ pc ⊑ Γ(x)
Γ, pc ⊢ x ∶= e

Γ ⊢ e ∶ ℓ′ ℓ ⊔ pc ⊑ Γ(x) π2(ℓ) = π2(ℓ′)
pc, ℓ′ ∈ {ℓ′′ ∈ L ∣ π2(ℓA) /⊑ π2(ℓ′′)}
Γ, pc ⊢ x ∶= declassify(e, ℓ)

Γ, pc ⊢ c1 Γ, pc ⊢ c2
Γ, pc ⊢ c1; c2

Γ ⊢ e ∶ ℓ Γ, ℓ ⊔ pc ⊢ c1 Γ, ℓ ⊔ pc ⊢ c2
Γ, pc ⊢ if(e)then c1 else c2

Γ ⊢ e ∶ ℓ Γ, ℓ ⊔ pc ⊢ c
Γ, pc ⊢ while (e) do c

Γ, pc ⊢ c pc′ ⊑ pc
Γ, pc′ ⊢ c

Figure 2.5: Robustness Typing Rules

The typing system is fairly straightforward and is parametric to the environ-

mentΓ and the attacker levelℓA, against which the typable program is robust. The

pc ∈ L level is used to rule out implicit flow of information and also to ensure that

the attacker cannot control whether declassification can take place or not. The

important rule is the typing judgement for the assignmentx ∶= declassify(e, ℓ),

where the expressione with typeℓ′ is to be declassified to the levelℓ. For this to

be successful, the security level of the assigned variablex must be at leastℓ ⊔ pc,

34

ensuring that no implicit information flows tox and that it cannot be corrupted

by a lower integrity data. Furthermore, it is required that declassification should

not change the integrity of the declassified information (π2(ℓ) = π2(ℓ′)), and that

the “attacker”, which has control over whether the declassification expression is

executed (thepc part) and which might have tainted the data ine (the ℓ′ part)

must have an integrity level that is strictly greater than the integrity level of the

declassified expressione so thatpc, ℓ′ ∈ {ℓ′′ ∈ L ∣ π2(ℓA) /⊑ π2(ℓ′′)}.

2.9 Information-theoretic Characterisation

Qualitative definitions of information flow describe what information is released

only in a possibilistic sense. That is, they specify whether it ispossibleor not that

certain information may be released by a system, but they do not usually capture

the notion of howlikely it is for that information flow to occur. While it may be

possible that certain information may be released by a system, it may be extremely

unlikely that such information flow may occur. Quantitative measures of informa-

tion flow, in particular, information-theoretic characterisation can capture a sense

of how likely it is for information to flow in the amount of information released.

In cases where the semantics of a system is characterised by probability dis-

tributions, information-theoretic measures of information flow can be particularly

useful. Even in cases where the semantics of a system is deterministic, but where

the choice of inputs to the system is governed by probability distributions, it is

still possible to apply information-theoretic techniques to characterise the infor-

mation release. The basic model of security under quantitative characterisations

is similar to the qualitative definitions such as the traditional noninterference def-

35

inition. However, instead of checking whether information may flow as is done

under noninterference, quantitative approaches seek to assign a quantity to the

amount of information that flows. A system that has no probabilistic information

flow, for example, will also satisfy the standard noninterference requirement.

One of the earliest application of information theory to information flow in a

language-based setting is by Denning [Den82]. Since then, the use of quantitative

techniques, especially information theory, for information flow has been an active

area of research [CHM02, PHW02, Low02, ABG04, CHM05, CMS05, Bac05,

OCC06, Mal07, Smi07, CHM07, AP08].

In [CHM05] an analysis technique is presented, which computes an upper

bound of the amount of information released in programs written in a deterministic

imperative language with a looping construct. The analysis of [CHM05] has two

parts. Firstly, a Use-Definition Graph (UDG) [Muc97, NNH99] of the program is

extracted from the program source, which will be used to guide the quantitative

analysis. Secondly, a quantitative analysis which assigns upper bounds to the

amount of information flow along paths of the UDG is then performed.

Since the probability distribution of the low program input may be in the con-

trol of the attacker, it is assumed that the attacker chooses input values to max-

imise the leakage of information. Each program point, corresponding to a node on

the UDG, is assigned a random variableX (which may be a tuple of variables),

whereP (Xn = x) is the probability thatX takes on the valuex at the noden

of the UDG. Two distinguished nodes are identified, namely, the programentry

andexit nodes, denoted respectively asι andω. So,X ι andXω correspond to the

random variableX at program entry and exit respectively. The main idea is that

in a deterministic program, once the variation in the low input has been accounted

36

for, any variation that is observed in the public output must bedue to variations in

the secret input. Hence, the leakage of information about secret input to a variable

X at the exit node, denoted asLω(X), is defined as

Lω(X) = p(ω)H(Xω ∣Lι) (2.10)

The measureH(Xω ∣ Lι) is theconditional entropyof the random variableXω

given another random variableLι, andp(ω) is the probability of reaching the exit

node. The variableL, as usual, stands for the low part of the memory. Thus,Lι

is the random variable representing the low input at the program entry point. For

programs which always terminate we havep(ω) = 1. The analysis of information

flow itself is parametric to the program point, and in (2.10),ω may be replaced

by any arbitrary noden to compute the information flow intoX at that point. A

more recent work [CHM07], by the authors of [CHM05], uses a syntax-directed

approach to the analysis, which quantifies the amount of information released, as

opposed UDGs.

Information-theoretic approaches, in general, rely on having probability mea-

sures in order to perform the analysis, and conservative assumptions usually have

to be made. Like most language-based approaches to the analysis of information

flow, where the attacker is assumed to supply inputs at the beginning of program

execution and can only observe the final results at the end of program execution,

the model of the analysis in [CHM05] isbuffered. However, many practical pro-

grams areinteractive, which may accept inputs and produce outputs at any point

during the program execution. Program interaction introduces additional infor-

mation flow problems. Quantitative analyses that consider program interactions

37

include [ABG04, OCC06, Bac05, AP08]. In addition to interactions, nontermi-

nation issues are also important when modelling the information released by a

program.Termination-insensitiveanalyses ignore information release due to non-

termination and may admit insecure programs, which release information during

diverging traces. When program interactions are involved, arbitrary amount of

information may be leaked through nontermination channels. The problem of

information leakage in termination-insensitive analyses is studied in [AHS08].

38

Chapter 3

Lattice Model of Information and

Information Flow

The phrase “secure information flow” alludes to an understanding of the notions

of informationandinformation flow. In this chapter, we present a lattice-theoretic

model of information and information flow and define a notion of security us-

ing the lattice model of information for the enforcement ofwhatdeclassification

policies.

In order to check whether a system, or its model, conforms to an information

flow policy, we need to analyse its information flow properties. For this purpose

an extensional input-outputrelational modelis presented as a primitive for the

semantic analysis of information flow in both deterministic and nondeterministic

systems. By using the relational model, various representations of information,

suitable for the characterisation of the information flow, are derived. The derived

information representations are all shown to fit into the lattice model of infor-

mation. Later on, in Chapter 4, we show how to derive the relational model of a

39

system from the operational semantics under a given attacker model in a language-

based setting.

3.1 Modelling Information and Information Flow

A fundamental property of information is the intuitive notion ofinformation lev-

els, where we say that one piece of information isgreater or more informative

than another. For example, information about an integer secret which reveals that

it is a positive even integer is more informative than another one which only re-

veals that the secret is a positive integer. This suggests an ordering of information,

which we shall exploit in our information model and security definition. For this

reason we shall model information aslattices, where the associatedpartial order

captures the notion of information levels. This lattice-based definition of security

falls under thewhatdimension of declassification as proposed by [SS05], because

it regulates thelevelof information orwhat information that we want to release.

3.1.1 A Lattice Model of Information

We consider information as elements of a complete latticeI , such that a piece

of information inI describes what may be learnt about secrets and such that the

latticepartial order andjoin operationrespectively model the notions ofordering

andcombinationof information. The ordering ofI captures when one informa-

tion is greater than or equal to another, and it is closely related to the notion of

information combination where the combination of a lesser information with a

greater one yields the greater information.

40

Definition 3.1.1 (Information Lattice). Any complete lattice⟨I ,⊑,⊔⟩ is a lattice

of information.

In the lattice⟨I ,⊑,⊔⟩ of information, the partial order⊑ models the relative

degree of informativeness of the elements ofI , and the join operation⊔ models

the combination of information inI . The idempotency, commutativity, and asso-

ciativity properties of the join operation agree with natural intuitions about infor-

mation because idempotency says that the combination of a piece of information

with itself should yield the same information [Koh03]. Similarly, the commutativ-

ity and associativity properties respectively agree with the intuitions that the order

and grouping of information combination should not matter to the end result. Fur-

thermore, for anys, s′ ∈ I , the lattice property,s ⊑ s′ iff s ⊔ s′ = s′, agrees with

the idea that the combination of a lesser information with a greater one yields the

greater information, wheres ⊑ s′ means that the informations is less than or at

most equal tos′.

3.1.2 Information Flow

We shall defineinformation flowto model how the knowledge of an observer

changes due to information release. Under this model, information flow is defined

as a function which transforms knowledge on a given latticeI of information.

Hence, iff ∶ I → I is aninformation flow function, then for any initial knowledge

s ∈ I that the observer might have before observing the system which causes

the information flowf , f(s) describes the final information that this observer

might gain after observing the system. To describe the observer’s knowledge after

receiving new information released by a system, the information flow function

41

must have certain properties identified in the following definition.

Definition 3.1.2 (Information flow). Let ⟨I ,⊑⟩ be a lattice of information. An

information flow functionf ∶ I → I on the latticeI is an extensive and monotone

function. DefineF lows ≜ {f ∶ I → I ∣ f is extensive and monotone} to be the set

of all information flows onI .

Similarly to the properties of the lattice of information, the properties of in-

formation flow functionsf ∈ F lows are intuitive. Firstly, the extensivity property,

which means that for alls ∈ I , s ⊑ f(s) shows that the observer’s knowledge

may only increaseby observing the system causing information flow. Secondly,

the monotonicity requirement means that the greater the initial knowledge of the

observer before observing the system that is releasing information, the greater the

final knowledge afterwards.

The setF lows of all information flows on the latticeI of information itself is a

complete lattice under the pointwise ordering of functions becauseI is a complete

lattice. The least element of the resulting latticeF lows is the identity map,idI , on

I . This is easily shown because if there existsf ∈ F lows such thatf ⊑ idI , then

by the pointwise order we have that for alls ∈ I , f(s) ⊑ idI(s) = s. This means

thatf(s) ⊑ s, and sincef is extensive, we have thatf(s) = s by the antisymmetry

of ⊑. Hence,f = idI . The least elementidI ∈ F lows of the set of information

flows is the lattice model equivalent of the notion of noninterference (that is, lack

of information flow) since the attackercannot changeits knowledge viaidI.

42

3.2 Information Flow Policies

An information flow policy, or simply aflow policyor policy, is a statement of the

(information flow) security requirements for a system. We define policies, which

can be used to regulate what information is allowed to flow through a system.

Definition 3.2.1 (What Policies). Let ⟨I ,⊑⟩ be a lattice of information and let

F lows be the set of information flows over this lattice. An information flow policy

with respect to the latticeI is a subsetP ofF lows.

An information flowf ∈ F lows is said to bepermittedor allowedby a policy

P ⊆ F lows iff there exists a flow functionf ′ ∈P such thatf ⊑ f ′. Consequently,

a policyP is fully non-trivial if all elements ofP are maximal inP.

The orderingf ⊑ f ′ between information flow functions in this definition is the

usual pointwise ordering of functions induced by the partial order⊑ on the lat-

tice I . This partial ordering of information flow functions is used to control, or

regulate, the level of information that we allow a system to release because the el-

ements ofP set lattice upper bounds on the information flow that the attacker is

allowed to receive when the information release is permitted by the policyP. The

policy model of Definition 3.2.1 falls under thewhatdimension of declassification

according to the taxonomy of [SS05, SS07].

3.2.1 Information Flow Policy Patterns

This section highlights some information flow patterns under the proposed policy

model.

43

Noninterference Policy

By far the most studied type of information flow policy is the noninterference

policy, originally introduced by [GM82], which says that

“one group of users, using a certain set of commands, isnoninterfer-

ing with another group of users if what the first group does with those

commands has no effect on what the second group of users can see”.

This requirement abstractly describes a system property, which implies the lack

of information flow, via the system in question, from secret inputs issued by one

(high security) group to public outputs observed by the other (low security) group.

Thus, the noninterference requirement is an information flow policy for a system

(or more precisely, its model), that preventsanyflow of information from secret

inputs to public outputs. Under our lattice-based policy model, noninterference

corresponds to the policy{idI}, which is the identity map over the latticeI of

information about secrets. This abstractly describes the fact that the attacker can-

not benefit by observing a system whichsatisfies1 this policy since any flow that

is permitted by this policy cannot be greater thanidI. The intuition is that for all

informations ∈ I in the lattice of information about secrets, representing the at-

tacker’s initial knowledge, we have that the attacker’s final knowledge,idI(s) = s,

after observing the system remains the same. Furthermore, sinceidI is the least

element of the latticeF lows of information flows, the baseline status of the non-

interference policy{idI} is clear.

Although the noninterference model is very simple, it is however too strong

to be useful in practice [RMMG01, Vol99a]. Policies that allow deliberate (but

controlled) release of information are necessary.

1The formal definition of what it means, when a system satisfies a given policy, is given in
section 3.3.

44

Unconditional Release Policy

We may wish to have partial (but unconditional) release of informations′ ∈ I but

not more in a system. The pattern for this under the lattice model is captured

by the policy{f ∣ ∀s ∈ I , f(s) = s′ ⊔ s}, which permits an attacker to learn at

mosts′ (s in the definition being the attacker’s initial knowledge). Since any flow

f ′ ∈ F lows which is permitted by this policy has the property thatf ′ ⊑ f , this

means that any information that the attacker gains from the system that is strictly

greater thans′ is what the attacker could already derive by the combination of the

initial knowledge of the attacker and the declassified informations′. However,

if the attacker’s initial knowledge is less thans′ the greatest information that the

attacker is allowed to gain by this policy iss′.

A scenario where such a policy is necessary is during password authentica-

tion, where we wish to release unconditionally the information about the equal-

ity or not of the stored password and the user-supplied password. If the attacker

knows the user supplied password (for example, by supplying a guess) then the at-

tacker (by combining its initial knowledge with the outcome of the authentication

attempt) either learns the stored password (in the case of a successful authentica-

tion) or learns what it is not (if the authentication attempt fails). However, if the

attacker only observes the result of the authentication without knowing the sup-

plied password (issued, for example, by another user), the most that the attacker

can learn, depending on the outcome of the authentication attempt, is whether

the user-supplied and the stored passwords match or not - which is exactly the

information that we have declassified.

45

Conditional Release Policy

Another scheme is theconditional releasepattern, where information (s′) is re-

leased based on having some initial knowledge (s′′). This is modelled by the pol-

icy {f} where∀s ∈ I , f(s) = s′ ⊔ s if s′′ ⊑ s, andf(s) = s otherwise. Under this

scheme, the attacker gains some information on the condition that the attacker has

at least a given initial informations′′. A scenario where such a policy is needed is

during decryption in a symmetric key system, where the plaintext may be learnt

(the knowledges′) only when the decryption key is known (the knowledges′′).

Disjunctive Release Policy

Another pattern, calleddisjunctive flow policy- after the disjunctive flow pattern

of [SS05], is the policy specified by fully non-trivial policiesP, where∣P ∣ ≥ 2.

Take, for example, the disjunctive flow policy{f, f ′ ∣ f /⊑ f ′, f ′ /⊑ f} ⊆ F lows.

This policy permits at most one off or f ′ to be released but notbothat the same

time. It is clear that the notion of disjunctive information flow is only meaning-

ful for incomparable information and information flows, because whenever two

information are comparable then the greater already contains the lesser informa-

tion. An information flowf ′′ ∈ F lows is permitted by the disjunctive policy

{f, f ′ ∣f /⊑ f ′, f ′ /⊑ f}, whenf ′′ is smaller than or equal to at most one off andf ′

- sincef andf ′ are incomparable. Also, a flowf ′′ ⊒ f ⊔f ′, which contains bothf

andf ′ is not permitted since there is no suchf1 ∈ {f, f ′ ∣ f /⊑ f ′, f ′ /⊑ f} for which

f ′′ ⊑ f1.

46

3.3 Secure Information Flow

Let us now define a notion of security, which uses the lattice of information to

formalise when the information released by a system is secure.

Definition 3.3.1 (Security Condition). Let P be a program modelling a system,

and let⟨I ,⊑⟩ be a lattice of information, and letF lows be the set of all infor-

mation flows with respect to the latticeI . Furthermore, letP ⊆ F lows be an

information flow policy; and letJP KI ⊆ F lows be a subset ofF lows, called the

information flow propertyof the system modelled byP . The system modelled byP

satisfies, and is said to besecurewith respect to the policyP iff for all f ∈ JP KI

there existsf ′ ∈P such thatf ⊑ f ′.

Intuitively, this definition says that the programP , or the system it models, is

secure (with respect to the policyP) iff every flow f ∈ JP KI that is caused byP

is permitted by the policy (∃f ′ ∈P such thatf ⊑ f ′). The partial order⊑ regulates

the level of information that we wish to release. This extensional view of policy

enforcement abstractly describes, in terms of the information lattice order, what

information flows are permitted in the system.

In the remainder of this chapter we shall show how to derive the information

released by a system from an input-output relational model of the system, provid-

ing us with a way to check whether the system has secure information flow. Later

on, in Chapter 4, we shall show how to derive this input-output relational model

from the operational semantics in a language-based setting, and show, for a given

programP , how to defineJP KI under various representations of the latticeI of

information.

47

3.4 System Models and Information Representation

In the following sections we shall formalise the information released by a system

by using an input-outputrelational model, which describes how the system trans-

forms its inputs to publicly observable outputs. The relational model captures

the input-output semantics of the system through arelation which associates the

public outputs that the attacker may observe with the inputs which generate them.

We shall derive, from the relational model, various representation of information,

which are shown to fit into the lattice model of information. The relational model

technique is applicable to the analysis of information flow underdeterministic

system models as well as the more generalnondeterministicsystem models.

Definition 3.4.1(Relational System Model). The input-outputrelational modelof

a system is defined as a relationS ⊆ Σ × V, over the setΣ of the system’s inputs

and the setV of observable outputs of the system according to an attacker model,

where for all inputσ ∈ Σ and possible outputv ∈ V, σ S v holds iff the system

can produce the outputv when supplied with the inputσ. The system model is

said to bedeterministicif S is a function fromΣ to V, otherwise it is said to be

nondeterministic.

Using the relational model primitive defined above, we shall develop infor-

mation representation suitable for the analysis of information release in deter-

ministic and, or nondeterministic systems. We assume that the modelS of the

system is both input-total and output-total, that is,Σ = {σ ∣ v ∈ V, σ S v} and

V = {v ∣ σ ∈Σ, σ S v}.

48

3.5 Information Flow in Deterministic Systems

Under the relational model,deterministicsystems are modelled by (total)func-

tions of the formf ∶ Σ→ V from an input spaceΣ (representing the set of all

possible inputs to the system) to anoutput spaceV (representing the set of all

publicly observable outputs that the system can generate), such that for any input

σ ∈ Σ supplied to the system in question,f(σ) ∈ V is what the attacker publicly

observes. The system is deterministic, with respect to the attacker’s view, because

f is a function and thus the output observed by the attacker isuniquefor every

input supplied to the system.

SupposeΣ is the set of all secret values that can be supplied to a system

modelled byf ∶ Σ→ V , then the system is said to be noninterfering if for all

σ,σ′ ∈ Σ, f(σ) = f(σ′). That is, the public output of this system that the attacker

sees is fixed regardless of the chosen secret input to the system, as required by the

noninterference definition of [GM82]. It is thus clear when we say that another

system modelled by the functiong ∶ Σ→ V ′ releases more information than the

one modelled byf if there exists at least an input pairσ,σ′ ∈ Σ such thatg(σ) ≠

g(σ′). In other words, there are some runs of the system modelled byg which can

be distinguished by observing the output, whereas no run of the system modelled

by f can be distinguished based on the observed output. How do we then represent

more generally that a deterministic system releasesmore informationthan another

one?

49

3.5.1 An Equivalence Relation Representation of Information

In the example above, the reason whyg releases more information thanf can

be explained by the relative granularity of the equivalence classes of the kernels

of the two functions. Thekernel of any functionf ∶ Σ→ V, is anequivalence

relation (κf) over Σ which relates a pair of elements inΣ iff they have same

image underf . Since any pair of input valuesσ,σ′ ∈ Σ that are related by the

kernelκf produce the same output underf , then we say that the inputsσ andσ′

areindistinguishableunder the system modelled byf because the attacker cannot

tell which of the two was supplied to the system based on observed output. Using

this idea, we can describe the information released by a deterministic system that

is modelled by the functionf ∶ Σ→ V via its kernel:

∀σ,σ′ ∈ Σ, σ κf σ
′ ⇐⇒ f(σ) = f(σ′). (3.1)

The finer the partition ofΣ underκf , the more the information that is revealed by

the system thatf models. In the following, we will sometimes simply refer to the

deterministic system modelled by a functionf as “systemf ”.

We say that a systemg ∶ Σ→ V ′ releases more information than another sys-

temf ∶Σ→ V iff κg ⊆ κf , whereκg andκf are respectively the kernels ofg andf .

Using the definition of function kernels, this property can be equivalently stated

as follows.

A deterministic systemg ∶ Σ→ V ′ releases more information than another deter-

ministic systemf ∶ Σ→ V iff for all σ,σ′ ∈Σ

g(σ) = g(σ′) Ô⇒ f(σ) = f(σ′). (3.2)

50

This definition simply says that ifg cannot distinguish a pair of inputs, neither can

f . Notice the fact that this definition does not rely on the setsV andV ′ because

intuitively we care only about the ability of a system to distinguish its inputs, that

is, how it partitions its domain. It is easy to see that if the systemsf andg both

release the same amount of information, then they are equal up to an isomorphism

of their output representations. Thus, the systems modelled byf ∶Σ→ V and

g ∶Σ→ V ′ release the same information if there exists a set isomorphismι from

the range off to that ofg such thatι ○ f = g. The information released jointly by

two systemsf andg processing independently the same inputs can be modelled by

another system(f, g) ∶ Σ→ V × V ′ given by(f, g)(σ) = (f(σ), g(σ)) and whose

kernel is the equivalence relationκf ∩ κg [LR93].

3.5.2 Lattice of Equivalence Relations

The authors of [LR93] first proposed an equivalence relation model as a way to

describe the security properties of systems. Under the equivalence relation repre-

sentation of information, two elements in the domain of an equivalence relation

R are said to beindistinguishableif they are related byR. Alternatively, we say

that a pair of elements in the domain ofR aredistinguishablewhen they arenot

relatedby R. This leads to a lattice of information, represented by equivalence

relations, based on the ability to distinguish elements of a set.

Definition 3.5.1(Lattice of Equivalence Relations [LR93]). LetΣ be a set, and let

ER(Σ) be the set of all equivalence relations overΣ. Define an information order

relation overR,R′ ∈ ER(Σ) such thatR ⊑ R′ iff for all σ,σ′ ∈ Σ, σ R′ σ′ Ô⇒

σ R σ′.

51

Thecombinationof the information modelled by the equivalence relationsR

andR′ is given by the joinR ⊔R′ of the two relations, which is defined such that

for all σ,σ′ ∈ Σ, σ (R ⊔R′) σ′ iff σ Rσ′ andσ R′ σ′. The join operation naturally

extends to subsetsR ⊆ ER(Σ) such that for allσ,σ′ ∈ Σ, σ ⊔R σ′ iff for all

R ∈ R, σ R σ′.

It should be noted that the order relation⊑ on equivalence relations is thereverse

subset inclusion(⊇) order on relations, and is thus the dual of the traditional or-

dering of relations that is based on subset inclusion of their graphs. Consequently,

the join operation⊔ on equivalence relations corresponds to set intersections∩.

As demonstrated above, the lattice of equivalence relation models informa-

tion release in deterministic systems. Furthermore, the ordering of equivalence

relations by their information content forms a complete lattice of information.

Proposition 3.5.2.The partially ordered set⟨ER(Σ),⊑,⊔⟩ is a complete lattice.

Proof. Standard.

Under the equivalence relation representation, the greatestinformation is the

identity relation (id ∈ ER(Σ)) on the setΣ since by definition it distinguishes

any pair of elements inΣ that are not the same, relating an element to itself only.

The identity equivalence relation represents complete knowledge. An example

of a system which releases this kind of information is one that simply reveals its

input, such as the systemg ∶Σ→ Σ defined as∀σ ∈ Σ, g(σ) = σ. At the other

extreme, the least element of the lattice of equivalence relation is the “for all”

relationall ∈ ER(Σ), defined as∀σ,σ′ ∈ Σ, σ all σ′. This relation represents no

information since it relates all elements of the set and thus cannot distinguish any

52

of them. An example of a system with such an information flow property, that

is, which releases no information is the constant function whose kernel isall. We

shall be referring to the equivalence relationsid andall defined over some set

(which will hopefully be clear from the context) throughout the thesis.

We can extend this basic idea to partial equivalence relations (PERs) on the

set of system inputs. PERs are particularly useful in the analysis of composite

systems, providing us with the additional ability to specify the knowledge that a

secret does not belong to a given set. This cannot be stated naturally with equiv-

alence relations since they are, by definition, reflexive. The simple generalisation

to PERs gives us some expressive powers, which we briefly illustrate.

Supposef ∶ Σ→ V andg ∶ Σ→ V ′ are functions modelling two deterministic

systems, whereV andV ′ are disjoint andΣ ⊆ Σ. Let us define another system

model which makes a choice betweenf andg (depending on whether the input

belongs to the setΣ or not), which is given by'Σ(f, g) ∶ Σ→ V ∪ V ′ and defined

such that for anyσ ∈Σ,

'Σ(f, g)(σ) ≜

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

g(σ) if σ ∈ Σ

f(σ) otherwise.

It is easy to see that the information released by'Σ(f, g) is in general notκg⊔κf -

the join of the kernels ofg andf . This is because the choice restricts the domains

of the two subsystems modelled byf andg. This example in fact demonstrates a

kind of conditionalinformation release, whereg releases information only about

inputs inΣ andf releases information about inputs inΣ/Σ (a property which we

shall use in the analysis of information flow in conditional statements in Chap-

53

ter 5). By dropping the reflexivity requirement, we can precisely describe the

information flow of this system by two PERsR ∩ κg andR ∩ κf , whereR andR

are respectively the PERs∀σ,σ′ ∈ Σ, σ R σ′ iff σ,σ′ ∈ Σ and∀σ,σ′ ∈ Σ, σ R σ′

if f σ,σ′ ∈ Σ/Σ. The PERR requires that any pair of inputs must belong to the

setΣ, andR requires that the inputs must belong to the complement ofΣ. Hence

the PERR ∩ κg models the information that can distinguish all inputs thatg can

distinguish subject to the constraint that the input belongs toΣ (that is, an out-

put from g tells us that the input isnot in Σ/Σ). The PERR ∩ κf has similar

information interpretation. Note that the overall information flow of the system

'Σ(f, g) is an equivalence relation given by the union of the two disjoint PERs

(R ∩ κg) ∪ (R ∩ κf). It should be noted that ifV and V ′ are not disjoint, such

that for someσ ∈ Σ andσ′ ∈ Σ/Σ we haveg(σ) = f(σ′), then the equivalence

relation(R∩κg)∪ (R ∩κf) will be greater than the information actually released

by 'Σ(f, g).

3.5.3 A PER Representation of Information

Partial equivalence relations generalise equivalence relations by dropping the re-

flexivity requirement. This leads to a more general representation of information

based on partial equivalence relations on a set,whereby we can also express when

a secret does not belong to a set - the set of elements not in the domain of the PER.

Definition 3.5.3(Set of PERs). LetΣ be a set. DefinePER(Σ) to be the set of all

partial equivalence relations over the setΣ. The domain of definition of a PERR

onΣ is given by dom(R) ≜ {σ ∈ Σ ∣ σ R σ}.

A PERR is reflexive on its domain of definition since for anyσ,σ′ ∈ Σ such

54

that σ R σ′ holds, thenσ′ R σ holds by symmetry and, thusσ R σ holds by

transitivity. Similarly to equivalence relations, we say that a PERR overΣ models

information (or more precisely, ignorance) byindistinguishabilityof elements in

Σ. Thus, ifR ∈ PER(Σ) describes the information or the knowledge of an attacker,

then that attacker cannot distinguish two elementsσ,σ′ ∈ Σ if σ R σ′ holds (this

may be read as,σ is indistinguishable fromσ′ via informationR). The information

modelled byR describes what elements of the setdom(R) are indistinguishable

by an attacker. All elements in the setΣ/dom(R) are considered not possible in

the world described by the informationR.

Using PERs to describe information

Let us further illustrate the use of PERs for information representation. Consider

three PERs on the setZ of integers, representing different levels of information

about an integer secret as follows. The first one is the equivalence relationPar

defined as:∀n,m ∈ Z, n Par m ⇐⇒ n mod 2 = m mod 2. This describes

the knowledge of parity because it can only distinguish two integer values when

they have different parities. The second one is the equivalence relationid, which

is defined over integers and relates an integer to itself only. This models the

ability to distinguish between any two different integers and therefore contains

more information thanPar. The third one is the PERidN which is defined as

∀m,n ∈ Z,m idN n ⇐⇒ n = m,n ∈ N. This PER models the fact that the inte-

ger values must be natural numbers (the knowledge that the integer secret cannot

have a negative value), in addition to the ability to distinguish between any two

such integers. Thus,idN contains more information thanid because it limits the

set of possibilities to natural numbers. It is clear, in a computational sense, that

55

an attacker which knows beforehand that a certain subset of thedomain of secret

values is not possible needs to do less work in searching for that secret than one

that does not know beforehand.

3.5.4 Lattice of PERs

The interpretation of PERs as a representation of information content suggests an

information order of PERs. The intuition is that the information content of a PER

R′ is greater than that of another PERR if R′ distinguishes at least all thatR can

distinguish and the domain ofR′ is contained in the domain ofR.

Definition 3.5.4(Lattice of PERs). LetΣ be a set. Define the order relation⊑ on

partial equivalence relations overΣ such that for anyR,R′ ∈ PER(Σ), R ⊑ R′

iff for all σ,σ′ ∈ Σ, σ R′ σ′ Ô⇒ σ R σ′. The associated join operation⊔ on

PER(Σ) is defined asσ (R ⊔ R′) σ′ iff σ R σ′ andσ R′ σ′. More generally, for

any subsetR ⊆ PER(Σ) define the join ofR as the PER⊔R, such that for all

σ,σ′ ∈ Σ, σ ⊔R σ′ iff ∀R ∈ R, σ R σ′.

Since PERs are reflexive on their domains,R ⊑ R′ impliesdom(R′) ⊆ dom(R).

Note that, similarly to equivalence relations, the partial order⊑ on PERs is the

reverse subset inclusion order on relations and that⊔ corresponds to set intersec-

tions on the graph of relations. The ordering of PERs by their information content

forms a complete lattice of information.

Proposition 3.5.5.The partially ordered set⟨PER(Σ),⊑,⊔⟩ is a complete lattice.

Proof. The proof is similar to the proof of the completeness of the lattice of equiv-

alence relations.

56

Partitions of a PER

We refer to thepartition of the setdom(R) by the PERR ∈ PER(Σ), which

describes the information about the elements ofΣ as modelled byR. This parti-

tioning is defined as the family of sets, which we denote by

[Σ]R ≜ {{σ′ ∈ Σ ∣ σ R σ′} ∣ σ ∈ dom(R)}. (3.3)

If R is an equivalence relation, then[Σ]R is the set ofequivalence classesof

R. Similarly to the standard notation for equivalence classes, we write[σ]R for

theequivalence classof the PERR thatσ ∈ dom(R) belongs to. This is defined

as

[σ]R ≜ {σ′ ∈Σ ∣ σ R σ′}. (3.4)

Furthermore, like the membership property of equivalence classes in an equiva-

lence relation, if two elements ofΣ are related by a PERR then they belong to

the same equivalence class ofR.

Proposition 3.5.6.LetR be a PER over a setΣ, then for anyσ,σ′ ∈Σ, σ R σ′ Ô⇒

[σ]R = [σ′]R.

Proof. Straightforward.

In terms of information described by PERs, this means that if a pair of values are

indistinguishable via the knowledge described by a PER, then those values belong

to the same equivalence class of the PER.

57

3.5.5 PERs and Disjunctive Information

Weshall show in this section that we can represent certain disjunctive information

with PERs, contrary to a conjecture in [SS05] that disjunctive properties may

not be expressed by PERs. Disjunctive information modelling can be useful in

applications, where we want to express the fact that at most one of two pieces of

information is released in a system during a run of the system. For example, we

might want to express the fact that a symmetric encryption module which accepts

a parameter to release either the key or ciphertext releases only the key or the

ciphertext to the recipient (depending on the choice of the release parameter), but

not both at the same time. Firstly, we define the property of a PER when it reveals

at most one of two pieces of information.

Definition 3.5.7(Disjunctive Information). LetV be a set and letR1,R2 ∈ PER(V)

be PERs overV representing some information, and letR = R1 ⊔ R2 be a PER,

which represents a combination of the information modelled byR1 andR2. We

say that the PERR ∈ PER(V) contains thedisjunctive informationR1 andR2 iff

any pair of elements inV that is not related byR1 is related byR2, and any pair

of elements inV that is not related byR2 is related byR1.

This definition requires that wheneverR1 has knowledge about a pair of values

(that is, can distinguish the pair because it is not related byR1) thenR2 does

not have the knowledge, and vice versa. Thus,R = R1 ⊔ R2 has the knowledge

about a pair of values if that knowledge comes from at most one ofR1 or R2.

More formally, this means that for any(v, v′) ∈ V 2 such that(v, v′) ∉ R, then

either(v, v′) ∉ R1 and(v, v′) ∈ R2, or (v, v′) ∈ R1 and(v, v′) ∉ R2. Since the

information inR1 andR2 are mutually exclusive thenR contains the disjunctive

58

informationR1 andR2 - revealing information that comes from at most one of the

two PERs about any pair of values inV . This is illustrated as follows.

For any PERR ∈ PER(V) over V , let the ignorance setof R be given by

its graphgraph(R) = {(v, v′) ∈ V 2 ∣ v R v′}. On one hand, the setgraph(R) is

called the “ignorance set” ofR because it is the set of pairs inV 2 thatR cannot

distinguish. On the other hand, letgraph(R) = V 2/graph(R) be theknowledge

setof R - representing the set of pairs inV 2 thatR can distinguish. Clearly, for

any PER, the knowledge and the ignorance sets are disjoint. It is also easy to see

that for anyR,R1,R2 ∈ PER(V) such thatR = R1 ⊔R2, we have thatgraph(R) =

graph(R1) ∩ graph(R2), and thatgraph(R) = graph(R1) ∪ graph(R2). Now

let A = graph(R1) and B = graph(R2), and assume thatR containsdisjunctive

informationR1 andR2 according to Definition 3.5.7, thengraph(R) = (A∩B)∪

(A/B)∪(B/A) = (A/B)∪(B/A). This is because by the disjunctive information

requirement(v, v′) ∈ A Ô⇒ v R2 v′, and by the partitioning property of the

knowledge and ignorance sets of a PER,v R2 v′ Ô⇒ (v, v′) /∈ B. Similarly,

for B, (v, v′) ∈ B Ô⇒ v R1 v′ Ô⇒ (v, v′) ∉ A. Thus,A andB are disjoint

sets. Therefore, wheneverR can distinguish a pair of values (that is,(v, v′) ∈

graph(R) = (A/B)∪ (B/A)), that pair is distinguishable by at most one ofR1 or

R2.

To show an example, supposeX andY andZ are sets, which are mutually

disjoint, and such thatV = X ∪ Y ∪ Z. Now define PERsR1,R2,R ∈ PER(V)

such that for allv, v′ ∈ V , v R1 v′ ⇐⇒ (v, v′) ∈ (X ∪ Y)2 ∪ (X ∪ Z)2, and

v R2 v′ ⇐⇒ (v, v′) ∈ (Y ∪ Z)2, andR = R1 ⊔ R2. It is easy to see thatR1

can distinguish elements ofY from those ofZ, since it relates no such pairs.

However,R2 can distinguish any pair of elements inX, and elements ofX from

59

those ofZ, and also elements ofX from those ofY . Therefore,R, which relates

a pair of elements inV if and only if the pair belongs toY 2 orZ2 can distinguish

elements ofY from elements ofZ (information that comes fromR1 precisely);

and, disjunctively, can also distinguish any pair or elements inX, and elements of

X from those ofZ, and elements ofX from those ofY (information that comes

precisely fromR2).

The idea of disjunctive information can be extended to PERs on maps (or

tuples), where we want to express the idea that a PER reveals information about

at most one of two elements in the domain of the function (or at most about one of

two indices, when we consider tuples). Assume thatVar is a set of variables, and

for each variablex ∈Var, letVx be the set of all the possible values ofx. Now let

Σ = [Var → ⋃x∈Var Vx] be the set of all functions from variables to values, such

that for anyσ ∈ Σ andx ∈ Var, σ(x) ∈ Vx is thex-image of the functionσ. We

shall refer toσ ∈Σ as astate.

Definition 3.5.8. Let Z ⊆ Var be a set of variables and letΣ0 ⊆ Σ. Define the

operationhavocwith the signature havoc∶ P(Var) ×P(Σ)→ P(Σ) as

havocZ(Σ0) ≜ {σ′ ∈Σ ∣ σ ∈ Σ0,∀y ∈Var/Z,σ(y) = σ′(y)}.

Supposex ∈Var and letX = {x}, we say that the setΣ ⊆Σ is densewith respect

to the values ofx if havocX(Σ) = Σ. That is, for any stateσ ∈ Σ, all the possible

values ofx are already present in the setΣ sincehavocX({σ}) ⊆ Σ. We can now

define when a PER overΣ contains disjunctive information about two variables

in Var.

Definition 3.5.9.LetR ∈ PER(Σ) be a PER overΣ and letx, y ∈Var be variables

60

such thatX = {x} and Y = {y}. The PERR contains disjunctive information

aboutx andy iff for all σ ∈ dom(R)

havocX([σ]R) ≠ [σ]R Ô⇒ havocY ([σ]R) = [σ]R

and

havocY ([σ]R) ≠ [σ]R Ô⇒ havocX([σ]R) = [σ]R.

This definition requires that any equivalence class ofR that is not dense with

respect to the values of the variablex (that is,R has some information aboutx

in that equivalence class) must be dense with respect toy. Similarly, if an equiv-

alence class ofR contains any information with respect toy, it must not contain

any information aboutx. This definition is a specialisation of Definition 3.5.7

by considering each equivalence class ofR as a join two PERs on values, each

of which may contain information about the values ofx or y, but not both at the

same time.

To illustrate this, supposeVar = {h1, h2, l} such thath1 andh2 are two integer

secrets andl is a boolean public variable. LetR ∈ PER(Σ) be a PER overΣ such

thatR reveals the parity ofh1 wheneverl is chosen to bett but reveals the value

of h2 wheneverl is chosen to beff . This is defined as∀σ,σ′ ∈ Σ, σ R σ′ iff

σ(h1) mod2 = σ′(h1) mod2, σ(l) = σ′(l) = tt or σ(h2) = σ′(h2), σ(l) = σ′(l) =

ff . The PERR reveals disjunctive information abouth1 (its parity) orh2 (its value)

for any pair of statesσ,σ′ ∈ Σ. Take, for example, the equivalence class ofσ ∈

dom(R) whereσ(l) = ff , any variation in the value ofh2 alone is distinguishable

by R, whereas, variations in the value ofh1 alone are indistinguishable byR

in that equivalence class. Similarly, for anyσ ∈ dom(R) whereσ(l) = tt, h1

61

either has odd or even parity in the equivalence class[σ]R, and varying only the

parity ofh1 is distinguishable byR in this equivalence class, whereas,R does not

distinguish any variation in the value ofh2 alone.

It is worth noting that for PERs over statesΣ that are not necessarily disjoint,

but which contain disjunctive information according to Definition 3.5.9, we can

create another PER which preserves the disjunctive information by taking disjoint

unions. To illustrate, assume that the PERsR1,R2 ∈ PER(Σ) both contain disjunc-

tive information about variablesx, y ∈ Var. Then we can define another PERR

preserving the disjunctive information as follows. Letz ∉Var be a variable which

has two possible values (it does not matter what the values are), for example, let

Vz = {0,1}, and letΣz ≜ [(Var ∪ {z}) → ⋃x∈Var∪{z} Vx] be a domain extension

(of maps inΣ by z). Define the PERR ∈ PER(Σz) overΣz as∀σ,σ′ ∈Σz, σ R σ′

iff σ R1 σ′, σ(z) = σ′(z) = 0 or σ R2 σ′, σ(z) = σ′(z) = 1. The PERR contains

disjunctive information aboutx andy.

3.6 Information Flow in Nondeterministic Systems

In the following sections we shall consider representations of information for non-

deterministic system models. The nondeterministic system model generalises the

deterministic one because the public output that is observed is not necessarily

unique for each input to the system. Firstly, we propose a qualitative representa-

tion of information for nondeterministic system models, which is based on fami-

lies of sets that generalises the PER representation of information presented ear-

lier. Secondly, we then present a quantitative representation, which uses proba-

bility measures and information theory to describe the attacker’s knowledge (or

62

more precisely, uncertainty) about the inputs.

3.7 A Qualitative Representation

We propose a qualitative representation of information, based on families of sets,

to modelpossibilisticinformation flow to the attacker. We say the model is pos-

sibilistic because, given the output observation of the attacker, it reveals whether

certain inputs arepossible, as opposed to how likely it is for the inputs to generate

the public observation. However, the quantitative information representation pre-

sented in section 3.8 additionally accounts for the likelihood, using probabilities,

of an input to generate a given output.

3.7.1 Possibilistic Information Representation

Let us start by motivating the use of families of sets as a representation of informa-

tion under a nondeterministic system model. Consider a system, whose relational

model is given byS ⊆ Σ × V. We can describe the information that the attacker

gains on observing the outputv ∈ V of the system by the inverse image ofv under

S. The inverse imageS−1(v) = {σ ∈ Σ ∣ σ S v} of v represents the set of allpos-

sible inputs that can produce the outputv in the system modelled byS, and thus

describes the attacker’s uncertainty about the inputs given the observation ofv. It

is thus easy to see that the family of sets{S−1(v) ∣ v ∈ V}models the uncertainties

of the attacker under the observation of individual outputs of the system modelled

by S. In the special case thatS models a deterministic system, in which caseS is

a function, it is clear that{S−1(v) ∣ v ∈ V} corresponds to the set of equivalence

classes of the kernel of the functionS, which uniquely identifies the equivalence

63

relation overΣ used to describe the information released in the previous sections.

In this sense, the family of sets representation generalises the PER representation.

However, unlike the deterministic model, where for anyv, v′ ∈ V, v ≠ v′ im-

pliesS−1(v)∩S−1(v′) = ∅, the inverse images are not necessarily disjoint under a

nondeterministic model since the outputs resulting from any given input may not

necessarily be unique. This leads to another avenue of information release in non-

deterministic systems. The property that the nondeterministic system modelled

by S does not necessarily partition its domain introduces the possibility that an

attacker might gain further information by repeated execution of the system under

a fixed input. To illustrate this, supposeS ⊆ Σ × V models a nondeterministic

system, whereΣ = {σ1, σ2, σ3} andV = {v1, v2} and where the graph of the rela-

tionS is given bygraph(S) = {(σ1, v1), (σ2, v1), (σ2, v2), (σ3, v2)}. The model is

nondeterministic since the inputσ2 can produce outputsv1 or v2. By observing an

outputv1 the attacker learns that the input must be one ofσ1 andσ2, as suggested

by S−1(v1) = {σ1, σ2}. Similarly, on observing the outputv2, the attacker learns

that the input is in the setS−1(v2) = {σ2, σ3}. However, if under a fixed input

the attacker observes outputsv1 andv2 in different runs of the system, then the

attacker confirms that the input to the system must beσ2 - derived by taking the

intersectionS−1(v1) ∩ S−1(v2). This avenue of information leakage is not avail-

able under the deterministic system model since for a fixed input, the output of

the system always remains the same. This leads us to a definition of information

based on families of sets.

64

3.7.2 Lattice of Possibilistic Information

In order to account for the possible refinement of knowledge by repeatedly run-

ning a nondeterministic system under fixed input, the families of sets, which rep-

resent the information that the attacker derives by observing the outputs, must be

closed under set intersection.

Definition 3.7.1(Lattice of possibilistic information). Let ΣJ = {Σj ⊆ Σ ∣ j ∈ J}

be a family of subsets ofΣ indexed by some setJ . Define the operation⟨⟨⋅⟩⟩ on

families of subsets ofΣ as ⟨⟨ΣJ⟩⟩ ≜ ⋃K⊆J{⋂ΣK}, which closes the family un-

der intersections. Define the possibilistic information set overΣ as FAM(Σ) ≜

{⟨⟨ΣJ⟩⟩∣ΣJ is a family of subsets ofΣ} to represent information contained in fam-

ilies of subsets ofΣ. For any ΣJ ,ΣK ∈ FAM(Σ) define the join operation as

ΣJ ⊔ΣK ≜ ⟨⟨ΣJ ∪ΣK⟩⟩ and define the partial order⊑ to be the subset ordering of

families in FAM(Σ).

The intuition behind the partial orderingΣJ ⊑ ΣK , for someΣJ ,ΣK ∈ FAM(Σ),

is that every information tokenX ∈ ΣJ is also present inΣK . Thus, from the

relational modelS ⊆ Σ × V, we can derive the information that an attacker gains

from the induced family of setsΣV = {S−1(v) ∣ v ∈ V}, describing the attacker’s

uncertainty under various observations of the outputs of the system modelled by

S. The information that the attacker can gain is then described by the family

⟨⟨ΣV⟩⟩, whose minimal elements identify minimal subsets of the inputs inΣ that

can produce any given output under repeated execution of the system with fixed

inputs.

We note that for anyV ⊆ V, the set⋂ΣV can be empty if there is no common

input for which all outputs inV can be produced. Note also that by definition

65

ΣV ⊆ ⟨⟨ΣV⟩⟩ due to the singleton subsets ofV, since for anyv ∈ V, S−1(v) =

⋂S−1(v) ∈ ⟨⟨ΣV⟩⟩. Furthermore, under the powerset lattice ofΣ with the usual

subset ordering, which is a complete lattice, the intersection⋂F of any family

F of subsets ofΣ exists uniquely. In particular, for the empty family, we have

⋂∅ = Σ and hence,⟨⟨∅⟩⟩ = {Σ}. This has intuitive meaning becauseΣ, which

is the set ofall inputs, rules out no possibility and therefore represents lack of

information. Thus,⟨⟨∅⟩⟩, which represents the information released by a system

which produces no output agrees with the intuition that it cannot cause information

flow.

The ordering of possibilistic information over inputs,⟨FAM(Σ),⊑,⊔⟩, forms

a complete lattice.

Theorem 3.7.2.The ordered family of sets⟨FAM(Σ),⊑,⊔⟩ overΣ, representing

the set of possibilistic information, is a complete lattice.

Proof. Since the relation⊑ overFAM(Σ) is the subset inclusion order on sets, it

is clear that⟨FAM(Σ),⊑⟩ is a partially ordered set. In order to show thatFAM(Σ)

is a complete lattice, it is sufficient to show that arbitrary joins exist [GHK+03].

We first show that⊔ is the relevant join operation overFAM(Σ)with respect to

the partial order⊑. Specifically, we want to show that for anyΣJ ,ΣK ∈ FAM(Σ),

ΣJ ⊑ ΣK iff ΣJ ⊔ΣK = ΣK .

• SupposeΣJ ⊑ ΣK , that is,ΣJ ⊆ ΣK . HenceΣJ ∪ΣK = ΣK , and sinceΣK ∈

FAM(Σ) is already closed under intersections,ΣJ ⊔ΣK = ⟨⟨ΣK⟩⟩ = ΣK .

• Now assume thatΣJ ⊔ ΣK = ΣK . By the definition of the join operation

on FAM(Σ), we haveΣK = ⟨⟨ΣJ ∪ΣK⟩⟩ = ⟨⟨ΣJ ∪ΣK⟩⟩ ∪ ⟨⟨ΣJ⟩⟩. Since

66

ΣJ ∈ FAM(Σ) thenΣJ = ⟨⟨ΣJ⟩⟩. HenceΣJ ⊔ ΣK = ΣK implies ΣK =

⟨⟨ΣJ ∪ΣK⟩⟩ ∪ΣJ Ô⇒ ΣJ ⊆ ΣK . That is,ΣJ ⊑ ΣK .

This shows the necessary relationship between the join operation and the partial

order overFAM(Σ). It now remains to be shown that arbitrary joins exist in

FAM(Σ). Let F = {ΣJ ∣ J ∈ J } ⊆ FAM(Σ) be an arbitrary subset ofFAM(Σ),

where for anyJ ∈ J , ΣJ is a family of subsets ofΣ. It is clear from the definition

that⊔F = ⟨⟨⋃
J∈J

ΣJ ⟩⟩ ∈ FAM(Σ), since⋃
J∈J

ΣJ is a family of subsets ofΣ.

To illustrate how the latticeFAM(Σ) describes the relative information re-

leased by two systems, consider two nondeterministic systems modelled by the

relationsS ⊆Σ ×V andS′ ⊆ Σ × V ′, whereΣ = {σ1, σ2, σ3} andV = {v1, v2} and

V ′ = {v′1, v
′
2}. Suppose the graphs of the relationsS andS′ are respectively given

by graph(S) = {(σ1, v1), (σ2, v1), (σ1, v2), (σ2, v2), (σ3, v2)} and graph(S′) =

{(σ1, v
′
1), (σ2, v

′
1), (σ2, v

′
2), (σ3, v

′
2)}. The set of inverse images underS andS′

are respectively given byΣV = {{σ1, σ2},Σ} and ΣV ′ = {{σ1, σ2},{σ2, σ3}}.

The situation is illustrated in Figure 3.1, where each squiggle contains the set

of inputs which produce a given output and represents the inverse image of that

output. Intuitively, the setΣV (of the inverse images underS) has more uncer-

tainty (and thus less information) than the setΣV ′ (of the inverse images underS′)

since for each outputv ∈ V of the system modelled byS there is a correspond-

ing outputv′ ∈ V ′ of the other system for whichS′−1(v′) ⊆ S−1(v). The greater

information released by the system modelled byS′ is confirmed by the fact that

⟨⟨ΣV⟩⟩ = {{σ1, σ2},Σ} ⊑ ⟨⟨ΣV ′⟩⟩ = {{σ1, σ2},{σ2, σ3},{σ2},Σ}, which means

that by fixing the input to the systemS′ the attacker can learn (in addition to what

may be learnt underS) when the input to the system modelled byS′ belongs only

67

to the set{σ2, σ3} or {σ2}. The knowledge{σ2, σ3} is gained by observingv′2 in

S′ - which eliminates the possibility ofσ1 as the input, as opposed to the knowl-

edgeΣ on observingv2 in S, which eliminates no possibility. Furthermore, by

fixing the input it is possible to isolate the inputσ2 in the input space ofS′, which

is the only input that can produce bothv′1 andv′2. These additional information

cannot be derived underS.

σ1

σ2

σ3

v1

v2

Model of systemS

σ1

σ2

σ3

v′1

v′2

Model of systemS′

Figure 3.1: Information flow under two nondeterministic systems

The qualitative representations of information (equivalence relations, PERs,

and families of sets) presented above for the general nondeterministic system an-

swer the question of whether a given input is possible when an output is observed.

This however does not address the question of how likely, in particular, what the

probability is for such an input to have been chosen. For systems which exhibit

probabilistic nondeterminism, it may be possible to derive the probability that a

certain input has been selected based on the observation of a given output. Thus,

by observing the pattern of the outputs, an attacker may reduce his or her un-

certainty about the inputs by deriving the probabilities for selecting inputs to the

system based on the pattern of outputs. This view of information flow result-

68

ing from a change in the attacker’s uncertainty about inputs toa system (which

is modelled by probability distributions over the input space) lends itself to an

information-theoretic analysis presented next.

3.8 A Quantitative Representation

Under the qualitative representations of information flow presented earlier, given

the relational modelS ⊆ Σ × V of a system, an attacker on observing an output

v ∈ V thinks itpossiblethat the inputσ ∈Σ may have been supplied to the system

whenever(σ, v) ∈ S - although it might be extremely unlikely that the inputσ

generates the outputv. We considerprobabilistic systems, which have probability

distributions associated with the occurrence of their inputs and outputs and derive

a quantitative measure, based on Shannon’s information theory, which describes

the level of uncertainty of the attacker induced by the system’s probabilistic input-

output dependency. For the quantitative probabilistic analysis that we consider in

this thesis, we assume that both the setΣ andV arefinite.

3.8.1 Probability Measures and Entropy

We start by presenting standard definitions from probability and information the-

ory, and introduce some notations that we shall use in the analysis.

Definition 3.8.1 (σ-Algebra [Hal03]). The setF of subsets ofΣ is an algebra

overΣ if it containsΣ and is closed under set union and complementing, so that

if Σ,Σ′ ∈ F then so areΣ ∪ Σ′,Σ = Σ/Σ ∈ F . A σ-algebrais closed under

complementing and countable union, so that ifΣ1,Σ2, . . . ∈ F then⋃i Σi ∈ F .

69

A probability spaceover Σ is a triple ⟨Σ,F , µ⟩, whereF is an algebra over

Σ, andµ ∶ F → [0,1] called aprobability measureis a map to the closed real

interval [0,1] such that

• µ(Σ) = 1

• µ(Σ ∪Σ′) = µ(Σ) + µ(Σ′) for any disjointΣ,Σ′ ∈ F .

Any algebra is also closed under intersection since by De Morgan’s duality we

have thatΣ ∩Σ′ = Σ ∪Σ′ for any pairΣ,Σ′ ∈ F . A setΣ ∈ F is called anevent.

Since the setΣ that we shall consider for the probabilistic information analysis is

assumed to be finite, we have thatF is always aσ-algebra. Furthermore, we shall

always takeF to be the powersetP(Σ).

Definition 3.8.2 (Probability Measures). For any finite setΣ considered, define

F ≜ P(Σ) to be an algebra overΣ. Furthermore, define the set of all probability

measures overΣ to beM (Σ) ≜ {µ ∣ ⟨Σ,F , µ⟩ is a probability space overΣ}.

For any familyΣJ ⊆ F whose elements are pairwise disjoint it can be induc-

tively shown that

µ(⋃
j∈J

Σj) = ∑
j∈J

µ(Σj).

This property is referred to asfinite additivity. In the following, since the algebra

F = P(Σ) is the powerset of the finite setΣ, it is sufficient to defineµ for single-

ton subsets ofΣ because we can derive the probability (using the finite additivity

property) for any other eventΣ ∈ F as

µ(Σ) = ∑
σ∈Σ

µ({σ}).

70

We shall often omit the braces for singleton events and simply write µ(σ), for

brevity, instead ofµ({σ}).

Conditional Probability

We shall use the notion ofconditional probabilityto describe how an attacker’s

observation of a system’s outputs affects the attacker’s initial uncertainty about the

inputs to the system. This is because information flow occurs when the attacker is

able to reduce his or her uncertainty about inputs based on the observation of the

system output.

SupposeΣ andV are respectively the sets of inputs and outputs of a system

whose relational model isS ⊆Σ×V. We assume that bothΣ andV are finite. Let

µ ∈M (Σ×V) be a probability measure describing the probability of eventE ∈ F

(whereF = P(Σ × V)) occurring. For any singleton event{(σ, v)} ∈ F , we write

µ(σ, v) ≜ µ({(σ, v)}) for the joint probability of input σ and outputv occurring

under the system in question.

For anyσ ∈ Σ, defineEσ ≜ {(σ, v) ∣ v ∈ V}. Then themarginal probability

of the input valueσ occurring is given byµ(Eσ) = ∑
v∈V

µ(σ, v). We shall simply

denote this probability asµ(σ) ≜ µ(Eσ). Similarly, for anyv ∈ V, defineEv ≜

{(σ, v) ∣ σ ∈Σ}, the marginal probability ofv is given byµ(v) ≜ µ(Ev).

Now supposeE,E′ ∈ F are events, then theconditional probabilitythatE

occurs given thatE′ has occurred is written asµ(E ∣E′), this is given by [Ros06]

µ(E ∣E′) ≜
µ(E ∩E′)
µ(E′)

if µ(E′) > 0. (3.5)

For a givenE′ ∈ F , µ(⋅ ∣E′) is also a probability measure [Ros06]. For any input

71

σ ∈ Σ and outputv ∈ V, we shall write the conditional probability thatσ was

selected given thatv was observed as

µ(σ ∣ v) ≜ µ(Eσ ∣Ev) =
µ(σ, v)
µ(v)

if µ(v) > 0. (3.6)

This definition follows directly from (3.5). Wheneverµ(v) = 0, the conditional

probabilityµ(σ ∣ v) is undefined. The conditional probability,µ(v ∣ σ), that the

outputv is produced given that inputσ was selected is similarly defined.

Random Variables

Assume thatµ ∈M (Σ × V) is a probability measure overΣ × V as define above,

we shall designate two random variablesXΣ overΣ andXV overV respectively

to represent occurrence of inputs inΣ and outputs inV. For anyσ ∈ Σ, XΣ = σ

means that the random variableXΣ takes on the value ofσ, and the probability of

this happening (writtenµ(XΣ = σ)) is µ(Eσ) = µ(σ), which as shown above is

the marginal probability of selectingσ. Similarly, for anyv ∈ V, the probability

of XV = v occurring isµ(v). When we consider probability measuresµ ∈M (Σ)

over a setΣ alone, we shall useµ interchangeably for both the probability measure

and the random variable overΣ induced by this measure.

Entropy

The notion ofentropydescribes, quantitatively, the degree of uncertainty encoded

in a random variable. Supposeµ is a probability measure overΣ, this induces a

random variable that we also denote byµ, which takes on a valueσ ∈ Σ with a

72

probability ofµ(σ). The entropy ofµ is defined as

H(µ) ≜ ∑
σ∈Σ

µ(σ) log(
1

µ(σ)
) . (3.7)

The logarithm in definition (3.7) is traditionally to the base 2 and the measurement

unit isbit. Furthermore, wheneverµ(σ) = 0 thenµ(σ) log
1

µ(σ)
is conventionally

taken to be0, which is reasonable sincelim
x→0+

x log x = 0.

The value ofH(µ) measures the degree of uncertainty over the spaceΣ as

described byµ. We shall use this measure to describe the information that an at-

tacker gains by computing the difference in the attacker’s uncertainty at two points

in time: before and after the observation of outputs. For example, if by the ob-

servation of outputs the attacker whose uncertainty is encoded by the probability

measureµ becomes less uncertain - represented by another probability measure

µ′, then the information gained can be characterised by the quantityH(µ)−H(µ′).

We note two properties of the entropy measure [Mac03, Sha48]. Supposeµ is

a probability measure over the nonempty finite setΣ which hasn elements, we

have

• H(µ) ≥ 0, andH(µ) = 0 when there exists aσ ∈ Σ for which µ(σ) = 1

(uncertainty is minimised when an event becomes certain).

• H(µ) ≤ log(n), andH(µ) = log(n) whenµ(σ) = 1
n

for all σ ∈ Σ (uncer-

tainty is maximised when all events are equally likely).

73

Conditional Entropy and Mutual Information

Now consider a probability measureµ ∈M (Σ × V) overΣ × V, and the induced

random variablesXΣ (∀σ ∈Σ, µ(XΣ = σ) = µ(σ)) andXV (∀v ∈ V, µ(XV = v) =

µ(v)) respectively defined overΣ andV. The entropy of the random variableXΣ

is given as

H(XΣ) = ∑
σ∈Σ

µ(σ) log(
1

µ(σ)
)

and similarly the entropy of the random variableXV is

H(XV) = ∑
v∈V

µ(v) log(
1

µ(v)
) .

The conditional entropyof the random variableXΣ, given the observation of the

eventXV = v for somev ∈ V is defined as

H(XΣ ∣XV = v) ≜ ∑
σ∈Σ

µ(σ ∣ v) log(
1

µ(σ ∣ v)
) .

We shall writeH(XΣ ∣XV = v) simply asH(XΣ ∣ v), and it represents the un-

certainty which remains aboutXΣ whenXV = v is observed. For anyσ ∈ Σ,

H(XV ∣ σ) is similarly defined.

The average, orexpected conditional entropyof XΣ givenXV is defined as

H(XΣ ∣XV) ≜ ∑
v∈V

µ(v)H(XΣ ∣ v).

Themutual informationbetween the random variablesXΣ andXV describes how

much of information aboutXΣ is encoded inXV and vice versa. The mutual

74

information betweenXΣ andXV is defined as

I(XΣ;XV) ≜ H(XΣ) −H(XΣ ∣XV). (3.8)

Intuitively, I(XΣ;XV) measures the remaining uncertainty aboutXΣ afterXV

is known. This measure is always positive becauseH(XΣ) ≥ H(XΣ ∣XV), and

equality occurs whenXΣ andXV areindependent[Sha48]. The mutual informa-

tion measure is used in our analysis to determine the information that flows from

the inputs to the outputs of a system. The use of this measure to characterise infor-

mation flow is not new [CHM07]. We now show that the information contained

in random variables can be arranged on a lattice by using the entropy measure to

describe the relative amount of information that they contain.

3.8.2 Lattice of Probabilistic Information

In this section we show that the setM (Σ) of probability measures overΣ can

be arranged on a lattice based on Shannon’s entropy measure of their relative

quantitative information contents. The entropy measure, by design [Sha48], is

not sensitive to permutations of the probabilities assigned to events under a given

probability measure. For example, since it is immaterial which particular event

becomes certain when we have the least entropy of zero, it is clear that there is

no uniqueprobability measure which maximises information release. This fact

suggests that an order on probability measures based on Shannon’s entropy will

only be a preorder. However, this does not pose a serious technical difficulty as

we can move to a partial order over equivalence classes of probability measures

with the same entropy.

75

Definition 3.8.3 (Lattice of probability measures). Let µ,µ′ ∈ M (Σ) be proba-

bility measures over a finite setΣ. Define a preorder⪯ on M (Σ) asµ ⪯ µ′ iff

H(µ′) ≤ H(µ).

Now define the equivalence relationθ over M (Σ) asµ θ µ′ iff µ ⪯ µ′ and

µ′ ⪯ µ, and defineMθ(Σ) ≜ {[µ]θ ∣ µ ∈ M (Σ)} to be the set of equivalence

classes of the relationθ overM (Σ). Define a partial order⊑ onMθ(Σ), which

for anyµ,µ′ ∈M (Σ) is given by[µ]θ ⊑ [µ′]θ iff µ ⪯ µ′. The join operation on

Mθ(Σ) is defined as usual such that[µ]θ ⊔ [µ′]θ = [µ′]θ iff [µ]θ ⊑ [µ′]θ.

The partially ordered set⟨Mθ(Σ),⊑,⊔⟩, which we call thelattice of Shannon’s

information measures, is a complete lattice as will be shown shortly. From an

information-theoretic point of view, ifµ ⪯ µ′ ⪯ µ holds, the amount of infor-

mation that two attackers whose uncertainties are described by the probability

measuresµ andµ′ have is the same. However, since the relation⪯ is not antisym-

metric this does not necessarily mean thatµ andµ′ are the same. The reason is

that the computation of entropy does not distinguish between mere permutations

of probabilities of events over which a probability measure is defined [Sha48].

For example, ifΣ = {σ,σ′} such thatµ(σ) = 1 andµ(σ′) = 0, whereasµ′(σ) = 0

andµ′(σ′) = 1, we haveH(µ) = H(µ′) = 0. In fact, for any pair of probability

measures on this set whereµ1(σ) = µ2(σ′) andµ1(σ′) = µ2(σ) it is easy to see

thatH(µ) = H(µ′). As entropy merely quantifies the degree of uncertainty in ele-

ments ofM (Σ), we achieve partial ordering by moving to a set whose canonical

elements are the equivalence classes of the relationθ ≜ ⪯ ∩ ⪰ which relates proba-

bility measures with equal entropy. This technique is standard, and it allows us to

obtain a partially ordered set⟨Mθ(Σ),⊑⟩. The quantitative information content

of the lattice of Shannon’s information measures,⟨Mθ(Σ),⊑,⊔⟩, overΣ forms a

76

complete lattice.

Theorem 3.8.4.LetΣ be a finite set. The ordered set⟨Mθ(Σ),⊑,⊔⟩ is a complete

lattice.

Proof. It is clear that⊑ is a partial order. Now take any pair[µ]θ, [µ′]θ ∈Mθ(Σ)

for someµ,µ′ ∈ M (Σ). The join, and the meet operation, which is dually de-

fined, exist uniquely and are well defined. HenceMθ(Σ) is a lattice. From the

properties of entropy and the fact thatΣ is finite we know that there is a greatest

element ofMθ(Σ) corresponding to the entropy of0 and there also exists a least

element corresponding to the entropyH(µ�), whereµ� is the probability mea-

sure which assigns equal probabilities to allσ ∈ Σ. In particular, since entropy

is continuous over probability measures [Sha48],⟨Mθ(Σ),⊑⟩ is lattice isomor-

phic to the closed real intervalI = ⟨[0, log(∣Σ∣)],≥⟩ (which is bounded above and

below respectively by the entropy measures0 andlog(∣Σ∣)) via the isomorphism

ι([µ]θ) ≜ H(µ). Hence,⟨Mθ(Σ),⊑⟩ is a complete lattice.

3.8.3 Deriving Probabilistic Information Flow

We shall now apply the information-theoretic definitions above to the analysis of

information flow using the relational model of systems. Here, in addition to the

relational modelS ⊆ Σ × V, we also make use of a joint probability measure

µ ∈M (Σ × V) over system’s input-output domain characterising how the system

transfers probabilistic information from its inputs to its outputs.

Definition 3.8.5. Let SP ⊆ Σ × V be the relational model of a systemP over its

setΣ of inputs and setV of its outputs, both of which are finite. In addition, let

µ̂ ∈M (Σ × V) be a probability measure overΣ × V such that for allσ ∈ Σ and

77

v ∈ V, µ̂(σ, v) is the joint probability of supplying inputσ toP and producing the

outputv.

Let µ ∈ M (Σ) to be a probability measure overΣ describing an attacker’s

initial uncertainty over the input space such that for anyσ ∈ Σ,µ(σ) =∑v∈V µ̂(σ, v).

Similarly, letµ′ ∈ M (V), such that for anyv ∈ V, µ′(v) = ∑σ∈Σ µ̂(σ, v) is the

marginal probability of observing outputv in P . Furthermore, let the conditional

probability measureµv ∈ M (Σ) be the attacker’s uncertainty about the inputs

after observing outputv ∈ V which for anyσ ∈Σ is given byµv(σ) ≜ µ̂(σ ∣ v).

The quantitative information flow viaP to an attacker whose initial uncer-

tainty about the input is described byµ is given by

I⟨P,µ⟩ ≜ H(µ) −∑
v∈V

µ′(v)H(µv).

The informationI⟨P,µ⟩ = I(XΣ;XV) released byP is themutual information(see

(3.8)) between the random variableXΣ induced by the probability measuresµ

over the input spaceΣ and random variableXV induced by the probability mea-

sureµ′ over the output spaceV. Let us illustrate Definition 3.8.5 with examples.

Suppose the secreth ∈ {0,1,2,3} is a parameter to the programP and that

P reveals the parity ofh by producing an outputhmod2. Now suppose that

h is chosen with uniform probability over its set of possible values. Then the

relational model ofP is given bySP ⊆ Σ × {0,1}, where the 2-bit stateΣ is rep-

resented by the setΣ = {σ0, σ1, σ2, σ3} where for alli, σi = [h ↦ i] and we have

graph(SP) = {(σ0,0), (σ1,1), (σ2,0), (σ3,1)}. Since all inputs are equally likely,

we have∀i, µ(σi) = 1
4
. Furthermore, becauseP is deterministic, for all(σ, v) ∈ SP

the joint probabilityσ andv is µ̂(σ, v) = 1
4
. Hence we can compute the marginal

78

probabilitiesµ′(v) of the outputsv ∈ {0,1}, which areµ′(0) = ∑σ∈Σ µ̂(σ,0) =
1
2
,

and µ′(1) = 1
2
. The conditional probabilitiesµv(σ) = µ̂(σ ∣ v) are as follows:

µ0(σ0) =
µ̂(σ0,0)
µ′(0)

=
1

2
= µ0(σ2) and µ0(σ1) = µ0(σ3) = 0.

Similarly,

µ1(σ1) = µ1(σ3) =
1

2
and µ1(σ0) = µ1(σ2) = 0.

The information released isI⟨P,µ⟩ = H(µ) − (12H(µ0) + 1
2
H(µ1) = 1. The 1-bit

information that is derived corresponds to the knowledge gained by the attacker,

which now knows whether the parity ofh is even or not. Under the same setup,

whereh is chosen with uniform probability, if we consider the programP2 which

revealsh directly, we now have the information released to beI⟨P2,µ⟩ = 2 bits.

This is clear, since the attacker completely learns the secreth. However, if we

consider under the same setting, a programP3, which produces a constant output

regardless of the choice ofh, the information flow isI⟨P3,µ⟩ = 0 bits. This is also

intuitive because the output ofP3 is independent ofh. Definition 3.8.5 applies

also to nondeterministic system models, which we illustrate next.

In this example, we introduce a construct8p for probabilistic nondetermin-

ism. Informally, the semantics of the probabilistic constructc1 8p c2 is to exe-

cute the subprogramc1 with a probability ofp and to execute programc2 with

a probability of1 − p, where0 < p < 1. The formal semantics of a program-

ming language featuring this construct is presented in Chapter 4. Now, con-

sider the nondeterministic programP4 ≜ P 8.8 P5 which accepts a parameter

h ∈ {0,1,2,3} and which is made up of two deterministic subprograms:P -

introduced above, which reveals the parity ofh, andP5 which produces output2

79

whenh = 0 and produces output3 otherwise - henceP5 reveals whetherh = 0

or not. Now suppose, as in the previous example, thath is chosen with equal

probability as the input toP4. The set of possible outputs ofP4 is V4 = {0,1,2,3}

and thus its relational model is given bySP4
⊆ Σ × V4, wheregraph(SP4

) =

{(σ0,0), (σ0,2), (σ1,1), (σ1,3), (σ2,0), (σ2,3), (σ3,1), (σ3,3)}. Using the fact

that for alli = 0,1,2,3, the probability of choosing the inputσi is µ(σi) = 1
4
, then

the input-output joint probabilities is computed fromP4 asµ(σ0,0) = µ(σ1,1) =

µ(σ2,0) = µ(σ3,1) = 1
5

and µ(σ0,2) = µ(σ1,3) = µ(σ2,3) = µ(σ3,3) = 1
20

. From

these we obtain the marginal probabilities of the outputs, whereµ′(i) is the prob-

ability of producing outputi as:µ′(0) = µ′(1) = 2
5

and µ′(2) = 1
20

and µ′(3) = 3
20

.

Additionally, by applying the definitions, the conditional probabilities (µi(σj))

thatσj was chosen as the input given the observation of the outputi are the fol-

lowing: µ0(σ0) = µ0(σ2) = µ1(σ1) = µ1(σ3) = 1
2

and µ2(σ0) = 1 andµ3(σ1) =

µ3(σ2) = µ3(σ3) = 1
3
, and for every otheri andj, we haveµi(σj) = 0. The quanti-

tative information released byP4 is given byI⟨P4,µ⟩ = H(µ)−∑v∈V4
µ(v)H(µv) ≈

0.9623. Although the result0.9623 bit is not very intuitive, there is some logic be-

hind the value. Considered independently, the programP5 reveals about0.8113 bit

of information abouth, and we have already shown earlier thatP reveals1 bit of

information abouth. However, inP4, P is executed80% of the time andP5 is ex-

ecuted in the remaining20%. Thus, the information released abouth in P agrees

with the semantics and comes from the fact that0.8×I⟨P,µ⟩+0.2×I⟨P5,µ⟩ ≈ 0.9623.

This captures a sense of the frequency or the weighted rate of information release

by the two subprograms.

80

Summary We have developed a lattice-based policy model forwhat declassi-

fication policies in this chapter. Useful policy patterns were identified under the

lattice-based policy model. The lattice model of information is shown to cap-

ture natural intuitions about information and information flow. An input-output

relational model was presented as a theoretical primitive for the analysis of infor-

mation flow. Using the relational model, various representations of information

suitable for the analysis of information flow in deterministic and nondeterministic

systems were developed and shown to fit into the lattice model of information.

In Chapter 4 we shall show how to derive the relational model, in language-

based settings, from the operational semantics of programming languages. The

analyses, which are performed parametric to an attacker model, allow us to study

information gained by the chosen attacker. The attackers are assumed to have a

specification (such as the algorithm or protocol that the system implements, or the

program source code) of the system being attacked so that, given any input, the

attacker can work out the possible output(s) that the system can produce. These

assumptions describe, for example, the malicious code scenario where the attacker

is possibly the author of the program that processes sensitive data.

81

Chapter 4

In formation Flow in Computational

Systems

The goal of this chapter is to demonstrate how to develop the relational model

introduced in the previous chapter from the operational semantics in a language-

based setting, and to show how to derive a system’s information flow property

from this relational model, which is defined parametric to a given attacker’s ob-

servational power.

To provide a concrete language-based setting, a simpleWhile language with

output is introduced as an imperative core language for studying systems with

outputinteractions. The operational semantics of this core language is presented.

An illustrative semantic attackermodel is presented to demonstrate the defini-

tion of attacker models for information flow analyses. The resulting analyses of

information flow with respect to the semantic attacker model demonstrate how

termination-sensitive analyses may be developed under the relational model.

82

4.1 Operational Semantics and Observational Power

We considercomputational systems, which process confidential data supplied as

part of their inputs and which may produce publicly observable outputs. In or-

der to model what an attacker may learn by observing such a system, we need

to be able to specify what the attacker can observe about the system’s operation.

This is referred to as theattacker modeland is defined by the attacker’sobser-

vational power, which describes what the attacker can see about the execution of

the system. We shall formalise the attacker’s observational power with respect to

the operational semantics of the system being analysed to enable us to derive the

system’s information flow property, relative to this attacker model.

A standard way to model the operational semantics of a computational system

is by using atransition systems. We shall use alabelled transition systemto model

the operational semantics, where the labels in the transition relation of the tran-

sition system describe what the attacker sees during a transition of the system in

question. Labelled transition systems are powerful tools for describing, at differ-

ent levels of abstractions, the aspects of a system’s operation that are relevant to an

analysis. Well known examples of operational description of systems include the

structural operational semantics (SOS) that is also called the “small-step” seman-

tics [Plo81], and evaluation relations (also called “big-step SOS” or the “natural

semantics” [Kah87]), which are used to formalise the semantics of programs. It is

also common to describe interactions of a system with (or itseffects[NNH99] on)

its environment by using labels in the transition system [Mil99, AFV01, PAK02].

83

4.1.1 Labelled Transition Systems and Interaction

A transition system is a pair(C ,↠), whereC is a set of systemconfigurations

or states, and the binary relation↠⊆ C × C defines valid transitions between

configurations. The reflexive, transitive closure of↠, written as↠∗, is defined

ass0 ↠∗ sn iff there is a sequence of transitionss0 ↠ s1 ↠ ⋯ ↠ sn, for some

s0, s1,⋯, sn ∈ C . The transition system(C ,↠) is said to bedeterministicwhen

the resulting configuration of every transition is uniquely determined by the initial

configuration, that is, for alls, s′, s′′ ∈ C , s↠ s′ ands↠ s′′ means thats′ = s′′,

otherwise the transition system is said to benondeterministic.

We shall consider systems which have outputinteractions, which may occur

at any point during the run of the system, and which may be observable by an

attacker. Interactive systems[Mil99] are traditionally modelled as aslabelled

transition systems(or automaton[HU79]), where labels capture the interactions

between the system and its environment. A labelled transition system is a triple

(C ,Ð→,A), which may be viewed as a transition system that is augmented with

a setA of labels(also referred to asactions) to capture the system’s interactions.

The transition relation in a labelled transition system is a ternary relationÐ→⊆

C ×A × C . If for some actiona ∈ A and configurationss, s′ ∈ C we have that

(s, a, s′) ∈Ð→, then the system is said to make a transition from configurations

to s′ with the effecta. This is often written ass
a
Ð→ s′. A labelled transition

system(C ,Ð→,A) is deterministic if for alls, s′, s′′ ∈ C anda ∈A , s
a
Ð→ s′ and

s
a
Ð→ s′′ means thats′ = s′′, otherwise it is nondeterministic [Mil99].

84

4.1.2 Attacker Models

In this section we shall formalise attacker models via a notion ofobservational

power that describes what an attacker sees during a run of a labelled transi-

tion system. SupposeT = (C ,Ð→,A) is a labelled transition system which

formalises the semantics of a given computational system. In order to model

what the attacker can see about this system’s operation, we can define a function

O ∶ C ×A ×C → AO on the transition relation, called the observational power,

which models what the attacker sees during each transition of the systemT . The

setAO may be chosen arbitrarily, elements of which represent what the attacker

actually sees. Thus, the observational powerO can be defined such that for

all (s, a, s′) ∈Ð→, wheres, s′ ∈ C and a ∈ A there existsa′ ∈ AO such that

O(s, a, s′) = a′. The intention is that, while the actiona in (s, a, s′) captures

the interaction ofT in the original sense,O rewrites this asa′ to describe what

the attackeractually sees. In the simplest case,O is just an identity function on

actions, which results in an attacker model that is interacting with the system as

originally prescribed by the operational semantics. However, we may want to

model more powerful attacker’s which can observeinternal system actions, such

as an attacker running a program in a debugger, where internal actions can be

observed; or a less powerful attacker which is interacting only with a part of the

system where otherwise externally visible actions in some system parts are invisi-

ble under the attacker model, for example, in a client-server application where the

attacker in question can only observe the system’s interactions that are visible on

the attacker’s client.

The observational powerO allows us to specify precisely (by transforming

85

system interactions) how an attacker interacts with the system. This gives us a

general tool to model different kinds of attackers which can interact with a system

in non-standard ways. The introduction ofO induces a viewTO = (C ,Ð→O ,AO)

of the systemT = (C ,Ð→,A), whereTO is a labelled transition system, which

describesT as the attacker with the observational powerO sees it. Thus, if the

transition relationÐ→O⊆ C × AO × C of the transition systemTO is defined as

(s, a′, s′) ∈Ð→O iff (s, a, s′) ∈Ð→ andO(s, a, s′) = a′, then the induced transition

systemTO is capable of describing every possible transition in the semantics of

T becauseO is totally defined over all(s, a, s′) related byÐ→. Observational

powersOA andOB defined over a system’s transition relations can be compared

according to their relative powers, where the attacker modelled byOB is said to

be at least as powerful as the attacker modelled byOA if there exists a function

f such thatOA = f ○ OB, that is, the observational power functionOA has less

variety thanOB.

We may also describe an attacker’s observational power over a system at the

trace levelrather than only at the level of the individual transitions in the transition

system as shown above. A trace of the labelled transition systemT = (C ,Ð→,A)

is a sequence of transitions, written ass0

a0Ð→ s1

a1Ð→ s2

a2Ð→ ⋯ where for alln,

(sn, an, sn+1) ∈Ð→, ands0 ∈ Ci is a configuration chosen from a distinguished set

of starting configurationsCi of the system modelled byT . Such an observational

power,obs(⋅), is thus a map from the set of traces ofT to the set of observed

sequences. Observational powersobsA(⋅) andobsB(⋅) over a system’s traces may

also be arranged according to their relative degrees of power, whereobsB(⋅) is

said to be at least as powerful asobsA(⋅) if there exists a functionf such that

obsA(⋅) = f ○ obsB(⋅).

86

In the next section we shall show how to derive the relational model of a

system, given the relevant transition system and a model of the attacker’s obser-

vational power over the transition system.

4.1.3 Deriving the Relational Model

In Chapter 3 we showed how to derive the information released by a system from

its relational model which associates the system’s input with the output(s) that

the attacker observes. We now show how such a relational model can be de-

rived for the system described by the labelled transition system(C ,Ð→,A) under

the observational powerO of a given attacker model. This leads to a configura-

tion TS = (C ,Ð→,A ,O), which refers to the original labelled transition system

(C ,Ð→,A) augmented with the attacker model described byO . The inducedTS

essentially defines a new transition system that is similar to the definition ofTO

from T in the previous section. It is also clear that the original labelled transi-

tion system(C ,Ð→,A) is a special case ofTS , which is obtained whenO is an

identity onA .

Definition 4.1.1(Deriving the Relational Model). Let TS = (C ,Ð→,A ,O) be a

labelled transition system under the observational powerO , and letCi ⊆ C be the

set of all the initial configurations ofTS. Define the set of all finite and infinite

traces ofTS as seen byO to be

TTS ≜ {s0

a0Ð→ s1

a1Ð→⋯∣s0 ∈ Ci.∀n ≥ 0, (sn, a
′
n, sn+1) ∈Ð→,O(sn, a

′
n, sn+1) = an}.

Furthermore, for anys0 ∈ Ci let ts0
⊆ TTS be the set of all traces starting at the

initial configurations0. Now define the set of observations, given the starting con-

87

figurations0 asobs(ts0
) ≜ {a0a1⋯ ∣ s0

a0Ð→ s1

a1Ð→ ⋯ ∈ ts0
}, modelling the possible

interactions ofTS with the attacker whose observational power isO whenTS is

started at the configurations0. The set of all observations of the system is given

byV = ⋃s∈Ci
obs(ts) and therelational modelof this system induced byO is now

the relationS ⊆ Ci × V whose graph is

graph(S) = {(s, a) ∣ s ∈ Ci, a ∈ obs(ts)}.

This definition provides us with a general tool for describing information flow in

deterministic and nondeterministic systems. The elementa = a0a1⋯ ∈ obs(ts0
)

is the sequential juxtaposition of the individual observationsa0, a1,⋯ of the trace

s0

a0Ð→ s1

a1Ð→ ⋯ ∈ ts0
. Since the system may be nondeterministic it is clear that

obs(ts) may not be a singleton set and, therefore,S may not be a function from

configurations to sequences of actions. The relationS abstractly describes the

interactiona of the attacker with the system (modelled byTS), given the initial

configurations of the system, whenevers is related toa by S.

To illustrate the definitions above in a more concrete setting, the next section

presents theWhile language as a language-based instantiation for the analysis of

information flow in deterministic systems.

4.2 TheWhile Language

We now present the imperativeWhile language, shown in Figure 4.1, upon which

our analysis of information flow in the next chapter shall be based. The operational

semantics of this language is fairly standard [NNH99, Win93], and it has been

88

used as the core imperative language in many language-based security settings.

An addition to this language is thewrite construct for program output, which is

used to model output interaction of a system with its environment. The semantics

of the write statement is the same as that of theoutputstatement of [GBJS06].

Information flow in interactive programs is recently gaining more attention in

language-based security [Bac05, OCC06, GBJS06, AS07, AHSS08]. Since in-

teractive programs are common in practice, the study of the effect of interaction

on information flow is important to give us a more realistic account of information

flow in real systems.

c ∶∶= skip ∣ z ∶= e ∣ write e ∣ c; c ∣
if(b)then c else c ∣ while (b) do c.

Figure 4.1: The While Language with Output

4.2.1 While Expressions and Program States

We consider onlybooleanand integer expressions inWhile programs, but the

analysis techniques developed can be extended to other data types in a fairly

straightforward manner. Boolean-valued expressions (ranged over byb) and integer-

valued expressions respectively evaluate to values in the setB ≜ {tt,ff} andZ ≜

{⋯,−2,−1,0,1,2,⋯}. Accordingly, we have standard data typesτ ∈ {bool, int}

whose denotations are sets, and are given byJboolK ≜ B andJintK ≜ Z. The set

Exp (ranged over bye andb) of all expressions considered are constructed in the

standard way by using arithmetic and boolean operators. Furthermore, program

variables are taken from the setVar, which is ranged over byx, y, z, h andl, using

89

subscripts when necessary. We also refer to the functionFV ∶ Exp→ P(Var),

which denotes the set offree variablesin a given expression.

Program statesσ ∈ Σ are finite maps from variables to values. Theevaluation

of expressione ∈ Exp at a stateσ ∈Σ is summarised asσ(e), and for any expres-

sione and stateσ considered it is assumed thatFV (e) ⊆ dom(σ), wheredom(σ)

is the domain of definition ofσ. Furthermore, the evaluation of an expression is

assumed to have noside effecton the program state.

4.2.2 While Commands

The set ofWhile commands is denoted byCom. As Figure 4.1 shows, sim-

ple commands include the standardskipstatement andassignmentstatement, as

well as thewrite statement (used for program output). Other program command

constructors include the conditionalif statement construct - for choice, the con-

ditional while statement construct - for iteration or looping, and the composition

constructor (;) for sequential composition of programs. The operational semantics

of While is presented next.

4.2.3 The Operational Semantics ofWhile

In this section we present the operational semantics of theWhile language. The

analysis that will be performed is based on an attacker model which can observe

output interactions. Thus, in order to formalise this interaction, we introduce two

basic types of actions:ε,out(⋅) ∈A , whereε stands forinternal actionthat is not

ordinarily observable from the environment andout(v) stands for theoutputof

the valuev to the system’s environment wherev can be observed by the attacker.

90

The operational semantics ofWhile is specified by transition relations be-

tweencommandandexpression configurations. A command configuration is a

pair ⟨c, σ⟩ ∈ Com ∪ {⋅} ×Σ, which represents a commandc to be executed at the

stateσ. When there are no more commands to execute, a specialterminal com-

mand configuration, ⟨⋅, σ⟩, indicates the termination of the program in the state

σ ∈ Σ. Similarly, an expression configuration is a pair⟨e, σ⟩ ∈ Exp ×Σ, which

evaluates the expressione at the stateσ. Since the evaluation of an expression

does not have side effect on program states and the evaluation operation itself is

taken to be an internal action, the evaluation relation for the expressione at the

stateσ is summarised as⟨e, σ⟩
ε
Ð→ ⟨σ(e), σ⟩, whereσ(e) is the value ofe atσ.

Assignments modify program states, and in anticipation of this, we use the

standard definition of state update for some program stateσ ∈ Σ and z1, z2 ∈

dom(σ) which updates the variablez1 in stateσ with a valuev that is taken from

the data type ofz1 as follows

σ[z1 ↦ v](z2) ≜

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v if z1 = z2

σ(z2) otherwise.

(4.1)

The full operational semantics ofWhileis presented in Figure 4.2. This seman-

tics is fairly standard, with the exception of the transition rule forwrite statements.

This rule says thatwrite does not modify program state, but that the observer can

see the value of the evaluated expression when the statement is executed. The la-

bela ∈ A represents a program action which an attacker may be able to observe.

Let us illustrate how this can be used to describe how an attacker might reason

about the possible starting state of a deterministic program. Consider the pro-

91

⟨skip, σ⟩
ε
Ð→ ⟨⋅, σ⟩ ⟨z ∶= e, σ⟩

ε
Ð→ ⟨⋅, σ[z ↦ σ(e)]⟩

⟨write e, σ⟩
out(σ(e))
Ð→ ⟨⋅, σ⟩

⟨c1, σ⟩
a
Ð→ ⟨c′1, σ′⟩

⟨c1; c2, σ⟩
a
Ð→ ⟨c′1; c2, σ′⟩

⟨c1, σ⟩
a
Ð→ ⟨⋅, σ′⟩

⟨c1; c2, σ⟩
a
Ð→ ⟨c2, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨tt, σ⟩ ⟨c1, σ⟩

a
Ð→ ⟨c′1, σ′⟩

⟨if (b) then c1 else c2, σ⟩
a
Ð→ ⟨c′1, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨ff , σ⟩ ⟨c2, σ⟩

a
Ð→ ⟨c′2, σ′⟩

⟨if (b) then c1 else c2, σ⟩
a
Ð→ ⟨c′2, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨tt, σ⟩ ⟨c, σ⟩

a
Ð→ ⟨c′, σ′⟩

⟨while (b) do c, σ⟩
a
Ð→ ⟨c′;while (b) do c, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨ff , σ⟩

⟨while (b) do c, σ⟩
ε
Ð→ ⟨⋅, σ⟩

Figure 4.2: Operational semantics ofWhile

92

gram in Figure 4.3, where the attacker can see the program outputs via thewrite

statements, but does not know the value of the secret integer inputx.

i f (x<10)then
wr i te 1 ;

e l s e
wr i te 2 ;

i f (x =15)then
wr i te 1 ;

e l s e
wr i te 2 ;

Figure 4.3: Reasoning about program secrets

We denote the sequence of output values of this program as tuples. For ex-

ample, the observation for the trace⟨P,σ⟩
out(1)
Ð→ ⟨P ′, σ⟩

out(2)
Ð→ ⟨⋅, σ⟩ is denoted by

⟨1,2⟩. Thus, for any chosen starting state, this program produces an output in the

setV = {⟨1,2⟩, ⟨2,1⟩, ⟨2,2⟩}, which the attacker can use to reason about possible

starting states as follows.

• The output sequence⟨1,2⟩, correspond to two individual outputs from the

write statements in thethen branch of the firstif statement and theelse

branch of the secondif statement. Using the operational semantics, the

attacker can derive the fact that bothx < 10 andx ≠ 15 hold. The output

⟨1,2⟩ is produced by all traces through the indicated conditional branches

and these traces have a starting state in the setΣ12 = {σ ∈ Σ ∣ σ(x) <

10} ∩ {σ ∈ Σ ∣ σ(x) ≠ 15} = {σ ∈ Σ ∣ σ(x) < 10}, where the attacker learns

that the starting value ofx is less than10.

• Similarly, the output sequence⟨2,1⟩ corresponds to the set of traces starting

93

at the states inΣ21 = {σ ∈ Σ ∣ σ(x) ≥ 10} ∩ {σ ∈ Σ ∣ σ(x) = 15} = {σ ∈

Σ ∣ σ(x) = 15}. Here, the attacker learns that the value ofx is 15.

• Finally, the output sequence⟨2,2⟩ corresponds to the set of traces starting

at the states inΣ22 = {σ ∈ Σ ∣ σ(x) ≥ 10} ∩ {σ ∈ Σ ∣ σ(x) ≠ 15} = {σ ∈

Σ ∣σ(x) ≠ 15, σ(x) ≥ 10}. Here, the attacker learns thatx is greater than or

equal to10 but is not15.

This program can be described by the functional modelf ∶Σ→ V mapping

the program’s starting state to the produced output. The graph off is given by

graph(f) = {(σ12, ⟨1,2⟩), (σ21, ⟨2,1⟩), (σ22, ⟨2,2⟩) ∣ σ12 ∈ Σ12, σ21 ∈ Σ21, σ22 ∈

Σ22} ⊆ Σ × V. Using definition (3.1), we obtain the information flow released by

this program as the kernelκf of f , which is given by

∀σ,σ′ ∈Σ, σ κf σ′ iff σ(x), σ′(x) < 10,

or σ(x) = σ′(x) = 15,

or σ(x), σ′(x) ∈ {n ∈ Z ∣ 15 ≠ n andn ≥ 10}.

The equivalence relationκf over Σ describes the information that the attacker

gains by observing the outputs of the program in Figure 4.3. This leads us to

the definition of information flow properties of programs based on the operational

semantics.

4.3 Semantic Information Flow Property

In this section, the information released by aWhile programP is defined based

on the observational power of a semantic attacker. This information, which is an

94

equivalence relation over the program states is used to define the program’s infor-

mation flow property in section 4.3.2. The termination properties of the definition

are discussed in section 4.3.3.

4.3.1 The Semantic Attacker Model

We now define an attacker model that will be used throughout this thesis. We re-

fer to this attacker model as thesemantic attacker, because its definition is based

on the standard operational semantics ofWhile, with the exception of its ability

to determine nontermination. The ability of the semantic attacker to determine

nontermination appears to be strong and deserves some explanation. Nontermi-

nation is usually not modelled in language-based security because nontermination

is not observable. However, modelling information flow due to nontermination

is important because in practice, for example, in a hostile code scenario, where

the attacker is probably the author of the program, or otherwise has knowledge

of the program code, the attacker may be able to determine when the program

will not terminate without actually observing it. It has been recently shown that

modelling the ability to “observe” nontermination is important, especially for in-

teractive programs, because it is possible to leak arbitrary amount of information

via nontermination channels [AHSS08].

The observational power of the semantic attacker is given by the function

obs(⋅) from traces to observations, which is defined below. The semantic attacker

cannot observe internal actionsε produced by a program, but can observe all other

actions including whether the program terminates or not. For example,skipand

assignmentstatements, which only generate the internal actionε cannot be ob-

95

served by the semantic attacker.

Let Σ be the set of all states of theWhileprogramP . A trace ofP starting at

the stateσ0 ∈ Σ is said to beterminatingor finite if there exists a natural number

n such that⟨P,σ0⟩
a0Ð→⟨P1, σ1⟩

a1Ð→⋯
an−1Ð→ ⟨⋅, σn⟩, otherwise the trace is said to be

infinite andP divergesat σ0. The notation⟨P,σ⟩⇓ σ′ denotes the termination of

the programP in the stateσ′ ∈Σ when it is executed from the starting stateσ ∈Σ.

The notation⟨P,σ⟩ ⇑ denotes the divergence ofP when it is executed from the

starting stateσ ∈ Σ. What the semantic attacker sees during a run of the program

P is defined based on the standard operational semantics ofWhileas follows.

Definition 4.3.1(Semantic Attacker Model). LetP be aWhile program and letΣ

be the set of all states ofP . Furthermore, let
ε
Ð→

∗
be the reflexive, transitive clo-

sure of
ε
Ð→. Definet⟨P,σ⟩ ≜ ⟨P,σ⟩

ε
Ð→

∗
⟨P0, σ0⟩

a0Ð→⟨P ′0, σ
′
0⟩

ε
Ð→

∗
⟨P1, σ1⟩

a1Ð→ ⋯ to

be a canonical representation ofP ’s trace starting from the stateσ ∈ Σ such that

for all i we haveε ≠ ai ∈ A . What the semantic attacker sees during the trace

t⟨P,σ⟩ is given by the observational power function obs(t⟨P,σ⟩) on traces defined as

obs(t⟨P,σ⟩) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨a0, a1,⋯, ↑⟩ if P diverges atσ

⟨a0, a1,⋯, ↓⟩ otherwise.

(4.2)

Define the set of all traces ofP as

TP ≜ {t⟨P,σ⟩ ∣ σ ∈Σ}. (4.3)

Finally, define the equivalence relation on program states induced by the se-

96

mantic attacker’s observation as

∀σ,σ′ ∈Σ, σ ⌊TP ⌋ σ′ ⇐⇒ obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩). (4.4)

The definition ofobs(⋅) formalises the idea that the semantic attacker can-

not observe
ε
Ð→ transitions. For nonterminating traces, the token↑ is introduced

which, in addition to the sequence of outputs observed on the trace, signals the

divergence of the program. Similarly, the token↓ signals the termination of the

program. By accommodating possible knowledge of nontermination, the defini-

tion of obs(⋅) allows us to properly account for information flow in the presence

of program divergence as demonstrated in section 4.3.3. WhenP diverges, the

sequencea0, a1,⋯ of observed output may or may not be finite. However, when

P terminates, this sequence is always finite.

Distinguishability of traces and therefore input states is based on the inequal-

ity of sequences of observable actions. Two sequencesa0, a1, . . . anda′0, a
′
1, . . .

are equal iff for alli we haveai = a′i. Since the attacker distinguishes be-

tween input states by observing differences in program traces, any pair of traces

of P starting at statesσ,σ′ ∈ Σ is indistinguishable to the semantic attacker if

obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩). This definition induces the equivalence relation⌊TP ⌋

on the set of states that on one hand relates any pair of states that the attacker can-

not distinguish, and thus describes the information released byP . On the other

hand, any pair of statesσ,σ′ ∈ Σ that is not related by⌊TP ⌋ has the property that

obs(t⟨P,σ⟩) ≠ obs(t⟨P,σ′⟩), and hence can be distinguished by the attacker. Thus,

⌊TP ⌋ is the smallest equivalence relation, based on the standard operational se-

mantics, for which any pair of state that it relates cannot be distinguished by the

97

semantic attacker.

4.3.2 Defining the Information Flow Property

We shall define thesemantic information flow propertyof a programP from ⌊TP ⌋.

Firstly, we highlight the link between the definition of⌊TP ⌋ and the kernel-based

equivalence relation definition of information release presented in Section 3.5.1.

Let V = {obs(t⟨P,σ⟩) ∣ σ ∈ Σ} and letfP ∶Σ→ V be the functional model (since

P is deterministic) ofP such that for anyσ ∈ Σ, fP (σ) = obs(t⟨P,σ⟩). It is easy

to see that the equivalence relation⌊TP ⌋ is the kernel of the functionfP and thus

describes the information released byP . Now, letI be the latticePER(Σ), then

the information flow property of the programP can be defined as the singleton set

JP KI = {f ∣ ∀R ∈ PER(Σ), f(R) = R ⊔ ⌊TP ⌋}. (4.5)

This definition describes how the semantic attacker’s knowledge changes by ob-

serving the programP . Furthermore, ifF ⊆ F lows is an information flow policy

defined over the lattice of PERs, the programP satisfies the policyF if there ex-

istsf ′ ∈ F which allows the flowf ∈ JP KI caused byP : that is,f ⊑ f ′. However,

the definition of information flow property does not have to be a singleton set as

we shall show next.

Non-singleton Information Flow Properties

We may want to separate the traces of the system described by the programP

based on some considerations. For example, we might want to ensure that in-

formation is not released in certain parts of a program - say in the subprogram

98

executed when authentication fails. We can thus partition theset of traces of the

program to those in which the authentication fails and those in which it succeeds,

and compute the information flow properties separately over these traces. More

generally, let us assume thatJ is an index set of the traces ofP such that for any

j ∈ J , T j
P ⊆ TP is the set of traces ofP identified underj, and whereTP = ⋃j∈J T

j
P .

We can define the information flow restricted to the traces indexed byj ∈ J as

∀σ,σ′ ∈Σ, σ ⌊T j
P ⌋ σ

′ ⇐⇒ t⟨P,σ⟩, t⟨P,σ′⟩ ∈ T
j
P andobs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩). (4.6)

The PER⌊T j
P
⌋ describes the information released by the parts of the system in-

dexed byj. It is easy to see that⌊T j
P
⌋ is not necessarily an equivalence relation,

but a PER overΣ since it is only defined for traces identified byj. Under this

view we can define the information flow property ofP as the set of flows

JP KI = {fj ∣ j ∈ J.∀R ∈ PER(Σ), fj(R) = R ⊔ ⌊T
j
P ⌋}. (4.7)

For anyj ∈ J , the relationship between⌊T j
P
⌋ and⌊TP ⌋ is the fact that⌊T j

P
⌋ only

talks about an aspect of the information⌊TP ⌋ - the information released by the

whole system. Specifically, for anyj ∈ J , we have that∀σ,σ′ ∈ Σ, σ ⌊TP ⌋ σ′ iff

σ ⌊T j
P ⌋ σ

′ or obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩).

4.3.3 Termination Properties

Let us demonstrate the termination properties of the definition of⌊TP ⌋ - the in-

formation released by the programP as defined in (4.4). Firstly, let us define a

programloop≜ while (tt) do skip, which is an infinite loop. For diverging

99

programs, such asloop, (4.2) ensures that they are distinguished from terminat-

ing ones by the insertion of a↑ or ↓ symbol. Consider the following program

PA = if(h = 0)then skip else loop, which either terminates or enters an in-

finite loop. The equivalence relation⌊TPA
⌋ on states relates a pair of states only if

they agree on the value ofh to be0 or if h ≠ 0 in both states. That is, the program

reveals the fact thath = 0 or not. This result is consistent with the information

gained by the attacker which knows the source code of this program and can ob-

serve program termination. To see how we arrive at⌊TPA
⌋, first consider the trace

through thethenbranch which produces no observation. Hence, for anyσ ∈ Σ

such thatσ(h) = 0, we have thatobs(t⟨PA,σ⟩) is the sequence⟨↓⟩. On the other

hand,PA diverges on input states whereh ≠ 0 and hence for allσ ∈ Σ such that

σ(h) ≠ 0, obs(t⟨PA,σ⟩) = ⟨↑⟩ is the single element sequence. By this we arrive at

the information flow ofPA as for allσ,σ′ ∈ Σ, σ ⌊TPA
⌋ σ′ iff σ(h) = σ′(h) = 0 or

σ(h) ≠ 0 ≠ σ′(h).

Consider another programPB = P ; loop, whereP is an arbitraryWhilepro-

gram which always terminates. ThusPB always diverges because of the trailing

loopprogram, which always diverges. SinceP always terminates, the termination

properties ofPB is independent of the choice of secret input and intuitivelyPB

should release no more information thanP . It is easy to see that the information

flow of P is preserved in⌊TPB
⌋ since all the traces ofP are preserved and the

observation of the attacker is only changed by appending↑ to the end of the ob-

servations made inP . That is for allσ ∈Σ,obs(t⟨PB ,σ⟩) = ⟨obs(t⟨P,σ⟩), ⟨↑⟩⟩. Thus,

because of the isomorphism between what is observed inP andPB when started

from any given state, we have that for allσ,σ′ ∈ Σ,obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩) iff

obs(t⟨PB ,σ⟩) = obs(t⟨PB ,σ′⟩). Hence,⌊TP ⌋ = ⌊TPB
⌋.

100

Again, consider the programPC = loop;P whereP is a Whileprogram. Al-

though,PC has a trailing programP which might ordinarily reveal some informa-

tion, the leadingloopprogram preventsP from being executed and intuitivelyPC

should thus not reveal any information. The semantic analysis shows this because

for all σ ∈ Σ the trace ofPC is ⟨PC , σ⟩
ε
Ð→ ⋯

ε
Ð→ ⟨PC , σ⟩

ε
Ð→ ⋯. Hence, for

all σ ∈ Σ,obs(t⟨PC ,σ⟩) = ⟨↑⟩ and therefore⌊TPC
⌋ = all is the equivalence relation

which relates all states inΣ, demonstrating that the attacker gains no information

by executingPC .

The following lemma shows that for any givenWhile programP , ⌊TP ⌋ dis-

tinguishes states under whichP terminates from those under whichP diverges.

By this partitioning we know that whenever a pair of states is related by⌊TP ⌋, P

either terminates under both states or diverges under both states.

Lemma 4.3.2.LetΣ be the set of all states of theWhile programP and let the set

of starting states under whichP terminates beΣ⇓ = {σ ∈ Σ ∣ σ′ ∈ Σ, ⟨P,σ⟩⇓ σ′}

and let the set of starting states under whichP diverges beΣ⇑ = Σ/Σ⇓. Then, for

all σ,σ′ ∈ Σ, σ ⌊TP ⌋ σ′ impliesσ,σ′ ∈Σ⇓ or σ,σ′ ∈Σ⇑.

Proof. The proof follows easily from the definition of⌊TP ⌋.

4.3.4 Noninterference

We can state the noninterference property of a programP ’s secret input in terms

of ⌊TP ⌋. LetP be aWhileprogram and letVar andΣ be its set of variables and

states respectively. Furthermore, letH ⊆ Var be the set of variables containing

101

secret inputs toP . ThenP is noninterfering with respect toH variables iff

∀σ ∈ Σ,havocH([σ]⌊TP ⌋) = [σ]⌊TP ⌋. (4.8)

This definition requires every equivalence class of⌊TP ⌋ to be dense with respect

toH-values (see definition 3.5.8). That is, in any equivalence class of⌊TP ⌋ every

variation ofH values is present for any given state, and thus noH value can be

distinguished from another.

It is useful to see how (4.8) compares with the standard definition of nonin-

terference. LetL = Var/H be the set of public variables, and for anyσ ∈ Σ let

σ↓L be the projection ofσ toL. The noninterference property of the programP is

defined as (see [SM03a]):

∀σ,σ′ ∈Σ.σ↓L = σ′↓L Ô⇒ obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩). (4.9)

That is, the attacker’s observation (low-view) is invariant whenever theL-inputs

are fixed (the requirement for fixedL-inputs is to factor out output variations due

to the low inputs). This property is captured in (4.8) because∀σ,σ′ ∈Σ

havocH([σ]⌊TP ⌋) = [σ]⌊TP ⌋ ⇐⇒ σ↓L = σ′↓L Ô⇒ σ′ ∈ [σ]⌊TP ⌋

(by the definition ofhavocH(⋅))

⇐⇒ σ↓L = σ′↓L Ô⇒ obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩)

(by definition ofσ ⌊TP ⌋ σ′) .

Thus, (4.8) is a statement of noninterference ofH-inputs toP , with respect to the

semantic attacker model.

102

4.4 Other Semantic Definitions of Information Flow

In this section we shall compare our definition of information flow in the deter-

ministic case with the definition of [SS01] that uses PERs to describe information

flow, and theevent-baseddefinition of [AS07] that has a similar definition to our

trace-based observational semantics. We also compare our attacker model with

the abstract interpretation-based model of the attacker in [GM04].

4.4.1 The PER Security Model

In [SS01, Sab01] the security property of a program is presented as a transforma-

tion of PERs by a function, which represents the (Scott-style) denotation of that

program. The approach does not have an explicit notion of interaction, but pro-

gram output is achieved by assignment to speciallow parts of the memory, which

may be observed on program termination. The same effect can be achieved under

our framework by insertingwrite statements at the end of the program to print out

the values in thelow portions of the memory, modelling the fact that the (low)

attacker can observe these values on program termination. Alternatively, we can

obtain the attacker model by defining an observational power function, which can

observe thelow part of memory at the end of program execution. We shall take

the first approach.

Let the functionf ∶ A→ B be the denotation of the programP whereA and

B are sets. Furthermore, letR ∈ PER(A) andQ ∈ PER(B) be PERs overA

andB respectively. The security property of this program is described as a PER

103

transformer, written asLfM ∶ R _ Q, which holds iff

∀a, a′ ∈ A,a R a′ Ô⇒ f(a)Q f(a′). (4.10)

Intuitively, this definition says that subject to the constraintR on the input space,

the output of the program is indistinguishable underQ. Now letA = A1 × . . .×An

be a set product, so that for alli ∈ [1, n] we haveai, a
′
i ∈ Ai andRi ∈ PER(Ai).

The definition easily extends to tuples of relations(Ri)i∈[1,n], which we write as

the relationR1 ● . . . ●Rn and defined as

(a1, . . . , an)R1 ● . . . ●Rn (a′1, . . . , a
′
n) ⇐⇒ ∀i, ai Ri a

′
i. (4.11)

Noninterference Security Condition

Now suppose that the program states is partitioned into a high-security half (H)

and a low-security half (L) so that the set of states is the productΣ = H × L and

all ∈ PER(H) andid ∈ PER(L). A program whose denotation isf ∶ Σ→Σ is said

to be secure iff

LfM ∶ (all ● id)_ (all ● id) (4.12)

The statement of (4.12) requires that information does not leak from the high part

of program state to the low part since from (4.10) this means that

∀h,h′ ∈H, l ∈ L. f(h, l) all ● id f(h′, l).

104

Thus, if the low part of the input state is fixed, regardless of the initial value of the

high part of state the low part of the output state remains fixed, making the value

of the low output invariant under any pair of high inputs. This definition also

extends to nonterminating programs, but with the additional requirement that the

termination property of the program is not influenced byH inputs. Thus (4.12) is

a statement of the noninterference for the programP whose denotation isf . By

fixing theL inputs ofP , we effectively say that the attacker can observe the initial

low values, thereby factoring out variations in the finallow values that might be

caused by a variation ofL inputs.

We can achieve this effect under our setting by insertingwrite statements. Let

the set oflow variables of the programP be {l1, . . . , ln} and define a program

PL ≜ write l1;⋯;write ln, which leaks theL-projection of states. Then we

derive another programP ′ = PL;P ;PL, which reveals the value of theL-portion

of the memory to the attacker before the execution ofP and on termination. Using

(4.4) the information released is given by⌊TP ′⌋ defined as

∀σ,σ′ ∈Σ, σ ⌊TP ′⌋ σ′ ⇐⇒ obs(t⟨P ′,σ⟩) = obs(t⟨P ′,σ′⟩)

Thus, any pair of states that is related by⌊TP ′⌋ has the property that they agree

on theirL-projections, andP ′ must either terminate in both states to the same

L-values orP ′ (that is,P) must diverge underbothstates.

By its definition,⌊TP ′⌋ computesthe information flow of the programP about

H since it is the least equivalence relation over secrets for which the observation

of the attacker is invariant whenever the input states are related by it. In par-

ticular, if f is the denotation of the programP , then for any PERR ● id such

105

that LfM ∶ R ● id _ all ● id holds, we have also that⌊TP ′⌋ ⊑ R ● id. Hence,⌊TP ′⌋

captures the security property ofP .

Partial Information Release

For some PERsR,Q ∈ PER(Σ) over the statesΣ of the programP whose de-

notation isf , the specificationLfM ∶ R _ Q may be considered as a statement of

the security property of the programP , that is, a policy, whichP satisfies. Thus,

we say thatP satisfies the policyL⋅M ∶ R _ Q, wheneverLfM ∶ R _ Q. For any

R,R′ ∈ PER(Σ) such thatR ⊑ R′, it follows by definition thatLfM ∶ R _ Q Ô⇒

LfM ∶ R′ _ Q sinceR ⊑ R′ means that∀σ,σ′ ∈ Σ, σ R′ σ′ Ô⇒ σ R σ′. In other

words, ifP satisfies a stronger policy (L⋅M ∶ R _ Q) then it also satisfies a weaker

oneL⋅M ∶ R′ _ Q. Given the set of statesΣ = H × L, the general policy schema

of [SS01] isL⋅M ∶ R ● id _ all ● id, which declassifies informationR about the se-

cret spaceH. Theid part on both sides of_ means that the attacker can observe

theL portion of states (before and after program execution), and theall on the

right-hand-side means “don’t care” since the attacker cannot view theH part of

state on termination.

Any deterministic programP trivially satisfies the policyL⋅M ∶ id ● id _ all ● id,

the proof of which relies only on the fact that the denotation ofP is a function.

Thus,policy refinementinvolves findingmore coarseRs, that is, thoseR ⊑ id,

such that the conditionLfM ∶ R ● id _ all ● id is satisfied. Policy refinement is an

important problem in language-based security [SM03a, Zda04a, SS07]. By find-

ing the information released aboutP ′ = PL;P ;PL as defined above, which corre-

sponds to the observational capability of the attacker model in the noninterference

definition of [SS01], our semantic definition⌊TP ′⌋ derives the most refined policy

106

thatP satisfies. Thus,⌊TP ′⌋ is the smallest equivalence relation over the set of

states, which relates every pair of initial states ofP with the sameL-input, such

that wheneverP is executed under this pair, the sameL-output is produced on ter-

mination. That is,LfM ∶ ⌊TP ′⌋_ all ● id holds for all starting states under which

P terminates. Furthermore, for any PERR ● id such thatR ● id ⊏ ⌊TP ′⌋, P does

not satisfyL⋅M ∶ R ● id _ all ● id. This is easy to see becauseR ● id ⊏ ⌊TP ′⌋ means

that there exists a pair of statesσ,σ′ ∈ Σ which is related byR ● id but that is

not related by⌊TP ′⌋. Since the statesσ andσ′ are not related by⌊TP ′⌋, this either

means thatP terminates in both states to different values of theL-projection of

state, or thatP diverges in exactly one of the states. Under these two scenarios

the attacker observes a difference and can thus distinguishσ from σ′.

4.4.2 Gradual Release

In [AS07] the notion ofgradual releaseis introduced as a policy framework for

declassification, encryption and key release. The language setting is the standard

core imperativeWhile language with an explicit declassification construct for ex-

pressing declassification policies for secrets. The language is interactive because

assignment tolow variables can be observed as well as the assignment of declas-

sified expressions. As a result, the operational semantics is event-based and is

similar to our labelled-transition system approach. Gradual release is enforced by

a standard type system similar to [VSI96] with the additional requirement that de-

classification may not be performed within conditional statements or loops with a

high guard. We highlight how the knowledge representation and the computation

of knowledge compares with our approach.

107

The attacker’s knowledge (or rather, uncertainty) is represented as aset of

states, which represents the possible values of the initial program memory. This

is similar to our representation of information with PERs over the initial program

states. However, since PERs generalise sets [Hun91a], the information under the

gradual release approach can be modelled as a PER. Specifically, for any set

Σ ⊆ Σ, which represents the attacker’s knowledge, there is a PERRX ∈ PER(Σ),

which models this knowledge, defined such that for allσ,σ′ ∈ Σ, σ RX σ′ iff

σ,σ′ ∈ X. This makes it possible to encode each instantiation of gradual-release

knowledge as a PER. Furthermore, the monotonicity of knowledge and the grad-

ual nature of information release agrees with the notion of information flow being

monotone and extensive. In particular, gradual release requires that the attacker’s

knowledge may only be refined with time by shrinking the set of states, which

represents the knowledge - this is an extensivity property on the PER lattice.

The memory is assumed to be partitioned into two: ahigh (H) part and a low

(L) part forming a security latticeL ⊏ H. The operational semantics identifies

two types of eventsα ∈ {ǫ, ℓ}, whereǫ is an empty label, which the attacker

cannot observe, andℓ is a low event that the attacker can observe. Whenever it is

generated, the eventℓ is either theL-projection of state or a special termination

event↓ signalling program termination. Vectors (ℓ⃗) represent sequences of low

events and⟨P,σ⟩
ℓ⃗

Ð→ ∗⟨P ′, σ′⟩ means that⟨P ′, σ′⟩ is reachable via the execution

of P at stateσ, generating the sequenceℓ⃗ of low events. Similarly,⟨P,σ⟩
ℓ⃗

Ð→

∗⟨⋅, σ′⟩ means that the execution ofP at stateσ terminates in the stateσ′ and

generates the sequenceℓ⃗.

Let L(P,σ0
↓L) ≜ {ℓ⃗ ∣ σ,σ

′ ∈ Σ, σ0
↓L = σ↓L.⟨P,σ⟩

ℓ⃗
Ð→ ∗⟨⋅, σ′⟩} and letL̂(P,σ0

↓L)

be the prefix closure ofL(P,σ0
↓L). The termination-sensitiveknowledge gained

108

by an attacker of the programP under the observation of⃗ℓ ∈ L̂(P,σ0
↓L) when the

low projection of the starting states isσ0
L is defined as

k(P,σ0
↓L, ℓ⃗) ≜ {σ ∣ σ,σ

′ ∈ Σ, σ0
↓L = σ↓L, ⟨P,σ⟩

ℓ⃗
Ð→∗⟨P ′, σ′⟩ ∨ ⟨P,σ⟩

ℓ⃗
Ð→∗⟨⋅, σ′⟩}.

(4.13)

We can therefore compute the gradual release knowledgek(P,σ0
↓L, ℓ⃗) under our

approach by defining an observational power function over traces which maps

each partial trace to the sequenceℓ⃗ generated under the definition of [AS07],

so that a resulting PER is defined which relates any pair of statesσ,σ′ ∈ Σ iff

σ,σ′ ∈ k(P,σ0
↓L, ℓ⃗). However, since the termination-sensitive knowledge can only

be computed for a terminating trace, or its prefix, (that is, forℓ⃗ ∈ L̂(P,σ0
↓L))

one cannot represent the knowledge gained under nonterminating traces. This ex-

cludes a large class of programs, for example,P ; loop, whereP is an arbitrary

program. As the analyses in the preceding sections show, program divergence

does not pose additional difficulty to our information release definition.

4.4.3 Abstract Noninterference Attacker Model

The abstract noninterference definition of [GM04] introduces attacker models as

abstract interpretations, which can observe only properties of data in the concrete

domain. The idea is that by weakening the observational power of the attacker

on the values of public inputs and outputs of a program, so that the attacker can

observe only theirproperties, less restrictive policies, which accept programs that

might otherwise be rejected by the standard noninterference definitions can be

specified. The concrete domain is partitioned into two setsH andL, which rep-

109

resent the domain of secret and public values respectively, and state is modelled

as tuples inΣ = H × L. The attacker is modelled as a pair of abstractions⟨η,ρ⟩,

whereη,ρ ∈ uco(P(L)) are upper closure operators on the powerset lattice of

public values ordered by subset inclusion. The closure operatorsη andρ model

what the attacker can observe about the program’s public inputs and outputs re-

spectively. The concrete semantics of the programP is formalised usingangelic

denotational semantics, which associates an input-output function,JP K ∶ Σ→Σ,

with P and ignores nontermination. Furthermore, the observation of (public) val-

ues occur at the beginning of program execution and on program termination. To

slightly simplify the notations, we shall denote the concrete semantics ofP as a

mapJP K ∶ H ×L → L, throwing away theH-projection of state on termination,

since it is not used.

Our observational model is more general since we place no restriction on

the nature of the observational power function, as opposed to the requirement

in [GM04], where they must be closure operators. Furthermore, our observational

model is not restricted to the observation of values at the beginning and end of

program execution. The attacker⟨η,ρ⟩ can be obtained under our model by defin-

ing an observational power function on traces, such that for anyσ, σ̂ ∈ Σ, and

tracet⟨P,σ⟩ = ⟨P,σ⟩
a
Ð→⋯

a′

Ð→ ⟨⋅, σ̂⟩

obs⟨η,ρ⟩(t⟨P,σ⟩) ≜ ⟨η({σ↓L}),ρ({σ̂↓L})⟩. (4.14)

This definition says that the attacker only observes theη-property of theL-projection

of the initial state and theρ-property of theL-projection of the terminating state

of P . Consequently, the information released under this observational model is

110

the PER⌊TP⟨η,ρ⟩
⌋ overΣ defined such that for anyσ,σ′ ∈Σ

σ ⌊TP⟨η,ρ⟩
⌋ σ′ ⇐⇒ obs⟨η,ρ⟩(t⟨P,σ⟩) = obs⟨η,ρ⟩(t⟨P,σ′⟩). (4.15)

It is thus clear that for anyσ,σ′ ∈Σ, such thatt⟨P,σ⟩ = ⟨P,σ⟩
a
Ð→ ⋯

â
Ð→ ⟨⋅, σ̂⟩ and

t⟨P,σ′⟩ = ⟨P,σ′⟩
a′

Ð→⋯
â′

Ð→ ⟨⋅, σ̂′⟩ we have

σ ⌊TP⟨η,ρ⟩
⌋ σ′ ⇐⇒ η({σ↓L}) = η({σ′↓L}) ∧ ρ({σ̂↓L}) = ρ({σ̂′↓L})

Ô⇒ η({σ↓L}) = η({σ′↓L}) Ô⇒ ρ({σ̂↓L}) = ρ({σ̂′↓L}).

By this we immediately obtain the narrow abstract noninterference (NANI) defi-

nition:

[η]P [ρ] ⇐⇒ ∀σ,σ′ ∈ Σ,η({σ↓L}) = η({σ′↓L}) Ô⇒ ρ(JP K(σ)) = ρ(JP K(σ′)).

Thus,⌊TP⟨η,ρ⟩
⌋ is the least PER over states for which any pair of states that it relates

satisfies NANI inP .

The NANI definition causes what is referred to as “deceptive flows”, whereby

η-undistinguished public input values cause a variation, which makesP to violate

NANI. In order to deal with this problem, abstractions ofL values are passed as

program parameters and another abstractionφ ∈ uco(P(H)) is introduced on the

input secret values. This results in the abstract noninterference (ANI) property,

111

[η]P (φ ↝ 8ρ), of [GM04], which is defined to hold iff for allσ,σ′ ∈Σ,

η({σ↓L}) = η({σ′↓L}) Ô⇒ ρ(⋃
σ′′∈Σ,

φ(σ′′↓H)=φ(σ↓H),

η(σ′′↓L)=η(σ↓L)

{JP K(σ′′)}) = ρ(⋃
σ′′∈Σ,

φ(σ′′↓H)=φ(σ
′
↓H),

η(σ′′↓L)=η(σ
′
↓L)

{JP K(σ′′)}).

(4.16)

Let σ ∈ Σ be a state, and define the setΣ
η,φ
σ of L-projections of the terminating

states ofP due to the execution ofP from any starting state, which agrees withσ

on theη-property of theL-projection and on theφ-property of theH-projection

to be

Ση,φ
σ ≜

⎧⎪⎪
⎨
⎪⎪⎩
σ̂↓L

RRRRRRRRRRRR

σ′′ ∈Σ.⟨P,σ′′⟩
a
Ð→⋯

a′

Ð→ ⟨⋅, σ̂⟩.
η({σ′′↓L}) = η({σ↓L}),φ({σ′′↓H}) = φ({σ↓H}).

⎫⎪⎪
⎬
⎪⎪⎭

(4.17)

Hence, from (4.16),[η]P (φ ↝ 8ρ) holds iff for all σ,σ′ ∈Σ

η({σ↓L}) = η({σ′↓L}) Ô⇒ ρ(Ση,φ
σ) = ρ(Ση,φ

σ′). (4.18)

We can obtain this observational model under our framework by defining an ob-

servational power function on traces, such that for anyσ ∈ Σ, and terminating

tracet⟨P,σ⟩

obs⟨η,φ,ρ⟩(t⟨P,σ⟩) ≜ ⟨η({σ↓L}),ρ(Ση,φ
σ)⟩ (4.19)

This definition requires that no public output can be distinguished byρ for any ini-

tial state, which isL-indistinguishable from toσ underη andH-indistinguishable

from σ underφ. Thus, as usual, the information released under our relational

112

model is the PER⌊TP⟨η,φ,ρ⟩
⌋ overΣ defined such that for anyσ,σ′ ∈ Σ

σ ⌊TP⟨η,φ,ρ⟩
⌋ σ′ ⇐⇒ obs⟨η,φ,ρ⟩(t⟨P,σ⟩) = obs⟨η,φ,ρ⟩(t⟨P,σ′⟩). (4.20)

Hence, for allσ,σ′ ∈Σ, we have that

σ ⌊TP⟨η,φ,ρ⟩
⌋ σ′ ⇐⇒ η({σ↓L}) = η({σ′↓L}) ∧ ρ(Ση,φ

σ) = ρ(Ση,φ
σ′)

Ô⇒ η({σ↓L}) = η({σ′↓L}) Ô⇒ ρ(Ση,φ
σ) = ρ(Ση,φ

σ′).

By this we obtain ANI property[η]P (φ ↝ 8ρ) and⌊TP⟨η,φ,ρ⟩
⌋ is the least PER

overΣ, for which any pair of states that it relates satisfies ANI inP .

4.5 Information Flow in Nondeterministic Systems

In the remainder of this chapter, we shall turn our attention to the application

of the operational-semantics based relational model definition of section 4.1 in a

nondeterministic language setting. The objective is to demonstrate that, similarly

to its use in a deterministic language setting, we can also apply the technique to

the analysis of information flow in a nondeterministic language. For this reason

we shall add, separately, two simple extensions to theWhile language, which are

constructs forpossibilistic nondeterminism(to obtainWhile-ND) andprobabilis-

tic nondeterminism(to obtainWhile-PND). The resulting two languages provide

us with concrete language-based settings to demonstrate the use of the relational

model for the definition of information flow property of a nondeterministic sys-

tem. We shall use the same semantic attacker’s observational model that was

introduced earlier for the deterministicWhile language. Later on, in Chapter 5

113

and Chapter 6, static analyses for theWhile language will be presented, however,

the full static analyses of theWhile-ND andWhile-PND are beyond the scope of

this thesis.

4.5.1 Possibilistic Nondeterminism

We start by introducing the languageWhile-ND (for Whilewith NonDeterminism)

as a language for (possibilistic) nondeterministic systems.While-ND extends the

While language presented in section 4.2 by adding a nondeterministic construct,

c1 8 c2, which makes an invisible but arbitrary choice in the execution of either

the commandc1 or the commandc2. Consequently, the operational semantics of

While-ND extends that ofWhileas shown in Figure 4.4.

⟨c1 8 c2, σ⟩
ε
Ð→ ⟨c1, σ⟩ ⟨c1 8 c2, σ⟩

ε
Ð→ ⟨c2, σ⟩

Figure 4.4: ExtendingWhile with Possibilistic Nondeterminism

As the semantics shows, nondeterministic choice is an internal action, which

is not externally observable to the semantic attacker. In other to address nondeter-

minism, we extend the definition (4.2) ofobs(⋅) to obs∗(⋅), which now produces

thesetof all observations that can result from the execution of aWhile-ND pro-

gram from a given starting state. LetP be aWhile-ND program and letΣ be the

set of all states ofP . Furthermore, lett⟨P,σ⟩ = {⟨P,σ⟩
ai
0Ð→ ⟨P i

1, σ
i
1⟩

ai
1Ð→ ⋯ ∣ i ∈ Iσ}

be the set of all finite and infinite traces ofP resulting from the execution ofP at

the stateσ ∈ Σ, whereIσ is an index set which identifies all the possible traces of

P starting fromσ. For anyi ∈ Iσ, let ti
⟨P,σ⟩

∈ t⟨P,σ⟩ be theith possible trace ofP

114

starting fromσ sothatt⟨P,σ⟩ = {ti⟨P,σ⟩
∣ i ∈ Iσ}. Now defineobs∗(⋅), which extends

obs(⋅) (see (4.2)) to set of traces as:

obs∗(t⟨P,σ⟩) ≜ {obs(ti⟨P,σ⟩) ∣ i ∈ Iσ}. (4.21)

The set of all possible observations arising from the execution ofP is given by

VP ≜ {a ∈ obs∗(t⟨P,σ⟩) ∣σ ∈Σ} and the relational modelSP ⊆ Σ×VP of P is given

by ∀σ ∈ Σ, σ SP a ⇐⇒ a ∈ obs∗(t⟨P,σ⟩). We can now define the possibilistic

information released by the programP as follows.

Let SP ⊆ Σ × VP be the relational model of the nondeterministic While-ND

program P such thatΣVP
≜ {S−1P (a) ∣ a ∈ VP}. The information released byP

under the possibilistic model is given by

⌊⌊P ⌋⌋ ≜ ⟨⟨ΣVP
⟩⟩. (4.22)

This definition is based on the possibilistic information flow definition of sec-

tion 3.7. It is straightforward to see that definition (4.22) is a natural extension of

the deterministic definition (4.4). In particular, ifP is a deterministicWhilepro-

gram then⌊⌊P ⌋⌋ is a partitioning of states, such that for anyσ ∈ Σ, [σ]⌊TP ⌋ ∈ ⌊⌊P ⌋⌋.

Similarly to the definition (4.5) of semantic information flow in the deterministic

setting, but now taking the latticeI to beFAM(Σ), we can define the semantic

information flow property of aWhile-ND programP as

JP KI ≜ {f ∣ ∀⟨⟨ΣJ⟩⟩ ∈ FAM(Σ), f(⟨⟨ΣJ ⟩⟩) = ⟨⟨ΣJ⟩⟩ ⊔ ⌊⌊P ⌋⌋}. (4.23)

This definition describes how the attacker’s knowledge on the latticeFAM(Σ) is

115

transformed by the programP . Let us further illustrate how⌊⌊P ⌋⌋ captures the

information released by the nondeterministicWhile-ND programP .

Suppose the integer (secret)h is a parameter to the nondeterministic program

P = if(h = 0)then skip 8 loopelse skip. This program may either termi-

nate or loop indefinitely when the secret valueh is chosen to be zero. Thus, it is

easy to see that the attacker may learn the value ofh to be zero when the program

fails to terminate. The set of possible observation ofP is given byVP = {⟨↓⟩, ⟨↑⟩}

where⟨↓⟩ corresponds to the observation during the terminating traces and⟨↑⟩

corresponds to the observation of the diverging trace. If we represent the set of

program states asΣ = {(n)∣n ∈ Z}, then the relational model ofP , isSP ⊆Σ×VP

whose graph is given by{((0), ⟨↑⟩), ((n), ⟨↓⟩) ∣n ∈ Z}. Thus, we have the follow-

ing inverse images:S−1P (⟨↑⟩) = {(0)} andS−1P (⟨↓⟩) = Σ, and⌊⌊P ⌋⌋ = {{(0)},Σ}

reflecting the fact that the attacker can learn when the secret value is zero.

Consider another programPA = if(h = 0)then skip 8 loopelse loop.

In this case the observation ofterminationreveals to the attacker that the value

of the integer secreth is zero. The analysis is similar to that ofP , but now we

havegraph(SPA
) = {((0), ⟨↓⟩), ((n), ⟨↑⟩) ∣ n ∈ Z} andS−1PA

(⟨↓⟩) = {(0)} and

S−1PA
(↑) = Σ. Thus,⌊⌊PA⌋⌋ = {{(0)},Σ}, and it is intuitive thatPA should release

the same information asP .

Consider the programPB = if(h = 0)thenskip 8 loopelseskip 8 loop

which may or may not terminate regardless of the chosen value ofh. Intuitively,

this program should not reveal any information to the attacker as its behaviour

is independent of the choice ofh. This is confirmed as follows:graph(SPB
) =

{((n), ⟨↓⟩), ((n), ⟨↑⟩) ∣ n ∈ Z}. Thus,S−1PB
(⟨↓⟩) = S−1PB

(⟨↑⟩) = Σ. This means that

⌊⌊PB⌋⌋ = {Σ}, confirming the fact that the attacker learns nothing by observing the

116

execution ofPB.

Now suppose thatPC is a While-ND program that always terminates. Sim-

ilarly to the analysis under deterministic programs, the information flow ofPC

is preserved in the programP ′ = PC ; loop. This is easy to see because there is

an isomorphism betweenVPC
andVP ′, which appends↑ to all a ∈ VPC

such that

∀σ ∈Σ, σ SPC
⟨a⟩ ⇐⇒ σ SP ′ ⟨a, ↑⟩, whereSPC

⊆Σ×VPC
andSP ′ ⊆ Σ×VP ′ are

respectively the relational models ofPC andP ′. Hence, we have⌊⌊PC⌋⌋ = ⌊⌊P ′⌋⌋.

Finally, letPD be aWhile-NDprogram such thatP ′ = loop;PD. Like the deter-

ministic analysis, this program reveals no information since for allσ ∈Σ, σSP ′⟨↑⟩

holds and hence⌊⌊P ′⌋⌋ = {Σ}.

Possibilistic Noninterference

We can also state a noninterference property under the possibilistic setting to cap-

ture when an attacker cannot learn anything about secret inputs by observing the

public output. The basic idea is that the choice of secret values should not affect

the information that can be deduced by the attacker.

Let H ⊆ Var be the set of secret-containing variables, a nondeterministic

While-ND programP has no possibilistic information flow iff

∀Σ ∈ ⌊⌊P ⌋⌋, havocH(Σ) = Σ. (4.24)

The link between the nondeterministic definition (4.24) and the deterministic one

(4.8) is clear since ifP is a deterministic program eachΣ ∈ ⌊⌊P ⌋⌋ corresponds to an

equivalence class of⌊TP ⌋. The intuition of (4.24) is also straightforward: ifL =

Var/H is the set of public variables, then for anyσ ∈ Σ ∈ ⌊⌊P ⌋⌋ the observations

117

that led to the knowledge that the secret lies within the setΣ could have been

produced by anyσ′ ∈ Σ such thatσ↓L = σ′↓L, sincehavocH(Σ) = Σ. In other

words, that observation is independent of the choice ofH-values. Let us illustrate

this definition with two more examples.

Consider the programP = write h − h 8 write l, whereh and l are re-

spectively the secret and public inputs toP . Intuitively, the attacker cannot learn

anything abouth since the output of this program is never dependent on the value

of h regardless of how the nondeterminism is resolved. This is demonstrated by

the analysis of its possibilistic information flow. Supposeh, l ∈ {0,1} are bi-

nary numbers. Now letσ1 ∈ Σ be the state whereσ1(h) = 0, σ1(l) = 1 and let

σ3 ∈ Σ be the state whereσ3(h) = 1, σ3(l) = 1. The graph of the relational

model ofP is given bygraph(SP) = {(σ, ⟨0, ↓⟩), (σ1, ⟨1, ↓⟩), (σ3, ⟨1, ↓⟩) ∣ σ ∈ Σ}

where as usual(σ, ⟨n, ↓⟩) ∈ SP means that the output sequence⟨n, ↓⟩ can be ob-

served whenP is executed at stateσ ∈ Σ. The inverse images induced by these

outputs areS−1P (⟨0, ↓⟩) = Σ andS−1P (⟨1, ↓⟩) = {σ1, σ3} = Σ. Thus, we have

⌊⌊P ⌋⌋ = {Σ,Σ}. This program is noninterfering with respect toh-inputs since if

we definedH = {h}, havocH(Σ) = Σ andhavocH(Σ) = Σ.

Now consider the programP ′ = write h − h 8 write l XOR h which can

nondeterministically compute theexclusive ORof l andh, or print 0 = h − h.

It is easy to see that theh input interferes with the output of this program. In

particular, if the attacker observes an output of1, then the attacker can derive the

value ofh from the value ofl since in that caseh ≠ l. The fact that information

flows to the attacker is revealed by the analysis becauseP ′ does not satisfy (4.24).

Now let σ1 ∈ Σ be the state whereσ1(h) = 0, σ1(l) = 1 and letσ2 ∈ Σ be the

state whereσ2(h) = 1, σ2(l) = 0. We have the graph of the relational model

118

of P ′ to be graph(SP ′) = {(σ, ⟨0, ↓⟩), (σ1, ⟨1, ↓⟩), (σ2, ⟨1, ↓⟩) ∣ σ ∈ Σ}. Thus,

S−1P ′ (⟨0, ↓⟩) = Σ andS−1P ′ (⟨1, ↓⟩) = {σ1, σ2} = Σ′ and⌊⌊P ′⌋⌋ = {Σ,Σ′}. However,

havocH(Σ′) =Σ ≠ Σ′ shows that information is revealed abouth.

4.5.2 Probabilistic Nondeterminism

We now introduce the languageWhile-PND (for While with Probabilistic Non-

Determinism) as a language-based instantiation of probabilistic nondeterminis-

tic systems.While-PND extends theWhile language presented in section 4.2 by

adding a probabilistic construct,c1 8p c2, which executesc1 with a probability ofp

andc2 with a probability of1 − p. In the constructor8p, we assume that0 < p < 1.

In order to model how probabilistic choices affect the execution of programs,

we extend command configurations with probabilities such that⟨p, c, σ⟩ means

that the command configuration⟨c, σ⟩ is to be executed with a probability ofp.

We shall call⟨p, c, σ⟩ a probabilistic command configuration. Similarly to termi-

nal command configurations,⟨p, ⋅, σ⟩ represent aterminal probabilistic command

configurationwhere there are no more commands to execute. The operational

semantics ofWhile-PND is shown in Figure 4.5. It shows that the probabilis-

tic choice itself is not observable, although we assume that the attacker knows

the program code and therefore knows the probability of making any of the two

choices.

Let P be aWhile-PND program and letΣ be the set of states ofP . Further-

more, for anyσ ∈ Σ we denote byIσ an index set identifying the set of all finite

and infinite traces ofP starting at stateσ. SinceP will be executed for any given

starting state, we take the starting probability ofP to be1. The set of all traces of

119

⟨p,skip, σ⟩
ε
Ð→ ⟨p, ⋅, σ⟩ ⟨p, z ∶= e, σ⟩

ε
Ð→ ⟨p, ⋅, σ[z ↦ σ(e)]⟩

⟨p,write e, σ⟩
out(σ(e))
Ð→ ⟨p, ⋅, σ⟩

⟨p, c1, σ⟩
α
Ð→ ⟨p′, c′1, σ′⟩

⟨p, c1; c2, σ⟩
α
Ð→ ⟨p′, c′1; c2, σ′⟩

⟨p, c1, σ⟩
α
Ð→ ⟨p′, ⋅, σ′⟩

⟨p, c1; c2, σ⟩
α
Ð→ ⟨p′, c2, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨tt, σ⟩ ⟨p, c1, σ⟩

α
Ð→ ⟨p′, c′1, σ′⟩

⟨p,if (b) then c1 else c2, σ⟩
α
Ð→ ⟨p′, c′1, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨ff , σ⟩ ⟨p, c2, σ⟩

α
Ð→ ⟨p′, c′2, σ′⟩

⟨p,if (b) then c1 else c2, σ⟩
α
Ð→ ⟨p′, c′2, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨tt, σ⟩ ⟨p, c, σ⟩

α
Ð→ ⟨p′, c′, σ′⟩

⟨p,while (b) do c, σ⟩
α
Ð→ ⟨p′, c′;while (b) do c, σ′⟩

⟨b, σ⟩
ε
Ð→ ⟨ff , σ⟩

⟨p,while (b) do c, σ⟩
ε
Ð→ ⟨p, ⋅, σ⟩

0 < p′ < 1

⟨p, c1 8p′ c2, σ⟩
ε
Ð→ ⟨p × p′, c1, σ⟩

0 < p′ < 1

⟨p, c1 8p′ c2, σ⟩
ε
Ð→ ⟨p × (1 − p′), c2, σ⟩

Figure 4.5: The Operational Semantics ofWhile-PND

120

P starting atσ is given by

t⟨P,σ⟩ ≜ {⟨1, P, σ⟩
ai
0Ð→ ⟨pi

1, P
i
1, σ

i
1⟩

ai
1Ð→ ⋯ ∣ i ∈ Iσ}. (4.25)

Similarly to theWhile-ND case, the index setIσ identifies the probabilistic choices

that are made during the execution of theWhile-PND programP when executed

from the stateσ. We shall writeti
⟨P,σ⟩
∈ t⟨P,σ⟩ to represent theith possible trace of

P starting at the stateσ for somei ∈ Iσ. The set of all traces of theWhile-PND

programP is given by

TP ≜ ⋃
σ∈Σ

t⟨P,σ⟩ (4.26)

In the probabilistic case, we require that the input spaceΣ and the output spaceV

both be finite. Furthermore, we shall consider only programs where the setTP of

all traces ofP is finite. We do not consider in this thesis the full generality of an

infinite set of probabilistic traces. This, for example, rules out programs, which

are infinitely branching on8p.

As usual, using the semantic attacker’s observational model (see (4.2)), and

similarly to the definition in theWhile-ND case (see 4.21), the extension ofobs(⋅)

to set of probabilistic traces isobs∗(t⟨P,σ⟩) = {obs(t) ∣ t ∈ t⟨P,σ⟩}. DefineVP =

{obs(t) ∣ t ∈ TP} to be the set of all observations that the attacker can make about

theWhile-PND programP . The relational modelSP ⊆ Σ × VP of P is, as usual,

thus defined as∀σ ∈Σ, σ SP v ⇐⇒ v ∈ obs∗(t⟨P,σ⟩).

Furthermore, for anyσ ∈ Σ andi ∈ Iσ, define the limiting probabilityω(ti
⟨P,σ⟩
) =

pi
k of the traceti

⟨P,σ⟩
of P , to be the smallest probability, due to some probabilistic

121

command configuration⟨pi
k, P

i
k, σ

i
k⟩ in t

i
⟨P,σ⟩
= ⟨1, P, σ⟩

ai
0Ð→ ⋯

ai
k−1Ð→ ⟨pi

k, P
i
k, σ

i
k⟩

ai
kÐ→

⋯
ai

j−1
Ð→ ⟨pi

j, P
i
j , σ

i
j⟩

ai
j

Ð→ ⋯, such that for all probabilistic command configuration

⟨pi
j , P

i
j , σ

i
j⟩ in ti

⟨P,σ⟩
, wherej > k, if it exists, we havepi

j = p
i
k. The limiting

probabilityω(ti
⟨P,σ⟩
) is the probability of executingti

⟨P,σ⟩
∈ t⟨P,σ⟩ wheneverσ is

chosen. From the operational semantics, the limiting probability exists uniquely

in the closed real interval[0,1], ordered by≤, and is the smallest probability

ω(ti⟨P,σ⟩) ≜min{pi
j ∣ ⟨p

i
j, P

i
j , σ

i
j⟩ ∈ t

i
⟨P,σ⟩}. (4.27)

In (4.27), the notation⟨pi
j, P

i
j , σ

i
j⟩ ∈ t

i
⟨P,σ⟩

denotes the existence of the probabilistic

command configuration⟨pi
j , P

i
j , σ

i
j⟩ in the traceti

⟨P,σ⟩
.

In order to compute the quantitative information release to an attacker of a

While-PND programP we need a probability measureµ ∈M (Σ), which assigns

probabilities to the selection of input statesσ ∈ Σ of P . We assume that the

attacker knows the measureµ so that it represents the attacker’s uncertainty about

the choice of inputs. Fromµ we can compute the joint probability,̂µ ∈M (Σ ×

VP), which represents the probability of joint occurrence of input-output pairs in

the relational model ofP . As usual, following the standard convention, for any

σ ∈ Σ andv ∈ VP , µ̂(σ ∣ v) andµ̂(v ∣ σ) are conditional probabilities, and we shall

denote the marginal probability for the occurrence ofv by µ′(v). These measures

are computed using the operational semantics ofP and the given probabilitiesµ

over the input space as follows.

Let T ⟨σ,v⟩ = {t ∈ t⟨P,σ⟩ ∣ obs(t) = v} be the set of traces ofP starting fromσ,

which produce the output observationv. The conditional probability of producing

122

the outputv when the input stateσ is chosen is given by

µ̂(v ∣ σ) ≜ ∑
t∈T ⟨σ,v⟩

ω(t). (4.28)

The probabilityµ̂(v ∣ σ) is the sum of the probabilities of traces that produce the

outputv whenP is executed at stateσ. Thus, the marginal probability of pro-

ducing the outputv by P is µ′(v) = ∑σ∈Σ µ(σ) × µ̂(v ∣ σ). Using these, we can

compute the attacker’s uncertainty about the input stateσ ∈ Σ given the observa-

tion of outputv ∈ VP as the conditional probability

µ̂(σ ∣ v) =
µ̂(v ∣ σ) × µ(σ)

µ′(v)

Using Definition 3.8.5 we can now compute the quantitative information released

by P . Let us illustrate with some example analyses.

Sample Analyses

Consider the programP = if(h = 7)then skip 8.5 loopelse skip and sup-

poseh is an integer secret chosen uniformly from the set{0,1, . . . ,15} of integers.

Hence we can model the set of states asΣ = {(n) ∣ 0 ≤ n ≤ 15}, where for any

input statesσ ∈ Σ of P , µ(σ) = 1
16

. Letσn ∈ Σ be the state ofP whereh = n. We

have two possible traces ofP for σ7, both of which are chosen by the probabilistic

constructor8.5 with equal probability of0.5. One of these traces terminates, but

the other does not. Let us label the traces ast1
⟨P,σ7⟩

for the terminating trace and

t2
⟨P,σ7⟩

for the nonterminating trace. Then we havet1
⟨P,σ7⟩

= ⟨1, P, σ7⟩
ε
Ð→ ⟨.5, ⋅, σ7⟩

and t2
⟨P,σ7⟩

= ⟨1, P, σ7⟩
ε
Ð→ ⟨.5,skip, σ7⟩

ε
Ð→ ⟨.5,skip, σ7⟩

ε
Ð→ ⋯. Hence,

123

obs(t1
⟨P,σ7⟩

) = ⟨↓⟩, whereasobs(t2
⟨P,σ7⟩

) = ⟨↑⟩ - being an infinite trace with no out-

put. Furthermore,ω(t1
⟨P,σ7⟩

) = .5 andω(t2
⟨P,σ7⟩

) = .5. However, for anyn ≠ 7

there is only one possible trace forσn, which is,t1
⟨P,σn⟩

= ⟨1, P, σn⟩
ε
Ð→ ⟨1, ⋅, σn⟩

and we haveobs(t1
⟨P,σn⟩

) = ⟨↓⟩ andω(t1
⟨P,σn⟩

) = 1. Henceµ̂(⟨↓⟩ ∣ σ7) = 1
2

(the

probability of observing⟨↓⟩ given thatσ7 was chosen as the input toP) and

µ̂(⟨↑⟩ ∣ σ7) = 1
2
, whereas for any othern ≠ 7 we have that̂µ(⟨↓⟩ ∣ σn) = 1 and

µ̂(⟨↑⟩ ∣ σn) = 0. We can thus compute the marginal probabilities of the outputs as

µ′(⟨↓⟩) = 1
16
× 1

2
+15× 1

16
×1 = 31

32
andµ′(⟨↑⟩) = 1

16
× 1

2
= 1

32
. Thus, forσ7, we have

the conditional probabilities

µ̂(σ7 ∣ ⟨↓⟩) =
µ̂(⟨↓⟩ ∣ σ7) × µ(σ7)

µ′(⟨↓⟩)
=

1

31
, and, µ̂(σ7 ∣ ⟨↑⟩) = 1.

Similarly, for anyσn ∈ Σ/{σ7} we haveµ̂(σn ∣ ⟨↓⟩) = 2
31

and µ̂(σn ∣ ⟨↑⟩) = 0.

Using Definition 3.8.5, the information released byP is given by

I⟨P,µ⟩ =H(µ) − ∑
v∈VP

µ′(v)H(µv)

where for anyσ ∈ Σ, µv(σ) = µ̂(σ ∣ v) is the probability thatσ was selected as

the input toP given the observation ofv, andH(µ) andH(µv) are respectively

the entropies of the random variables induced by the probability measuresµ and

µv overΣ, which respectively describe the attacker’s uncertainty about the input

state before and after observingP ’s execution. Therefore, the information (inbits)

abouth released byP is

I⟨P,µ⟩ = log(16) − (31
32
(1

31
log(31) + 15 × 2

31
log (31

2
)) + 1

32
× 0)

≈ 0.1381

124

This measure is the average uncertainty lost about the input space, that is, the

information gained by the attacker. The measureH(µ) = log(16) is the initial

uncertainty that the attacker has about the input space, but after observing di-

vergence in one out of32 runs, whereby the attacker can identify the input on

that run, the average uncertainty that remains about the input space is the measure

∑v∈VP
µ′(v)H(µv), and its difference fromH(µ)models the information released

to the attacker about the inputs toP .

Now consider the programPA = if(h = 7)then skip 8.5 loopelse loop,

which is similar toP but now swapsskip andloop. The similarity is that, instead

of revealing the input on divergence, termination now signals that the inputh to

PA is 7. Intuitively, we should get the same result forPA that we got forP ,

becausePA is simply a swapping of probabilities (which the entropy measure is

not sensitive to) so thatPA terminates once every 32 times, as opposed toP , which

symmetrically diverges once every 32 times. Making the same assumptions and

using the similar notations as in the last example, the analysis ofPA is similar

to the analysis ofP . We now have the following probabilities:̂µ(⟨↓⟩ ∣ σ7) =

µ̂(⟨↑⟩ ∣ σ7) = 1
2

and for all σ ∈ Σ/{σ7}, µ̂(⟨↑⟩ ∣ σ) = 1 and µ̂(⟨↓⟩ ∣ σ) = 0. Also,

µ′(⟨↑⟩) = 31
32

and µ′(⟨↓⟩) = 1
32

, and for anyσ ∈ Σ, µ̂(σ ∣ ⟨↓⟩) = 1 if σ = σ7 and

µ̂(σ ∣ ⟨↓⟩) = 0 otherwise. Finally, for anyσ ∈ Σ, µ̂(σ ∣ ⟨↑⟩) = 1
31

if σ = σ7 and

µ̂(σ ∣ ⟨↓⟩) = 2
31

otherwise. Thus, by applying Definition 3.8.5, the information

released byPA is given byI⟨PA,µ⟩ = I⟨P,µ⟩. The identical result is not surprising

because the analysis ofPA is merely a permutation of probabilities due to the

observation of⟨↑⟩ and⟨↓⟩ in the analysis ofP .

The quantitative information flow obtained whenloop is appended or prepended

to While-PND programs is similar in nature to the information flow obtained un-

125

der the deterministicWhile and the possibilistic nondeterministicWhile-ND un-

der the relational model. Specifically, for anyWhile-PND programP that always

terminates, the quantitative information flow ofP is preserved in the program

PB = P ; loop sincePB only appends↑ to the observations ofP without changing

the probabilities. Similarly, for anyWhile-PND programP , it is easy to see that

the probabilistic information flow ofPC = loop;P is 0 bits, since theP subpro-

gram is never executed and the output observation⟨↑⟩ of PC is independentof the

choice of the input values toPC .

Summary In this chapter we have studied semantic definitions of information

flow in various language-based settings. These definitions demonstrate the use of

the input-output relational model and information representations introduced in

Chapter 3. The definitions of information flow were given relative to an attacker’s

observational model, the semantic attacker, to illustrate the definition of attacker

models, and to demonstrate the development of information flow analyses that are

parametrised by a chosen attacker’s observational power. The semantic analyses

developed demonstrate that the relational model copes well with issues of nonter-

mination. In the next chapter, we shall develop a static information flow analysis

technique for theWhile language, which is based on the observational model of

the semantic attacker.

126

Chapter 5

In formation Flow Analysis of While

Programs

In this chapter we present a static analysis of information flow forWhile pro-

grams, using PERs on the set of program states to represent information. The

semantics-based static analysis, which is flow-sensitive and termination-sensitive,

is shown to be correct with respect to thesemantic attackermodel introduced in

the previous chapter. This attacker is not only able to observe program outputs as

prescribed by the operational semantics, but can also determine whether the pro-

gram terminates or not. We shall start by presenting examples to motivate some

aspects of information flow analysis captured by the static analysis.

5.1 Motivating Examples

In the following examples the variableh (for high) is named to suggest that it

might contain sensitive input, and variablel (for low) is named to suggest that

127

it initially contains public input. The variablez is generally used for temporary

storage of intermediate computation, and is not a parameter to the program. We

shall sometimes present two or more programs within the same figure (usually to

compare the programs), separated by a vertical line. When there are two programs,

we refer to the leftmost program as the left-hand-side (LHS) program and the other

as the right-hand-side (RHS) program.

Example 5.1.1(Explicit Information Flow) The two programs shown in Fig-

ure 5.1.1 below both reveal exactly the same information, namely, the value of

the secret inputh. The RHS program first assigns the secret value ofh to another

intermediate variablez before printing it to the output. Although the two program

implementations are different, the information flow analysis of these programs

should produce the same result since they both reveal the same information. In

the security literature, information flow fromh to z through the assignment state-

ment is calledexplicit information flow [Den76].

wr i te h;
z ∶= h;
wr i te z;

Figure 5.1: Explicit Information Flow

Example 5.1.2(Implicit Information Flow) This example demonstrates the idea

of implicit or indirect information flow [Den76]. Assume that bothh andz in

the programs of Figure 5.2 are boolean-typed variables. The LHS program is a

classic example of how information can be propagated implicitly. Althoughh is

not directly assigned toz, the value ofh can be learnt indirectly viaz because the

value assigned toz is determined by the value ofh. This information flow fromh

128

to z due to branching is calledcontrol dependence[Muc97] in compiler analysis.

The RHS program has exactly the same information flow, but it is propagated ex-

plicitly by the assignment. However, the distinction between implicit and explicit

information flow is immaterial in these programs because the binary value of the

secreth is revealed in both cases.

i f (h) then
z ∶= tt;

e l s e
z ∶= ff ;

wr i te z ;

z ∶= h;
wr i te z;

Figure 5.2: Implicit Flow and a binary-valued Explicit Flow

Example 5.1.3(Implicit Flow Capacity) Although implicit information flow chan-

nels are usually low-capacity transmission channels, but when well-used, implicit

information flow can be as potent as the explicit copying of data. Assuming that

h is a natural number, the program of Figure 5.3 (inefficiently, through a linear

search) copies the secret input toz purely by implicit means.

z : = 0 ;
whi le (h ≠ z) do

z ∶= z + 1;
wr i te z;

Figure 5.3: Implicit Flows could be as dangerous as Explicit Copying

Example 5.1.4(Implicit Flow - due to assignment or lack of it) This example

demonstrates why not all implicit flows can be detected by only considering one

129

program trace (or control-flow path) at a time. In Figure 5.4, both programs re-

lease the same information about the secreth. More specifically, an output of0 in

both programs indicates that the value ofh is 1, whereas an output of1 indicates

that the value ofh is not1. It is clear that the particular output value is not impor-

tant, what matters is the fact that the attacker can determine which branch of the

conditional statement has been executed by observing the output values.

i f (h =1) t hen
z : = 0 ;

e l s e
z : = 1 ;

wr i te z ;

z : = 0 ;
i f (h =1)then
skip;

e l s e
z : = 1 ;

wr i te z ;

Figure 5.4: Assignments on all program paths must be considered

Now suppose that we have atrace-based monitorwhich determinesat runtime

whether information may flow implicitly to a variable by checking whether or not

that variable is assigned within the branch of a conditional statement whose guard

is predicated on an expression involving secret values. In the LHS program, this

monitor will be able to detect the implicit information flow toz from the secret

variableh becausez is assigned within both branches of theif statement. In the

RHS program however, this monitor will fail to detect that information flows from

h to z on the tracethrough thethenbranch, because as far as the runtime monitor

can tell on this trace,z is not assigned within a conditional statement. Information,

however, flows toz because it is assigned in at least one branch of the conditional

statement. This is a well known problem concerning the use of runtime moni-

tors for the enforcement of information flow security [Vol99b, McL94, SM03a].

130

The runtime monitor fails to detect the flow because secure information flow is

a property ofall control-flow paths. A runtime-based enforcement monitor for

information flow introduced in [GBJS06] uses the result of a static analysis in

the enforcement monitor in order to deal with this problem. This highlights the

importance of static analysis as a useful technique for information flow protection.

Example 5.1.5(Information Flow - due to program interaction or lack of it) Many

useful programs areinteractivein nature, receiving inputs from the user and gen-

erating output as they execute. TheWhilelanguage studied in this thesis produces

outputs through thewrite construct, which raises the possibility of implicit infor-

mation flow when output takes place in conditional statements, and also explicit

information flow when the attacker observes the result of the evaluation of an ex-

pression whose value depends on secrets. The example of Figure 5.5 demonstrates

implicit information flow via output interactions.

i f (h = 1) then
wr i te 1 ;

e l s e
wr i te 2 ;

i f (h = 1) then
wr i te 1 ;

e l s e
skip;

Figure 5.5: Program Output, or the lack of it, on all control-flow paths must be considered

In the LHS program of Figure 5.5, an output of1 indicates that the value of

h is 1, whereas an output of2 reveals thath is not 1. The RHS program only

produces output when thethenbranch is executed, however this single output or

the lack of it is sufficient to reveal the same information as in the LHS program to

the attacker: an output of1 in the RHS program revealsh to be1, andno output

reveals thath is not 1. This implicit information flow due to lack of output is

131

similar to the problem of lack of assignment in the RHS program of Figure 5.4.

Example 5.1.6(Flow-Sensitivity and Semantics) This example, adapted from

[JL00], demonstrates flow-sensitivity and semantics-related aspects of informa-

tion flow analyses. Flow-sensitive and semantics-based analyses are usually more

precise than flow-insensitive static approximations of information flow, which

are commonly used in security type-systems for noninterference such as [VSI96,

VS97]. In flow-insensitive security type systems, which are common in language-

based security, a variable must be typed as secret whenever it is assigned a value

that may be dependent on a secret at any point within the program. While this

is the case in the three programs of Figure 5.6, the attacker cannot learn any-

thing about (the secret)h by observing the program output. Flow-sensitive and

semantics-based analyses detect this. In the first program, the secret value inz

is over-written before it can be used in the output: flow-sensitivity. Similarly, in

the second program, the secret value inh is lost before it is assigned toz - which

in turn is written to the output. In the third program, although the value ofz is

computed as a function ofh, it is however clear that the final value ofz before

it is released is the constant 0, which means that the value of the program output

is independent of the secreth. Modern type-based analyses such as [HS06], and

dependency analyses such as [AB04], which areflow-sensitivewill detect the se-

curity of the first two programs. The analysis that we shall present in this chapter

is flow-sensitive and, being semantics-based, will detect that all the three program

are safe. In particular, the analysis of the third program demonstrates the semantic

properties of our analysis.

Example 5.1.7(Dead Code) This example highlights another aspect of semantics-

132

z ∶= h;
z ∶= 6;
wr i te z;

h ∶= 6;
z ∶= h;
wr i te z;

z ∶= h;
z ∶= z − h;
wr i te z;

Figure 5.6: Accuracy: Semantic Analysis against Static Typing

based analyses, which makes them more accurate than the traditional static-typing

systems for information flow. In the LHS program of Figure 5.7, the secreth is

assigned toz in the thenbranch, which suggests that the output value might be

dependent on the secret input. However, since this branch will never be executed,

the output of this program is the constant0, and hence no information is revealed

abouth. In the RHS program, the preceding nonterminating loop prevents the ex-

ecution of thewrite statement, which makes the program safe because the danger-

ous part will never be executed. The correct information flow in these examples,

and similardead codesituations, are detected by our analysis.

i f (ff) then
z ∶= h;

e l s e
z ∶= 0;

wr i te z;

whi le (tt) do
skip;

wr i te h;

Figure 5.7: Dead Code and Information Flow

Example 5.1.8(Termination-Sensitivity) The modelling of information flow due

to nontermination (termination channels) or in the presence of nontermination

is important because nontermination, especially when combined with program

outputs, can be used to reveal arbitrary information about secrets [AHSS08].

On one hand, although the LHS program of Figure 5.8 does not produce any

133

i f (h = 10) then
whi le (tt) do
skip;

e l s e
skip;

wr i te h;
whi le (tt) do
skip;

Figure 5.8: Information Flow in the Presence of Nontermination

output by awrite statement, it however has a termination channel via which infor-

mation about the secreth is transmitted. The termination of this program reveals

thath ≠ 10, whereas nontermination reveals thath is 10. The RHS program, on

the other hand, reveals the secreth before diverging. Termination-insensitive anal-

yses, which support program outputs like [GBJS06, AS07], do not model infor-

mation flow under diverging programs such as the one on the RHS of Figure 5.8.

Our analysis can deal with these and similar cases.

Example 5.1.9(Disjunctive Information Flow Analysis) Since a program trace

traverses a given control-flow path at a time during the program’s execution, it

is reasonable to analyse information flow in a way that models this property of

program execution. This observation leads to a more accurate analysis of certain

disjunctive information flow. For example, we might require that at most one of

two secretsh1 or h2 may be learnt, that is, neverboth at the same time, during

the program run. This pattern is akin to the disjunctive information flow property

mentioned in [SS05]. We have shown how one may represent disjunctive infor-

mation with PERs in section 3.5.5. This example demonstrates the usefulness of

such a notion.

Consider the programs of Figure 5.9, and assume thatl is a public boolean

value (possibly chosen by an attacker). It is clear that the first program on the LHS

134

wr i te h1;
wr i te h2;

i f (l) then
wr i te h1;

e l s e
wr i te h2;

i f (tt) then
wr i te h1;

e l s e
wr i te h2;

Figure 5.9: Disjunctive Information Flow

violates the required disjunctive policy about the release ofh1 andh2, whereas the

other two programs do not. In the second program in the middle, the attacker can

learn at most one of eitherh1 or h2 during a run regardless of howl is chosen in

this program. One may think ofl as the release key to choose between the release

of eitherh1 or h2. The third, rightmost, program satisfies the desired policy by

definition because it never revealsh2. Our analysis, by the definition of disjunctive

information in PERs, detects the disjunctive properties of information flow about

h1 andh2 in these three programs.

5.2 Information Flow Analysis with PERs

We have presented, in Chapter 3, the lattice of PERs over a set as a representation

of information and we have shown, in Chapter 4, how the semantic information

flow property of aWhile program may be defined by using PERs over its set of

states. In the remainder of this chapter, we shall develop a static analysis calculus

for deriving the program information flow, which uses the lattice of PERs over

program states as the representation of information.

In the following, the setsΣ andVar are taken to be the set of all states and

the set of all variables respectively of agiven programP , which will hopefully

be clear from the context. We also assume that the setVar of the program vari-

135

ables is partitioned into two; namely, the setIVar of variables used for program

inputs, that is, the program’s formal parameters, and the setTVar ≜ Var/IVar

of variables, which are not formal parameters but are used fortemporaryinter-

mediate storage during the program’s computations. The semantic status of the

IVar-TVar partitioning of variables is established by requiring a property, which

preserves the determinism ofWhile with respect to the program inputs, namely,

that the behaviour of aWhileprogram must be invariant under fixedIVar-values.

Definition 5.2.1. LetP be aWhile program. We say thatP is properly-initialised

iff

1. for anyσ,σ′ ∈ Σ such thatσ↓IVar = σ′↓IVar
, where⟨P,σ⟩ = ⟨P,σ⟩

a0Ð→

⟨P1, σ1⟩
a1Ð→ ⋯ and ⟨P,σ′⟩ = ⟨P,σ′⟩

a′
0Ð→ ⟨P ′1, σ

′
1⟩

a′
1Ð→ ⋯ then for all i,

ai = a′i and

2. there is no assignment toIVar variables inP .

We shall consider only properly-initialised programs in the static analysis de-

veloped in this chapter. The Definition 5.2.1 of a properly-initialised programP

requires that the observable operational behaviour of this program must be fixed

from one run to another under fixed input (IVar) values. A way to ensure this

property is to initialise properly allTVar variables before use. A variable is

said to beproperly-initialisedif it is defined as a function of the initial values of

IVar variables. This is not an unusual requirement because the initialisation of

a variable before use is standard programming practice. The property is required

during the static analysis of programs because determinism of the program with

respect to its formal parameters is assumed. At the beginning of program execu-

tion, theIVar variables are properly-initialised by definition. But we also require,

136

to simplify the analysis, thatIVar variables are not used on the left-hand-side of

assignment statements. This is not a serious restriction because assignments to

IVar variables can be handled by a systematic variable-renaming scheme. The

no-assignment-to-IVar requirement has the additional benefit that we can simply

name a secret input after theIVar variable in which it was initially stored.

5.2.1 The Attacker Model

In the static analysis of this chapter, we have assumed thesemantic attackermodel

of Chapter 4, which can only observe program outputs throughwrite statements as

prescribed by the standard operational semantics, and can additionally determine

whether the program terminates or not.

5.3 Inducing PERs by Expression Evaluation

Consider the program in Figure 5.10, which reveals the parity of the secret input

h. This information is derived by the equivalence relation over states induced by

the possible evaluations of the expressionhmod2. This equivalence relation is

the “parity ofh” relation Parh, such that∀σ,σ′ ∈ Σ, σ Parh σ′ iff σ(h)mod2 =

σ′(h)mod2. Thus, on account of the information revealed by this program alone,

any pair of input states, which agree on the parity ofh, cannot be distinguished by

observing the program’s output. Alternatively, we can say that the observer can

distinguish two input states of this program, by observing the output, only if those

states maph to values with different parities.

Let us now introduce a notation to construct PERs over program states by

considering expression evaluations.

137

wr i te (h mod 2) ;

Figure 5.10: A program revealing the parity of its input.

Definition 5.3.1 (Inducing PERs by evaluations). Let τ ∈ {int,bool} be the pro-

gram data type of an expressione and letφ ∈ PER(JτK) be a PER overτ values.

Define the PERe ∶φ ∈ PER(Σ) over states that is induced by the observation ofe

under the constraintφ as

∀σ,σ′ ∈Σ. σ (e ∶φ) σ′ ⇐⇒ σ(e) φ σ′(e).

Furthermore, define the PERsT,F ∈ PER(B) over booleans such that for any

∀v, v′ ∈ B, v T v′ ⇐⇒ v = v′ = tt andv F v′ ⇐⇒ v = v′ = ff . In the special

case whenφ = id is the identity relation over values, we have for any expression

e, ∀σ,σ′ ∈Σ, σ (e ∶ id) σ′ ⇐⇒ σ(e) = σ′(e).

The PERφ in e ∶ φ specifies what values of the expressione an attacker can and

cannot distinguish, wherev φ v′ means that the attacker cannot distinguish the

pair of valuesv andv′. More generally, for anyv ∈ dom(φ), the attacker cannot

distinguish any pair of values in[v]φ. Thus, the attacker cannot distinguish a pair

of statesσ andσ′ by observing theire-values ifσ(e), σ′(e) ∈ [v]φ. Additionally,

the PERφ allows us to specify that certain values are not possible whenever those

values are not in the domain of definition ofφ. This partiality property is used

to specify the knowledge of which conditional branch has been taken during the

analysis of conditional statements. For example, on entering thethenbranch of the

conditional statementif(b)thenc1elsec2, we know statically thatb evaluates

to the valuett and hence we can identify the information released aboutb as

138

the PERb ∶ T over states. Sinceff ∉ dom(T), the PERT specifies that the

boolean guard could not have evaluated to the valueff on entering thethenbranch.

Consequently, the domain of definition of the PERb ∶ T identifies exactly only

the set of states under which thethenbranch of this conditional statement can be

executed and it sets the context of implicit information flow for the analysis ofc1.

5.3.1 Conditional Information Flow

Information flow in a program may be conditional. For example, when a com-

mand lies within a conditional statement, the information released by this com-

mand becomes conditional on how the boolean guard of the conditional statement

evaluates. As a concrete example, consider the program listings of Figure 5.11.

It is clear that the information flow caused by the commandwrite h in the LHS

program is different from that in the program on the RHS. In the LHS program,

all possible values of the secret input may be learnt, whereas in the RHS program,

write h only reveals the value ofh whenever that value is10 (in fact, the RHS

program as a whole only reveals whether the value ofh is 10 or not). These two

write statements cause different information flows because of the program context

where they occur. In particular, the execution ofwrite h in the RHS program is

predicated on the condition thath = 10 holds.

wr i te h ; i f (h =10)t hen wr i te h ;
e l s e s k i p ;

Figure 5.11: Conditional Information Flow

Considered independently of the execution context, the PER on states induced by

commandwrite h is h ∶ id, which distinguishes any pair of states with different

139

values ofh.

Now, in the RHS program, thewrite statement is executed only if the boolean

conditional guard evaluates to the valuett. This predicate on state is captured

by the PER(h = 10) ∶ T which requires that the value ofh must be10. Thus,

the domain of the PER(h = 10) ∶ T encodes the set of states under which the

execution of thethenbranch of the RHS program takes place, capturing the con-

ditionality of execution of thewrite statement. Thus, the PER that iseffectively

induced by thewrite h statement in this conditional context may be computed

as((h = 10) ∶ T) ⊔ (h ∶ id) = (h = 10) ∶ T, which means thath is revealed (by

thewrite statement) only if its value is10. This is as opposed to the LHS program

that always reveals the value ofh (that is,h ∶ id).

For theelsebranch of the RHS program, the information released is modelled

by the PER(h = 10) ∶ F, which relates all states whereh ≠ 10 and therefore repre-

sents the knowledge thath is not equal to10. Note that this information is gained

by the observer of the RHS program if the program producesno output when ex-

ecuted. We can thus represent the information released by the RHS program by

the PER obtained by taking the disjoint union(h = 10) ∶ T ∪ (h = 10) ∶ F. This

information reveals whetherh = 10 or not.

5.4 Static Analysis of Information Flow with PERs

In this section we present some PER operations that will be used in the information

flow analysis. The analysis itself is based on triples that we refer to asinformation

configurations, which provide dynamic semantic contexts for the analysis of pro-

grams. Information configurations encode information flows at different points

140

along a program’s control-flow path.

5.4.1 Information Configurations

We are interested in keeping track of three aspects of information flow during

analysis. These information are encoded in triples referred to asinformation

configurationsof the form(E, I,O), whereE (for Explicit) represents explicit

information flows toTVar variables during assignments, andI (for Implicit) rep-

resents implicit information flows due to program branching andO (for Outputor

Observed) represents the information released due to program outputs and obser-

vation.

Definition 5.4.1 (Information configurations). Let I= PER(Σ) be the lattice of

PERs over the setΣ of states of a programP and letVar be the set of variables

ofP . Define the set of all information configurations with respect to this program

asΦ ≜ E × I ×O, whereE = [Var → I] andI =O = I .

We shall use(E, I,O), ϕ,ψ ∈ Φ for information configurations, and symbols

Φ,Ψ ⊆ Φ for sets of information configurations - adding superscripts and/or sub-

scripts when necessary. We shall refer to the first, second, and third projection of

an information configuration triple as itsE-, I-, andO-component respectively.

5.4.2 Context-based PERs

In order to track the flow of information through a program we shall be construct-

ing PERs, which encode the information released. We shall however be tracking

the information released about the formal parameters (elements of the setIVar)

141

of a program only, throwing away (orforgetting) information about other vari-

ables (elements of the setTVar). Let us define some operations on PERs and

information configurations that we shall use in the static analysis.

Definition 5.4.2 (Forgetting information about variables). LetR ∈ PER(Σ) be a

PER overΣ, and letZ ⊆ Var be a set of variables. Define↑ZR such that for

any σ,σ′ ∈ Σ, σ ↑ZR σ′ iff there exist statesσ1, . . . , σn ∈ Σ and σ′′1 , . . . , σ
′′
n−1 ∈

dom(R) andσ = σ1, σ′ = σn such that for alli, 1 ≤ i ≤ n − 1 impliesσi, σi+1 ∈

havocZ([σ′′i]R).

Intuitively, ↑ZR “forgets” the information thatR has about the variables inZ since

each equivalence class of↑ZR is dense with respect to the values of variables in

Z. That is, for allσ ∈ dom(↑ZR) we have[σ]↑ZR = havocZ([σ]↑ZR). Let us show

that↑ZR is a PER.

Lemma 5.4.3.LetZ ⊆Var be a set of variables in the domain of states inΣ and

letR ∈ PER(Σ) be a PER overΣ. The relation↑ZR is a PER overΣ.

Proof. The symmetry of↑ZR is clear. For transitivity, supposeσ ↑ZR σ′ and

σ′ ↑ZR σ′′ hold. Then there exist two sequences of statesσ1, . . . , σn ∈ Σ and

σ′1, . . . , σ
′
m ∈ Σ such that for alli = 1, . . . , n − 1 andj = 1, . . . ,m − 1 there exist

σA
i , σ

B
j ∈ dom(R) such thatσi, σi+1 ∈ havocZ([σA

i]R) andσ′j , σ
′
j+1 ∈ havocZ([σB

j]R)

andσ = σ1 andσ′ = σn = σ′1 andσ′′ = σ′m. Thus, transitivity of↑ZR is clear by

concatenating the two sequences of states.

Definition 5.4.4 (Domain-preserving joins). Let R,R′ ∈ PER(Σ) be PERs over

Σ. Define the PERCΣ(R), which extends the domain ofR up to Σ ⊆ Σ while

142

preserving the equivalence classes ofR as

∀σ,σ′ ∈Σ, σ CΣ(R) σ′ iff σ R σ′ or σ,σ′ ∈ Σ/dom(R).

Furthermore, letΣ = dom(R) ∪ dom(R′), define a join operation on PERsR and

R′, which preserves their domains as

R FR′ ≜ CΣ(R) ⊔ CΣ(R′).

The extension ofF to set of PERsR ⊆ PER(Σ), whereΣ = ⋃R∈R dom(R), is given

by

3R ≜ ⊔
R∈R

CΣ(R).

The join operationF has an associated partial order,⊑+, defined as

R⊑+R′ ⇐⇒ R FR′ = R′.

Let (E, I,O), (E′, I ′,O′) ∈ Φ be information configurations,F is extended to

information configurations as

(E, I,O) F (E′, I ′,O′) ≜ (E FE′, I F I ′,O FO′)

where, as usual,E F E′ is the pointwise join of functions. The extension2 of F

to sets of information configurations is done in the usual way. Finally, define an

143

order relation on information configurations as

(E, I,O)⊑+(E′, I ′,O′) ⇐⇒ ∀x ∈Var.E(x)⊑+E′(x), I⊑+I ′,O⊑+O′.

The operationF preserves domains of PERs. It also preserves the partitioning,

that is, the information content of PERs.

Proposition 5.4.5.LetR,R′,R′′ ∈ PER(Σ) be PERs, then

1. dom(R) ⊆ dom(R FR′),

2. for all σ,σ′ ∈ dom(R), σ (R FR′) σ′ Ô⇒ σ R σ′,

3. for anyσ ∈ dom(R) and σ′ ∈ Σ such thatσ′ ∉ dom(R), we have that

(σ,σ′) ∉ (R FR′),

4. dom(R) ⊆ dom(R′) andR′⊑+R′′ implies thatR ⊔R′ ⊑ R ⊔R′′.

Proof.

1. It is clear from the definition thatdom(R FR′) = dom(R) ∪ dom(R′) and

hence thatdom(R) ⊆ dom(R FR′).

2. LetΣ = dom(R)∪dom(R′) and defineR andR′ such that∀σ,σ′ ∈Σ, σRσ′ ⇐⇒

σ,σ′ ∈ Σ/dom(R) andσ R′ σ′ ⇐⇒ σ,σ′ ∈ Σ/dom(R′). Then we have

R F R′ = (R ∪ R) ⊔ (R′ ∪ R′) = (R ⊔ R′) ∪ (R ⊔ R′) ∪ (R′ ⊔ R), since

R ⊔R′ = ∅. Furthermore, since by definitionσ,σ′ ∈ dom(R) Ô⇒ σ,σ′ ∉

dom(R), then for anyσ,σ′ ∈ dom(R), σ R FR′ σ′ Ô⇒ σ (R ⊔R′) σ′ or

σ (R ⊔R′) σ′ Ô⇒ σ R σ′.

144

3. From the definitionσ1 (R F R′) σ2 Ô⇒ σ1 CΣ(R) σ2 Ô⇒ σ1 R σ2 or

σ1, σ2 ∈ Σ/dom(R), whereΣ = dom(R) ∪ dom(R′). Since neitherσ R σ′

norσ,σ′ ∈ Σ/dom(R) holds, then(σ,σ′) ∉ R FR′.

4. SinceR′⊑+R′′ thenR′′ = R′ F R′′ and henceΣ′′ = dom(R′′) = dom(R′′) ∪

dom(R′). DefineR′ such that∀σ,σ′ ∈ Σ, σR′σ′ ⇐⇒ σ,σ′ ∈ Σ′′/dom(R′).

SinceΣ′′ = dom(R′′) thenCΣ′′(R′′) = R′′. Thus,R′′ = R′ FR′′ = CΣ′′(R′)⊔

R′′ = (R′⊔R′′)∪(R′′⊔R′). Hence,R′′⊔R = R⊔R′⊔R′′ becauseR′⊔R = ∅

sincedom(R) ⊆ dom(R′), and,R′ andR′ are disjoint by definition. Since

R′′ ⊔R = R ⊔R′ ⊔R′′, thenR ⊔R′ ⊑ R ⊔R′′.

It is clear that⊑+ is a partial order on PERs becauseF is idempotent, commuta-

tive, and associative. The resulting lattice is also complete. The induced order on

Φ in turn makes the set of information configurations a complete lattice.

Theorem 5.4.6.The setPER(Σ) of PERs overΣ is partially ordered by⊑+, and

⟨PER(Σ),⊑+,F⟩ forms a complete lattice

Proof. The partial order proof is straightforward. We shall now show that for

anyR ⊆ PER(Σ) andR′ ∈ PER(Σ) such that for allR ∈ R,R⊑+R′, we have that

2R⊑+R′. Let Σ = dom(R′), then we know by (1) of proposition 5.4.5 that for

all R ∈ R,dom(R) ⊆ Σ, sinceR⊑+R′, and hence thatdom(2R) ⊆ Σ. Now, by

definition,∀σ,σ′ ∈Σ, σ(2RFR′)σ′ ⇐⇒ σ(⊔∀R∈R CΣ(R)⊔R′)σ′ ⇐⇒ σR′σ′

since for allR ∈ R, σ R′ σ′ Ô⇒ σ CΣ(R) σ′ by the fact thatR⊑+R′, which

means thatCΣ(R) ⊔R′ = R′. Therefore2R FR′ = R′, which shows the desired

property.

145

Theorem 5.4.7.The partially ordered set⟨Φ,⊑+,F⟩ of information configurations

is a complete lattice.

Proof. For this proof it is sufficient to show that for any arbitraryΦ ⊆ Φ the

join 2Φ exists inΦ [GHK+03]. As usual,2Φ = (E′, I ′,O′) is the information

configuration defined as∀x ∈ Var,E′(x) = 2{E(x) ∣ (E, I,O) ∈ Φ} andI ′ =

2{I ∣ (E, I,O) ∈ Φ} andO′ = 2{O ∣ (E, I,O) ∈ Φ}. The proof is immediate since

from Theorem 5.4.6⟨PER(Σ),⊑+,F⟩ is a complete lattice.

146

Lemma 5.4.8.Let Σ be the set of all states, which are maps fromVar to values.

SupposeΣ,Σ′ ⊆ Σ and thatZ ⊆ Var and letR,R′ ∈ PER(Σ). Then we have the

following properties:

1. LetX,Y ⊆ Var such thatX ∪ Y = Z, then havocZ(Σ) ∪ havocZ(Σ′) =

havocZ(Σ ∪Σ′), and havocX(havocY (Σ)) = havocZ(Σ) .

2. The operator havocZ(⋅) is an upper closure operator on the powerset lattice

⟨P(Σ),⊆⟩ with respect to the subset inclusion order.

3. The following identities hold

(a) havocZ(Σ) ∪ havocZ(Σ′) = havocZ(havocZ(Σ) ∪ havocZ(Σ′)).

(b) havocZ(Σ) ∩ havocZ(Σ′) = havocZ(havocZ(Σ) ∩ havocZ(Σ′)).

(c) havocZ(Σ)/havocZ(Σ′) = havocZ(havocZ(Σ)/havocZ(Σ′)).

4. For all σ ∈ dom(↑ZR) we have[σ]↑ZR = havocZ([σ]↑ZR) .

5. For anyX,Y ⊆Var we have↑X↑YR = ↑Y↑XR = ↑X∪YR.

6. ↑ZR ⊔ ↑ZR′ = ↑Z(↑ZR ⊔ ↑ZR′).

7. ↑ZR F ↑ZR′ = ↑Z(↑ZR F ↑ZR′).

8. R ⊑ R′ Ô⇒ ↑ZR ⊑ ↑ZR′.

Proof. See Appendix A.

We shall now define some operations on information configurations.

Definition 5.4.9(Semantic Sets and PERs). Let (E, I,O) ∈ Φ be an information

configuration, define thesemantic setof (E, I,O), which represents the set of

147

program states modelled by the configuration(E, I,O) to be

dom((E, I,O)) ≜ ⋂
z∈Var

dom(E(z)) ∩ dom(I) ∩ dom(O).

Define the PERPER((E, I,O)), which encodes this set such that

∀σ,σ′ ∈Σ, σ PER((E, I,O)) σ′ ⇐⇒ σ,σ′ ∈ dom((E, I,O)).

Information configurations provide contexts under which the information re-

leased by program commands and expression evaluations may be constructed.

The information released by a subprogram of a given program is constrained by

the possible set of states, as prescribed by the semantic set of an information

configuration, that reaches that subprogram. The information released by the ob-

servation of the evaluation of an expression in a given program context is defined

as follows.

Definition 5.4.10(Information released in a context). LetΣ be the set of all states,

which are maps fromVar to values, and letIVar ⊆ Var such thatTVar =

Var/IVar. Furthermore, let(E, I,O) ∈ Φ be an information configuration, and

let e be an expression of typeτ such thatFV (e) ⊆ Var, and letφ ∈ PER(JτK) be

a PER overτ .

Define the PER flow(e ∶ φ, (E, I,O)) overΣ to be

flow(e ∶ φ, (E, I,O)) ≜ ↑TVar(e ∶φ ⊔RE ⊔ I)

whereRE is defined such that∀σ,σ′ ∈Σ, σRE σ′ iff σ,σ′ ∈ dom(⊔z∈FV (e)E(z)).

148

WhenIVar is the set of input variables to aWhileprogramP , this definition con-

structs a PERflow(e ∶ φ, (E, I,O)), which represents the information released

about the formal parameters ofP by the observation of the evaluatione subject

to the constraintφ over its evaluation. The PERsRE andI provide a context,

specifying what states are possible as prescribed by the information configuration

(E, I,O) (see Definition 5.4.9), for the evaluation ofe. The PERRE places a

constraint on the possible values of the free variables ofe, and the PERI is a con-

straint on the possible values of the program parameters that cause the control-

flow to reach the evaluation ofe due to program branching. The definition of

flow(⋅, ⋅) only computes the information released about the program’s formal pa-

rameters by throwing away (via the operation↑TVar(⋅)) the information encoded

about variables the variables ofTVar, which are not formal parameters ofP .

With these definitions in hand, we can now present the static analysis rules for the

analysis of information flow inWhileprograms.

5.5 The Information Flow Rules

The algorithmic information flow rules for the static analysis of information flow

in a givenWhileprogram is presented in Figure 5.12. The analysis rules are de-

fined parametric to a given programP , where the setsVar, IVar,TVar,Σ, and

Φ are defined with respect to this program. For some(E, I,O) ∈ Φ and sub-

programc of P , the analysis ofc is specified as a transformation of information

configurations:(E, I,O) c (E′, I ′,O′). The information configuration(E, I,O)

is referred to as thepre-configurationor preconditionfor the analysis ofc and

(E′, I ′,O′) is referred to as thepost-configurationor postconditionof the analy-

149

sis. The pre-configuration(E, I,O) provides a semantic and information context

for the analysis, where the semantic setdom((E, I,O)) represents the starting set

of states for the analysis ofc, andO is the attacker’s knowledge before the exe-

cution ofc. Similarly, dom((E′, I ′,O′)) contains the set of states under whichc

terminates andO′ represents the attacker’s knowledge after observing the execu-

tion of c. In particular,E andE′ respectively keep track of the values of program

variables and their dependencies on input parameters before and after the execu-

tion of c. Program branching information, specifically, the values of the program

input parameters under which a given program point is reached are encoded in

theI-part of the information configuration, setting the context for the analysis of

subprograms of conditional statements.

We shall explain each of the analysis rules in the remainder of this section. The

first two rules are straightforward. The[SKIP] rule shows that theskip command

does not modify information configurations and therefore causes no information

flow, and the sequential composition rule ([SEQNC]) shows that the analysis is com-

positional. Let us now look at the definition of the remaining rules.

5.5.1 Analysis ofwrite Statements

Thewrite statements in a program cause information to flow directly to the pro-

gram observer. The semantic attacker model shows that the attacker can observe

the output value of awrite statement as prescribed by the operational semantics,

and hence the information released to the attacker is modelled by the identity ob-

servational constraint (e ∶ id) on the program output. The information flow to

the attacker is however subject to the semantic constraints placed on the possi-

150

Letϕ = (E, I,O) ∈Φ.

[SKIP]
ϕ skipϕ

[SEQNC]
ϕ c1 ϕ′ ϕ′ c2 ϕ′′

ϕ c1; c2 ϕ′′

[WRITE]
O′ = O F flow(e ∶ id, ϕ)
ϕ write e (E, I,O′)

[ASSGN]
E′ = E[z ↦ aflow(z ∶= e,ϕ)]

ϕ z ∶= e (E′, I,O)

[IF]

I ′ = flow(b ∶ T, ϕ) I ′′ = flow(b ∶ F, ϕ)
(E, I ′,O) c1 ψ′ (E, I ′′,O) c2 ψ′′

ϕ if (b) then c1 else c2 ψ′ ⊎ϕ ψ′′

[WHL]

ϕ0 = ϕ (En, In,On) = ϕn ϕn if(b)then c else skipϕn+1 I ′n = flow(b ∶ F, ϕn)
∀x ∈Var. X̄ = TVar/{x}. σ E′(x) σ′ ⇐⇒ ∃i ∈ N, σ ↑X̄(Ei(x) ⊔ I ′i ⊔ b ∶ F) σ′

(E′′, I ′′,O′′) = 2i≥0ϕi I ′ = flow(b ∶ F, (E′, I ′′,O′′)) O′ = 2i≥0 flow(b ∶ id, ϕi) FO′′

ϕ while (b) do c (E′, I ′,O′)

Figure 5.12: Calculus of Information Flow

151

ble values of the free variables of the expression (based on previous assignments)

and the possible values of the program parameters that cause the control-flow to

reach thewrite statement. These semantic constraints are specified by the pre-

configuration(E, I,O). Thus, the attacker’s knowledge after observing the result

of the statementwrite e in the context provided by(E, I,O) is captured by tak-

ing a join of the prior knowledgeO of the attacker with the released information

flow(e ∶ id, (E, I,O)) in that context.

To illustrate how the[WRITE] rule captures the information flow to an attacker,

consider the example shown in Figure 5.13. Here the attacker wishes to gain

access to the values of two secret input parametersh1 andh2 by solving equations

involving these inputs.

wr i te h1 + h2;
wr i te h1 − h2;

Figure 5.13: PER joins capture information flow via equation solving

This example illustrates how PER joins capture reasoning with equations as fol-

lows. The PERs induced by the expressionsh1 + h2 andh1 − h2 respectively are

the equivalence relationsR1 = (h1 + h2) ∶ id andR2 = (h1 − h2) ∶ id, where

• ∀σ,σ′ ∈Σ, σ R1 σ′ ⇐⇒ σ(h1 + h2) = σ′(h1 + h2), and

• ∀σ,σ′ ∈Σ, σ R2 σ′ ⇐⇒ σ(h1 − h2) = σ′(h1 − h2).

In the flow rules, the fact that the attacker learns the precise values of both

secrets after observing the output of the twowrite statements is captured by the

join R = R1 F R2 = R1 ⊔ R2 (since bothR1 andR2 are equivalence relations)

152

which is given by:

∀σ,σ′ ∈ Σ, σ R σ′ ⇐⇒ σ(h1 + h2) = σ′(h1 + h2) andσ(h1 − h2) = σ′(h1 − h2)

⇐⇒ σ(h1) = σ′(h1) andσ(h2) = σ′(h2).

This means that two states are indistinguishable to the attacker (via the knowledge

modelled by the PERR) if and only if they both agree on the values of bothh1

andh2. In other words, the attacker learns the values ofh1 andh2.

5.5.2 Analysis ofif statements

We know statically what the conditional guard evaluates to when the control flow

is passed to one of the branches of anif statement. This information is captured

in the [IF] rule by constructing a PER representing the set of states that evalu-

ate the boolean guard to the appropriate value on entering that branch. The in-

formation thus released (also known asimplicit information flow) constitute the

implicit information contexts under which the branches of theif statement are

analysed. These implicit contexts are computed from the boolean expressionb as

flow(b ∶ T, ϕ) andflow(b ∶ F, ϕ) for thethenandelsebranches respectively, which

identify the states in which the boolean guard evaluates tott andff respectively.

As demonstrated by Example 5.1.4 and Example 5.1.5, in computing the im-

plicit information flows in the branches of a conditionalif statement, simply look-

ing for assignmentor write statements in each branch of theif statement indepen-

dently of the other branch can cause certain implicit flows to go undetected. This

information flow is due to a well-known problem that information flow is not a

property of individual execution paths [Vol99b, McL94, SM03a, Sch00]. Such

153

flows can occur when an attacker observes that certain actionsdid not take place,

such as outputs or assignments on a given execution path. Thus, runtime execu-

tion monitors [Sch00] cannot detect such flows when execution passes through

the control-flow path where the relevant action is missing. However, this is not a

problem for static analysis since information about all program paths are available

to the analyser - making static analysis more suitable for the analysis of secure in-

formation flow. An execution monitor [GBJS06], which is able to deal with this

problem uses the result of a static analysis to prevent this problem in the execution

monitor. The operation⊎ in theif rule, which is given in the following definition,

identifies this information flow.

Definition 5.5.1. Let (E, I,O) ∈ Φ be an information configuration and letb

be a boolean expression an letc1 and c2 be While commands, such thatI ′ =

flow(b ∶ T, (E, I,O)) andI ′′ = flow(b ∶ F, (E, I,O)) and(E, I ′,O)c1(E1, I1,O1)

and(E, I ′′,O) c2 (E2, I2,O2).

LetE′1,E
′
2 andI3 be defined as:

∀z ∈Var,
E′1(z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

E1(z) ⊔ I ′ if E2(z) ≠ E(z)

E1(z) otherwise

and,

∀z ∈Var,
E′2(z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

E2(z) ⊔ I ′′ if E1(z) ≠ E(z)

E2(z) otherwise

and,

∀σ,σ′ ∈Σ, σ I3 σ′ ⇐⇒ σ,σ′ ∈ dom(I1) ∪ dom(I2)

The post-configuration of the conditional statementif (b) then c1 else c2,

154

with respect to the pre-configuration(E, I,O), is given by

(E1, I1,O1) ⊎(E,I,O) (E2, I2,O2) ≜ (E′1, I3,O1) F (E′2, I3,O2).

The implicit context in the post-configuration of the conditionalif statement

is a PER representing the union of the domains of the post-configurations of the

branches. This makes the information in the implicit context local to the relevant

branches, otherwise this can result in the so-calledlabel creep[SM03a] - a condi-

tion where the security type of the “program counter” monotonically increases due

to conditional statements. The implicit context also keeps track of the dependency

of reaching a particular program point on the value of inputs, and, as will be seen

in the analysis ofwhilestatements, input states leading to program divergence are

removed from the implicit context of thewhilestatement post-configuration.

5.5.3 Analysis of Assignment Statements

When an assignment takes place in a program context, information is encoded

directly in the assigned variable (by virtue of the assigned expression) and/or in-

directly (by virtue of the implicit context under which the assignment takes place).

However, since assignment also changes program state, we define atransposition

operation on PERs over states that models the semantic effect of assignments on

states.

Definition 5.5.2(PER transposition and assignment). LetR be a PER overΣ and

z ∈ TVar. Define the transposition ofR by the assignmentz ∶= e as the binary

relation

z∶=e
↝

R such that for anyσ,σ′ ∈Σ, σ

z∶=e
↝

R σ′ iff there exist statesσ1, . . . , σn ∈Σ

155

andσ′′1 , . . . σ
′′
n−1 ∈ dom(R) andσ = σ1, σ′ = σn such that for alli, 1 ≤ i ≤ n − 1

impliesσi, σi+1 ∈ {σ̂[z ↦ σ̂(e)] ∣ σ̂ ∈ [σ′′i]R}.

Now let(E, I,O) ∈Φ be an information configuration and lete be an expres-

sion and letz ∈ TVar. Furthermore, letR = e ∶ id ⊔ RE ⊔ I, whereRE is the

PER defined such that∀σ,σ′ ∈ Σ, σ RE σ′ iff σ,σ′ ∈ dom
⎛

⎝
⊔

y∈FV (e)

E(y)
⎞

⎠
and let

Z̄ = TVar/{z}. Define the information released toz by the assignmentz ∶= e

under the pre-configuration(E, I,O) to be

aflow(z ∶= e, (E, I,O)) ≜ ↑Z̄

z∶=e
↝

R .

The intention behind PER transposition is to transfer the relational structure (in-

formation content) ofR to another PER

z∶=e
↝

R , which updates state in lockstep with

the semantic effect of the assignmentz ∶= e. The information flow toz due to the

assignmentz ∶= e is then computed as the information released by the evaluation

of e in the context(E, I,O), and the state change is reflected by the PER transpo-

sition. In the definition ofaflow(z ∶= e, (E, I,O)), only the value ofz is retained

out of all theTVar variables and the values of otherTVar variables are “for-

gotten” (that is,↑Z̄

z∶=e
↝

R , whereZ̄ = TVar/{z}). Thus, in the resulting information

configuration of the assignment rule, whereE′ = E[z ↦ aflow(z ∶= e, (E, I,O))],

E′(z) keeps track only of the value ofz and its dependency on the program’s for-

mal parametersIVar. Let us show that the transposition of a PER is also a PER.

Lemma 5.5.3.LetR ∈ PER(Σ) be a PER, then the transposition

z∶=e
↝

R ofR is also

a PER.

Proof. The symmetry of

z∶=e
↝

R is clear. For transitivity, supposeσ

z∶=e
↝

R σ′ andσ′
z∶=e
↝

R σ′′

156

hold, then there exist two sequences of statesσ1, . . . , σn ∈ Σ andσ′1, . . . , σ
′
m ∈ Σ

such that for alli = 1, . . . , n − 1 andj = 1, . . . ,m − 1 there existσA
i , σ

B
j ∈ dom(R)

andσi, σi+1 ∈ {σ′′[z ↦ σ′′(e)] ∣ σ′′ ∈ [σA
i]R} andσ′j , σ

′
j+1 ∈ {σ′′[z ↦ σ′′(e)] ∣ σ′′ ∈

[σB
j]R} andσ = σ1 andσ′ = σn = σ′1 andσ′′ = σ′m. Thus, transitivity of

z∶=e
↝

R is clear

by concatenating the two sequences of states.

A Notation. To aid presentation, we shall often represent a PER

by its set of equivalence classes. For example,R ≡ [Σ]R means that

[Σ]R is the set of equivalence classes ofR. Recall from section 3.5.3

that this partitioning is defined as[Σ]R = {[σ]R ∣ σ ∈ dom(R)}

for any R ∈ PER(Σ). This notation is reasonable because a PER

is completely determined by its set of equivalence classes. For

example, supposeσ2 ≠ σ1 ≠ σ3 ≠ σ2, the PERR defined as

∀σ,σ′ ∈ Σ, σ R σ′ ⇐⇒ σ = σ′ = σ1 or σ,σ′ ∈ {σ2, σ3} is written as

R ≡ {{σ1},{σ2, σ3}}. The states themselves will be represented by

tuples of values.

Sample Analysis

To illustrate the information flow rules presented so far, consider the analysis of

the program shown in Figure 5.14. SupposeIVar = {h1, h2} andTVar = {l},

such thatJτh1
K = Jτh2

K = {0,1} andJτlK = {0,1,2} (whereτx is the data type of

variablex). For brevity, the states are represented by tuples fromJτh1
K×Jτh2

K×JτlK

so that(1,0,1) represents the stateσ ∈ Σ whereσ(h1) = σ(l) = 1 andσ(h2) = 0.

157

Assume thath1 and h2 contain secret values and thatl is public, but we want to

find out what information is gained about the secret inputs.

We choose a starting configuration, which contains no prior information, and

which makes no assumption about the starting state to be(E, I,O), such that∀x ∈

{h1, h2, l},E(x) = I = O = all ≡ {{(i, j, k) ∣ i, j ∈ {0,1}, k ∈ {0,1,2}}}. Thus, the

attacker (O) has no initial knowledge about the inputsh1 andh2 sinceO relates

all states. Applying the assignment rule at line 1, we arrive at the configuration

(E1, I,O), whereE1 = E[l ↦ R1] andR1 ≡ {{(0,0,0)},{(0,1,1), (1,0,1)},{(1,1,2)}}.

The partitioning ofR1 reflects the fact that, after this assignment, observing the

value ofl as0 reveals thath1 = h2 = 0, a value 1 reveals that eitherh1 = 0, h2 = 1

or h1 = 1, h2 = 0, and a value2 reveals thath1 = h2 = 1.

1 l ∶= h1 + h2;
2 i f (l = 1) then
3 l ∶= l + h1;
4 wr i te l;
5 e l s e
6 s k i p ;

Figure 5.14: Il lustratingassignment, conditional, andwrite analysis.

In the thenbranch of theif statement, the implicit context is given byI1 =

flow((l = 1)∶T, (E1, I,O)) = ↑{l}R2 ≡ {{(0,1, k), (1,0, k) ∣ k ∈ JτlK}}. The PER

R2 = ((l = 1) ∶T) ⊔ I ⊔ R′2 ≡ {{(0,1,1), (1,0,1)}}, whereσ R′2 σ
′ iff σ,σ′ ∈

dom(E1(l)), relates only the set of states wherel = 1. Consequently, the pre-

configuration for thethenbranch is(E1, I1,O). Applying the assignment rule

again on line 3 under the information configuration(E1, I1,O), we obtain(E2, I1,O),

where the PER encoded againstl is now given byE2(l) ≡ {{(0,1,1)},{(1,0,2)}}.

This means that by observing the value ofl at this point we can determine the value

158

of bothh1 andh2, wherel = 1 Ô⇒ h1 = 0, h2 = 1 andl = 2 Ô⇒ h1 = 1, h2 = 0.

This information is released by the followingwrite statement because by starting

with the pre-configuration(E2, I1,O) and applying thewrite rule on line 4 we ob-

tain the post-configuration(E2, I1,O1), whereO1 = OFflow(l ∶ id, (E2, I1,O)) ≡

{{(0,1, k)∣k ∈ JτlK}, {(1,0, k)∣k ∈ JτlK}, {(0,0, k), (1,1, k)∣k ∈ JτlK}}. The equiv-

alence classes{(0,1, k)∣k ∈ JτlK} and{(1,0, k)∣k ∈ JτlK} ofO1 retain the informa-

tion encoded inl abouth1 andh2, namely that states with different input values of

h1 andh2 can be distinguished. The equivalence class{(0,0, k), (1,1, k)∣k ∈ JτlK}

ofO1 comes fromO due to the domain-preserving property ofF and it reflects the

information released about secrets (thath1 = h2) in theelsebranch of the condi-

tional if statement if no output is produced in that branch (which is the case in this

example).

Since theelsebranch is askip statement, the post-configuration of this branch

remains unchanged, but the assignment tol in the then branch means that the

l part of theE-component of the postcondition of theelsebranch must be up-

dated (due to the fact thatE1(l) ≠ E2(l)). This yieldsE3 = E1[l ↦ E1(l) ⊔ I2],

whereI2 = flow((l = 1) ∶ F, (E1, I,O)) ≡ {{(0,0, k), (1,1, k) ∣ k ∈ JτlK}} and

henceE3(l) ≡ {{(0,0,0)},{(1,1,2)}}. Thus, the post-configuration of the con-

ditional if statement is(E2, I,O1) F (E3, I,O) = (E4, I,O1), whereE4(l) ≡

{{(0,0,0)},{(0,1,1)},{(1,0,2)},{(1,1,2)}} represents the various possible val-

ues thatl might take based on the choice of the inputsh1 andh2, and hence its

dependency on the inputs.

Note that, on one hand, the semantic set of the pre-configuration(E, I,O)

of the analysis of this program defines the set of possible starting states of the

programdom((E, I,O)) = Σ, which is the set of all states. On the other hand,

159

the semantic set of the post-configuration is the set of terminating states of the

program, namely,dom((E4, I,O1)) = {(0,0,0), (0,1,1), (1,0,2), (1,1,2)}. We

shall prove a semantic correctness property of the analysis in Theorem 5.7.10,

which states that the semantic set of the post-configuration contains the set of

states under which the program terminates when the program is executed from a

starting state chosen from the semantic set of the pre-configuration. Formally, this

means that for a given programP and the relevant information configurationsϕ

andϕ′ used in its analysis,ϕP ϕ′ Ô⇒ {σ′ ∣σ ∈ dom(ϕ), ⟨P,σ⟩⇓ σ′} ⊆ dom(ϕ′).

5.5.4 Analysis ofwhile Statements

Thewhile rule computes the limit of the monotonically increasing chain2n≥0ϕi

over the lattice⟨Φ,⊑+,F⟩, induced by the iterative application of the command

if(b)then c else skip. This computes the information released during each

iteration of thewhile statementwhile (b) do c, which begins from the pre-

configurationϕ = ϕ0 of the while statement. Being a monotonically increasing

chain on a complete lattice, the fixpoint2n≥0ϕi exists [Tar55].

The definition of the post-configuration(E′, I ′,O′) of thewhile analysis en-

sures that only the set of states under which thewhile loop terminates can be used

in the analysis of the subsequent statements after the loop. Thus,E′ andI ′ are

defined to select only the states where the boolean guard evaluates toff . Since

the attacker model can determine whether the program terminates or not, the def-

inition of O′ partitions states, throughb ∶ id, to those in which thewhile loop

terminates or diverges.

To illustrate thewhileanalysis rule, consider the program listing in Figure 5.15,

160

where the attacker performs a linear search on the value of the secreth. In this

example,IVar = {h} andTVar = {l}. Let us assume thath andl are of integer

typeτh andτl respectively, whereJτhK = JτlK = V = {i ∈ Z ∣ − n ≤ i < n} is the set

of integers between−n (inclusive) andn (exclusive), and wheren ∈ N is a natural

number. Ifh is chosen to be a natural number inV, thewhile loop will terminate

with the value ofl equal to the secret value ofh (and will be printed to the output).

However, nontermination reveals thath is a negative integer inV. Let us see how

this is derived by the analysis.

The Figure 5.16 annotates the program of Figure 5.15 with information config-

urations at selected milestones to illustrate the analysis. The pre-configurations of

the analysis is assumed to be(E, I,O), whereE(h) = E(l) = I = O = all, andall

is the PER which relates all program states. The stateσ ∈ Σ is represented in Ta-

ble 5.1 as a pair(σ(h), σ(l)) ∈ JτhK×JτlK. In the table,V+ ≜ {i ∈ Z ∣0 ≤ i < n} ⊆ V

is the natural subset ofV, andV− ≜ V/V+ is the set of negative values that the

secret can take. The information configuration(E0, I0,O0) = (E[l ↦ R], I,O)

after the assignmentl ∶= 0 is the starting configuration for the analysis of thewhile

statement andR ≡ {{(j,0) ∣ j ∈ V}}. Theith iteration of thewhile analysis starts

at the pre-configurationϕi = (Ei, Ii,Oi), andϕi+1 = (Ei+1, Ii+1,Oi+1) is com-

puted asϕi (if(h ≠ l)then l ∶= (l + 1) mod n else skip) ϕi+1. Since there is

no write statement in thewhile body, we haveOi = O for all i. Similarly, since

thewhile body (l ∶= (l + 1) mod n) itself terminates, we haveIi = I for all i. The

post-configuration of thewhile statement isϕ′, and it is the pre-configuration of

thewrite statement.

As Table 5.1 shows, at thenth iteration (and afterwards), the set of initial

values for which the program terminates is identified. This set is modelled by

161

l ∶= 0;
whi le (h ≠ l) do

l ∶= (l + 1)mod n;
wr i te l;

Figure 5.15: Linear search using awhile loop

l ∶= 0;
ϕ0 = (E0, I0,O0)

ϕi = (Ei, Ii,Oi)
whi le (h ≠ l) do

l ∶= (l + 1)mod n;
ϕi+1

ϕ′

wr i te l;

Figure 5.16: Analysis of thewhile loop

Analysis
iteration (i) Ei(l)

0 {{(j,0) ∣ j ∈ V}}
1 {{(0,0)}, {(j,1) ∣ j ∈ V/{0}}}
2 {{(k, k)}, {(j,2) ∣ j ∈ V/{0,1}} ∣ k ∈ {0,1}}
⋮ ⋮
m {{(k, k)}, {(j,m) ∣ j ∈ V/{0,1, . . . ,m − 1}} ∣ k ∈ {0,1, . . . ,m − 1}}
⋮ ⋮
n {{(k, k)}, {(j,0) ∣ j ∈ V−} ∣ k ∈ V+}

n + 1 {{(k, k)}, {(j,1) ∣ j ∈ V−} ∣ k ∈ V+}
⋮ ⋮

Table 5.1: Analysis of awhile statement

the{{(k, k)} ∣ k ∈ V+} equivalence classes ofEn(l). Further iterations after this

point is benign because no new state can be produced that has not been previously

encountered during the iterative analysis. Thus,dom(En(l)) = dom(En+m(l)) for

anym ∈ N.

The post-configuration of thewhile analysis is given byϕ′ = (E′′, I ′′,O′′),

162

whereE′′(l) ≡ {{(k, k)} ∣ k ∈ V+} andE′′(h) ≡ {{(k,m) ∣m ∈ V} ∣ k ∈ V+}

andI ′′ ≡ {{(k,m) ∣ k ∈ V+,m ∈ V}}′ andO′′ ≡ {{(k,m) ∣m ∈ V},{(j,m) ∣ j ∈

V−,m ∈ V}∣k ∈ V+}. The meaning ofI ′′ is that it encodes the set of starting states

for which thewhile statement terminates and it sets the context for the analysis

of the subsequent commands. TheO′′ can distinguish between terminating and

nonterminating starting states of the program, and can additionally distinguish

different terminating traces due to the computation offlow((h ≠ l) ∶ id, ϕi) at each

stage. Notice also thatdom(ϕ′) = {(k, k) ∣k ∈ V+}, which is the set of terminating

states of thewhile loop.

Finally, by applying thewrite rule to thewrite l statement, using the pre-

configurationϕ′, we obtain the post-configuration(E′′, I ′′,O′) whereO′ = O′′ F

flow(l ∶ id, ϕ′) ≡ {{(k,m) ∣m ∈ V},{(j,m) ∣ j ∈ V−,m ∈ V} ∣ k ∈ V+}. Thus,O′

reveals the knowledge ofhwhenever it is positive and also distinguishes states un-

der which the program terminates from those under which it diverges. However,

the attacker cannot distinguish between two states that leads to program diver-

gence. More precisely,O′ is the PER∀σ,σ′ ∈ Σ, σ O′ σ′ iff σ(h) = σ′(h) ∈ V+

or σ(h), σ′(h) ∈ V−. This agrees with the intuition about the information released

by this program.

Note that after thewhile statement, the attacker has already gained the in-

formationO′ due to the computation offlow((h ≠ l) ∶ id, ϕi) at each stage. An

alternative definition of thewhile rule, which does not suffer from this overap-

163

proximation, but which only works when the set of statesis finite is given by

ϕ0 = ϕ (En, In,On) = ϕn ϕn if(b)then c else skip ϕn+1

F (ϕ0) ≜ ϕ0 F ϕ1 F (ϕn+1) ≜ F (ϕn) F ϕn+2 F (ϕk) = lfp(F) I ′ = flow(b ∶ F, ϕk)
∀x ∈Var,E′k = Ek[x ↦ Ek(x) ⊔ I ′] I ′k = Ik ⊔ I

′ O′k = Ok F flow(b ∶ id, ϕk)
ϕ while (b) do c (E′k, I

′
k,O

′
k)

This definition requires the existence of ak ∈ N, after which further iteration of the

whilestatement cannot produce any new state. This point is reached at the fixpoint

lfp(F) = 2i≥0ϕi = F (ϕk). The post-configuration of thewhile statement is then

computed at this point, where the set of states is partitioned byb ∶ id at thekth

step only. When applied to the example above, this produces a better result for the

while analysis, whereO′′ ≡ {{(k,m) ∣ k ∈ V+,m ∈ V},{(k,m) ∣ k ∈ V−,m ∈ V}}.

This means that after thewhile loop, the attacker can only distinguish initial states

that lead to termination from those under which the loop diverges, but cannot

distinguish one state which leads to termination from another one under which

the loop also terminates. Using this definition, the attacker’s knowledge after the

write statement is the same asO′ derived above.

It should be noted that whenwhile statements are used in a program, whose

set of states is infinite, the static analysis of Figure 5.12 is not computable in the

general case. While the definition of information flow analysis of Figure 5.12

sheds insight into how the analysis of thewhile rule might be performed in this

case, abstract interpretation techniques are necessary. The application of abstract

interpretation to make information flow analysis more tractable is presented in

Chapter 6.

164

5.6 Static Information Flow Property

We introduced the notion of thesemantic information flow propertyof a While

program in section 4.3 of Chapter 4 as a semantic definition, which describes how

an attacker’s knowledge is transformed by observing program executions. We now

relate this semantic definition to the static analysis of information flow presented

in this chapter, showing that the static analysis is sound.

The semantic information flow property of aWhileprogramP is derived from

the equivalence relation⌊TP ⌋, which relates only pairs of input states under which

the semantic attacker makes exactly the same observation whenP is executed.

This information flow property on the latticeI = PER(Σ) of PERs over the states

of P is given byJP KI = {f ∣∀R ∈ PER(Σ), f(R)⊔ ⌊TP ⌋}, wheref describes how

the attacker’s knowledge is transformed by observing the programP . We now

show that the static analysis of information flow presented in this chapter derives

at least the information⌊TP ⌋. Specifically, when the information configuration

(E�, I�,O�) (see Definition 5.6.1) is chosen as the pre-configuration ofP , and

(E�, I�,O�)P (E, I,O) holds, then we have also that⌊TP ⌋ ⊑ O. The definition of

thestatic information flow property, JP KIstatic, ofP as derived by the static analysis

is the following.

Definition 5.6.1 (Static Information Flow Property). Let P be aWhile program

and letΣ and Var be the set of all states and the set of all variables ofP re-

spectively. Define the information configuration(E�, I�,O�) ∈Φ such that for all

x ∈ Var,E�(x) = I� = O� = all ∈ PER(Σ). Thestatic information flow property

of P is defined asJP KIstatic ≜ {f ∣ (E�, I�,O�) P (E, I,O),∀R ∈ PER(Σ), f(R) =

R ⊔O}.

165

The information configuration(E�, I�,O�) enjoys a special status because it

makes no assumption about the starting state ofP sincedom((E�, I�,O�)) = Σ.

Furthermore, the attacker has no prior knowledge about any input toP (O� = all)

and the initial implicit contextI� = all places no constraint on input. Similarly, no

constraint is placed on the initial value of variables:∀x ∈Var,E�(x) = all.

TheO-component of the post-configuration of the static analysis specifies the

information that the attacker might gain from the execution ofP . The correct-

ness requirement is therefore that⌊TP ⌋ ⊑ O, which means that the information

derived by the analysis is at least as much as that gained by the semantic attacker

introduced in Chapter 4. The correctness of the static analysis is shown next.

5.7 Correctness of Static Analysis

This section shows the correctness of the static analysis. For the information flow,

it shows that the static information flow property derived by the analysis is at

least as much information as the semantic information flow property gained by

the semantic attacker. Furthermore, with respect to the program semantics, it also

shows that the analysis models the transformation of states by the program. We

define first, a set ofinitial configurationsΦinit ⊆ Φ, elements of which may serve

as the pre-configuration of any subprogram during analysis.

Definition 5.7.1. Define the setΦinit ⊆ Φ to be the set of all starting config-

urations, whereΦinit ≜ {(E, I,O) ∈ Φ ∣ ∀z ∈ TVar, Z̄ = TVar/{z}.∀y ∈

IVar.E(z) = ↑Z̄E(z),E(y) = ↑TVarE(y), I = ↑TVarI,O = ↑TVarO}.

It is clear from this definition that(E�, I�,O�) ∈ Φinit . A consequence of

Definition 5.2.1, where all variables are properly-initialised before use, is that

166

it confers a property on the PERs constructed during the analysis such that the

partitioning of inputs by the PERs, and thus their information content about inputs,

is preserved by the operation↑Z(⋅), whereZ ⊆ TVar (see (2) of lemma 5.7.3). We

identify the properties of such PERs (Rinit) in Definition 5.7.2 and lemma 5.7.3

highlights some of the consequences.

Definition 5.7.2. DefineRinit ≜ {R ∈ PER(Σ) ∣X ⊆ TVar.Y = TVar/X,∀σ,σ′ ∈

dom(R),havocY ([σ]R) = [σ]R, σ↓IVar = σ′↓IVar
Ô⇒ σ↓X = σ′↓X}.

Lemma 5.7.3.LetZ ⊆ TVar, and lete be an expression such thatFV (e) ⊆Var,

and letR,R′ ∈Rinit ⊆ PER(Σ).

1. For all σ ∈ dom(R), havocZ([σ]R) = [σ]↑ZR.

2. For all σ,σ′ ∈ dom(R), σ ↑ZR σ′ Ô⇒ σ R σ′.

3. R ⊔R′ ∈Rinit .

4. LetX ⊆ TVar and Y = TVar/X such that∀σ,σ′ ∈ dom(R), σ↓IVar =

σ′↓IVar
Ô⇒ σ↓X = σ′↓X and havocY ([σ]R) = [σ]R. Furthermore, suppose

FV (e)∩TVar ⊆ X. Then for any PERφ over the values ofe, we have that

e ∶ φ ⊔R ∈Rinit .

Proof. See Appendix A.

Lemma 5.7.4. Let (E, I,O) ∈ Φinit, and suppose the programwhile (b) do c

does not assign toIVar variables, where all variables are properly-initialised be-

fore use. Then there exists a unique(E′, I ′,O′), so that(E, I,O) while (b) do c (E′, I ′,O′)

holds and(E′, I ′,O′) ∈Φinit .

167

Proof. The derivations in the flow rules are syntax-directed. However, it is not

immediately clear that we have the desired property for thewhile rule. In particu-

lar, we first note that the limit2i≥0ϕi exists, since⟨Φ,⊑+,F⟩ is a complete lattice.

It now remains to show that theE-component of thewhilepost-configuration is a

map from variables to PERs, which have the desired properties.

Firstly, suppose(Ej , Ij ,Oj)if(b)then c else skip(Ej+1, Ij+1,Oj+1) holds,

for some(Ej , Ij ,Oj) = ϕj ∈ Φinit during the iterative analysis of the statement

while (b) do c. Now take anyx ∈ Var. We want to show that the property

(Ej+1(x) ⊔ I ′′j+1 ⊔ b ∶ F) ⊑ (Ej(x) ⊔ I ′′j ⊔ b ∶ F) holds, whereI ′′j = flow(b ∶ F, ϕj)

andI ′′j+1 = flow(b ∶ F, (Ej+1, Ij+1,Oj+1)). Furthermore, letI ′j = flow(b ∶ T, ϕj) so

that the analysis ofc is given by(Ej , I
′
j ,Oj) c (E′j+1, I

′
j+1,O

′
j+1) according to the

if rule. The post-configuration of theelsebranch is therefore(Ej , I
′′
j ,Oj), being

a skipstatement.

We first observe, from Definition 5.5.1, thatσ1 Ij+1 σ2 iff σ1, σ2 ∈ dom(I ′′j) ∪

dom(I ′j+1), and hence we have thatIj+1 ⊑ I ′′j . Now, since variables are properly-

initialised before use, and theIVar projection of states are not modified thenI ′j

andI ′′j are disjoint PERs. To see why, letY = FV (b) and defineREj
such that

σ REj
σ′ iff σ,σ′ ∈ dom(⊔y∈Y Ej(y)). Since variables are properly-initialised

before use, and theIVar projection of states is not modified, we have that for

any y ∈ Y andi, and for allσ,σ′ ∈ dom(Ei(y)), σ↓IVar = σ′↓IVar
Ô⇒ σ(y) =

σ′(y) (this is shown in Lemma 5.7.5). Hence, for allσ,σ′ ∈ dom(REj
), σ↓IVar =

σ′↓IVar
Ô⇒ σ↓Y = σ′↓Y Ô⇒ σ(b) = σ′(b). Hence, by the contrapositive,σ(b) ≠

σ′(b) Ô⇒ σ↓IVar ≠ σ′↓IVar
. This means that the PERs,RA = b ∶ T ⊔ Ij ⊔ REj

andRB = b ∶ F ⊔ Ij ⊔ REj
are disjoint sinceRA restricts the domain ofREj

to

those whereb is true, whereasRB restricts the domain ofREj
to those where

168

b is false. HenceI ′j = ↑TVarRA and I ′′j = ↑TVarRB are disjoint PERs, since the

operation↑TVar(⋅) does not modify theIVar projection of states. Now according

to Definition 5.5.1, for the merging of the post-configuration of the conditionalif

statement, we have that for anyz ∈ Var, Ej+1(z) = Ej(z) F Ej(z) = Ej(z) if

Ej(z) = E′j+1(z), orEj+1(z) = (Ej(z)⊔ I ′′j)FE
′
j+1(z) if Ej(z) ≠ E′j+1(z). In the

latter case, we further note that sinceE′j+1(z) has been modified within the branch

c, which is predicated on the implicit contextI ′j , thendom(E′j+1(z)) ⊆ dom(I ′j)

and hence(Ej(z) ⊔ I ′′j) andE′j+1(z) are disjoint PERs, sinceI ′j ⊔ I
′′
j = ∅. Hence,

in this case,Ej+1(z) is simply the disjoint union of PERs: namely that,Ej+1(z) =

(Ej(z) ⊔ I ′′j) ∪E
′
j+1(z) by the definition ofF. Thus, in both cases, we have that

Ej+1(z) ⊑ Ej(z) ⊔ I ′′j .

Now for the proof of(Ej+1(x) ⊔ I ′′j+1 ⊔ b ∶ F) ⊑ (Ej(x) ⊔ I ′′j ⊔ b ∶ F), there are

two cases to consider according to Definition 5.5.1, which depends on whether

E′j+1(x) is different fromEj(x) or not.

• Case 1: SupposeEj(x) = E′j+1(x). In this case we have, according to

Definition 5.5.1 thatEj+1(x) = Ej(x)FEj(x) = Ej(x). It thus remains only

to show thatI ′′j+1 ⊑ I
′′
j in the case. Now defineREj+1

such thatσ REj+1
σ′

iff σ,σ′ ∈ dom(⊔y∈FV (b)Ej+1(y)) and letRC = b ∶ F ⊔ Ij+1 ⊔REj+1
. Hence,

I ′′j = ↑TVarRC . Since for allz ∈ Var, Ej+1(z) ⊑ Ej(z) ⊔ I ′′j , then it follows

thatREj+1
⊑ REj

⊔I ′′j . Now, sinceI ′′j = ↑TVarRB, thenI ′′j ⊑ RB by definition,

which means also thatIj+1 ⊑ RB sinceIj+1 ⊑ I ′′j . Therefore,REj+1
⊔ b ∶ F ⊑

REj
⊔ I ′′j ⊔ b ∶ F ⊑ REj

⊔RB ⊔ b ∶ F = RB, and henceREj+1
⊔ Ij+1 ⊔ b ∶ F =

RC ⊑ RB. SinceRC ⊑ RB, then by applying (8) of lemma 5.4.8, we have

↑TVarRC ⊑ ↑TVarRB, that is,I ′′j+1 ⊑ I
′′
j . This shows the first case.

169

• Case 2: SupposeEj(x) ≠ E′j+1(x). Then, as shown above,Ej+1(x) is

the disjoint unionEj+1(x) = (Ej(x) ⊔ I ′′j) ∪ E
′
j+1(x), henceEj+1(x) ⊑

Ej(x) ⊔ I ′′j . Therefore,Ej+1 ⊔ I ′′j+1 ⊔ b ∶ F ⊑ (Ej(x) ⊔ I ′′j) ⊔ I
′′
j+1 ⊔ b ∶ F =

Ej(x) ⊔ I ′′j ⊔ b ∶ F, sinceI ′′j+1 ⊑ I
′′
j . This shows the desired property.

Now defineX̄ = TVar/{x}. Since we have that(Ej+1(x) ⊔ I ′′j+1 ⊔ b ∶ F) ⊑

(Ej(x) ⊔ I ′′j ⊔ b ∶ F), then by applying (8) of lemma 5.4.8 we obtain the fact that

↑X̄(Ej+1(x) ⊔ I ′′j+1 ⊔ b ∶ F) ⊑ ↑X̄(Ej(x) ⊔ I ′′j ⊔ b ∶ F). Hence, for thewhile rule,

we have that for anyj, k ∈ N such thatj ≤ k, then ↑X̄(Ek(x) ⊔ I ′′k ⊔ b ∶ F) ⊑

↑X̄(Ej(x) ⊔ I ′′j ⊔ b ∶ F) by the transitivity of⊑. Thus, for anyx ∈ Var, such that

σ E′(x) σ′ andσ′ E′(x) σ′′ hold, we know that there existj, k ∈ N, such that

σ ↑X̄(Ej(x) ⊔ I ′′j ⊔ b ∶ F) σ′ andσ′ ↑X̄(Ek(x) ⊔ I ′′k ⊔ b ∶ F) σ
′′. If j ≤ k, then we

know from above thatσ↑X̄(Ej(x) ⊔ I ′′j ⊔ b ∶ F)σ′ Ô⇒ σ↑X̄(Ek(x) ⊔ I ′′k ⊔ b ∶ F)σ
′,

and thereforeσ ↑X̄(Ek(x) ⊔ I ′′k ⊔ b ∶ F) σ
′′ holds also. That is,σ E′(x) σ′′ holds.

Since↑X̄(Ek(x) ⊔ I ′′k ⊔ b ∶ F) is a PER, then so also isE′(x). Furthermore, since

X̄ = IVar/{x}, it is easy to see that the post-configuration(E′, I ′,O′) ∈ Φinit.

Because of the property that all variables in a programP are properly-initialised

before use inP , and the fact that theIVar projection of states are not modified

byP , on termination, the value of a variable that is properly-initialised during the

execution ofP is determined only by the value of the inputs toP .

Lemma 5.7.5. Suppose(E1, I1,O1) ∈ Φinit is an information configuration of

the While programP , which does not useIVar variables on the left-hand-side

of assignment and where all variables are properly-initialised before use. If

(E1, I1,O1) P (E2, I2,O2) holds, then for any variablex ∈ Var, which has

170

been properly-initialised inP we have thatE2(x) ∈ Rinit , and for all σ,σ′ ∈

dom(E2(x)), σ↓IVar = σ′↓IVar
Ô⇒ σ(x) = σ′(x).

Proof. The proof proceeds by induction on the derivation tree of(E1, I1,O1)P (E2, I2,O2)

according to the information flow rules. TheE-component of information config-

urations are modified only during assignments, and in the analysis of conditional

if andwhilestatements.

We shall first show that the desired property holds after assignment statements.

Let (E, I,O)x ∶= e (E′, I ′,O′) be the analysis of the assignmentx ∶= e in P . Fur-

thermore, letX = {x} and letX = TVar/X. ThenE′ = E[x↦ aflow(x ∶= e, (E, I,O))],

whereaflow(x ∶= e, (E, I,O)) = ↑X

x∶=e
↝

R , and R = e ∶ id ⊔ I ⊔ RE, and∀σ,σ′ ∈

Σ, σREσ′ ⇐⇒ σ,σ′ ∈ dom(⊔z∈FV (e)E(z)). Now letZ = FV (e)∩TVar. Since

TVar variables are properly-initialised before use, then we have by the induction

hypothesis that for anyz ∈ Z,E(z) ∈Rinit and for allσ,σ′ ∈ dom(E(z)), σ↓IVar =

σ′↓IVar
Ô⇒ σ(z) = σ′(z). Thus, for allσ,σ′ ∈ dom(RE), σ↓IVar = σ′↓IVar

Ô⇒

σ↓Z = σ′↓Z, and therefore for anyσ,σ′ ∈ dom(R), σ↓IVar = σ′↓IVar
Ô⇒ σ↓Z = σ′↓Z

sincedom(R) ⊆ dom(RE).

Now by definitiondom(
x∶=e
↝

R) = {σ[x ↦ σ(e)] ∣ σ ∈ dom(R)}, therefore for all

σ,σ′ ∈ dom(
x∶=e
↝

R), σ↓IVar = σ′↓IVar
Ô⇒ σ(x) = σ′(x) because all states in the

domain ofR, which agree on theIVar projection also agree on theZ projection,

and hence on the evaluation ofe - sinceFV (e) ⊆ IVar∪Z. Now letR′ =
x∶=e
↝

R . We

know by (4) of lemma 5.4.8, for allσ ∈ dom(↑XR′),havocX([σ]↑
X
R′) = [σ]↑

X
R′.

Sincex ∉ X and IVar ∩ X = ∅, thenhavocX(dom(
x∶=e
↝

R)) = dom(↑X

x∶=e
↝

R) does

not modify theIVar or x projections of states indom(
x∶=e
↝

R), it is thus clear that

↑X

x∶=e
↝

R ∈ Rinit . Hence,E′(x) = ↑X

x∶=e
↝

R ∈Rinit and for allσ,σ′ ∈ dom(E′(x)), σ↓IVar =

171

σ′↓IVar
Ô⇒ σ(x) = σ′(x).

During the analysis ofif (b) then c1 else c2, starting from the pre-configuration

(E, I,O), the post-configuration ofc1 is derived as(E, I ′,O) c1 (Ec1 , Ic1 ,Oc1),

whereI ′ = flow(b ∶ T, (E, I,O)). Similarly, the post-configuration ofc2 is ob-

tained as(E, I ′′,O) c2 (Ec2 , Ic2 ,Oc2), whereI ′′ = flow(b ∶ F, (E, I,O)). For any

variablex, bothEc1(x) andEc2(x) have the desired property by applying the in-

duction hypothesis toc1 andc2 respectively. Let(E′, I ′,O′) = (Ec1 , Ic1,Oc1)⊎(E,I,O)

(Ec2 , Ic2 ,Oc2) be the post-configuration of theif statement. Now suppose thatx

is assigned inc1, thendom(Ec1(x)) ⊆ dom(I ′) sincex is assigned inc1, which is

in the scope of an implicit context, whose domain is smaller than the domain of

I ′. Similarly, if x is assigned withinc2, thendom(Ec2(x)) ⊆ dom(I ′′). Now since

variables are properly-initialised before use, then for ally ∈ FV (b),E(y) ∈ Rinit ,

and for allσ,σ′ ∈ dom(E(y)), σ↓IVar = σ′↓IVar
Ô⇒ σ(y) = σ′(y) sinceIVar

variables are not assigned to and the value of variables inTVar ∩ FV (b), being

properly-initialised, are functions ofIVar projection of states. If we now define

RE such thatσRE σ′ iff σ,σ′ ∈ dom(⊔y∈FV (b)E(y)), whereY = FV (b)∩TVar,

then for allσ,σ′ ∈ dom(RE), σ↓IVar = σ′↓IVar
Ô⇒ σ↓Y = σ′↓Y Ô⇒ σ(b) = σ′(b),

which by the contrapositive means thatσ(b) ≠ σ′(b) Ô⇒ σ↓IVar ≠ σ′↓IVar
.

Hence,I ′ = flow(b ∶ T, (E, I,O)) and I ′′ = flow(b ∶ F, (E, I,O)) are disjoint

PERs, sinceσ ∈ dom(b ∶ T ⊔ I ⊔ RE) and σ′ ∈ dom(b ∶ F ⊔ I ⊔ RE) im-

pliesσ(b) ≠ σ′(b), which in turn means thatσ↓IVar ≠ σ′↓IVar
. Sincedom(I ′) =

havocIVar(dom(b ∶ T ⊔ I ⊔RE)) anddom(I ′′) = havocIVar(dom(b ∶ F ⊔ I ⊔RE)),

both of which do not modifyIVar variables,I ′ ⊔ I ′′ = ∅. Hence,Ec1(x) and

Ec2(x) are disjoint PERs, and thereforeE′(x) = Ec1(x) FEc2(x) has the desired

property.

172

Now suppose thatx is assigned in only one branch, sayc1 (the other case for

c2 is symmetrical). Then, again,dom(Ec1(x)) ⊆ dom(I ′). There are two cases

to consider according to Definition 5.5.1. EitherEc1(x) = E(x), in which case

E′(x) = E(x) = Ec1(x), and thereforeE′(x) has the desired property by the

induction hypothesis onc1. In the second case,Ec1(x) ≠ E(x), in which case

E′(x) = Ec1(x) F (E(x) ⊔ I ′′) and sincex must be properly-initialised, it must

be initialised before control is passed to theelsebranch, and henceE(x) has the

desired property, which means thatE′(x) has the desired property sinceEc1(x)

andE(x) ⊔ I ′′ are disjoint PERs.

In the iterative analysis of the commandwhile (b)do c, theE-component of

the post-configuration is computed from a sequence(E′0, I
′
0,O

′
0), (E

′
1, I

′
1,O

′
1),⋯,

where for all i ≥ 0, (E′i, I
′
i ,O

′
i) if(b)then c else skip (E

′
i+1, I

′
i+1,O

′
i+1),

and hence by induction onif(b)then c else skip, E′i(x) has the desired

property for alli. TheE-component of the post-configuration of thewhile state-

ment is computed such that̄X = TVar/{x},∀σ,σ′ ∈ Σ, σ E′(x) σ′ ⇐⇒ ∃j ∈

N, σ↑X̄(E′j(x) ⊔ I
′′
j ⊔ b ∶ F)σ′, where for anyk ∈ N, I ′′k = flow(b ∶ F, (E′k , I

′
k,O

′
k)).

However, for anyj ∈ N,E′j(x) ∈Rinit and∀σ,σ′ ∈ dom(E′j(x)), σ↓IVar = σ′↓IVar
Ô⇒

σ(x) = σ′(x) by the induction hypothesis, it is thus clear that this property is

preserved in↑X̄(E′j(x) ⊔ I
′′
j ⊔ b ∶ F) since↑X̄(⋅) does not modify theIVar ∪ {x}

projection of states. Furthermore,↑X̄(E′j(x) ⊔ I
′′
j ⊔ b ∶ F) ∈ Rinit by definition.

We have already shown in lemma 5.7.4 that for allj, k ∈ N, such thatj ≤ k, then

↑X̄(E′k(x) ⊔ I
′′
k ⊔ b ∶ F) ⊑ ↑X̄(E

′
j(x) ⊔ I

′′
j ⊔ b ∶ F). Thus, for anyσ,σ′ ∈ dom(E′(x)),

there existj, k ∈ N, such thatk ≥ j andσ ∈ dom(↑X̄(E′j(x) ⊔ I
′′
j ⊔ b ∶ F)) andσ′ ∈

↑X̄(E′k(x) ⊔ I
′′
k ⊔ b ∶ F). Sincedom(↑X̄(E′j(x) ⊔ I

′′
j ⊔ b ∶ F)) ⊆ ↑X̄(E

′
k(x) ⊔ I

′′
k ⊔ b ∶ F)

and↑X̄(E′k(x) ⊔ I
′′
k
⊔ b ∶ F)) has the desired property, then we are done.

173

We now show that composing the analysis of sequential programscorrectly

approximates the information released by the sequenced program.

Proposition 5.7.6.LetP = P1;P2 be aWhile program. Define the PER⌊TP1●P2
⌋

to be∀σ,σ′ ∈ Σ, σ ⌊TP1●P2
⌋ σ′ iff σ ⌊TP1

⌋σ′ and if ⟨P1, σ⟩⇓ σ1 and ⟨P1, σ′⟩⇓ σ′1

thenσ1⌊TP2
⌋σ′1. Then we have⌊TP ⌋ ⊑ ⌊TP1●P2

⌋.

Proof. Take anyσ,σ′ ∈ Σ such thatσ ⌊TP1●P2
⌋σ′ holds. Then,σ ⌊TP1

⌋σ′ holds,

which by lemma 4.3.2 means that eitherP1 terminates under both statesσ andσ′

or that it diverges under both states, and that the attacker makes the same obser-

vation on the traces of the two states, that is,obs(t⟨P1,σ⟩) = obs(t⟨P1,σ′⟩).

In the first case, suppose thatP1 diverges under bothσ andσ′, then we have

obs(t⟨P1,σ⟩) = obs(t⟨P1,σ′⟩) = obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩) since the trailing subpro-

gramP2 of P cannot be executed due to the divergence ofP1, and henceσ ⌊TP ⌋σ′

holds.

Now supposeP1 terminates under bothσ andσ′, thenσ⌊TP1●P2
⌋σ′ implies that

σ ⌊TP1
⌋σ′ holds, and there existσ1, σ

′
1 ∈ Σ such that⟨P1, σ⟩⇓ σ1 and⟨P1, σ′⟩⇓ σ′1

andσ1⌊TP2
⌋σ′1 holds. Thus,obs(t⟨P1,σ⟩) = obs(t⟨P1,σ′⟩) andobs(t⟨P2,σ1⟩) = obs(t⟨P2,σ′

1
⟩),

and therefore,obs(t⟨P,σ⟩) = obs(t⟨P,σ′⟩), which means thatσ ⌊TP ⌋σ′ holds. Thus,

⌊TP ⌋ ⊑ ⌊TP1●P2
⌋.

Lemma 5.7.7. Let P = P1;P2 be aWhile program, which does not modify the

IVar-projection of states. Define the PER⌊TP1●P2
⌋ to be∀σ,σ′ ∈ Σ, σ ⌊TP1●P2

⌋σ′

iff σ ⌊TP1
⌋σ′ and if⟨P1, σ⟩⇓ σ1 and⟨P1, σ′⟩⇓ σ′1 thenσ1⌊TP2

⌋σ′1. Furthermore, let

Σ,Σ1 ⊆ Σ such that{σ′ ∣ σ ∈ Σ, ⟨P1, σ⟩⇓ σ′} ⊆ Σ1. DefineRΣ andRΣ1
as the

PERs∀σ,σ′ ∈ Σ, σ RΣ σ′ ⇐⇒ σ,σ′ ∈ Σ andσ RΣ1
σ′ ⇐⇒ σ,σ′ ∈ Σ1. Suppose

O1,O2 ∈ PER(Σ) are PERs such thatΣ ⊆ dom(O1) andO1⊑+O2 and↑TVarO2 = O2,

174

andRΣ ⊔ ⌊TP1
⌋ ⊑ RΣ ⊔O1 andRΣ1

⊔ ⌊TP2
⌋ ⊑ RΣ1

⊔O2. Then

1. RΣ ⊔ ⌊TP1●P2
⌋ ⊑ RΣ ⊔O2,

2. RΣ ⊔ ⌊TP ⌋ ⊑ RΣ ⊔O2.

Proof.

1. Define the set of all states under which the subprogramP1 terminates to be

Σ⇓ = {σ ∈ Σ ∣ ⟨P1, σ⟩⇓ σ′} and definef ∶Σ⇓ →Σ to model this transfor-

mation of states byP1 such that for allσ ∈ Σ⇓, f(σ) = σ′ if ⟨P1, σ⟩⇓ σ′

- which maps a starting state under whichP1 terminates to the terminating

state. Now define the equivalence relationR ∈ PER(Σ) such that∀σ1, σ2 ∈

Σ, σ1 R σ2 iff σ1, σ2 ∈ Σ/Σ⇓ andσ1, σ2 ∈ Σ⇓ Ô⇒ f(σ1) ⌊TP2
⌋ f(σ2).

Hence, we have⌊TP1●P2
⌋ = ⌊TP1

⌋ ⊔R.

Hence we wish to show thatRΣ⊔ ⌊TP1
⌋⊔R ⊑ RΣ⊔O2, that is, for allσ,σ′ ∈

Σ, σ O2 σ′ Ô⇒ σ (⌊TP1
⌋⊔R)σ′. Now supposeσ,σ′ ∈ Σ, such thatσ O2 σ′

holds. It then follows thatσ ⌊TP1
⌋ σ′ holds becauseRΣ ⊔ ⌊TP1

⌋ ⊑ RΣ ⊔O1

and by (4) of proposition 5.4.5RΣ ⊔O1 ⊑ RΣ ⊔O2, sinceΣ = dom(RΣ) ⊆

dom(O1) andO1⊑+O2. It now remains to show thatσ R σ′ also holds. But

σ ⌊TP1
⌋σ′ impliesσ,σ′ ∈Σ⇓ orσ,σ′ ∈Σ/Σ⇓ by lemma 4.3.2. We now show

thatσ R σ′ holds under these two possibilities.

• Supposeσ,σ′ ∈ Σ/Σ⇓, thenσ R σ′ holds by definition.

• Now supposeσ,σ′ ∈Σ⇓. SinceP does not modify theIVar-projection

of states, then for anŷσ ∈ Σ⇓, f(σ̂) ∈ havocTVar({σ̂}). Hence,

since↑TVarO2 = O2, then by (4) of lemma 5.4.8,̂σ ∈ dom(O2) Ô⇒

175

havocTVar([σ̂]O2
) = [σ̂]O2

. Therefore,σO2σ′ Ô⇒ f(σ)O2 f(σ′).

Nowσ,σ′ ∈ Σ∩Σ⇓ impliesf(σ), f(σ′) ∈ Σ1 and hencef(σ)RΣ1
f(σ′).

Furthermore, sincef(σ)O2f(σ′) holds then we know thatf(σ)⌊TP2
⌋f(σ′)

holds becauseRΣ1
⊔ ⌊TP2

⌋ ⊑ RΣ1
⊔O2. Therefore,σ R σ′ holds.

This shows the required property:RΣ ⊔ ⌊TP1●P2
⌋ ⊑ RΣ ⊔O2.

2. The proof is immediate since by proposition 5.7.6⌊TP ⌋ ⊑ ⌊TP1●P2
⌋, hence

we have thatRΣ ⊔ ⌊TP ⌋ ⊑ RΣ ⊔ ⌊TP1●P2
⌋ ⊑ RΣ ⊔O2.

Lemma 5.7.8. Let W ≜ while (b) do c be a while statement, and letC ≜

if(b)then c else skip. Define the set of starting states under which only

the outerwhile loop diverges (excluding those under whichc diverges) asΣW
⇑ ≜

{σ0 ∈Σ ∣ ∀i ∈ N, ⟨C,σi⟩⇓ σi+1, σi+1(b) = tt}.

Now define the PERW ∈ PER(Σ) such that for allσ0, σ
′
0 ∈ Σ, σ0 W σ′0 iff

(σ0, σ
′
0 ∈Σ/Σ

W
⇑ or σ0, σ

′
0 ∈Σ

W
⇑) andσ0⌊TC⌋σ′0 and∀i, ⟨C,σi⟩⇓ σi+1, ⟨C,σ′i⟩⇓ σ

′
i+1 Ô⇒

σi+1 ⌊TC⌋ σ′i+1. Then we have⌊TW ⌋ ⊑W .

Proof. The proof shows thatW contains at least as much information as released

by thewhile statementW . The PERW requires that an indistinguishable pair of

states must be stepwise indistinguishable for each possible iteration step ofW ,

and that the pair must both either belong to the setΣ/ΣW
⇑ or ΣW

⇑ - distinguishing

states in which the outerwhile loop terminates from those in which it diverges.

The proof is similar to that of proposition 5.7.6 by considering the sequence of

the programC as an unwinding ofW into its iteration steps. In the followingσi

(resp.σ′i) is derived byi-step application ofC to σ0 ∈ Σ (resp.σ′0 ∈ Σ).

176

From lemma 4.3.2 we know that for anyσ,σ′ ∈ Σ, such thatσ ⌊TC⌋ σ′ holds

thenC diverges under both ofσ andσ′, or terminates under both states. Now

take anyσ0, σ
′
0 ∈ Σ/Σ

W
⇑ such thatσ0 Wσ′0 holds. Then by lemma 4.3.2, there are

two cases to consider, namely, whenW terminates under both states and when it

diverges in both. Suppose thatW terminates underσ0 andσ′0, then for alli ≥ 0,

⟨C,σi⟩⇓ σi+1 and⟨C,σ′i⟩⇓ σ
′
i+1 andσi ⌊TC⌋ σ′i andσi+1 ⌊TC⌋ σ′i+1 hold. Thus, the

attacker’s observation under the traces ofW starting atσ0 andσ′0 is the same,

that is, obs(t⟨W,σ0⟩) = obs(t⟨W,σ′
0
⟩). Now suppose thatW diverges under both

σ0 andσ′0, then by definition ofW and by lemma 4.3.2 the pair of traces must

diverge on the same iteration ofW and the traces must be indistinguishable at

each iteration step. That is, there existi, j ∈ N such that for alli ≤ j, σi ⌊TC⌋ σ′i,

but c diverges under bothσj andσ′j. Thus,obs(t⟨W,σ0⟩) = obs(t⟨W,σ′
0
⟩). Hence, for

all σ,σ′ ∈Σ/ΣW
⇑ , σ W σ′ Ô⇒ σ ⌊TW ⌋σ′.

Now take anyσ0, σ
′
0 ∈Σ

W
⇑ such thatσ0Wσ′ holds. Then, for alli ∈ N, we have

thatσi ⌊TC⌋ σ′i by the definition ofW , and sinceW diverges under both traces we

haveobs(t⟨W,σ0⟩) = obs(t⟨W,σ′
0
⟩). Thus, for allσ,σ′ ∈ΣW

⇑ , σW σ′ Ô⇒ σ ⌊TW ⌋σ′.

Therefore, for allσ,σ′ ∈Σ, σ W σ′ Ô⇒ σ ⌊TW ⌋ σ′, and hence⌊TW ⌋ ⊑W .

Lemma 5.7.9. Let (E, I,O) ∈ Φinit such that(E, I,O) P (E′, I ′,O′). Then

dom(I ′) ⊆ dom(I).

Proof. We note that for any(E, I,O) ∈ Φinit and any expressione and PERφ

over values ofe, we havedom(flow(e ∶ φ, (E, I,O))) ⊆ dom(I). This is because

flow(e ∶ φ, (E, I,O)) = ↑TVar(e ∶ φ ⊔ I ⊔RE) (see the details in Definition 5.4.10).

Hence,dom(flow(e ∶ φ, (E, I,O))) = havocTVar(dom(e ∶ φ ⊔RE ⊔ I)). That is,

177

dom(flow(e ∶ φ, (E, I,O))) ⊆ havocTVar(dom(e ∶ φ ⊔RE))∩havocTVar(dom(I)) =

havocTVar(dom(e ∶ φ ⊔RE)) ∩ dom(I) sinceI = ↑TVarI. Hence, we have that

dom(flow(e ∶ φ, (E, I,O))) ⊆ dom(I).

The proof proceeds by induction on the derivation tree of each command in

the information flow rules. The rules forskip, assignmentandwrite statements

do not change theI-component of their pre-configurations, thus it only remains

to show that this property holds forif andwhile statements. This follows imme-

diately because for any subprogram commandc of P the pre-configuration and

post-configuration are both elements ofΦinit (see Theorem 5.7.10). In the infor-

mation flow rules, the resulting post configuration(En+1, In+1,On+1) is computed

from (En, In,On) as a join ofIn+1 = flow(e ∶ φ, (En, In,On)) (conditional branch-

ing of if statements and termination analysis ofwhile statements) - which means

dom(In+1) ⊆ dom(In), or by constructing a PER which represents the union of

the domains of theI-component of the post-configuration of the branches of a

conditionalif statement, which by induction on the branches are both subsets of

the domain of theI-component of their respective pre-configuration.

We now prove properties of the static analysis which establishits information

flow and semantic soundness. It is assumed that all variables ofP are properly-

initialised before use.

Theorem 5.7.10(Semantic and Information Flow Correctness). Let Σ andVar

respectively be the set of states and variables of aWhile programP , which does

not modify theIVar projection of states. Furthermore, let(E, I,O) ∈ Φinit be an

information configuration and let(E, I,O)P (E′, I ′,O′) be the static analysis of

P . Then

178

(A) PER((E, I,O)) ⊔ ⌊TP ⌋ ⊑ PER((E, I,O)) ⊔O′ and

(B) {σ′ ∣ σ ∈ dom((E, I,O)), ⟨P,σ⟩⇓ σ′} ⊆ dom((E′, I ′,O′)) and

(C) (E′, I ′,O′) ∈ Φinit.

Proof. The proof proceeds by structural induction on the derivation tree of(E, I,O)P (E′, I ′,O′).

SupposeP = P ′0;P
′
1; . . . ;P

′
m, such that for alli, P ′i is a skip, assignment, write,

or a conditional if or while statement. Furthermore, for anyn ≤ m, define

Pn ≜ P ′0; . . . ;P ′n such that for alln, (E, I,O) Pn (En, In,On). We will show

that if the induction hypothesis holds forPn then it holds also forPn+1 ≜ Pn;P ′n+1.

• The proof whenP ′n+1 is askipstatement is straightforward.

• LetP ′n+1 bez ∶= e. Then we have(En+1, In+1,On+1) = (En[z ↦ ↑X

z∶=e
↝

R], In,On)

whereR = e ∶ id⊔In⊔RE and∀σ,σ′ ∈ Σ, σRE σ′ iff σ,σ′ ∈ dom(⊔x∈FV (e)En(x))

andX = TVar/{z}.

(A) Since⌊TPn
⌋ = ⌊TPn+1⌋ andOn+1 = On then by the induction hypothesis

we have also thatPER((E, I,O)) ⊔ ⌊TPn+1⌋ ⊑ On+1 ⊔ PER((E, I,O)).

(B) Now letΣ = {σ′ ∣σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} and letΣ′ = {σ′ ∣σ ∈

dom((E, I,O)), ⟨Pn+1, σ⟩⇓ σ′}, thenΣ′ = {σ[z ↦ σ(e)]∣σ ∈ Σ}. By the in-

duction hypothesisΣ ⊆ dom((En, In,On)), thusΣ ⊆ dom(R) sincee ∶ id is

an equivalence relation overΣ. From the definition of

z∶=e
↝

R , we know that for

anyσ ∈ dom(R), σ[z ↦ σ(e)] ∈ dom(
z∶=e
↝

R). Hence,Σ′ ⊆ dom(
z∶=e
↝

R) and since

dom(
z∶=e
↝

R) ⊆ dom(↑X

z∶=e
↝

R) thenΣ′ ⊆ dom(↑X

z∶=e
↝

R). Now let Z = {z}, since

Σ ⊆ dom((En, In,On)), thenΣ′ ⊆ havocZ(dom((En, In,On))) becauseΣ′

179

is obtained fromΣ by modifying the value of the variablez alone. Further-

more,dom((En+1, In+1,On+1)) = havocZ(dom((En, In,On)))∩dom(↑X

z∶=e
↝

R)

since(En, In,On) ∈ Φinit by the induction hypothesis. Hence,Σ′ ⊆ dom((En+1, In+1,On+1)),

sinceΣ′ is a subset of bothhavocZ(dom((En, In,On))) anddom(↑X

z∶=e
↝

R).

(C) By the induction hypothesis(En, In,On) ∈ Φinit , it is thus clear that

(En+1, In+1,On+1) ∈Φinit .

• LetP ′n+1 bewrite e. Then we have the post-configuration(En+1, In+1,On+1)

= (En, In,On F flow(e ∶ id, (En, In,On))). Letϕ0 = (En, In,On).

(A) Now ⌊TPn+1⌋ is derived from⌊TPn
⌋ as follows: for allσ,σ′ ∈Σ, σ⌊TPn+1⌋σ′

iff σ ⌊TPn
⌋σ′ and if ⟨Pn, σ⟩⇓ σn and⟨Pn, σ′⟩⇓ σ′n thenσn(e) = σ′n(e).

But by the induction hypothesisPER((E, I,O))⊔⌊TPn
⌋ ⊑ PER((E, I,O))⊔

On and also{σ′ ∣σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} ⊆ dom(ϕ0). Hence,

by applying lemma 5.7.7 and sinceOn⊑+On+1, it only remains to show

thatPER(ϕ0) ⊔ ⌊TP ′n
⌋ = PER(ϕ0) ⊔ e ∶ id ⊑ PER(ϕ0) ⊔On+1 in order to

show thatPER((E, I,O)) ⊔ ⌊TPn+1⌋ ⊑ PER((E, I,O)) ⊔On+1.

Let flow(e ∶ id, ϕ0) = ↑TVarR, whereR = e ∶ id ⊔ In ⊔ RE and where

∀σ,σ′ ∈ Σ, σ RE σ′ iff σ,σ′ ∈ dom(⊔x∈FV (e)En(x)). Furthermore,

let Σ′ = dom(On) ∪ dom(↑TVarR) such that∀σ,σ′ ∈ Σ, σ R σ′ ⇐⇒

σ,σ′ ∈ Σ′/dom(↑TVarR) and σ On σ′ ⇐⇒ σ,σ′ ∈ Σ′/dom(On).

Hence, we haveOn+1 = On F ↑TVarR = (On ∪ On) ⊔ (↑TVarR ∪ R).

Thus, On+1 ⊔ PER(ϕ0) = On ⊔ ↑TVarR ⊔ PER(ϕ0) sincedom(ϕ0) ⊆

dom(On) anddom(ϕ0) ⊆ dom(↑TVarR) and hencePER(ϕ0) is disjoint

with On andR, andOn ⊔R = ∅ by definition. Therefore, to show that

PER(ϕ0)⊔e ∶ id ⊑ PER(ϕ0)⊔On+1 we need to show that for anyσ,σ′ ∈

180

dom(ϕ0), σ (On ⊔ ↑TVarR) σ′ Ô⇒ σ(e) = σ′(e). Since↑TVarIn = In,

thenIn ∈ Rinit by observing that for allσ ∈ dom(In),havocTVar([σ]In
) =

[σ]In
. Furthermore, sinceTVar variables are properly-initialised be-

fore use, then theFV (e) ∩ TVar projection of state is a function

of the IVar projection, which means that by applying (3) and (4) of

lemma 5.7.3,RE ∈ Rinit and henceR ∈ Rinit . Hence, sincedom(ϕ0) ⊆

dom(R), then by (2) of lemma 5.7.3, for allσ,σ′ ∈ dom(ϕ0), σ↑TVarRσ′ Ô⇒

σ R σ′ Ô⇒ σ(e) = σ′(e). Thus,PER(ϕ0) ⊔ e ∶ id ⊑ PER(ϕ0) ⊔On+1.

(B) It is clear thatΣ = {σ′ ∣ σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} = {σ′ ∣ σ ∈

dom((E, I,O)), ⟨Pn+1, σ⟩⇓ σ′} is the set of terminating states ofPn+1

starting fromdom((E, I,O)). By the induction hypothesisΣ ⊆ dom((En, In,On)).

Furthermore, by the domain-preserving property ofF, dom(On) ⊆

dom(On+1). Hence,Σ ⊆ dom((En, In,On)) ⊆ dom((En+1, In+1,On+1)).

(C) Since by the induction hypothesis(En, In,On) ∈ Φinit , it is thus clear

by applying (7) of Lemma 5.4.8 that(En+1, In+1,On+1) ∈ Φinit.

• Let P ′n+1 beif (b) then c1 else c2. Let ϕ0 = (En, In,On) so thatI ′n =

flow(b ∶ T, ϕ0) andI ′′n = flow(b ∶ F, ϕ0) and(En, I ′n,On)c1(E′n+1, I
′
n+1,O

′
n+1)

and(En, I ′′n ,On) c2 (E′′n+1, I
′′
n+1,O

′′
n+1). By applying the induction hypoth-

esis toPn, ϕ0 ∈ Φinit and hence(En, I ′n,On), (En, I ′′n ,On) ∈ Φinit because

I ′n = ↑TVarI ′n and I ′′n = ↑TVarI ′′n by definition. By further applying the in-

duction hypothesis toc1 we obtainPER((En, I ′n,On)) ⊔ ⌊Tc1⌋ ⊑ O′n+1 ⊔

PER((En, I ′n,On)), and also that{σ′ ∣σ ∈ dom((En, I ′n,On)), ⟨c1, σ⟩⇓ σ′} ⊆

dom((E′n+1, I
′
n+1,O

′
n+1)), and also that(E′n+1, I

′
n+1,O

′
n+1) ∈ Φinit . Simi-

larly, for theelsebranch we have thatPER((En, I ′′n ,On)) ⊔ ⌊Tc2⌋ ⊑ O′′n+1 ⊔

181

PER((En, I ′′n ,On)) and that{σ′ ∣ σ ∈ dom((En, I ′′n ,On)), ⟨c2, σ⟩⇓ σ′} ⊆

dom((E′′n+1, I
′′
n+1,O

′′
n+1)), and that(E′′n+1, I

′′
n+1,O

′′
n+1) ∈ Φinit. Now define

In+1 such that∀σ,σ′ ∈ Σ, σ In+1σ′ ⇐⇒ σ,σ′ ∈ dom(I ′n+1) ∪ dom(I ′′n+1)

and for allx ∈ TVar, letE′n+1(x) = E
′
n+1(x) ⊔ I ′n if E′′n+1(x) ≠ En(x) and

E′n+1(x) = E
′
n+1(x) otherwise. Similarly, for allx ∈ TVar, letE′′n+1(x) =

E′′n+1(x) ⊔ I ′′n if E′n+1(x) ≠ En(x) andE′′n+1(x) = E
′′
n+1(x) otherwise. Then

the post-configuration ofP ′n+1 is defined as(En+1, In+1,On+1) = (E′n+1, In+1,O
′
n+1)F

(E′′n+1, In+1,O
′′
n+1).

(A) Let Σ′ = dom(O′n+1) ∪ dom(O′′n+1) so that∀σ,σ′ ∈ Σ, σ O′n+1 σ′ ⇐⇒

σ,σ′ ∈ Σ′/dom(O′n+1) andσ O′′n+1 σ
′ ⇐⇒ σ,σ′ ∈ Σ′/dom(O′′n+1).

SinceOn+1 = O′n+1 F O
′′
n+1, andO′n+1 ⊔ O

′′
n+1 = ∅ by definition, then

On+1 = (O′n+1 ⊔O
′′
n+1)∪ ((O

′
n+1 ⊔O

′′
n+1)) ∪ ((O

′
n+1 ⊔O

′′
n+1)). Further-

more, by the domain-preserving property ofF, we know thatdom(On) ⊆

dom(O′n+1) anddom(On) ⊆ dom(O′′n+1), and also by definitiondom(ϕ0) ⊆

dom(On). Hence, by definitionPER(ϕ0)⊔O′n+1 = PER(ϕ0)⊔O′′n+1 = ∅.

Therefore,PER(ϕ0) ⊔On+1 = PER(ϕ0) ⊔O′n+1 ⊔O
′′
n+1. We now show

thatPER(ϕ0) ⊔ ⌊TP ′
n+1
⌋ ⊑ PER(ϕ0) ⊔On+1.

We consider three cases based on how the boolean guardb evaluates.

Firstly, we note thatI ′n andI ′′n partition the domain ofIn such that the

set of states indom((En, I ′n,On)) anddom((En, I ′′n ,On)) evaluateb

to tt andff respectively. This is clear since (see Definition 5.4.10) we

have thatI ′n = ↑TVar(b ∶ T ⊔ In ⊔RE) andI ′′n = ↑TVar(b ∶ F ⊔ In ⊔RE).

Hence, sinceIn ⊔ RE ∈ Rinit and becausedom(ϕ0) ⊆ dom(In ⊔ RE)

by definition, then by (4) and (2) of lemma 5.7.3 we have that for all

182

σ,σ′ ∈ dom(ϕ0), σ I ′n σ′ Ô⇒ σ(b) = σ′(b) = tt andσ I ′′n σ′ Ô⇒

σ(b) = σ′(b) = ff .

Now take anyσ,σ′ ∈Σ such thatσ(PER(ϕ0)⊔On+1)σ′, sincePER(ϕ0)⊔

On+1 = PER(ϕ0)⊔O′n+1 ⊔O
′′
n+1 then we know thatσ,σ′ ∈ dom(ϕ0) and

σ O′n+1 σ
′ andσ O′′n+1 σ

′ hold.

(a) Supposeσ(b) = σ′(b) = tt, thenσ,σ′ ∈ dom((En, I ′n,On)). But

by the induction hypothesisPER((En, I ′n,On)) ⊔ ⌊Tc1⌋ ⊑ O′n+1 ⊔

PER((En, I ′n,On)), henceσO′n+1σ
′ Ô⇒ σ ⌊Tc1⌋σ′. Sinceσ(b) =

σ′(b) = tt andσ ⌊Tc1⌋ σ′ holds, thenσ ⌊TP ′
n+1
⌋ σ′ holds.

(b) The proof in the case thatσ(b) = σ′(b) = ff is similar to that of

the case whenσ(b) = σ′(b) = tt.

(c) Now supposeσ(b) = tt andσ′(b) = ff . Thus, we have thatσ ∈

dom((En, I ′n,On)) andσ′ ∈ dom((En, I ′′n ,On)). Sinceσ O′n+1 ⊔

O′′n+1 σ
′ holds, then there does not exist awrite or while com-

mand along the execution paths ofσ or σ′ within P ′n+1. Sup-

pose that there exist awrite or while statement along the execu-

tion path ofσ, then there exists in the information flow analy-

sis an expressione and a configuration(Ee, Ie,Oe) such thatσ ∈

dom(flow(e ∶ id, (Ee, Ie,Oe))) andO′n+1 = O
′
n+1Fflow(e ∶ id, (Ee, Ie,Oe)).

By lemma 5.7.9 we have thatdom(flow(e ∶ id, (Ee, Ie,Oe))) ⊆

dom(Ie) ⊆ dom(I ′n) andσ ∈ dom(I ′n). Furthermore, sinceσ′(b) =

ff thenσ′ ∉ dom(I ′n) and hence we have thatσ′ ∉ dom(flow(e ∶ id, (Ee, Ie,Oe))).

Therefore, by (3) of proposition 5.4.5(σ,σ′) ∉ On+1 sinceO′n+1 =

O′n+1Fflow(e ∶ id, (Ee, Ie,Oe)), which contradicts our assumption

183

thatσO′n+1σ
′ holds. Similarly, there does not exist awrite orwhile

statement along the execution path ofσ′ in P ′n+1. Thus, because

P ′n+1 neither produces an output (nowrite statement), nor diverges

(nowhilestatement) along the execution paths of the statesσ and

σ′ in P ′n+1 thenσ ⌊TP ′n+1
⌋ σ′ holds.

Thus,∀σ,σ′ ∈ Σ, σ (PER(ϕ0) ⊔On+1) σ′ Ô⇒ σ ⌊TP ′
n+1
⌋ σ′, that is,

PER(ϕ0) ⊔ ⌊TP ′
n+1
⌋ ⊑ PER(ϕ0) ⊔On+1.

Now define⌊TPn●P ′n+1
⌋ as∀σ,σ′ ∈ Σ, σ ⌊TPn●P ′n+1

⌋σ′ iff σ ⌊TPn
⌋σ′ and

if ⟨Pn, σ⟩⇓ σn and⟨Pn, σ′⟩⇓ σ′n then alsoσn ⌊TP ′
n+1
⌋σ′n. By proposi-

tion 5.7.6 we know that⌊TPn+1⌋ ⊑ ⌊TPn●P ′n+1
⌋, and hence that⌊TPn+1⌋ ⊔

PER((E, I,O)) ⊑ ⌊TPn●P ′n+1
⌋⊔PER((E, I,O)). Since by the induction

hypothesis we have⌊TPn
⌋⊔PER((E, I,O)) ⊑ On⊔PER((E, I,O)) and

also{σ′ ∣σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} ⊆ dom(ϕ0), andPER(ϕ0)⊔

⌊TP ′
n+1
⌋ ⊑ PER(ϕ0) ⊔ On+1, hence by lemma 5.7.7 we have⌊TPn+1⌋ ⊔

PER((E, I,O)) ⊑ On+1 ⊔ PER((E, I,O)).

(B) By the induction hypothesis we already know that for thethenbranch

we have{σ′∣σ ∈ dom((En, I ′n,On)), ⟨c1, σ⟩⇓ σ′} ⊆ dom((E′n+1, I
′
n+1,O

′
n+1)) ⊆

dom((E′n+1, In+1,O
′
n+1)) since by lemma 5.7.9 we havedom(I ′n+1) ⊆

dom(I ′n) and also by definitiondom(I ′n+1) ⊆ dom(In+1). Similarly, for

theelsebranch{σ′∣σ ∈ dom((En, I ′′n ,On)), ⟨c2, σ⟩⇓ σ′} ⊆ dom((E′′n+1, In+1,O
′′
n+1)).

Sincedom((En, I ′n,On)) = {σ ∈ dom((En, In,On)) ∣ σ(b) = tt} and

dom((En, I ′′n ,On)) = {σ ∈ dom((En, In,On)) ∣ σ(b) = ff}, therefore

the set of terminating states ofP ′n+1 starting from a state indom((En, In,On))

satisfies the property{σ′ ∣ σ ∈ dom((En, In,On)), ⟨P ′n+1, σ⟩⇓ σ′} ⊆

184

(En+1, In+1,On+1) since by the domain-preserving property ofF, we

have thatdom((E′n+1, In+1,O
′
n+1)) ⊆ (En+1, In+1,On+1) and also that

dom((E′′n+1, In+1,O
′′
n+1)) ⊆ (En+1, In+1,On+1). Hence, by the induc-

tion hypothesis,{σ′∣σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} ⊆ dom((En, In,On))

implies{σ′∣σ ∈ dom((E, I,O)), ⟨Pn+1, σ⟩⇓ σ′} ⊆ dom((En+1, In+1,On+1)).

(C) We have already shown by the induction hypothesis at the beginning of

the if proof that(E′n+1, I
′
n+1,O

′
n+1), (E

′′
n+1, I

′′
n+1,O

′′
n+1) ∈ Φinit . In the

updated post-configuration(E′n+1, In+1,O
′
n+1) of the thenbranch, and

for a given variablex ∈ TVar, E′n+1(x) may beE′n+1(x) ⊔ I ′n or E′n+1

according to theif rule. Hence, by applying (5) and (6) of lemma 5.4.8

we know thatE′n+1(x) = ↑TVar/{x}(E′n+1(x) ⊔ I ′n) becauseE′n+1(x) =

↑TVar/{x}E
′
n+1(x) andI ′n = ↑TVar/{x}I ′n sinceI ′n = ↑TVarI ′n. Furthermore,

since↑TVarI
′
n+1 = I

′
n+1 and↑TVarI

′′
n+1 = I

′′
n+1 by the induction hypothe-

sis, then by (4) of lemma 5.4.8havocTVar(dom(I ′n+1) ∪ dom(I ′′n+1)) =

dom(I ′n+1) ∪ dom(I ′′n+1), which implies that↑TVarIn+1 = In+1. Hence,

(E′n+1, In+1,O
′
n+1) ∈ Φinit . Similarly, for the post-configuration of the

elsebranch, we have(E′′n+1, In+1,O
′′
n+1) ∈ Φinit . Finally, by applying

(7) of lemma 5.4.8 we have that(En+1, In+1,On+1) = (E′n+1, In+1,O
′
n+1)F

(E′′n+1, In+1,O
′′
n+1) ∈Φinit.

• Let P ′n+1 bewhile (b) do c, and letC0 ≜ if(b)then c else skip and

for all i ≥ 0 defineCi+1 ≜ Ci;C0. Furthermore, letϕ0 = (En, In,On) and for

all i ≥ 0 let (E′i, I
′
i ,O

′
i) = ϕi such thatϕ0 Ci ϕi+1, and defineP i

n ≜ Pn;Ci.

We know that{σ′ ∣ σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} ⊆ dom(ϕ0) and that

for all i ≥ 0, {σ′ ∣ σ ∈ dom(ϕ0), ⟨Ci, σ⟩⇓ σ′} ⊆ dom(ϕi+1) by applying

185

the induction hypothesis. Now let(E′′, I ′′,O′′) = 2i≥0ϕi. Furthermore,

define theE-component of thewhile post-configuration so that for any

x ∈ Var, X̄ = TVar/{x} and for allσ,σ′ ∈ Σ, σ EW (x) σ′ ⇐⇒ ∃i ∈

N, σ↑X̄(E′i(x) ⊔ I
′′
i ⊔ b ∶ F)σ′, whereI ′′i = flow(b ∶ F, ϕi). Now define theI-

component and theO-component of thewhilestatement post-configuration

to beIW = flow(b ∶ F, (EW , I ′′,O′′)) andOW = 2i≥0 flow(b ∶ id, ϕi) FO′′,

so that(En+1, In+1,On+1) = (EW , IW ,OW).

Define the set of states that may occur before or after an iteration of the

whilestatementP ′n+1, starting from the setdom(ϕ0), as

Σ = dom(ϕ0) ∪ {σ′ ∣ σ ∈ dom(ϕ0), j ∈ N, ⟨Cj , σ⟩⇓ σ′} (5.1)

Now let the subset ofΣ under which thewhilestatement terminates be given

by

Σ⇓ = {σ ∈ Σ ∣ ⟨P ′n+1, σ⟩⇓ σ
′}. (5.2)

Thus, the subset ofΣ under which thewhile statement diverges is given by

Σ⇑ = Σ/Σ⇓.

We also identify the subset ofΣ under which theouter whilestatement

diverges, excluding those under which the subprogramc diverges

ΣW
⇑ = {σ ∈ Σ ∣ ∀j ∈ N.⟨Cj, σ⟩⇓ σ′j ∧ σ

′
j(b) = tt}. (5.3)

Finally, the set of states inΣ under which the subprogramc diverges is given

186

by

Σc
⇑ ≜ Σ⇑/ΣW

⇑ . (5.4)

(A) We start by showing thatOn+1 contains termination information. More

specifically, thatOn+1 distinguishes any state inΣ⇓ from any state in

Σ⇑. This is shown in two steps, firstly thatOn+1 distinguishes states in

Σ⇓ from all other states inΣW
⇑ , and secondly, by induction onc, that

On+1 distinguishes all states inΣ⇓ from those inΣc
⇑.

We now observe that for everyσ ∈ Σ⇓∪ΣW
⇑ there existsj ∈ N such that

⟨Cj, σ⟩⇓ σ′ andσ′ ∈ dom(ϕj+1) by the induction hypothesis. There-

fore, since the program does not modify theIVar-projection of states,

it is clear thatσ ∈ havocTVar({σ′}), hence we have thatΣ⇓ ∪ΣW
⇑ ⊆

⋃j≥0 havocTVar(dom(ϕj)). Now, sinceb ∶ id is an equivalence rela-

tion, then for anyj ∈ N dom(ϕj) ⊆ dom(flow(b ∶ id, ϕj)) by definition.

Furthermore,havocTVar(dom(flow(b ∶ id, ϕj))) = dom(flow(b ∶ id, ϕj))

and henceΣ⇓ ∪ ΣW
⇑ ⊆ ⋃j≥0 dom(flow(b ∶ id, ϕj)) by the monotonicity

and idempotency ofhavocTVar(⋅). Hence, we have thatΣ⇓ ∪ ΣW
⇑ ⊆

dom(2j≥0 flow(b ∶ id, ϕj)) by the domain-preserving property ofF.

Now supposeσ,σ′ ∈ Σ⇓ ∪ ΣW
⇑ , such thatσ On+1 σ′ holds. Since

σ,σ′ ∈ dom(2j≥0 flow(b ∶ id, ϕj)) andOn+1 = 2j≥0 flow(b ∶ id, ϕj)FO′′

thenσ2j≥0 flow(b ∶ id, ϕj)σ′ holds by (2) of proposition 5.4.5. Now let

Σ′′ = dom(2j≥0 flow(b ∶ id, ϕj)), then for allj ∈ N, σCΣ′′(flow(b ∶ id, ϕj))σ′.

That is, for allj ∈ N, we have thatσ,σ′ ∈ dom(flow(b ∶ id, ϕj)) and

σ flow(b ∶ id, ϕj) σ′ or σ,σ′ ∈ Σ′′/dom(flow(b ∶ id, ϕj)). Now since

σ,σ′ ∈ Σ⇓ ∪ ΣW
⇑ then there existsk ∈ N andσA, σB ∈ Σ such that

187

⟨Ck, σ⟩⇓ σA and ⟨Ck, σ′⟩⇓ σB andσA, σB ∈ dom(ϕk) by the induc-

tion hypothesis. Now sinceσA, σB ∈ dom(ϕk) thenσA, σB ∈ dom(R),

whereR = b ∶ id ⊔ I ′k ⊔ RE and where∀σ1, σ2 ∈ Σ, σ1 RE σ2 ⇐⇒

σ1, σ2 ∈ dom(⊔y∈FV (b)E
′
k(y)) sinceb ∶ id is an equivalence relation.

But we know that the program does not modify theIVar projection of

states and hence,σA ∈ havocTVar({σ}) andσB ∈ havocTVar({σ′}).

We now observe thatflow(b ∶ id, ϕk) = ↑TVarR, which means thatσ,σ′ ∈

dom(flow(b ∶ id, ϕk)) and hence thatσ flow(b ∶ id, ϕk) σ′ holds. Since

σ ↑TVarR σ′ holds andσA, σB ∈ havocTVar([σ]↑TVarR), then by (4) of

lemma 5.4.8,σA ↑TVarR σB holds. Now we know thatR ∈ Rinit by

applying (3) and (4) of lemma 5.7.3, since all variables are properly-

assigned before use and hence for ally ∈ FV (b),E′
k
(y) ∈ Rinit and

I ′k ∈ Rinit . Thus,σA ↑TVarR σB means thatσA R σB holds by (2) of

lemma 5.7.3, sinceσA, σB ∈ dom(R), which implies thatσA(b) =

σB(b) by the definition ofR. Thus, there are only two cases to con-

sider. Case 1,σA(b) = σB(b) = ff , which means that thewhile state-

ment terminates, and hence thatσ,σ′ ∈ Σ⇓ by the definition ofΣ⇓.

This leaves only the case 2, where for allj ∈ N, ⟨Cj, σ⟩⇓ σj and

⟨Cj, σ′⟩⇓ σ′j andσj(b) = σ′j(b) = tt, which means thatσ,σ′ ∈ ΣW
⇑ .

Hence,∀σ,σ′ ∈ Σ⇓ ∪ ΣW
⇑ , σ On+1 σ′ impliesσ,σ′ ∈ Σ⇓ or σ,σ′ ∈ ΣW

⇑ ,

which shows thatOn+1 distinguishes the terminating states from the

nonterminating ones inΣ⇓ ∪ΣW
⇑ .

We now show the second part thatOn+1 distinguishes terminating

states inΣ⇓, from those inΣc
⇑, under whichc diverges. This is achieved

by induction onc, in particular, because we know by definition ofOn+1

188

that for all i ≥ 0, O′i⊑+On+1, and by the induction hypothesis we know

that{σ′ ∣ σ ∈ dom(ϕi, ⟨C0, σ⟩⇓ σ′)} ⊆ dom(ϕi+1) and thatPER(ϕi) ⊔

⌊TC0
⌋ ⊑ PER(ϕi) ⊔ O′i+1, and henceO′i+1 distinguishes terminating

states indom(ϕi) from those that makeC0 diverge, because⌊TC0
⌋ does

also, as lemma 4.3.2 shows. When we combine this with the fact that

for all i, dom(ϕi) ⊆ dom(O′i) andO′i⊑+On+1, then by applying (2) of

proposition 5.4.5 we know that for allσ,σ′ ∈ dom(ϕi), σ On+1 σ′ Ô⇒

σ O′i σ
′, and hence by the contrapositive,On+1 distinguishes the states

thatO′i does. Thus, sinceΣc
⇑ ⊆ Σ andΣ ⊆ ⋃i≥0 dom(ϕi) thenσ,σ′ ∈

Σ⇓ ∪Σc
⇑, σ On+1 σ′ impliesσ,σ′ ∈ Σ⇓ or σ,σ′ ∈ Σc

⇑.

From the above we have that for allσ,σ′ ∈ Σ, σ On+1 σ′ impliesσ,σ′ ∈

Σ⇓ or σ,σ′ ∈ ΣW
⇑ ∪ Σc

⇑. Thus,On+1 distinguishes the set of states,

starting fromdom(ϕ0), in which thewhilestatement terminates, from

those in which the statement diverges. Furthermore, we observe from

the property of⌊TCj
⌋ which, for all j, distinguishes the states under

whichCj terminates from those under which it diverges (see lemma 4.3.2),

that for any pair of statesσ,σ′ ∈ ΣW
⇑ ∪Σc

⇑, σOn+1σ′ impliesσ,σ′ ∈ ΣW
⇑

or σ,σ′ ∈ Σc
⇑. This is because by definition for all starting states in

ΣW
⇑ , Ci terminates for alli, whereas for all starting states inΣc

⇑, there

exists aj whereCj diverges. Hence, by applying the induction hy-

pothesis and the definition ofOn+1, for anyσ0, σ
′
0 ∈ ΣW

⇑ ∪Σc
⇑ such that

σ0On+1σ
′
0 holds,σ0 ⌊TC0

⌋σ′0 holds and for alli ≥ 0, ⟨C0, σi⟩⇓ σi+1 and

⟨C0, σ
′
i⟩⇓ σ

′
i+1 impliesσi+1 ⌊TC0

⌋ σ′i+1. But, by lemma 4.3.2, for anyi,

σi ⌊TC0
⌋σ′i implies thatC0 terminates under bothσi andσ′i or diverges

189

under both states. But sinceσj terminates andσ′j diverges whenC0 is

executed,⌊TC0
⌋ does not relate them. Thus, for allσ,σ′ ∈ ΣW

⇑ ∪Σc
⇑, we

have thatσ On+1 σ′ impliesσ,σ′ ∈ ΣW
⇑ or σ,σ′ ∈ Σc

⇑. Combining this

with the earlier results, we have that for allσ,σ′ ∈ Σ, σOn+1σ′ implies

σ,σ′ ∈ Σ⇓ or σ,σ′ ∈ ΣW
⇑ or σ,σ′ ∈ Σc

⇑.

Finally, we now show that the propertyPER((E, I,O)) ⊔ ⌊TPn+1⌋ ⊑

PER((E, I,O))⊔On+1 holds. By the induction hypothesisPER((E, I,O))⊔

⌊TPn
⌋ ⊑ PER((E, I,O)) ⊔On and{σ′∣σ ∈ dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} ⊆

dom(ϕ0), and we know from the flow rules thatOn⊑+On+1. By apply-

ing proposition 5.7.6, it thus remains to show thatPER(ϕ0)⊔ ⌊TP ′n+1
⌋ ⊑

PER(ϕ0) ⊔On+1. Let ΣW
⇑ = {σ0 ∈ Σ ∣ ∀i ∈ N, ⟨C0, σi⟩⇓ σi+1, σi+1(b) =

tt} be the set ofall states under which the outerwhile loop diverges

and defineW such that for allσ0, σ
′
0 ∈ Σ, σ0 W σ′0 iff (σ0, σ

′
0 ∈

Σ/ΣW
⇑ or σ0, σ

′
0 ∈ ΣW

⇑) andσ0 ⌊TC0
⌋ σ′0 and∀i ≥ 0, ⟨C0, σi⟩⇓ σi+1,

⟨C0, σ
′
i⟩⇓ σ

′
i+1 Ô⇒ σi+1 ⌊TC0

⌋ σ′i+1. We know from lemma 5.7.8 that

⌊TP ′
n+1
⌋ ⊑W . We shall show thatPER(ϕ0)⊔W ⊑ PER(ϕ0)⊔On+1. Sup-

poseσ0, σ
′
0 ∈ dom(ϕ0) and thatσ0 On+1 σ

′
0, then from the partitioning

of states byOn+1 shown above, we know thatσ0, σ
′
0 ∈ ΣW

⇑ ∩ dom(ϕ0)

or σ0, σ
′
0 ∈ dom(ϕ0)/ΣW

⇑ . By the induction hypothesis, for alli ≥ 0 we

have that{σ′ ∣ σ ∈ dom(ϕ0), ⟨Ci, σ⟩⇓ σ′} ⊆ dom(ϕi+1) andPER(ϕi) ⊔

⌊TC0
⌋ ⊑ PER(ϕi) ⊔O′i+1. Hence, by applying (2) of proposition 5.4.5,

since for alli ≥ 0 we have thatdom(ϕi) ⊆ dom(O′i) andO′i FOn+1 =

On+1, andO′i⊑+O
′
i+1, thenσ0On+1 σ

′
0 implies that for allj ≥ 0, σ0O

′
j σ
′
0.

Thus,σ0 On+1 σ
′
0 impliesσ0 O

′
1 σ
′
0 Ô⇒ σ0 ⌊TC0

⌋ σ′0 by the induction

hypothesis, and furthermore we have that for alli ≥ 0, ⟨C0, σi⟩⇓ σi+1,

190

⟨C0, σ
′
i⟩⇓ σ

′
i+1 Ô⇒ σi+1 O

′
i+1 σ

′
i+1 Ô⇒ σi+1 ⌊TC0

⌋ σ′i+1 by the in-

duction hypothesis and because of (4) of lemma 5.4.8 sinceC0 only

modifiesTVar variables and henceσi+1 ∈ havocTVar({σ0}) and

σ′i+1 ∈ havocTVar({σ′0}), and we already know thatσ0O
′
i+1 σ

′
0 holds.

Thus,σ0 W σ′0 holds, and hencePER(ϕ0) ⊔W ⊑ PER(ϕ0) ⊔ On+1.

Since by lemma 5.7.8⌊TP ′
n+1
⌋ ⊑W , it follows thatPER(ϕ0)⊔⌊TP ′

n+1
⌋ ⊑

PER(ϕ0) ⊔On+1.

(B) We know by the induction hypothesis that for alli ∈ N, and σ ∈

dom(ϕ0), ⟨Ci, σ⟩⇓ σ′ Ô⇒ σ′ ∈ dom(ϕi+1). But for anyσ ∈ dom(ϕ0)

such that⟨P ′n+1, σ⟩⇓ σ′, thenσ′(b) = ff since thewhile statement ter-

minates and hence there exists aj ∈ N such that⟨Cj , σ⟩⇓ σ′, which

means thatσ′ ∈ dom(ϕj+1). Furthermore, sinceσ′(b) = ff , it cannot

be modified by further execution ofC0, and hence for allk ≥ j + 1,

we have also thatσ′ ∈ dom(ϕk). Since there exists ak ∈ N such that

σ′ ∈ dom(ϕk) andσ′(b) = ff , then it is easy to see that for allx ∈Var,

σ′ ∈ dom(En+1(x)) by definition. Furthermore, sinceσ′ ∈ dom(ϕk),

thenσ′ ∈ dom(I ′′) defined asI ′′ = 2i≥0 I
′
i . Hence,σ′ ∈ dom(In+1),

which is defined asIn+1 = flow(b ∶ F, (En+1, I ′′,O′′)). Finally, since

σ′ ∈ dom(ϕk), by the domain preserving property ofF, we know that

σ′ ∈ On+1, which is computed by taking the joinF of O′k and some

other PERs. Henceσ′ ∈ dom((En+1, In+1,On+1)). That is,{σ′ ∣ σ ∈

dom(ϕ0), ⟨P ′n+1, σ⟩⇓ σ′} ⊆ dom((En+1, In+1,On+1)). By combining

this with the induction hypothesis onPn, where we have that{σ′ ∣ σ ∈

dom((E, I,O)), ⟨Pn, σ⟩⇓ σ′} ⊆ dom(ϕ0), it then follows that{σ′ ∣σ ∈

dom((E, I,O)), ⟨Pn+1, σ⟩⇓ σ′} ⊆ dom((En+1, In+1,On+1)).

191

(C) Sinceϕ0 ∈ Φinit. We know from lemma 5.7.4 that(En+1, In+1,On+1) ∈

Φinit .

A corollary to (A) of Theorem 5.7.10 shows the soundness property of the

static analysis that links the information flow derived by the static analysis to the

semantic information flow.

Corollary 5.7.11. Let (E�, I�,O�) P (E′, I ′,O′) be the static analysis of the

While programP . Then⌊TP ⌋ ⊑ O′.

Proof. The proof follows easily from the (A) part of Theorem 5.7.10. Since

PER((E�, I�,O�)) = all, we have that⌊TP ⌋ ⊑ O′.

5.7.1 Flow Sensitivity

The information flow analysis isflow-sensitive[NNH99], which means that the

order of program execution matters to the analysis. For example, while the pro-

gram l ∶= 0; l ∶= h;write l; is insecure, it is easy to show that the program

l ∶= h; l ∶= 0;write l; is secure because it does not leak the secreth. Assuming

thath contains a secret value andl is public, conventional type-based analyses,

which are usually flow-insensitive, reject the latter program because of the initial

assignment ofh to l.

5.7.2 Termination Properties

Under the semantic attacker model, the attacker may be able to gain informa-

tion when it determines that the program does not terminate. This information is

192

captured by the static analysis by taking a join of theO-component in the post-

configuration ofwhilestatements with a PER which partitions states into those un-

der which thewhilestatement terminates and those under which it does not termi-

nate. Furthermore, since subsequent statements after a divergingwhile statement

cannot cause further information flow, the definition of theE- andI-components

of the post-configuration of awhile statement ensures that subsequent analysis is

restricted to only those states under which the precedingwhile statement termi-

nates. This is illustrated in the following program of Figure 5.17.

1 i f (h ≤ 10) then
2 whi le (tt) do
3 skip
4 l ∶= h;
5 e l s e
6 l ∶= h;
7 wr i te l;

Figure 5.17: Nontermination and unreachable code

It is clear that this program will reveal the value ofh whenh > 10, but when

h ≤ 10 the program diverges preventing the assignment statement on line 4 and

subsequent statements from being executed. Thus, the attacker only learns that

h ≤ 10 when the program diverges. Assume that the pre-configuration of the

analysis is(E�, I�,O�), and thatTVar = {l} andIVar = {h}. The static anal-

ysis derives the information release as follows. The implicit context on entering

the then branch is the PERI1 ≡ {{σ ∈ Σ ∣ σ(h) ≤ 10}}. Sincett ∶ F = ∅

is the empty PER, the post-configuration of thewhile statement is(E2, I2,O2)

where∀x ∈ Var,E2(x) = I2 = ∅, and the attacker’s knowledge is given by

O2 ≡ {{σ ∈ Σ ∣ σ(h) ≤ 10},{σ ∈ Σ ∣ σ(h) > 10}}. The meaning ofE2 and

193

I2 is that the program points after thewhile statement are unreachable since the

PER∅ relates no state, andO2 means that the attacker can distinguish between

the terminating and non-terminating trace of the program. Applying theassign-

mentrule on line 4 does not change the pre-configuration(E2, I2,O2). In fact,

for any statement whose pre-configuration is(E2, I2,O2), the post-configuration

is the same since for any expressione and PERφ on values and variablel we

have thatflow(e ∶ φ, (E2, I2,O2)) = aflow(l ∶= e, (E2, I2,O2)) = ∅ such that

flow(e ∶ φ, (E2, I2,O2)) FO2 = O2 (since for any PERR, R F ∅ = R).

Now for theelsebranch of the program, the implicit context is given byI ′2 ≡

{{σ ∈ Σ ∣ σ(h) > 10}} and after the assignment we have the post-configuration

(E′2, I
′
2,�), whereE′2 = E�[l ↦ aflow(l ∶= h, (E�, I ′2,all))] and whereaflow(l ∶=

h, (E�, I ′2,all)) ≡ {{σ′ ∈ Σ ∣ σ′(l) = σ′(h) = σ(h)} ∣ σ ∈ Σ, σ(h) > 10}. Thus,

E′2(l) is the PER which requires that the value ofh andl be the same (due to the

assignment) and thath > 10 (due to branching). Applying theif statement rule,

the post-configuration is thus(E2, I2,O2) ⊎(E�,I�,O�) (E′2, I
′
2,all) = (E3, I

′
2,O2)

where∀x, ∈ Var,E3(x) = E′2(x) ⊔ I
′
2. This is the expected result, sinceE3 and

I ′2 both restrict the set of states to those whereh > 10 (the terminating traces) and

whereh = l (due to the assignment on line 6).

Finally, thewrite statements reveals the value ofh whenever it is greater than

10. This is clear from the result(E3, I
′
2,O2) write l (E3, I

′
2,O3) whereO3 =

O2 F flow(l ∶ id, (E3, I
′
2,O2)) ≡ {{σ′ ∈ Σ ∣ σ′(h) = σ(h)},{σ′′ ∈ Σ ∣ σ′′(h) ≤

10} ∣σ ∈Σ, σ(h) > 10}. Thus, the final result demonstrates that the attacker either

learns the value ofhwheneverh > 10 or learns thath ≤ 10 since∀σ,σ′ ∈Σ, σO3σ′

iff σ(h) = σ′(h) ≥ 10 or σ(h), σ′(h) ≤ 10, which agrees with the intuition about

the information flow of the program.

194

5.7.3 Dead Code Analysis

In program analysis,dead code(also known as unreachable code) refers to a por-

tion of program code that can never be executed [NNH99, Muc97]. Intuitively,

from an information flow perspective dead code should never cause information

flow. We encountered a dead code scenario in the previous analysis example be-

cause the code after thewhilestatement is unreachable. Dead code may also arise

due to program branching, where the conditional guard always evaluates tofalse.

An example is shown in Figure 5.18. In this example, the implicit context in the

then branch is the empty PER, and therefore all the commands in that branch

are harmless because they cannot be executed. This is revealed by the analysis

of the program, where for any pre-configurationϕ of the if statement, the post-

configuration of the analysis is alsoϕ. This makes sense (from an information

flow perspective, and also from a semantic point of view) because this program

behaves exactly like askip statement - revealing no information at all.

i f (ff) then
wr i te h;

e l s e
s k i p ;

Figure 5.18: A dead code scenario.

195

5.7.4 Implicit Flow Approximation

Under certain circumstances implicit information flows are approximated by our

analysis. For example, the analysis of the program

(if(h = 10)then l ∶= 1 else l ∶= 1); write l

says that the attacker either learns thath = 10 or thath ≠ 10. However, since the

attacker cannot determine which program path is taken by observing the output

the result is only an approximation of the actual information flow.

Additionally, because the attacker’s knowledge may only increase in the anal-

ysis it is possible that the analysis may be less precise under certain program

compositions which, which does not increase the semantic attacker’s knowledge

about secrets, but where the individual programs themselves would reveal the in-

formation. For example, consider the programs

P1 ≜ if(h = 10)then write 1 else skip

and

P2 ≜ if(h ≠ 10)then write 1 else skip.

In both cases the analysis precisely determines that the attacker learns whether

h = 10 or not. However, if these programs are composed asP1;P2 then the attacker

cannot gain any information abouth. By combining the information released

in both subprograms, the analysis overapproximates the information flow, and

determines that the attacker learns whetherh = 10 or not. This is related to the

previous implicit flow problem since the programP1;P2 is observationally similar

196

to the programif(h = 10)thenwrite1elsewrite1, which does not reveal

branching information. More generally, this problem is related to the proof of

observational and semantic equivalence of program branches in a given context,

for which techniques from [Ben04], presented in the next section, are useful.

5.8 Relational Correctness

Benton [Ben04] introduced proof techniques whereby the correctness of static

analyses and the program transformations that they enable may be shown by us-

ing relations, rather than predicates, to express program properties. The key ob-

servation is that one may view the semantics of types as a special kind of relation,

rather than as predicates. Thus, a typing judgement of the form:

Γ ⊢M =M ′ ∶ A

which asserts that under the assumptionΓ, the termsM andM ′ are equal at typeA

induces a relation over terms. In particular, types may now be interpreted as partial

equivalence relations over some untyped universe. The idea now is that types

extensionally specify properties that are preserved by program transformations,

and typing judgements identify terms that can be rewritten while preserving the

observable semantics specified by those extensional properties.

The language setting of [Ben04] is similar toWhile, with the exception of the

write construct and the fact that all variables are of integer data type. However,

boolean expressions are constructed from integer expressions and constants in the

usual way. Expression types are thus taken from{int,bool} ∋ τ , whose denota-

197

tions are sets, and whereJintK = Z andJboolK = B. The program semantics is

presented in the standard denotational style [Win93].

Some non-standard expression types were introduced in [Ben04] forτ -expressions:

φτ ∶∶= Fτ ∣ {v}τ ∣∆τ ∣Tτ .

Intuitively, Fτ is the empty expression type,{v}τ is the type of constant expres-

sions whose value isv ∈ JτK, ∆τ is the type of an expression that we do not know

its value, andTτ is the type of an expression that we do not care about its value.

The metavariableeτ ranges overτ -expressions. The denotation ofφτ is a relation

on JτK as follows:

JFτK = ∅, J{v}τK = {(v, v)}, J∆τ K = {(v, v) ∣ v ∈ JτK}, JTτ K = JτK × JτK.

It is clear thatJφτK is a PER onJτK, we shall thus use our existing notations (drop-

ping theτ -subscripts when it is clear from the context) for these non-standard

types:

Fτ ≡ ∅τ , {v}τ ≡ idv
τ , ∆τ ≡ idτ , Tτ ≡ allτ .

These are the PERs, where∅τ relates noτ -values,idv
τ only relatesv to itself, idτ

only relates anyv ∈ JτK to itself, andallτ relates all pairs ofτ -values.

[Ben04] also introduced state types, which are finite maps from (int) variables

to int-expression types, and whose denotations are PERs on the set of statesΣ.

198

State types are written as lists1:

Θ ∶∶= − ∣Θ, x ∶ φint.

The interpretation of state types is a PER onΣ, whereJ−K = Σ×Σ andΘ, x ∶ φint =

JΘK ∩ {(σ,σ′) ∣ (σ(x), σ′(x)) ∈ JφintK}. The full inference system for program

analysis and transformation which tracksDependency, Dead CodeandConstancy

informationDDCC is shown in Figure 5.19.

Expression and state types are ordered by a subtyping relation≤ as follows:

∅τ ≤ φτ , idv
τ ≤ idτ , φτ ≤ allτ , φτ ≤ φτ ,

φτ ≤ φ′τ φ′τ ≤ φ′′τ
φτ ≤ φ′′τ

for expression

types, and for state types we haveΘ ≤ −, Θ, x ∶ ∅int ≤ Θ′,
Θ ≤ Θ′

Θ ≤ Θ′, x ∶ all τ
,

Θ ≤ Θ′ φint ≤ φ′int

Θ, x ∶ φint ≤ Θ′, x ∶ φ′int

. Note that the ordering≤ is the dual of our ordering⊑ on

relations.

In Figure 5.19op stands for any applicable binary operation onτ expres-

sions andôp is an abstract interpretation ofop over the domain of expression

types. As usual,ôp is a sound abstraction ofop if ∀(x,x′) ∈ JφτK, (y, y′) ∈

Jφ′τK.(x opy, x′ opy′) ∈ Jφτ ôpφ′τK.

5.8.1 Judgements

There are two basic typing judgements inDDCC:

⊢ eτ ∼ e′τ ∶ Θ ⇒ φτ

1The state typeΘ, x ∶ φint means that the variablex does not appear inΘ, and thatx has the
expression typeφint.

199

Subtyping and Structural

⊢ c ∼ c′ ∶ Θ, x ∶ ∅int ⇒ Φ′ ⊢ eτ ∼ e′τ ∶ Θ ⇒ allτ ⊢ eτ ∼ e′τ ∶ Θ, x ∶ ∅int ⇒ φτ

⊢ eτ ∼ e′τ ∶ Θ ⇒ φτ

⊢ e′τ ∼ eτ ∶ Θ ⇒ φτ

⊢ eτ ∼ e′τ ∶ Θ ⇒ φτ Θ′ ≤ Θ φτ ≤ φ′τ
⊢ eτ ∼ e′τ ∶ Θ′⇒ φ′τ

⊢ c ∼ c′ ∶ Θ ⇒ Θ′

⊢ c′ ∼ c ∶ Θ ⇒ Θ′

⊢ eτ ∼ e′τ ∶ Θ ⇒ φτ ⊢ e′τ ∼ e′′τ ∶ Θ ⇒ φτ

⊢ eτ ∼ e′′τ ∶ Θ ⇒ φτ

⊢ c ∼ c′ ∶ Θ1 ⇒ Θ2 Θ′1 ≤ Θ1 Θ2 ≤ Θ′2
⊢ c ∼ c′ ∶ Θ′1 ⇒ Θ′2

⊢ c ∼ c′ ∶ Θ ⇒ Θ′ ⊢ c′ ∼ c′′ ∶ Θ ⇒ Θ′

⊢ c ∼ c′′ ∶ Θ ⇒ Θ′

Expressions

⊢ x ∼ x ∶ Θ, x ∶ φint ⇒ φint ⊢ n ∼ n ∶ Θ ⇒ idn
int ⊢ b ∼ b ∶ Θ ⇒ idb

bool

⊢ eτ ∼ fτ ∶ Θ ⇒ φτ ⊢ e′τ ∼ f ′τ ∶ Θ ⇒ φ′τ
⊢ eτ ope′τ ∼ fτ opf ′τ ∶ Θ ⇒ (φτ ôpφ′τ)

Commands

⊢ skip ∼ skip ∶ Θ ⇒ Θ
⊢ c1 ∼ c′1 ∶ Θ ⇒ Θ′ ⊢ c2 ∼ c′2 ∶ Θ′⇒ Θ′′

⊢ (c1; c2) ∼ (c1; c′2) ∶ Θ ⇒ Θ′′

⊢ e ∼ e′ ∶ Θ, z ∶ φint ⇒ φ′int

⊢ z ∶= e ∼ z ∶= e′ ∶ Θ, z ∶ φint ⇒ Θ, z ∶ φ′int

⊢ b ∼ b′ ∶ Θ ⇒ idbool ⊢ c ∼ c′ ∶ Θ ⇒ Θ

⊢ while (b) do c ∼ while (b′) do c′ ∶ Θ ⇒ Θ

⊢ b ∼ b′ ∶ Θ ⇒ idbool ⊢ c1 ∼ c′1 ∶ Θ ⇒ Θ′ ⊢ c2 ∼ c′2 ∶ Θ ⇒ Θ′

⊢ if (b) then c1 else c2 ∼ if(b′)then c′1 else c
′
2 ∶ Θ ⇒ Θ′

Figure 5.19: Core DDCC System [Ben04].

which intuitively expresses that under the constraintΘ on states, theτ -expressions

eτ ande′τ are interchangeable as they both produce indistinguishable “observa-

tions” underφτ ; similarly, for commands,

⊢ c ∼ c′ ∶ Θ ⇒ Θ′

200

⊢ skip ∼ skip ∶ Θ ⇒ Θ
⊢ c1 ∼ c′1 ∶ Θ ⇒ Θ′ ⊢ c2 ∼ c′2 ∶ Θ′⇒ Θ′′

⊢ c1; c2 ∼ c1; c′2 ∶ Θ ⇒ Θ′′

⊢ x ∶= e ∼ y ∶= e′ ∶ Θ[e⟨1⟩/x⟨1⟩, e′⟨2⟩/y⟨2⟩]⇒ Θ

⊢ c1 ∼ c′1 ∶ Θ ∧ (b⟨1⟩ ∧ b′⟨2⟩)⇒ Θ′ ⊢ c2 ∼ c′2 ∶ Θ ∧ not(b⟨1⟩ ∨ b′⟨2⟩)⇒ Θ′

⊢ if (b) then c1 else c2 ∼ if(b′)then c′1 else c
′
2 ∶ Θ ∧ (b⟨1⟩ = b′⟨2⟩)⇒ Θ′

⊢ c ∼ c′ ∶ Θ ∧ (b⟨1⟩ ∧ b′⟨2⟩)⇒ Θ ∧ (b⟨1⟩ = b′⟨2⟩)
⊢ while (b) do c ∼ while (b′) do c′ ∶ Θ ∧ (b⟨1⟩ = b′⟨2⟩)⇒ Θ ∧ not(b⟨1⟩ ∨ b′⟨2⟩)

c ∼ c′ ∶ Θ1 ⇒ Θ2 ⊧ Θ′1 ≤ Θ1 ⊧ Θ2 ≤ Θ′2
c ∼ c′ ∶ Θ′1 ⇒ Θ′2

c ∼ c′ ∶ Θ ⇒ Θ′ ⊧ PER(Θ ⇒ Θ′)
c′ ∼ c ∶ Θ ⇒ Θ′

c ∼ c′ ∶ Θ ⇒ Θ′ c′ ∼ c′′ ∶ Θ ⇒ Θ′ ⊧ PER(Θ ⇒ Θ′)
c ∼ c′′ ∶ Θ ⇒ Θ′

Figure 5.20: Core Relational Hoare Logic [Ben04].

intuitively means that under the contextΘ as the precondition of execution state

and the postconditional requirementΘ′ on states,c andc′ are can be interchanged.

We have the following semantic definitions:

JΘ ⇒ φτK ≜ {(e, e′) ∣ ∀(σ,σ′) ∈ JΘK.(σ(e), σ′(e′)) ∈ JφτK}

and

JΘ ⇒ Θ′K ≜ {(c, c′) ∣ ∀(σ,σ′) ∈ JΘK.(JcK(σ), Jc′K(σ′)) ∈ JΘ′K�}.

201

5.8.2 Relational Hoare Logic

One of the properties that cannot be expressed under theDDCC type system is

the knowledge of how the boolean guard evaluates when control is passed to a

particular branch of a conditional statement. This is addressed by the system

calledRelational Hoare Logic(RHL) where one may specify such properties, and

is intended to be a basis for developing various specific program analyses and

transformations. This system is presented in Figure 5.20.

RHL defines generalised expressions and relational assertions as follows:

gexp∋ GE ∶∶= n ∣ x⟨1⟩ ∣ x⟨2⟩ ∣GE iop GE

relexp∋∶∶= b ∣GE bop GE∣ notΘ ∣Θ lop Θ.

The semantics of generalised expressions and relational assertions are given

by:

202

JGEK ∈ Σ ×Σ→ Z

JnK = n

Jx⟨1⟩K(σ1, σ2) = σ1(x)

Jx⟨2⟩K(σ1, σ2) = σ2(x)

Je iop e′K(σ1, σ2) = (JeK(σ1, σ2)) iop (Je′K(σ1, σ2))

JΘK ⊆ Σ ×Σ

= {(σ,σ′) ∣ χΘ(σ,σ′) = tt}

χtt(σ,σ′) = tt

χff(σ,σ′) = ff

χb bopb′(σ,σ′) = JbK(σ,σ′) bopJb′K(σ,σ′)

χΘ lop Θ′(σ,σ′) = χΘ(σ,σ′) lop χΘ′(σ,σ′)

χnotΘ(σ,σ′) = ¬(χΘ(σ,σ′))

The basic RHL judgement is of the formc ∼ c′ ∶ Θ ⇒ Θ′, and the meaning of this

judgement is given by

⊧ c ∼ c′ ∶ Θ ⇒ Θ′ ≡ ∀(σ,σ′) ∈ JΘK.(JcK(σ), Jc′K(σ′)) ∈ JΘ′K�.

The lift of JΘ′K is denoted by the bottom reflecting relationJΘ′K� = JΘ′K∪{(�,�)}

andJcK ∈Σ→ Σ� is the denotational semantics ofc, which is given in the category

of predomains and continuous functions. Furthermore, we have the following

203

auxiliary judgements and their meanings:

⊧ Θ ≤ Θ′ ≡ JΘK ⊆ JΘ′K

⊧ PER(Θ) ≡ (JΘK ○ JΘK) and(JΘK
−1 ⊆ JΘK).

5.8.3 Static Analysis

TheDDCC and theRHL system may be used to provide proofs of correctness of

program transformation as well as static analysis. For static analysis, emphasis

is laid on the semantics of (expression and command) types as a description of

program properties. Thus,⊢ eτ ∼ eτ ∶ Θ ⇒ φτ or simply⊢ eτ ∶ Θ ⇒ φτ describes

a property of the evaluation ofeτ under the constraintΘ on states: that is, given

the contextΘ, the evaluation ofeτ is indistinguishable via the PERφτ . This

interpretation is the same as the definitione ∶ φ (dropping theτ subscripts) in the

information flow analysis, which is the greatest PER on states (using the order≤)

for which the evaluation ofe is indistinguishable underφ. In other words, for all

Θ ≤ e ∶ φ we have⊢ e ∶ Θ ⇒ φ. As an interpretation of information released,

the attacker that cannot distinguish evaluations ofe that are related byφ, gains

at most the information modelled by the PERe ∶ φ on program states. Thus,

for the semantic attacker in our analysisφ = id, being able to observe precisely

the evaluation of expressions as prescribed by the operational semantics. In the

following, we shall omit theτ subscripts.

For program commands, the static analysis ofc is specified under theDDCC

andRHL system as⊢ c ∼ c ∶ Θ ⇒ Θ′, or simply as⊢ c ∶ Θ ⇒ Θ′, which may

be interpreted to mean that under the context prescribed by the pre-relationΘ, the

execution ofc satisfies the properties described by the post-relationΘ′ on states.

204

UnderDDCC, the relationsΘ andΘ′ are PERs over program states, although they

may not necessarily be under theRHLsystem. We restrict our discussions to PERs

only.

5.8.4 Improving the Precision of Information Flow Analysis

The proofs from theDDCC andRHLmay be used to improve the precision of our

information flow analysis. For example, the approximation of information flow

that may result due to equivalent branches in a conditional statement can be made

more precise. Suppose the subprogramsc1 andc2 of a conditionalif statement

contain nowrite statements and that⊢ c1 ∼ c2 ∶ Θ ⇒ Θ′, then by this equivalent

branches property, the analysis ofif(b)thenc1elsec2 under the configuration

ϕ such thatdom(ϕ) ⊆ dom(JΘK)may be replaced with

dom(ϕ) ⊆ dom(JΘK) ⊢ c1 ∼ c2 ∶ Θ ⇒ Θ′ ϕ c1 ϕ′

ϕ if(b)then c1 else c2 ϕ′
. (5.5)

This takes advantage of the fact that the subprograms are semantically equiva-

lent under the context provided byΘ. By applying this, the analysis of the earlier

program,if(h = 10)then l ∶= 1 else l ∶= 1;write l, becomes precise under

any starting pre-configuration. However, (5.5) does not help with the program

if(h = 10)then l ∶= h else l ∶= 10;write l, becausel ∶= h and l ∶= 10 are

not equivalent under all contexts. In this case however, the program releases no

information abouth because the value ofl after the conditional is independent of

the execution path. We can improve the precision in such a case by taking ad-

vantage of the knowledge of how the boolean guard evaluates when conditional

subprograms are executed. This can be specified under theRHL system by using

205

thecommon branch[Ben04] rule and the following:

dom(ϕ) ⊆ dom(JΘK) ⊢ c1 ∶ Θ ∧ b⟨1⟩⇒ Θ′ ⊢ c2 ∶ Θ ∧ not b⟨1⟩⇒ Θ′ ϕ c1 ϕ′

ϕ if(b)then c1 else c2 ϕ′
.

(5.6)

Although the language ofRHL does not have an explicit output construct, we

can deal withwrite statements under theRHLsystem by extending state with fresh

(“output”) variables, which record the value of program output, by adding the rule

⊢ e ∼ x ∶ Θ ⇒ id
⊢ write e ∼ write x ∶ Θ ⇒ Θ, x ∶ id

(5.7)

This rule extends state with the new variablex, which is observationally indistin-

guishable from the expressione under the contextΘ. With this extension we can

specify when branches are observationally equivalent. For example, by combin-

ing (5.7) and (5.6) we are able to derive a more precise analysis for the program

if(h = 10)then write 1 else write 1.

Summary In this chapter we have presented a static information flow analysis

technique forWhileprograms using lattices of PERs over the program state. This

analysis is developed relative to the semantic attacker model, which can observe

the execution of programs in the usual way, with the additional ability to determine

whether the program terminates or not. We proved the correctness of the analysis.

In the next chapter, we shall show how abstract interpretation techniques can be

employed to adapt the analysis to less precise lattices, which may be tailored

towards a particular policy to make the static analysis more tractable.

206

Chapter 6

Abstract Information Flow Analysis

In the previous chapter we presented a static analysis technique based on PERs

for the analysis of information flow inWhileprograms. In practice, on one hand,

we may not need the level of expressiveness, for example, “the attacker learns the

secreth when the inputl = 10” that may be expressed by using the PER lattice.

Instead, for example, we may just be interested in knowing whether the secreth

may ever be released. Thus, depending on the policy to be enforced, it may be

possible to choose a less expressive lattice of information, which may lead to the

simplification of the analysis. On the other hand, a large or complex lattice of

information may be computationally prohibitive, necessitating the choice of a less

computationally expensive lattice to make the analysis of information flow more

tractable. This chapter demonstrates how abstract interpretation techniques may

be used to address this problem by allowing us to perform correct analyses over

simpler (but possibly less-precise) information lattices.

207

6.1 Abstract Interpretation

Abstract interpretation is a standard formal framework in which a provablycor-

rectstatic analysis may be performed over a non-standardabstractdomain [CC77,

CC79, CC92, NNH99]. The abstract domain is defined relative to a standardcon-

cretedomain, where elements of the abstract domain encode properties of ele-

ments in the concrete domain. The most important requirement for abstract inter-

pretation is that ofcorrectness, so that program properties which are derived under

the non-standard abstract interpretation are satisfied by the standardconcretein-

terpretation. The notion of the “abstract domain”, however, is relative to a chosen

“concrete domain”, which may itself be abstract relative to another domain.

The process of selecting an abstract domain often involves approximations,

which may make the analysis less precise. For example, we might be interested

in studying the properties of a program, which computes with integer values, and

how it transforms these values over an abstract domain ofsignandparity. Thus,

when the program output is2, an abstract analysis which judges the output of

the program as a positive even integer is correct, although less precise than the

concrete analysis2. We may choose an even more abstract domain relative to

the parity-sign domain, which contains only sign information and which judges

the output even less precisely as a positive integer. While some precision may

be sacrificed, the choice of the space over which analysis is performed can some-

times determine whether an analysis will be tractable or not. Traditionally, the

space over which an analysis is performed is often arranged as a complete lattice

such that the lattice order relation specifies the relative degree of precision of the

judgements of analysis [NNH99].

208

6.1.1 Design Space for Approximate Analyses

The more precise an analysis is, usually the larger and more complex its prop-

erty space will be because fine-grained properties can be represented. In abstract

interpretation, the passage from more complex concrete domains to simpler, but

possibly less precise, abstract domains is usually formalised as aGalois connec-

tion [CC79]. A Galois connection between two complete lattices⟨A1,⊑1⟩ and

⟨A2,⊑2⟩ is defined via a pair of adjoint functions(α,γ), where theabstraction

functionα ∶ A1 → A2 maps elements inA1 to their abstraction inA2 and thecon-

cretisation functionγ ∶ A2 → A1 expresses the meaning of elements ofA2 using

the elements ofA1. The quadruple(A1, α, γ,A2) is said to be a Galois connection

iff α andγ are total and alla1 ∈ A1 anda2 ∈ A2 satisfy the property

α(a1) ⊑2 a2 ⇐⇒ a1 ⊑1 γ(a2). (6.1)

The meaning of this definition is that ifa2 safely approximates the abstraction of

a1 (that is,α(a1) ⊑2 a2), then the concretisation ofa2 must safely approximatea1

(that is,a1 ⊑1 γ(a2)) [NNH99]. SupposeidA is the identity function on setA, an

alternative, but equivalent, formulation of (6.1) is that(A1, α, γ,A2) is a Galois

connection iffα andγ are monotone and also satisfy the property

idA1
⊑1 γ ○ α andα ○ γ ⊑2 idA2

. (6.2)

It is sufficient to specify just one of the adjunctionα, γ in a Galois connection

because one is uniquely determined by the other: for alla1 ∈ A1 anda2 ∈ A2,

α(a1) = ⊓{a′1 ∣ a1 ⊑1 γ(a′1)} andγ(a2) = ⊔{a′2 ∣ α(a
′
2) ⊑2 a2} [NNH99].

209

6.2 Dependency Analysis

By applying abstract interpretation techniques we shall show in this section how

to transfer the information flow analysis of Chapter 5 to a suitable abstract lattice.

The main steps are standard and fairly mechanical, which involves the choice of

abstraction function from PERs to the chosen abstract lattice, and the definition of

sound abstractions for the operations on PERs. This is illustrated by the develop-

ment of a termination-sensitive dependency analysis forWhileprograms.

6.2.1 Dependency Abstractions

PERs over the set of program states represent information about program vari-

ables. This information can be interpreted as variable dependencies, where the

dependency that a PER encodes is the set of variables that the PER contains infor-

mation about. We shall start by defining information abstractions mapping PERs

to lattices of variable dependencies, by which we can extract dependency infor-

mation from PERs.

Definition 6.2.1 (Dependency Abstraction). Let Var be the set of variables of a

program whose set of states isΣ. The setVar is assumed to be finite. Define

L ≜ ⟨P(Var),⊆⟩ andL2 ≜ ⟨P(P(Var)),⊆⟩ to be lattices ordered by the subset

inclusion order. Hence, the natural join operation on the latticesL andL2 is the

set union operation∪.

Define the dependency operation∆ ∶ P(Σ)→ P(Var) such that for anyΣ ⊆Σ

∆(Σ) ≜ {x ∈Var ∣X = {x}, havocX(Σ) ≠ Σ}.

210

Define the dependency abstractionsαL ∶ PER(Σ)→ L andαL2
∶ PER(Σ)→ L2 on

PERs such that for anyR ∈ PER(Σ)

αL(R) ≜ ⋃
σ∈dom(R)

∆([σ]R)

and

αL2
(R) ≜ {∆([σ]R) ∣ σ ∈ dom(R)}.

Define acompositionaljoin operation⊔ on the latticeL2 such that for any

X,Y ∈ L2, X ⊔ Y = {Z ∪ Z ′ ∣ Z ∈ X,Z ′ ∈ Y } andX ⊔ ∅ = ∅ ⊔ X = X. The

natural extension of⊔ to subsets ofL2, for anyX = {Xj ∣ j ∈ J} ⊆ L2, is given by

⊔X = {⋃j∈J Zj ∣Zj ∈ Xj}.

An elementX ∈ L2 is said to representdisjunctive dependencyabout variables

x, y ∈Var iff for all Z ∈X,x ∈ Z Ô⇒ y ∉ Z andy ∈ Z Ô⇒ x ∉ Z.

A non-disjunctive interpretation of elements ofL2 on the latticeL is given by

the functionα∪ ∶ L2 → L which is defined for anyX ∈ L2 as the unionα∪(X) =

⋃Z∈X Z.

The latticeL models variable dependency information. For example, in the

programl ∶= h1+h2+h3, the set{h1, h2, h3}models the dependency ofl onh1 and

h2 andh3 after the assignment. The motivation behind the latticeL2 is to differen-

tiate this dependency from, for example, the dependency{{h1, h2},{h1, h3}} on

the latticeL2, due to the programif(h1)then l ∶= h2 else l ∶= h3, where the

dependency{{h1, h2},{h1, h3}} of l is interpreted to mean thatl may be depen-

dent onh1 andh2, or onh1 andh3; but never onh2 andh3 at the same time. This

is a disjunctive dependency as defined above. Let us now show some properties

211

of the definitions.

Lemma 6.2.2.Let Σ1,Σ2 ⊆ Σ be subsets ofΣ. Then we have that∆(Σ1 ∩Σ2) ⊆

∆(Σ1) ∪∆(Σ2) and∆(Σ1 ∪ Σ2) ⊆ ∆(Σ1) ∪∆(Σ2) and∆(Σ1/Σ2) ⊆ ∆(Σ1) ∪

∆(Σ2).

Proof. Define the complement of∆ as ∆, which for anyΣ′ ⊆ Σ is given by

∆(Σ′) = {x ∈ Var ∣X = {x}, havocX(Σ′) = Σ′}. It is thus clear that∆(Σ′) =

Var/∆(Σ′). But for anyX = {x} ⊆Var, we have thathavocX(Σ1)∩havocX(Σ2) =

havocX(havocX(Σ1) ∩ havocX(Σ2)) by (3b) lemma 5.4.8, and hence ifhavocX(Σ1) =

Σ1 and havocX(Σ2) = Σ2 thenΣ1 ∩ Σ2 = havocX(Σ1 ∩Σ2). Therefore,x ∈

∆(Σ1) andx ∈ ∆(Σ2) implies thatx ∈∆(Σ1∩Σ2) (sinceΣ1∩Σ2 = havocX(Σ1 ∩Σ2)),

that is,∆(Σ1) ∩∆(Σ2) ⊆∆(Σ1 ∩Σ2). Hence,∆(Σ1 ∩Σ2) ⊆∆(Σ1) ∪∆(Σ2).

Similarly, sincehavocX(Σ1)∪havocX(Σ2) = havocX(havocX(Σ1) ∪ havocX(Σ2))

by (3a) of lemma 5.4.8 , it follows that∆(Σ1)∩∆(Σ2) ⊆∆(Σ1∪Σ2), which means

that∆(Σ1 ∪Σ2) ⊆ ∆(Σ1) ∪∆(Σ2).

Finally, by (3c) of lemma 5.4.8 we know thathavocX(Σ1)/havocX(Σ2) =

havocX(havocX(Σ1)/havocX(Σ2)). By similar argumentation as above, we ob-

serve thatx ∈ ∆(Σ1)∩∆(Σ2), impliesx ∈∆(Σ1/Σ2) and thus∆(Σ1)∩∆(Σ2) ⊆

∆(Σ1/Σ2), which shows that∆(Σ1/Σ2) ⊆ ∆(Σ1) ∪∆(Σ2).

Proposition 6.2.3.For any PERR ∈ PER(Σ), ∆(dom(R)) ⊆ αL(R).

Proof. The proof follows from Lemma 6.2.2 since the domain of a PER is the

union of its equivalence classes, and the fact that by the definition ofαL(R), for

every equivalence class[σ]R of R, we have∆([σ]R) ⊆ αL(R).

The operation∪ on the latticeL soundly abstracts⊔ andF on PER(Σ).

212

Lemma 6.2.4. For any R,R′ ∈ PER(Σ), αL(R ⊔ R′) ⊆ αL(R) ∪ αL(R′) and

αL(R FR′) ⊆ αL(R) ∪αL(R′).

Proof. LetR′′ = R⊔R′. By definition, for anyσ ∈ dom(R′′) the equivalence class

of σ in R′′ is given by[σ]R′′ = [σ]R ∩ [σ]R′. Hence by lemma 6.2.2 we have that

∆([σ]R′′) ⊆∆([σ]R) ∪∆([σ]R′). Hence,αL(R′′) ⊆ αL(R) ∪ αL(R′).

For the second part of the proof, now letR′′ = RFR′ and letΣ = dom(R)/dom(R′)

and letΣ′ = dom(R′)/dom(R). Then, by definition, we have that for anyσ ∈

dom(R′′), [σ]R′′ = [σ]R ∩ [σ]R′ if σ ∈ dom(R)∩dom(R′), and[σ]R′′ = [σ]R ∩Σ′

if σ ∈ dom(R) andσ ∉ dom(R′), and[σ]R′′ = [σ]R′ ∩ Σ if σ ∈ dom(R′) and

σ ∉ dom(R′). Now take anyx ∈ Var such thatX = {x} and supposex ∉

αL(R) ∪ αL(R′). Then we know that for allσ ∈ dom(R), havocX([σ]R) =

[σ]R and for all σ ∈ dom(R′), havocX([σ]R′) = [σ]R′. Thus, by applying

(3a) of lemma 5.4.8,havocX(dom(R)) = dom(R) and havocX(dom(R′)) =

dom(R′). Therefore, by applying (3c) of lemma 5.4.8, this means thatΣ =

dom(R)/dom(R′) = havocX(Σ) and similarly,Σ′ = havocX(Σ′). Thus, we

have that[σ]R′ ∩ Σ = havocX([σ]R′ ∩Σ) and[σ]R ∩ Σ′ = havocX([σ]R ∩Σ′)

and [σ]R ∩ [σ]R′ = havocX([σ]R ∩ [σ]R′) by applying (3b) of lemma 5.4.8,

and hence that for anyσ ∈ dom(R′′), [σ]R′′ = havocX([σ]R′′). Thus, x ∉

αL(R) ∪ αL(R′) Ô⇒ x ∉ αL(R F R′), which by the contrapositive means

thatαL(R FR′) ⊆ αL(R) ∪ αL(R′).

Lemma 6.2.5.For any expressione and PERφ over the values ofe, αL(e ∶ φ) ⊆

FV (e).

Proof. Take any variablex ∈Var such thatx ∉ FV (e), it is clear that the value of

e at any stateσ ∈ Σ is independent of the value ofx in that state. That is, for any

213

σ′ ∈ havocX({σ}), σ′(e) = σ(e), whereX = {x}. Since a PER is reflexive on its

domain, we have that for any possible valuesv, v′ of e such thatv φ v′ holds, then

v φ v holds and thus ifσ(e) = v, then for allσ′ ∈ havocX({σ}), σ′(e) = v. Hence,

for anyσ ∈ dom(e ∶ φ), [σ]e∶φ = havocX([σ]e∶φ), which means thatx ∉ αL(e ∶ φ).

Thus,x ∉ FV (e) Ô⇒ x ∉ αL(e ∶ φ). Therefore, by the contrapositive, we have

αL(e ∶ φ) ⊆ FV (e).

Proposition 6.2.6. For any Z ⊆ Var, andx ∈ Var, andR ∈ PER(Σ), we have

thatαL(↑ZR) ⊆ αL(R)/Z, andαL(
x∶=e
↝

R) ⊆ αL(R) ∪ {x}.

Proof. We know from the definition that for anyσ ∈ dom(↑ZR), there existΣ ⊆

dom(R) such that[σ]↑ZR = ⋃σ′∈Σ havocZ([σ′]R). Furthermore, we know that,

by definition, for anyσ′ ∈ Σ, ∆(havocZ([σ′]R)) ⊆ ∆([σ′]R)/Z and hence by

applying lemma 6.2.2,∆([σ]↑ZR) ⊆ ⋃σ′∈Σ ∆([σ′]R)/Z and, therefore,αL(↑ZR) ⊆

αL(R)/Z.

Now let X = {x} and letR′ =
x∶=e
↝

R . By definition, for anyσ ∈ dom(R′),

there existΣ ⊆ dom(R) such that[σ]R′ = ⋃σ′∈Σ{σ′′[x ↦ σ′′(e)] ∣ σ′′ ∈ [σ′]R}.

Since{σ′′[x↦ σ′′(e)] ∣σ′′ ∈ [σ′]R} is obtained from[σ′]R by modifyingx alone,

we have that∆({σ′′[x ↦ σ′′(e)] ∣ σ′′ ∈ [σ′]R}) ⊆ ∆([σ′]R) ∪ {x}. Hence, by

applying lemma 6.2.2,∆([σ]R′) ⊆ ⋃σ′∈Σ ∆([σ′]R) ∪ {x}. Therefore,αL(
x∶=e
↝

R) ⊆

αL(R) ∪ {x}.

Lemma 6.2.7.For any (E, I,O) ∈ Φ, we have thatαL(flow(e ∶ φ, (E, I,O))) ⊆

(⋃x∈FV (e)αL(E(x)) ∪ FV (e) ∪ αL(I))/TVar.

Proof. The definition offlow(e ∶ φ, (E, I,O)) is the PER↑TVarR, whereR =

e ∶ φ⊔I⊔RE and∀σ,σ′ ∈Σ, σREσ′ ⇐⇒ σ,σ′ ∈ dom(⊔x∈FV (e)E(x)). By apply-

ing proposition 6.2.3 and lemma 6.2.4, we know thatαL(RE) = ∆(dom(RE)) ⊆

214

⋃x∈FV (e)αL(E(x)). Furthermore, by lemma 6.2.5,αL(e ∶ φ) ⊆ FV (e). Hence,

by lemma 6.2.4 and proposition 6.2.6, we haveαL(↑TVarR) ⊆ αL(R)/TVar ⊆

(⋃x∈FV (e)αL(E(x)) ∪ FV (e) ∪ αL(I))/TVar.

Lemma 6.2.8. Let z ∈ TVar and letX = TVar/{z}. For any (E, I,O) ∈ Φ,

αL(aflow(z ∶= e, (E, I,O))) ⊆ (⋃x∈FV (e)αL(E(x)) ∪ FV (e) ∪ αL(I) ∪ {z}) /X.

Proof. By definition aflow(z ∶= e, (E, I,O)) = ↑X

z∶=e
↝

R , whereR = e ∶ φ ⊔ I ⊔

RE and∀σ,σ′ ∈ Σ, σ RE σ′ ⇐⇒ σ,σ′ ∈ dom(⊔x∈FV (e)E(x)). By applying

proposition 6.2.3 and lemma 6.2.2, we know thatαL(RE) = ∆(dom(RE)) ⊆

⋃x∈FV (e)αL(E(x)). Furthermore, by lemma 6.2.5,αL(e ∶ φ) ⊆ FV (e). Hence,

by lemma 6.2.4 we haveαL(R) ⊆ ⋃x∈FV (e)αL(E(x)) ∪ FV (e) ∪ αL(I). By

proposition 6.2.6 we haveαL(↑X

z∶=e
↝

R) ⊆ αL(
z∶=e
↝

R)/X ⊆ αL(R)/X ∪ {z}. How-

ever, sincez ∉ X, then we have thatαL(↑X

z∶=e
↝

R) ⊆ (αL(R) ∪ {z})/X. Hence,

αL(aflow(z ∶= e, (E, I,O))) ⊆ (⋃x∈FV (e)αL(E(x)) ∪ FV (e) ∪ αL(I) ∪ {z}) /X.

Corollary 6.2.9. Let (E, I,O) ∈ Φ and⟨E′, I ′,O′⟩ ∈ [Var → L2] ×L2 ×L2 such

that for all x ∈ Var, αL(E(x)) ⊆ α∪(E′(x)) andαL(I) ⊆ α∪(I ′), then for any

expression over variables inVar we have thatαL(aflow(z ∶= e, (E, I,O))) ⊆

⋃x∈FV (e)α∪(E′(x)) ∪ α∪(I ′) ∪FV (e) ∪ {z}.

Proof. The proof follows easily from lemma 6.2.8 since for allx ∈Var,αL(E(x)) ⊆

α∪(E′(x)) andαL(I) ⊆ α∪(I ′).

215

6.2.2 Semantics-Based Dependency Analysis

Let us now demonstrate how PERs in the static analysis of Chapter 5 semanti-

cally encode variable dependencies. Supposeh1, h2 ∈ {0,1} are input variables

to the programwrite e, wheree ≜ h1 XOR h2 is theexclusive ORof h1 andh2.

The PERe ∶ id ≡ {{(0,0), (1,1)},{(0,1), (1,0)}} represents1 the information re-

leased bywritee, whose analysis is given by(E�, I�,O�)writee(E�, I�, e ∶ id)

(recall from Chapter 5 that for allx ∈Var,E�(x) = I� = O� = all). It is thus clear

that the output of this program depends on bothh1 andh2. This is shown by

the fact thatαL(e ∶ id) = {h1, h2}, which is the dependency information released

to the output as encoded by theO-component of post-configuration of the static

analysis.

Now consider another expressione ≜ h1 +h2 −h2, whereh1 andh2 are natural

numbers, where state is a pair of the form(h1, h2). Then, we obtaine ∶ id ≡

{{(n,m) ∣m ∈ N} ∣ n ∈ N}, and thusαL(e ∶ id) = {h1}, which shows thate’s

value is dependent onh1 but independent ofh2. Thus, by using the dependency

abstractionαL on the PERe ∶ id induced by the evaluation of an expressione, we

can obtain a more precise (semantics-based) dependency abstraction ofe on its

free variable, namelyαL(e ∶ id) ⊆ FV (e). This is as opposed to the usual static

interpretationFV (e), which approximates the dependency ofe as the set of free

variables ofe.

Similarly to the treatment of outputs as demonstrated by the examples above,

we can derive a more precise dependency that is propagated during assignment to

the assigned variable from the PERs in theE-components of information config-

1This notation for PER representation, using the set of equivalence classes was introduced in
Chapter 5.

216

urations. Consider the expressione ≜ h1+h2−h2 again, and the assignmentl ∶= e,

under the pre-configuration(E�, I�,O�), then we have the post-configuration(E, I�,O�),

whereE = E�[l ↦ R] and (now representing state as triples of the form(h1, h2, l))

R ≡ {{(n,m,n) ∣m ∈ N} ∣ n ∈ N}. HenceαL(E(l)) = {l, h1}, which means again

that l depends onh1 but not onh2. The meaning ofl in αL(E(l)) can be ex-

plained by the fact thatR encodes the equality ofh1 andl and sinceR contains

information abouth1 it therefore also contains information aboutl.

The abstract analysis of implicit information flow due tocontrol dependency

is the same by considering the abstraction of theI-component of information con-

figurations. Consider the programs of Figure 6.1. Again in this example state is

represented by triples of the form(h1, h2, l) and the variables are assumed to be

natural numbers. First, consider the left-hand-side program. Starting the analy-

sis at the pre-configuration(E�, I�,O�), we have the implicit context in thethen

branch as the PERI1 = ((h1 = h2) ∶ T) ≡ {{(n,n,m) ∣ n,m ∈ N}} and hence

αL(I1) = {h1, h2} showing the dependency onh1 andh2. Similarly, for theelse

branch, the implicit context isI2 = ((h1 = h2) ∶ F) ≡ {{(n,n′,m) ∣ n,n′,m ∈

N, n′ ≠ n}} and henceαL(I2) = {h1, h2}. This implicit dependency is prop-

agated tol due to the assignments in the conditional branch. This is reflected

by the fact that the post-configuration of theif statement is(E, I�,O�), where

E = E�[l ↦ R] andR ≡ {{(n,n,1) ∣ n ∈ N},{(n,n′,2) ∣ n,n′ ∈ N, n′ ≠ n}}.

Thus,αL(E(l)) = {h1, h2, l}. It is also clear that the output depends onh1 and

h2 on line 5 since(E, I�,O�)write l (E, I�,O), whereO ≡ {{(n,n,m) ∣n,m ∈

N},{(n,n′,m) ∣ n,n′,m ∈ N, n′ ≠ n}} and henceαL(O) = {h1, h2}.

The right-hand-side program of Figure 6.1 demonstrates flow sensitivity. In

this program, on line 5, the post-configuration(E, I�,O�) of the conditional state-

217

ment in the previous example now serves as the pre-configuration of the assign-

ment as(E, I�,O�)l ∶= 3(E′, I�,O�), whereE′ = E[l ↦ R′] andR′ ≡ {{(n,n,3)∣n ∈

N},{(n,n′,3) ∣n,n′ ∈ N, n ≠ n′}}. Hence, the analysis of the following statement

is (E′, I�,O�) write l (E′, I�,O′), whereO′ ≡ {{(n,m,m′) ∣ n,m,m′ ∈ N}},

which shows that no information is released sinceαL(O′) = ∅.

i f (h1 = h2) then
l ∶= 1;

e l s e
l ∶= 2;

wr i te l;

1 i f (h1 = h2) then
2 l ∶= 1;
3 e l s e
4 l ∶= 2;
5 l ∶= 3;
6 wr i te l;

Figure 6.1: Dependency Analysis and Flow Sensitivity

6.2.3 Disjunctive Dependency, Nontermination, Dead Code

It was shown in Definition 3.5.9 how a PER over program states may describe

disjunctive information. A restatement of this definition in terms of variable de-

pendency is captured by the abstractionαL2
, which extracts the corresponding

disjunctive dependency. We say that a PERR contains disjunctive dependency

about variablesx, y ∈ Var if αL2
(R) represents a disjunctive dependency (see

Definition 6.2.1) about these variables. The intended meaning is that a PERR,

which contains disjunctive dependency aboutx andy does not reveal information

aboutx andy simultaneously. Consider the program listing in Figure 6.2, and

let us assume thatl, h1, h2 ∈ IVar, and thatl has a boolean data type, whereas

h1 andh2 are integers. The program either reveals the value of secreth1 or the

parity of secreth2 but never both at the same time - even if the attacker has con-

218

trol over the choice ofl. Thus, information is released about at most one ofh1

andh2 during any given run. The analysis shows this, and consequently the in-

duced PER demonstrates the disjunctive dependency of the observed output on

h1 or h2. Let the program of Figure 6.2 beP , then its analysis is given by

(E�, I�,O�) P (E�, I�,O), whereO ≡ {{(n,m, tt) ∣ m ∈ Z},{(m,n,ff) ∣ m ∈

Z, n mod2 = 0},{(m,n,ff) ∣m ∈ Z, n mod2 = 1} ∣ n ∈ Z}. Hence,αL2
(O) =

{{h1, l},{h2, l}} showing thatO contains disjunctive dependency abouth1 and

h2, that is, the output value of the program does not at any time depend on both

h1 andh2.

i f (l) then
write h1;

e l s e
write h2 mod 2;

Figure 6.2: Disjunctive Dependency

The semantic nature of the information flow analysis means that the PER ab-

stractions also capture when the value of a secret input affects termination be-

haviour. Furthermore, non-termination of a subprogram prevents further infor-

mation from being released in the trailing subprogram, because the program that

trails the diverging subprogram cannot be executed. These properties are illus-

trated in the dependency abstraction of the analysis of the program listing of Fig-

ure 6.3 (h1 is boolean andh2 is integer), where wheneverh1 = tt the program

diverges, but the program terminates otherwise (that is, wheneverh1 = ff). Ap-

plying the flow rules and starting the program analysis with the pre-configuration

(E�, I�,O�), the post-configuration of thewhilestatement is(E,∅,O), where ac-

cording to thewhile rule the resulting implicit context is the empty PER, and also

219

E(h1) = E(h2) = ∅ andO ≡ {{(tt, n) ∣n ∈ Z},{(ff , n) ∣n ∈ Z}}. Hence, we have

(E,∅,O) write h2 (E,∅,O) sinceO F flow(h2 ∶ id, (E,∅,O)) = O F ∅ = O.

Finally, applying theif rule, we obtain the post-configuration of theif statement

is (E′, h1 ∶ F,O), whereE′(h1) = E′(h2) = h1 ∶ F. Now, the PERO shows that

the attacker only gains information abouth1, but noth2, sinceαL2
(O) = {{h1}}.

This is because, semantically, thewrite statement is dead code.

i f (h1) then
whi le (tt) do

s k i p ;
write h2;

e l s e
s k i p ;

Figure 6.3: Nontermination and Dependency

Another dead code example isif(h1 ≠ h1)then write h2 else skip,

where the dependency analysis shows that the attacker gains no information about

h1 or h2. This is because(h1 ≠ h1) ∶ T = ∅, which means the branch is never exe-

cuted. In fact, suppose this program isP , then we have that(E�, I�,O�)P (E�, I�,O�)

showing that the attacker gains nothing sinceαL(O�) = ∅.

6.2.4 A Dependency Type System

We now present a type system that computes program dependency, and which im-

proves on existing flow-sensitive dependency type systems such as [AB04, HS06].

The improvements are in the identification of some disjunctive dependencies, ter-

mination sensitivity, and interactive outputs. This type system is shown to be

a sound abstraction of the information flow analysis of Chapter 5. Later on, in

220

section 6.4, we shall look at a technique that takes advantage of the dependency

abstraction of PERs to improve the precision of the dependency analysis.

For the analysis we shall usedependency configurations, as we did with infor-

mation configurations, to track dependencies. The analysis is performed over the

latticeL2 to identify disjunctive dependencies. Thus, a dependency configuration

is a typing environment which assigns dependencies to variables, the “program

counter”, and outputs; and is written in the form⟨E, I,O⟩, whereE ∶ Var → L2,

andI,O ∈ L2. The interpretation of the dependency of a variablex on the initial

values of program input under the configuration⟨E, I,O⟩ is given byα∪(E(x)).

Similarly, the interpretations of the dependency of the implicit context and the

output under this configuration areα∪(I) andα∪(O) respectively.

Typing judgement are of the form⟨E, I,O⟩ c ⟨E′, I ′,O′⟩, which represents

how theWhilecommandc transforms dependencies. Under a dependency config-

uration⟨E, I,O⟩, the dependency typing judgement for an expressione is given

by

E ⊢ e ∶ t ⇐⇒ t = ⊔
x∈FV (e)

E(x). (6.3)

Definition (6.3) is fairly standard in dependency analyses, but more precise anal-

yses can be performed as demonstrated later by the semantic typing judgement of

(6.6), which uses PERs to compute expression types.

The full algorithmic dependency type system, which computes input depen-

dencies is shown in Figure 6.4. In the typing rules, the operationF on dependency

configurations is defined for any pair of dependency configurations⟨E1, I1,O1⟩

and⟨E2, I2,O2⟩ as⟨E1, I1,O1⟩F⟨E2, I2,O2⟩ ≜ ⟨E′, I1 ∪ I2,O1 ∪O2⟩, where for all

x ∈Var,E′(x) = E1(x)∪E2(x). The dependency configurations are partially or-

221

dered by⊑+, such that⟨E1, I1,O1⟩⊑+⟨E2, I2,O2⟩ iff for all x ∈ Var,E1(x) ⊆ E2(x)

and I1 ⊆ I2 andO1 ⊆ O2. Furthermore, the predicateW (c) on a commandc

holds if c contains a conditionalwhile statement. Similarly to the concrete anal-

ysis presented in Chapter 5, the implicit context can encode information about

branching and termination. In particular, after awhilestatement, the execution of

subsequent programs is dependent on the termination or not of the precedingwhile

statement. This information about termination dependency on program variables

is encoded in theI-component of the dependency configuration. The termination

dependency is calculated in the post-condition of thewhile statement by taking a

join with the dependency of the boolean guard at the fixpoint. The possibility of

information flow due to a non-terminating branch is also derived in the analysis

of if statements by checking for the presence ofwhile statements in the branches

and retaining the dependency of the implicit context as necessary. Let us illustrate

the dependency type system with some examples.

6.2.5 Sample Analyses

We define a starting configuration⟨Eα
� , I

α
� ,O

α
� ⟩ for dependency analyses, such

that for allx ∈ Var, Eα
� (x) = {{x}} andIα

� = Oα
� = {∅}. The interpretation of

⟨Eα
� , I

α
� ,O

α
� ⟩ is that the execution of the program starts at a dependency configu-

ration where each variable depends only on its own initial value, but the implicit

context and output have no initial dependency.

Consider the program listing of Figure 6.5. By applying theif rule at the

starting configuration⟨Eα
� , I

α
� ,O

α
� ⟩ we obtain the implicit dependencyI1 = {{l}},

sinceEα
� ⊢ l ∶ {{l}}. Thus, thethenbranch analysis is⟨Eα

� ,{{l}},Oα
� ⟩z ∶= h1⟨E1,{{l}},Oα

� ⟩,

222

⟨E, I,O⟩ skip ⟨E, I,O⟩
E ⊢ e ∶ t

⟨E, I,O⟩ x ∶= e ⟨E[x ↦ I ⊔ t], I,O⟩

E ⊢ e ∶ t
⟨E, I,O⟩ write e ⟨E, I,O ⊔ I ⊔ t⟩

⟨E, I,O⟩ c1 ⟨E′, I ′,O′⟩ ⟨E′, I ′,O′⟩ c2 ⟨E′′, I ′′,O′′⟩
⟨E, I,O⟩ c1; c2 ⟨E′′, I ′′,O′′⟩

E ⊢ b ∶ t ⟨E, I ⊔ t,O⟩ ci ⟨Ei, Ii,Oi⟩ i = 1,2

⟨E, I,O⟩ if (b) then c1 else c2 ⟨E1, I
′
1,O1⟩ F ⟨E2, I

′
2,O2⟩

I ′i =
⎧⎪⎪
⎨
⎪⎪⎩

Ii if W (ci)
I otherwise

⟨Ei, Ii,Oi⟩ if(b)then c else skip ⟨E′i+1, I
′
i+1,O

′
i+1⟩

⟨Ei+1, Ii+1,Oi+1⟩ = ⟨E′i+1, I
′
i+1,O

′
i+1⟩ F ⟨Ei, Ii,Oi⟩

∀x ∈Var,E′(x) = E′′(x) ⊔ I ′ O′ = O′′ ⊔ I ′

⟨E, I,O⟩ while (b) do c ⟨E′, I ′,O′⟩

⟨E0, I0,O0⟩ = ⟨E, I,O⟩
⟨E′′, I ′′,O′′⟩ = 2i≥0 ⟨Ei, Ii,Oi⟩

E′′ ⊢ b ∶ t, I ′ = I ′′ ⊔ t

Figure 6.4: AnAlgorithmic Dependency Type System

whereE1 = Eα
� [z ↦ {{h1, l}}]. Similarly, for theelsebranch we have the analysis

⟨Eα
� ,{{l}},Oα

� ⟩z ∶= h2⟨E2,{{l}},Oα
� ⟩, whereE2 = Eα

� [z ↦ {{h2, l}}]. The post-

condition of theif statement is thus⟨E1, I
α
� ,O

α
� ⟩ F ⟨E2, I

α
� ,O

α
� ⟩ = ⟨E3, I

α
� ,O

α
� ⟩,

where we haveE3(z) = {{h1, l},{h2, l}}. The meaning ofE3(z) is that after the

if statement,z either depends onl andh1 or it depends onl andh2. However,z is

disjunctively dependent onh1 andh2 since it is never at any one time dependent

on bothh1 andh2. By applying thewrite rule, for the next statement we now

obtain⟨E3, I
α
� ,O

α
� ⟩ write z ⟨E3, I

α
� ,O3⟩, whereO3 = {{h1, l},{h2, l}} - which

means that the attacker gains information at most aboutl andh1 or l andh2 at any

one time.

Now consider the program (P) shown in listing of Figure 6.6, which is similar

223

i f (l) then
z ∶= h1;

el s e
z ∶= h2;

wr i te z;

Figure 6.5: Assignments and Disjunctive Dependency

to the program of Figure 6.5 by replacing the assignments withwrite statements.

We now obtain⟨E, I,O⟩P ⟨E, I,O3⟩. Thus, the program releases the same infor-

mation to the attacker as in the previous example, where the attacker (O3) either

gains information abouth1 andl or h2 andl but the attacker cannot learn abouth1

andh2 in the same run of the program.

i f (l) then
wr i te h1;

e l s e
wr i te h2;

Figure 6.6: Outputs and Disjunctive Dependency

The static analysis is termination-sensitive. To demonstrate this, consider the

program of Figure 6.7, where a choice ofh1 may lead to program divergence,

revealing information abouth1 and also aboutl because nontermination reveals

which branch of the conditionalif statement has been executed.

i f (l) then
whi le (h1) do

s k i p ;
e l s e

wr i te h2;

Figure 6.7: Nontermination and Dependency

224

Again, starting with the dependency configuration⟨Eα
� , I

α
� ,O

α
� ⟩, the analysis

of thewhile statement is⟨Eα
� , I1,O

α
� ⟩ while (h1) do skip ⟨E1, I

′
1,O1⟩, where

I1 = {{l}} andI ′1 = {{l, h1}}, and for allx ∈Var,E1(x) = Eα
� (x)⊔ {{l, h1}} and

O1 = {{l, h1}}. The interpretation ofO1 is that the attacker now gains information

abouth1 (due to the possibility of nontermination) andl (due to the knowledge

of the path taken when the program diverges). The possibility of nontermination

along a path containing awhilestatement means that the value that a variable takes

after thewhile statement now depends on whether thewhile terminates or not,

which in turn depends on how the boolean guard of thewhile evaluates. Hence,

for anyx ∈ Var, E1(x) reflects the possible dependency of the value ofx on the

while guard, that ish1, and onl because of the fact that the execution of thethen

branch is dependent onl.

For theelsebranch we have the analysis⟨Eα
� , I1,O

α
� ⟩ write h2 ⟨Eα

� , I1,O2⟩,

whereO2 = {{l, h2}}. The meaning of the dependency ofO2 is clear since an

output from this program reveals the value ofh2 and also reveals howl evalu-

ates. Hence, the post-condition of theif statement is⟨E′, I ′1,O′⟩ = ⟨E1, I
′
1,O1⟩ F

⟨Eα
� , I

α
� ,O2⟩. SinceO′ = {{l, h1},{l, h2}}, the attacker may gain information

aboutl andh1 or aboutl andh2. The implicit contextI ′1 of the if post-condition

also shows that the execution of commands after theif statement may depend on

the termination of thethenbranch and hence onl andh1.

The next example demonstrates the flow-sensitivity of the type system. Con-

sider the program listing of Figure 6.8, which does not reveal the secreth. Starting

at the configuration⟨Eα
� , I

α
� ,O

α
� ⟩, the dependency ofz after the first assignment

is {{h}} (which means thatz depends onh at that point) and after the second

assignment the dependency ofz is ∅ which means thatz’s value is independent

225

of any input value. Finally, we have⟨Eα
� [z ↦ ∅], Iα

� ,O
α
� ⟩ write z ⟨E′′, Iα

� ,O
α
� ⟩

showing that the attacker gains no information about the secret inputh.

z ∶= h;
z ∶= 0;
wr i te z;

Figure 6.8: Flow-Sensitivity of Dependency Analysis

6.2.6 Correctness of Dependency Analysis

We now show the correctness of the dependency analysis by proving that it is a

sound abstraction of the semantics-based information flow analysis of Chapter 5,

whose correctness has been shown. This is a standard technique. Firstly, we

define an abstraction function from information configurations (Φ) introduced in

Chapter 5 to the dependency configurationsΦL ≜ [Var→ L] ×L ×L overL, and

show that the dependency computation overΦL is a sound approximation of the

semantic analysis overΦ. The dependency configurations inΦL are ordered by

⊑, which is the subset inclusion order applied in the usual way, such that for any

⟨E, I,O⟩, ⟨E′, I ′,O′⟩ ∈ ΦL, ⟨E, I,O⟩ ⊑ ⟨E′, I ′,O′⟩ iff ∀x ∈ Var, E(x) ⊆ E′(x)

andI ⊆ I ′ andO ⊆ O′.

The dependency analysis of Figure 6.4 is carried out over the dependency con-

figurationsΦL2 ≜ [Var → L2] × L2 ×L2, which is ordered by⊑+ such that for any

⟨E, I,O⟩, ⟨E′, I ′,O′⟩ ∈ ΦL2, ⟨E, I,O⟩⊑+⟨E′, I ′,O′⟩ iff ∀x ∈ Var, E(x) ⊆ E′(x)

andI ⊆ I ′ andO ⊆ O′. However, we only want to show that the dependency

computation is a correct abstraction of the concrete analysis of Chapter 5, but we

do not want to model the disjunctive aspect. It appears to be the case that the

226

dependency type system also correctly abstracts the disjunctive information flow

model of Chapter 5, but we have not proved this. For the dependency analysis

correctness, we will extendαL2
andα∪ respectively to information configura-

tions and dependency configurations. This is defined for any(E, I,O) ∈ Φ as

αL2
((E, I,O)) = ⟨E′, I ′,O′⟩, where for allx ∈Var,E′(x) = αL2

(E(x))⊔{{x}}

andI ′ = αL2
(I) andO′ = αL2

(O). The interpretation of the extension ofαL2
to in-

formation configuration means that every variablex depends also on its own value.

Similarly, the extension ofα∪ to ΦL2 is defined such that for any⟨E, I,O⟩ ∈ΦL2,

α∪(⟨E, I,O⟩) = ⟨E′, I ′,O′⟩, where for allx ∈Var,E′(x) = α∪(E(x)) ∪ {x} and

I ′ = α∪(I) andO′ = α∪(O). The extension of the abstraction functionαL to infor-

mation configurations is now given by the composition of the extended functions:

αL = α∪ ○ αL2
. Hopefully, it will be clear from the context when we are referring

to the abstraction functions in Definition 6.2.1 or their extensions to information

or dependency configurations.

The statement of correctness is familiar from abstract interpretation.

Theorem 6.2.10.LetP be aWhile program, which does not modify itsIVar pro-

jection of states and which properly-initialises all itsTVar variables before use

as required by the concrete analysis of information flow(E�, I�,O�)P (E, I,O).

Let ⟨E0, I0,O0⟩ ∈ ΦL2, such thatαL2
((E�, I�,O�))⊑+⟨E0, I0,O0⟩, then the ab-

stract dependency analysis⟨E0, I0,O0⟩ P ⟨E′, I ′,O′⟩ of P satisfies the property

αL((E, I,O)) ⊑ α∪(⟨E′, I ′,O′⟩).

Proof. The proof proceeds by structural induction on the derivation trees. The in-

ductive step of the proof is that ifP = P0; . . . ;Pm; such that for anyn ≤m,Pn is ei-

ther askipstatement, or anassignment, or awrite statement, or a conditionalif or

227

whilestatement, and such that the inductive property holds forP0; . . . ;Pn−1, then it

holds also forP0; . . . ;Pn. Now suppose(E�, I�,O�)P0; . . . ;Pn−1 (E1, I1,O1) and

(E1, I1,O1)Pn(E2, I2,O2) hold as the concrete analyses of these programs and let

αL2
((E�, I�,O�))P0; . . . ;Pn−1⟨E

L2

1 , IL2

1 ,OL2

1 ⟩ and⟨EL2

1 , IL2

1 ,OL2

1 ⟩ Pn ⟨E
L2

2 , IL2

2 ,OL2

2 ⟩

be their respective dependency analyses. We know by the induction hypothe-

sis thatαL((E1, I1,O1)) ⊑ α∪(⟨EL2

1 , IL2

1 ,OL2

1 ⟩) = ⟨E
L
1 , I

L
1 ,O

L
1 ⟩, but we need to

show thatαL((E2, I2,O2)) ⊑ ⟨EL2 , I
L
2 ,O

L
2 ⟩ = α∪(⟨E

L2

2 , IL2

2 ,OL2

2 ⟩).

• The proof whenPn is theskip statement is clear.

• Let Pn be the assignment statementz ∶= e, wherez ∈ TVar, then we

have the concrete analysis ofPn as(E1, I1,O1) z ∶= e (E2, I1,O1), where

E2 = E1[z ↦ aflow(z ∶= e, (E1, I1,O1))]. Hence, it remains to show that

αL(E2(z)) ∪ {z} ⊆ EL2 (z) = α∪(E
L2

2 (z)) ∪ {z}. LetX = TVar/{z}. We

know thatαL(E2(z)) ⊆ (⋃x∈FV (e)αL(E1(x)) ∪FV (e) ∪αL(I1) ∪ {z}) /X

from lemma 6.2.8. SinceP does not assign toIVar variables, we know that

for all x ∈ IVar,{{x}} ⊆ EL2

1 (x) since the starting dependency configura-

tion ofP has the property that⟨Eα
� , I

α
� ,O

α
� ⟩ = αL2

((E�, I�,O�))⊑+⟨E0, I0,O0⟩.

Hence, ifEL2

1 ⊢ e ∶ t andY = IVar∩FV (e), then we know that⋃x∈FV (e) α∪(E
L2

1)∪

Y ⊆ α∪(t). By the induction hypothesis we know that for allx ∈Var, αL(E1(x))∪

{x} ⊆ α∪(E
L2

1 (x)) ∪ {x} andαL(I1) ⊆ α∪(I
L2

1), hence sincez ∉ X, we

know that,αL(E2(z)) ⊆ (⋃x∈FV (e)αL(E1(x)) ∪FV (e) ∪ αL(I1) ∪ {z}) /X ⊆

(⋃x∈FV (e)αL(E
L2

1 (x))∪Y ∪α∪(IL2

1)∪ {z})/X ⊆ α∪(t)∪α∪(I
L2

1)∪ {z} =

α∪(EL2

2 (z))∪{z}. By this we obtain the required property thatαL(E2(z))∪

{z} ⊆ EL2 (z) = α∪(E
L2

2 (z)) ∪ {z}.

• Let Pn be the statementwrite e, whose concrete information flow anal-

228

ysis is(E1, I1,O1) write e (E2, I2,O2). By lemma 6.2.7 we know that

αL(flow(e ∶ id, (E1, I1,O1))) ⊆ (⋃x∈FV (e)αL(E1(x))∪FV (e)∪αL(I1))/TVar.

By the induction hypothesis we have that for allx ∈ Var, αL(E1(x)) ∪

{x} ⊆ α∪(E
L2

1 (x)) ∪ {x} andαL(I1) ⊆ α∪(I
L2

1). Furthermore, suppose

EL2

1 ⊢ e ∶ t. SinceP does not assign toIVar variables, we know that

for all x ∈ IVar,{{x}} ⊆ EL2

1 (x), and henceY = IVar ∩ FV (e) ⊆

⋃x∈FV (e)α∪(E
L2

1 (x)) ⊆ α∪(t). Therefore,αL(flow(e ∶ id, (E1, I1,O1))) ⊆

(⋃x∈FV (e)α∪(E
L2

1 (x))∪Y ∪α∪(I
L2

1))/TVar ⊆ (α∪(t)∪α∪(IL2

1))/TVar ⊆

α∪(t) ∪ α∪(I
L2

1). SinceO2 = O1 F flow(e ∶ id, (E1, I1,O1)), and by the

induction hypothesisαL(O1) ⊆ α∪(OL2

1), then by applying lemma 6.2.4

we know thatαL(O2) ⊆ αL(O1) ∪ αL(flow(e ∶ id, (E1, I1,O1))) ⊆ OL2 =

α∪(OL2

1) ∪ α∪(t) ∪ α∪(I
L2

1).

• Let Pn beif (b) then c1 else c2. SupposeEL2

1 ⊢ b ∶ t, we observe by in-

duction on the preceding program that the pre-configuration⟨EL2

1 , IL2

1 ⊔ t,OL2

1 ⟩

of c1 andc2 have the property thatαL((E1,flow(b ∶ T, (E1, I1,O1)),O1)) ⊑

α∪(⟨EL2

1 , IL2

1 ⊔ t,OL2

1 ⟩) and thatαL((E1,flow(b ∶ F, (E1, I1,O1)),O1)) ⊑

α∪(⟨E
L2

1 , IL2

1 ⊔ t,OL2

1 ⟩) since by applying lemma 6.2.7 we know that the

propertyαL(flow(b ∶ φ, (E1, I1,O1))) ⊆ α∪(t)∪α∪(I
L2

1) holds for any PER

φ over booleans. Hence, by applying the induction hypothesis toc1 and

c2 we know that the post-configuration of theif statement has the required

property, in particular, since the operationF over dependency configurations

preserves set union on the latticeL.

• Let Pn bewhile (b) do c. The proof ofwhile rule is similar to theif rule

by applying the induction hypothesis to the derivation tree ofPn. Further-

229

more, since by the definition ofF forms an increasing chain on the lattice of

dependency configurations we know that the fixpoint of thewhile analysis

exists and is reached in a finite number of steps becauseΦL2 is a finite, and

therefore complete, lattice due to the finiteness of the setVar.

The base case of the inductive proof, before any command is processed, holds

vacuously since for any⟨E0, I0,O0⟩ such thatαL2
((E�, I�,O�))⊑+⟨E0, I0,O0⟩, and

we have also thatαL((E�, I�,O�)) ⊑ α∪(⟨E0, I0,O0⟩).

6.3 Flow-Sensitive Type Systems

A flow-sensitive type system is presented in [HS06], which deems more pro-

grams secure than traditional flow-insensitive noninterference security type sys-

tems, such as [VSI96]. The family of type systems proposed in [HS06] is parametrised

by an arbitrarily chosen finite flow lattice. When the flow lattice is chosen to be the

powerset lattice of program variables, the type system is the De-Morgan dual of

the independency type system of [AB04]. While the type system of [AB04] com-

putes independencies between variables, the type system of [HS06] more directly

computes variable dependencies under the powerset lattice of program variables.

A command typing judgement in [HS06] has the following form

p ⊢LHS Γ {c} Γ′. (6.4)

This describes how the commandc transforms type environments (Γ to Γ′) under

a given contextp. The inference system (⊢LHS) is parametric to a chosen finite

lattice LHS, and the type environmentsΓ,Γ′, . . . are maps from the setVar of

230

variables to the latticeLHS. The implicit context typep ∈ LHS records the type of

a program point, and is used to eliminate implicit flows. For an expressione over

Var, the type derivation under the environmentΓ is given by:

Γ ⊢LHS e ∶ t ⇐⇒ t = ⊔
x∈FV (e)

Γ(x). (6.5)

Although we can equally choose any arbitrary finite flow lattice under our depen-

dency approach, we shall choose the powerset lattice ofVar to compare our type

system with that of [HS06] such thatLHS = L = P(Var). The (algorithmic) type

system2 of [HS06] is presented in Figure 6.9.

Skip
p ⊢ Γ {skip} Γ

Assign
Γ ⊢ e ∶ t

p ⊢ Γ {x ∶= e} Γ[x↦ p ⊔ t]

Seq
p ⊢ Γ {c1} Γ′ p ⊢ Γ′ {c2} Γ′′

p ⊢ Γ {c1; c2} Γ′′

If
Γ ⊢ b ∶ t p ⊔ t ⊢ Γ {ci} Γ′i i = 1,2

p ⊢ Γ {if (b) then c1 else c2} Γ′
Γ′ = Γ′1 ⊔ Γ′2

While
Γ′i ⊢ b ∶ ti p ⊔ ti ⊢ Γ′i {c}Γ′′i 0 ≤ i ≤ n

p ⊢ Γ {while (b) do c} Γ′n

Γ′0 = Γ, Γ′i+1 = Γ′′i ⊔ Γ,
Γ′n+1 = Γ′n

Figure 6.9: Hunt-Sands Flow-Sensitive Type Rules (Algorithmic Version)

6.3.1 Comparing the Type Systems

The typing environmentΓ serves a similar purpose to theE-environment of our

dependency configurations by considering the unionα∪(E(x)) as the type of vari-

2The inference system (⊢LHS) of Figure 6.9 has not been parametrised by the choice of flow
lattice with the hope that the choice is clear from the context.

231

ablex underΓ. Furthermore, the “program counter” typep achieves the same

objective as ourI-component of dependency configuration to rule out implicit

information flow. With the exception of thewrite construct in our analyses, the

main differences between our type system and that of [HS06] lie in the treatment

of whilestatements and in the detection of some disjunctive dependencies. We im-

prove on the type system of [HS06] by detecting some disjunctive dependencies

and by accounting for possible information release due to termination-sensitivity.

To illustrate the similarity, it is easy to see that for anywhile program, which

does not have awrite statement orwhile statement, we have the property that

under any type environmentΓ, and flow latticeL, and contextp such that for

all x ∈ Var,Γ(x) = α∪(E(x)) and p = α∪(I), thenp ⊢L Γ {P} Γ′ holds iff

⟨E, I,O⟩ P ⟨E′, I,O⟩ holds andΓ′(x) = α∪(E′(x)).

The treatment ofwhilestatement is different because the type system of [HS06]

does not take into account the ways in which values of variables may affect a pro-

gram’s termination behaviour. Specifically, our analysis keeps track of the depen-

dencies of thewhileguard and that of the implicit context in whichwhilestatement

is executed as a potential source of information leakage. This dependency is not

thrown away after the fixpoint of thewhilerule, but is retained in theI-component

of the post-condition, which intuitively means that the execution of statements af-

terwards is dependent on the termination or not of the precedingwhilestatement.

This dependency is also passed on to theE- andO-components since the values

of variables after awhile loop depend on the termination behaviour of thewhile

statement, and the observation of termination or nontermination may reveal the ex-

ecution path to the attacker. To illustrate these observations, consider the program

P ≜ (l ∶= 0; (if(h = 10)then (while (tt) do skip) else skip); l ∶= 1), which

232

under the environmentΓ where∀x ∈ Var,Γ(x) = {x} andp = ∅ has the anal-

ysis p ⊢L Γ {P} Γ[l ↦ ∅]. However, the observation of the value ofl as1 on

termination reveals information abouth, namely that its value is not10, which

this analysis does not capture. Under the environment⟨E, I,O⟩, where∀x ∈

Var,E(x) = {{x}} andI = O = {∅}, the analysis ofP is ⟨E, I,O⟩P ⟨E′, I ′,O′⟩,

whereE′(l) = I ′ = O′ = {{h}}. The implicit contextI ′ shows the dependency

of P ’s termination onh, andO′ reflects the fact that the attacker may obtain in-

formation abouth by observing whether or not the program terminates, and since

the termination ofP affects what final valuel can take,E′(l) shows the possible

dependency ofl onh.

Another area of improvement is in the identification of disjunctive depen-

dencies, where we may want to ensure that an attacker cannot gain informa-

tion about two chosen secrets at any one time. For example, consider the pro-

gram P ′ ≜ if(y)then l ∶= h1 else l = h2. Using Γ, p and ⟨E, I,O⟩ as

given above, we obtainp ⊢L Γ {P ′} Γ[l ↦ {y,h1, h2}] suggesting the possible

dependency ofl on y, h1 andh2 on termination ofP ′. However, the analysis

⟨E, I,O⟩ P ′ ⟨E[l ↦ {{y,h1},{y,h2}}], I,O⟩ makes explicit the fact thatl does

not depend on bothh1 andh2 on termination ofP ′.

6.4 Improving the Precision of Expression Types

This section shows how to use the abstraction of PERs to improve the typing

judgement for expressions. The typing judgement of (6.3) uses the dependencies

of the free variables of an expression in a given context to compute the depen-

dency of that expression in the context. This approach is traditionally used in

233

dependency analyses. However, some free variables in an expression may be ir-

relevant because their values do not affect the final value of the expression. For

example, althoughh2 is a free variable in the expressionh1 +h2 −h2, the value of

the expression is independent ofh2. The idea is to take advantage of the semantic

information, which identifies this kind of independency, in the typing judgement

of expressions, thereby improving the accuracy of analysis.

The equivalence relation constructe ∶ id in the information flow analysis of

Chapter 5 already provides us with a way to eliminate irrelevant free variables in

the expressione. Specifically, the abstractionαL(e ∶ id) ⊆ FV (e), which identi-

fies the set of variables thate may depend on in any context, can be used in the

typing judgement ofe to provide a more precise analysis. This more precise typ-

ing judgement for the expressione, under a dependency configuration⟨E, I,O⟩,

is given by

E ⊢ e ∶ t ⇐⇒ t = ⊔
x∈αL(e∶id)

E(x). (6.6)

The dependencyαL(e ∶ id) induced by the equivalence relatione ∶ id in (6.6) is the

smallest subset ofFV (e), elements of which the evaluation ofe depends on un-

der any evaluation context. Using the earlier example, the expressionh1 + h2 − h2

is dependent only on the variableh1 and henceαL((h1 + h2 − h2) ∶ id) = {h1}.

However, the expression(h1 −h1)× (h1 +h2) does not depend on any variable, as

shown by the fact thatαL(((h1 − h1) × (h1 + h2)) ∶ id) = ∅. Also, for any two ex-

pressionse ande′ that are semantically equal (that is, for allσ ∈ Σ, σ(e) = σ(e′)),

it is easy to show that the boolean expressionse = e′ and e ≠ e′ are indepen-

dent of any variable and this is confirmed by the fact thatαL((e = e′) ∶ id) =

αL((e ≠ e′) ∶ id) = ∅. In fact, any constant expressione has the property that

234

αL(e ∶ id) = ∅, showing that its value is not dependent on any variable.

Proposition 6.4.1.For any expressione, αL(e ∶ id) ⊆ FV (e).

Proof. Sincee ∶ id is an equivalence relation, for anyX = {x} ⊆ Var, such that

x ∈ αL(e ∶ id), then by definition there existsσ ∈ Σ wherehavocX([σ]e∶id) ≠

[σ]e∶id. SincehavocX(⋅) is extensive, hence there existsσ′ ∈ havocX([σ]e∶id)

such thatσ′ ∉ [σ]e∶id and thereforeσ′(e) ≠ σ(e). Since there exists a variation in

the value ofx which causes a variation in the valuee, thene is dependent onx

and thereforex ∈ FV (e).

The equivalence relatione ∶ id used to compute the dependency ofe in (6.6)

enjoys a special status because it is the most informative PER with respect to the

dependency ofe in any evaluation context. Formally, this means that for any PER

φ on the set of values ofe, αL(e ∶ φ) ⊆ αL(e ∶ id). Furthermore, the abstraction

αL(e ∶ id) is the smallest set of variables under which the value ofe remains

invariant when values of variables in this set are fixed. In other words, if a variable

x ∉ αL(e ∶ id), then a variation in the value ofx cannot cause a variation in the

value ofe.

Proposition 6.4.2.For any expressione and PERφ over the set of possible values

of e we haveαL(e ∶ φ) ⊆ αL(e ∶ id). Furthermore, ifX = {x} ⊆ Var and

x ∉ αL(e ∶ id), then for all σ,σ′ ∈ Σ such thatσ′ ∈ havocX({σ}) we have

σ(e) = σ′(e).

Proof. Take anyv ∈ dom(φ), sinceid is an equivalence relationv ∈ dom(id).

Now let Σv = {σ ∈ Σ ∣ σ(e) = v} be the equivalence class ofe ∶ id wheree

evaluates tov. Since PERs are reflexive on their domains then we have[σ]e∶φ =

235

⋃v∈[σ(e)]φ Σv and hence∆([σ]e∶φ) ⊆ ⋃v∈[σ(e)]φ ∆(Σv) by applying lemma 6.2.2.

Since the dependency of any equivalence class ofe ∶ φ is smaller than the union

of the dependency of some equivalence classes ofe ∶ id we have thatαL(e ∶ φ) ⊆

αL(e ∶ id).

For the second part of the proof, now take any equivalence class[σ]e∶id of the

equivalence relatione ∶ id, for someσ ∈ Σ, then by definition for allσ1 ∈ [σ]e∶id,

σ1(e) = σ(e). Sincex ∉ αL(e ∶ id), thenhavocX([σ]e∶id) = [σ]e∶id and since

σ ∈ [σ]e∶id thenhavocX({σ}) ⊆ havocX([σ]e∶id) by the extensivity ofhavocX(⋅),

it thus follows that for anyσ′ ∈ havocX({σ}), σ′ ∈ [σ]e∶id, and henceσ′(e) =

σ(e).

By replacing the definition of⊢ in the dependency type system of Figure 6.4

with the one given in (6.6) we can thus obtain a more precise analysis by elimi-

nating irrelevant free variables of expressions in typing judgements.

Summary In this chapter we have studied how abstract interpretation techniques

may be used to make the analysis of information flow more tractable by simplify-

ing the analysis space. A dependency analysis, developed in this chapter, which

is an abstract interpretation of the information flow analysis of Chapter 5, demon-

strates the application of the theory of abstract interpretation to information flow

analysis. The dependency analysis, which is termination-sensitive, can also detect

some disjunctive dependencies. To the best of our knowledge, the dependency

analysis is the first to account for information release due to nontermination. A

technique presented in this chapter shows how one can improve the precision of

expression dependency analysis by using PER abstractions induced by expres-

sion evaluations. The next chapter concludes the thesis with further examples and

236

lessons learnt, and identifies areas of future work.

237

Chapter 7

Analysis and Discussion

This chapter presents further examples, which illustrate the use of the modelling

and analysis techniques presented in this thesis. Examples such as models of au-

thentication, encryption, and statistical analysis are considered to highlight both

the theoretical and practical aspects of policy development, and the security anal-

yses of programs against such policies. The Chapter concludes with a review of

the main contributions and achievements of the thesis and identifies possible areas

of future work.

7.1 Policies for Authentication

Authentication is a fundamental security operation in many systems as the basis

of access control. However, by definition, authentication reveals some informa-

tion about secrets because, for example, a failed password authentication attempt

reveals what the password is not. Due to the necessity to release some informa-

tion about secrets, noninterference cannot be used as a policy for authentication.

238

We shall therefore study information release policies for authentication, which en-

sures that only the intended information release is possible in the implementation

of the authentication program.

We start by considering an archetypal password authentication program, which

demonstrates the release of information about the stored secret. Clearly a real im-

plementation will be different and may perform additional steps, but the core step

which is of concern to us is the part where theuser-supplied password(u) is com-

pared with a password (p), which has been previously stored1 in the system and

is supposed to be known only to the legitimate user. These secrets (or their im-

ages) are then compared for equality: if there is a match, the user is authenticated,

otherwise the authentication fails. A program modelling the authentication step

is shown in Figure 7.1, if the passwords match an output of1 is produced and

otherwise an output of2 signals authentication failure.

1 i f (u = p) then
2 wr i te 1 ; // authenticated
3 e l s e
4 wr i te 2 ; // not authenticated

Figure 7.1: A Model of Authentication

Intuitively, the authentication program is only allowed to reveal whether the

user-supplied password matches the stored password or not. The actual informa-

tion gained by the attacker during the authentication process however depends

on what the attacker knows. On one hand, if the attacker does not know the user-

supplied password (say by observing someone being authenticated, but cannot see
1In many modern operating systems a password is not directly stored, but its image, which is

usually a secure hash of the password itself. The authentication process involves checking the hash
of the user-supplied password against the hash of the stored password. In Unix-based systems,
salts are also used in order to make dictionary attacks less successful [MT79, Kle90, PS02].

239

the value that is being entered), the attacker should not learnanything about the

password, regardless of the outcome of the authentication. On the other hand, if

the attacker knows the supplied password (say, by looking over the shoulder of

the user or by entering a guess himself or herself), the attacker can learn at most

that the password is equal to the (known) value or not. We can represent this

information flow with PERs.

The information released by the password test can be represented by the equiv-

alence relation(p = u) ∶ id, which relates only the states where the values ofp and

u both agree or both disagree. Thus, the desired information flow policy for au-

thentication isPauth = {fauth ∣R ∈ PER(Σ), fauth(R) ≜ R ⊔ ((p = u) ∶ id)}, which

allows the attacker to observe only whether the passwords match or not. Now let

the program of Figure 7.1 beP , then the analysis,(E�, I�,O�)P (E, I,O), of this

program shows that it satisfies the authentication policy, sinceO = ((p = u) ∶ id).

To see that the policyPauth captures the intuition about the authentication in-

formation release, consider an attacker which knows the user-supplied password.

This knowledge can be represented by the equivalence relationidu, which can

distinguish different user supplied passwords:

∀σ,σ′ ∈Σ, σ idu σ
′ ⇐⇒ σ(u) = σ′(u).

Thus, the information that the attacker gains on observing the result of authenti-

240

cation is represented by the PERfauth(idu), where for anyσ,σ′ ∈Σ

σ fauth(idu) σ′ ⇐⇒ σ ((p = u) ∶ id ⊔ idu) σ′

⇐⇒ (σ(p = u) = σ′(p = u)) ∧ (σ(u) = σ′(u))

⇐⇒ (σ(p) = σ(u) ∧ σ′(p) = σ′(u)) ∨ (σ(p) ≠ σ(u) ∧ σ′(p) ≠ σ′(u))

∧ (σ(u) = σ′(u))

⇐⇒ (σ(p) = σ(u) = σ′(p) = σ′(u)) ∨ (σ(p) ≠ σ(u) = σ′(u) ≠ σ′(p)).

After observing the result of the execution of the authentication program, a pair of

states cannot be distinguished by the attacker that knows the supplied passwordu,

if it is related by the PERfauth(idu). Sinceσ fauth(idu) σ′ means that eitherp has

the same value as the known value ofu under both statesσ andσ′ (the case for

successful authentication), or (for the failed authentication attempt)p must have

a value that is different from the known value ofu in both states, the attacker

therefore learns the value ofp when the authentication is successful, otherwise

the attacker learns that the value ofp is not the chosen value ofu (since in this

casefauth(idu) relates all states except those in which the value ofp agrees with

u). This agrees with the intuition.

Now consider the attacker which does not have any prior knowledge ofp or

u before the authentication, for example, the attacker that is observing another

user’s attempt to log in but the attacker cannot see the user-supplied password.

This attacker’s knowledge is the equivalence relationall, which cannot distinguish

any pair of states. Thus the final knowledge of this attacker after observing the

authentication output isfauth(all) = (p = u) ∶ id. Since(p = u) ∶ id relates a pair of

states only if they both agree or both disagree on the values ofp andu, the final

241

knowledge of this attacker is consistent with the intuition that the attacker only

learns the fact that the supplied password and the stored password match in the

case of a successful login, or that they do not match in the case of a failed attempt.

This information has already been declassified by the policyPauth, and hence the

information release is safe.

7.1.1 Authentication Attack

Let us now consider a rogue implementation of the authentication program, shown

in Figure 7.2, which contains a trailing attack that reveals the user-supplied pass-

word. It is clear that this program contains an attack since the attacker needs not

know the user-supplied passworda priori in order to learn the stored password

when there is a successful authentication, or, what the stored password is not oth-

erwise.

i f (u = p) then
wr i te 1 ; // authenticated

e l s e
wr i te 2 ; // not authenticated

wr i te u; // attack

Figure 7.2: A rogue authentication program

Let us call the program of Figure 7.2PRogue, the information flow analysis

(E�, I�,O�) PRogue(E, I,O) shows thatPRoguedoes not satisfy the policyPauth

sinceO = ((u = p) ∶ id) ⊔ idu /⊑ (u = p) ∶ id. Other variations of this program,

for example, where the statementwrite u is moved to different places in the

program such as within the conditional statement, or before it, also fail to satisfy

the authentication policy.

242

7.1.2 Information-theoretic Characterisation

Now let us consider an information-theoretic policy for the authentication pro-

gram above. The use of information theory to model information release in this

scenario is reasonable because, for example, the security of password authentica-

tion systems is often based on the difficulty of obtaining the password by guess-

work, which has a sound information-theoretic justification. In the ideal setting,

the stored password should be selected with a uniform probability distribution

over a large space of possibilities (although this is usually not the case in prac-

tice because of human limitations with respect to remembering long or cryptic

passwords). A uniform distribution of the choice maximises the entropy of the

password space, and since the maximum entropy over a space of possible choices

increases with the size of the space, a large selection space further increases en-

tropy [Sha48].

Now since password authentication does not satisfy noninterference with re-

spect to the secret inputs, we expect some quantitative information to be released

by the authentication system. Our objective is to characterise the quantity that

may be legally released by the authentication system as a statement of its infor-

mation flow policy. This can be achieved by using Definition 3.8.5 to derive the

information flow of the genuine password authentication program, which gives us

a policy characterising the maximum information that may be released legally by

any implementation of the authentication program.

The input-output functional model2 of the authentication program is given by

2It does not matter that we did not model the observation of termination, so that the model
is g′ ∶Σ → {⟨1, ↓⟩, ⟨2, ↓⟩}, because there exists an isomorphism between the range of the two
functions so thatg′ = ι ○ g, so that the kernels ofg andg′ coincide.

243

the functiong ∶ Σ→ {⟨1⟩, ⟨2⟩} (for genuine) defined for anyσ ∈Σ as

g(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⟨1⟩ if σ(p) = σ(u)

⟨2⟩ otherwise.

We shall consider two attackers,A andB. AttackerA is trying to obtain the stored

password by guesswork. AttackerB on the other hand is observing the result of

A’s authentication session, but cannot see the supplied password.

The view ofB is defined by the functiong becauseB can only observe the

outcome of the authentication - which is public. However, unlikeB, A is able to

observe also supplied password sinceA is the one making the guess. So,A’s view

can be modelled by the functionr (for rogue) defined for anyσ ∈Σ as

r(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⟨1, i⟩ if σ(p) = σ(u) = i

⟨2, i⟩ if σ(p) ≠ σ(u) = i.

Thus, in addition to the ability to observe the outcome of the authentication pro-

cess, attackerA also knows the supplied inputi = σ(u). Thus, the analysis of

information flow to the attackerA is the same as the analysis of therogueau-

thentication program of Figure 7.2, which prints the user-supplied password in

addition to revealing the authentication status.

The remainder of the analysis is based on Definition 3.8.5. Let us assume,

for simplicity, that the password is chosen from the set{0,1,2,3} of possibilities,

which is publicly known. Furthermore, we assume that the choice is uniformly

distributed so that any of the four possibilities can be chosen with a probability

of 1
4
. SinceA does not know the stored password, we can assume thatA makes

244

uniformly distributed random guesses on the remaining space of possibilities of

the stored password values. So,u is initially chosen byA from the set{0,1,2,3}

with a probability of1
4
, and if the authentication fails,A makes the next choice on

the remaining set of possibilities with a probability of1
3
, and so on.

For the attackerB, the initial probability measureµB ∈M (Σ) describingB’s

uncertainty about the password isµB(σ) = 1
16

for anyσ ∈ Σ, obtained as the joint

probability of choosing anyp andu. Thus by the definition ofg, the (marginal)

probability of observing output⟨1⟩ for successful authentication isµB(⟨1⟩) = 1
4
,

and the probability of output⟨2⟩ for failed authentication isµB(⟨2⟩) = 3
4
. The

conditional probabilitiesµi(σ) that inputσ ∈ Σ was chosen, given the observed

outputi ∈ {1,2} are given by

∀σ ∈Σ, µB
⟨1⟩(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
4

if σ(p) = σ(u)

0 otherwise,

and

∀σ ∈Σ, µB
⟨2⟩(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if σ(p) = σ(u)

1
12

otherwise.

Furthermore,µB(⟨1⟩) = 1
4

and µB(⟨2⟩) = 3
4

are the marginal probabilities of pro-

ducing the outputs underµB. Thus, the information released by the authentication

programP (modelled by the functiong) under the assumptionµB of B’s initial

245

uncertainty is the mutual information (see Definition 3.8.5)

I⟨P,µB⟩ = H(µB) − ∑
v∈{1,2}

µB(v)H(µB
v)

= 4 − (
1

4
log(4) +

3

4
log(12))

≈ 0.8113 (7.1)

This value gives a measure of the information released by the genuine password

program under the assumptionµB about the attacker’s initial uncertainty and it

provides us with a statement of policy against which we can measure an imple-

mentation of the authentication program. The calculation of the measure of ap-

proximately0.8113 bits of information in (7.1) quantifies the loss in uncertainty

about the passwords by revealing their equality (which occurs1
4

of the time) or

not (which occurs3
4

of the time). Thus, the policy allows about0.8113 bits of

information to be released by the implementation of the authentication program

to an attacker whose initial uncertainty is modelled byµB over the input space.

To see how this policy rejects the implementationPRogue, now consider the

information flow under the view of the attackerA. The view ofA corresponds

to the implementationPRogue that reveals also the user-supplied password in ad-

dition to the result of authentication. The initial measure of uncertainty ofA

is µA ∈ M (Σ), where for anyσ ∈ Σ, µA(σ) = 1
16

. Thus,µA = µB, because

A is just making a purely random guess - having no initial knowledge which

makes it prefer the selection of a particular password over another from the set

of possible choices. Therefore, given the observation of the outputsi ∈ {1,2} and

u′ ∈ {0,1,2,3} of the possible outcome of the authentication and selected pass-

246

word respectively,A can compute the conditional probabilityµ⟨i,u′⟩ that a given

input state was selected as follows:

∀σ ∈Σ. µA
⟨1,u′⟩(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if σ(p) = σ(u) = u′

0 otherwise,

and

∀σ ∈ Σ. µA
⟨2,u′⟩(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
3

if σ(p) ≠ σ(u) = u′

0 otherwise.

Furthermore, the marginal probability of observing the output sequence⟨i, u′⟩

underµA is µA(⟨i, u′⟩), which for anyu′ ∈ {0,1,2,3} is given by

µA(⟨i, u′⟩) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
16

if i = 1

3
16

if i = 2.

Thus, the information released by the implementationPRogueis given by

I⟨PRogue,µ
A⟩ = 4 −

3

4
log(3) ≈ 2.8113. (7.2)

Thus,PRogue is rejected because it releases more than the allowed information

(that is, the0.8113 bits specified by the genuine authentication modelg) about

the secret inputs. The result of (7.2) demonstrates the fact that the attacker gains

complete knowledge ofu (2 bits) in addition to the knowledge (about0.8113 bits

on average) about the equality or not ofp andu.

Under the information-theoretic analysis, we have represented the security

policy as the number of bits of information allow to be released. One argument

247

against information-theoretic characterisation of secure information flow is the

fact that probability measures have to be assigned to each event in order to be able

to perform the analysis, and that such probability measures may not be available.

However, we note that although the approach requires the assignment of proba-

bility measures, the key idea is in the fact that we cancompare programs, under

the same measures to determine their relative security. The information policy

actually specifies what information flow property the ideal (with respect to secure

information flow) program should have, and measuring a given program against

this policy is tantamount to comparing it to this ideal. This technique is what the

analyses above suggest, where the rogue implementation is rejected based on the

information-theoretic policy written for the genuine implementation (more pre-

cisely, its modelg). In particular, in our view, the emphasis should not be on

the probability measures themselves, or how a specific program fares under dif-

ferent assumptions about the attacker’s uncertainty and the distribution of input

data. These assumptions may be wrong, and the results, which are dependent on

the choice of distributions may thus give us a false sense of (in)security. How-

ever, an insecure implementation of a particular system model cannot be made

more secure by the choice of the distribution with which analysis is performed.

When the precise probability distributions are known however, the argument for

information-theoretic analysis is strong.

7.2 Policies For Encryption

Encryption is an important security primitive that is used widely as a security

foundation in many systems. However, in order to protect the secrecy of sensitive

248

data we require policies that permit encryption to be used safely. Noninterference

policies cannot be used for encryption since the resulting (public) cyphertext in

an encryption scheme will depend on the supplied plaintext and key which are

considered secret. Thus there remains the problem of the specification of policies

that allow safe use of encryption in programs. In this section we shall study the

development of information policies that allow the safe use of encryption and the

security analysis of programs which use the encryption functions.

We start by considering an encryption functionE1 ∶K ×M → C, which ac-

cepts a key chosen from the setK of keys and message or plaintext chosen from

the setM , and produces a cyphertext in the setC. Now suppose thatE1 is consid-

ered secure and that its implementation, which we shall denote by the expression

enc(k,m), is correct, so that under any stateσ(enc(k,m)) = E1(σ(k), σ(m)).

Hence, we allow the attacker to observe the cyphertextenc(k,m) for any choice

of key k ∈ K and plaintextm ∈ M values. Hence we can define an equivalence

relation⌊E1⌋ which captures the intended information release, where⌊E1⌋ relates

every pair of statesσ andσ′, whereE1(σ(k), σ(m)) = E1(σ′(k), σ′(m)). Thus,

the required information flow policyPE1 ≜ {f ∣ R ∈ PER(Σ), f(R) = R ⊔ ⌊E1⌋}

allows the attacker to observe the ciphertext generated by a correct implementa-

tion of the encryption function. Firstly, since the implementationenc is secure,

it is easy to see that the information released by this implementation satisfies the

policy PE1 , because⌊E1⌋ = enc(k,m) ∶ id.

Now consider a secure (as well as an insecure) data backup scenario (adapted

from [AHS08]) as shown in the program listings of Figure 7.3. The LHS pro-

gram securely releases the encrypted data (ctxt) to a public output channel after

encrypting the data (data) with the keyk. However, the RHS implementation

249

is insecure because the programmer releases the plaintext data instead of the ci-

phertext. The analysis detects that the RHS program violates the policy because

data ∶ id /⊑ enc(k,data) ∶ id - unless the encryption function by definition reveals

the encrypted data, which violates our assumption thatenc is secure. Thus, the

analysis detects this flaw. This would be useful, for example, to the programmer

who can avoid such programming error by checking his or her implementation

against the desired policy.

ctxt : = enc(k, data);
wr i te ctxt;

ctxt : = enc(k, data);
wr i te data;

Figure 7.3: Secure versus Insecure Data Backup

The reason why the noninterference policy cannot be used for encryption lies

in the fact that noninterference prohibits any sort of variation in the observed out-

put from being induced by a variation in the secret input to the encryption func-

tion. However, one of the reasons why encryption is widely used as a security

primitive is the fact that the security lies in the ability to protect secret data even

when the encryption algorithm is known. Thus, a good encryption algorithm is

already designed so that it is not easily invertible into its constituent arguments,

although a variation in its input would cause a variation in its output for the algo-

rithm to be useful. The safe input-to-output variation caused by thedefinitionof

the encryption function is captured by theenc(k,m) ∶ id construct in the example

above, which allows only the output variations due to the definition of the encryp-

tion algorithm to be observed by the attacker. This is safe since the encryption

algorithm is already assumed public.

250

7.2.1 Nondeterministic Encryption

In nondeterministic encryption, such ascipher-block chainingencryption mode,

an initialisation vector (iv) is used along with the key and plaintext such that

if a different iv is used, a different ciphertext is generated under the same key

and plaintext pair. The term “nondeterministic” refers to the fact that the im-

plementation of such encryption algorithms generally have the property that en-

crypting the same plaintext several times using the same key would yield differ-

ent ciphertexts. Let the functionE2 ∶ IV ×K ×M → C represent such an encryp-

tion scheme, whereIV is the set of initialisation vectors, and let the expression

enc∗(iv, k,m) be a correct implementation ofE2. As with the encryption policy

in the previous example above, the required PER modelling the safe release of the

ciphertext isenc∗(iv, k,m) ∶ id, which declassifies the ciphertext.

Now a known problem with declassification schemes is that ofocclusion[SS05],

where a legitimately declassified information masks the release of other secrets.

Being awhat policy model, our policy enforcement mechanism prevents such a

flow by permitting only the information release that is explicitly allowed by the

policy.

l1 ∶= enc∗(iv1, k,m);
i f (h) then
l2 ∶= enc∗(iv2, k,m);

e l s e
l2 ∶= l1;

wr i te l1;
wr i te l2;

Figure 7.4: The Occlusion Problem

To illustrate the occlusion problem, consider the program listing of Figure 7.4,

251

which is adapted from [AHS08]. Suppose that we have declassified the encryption

result by the policyPE2 ≜ {f ∣ R ∈ PER(Σ), f(R) = R ⊔ ⌊E2⌋}, where, similarly

to the previous example, for allσ ∈ Σ, σ ⌊E2⌋ σ′ iff E2(σ(iv), σ(k), σ(m)) =

E2(σ′(iv), σ′(k), σ′(m)) and⌊E2⌋ = enc∗(iv, k,m) ∶ id. Thus, revealing the con-

tent ofl1 andl2 is permitted, however the value of the boolean secreth will be re-

leased additionally by this program because the inequality ofl1 andl2 will reveal

the fact that thethenbranch was executed. Now let this program beP . Its analy-

sis,(E�, I�,O�) P (E, I,O) shows that it does not satisfy the required policy be-

cause the equivalence relationO has the property that for anyσ,σ′ ∈ Σ, such that

σ(enc∗(iv1, k,m)) ≠ σ′(enc∗(iv2, k,m)) thenσ O σ′ Ô⇒ σ(h) = σ′(h) = tt,

which reveals the value of the secreth. Hence the analysis shows thatP has inse-

cure information flow, becauseO /⊑ ⌊E2⌋. Specifically,⌊E2⌋ requires, for example,

that for any choice ofσ ∈ Σ, σ[h ↦ ff] must be indistinguishable fromσ, but

O distinguishes any pair of states which disagree on the produced ciphertext and

which also disagree onh, which means that the attacker gains illegal information

abouth throughP which the policy does not allow. Thus,P is rejected.

7.2.2 Disjunctive Key-Ciphertext Release

This example demonstrates policies for the disjunctive release of information. For

this we shall consider a symmetric-key encryption system, where on one hand we

intend to distribute the key on a secure channel, but we do not want this channel to

receive messages encrypted by the key to protect the message from being accessed

on this channel. On the other hand, we want to distribute the ciphertext on another

channel which may not have access to the key. Now suppose that the encryption

252

module is implemented as a single program which can be used bothto encrypt

data and to distribute the key. However, we wish to separate what can be observed

on the output channel so that, depending on the usage scenario (indicated by a

parameter to the program), the program serves exclusively the purpose of key

distribution or exclusively the purpose of encryption. A key release parameterr is

used to specify the intention, so that when the value ofr is set totrueonly the key

is allowed to be released, but when it isfalseonly the ciphertext may be released.

Such a program is shown in Figure 7.5.

i f (r) then
wr i te k;

e l s e
wr i te enc(k,m);

Figure 7.5: Disjunctive Key-Ciphertext Release

The required disjunctive release policy is captured by the equivalence relation

D ∈ PER(Σ), which is defined as the disjoint union of two PERs:

D = (k ∶ id ⊔ r ∶ T) ∪ (enc(k,m) ∶ id ⊔ r ∶ F)

The PERk ∶ id ⊔ r ∶ T in the definition ofD allows the key to be released when

r has a valuett only, while the PERenc(k,m) ∶ id ⊔ r ∶ F allows the ciphertext

to be released only whenr has the valueff . This leads to an information flow

policy PD = {f ∣R ∈ PER(Σ), f(R) = R ⊔D}, which is satisfied by the program

of Figure 7.5. The programs of Figure 7.6, which can release both the key and

ciphertext at the same time are however rejected by this policy.

Alternatively, we may want to force separate implementations of the key dis-

253

wr i te k;

wr i te enc(k,m);

wr i te enc(k,m);
i f (r) t hen

wr i te k;

e l s e
skip;

Figure 7.6: Non-Disjunctive Key-Ciphertext Release

tribution and the encryption sub-modules via another disjunctive policy which

is not predicated on the key release parameterr. Such a policy is given by

PD2
= {f, f ′ ∣ R ∈ PER(Σ), f(R) = R ⊔ k ∶ id, f ′(R) = R ⊔ enc(k,m) ∶ id},

which allows either the release of the key or the ciphertext but not both. This

is possible becausek ∶ id andenc(k,m) ∶ id are incomparable for a secure en-

cryption functionenc - which means thatenc(k,m) does not release the key

(k ∶ id /⊑ enc(k,m) ∶ id), and variations will occur in the ciphertext due to a

variation ofm even under a fixed key (enc(k,m) ∶ id /⊑ k ∶ id). The programs of

Figure 7.7 which implement key release module separately from the encryption

module both satisfy the policyPD2
, whereas all the programs of Figure 7.5 and

Figure 7.6 do not satisfy this disjunctive key-ciphertext release policy. The pro-

gram of Figure 7.5 fails because it also releases information aboutr in addition,

while the programs in Figure 7.6 fail because they have non-disjunctive flows.

wr i te k; wr i te enc(k,m);

Figure 7.7: Separate Key-Ciphertext Release

254

7.2.3 Perfect Secrecy

Shannon [Sha48], defined a notion ofperfect secrecywhich describes informa-

tion flow during encryption where the attacker can observe encrypted messages

directly but cannot gain any information about the plaintext or the key. A neces-

sary and sufficient condition for an encryption scheme to satisfy perfect secrecy

is that the probability of generating a particular ciphertextc given that a message

m was encrypted (under some key) is the same as the probability of generatingc

given that some other messagem′ was encrypted (under a different key) [Den82].

Theone-time padis an encryption system with such a property, where the en-

cryption key is completely random and is at least as long as the message. Let the

relationencotp ⊆M ×C represent such an encryption scheme, where the plaintext

messages inM are of a fixed lengthn, and are encrypted with a completely ran-

dom key of the same length to generate the ciphertext. In the following,encotp is

defined for any messagem ∈M as(m,c) ∈ encotp iff there exists a keyk ∈K such

thatm XORk = c.

In this encryption scheme, the required information flow policy on the message

is that it reveals0 bits of information when observing the ciphertext. Now let

µc(m) be the conditional probability thatm was encrypted given the observation

of ciphertextc and letµ(m) be the (marginal) probability of selecting the message

m. Then, the perfect secrecy requirement is thatµc(m) = µ(m) since the attacker

does not gain any additional information about the message given any ciphertext.

Thus, µc = µ. Furthermore, let the probability of generating the ciphertextc

be given byµ(c). By applying Definition 3.8.5 toencotp, for any given initial

255

probability measureµ overM we obtain

I⟨encotp,µ⟩ = H(µ) − ∑
c∈C

µ(c)H(µc)

= H(µ) −H(µ)∑
c∈C

µ(c)

= 0

Thus our quantitative information analysis of the encryption functionencotp shows

that it does indeed have the required information flow property and satisfies flow

policy which requires no information release.

We may also describe the information flow ofencotp in possibilistic terms only

using the latticeFAM(M) of possibilistic information flow over the setM . Since

the length of the key is the same as the message length, then by definition for any

ciphertextc all messages are possible. Thus the inverse image ofencotp for any

c ∈ C is M and therefore, by using Definition 3.7.1, the information released by

encotp is {M}, which is the least element of the latticeFAM(M) containing no

information about the secret message. Thus, as expected, the nondeterministic

model ofencotp of the one-time pad encryption function releases no information

about the message under the possibilistic definition of information flow.

7.3 Policies for Statistical Analysis

Issues of secure information release also arise in statistical analyses where we

want to permit the safe use of statistical operation on confidential data. Again,

noninterference policies cannot be used because the results of statistical compu-

tation on sensitive inputs, which we intend to make public, will depend on those

256

inputs. In this section we shall demonstrate the use of our policy framework for

the enforcement of secure information flow in statistical analysis.

Suppose an organisation intends to publish the average salary (its arithmetic

mean) of its employees in different sections. This information may besensitiveif

it discloses too much information about particular individuals’ salaries in a given

section. Thus, suppose the organisation wishes to specify a policy which allows

the average salary of a section to be published only if the section has at least

n employees. Now lethi be the salary of theith employee in a given section

of m employees, the intention is to release the average salaryem = 1
m ∑m

i=1 hi

only if m ≥ n. Thus, if we define the flow functionfm such that for anyR ∈

PER(Σ), fm(R) = R ⊔ em ∶ id, which allows the release of the average salary of

m employees, the intended information flow policy isPavg-n ≜ {fm ∣m ≥ n}. The

policy Pavg-n requires at leastn employees to be considered in the computation

of the average salary.

Now supposen = 10, so that the intended policy isPavg-10. The analysis of the

program listing of Figure 7.8 is accepted as safe by this policy, because it considers

the salary of at least (actually, exactly)10 different employees (we assume that

hi corresponds to the salary of a unique employeei). However, both programs

of Figure 7.9 are rejected. The LHS program of Figure 7.9 is rejected because

it revealsh3 and the RHS program is rejected because there are inputs to this

program (whenm < 10), which violate the policy. Although, the RHS program

of Figure 7.9 may be executed safely whenm ≥ 10, the policy however rejects

it because it statistically contains insecure executions. An interesting approach

would be a combination with a runtime enforcer, which checks the parameterm

and allows the program to run if it will result in a safe execution (that is, whenever

257

m ≥ 10). Such a technique is used in the runtime monitor of [GBJS06], which

can admit secure execution of programs which may statistically contain insecure

traces.

sum:=0;
i ∶= 0;
whi le (i < 10) do

sum:=sum+hi;
i ∶= i + 1;

wr i te sum/ i;

Figure 7.8: Average Salary Calculation

sum:=0;
i ∶= 0;
whi le (i < 10) do

sum:=sum+h3;
i ∶= i + 1;

wr i te sum/ i;

sum:=0;
i ∶= 0;
whi le (i <m) do

sum:=sum+hi;
i ∶= i + 1;

wr i te sum/ i;

Figure 7.9: Insecure Average Salary Calculation

7.4 Electronic Wallet

This example demonstrates the prevention of information laundering by using the

pattern of the declassified expression (in awhile loop). Assume that the setting is

that of a privacy-conscious customer engaging in an electronic transaction. In or-

der to process the electronic purchase the vendor needs to verify that the customer

has sufficient funds in customer’s electronic wallet to proceed with the transac-

tion. The customer is however not willing to divulge more than the fact that he or

she has sufficient funds in the electronic wallet. So, the relevant policy is based on

258

the PER(balance≤ cost) ∶ id which declassifies the boolean test(balance≤ cost)

to check whether the customer has sufficient funds (balance) for the amount of

the transaction (cost).

The program listings of Figure 7.10 are both accepted by the policy. The RHS

program of Figure 7.10 in particular uses program divergence to signal the result

of the electronic wallet check. This is detected by the analysis, but the information

flow due to the divergence is safe and is accepted by the policy. However, the two

programs of Figure 7.11 are both rejected. On one hand, the LHS program of

Figure 7.11 is rejected because it releases the wallet balance in one branch after

performing the legitimate check. On the other hand, by modifying the variablemid

(originally containing thecost) in the RHS program of Figure 7.11, the attacker

is able to essentially perform a binary search on the secret in the interval0 and

N without explicitly copying the secret. However, the analysis shows that the

attacker indeed gains more than the policy allows and thus rejects the program.

i f (balance≤ cost) then
wr i te 1 ;

e l s e
wr i te 2 ;

whi le (balance≤ cost) do
skip;

Figure 7.10: Electronic Wallet Check

259

i f (balance≤ cost) then
wr i te balance;

e l s e
wr i te 2 ;

bot:=0;
top:=N;
mid:=cost;
whi le (bot≤ top) do

i f (balance≤mid) then
i f (balance=mid) then

result:=mid;
e l s etop:=mid-1;

e l s ebot:=mid+1;
mid:=(bot+top)/2;
⋯

wr i te result;

Figure 7.11: Electronic Wallet Attacks

7.5 Conclusions

In conclusion, we shall summarise the main achievements of this thesis and sug-

gest possible directions for future work.

7.5.1 Main Contributions and Achievements

We have presented a new semantic framework for the analysis and enforcement

of secure information flow based on lattices of information. The lattice-theoretic

model of information and information flow has the advantage that the approach to

the enforcement of secure information flow can be applied independently of the

particular representation of information chosen. Representations of information

based on PERs, families of sets, and information-theoretic characterisations have

been shown to fit into the lattice model of information, and various examples show

that the security enforcement technique is the same - relying only on information

levels as encoded by a given representation of the information lattice. The lattice-

260

based approach is simple to understand because it fits well withbasic intuitions

about information ordering. The view of the lattice structure of information as

a general approach to the enforcement of secure information flow has not been

systematically studied before. Although lattice-based techniques are commonly

used in language-based information flow security, the lattices are usually of secu-

rity classes in a multilevel system rather than lattices of information. An area of

future work is to study how the lattice of information approach presented in this

thesis can be integrated with a multilevel security system.

The development of the input-output relational model of systems in Chapter 3

as a foundation for the semantic analysis of information flow is a contribution to

the theory of information flow analysis. The relational model was shown, by var-

ious definitions and examples, to be a quite general model for information flow

analysis in both deterministic and nondeterministic systems. Various represen-

tations of information based on PERs, families of sets, and information-theoretic

characterisations were developed by using the input-output relational model as the

basic primitive. The relational model also shows how the semantics of a system,

captured by how it transforms its inputs to outputs as observed by an attacker, can

be linked directly to lattices of information under either a qualitative or a quanti-

tative representation of information. Various examples in Chapter 4 demonstrated

that reasoning about information flow in nonterminating systems does not pose

additional difficulty to the relational model primitive. In particular, a semantic at-

tacker model, defined in Chapter 4, provided a basis for studying information flow

under nontermination. As shown by the results, the definitions of information flow

under the relational model, induced by the semantic attacker model, account very

well for information flow in diverging programs.

261

Chapter 4 introduced a notion of an attacker’s observational power as a func-

tion of what the attacker can see during the traces of a program. The definition

provided a framework for the study of information flow under various attacker

models in relation to the operational semantics of the underlying system. The

relationship of this definition to the input-output relational model was shown by

relating each input state to what the attacker may observe in the ensuing pro-

gram execution. The semantic attacker model of Chapter 4 shows how to define

a concrete attacker model in a language-based setting, and demonstrates how to

derive the relational model from the operational semantics of the language. The

approach, applied to the deterministicWhile language, and the nondeterministic

While-ND andWhile-PND, which feature possibilistic nondeterminism and prob-

abilistic nondeterminism respectively, illustrated the application of the relational

model definition from a language-based perspective. We demonstrated that our

attacker observational model is more general than the attacker models of [GM04],

showing how to obtain the Narrow Abstract Noninterference and the Abstract

Noninterference definitions under our information flow definition by choosing

suitable observational power functions.

Chapter 5 contributed a PER-based static information flow analysis forWhile

programs with output. The analysis, which is flow-sensitive and termination-

sensitive can also detect disjunctive information release as defined in Chapter 3.

Although PERs were conjectured to be incapable of modelling disjunctive infor-

mation release [SS05], we showed in Chapter 3 how PERs can represent disjunc-

tive information. Various examples throughout the thesis were used to demon-

strate the application of disjunctive information flow, where we want the assur-

ance that a recipient can receive at most one of two secrets during the run of a

262

program. More specifically, the example of section 7.2.2 showed how disjunctive

policies based on PERs can be used to model the disjunctive release of the secret

key and ciphertext in a symmetric encryption module.

In Chapter 6 a dependency analysis ofWhileprograms with outputs was pre-

sented to demonstrate the application of abstract interpretation techniques to se-

cure information flow. This dependency analysis was shown to be an abstract

interpretation of the concrete analysis with PERs presented in Chapter 5. The de-

pendency analysis is flow-sensitive, termination-sensitive, supports intermediate

program outputs, and can detect some disjunctive dependencies. To the best of our

knowledge, this is the first dependency type system applied to secure information

flow that is termination-sensitive.

7.5.2 Future Work

A lattice-based approach to information and policy modelling has been presented

in this thesis for the enforcement ofwhat declassification policies. A useful ex-

tension to the policy model would be to incorporate it with other lattices, such as

the lattice of security clearances in a multilevel security environment. This, for

example, would provide a platform to express policies based onwhat andwho

properties [SS05], which is a useful combination of declassification dimensions.

By incorporating thewhodimension, we can express policies such as who is able

to gainwhat information via a system orwhoseinformation a system is permitted

to release, as well aswho is capable of releasingwhat information in a system.

This will involve, at the static analysis level, mechanism for annotating program

inputs with the (security clearance of the) owner of the input data, and program

263

outputs with the associated (security clearance of the) observer.

The coreWhile language used in this thesis and its extensions toWhile-ND

and While-PND only have support for buffered input, where all the inputs are

supplied at the beginning of program execution. An extension with construct for

intermediate input will be a useful step towards the analysis of fully interactive

systems. Other language extensions to model, for example, exceptions and object-

orientation will also be appropriate steps towards the analysis of real programs.

A basic implementation of the static analysis of Chapter 5 is being developed.

A potential application is to embed this analysis into a compiler, which can be

used by application writers to certify their applications against policies, for ex-

ample, under a proof-carrying code [NL97] framework. The full analysis of large

programming language sources such as Java, C#, or C++ is still a very distant

objective, because of the very rich set of constructs such as exceptions, object-

orientation, threading, and so on, that our very basic language models did not

study. However, intermediate languages such as the Java bytecode, or the .NET

Framework Common Intermediate Language, or machine assembly language are

possible initial targets because of the fewer number of language constructs under

these intermediate representations. By targeting lower-level representations, there

is also the potential to apply the analysis techniques to disassembled programs to

check the conformance of a program to policies at the code consumer site, espe-

cially when the source of the program, which has access to sensitive information,

is not available.

The dependency analysis of Chapter 6 is useful because it is less costly com-

putationally than the PER analysis of Chapter 5, and can be used when one is

interested in quickly making noninterference-style checks, or as a front-end to a

264

richer analysis, since if the dependency abstraction determines that a program has

secure flow, then a more expensive analysis of information flow can be avoided.

The abstraction functions for the analysis of Chapter 6 were defined with non-

interference checks in mind. It will however be useful to study frameworks that

can systematically derive efficient abstractions and information flow type systems,

which are based on a given policy to be enforced. To give an example, a policy

which checks whether at most the parity of a given secret may be released can

model all information levels strictly greater than the parity of this secret with one

abstraction, leading to far fewer elements in the abstract domain. Thus, a poten-

tial area of future work is the study of patterns for generating smaller abstractions,

based on the policy to be enforced, which permit partial information flow. Such

smaller information lattice abstractions, and the resulting security type systems,

may be more suitable for the analysis of larger programs.

265

266

Appendix A

Proofs from Chapter 5
Lemma 5.4.8.LetΣ be the set of all states, which are maps fromVar to values.

SupposeΣ,Σ′ ⊆ Σ and thatZ ⊆ Var and letR,R′ ∈ PER(Σ). Then we have the

following properties:

1. LetX,Y ⊆ Var such thatX ∪ Y = Z, then havocZ(Σ) ∪ havocZ(Σ′) =

havocZ(Σ ∪Σ′), and havocX(havocY (Σ)) = havocZ(Σ) .

2. The operator havocZ(⋅) is an upper closure operator on the powerset lattice

⟨P(Σ),⊆⟩ with respect to the subset inclusion order.

3. The following identities hold

(a) havocZ(Σ) ∪ havocZ(Σ′) = havocZ(havocZ(Σ) ∪ havocZ(Σ′)).

(b) havocZ(Σ) ∩ havocZ(Σ′) = havocZ(havocZ(Σ) ∩ havocZ(Σ′)).

(c) havocZ(Σ)/havocZ(Σ′) = havocZ(havocZ(Σ)/havocZ(Σ′)).

4. For all σ ∈ dom(↑ZR) we have[σ]↑ZR = havocZ([σ]↑ZR) .

5. For anyX,Y ⊆Var we have↑X↑YR = ↑Y↑XR = ↑X∪YR.

6. ↑ZR ⊔ ↑ZR′ = ↑Z(↑ZR ⊔ ↑ZR′).

7. ↑ZR F ↑ZR′ = ↑Z(↑ZR F ↑ZR′).

8. R ⊑ R′ Ô⇒ ↑ZR ⊑ ↑ZR′.

267

Proof.

1. The proof is straightforward from the definition.

2. We show thathavocZ(⋅) is extensive, monotone and idempotent on the

powerset latticeP(Σ). Extensivity,Σ ⊆ havocZ(Σ), is clear from the def-

inition. Now supposeΣ ⊆ Σ′ ⊆ Σ and letΣ′ = Σ ∪ Σ′′. Applying (1),

we havehavocZ(Σ′) = havocZ(Σ) ∪ havocZ(Σ′′). Thus,havocZ(Σ) ⊆

havocZ(Σ′) showing monotonicity. For idempotency, we first observe that

extensivity shows thathavocZ(Σ) ⊆ havocZ(havocZ(Σ)). Now, suppose

σ ∈ havocZ(havocZ(Σ)), then there existsσ′ ∈ havocZ(Σ) such that for

all y ∈ Var/Z,σ(y) = σ′(y). Hence, there existsσ′′ ∈ Σ such that for all

y ∈ Var/Z,σ′(y) = σ′′(y). Since∀y ∈ Var/Z,σ(y) = σ′(y) = σ′′(y),

then it is clear thatσ ∈ havocZ(Σ), which implieshavocZ(havocZ(Σ)) ⊆

havocZ(Σ), showing the idempotency ofhavocZ(⋅).

3. (a) This property follows directly from the idempotency ofhavocZ(⋅)

since by (1)havocZ(Σ) ∪ havocZ(Σ′) = havocZ(Σ ∪Σ′).

(b) LetΣ′′ = havocZ(Σ)∩havocZ(Σ′). It is clear thatΣ′′ ⊆ havocZ(Σ′′)

by the extensivity ofhavocZ(⋅). It now remains to be shown that

havocZ(Σ′′) ⊆ Σ′′. Take anyσ ∈ havocZ(Σ′′), then there existsσ′ ∈

Σ′′ such that for ally ∈Var/Z,σ(y) = σ′(y). Furthermore, there exist

σ1 ∈ Σ andσ2 ∈ Σ′ such that for ally ∈Var/Z, σ′(y) = σ1(y) = σ2(y)

by the fact thatσ′ ∈ havocZ(Σ) ∩ havocZ(Σ′). Hence for ally ∈

Var/Z, σ(y) = σ′(y) = σ1(y) = σ2(y) and thereforeσ ∈ havocZ(Σ)

andσ ∈ havocZ(Σ′), that is,σ ∈ Σ′′. Hence,havocZ(Σ′′) ⊆ Σ′′.

268

(c) LetΣ′′ = havocZ(Σ)/havocZ(Σ′). We haveΣ′′ ⊆ havocZ(Σ′′) by the

extensivity ofhavocZ(⋅). Thus, it now remains to show thathavocZ(Σ′′) ⊆

Σ′′. Take anyσ ∈ havocZ(Σ′′), then there existsσ′ ∈ Σ′′ such that for

all y ∈Var/Z,σ(y) = σ′(y). Furthermore, by definition ofhavocZ(⋅)

and set difference, there existsσ1 ∈ Σ, but there does not existσ2 ∈ Σ′,

such that for ally ∈ Var/Z, σ′(y) = σ1(y) = σ2(y). Hence, we have

thatσ ∈ havocZ(Σ), butσ ∉ havocZ(Σ′) by definition, and therefore,

σ ∈ havocZ(Σ)/havocZ(Σ′). Thus,havocZ(Σ′′) ⊆ Σ′′.

4. SincehavocZ(⋅) is extensive, it is clear that[σ]↑ZR ⊆ havocZ([σ]↑ZR). Now

take anyσ′ ∈ havocZ([σ]↑ZR), then there existsσ′′ ∈ [σ]↑ZR such that for all

y ∈Var/Z,σ′(y) = σ′′(y). Sinceσ′′ ∈ [σ]↑ZR thenσ ↑ZR σ′′ holds. It is thus

clear from the definition of↑ZR thatσ′′ ↑ZR σ′ holds sinceσ′ is be obtained

from σ′′ possibly by modifying values of variables inZ. Transitivity of↑ZR

means thatσ ↑ZR σ′ also holds and henceσ′ ∈ [σ]↑ZR, which means that

havocZ([σ]↑ZR) ⊆ [σ]↑ZR.

5. We shall start by showing that↑X↑YR = ↑X∪YR. LetZ = X ∪ Y . Then from

the definition of↑X(⋅) we have that for anyσ,σ′ ∈ Σ, σ ↑X↑YRσ′ iff there ex-

ist sequencesσ1, . . . , σn ∈ Σ andτ1, . . . , τn−1 ∈ dom(↑YR), such thatσ = σ1

andσ′ = σn and for alli, 1 ≤ i ≤ n − 1 impliesσi, σi+1 ∈ havocX([τi]↑YR) =

havocZ([τi]↑YR) since by (4)[τi]↑YR = havocY ([τi]↑YR). Hence, for alli,

1 ≤ i ≤ n − 1 there existσ′i, σ
′
i+1 ∈ [τi]↑YR such thatσi ∈ havocZ({σ′i}) and

σi+1 ∈ havocZ({σ′i+1}) and sinceσ′i andσ′i+1 are related by↑YR then by def-

inition there exist sequencesσi
1, . . . , σ

i
mi
∈ Σ andτ i

1, . . . , τ
i
mi−1

∈ dom(R)

such thatσ′i = σ
i
1 andσ′i+1 = σi

mi
and∀j,1 ≤ j ≤ mi−1 − 1 Ô⇒ σi

j , σ
i
j+1 ∈

269

havocY ([τ i
j]R). Sinceσ′i ∈ havocY ([τ i

1]R) andσi ∈ havocZ({σ′i}) hence

σi ∈ havocZ([τ i
1]R). Similarly, σi+1 ∈ havocZ([τ i

mi−1
]R). Hence for any

i, 1 ≤ i ≤ n − 1 we obtain the sequencesσi, σ
i
1, . . . , σ

i
mi−1

, σi+1 ∈ Σ and

τ i
1, . . . , τ

i
mi−1

∈ dom(R) such thatσi, σ
i
1 ∈ havocZ([τ i

1]R) andσi+1, σ
i
mi−1

∈

havocZ([τ i
m1−1
]R) and for allj,1 ≤ j ≤mi−1−1 Ô⇒ σi

j , σ
i
j+1 ∈ havocY ([τ i

j]R) ⊆

havocZ([τ i
j]R). Sinceσ = σ1 andσ′ = σn, hence by definition,σ ↑ZR σ′.

The reverse implication is straightforward because by definitionσ ↑ZR σ′

holds iff ∃σ1, . . . , σn ∈ Σ andτ1, . . . , τn−1 ∈ dom(R) andσ = σ1, σ′ = σn

such that for alli, i ≤ i ≤ n − 1 Ô⇒ σi, σi+1 ∈ havocZ([τi]R). Now,

since for anyτ ∈ dom(R), [τ]R ⊆ [τ]↑YR anddom(R) ⊆ dom(↑YR) then

τ1, . . . , τn−1 ∈ dom(↑YR) and hence by replacing[τi]R above with[τi]↑YR

for all i, we obtainσi, σi+1 ∈ havocX(havocY ([τi]↑YR)) = havocX([τi]↑YR)

by applying (4). Hence,σ ↑X↑YR σ′ holds.

Since↑X↑YR = ↑X∪YR, then the fact that set union is commutative means that

↑X↑YR = ↑X∪YR = ↑Y ∪XR = ↑Y↑XR.

270

6. From the definition we have that∀σ,σ′ ∈Σ, σ ↑Z(↑ZR ⊔ ↑ZR′) σ′

⇐⇒ ∃σ1, . . . σn ∈ Σ,∃σ′′1 , . . . , σ
′′
n−1 ∈ dom(↑ZR ⊔ ↑ZR′).σ = σ1, σ′ = σn.

∀i,1 ≤ i ≤ n − 1 Ô⇒ σi, σi+1 ∈ havocZ([σ′′i]↑ZR⊔↑ZR′)

⇐⇒ ∃σ1, . . . σn ∈ Σ,∃σ′′1 , . . . , σ
′′
n−1 ∈ dom(↑ZR ⊔ ↑ZR′).σ = σ1, σ′ = σn.

∀i,1 ≤ i ≤ n − 1 Ô⇒ σi, σi+1 ∈ havocZ([σ′′i]↑ZR ∩ [σ
′′
i]↑ZR′)

⇐⇒ ∃σ1, . . . σn ∈ Σ,∃σ′′1 , . . . , σ
′′
n−1 ∈ dom(↑ZR) ∩ dom(↑ZR′).σ = σ1, σ′ = σn.

∀i,1 ≤ i ≤ n − 1 Ô⇒ σi, σi+1 ∈ havocZ([σ′′i]↑ZR) ∩ havocZ([σ′′i]↑ZR′)

(by (3b) since by (4) havocZ([σ′′i]↑ZR) = [σ
′′
i]↑ZR and havocZ([σ′′i]↑ZR′) = [σ

′′
i]↑ZR′)

⇐⇒ σ ↑Z↑ZR σ′ andσ ↑Z↑ZR′ σ′

⇐⇒ σ ↑ZR σ′ andσ ↑ZR′ σ′. (by applying(5))

7. LetΣ = dom(↑ZR) ∪ dom(↑ZR′). Now define the PERs↑ZR and↑ZR′ such

that∀σ,σ′ ∈ Σ, σ ↑ZR σ′ ⇐⇒ σ,σ′ ∈ Σ/dom(↑ZR) andσ ↑ZR′ σ′ ⇐⇒

σ,σ′ ∈ Σ/dom(↑ZR′). The PERs↑ZR and↑ZR′ both have only one partition,

which respectively are the setsΣ1 = Σ/dom(↑ZR) andΣ2 = Σ/dom(↑ZR′).

Therefore, by (3c) we have thathavocZ(Σ1) = Σ1 andhavocZ(Σ2) = Σ2

since by (4) we know thatdom(↑ZR) = havocZ(dom(↑ZR)) anddom(↑ZR′) =

havocZ(dom(↑ZR′)) and hence by (1) thatΣ = havocZ(Σ), sincehavocZ(⋅)

is idempotent. That is,↑Z(↑ZR) = ↑ZR and ↑Z(↑ZR′) = ↑ZR′. By defini-

tion CΣ(↑ZR) = ↑ZR ∪ ↑ZR, and hence by applying (4), we know that for

271

anyσ ∈ dom(CΣ(↑ZR)), [σ]CΣ(↑ZR) = havocZ([σ]CΣ(↑ZR)), because[σ]↑ZR =

havocZ([σ]↑ZR) and[σ]↑ZR = havocZ([σ]↑ZR). Therefore, for anyσ,σ′ ∈Σ,

σ ↑ZCΣ(↑ZR)σ′ iff ∃σ1, . . . , σn ∈Σ, σ′1, . . . , σ
′
n−1 ∈ dom(CΣ(↑ZR)), such that

σ = σ1, σ′ = σn and∀i, i ≤ i ≤ n − 1 Ô⇒ σi, σi+1 ∈ havocZ([σ′i]CΣ(↑ZR)) =

[σ′i]CΣ(↑ZR). Hence, we have that↑Z(CΣ(↑ZR)) = CΣ(↑ZR). Similarly, we ob-

tain↑Z(CΣ(↑ZR′)) = CΣ(↑ZR′). Since by definition,↑ZR F ↑ZR′ = CΣ(↑ZR) ⊔

CΣ(↑ZR′), hence we obtain↑Z(↑ZR F ↑ZR′) = ↑ZR F ↑ZR′ by applying (6).

8. It follows by definition thatσ ↑ZR′ σ′ holds iff there existσ1, . . . , σn ∈

Σ and σ′1, . . . , σ
′
n−1 ∈ dom(R′) such that for alli, 1 ≤ i ≤ n − 1 Ô⇒

σi, σi+1 ∈ havocZ([σ′i]R′) andσ = σ1, σ′ = σn. SinceR ⊑ R′, we know that

dom(R′) ⊆ dom(R) and for allσ′i ∈ dom(R′), we have that[σ′i]R′ ⊆ [σ
′
i]R.

Hence,σ ↑ZR′ σ′ implies by the monotonicity ofhavocZ(⋅) that there ex-

ist σ1, . . . , σn ∈ Σ andσ′1, . . . , σ
′
n−1 ∈ dom(R) such that for alli, 1 ≤ i ≤

n − 1 Ô⇒ σi, σi+1 ∈ havocZ([σ′i]R) andσ = σ1, σ′ = σn, which implies

thatσ ↑ZR σ′ holds. This shows the required property that↑ZR ⊑ ↑ZR′.

272

Lemma 5.7.3.Let Z ⊆ TVar, and lete be an expression such thatFV (e) ⊆Var,

and letR,R′ ∈Rinit ⊆ PER(Σ).

1. For all σ ∈ dom(R), havocZ([σ]R) = [σ]↑ZR.

2. For all σ,σ′ ∈ dom(R), σ ↑ZR σ′ Ô⇒ σ R σ′.

3. R ⊔R′ ∈Rinit .

4. LetX ⊆ TVar and Y = TVar/X such that∀σ,σ′ ∈ dom(R), σ↓IVar =

σ′↓IVar
Ô⇒ σ↓X = σ′↓X and havocY ([σ]R) = [σ]R. Furthermore, suppose

FV (e)∩TVar ⊆ X. Then for any PERφ over the values ofe, we have that

e ∶ φ ⊔R ∈Rinit .

Proof.

1. SinceR ∈ Rinit , then there existX ⊆ TVar andY = TVar/X such that for

all σ,σ′ ∈ dom(R), σ↓IVar = σ′↓IVar
Ô⇒ σ↓X = σ′↓X andhavocY ([σ]R) =

[σ]R. Now take anyσ1, σ2 ∈ dom(R) and suppose that(σ1, σ2) ∉ R, then,

[σ1]R ∩ [σ2]R = ∅. Hence,havocTVar([σ1]R) ∩ havocTVar([σ2]R) = ∅.

This is straightforward to show, since if there existσ ∈ [σ1]R andσ′ ∈ [σ2]R

such thathavocTVar({σ}) ∩ havocTVar({σ′}) ≠ ∅, thenσ↓IVar = σ′↓IVar

and thereforeσ↓X = σ′↓X . However,σ′ ∈ havocY ([σ]R) = [σ]R = [σ1]R

violates our initial assumption that[σ1]R and[σ2]R are disjoint.

Now sinceZ ⊆ TVar, we have that for allσ1, σ2 ∈ dom(R) then(σ1, σ2) ∉

R implieshavocZ([σ1]R) ∩ havocZ([σ2]R) = ∅ and hence, by definition,

σ↑ZRσ′ iff there existsσ′′ ∈ dom(R) such thatσ,σ′ ∈ havocZ([σ′′]R). That

is, for anyσ ∈ dom(R), [σ]↑ZR = havocZ([σ]R).

2. We have shown from (1) that for anyσ1, σ2 ∈ dom(R) (σ1, σ2) ∉ R im-

plies havocTVar([σ1]R) ∩ havocTVar([σ2]R) = ∅. Furthermore, since

273

Z ⊆ TVar, we know thathavocZ([σ1]R) = [σ1]↑ZR andhavocZ([σ2]R) =

[σ2]↑ZR. Therefore,[σ1]↑ZR ∩ [σ2]↑ZR = ∅. That is, for anyσ1, σ2 ∈ dom(R),

(σ1, σ2) ∉ R Ô⇒ (σ1, σ2) ∉ ↑ZR. The contrapositive of this shows that for

all σ,σ′ ∈ dom(R), σ ↑ZR σ′ Ô⇒ σ R σ′.

3. SinceR,R′ ∈ Rinit , then there existX,X ′ ⊆ TVar andY = TVar/X and

Y ′ = TVar/X ′ such that for anyσ,σ′ ∈ dom(R),havocY ([σ]R) = [σ]R

and σ↓IVar = σ′↓IVar
Ô⇒ σ↓X = σ′↓X , and such that for anyσ,σ′ ∈

dom(R′),havocY ′([σ]R′) = [σ]R′ andσ↓IVar = σ′↓IVar
Ô⇒ σ↓X = σ′↓X .

Let X̂ = X ∪ X ′ and letŶ = Y ∩ Y ′, then it is clear that for allσ,σ′ ∈

dom(R) ∩ dom(R′) = dom(R ⊔R′), σ↓IVar = σ′↓IVar
Ô⇒ σ↓X̂ = σ

′
↓X̂

. Fur-

thermore, we also know that for anyσ,σ′ ∈ dom(R ⊔R′), havoĉY ([σ]R) =

[σ]R andhavoĉY ([σ′]R′) = [σ′]R′, hence by (3b) of lemma 5.4.8, we have

thathavoĉY (havoĉY ([σ]R) ∩ havoĉY ([σ′]R′)) = havoĉY ([σ]R ∩ [σ′]R′) =

havoĉY ([σ]R) ∩ havoĉY ([σ′]R′) = [σ]R ∩ [σ′]R′ . This means that for any

σ ∈ dom(R ⊔ R′),havoĉY ([σ]R⊔R′) = [σ]R⊔R′ . SinceX̂ ⊆ TVar and

Ŷ = TVar/X̂, thenR ⊔R′ ∈Rinit .

4. Firstly, becausedom(e ∶ φ ⊔ R) ⊆ dom(R), then it is clear that∀σ,σ′ ∈

dom(e ∶ φ ⊔ R), σ↓IVar = σ′↓IVar
Ô⇒ σ↓X = σ′↓X . Now let FV (e) ∩

TVar = X ′ and letY ′ = TVar/X ′. Then, by definition, for anyσ ∈

dom(e ∶ φ), havocY ′([σ]e∶φ) = [σ]e∶φ sincee has no free variable inY ′

and thus its evaluation is not affected by theY ′ projection of states. Since

X ′ ⊆ X and henceY ⊆ Y ′, by applying (3b) of lemma 5.4.8 then for any

σ ∈ dom(e ∶ φ ⊔R), havocY ([σ]e∶φ⊔R) = havocY ([σ]e∶φ ∩ [σ]R) = [σ]e∶φ ∩

[σ]R = [σ]e∶φ⊔R. Thus,e ∶ φ ⊔R ∈Rinit .

274

Bibliography

[AB04] T. Amtoft and A. Banerjee. Information flow analysis in logical

form. In Roberto Giacobazzi, editor,11th Static Analysis Symposium

(SAS), Verona, Italy, volume 3148 ofLecture Notes in Computer

Science, pages 100–115. Springer-Verlag, 2004.

[ABG04] A. Aldini, M. Bravetti, and R. Gorrieri. A process-algebraic ap-

proach for the analysis of probabilistic noninterference.Journal of

Computer Security, 12(2):191–245, 2004.

[ABHR99] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus

of dependency. InConference Record of POPL’99: The 26th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 147–160, San Antonio, Texas, January 20–22, 1999.

[AFV01] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational seman-

tics. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors,

Handbook of Process Algebra, chapter 3, pages 197–291. Elsevier

Science, 2001.

[Aga00] J. Agat. Transforming out timing leaks. InConference Record

of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium on

275

Principles of Programming Languages, pages 40–53, Boston, Mas-

sachusetts, January 19–21, 2000.

[AGM92] S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors.Handbook

of Logic in Computer Science, Vol 1. Oxford University Press, 1992.

[AHS08] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked

flows. Theoretical Computer Science, 402(2-3):82–101, 2008.

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-

insensitive noninterference leaks more than just a bit. InProc.

13th European Symposium on Research in Computer Security (ES-

ORICS’08), volume 5283 ofLecture Notes in Computer Science,

Malaga, Spain, October 2008. Springer-Verlag.

[AP08] A. Aldini and A. Di Pierro. Estimating the maximum information

leakage. International Journal of Information Security, 7(3):219–

242, 2008.

[AS07] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi-

fication, encryption and key release policies. InIEEE Symposium

on Security and Privacy, pages 207–221. IEEE Computer Society,

2007.

[Bac05] M. Backes. Quantifying probabilistic information flow in computa-

tional reactive systems. InProceedings of 10th European Symposium

on Research in Computer Security (ESORICS), volume 3679 ofLec-

ture Notes in Computer Science, pages 336–354. Springer, Septem-

ber 2005.

276

[BD03] Y. Beres and C. I. Dalton. Dynamic label binding at run-time. InPro-

ceedings of the 2003 workshop on New security paradigms, pages

39–46. ACM Press, 2003.

[Ben04] N. Benton. Simple relational correctness proofs for static analyses

and program transformations. InPOPL ’04: Proceedings of the 31st

ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 14–25, New York, NY, USA, 2004. ACM Press.

[BGM07] A. Banerjee, R. Giacobazzi, and I. Mastroeni. What you lose is

what you leak: Information leakage in declassification policies. In

Mathematical Foundations of Programming Semantics (MFPS’07),

volume 173, pages 47–66. Electronic Notes in Theoretical Computer

Science, 2007.

[BL06] M. Backes and P. Laud. Computationally sound secrecy proofs by

mechanized flow analysis. InCCS ’06: Proceedings of the 13th

ACM conference on Computer and communications security, pages

370–379, New York, NY, USA, 2006. ACM Press.

[BNR08] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Ex-

pressive declassification policies and modular static enforcement. In

IEEE Symposium on Security and Privacy, pages 339–353. IEEE

Computer Society, 2008.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approxima-

tion of fixpoints. InConference Record of the Fourth ACM Sympo-

277

sium on Principles of Programming Languages, pages 238–252, Los

Angeles, California, January 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis

frameworks. InConference Record of the Sixth Annual ACM Sym-

posium on Principles of Programming Languages, pages 269–282,

San Antonio, Texas, January 1979.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks.Jour-

nal of Logic and Computation, 2(4):511–547, August 1992.

[CC08] S. Cavadini and D. Cheda. Run-time information flow monitoring

based on dynamic dependence graphs. InARES ’08: Proceedings of

the 2008 Third International Conference on Availability, Reliability

and Security, pages 586–591, Washington, DC, USA, 2008. IEEE

Computer Society.

[CHM02] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the

leakage of confidential data. In Alessandra Di Pierro and Herbert

Wiklicky, editors, Electronic Notes in Theoretical Computer Sci-

ence, volume 59. Elsevier, 2002.

[CHM05] D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a

while language.Electronic Notes in Theoretical Computer Science,

112:149–166, January 2005. Proceedings of the Second Workshop

on Quantitative Aspects of Programming Languages (QAPL 2004).

278

[CHM07] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quanti-

fying information flow in a simple imperative language.Journal of

Computer Security, 15(3):321–371, 2007.

[CLN00] C. Colby, P. Lee, and G. Necula. A Proof-Carrying Code Architec-

ture for Java. InTool section of the Proc. of the 12th International

Conference on Computer Aided Verification (CAV00), 2000.

[CM04] S. Chong and A. C. Myers. Security policies for downgrading. In

Proceedings of the 11th ACM conference on Computer and com-

munications security, pages 198–209, New York, NY, USA, 2004.

ACM Press.

[CMS05] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in infor-

mation flow. InCSFW ’05: Proceedings of the 18th IEEE workshop

on Computer Security Foundations, pages 31–45, Washington, DC,

USA, 2005. IEEE Computer Society.

[CPM+98] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,

S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: auto-

matic adaptive detection and prevention of buffer-overflow attacks.

In SSYM’98: Proceedings of the 7th conference on USENIX Se-

curity Symposium, 1998, pages 63–78, Berkeley, CA, USA, 1998.

USENIX Association.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for se-

cure information flow.Communications of the ACM, 20(7):504–513,

1977.

279

[Den76] D. E. Denning. A lattice model of secure information flow. Commu-

nications of the ACM, 19(5):236–243, May 1976.

[Den82] D. E. Denning.Cryptography and Data Security. Addison Wesley,

1982.

[DP03] B.A. Davey and H. A. Priestley.Introduction to Lattices and Order.

Cambridge University Press, 2 edition, 2003.

[End77] H. B. Enderton.Elements of Set Theory. Academic Press, 1977.

[FG03] C. Fournet and A. D. Gordon. Stack inspection: Theory and vari-

ants. ACM Transactions on Programming Languages and Systems,

25(3):360–399, May 2003.

[GBJS06] G. Le Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt.

Automata-based confidentiality monitoring. In Mitsu Okada and

Ichiro Satoh, editors,In Proceedings of 11th Annual Asian Com-

puting Science Conference (ASIAN 2006), volume 4435 ofLecture

Notes in Computer Science, pages 75–89. Springer, 2006.

[GHK+03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove,

and D. S. Scott. Continuous Lattices and Domains. Cambridge

University Press, Cambridge, 2003.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models.

In Proceedings of the IEEE Symposium on Research in Security and

Privacy, pages 11–20, Oakland, CA, April 1982. IEEE Computer

Society Press.

280

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference: param-

eterizing non-interference by abstract interpretation. InProceedings

of the 31st ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 186–197. ACM Press, 2004.

[GM05] R. Giacobazzi and I. Mastroeni. Adjoining declassification and at-

tack models by abstract interpretation. InEuropean Symposium on

Programming (ESOP’05)., volume 3444 ofLecture Notes in Com-

puter Science, pages 295–310. Springer-Verlag, 2005.

[Gon99] L. Gong. Inside Java 2 platform security: architecture, API de-

sign, and implementation. Addison-Wesley Longman Publishing

Co., Inc., 1999.

[Hal03] J. Y. Halpern.Reasoning about Uncertainty. The MIT Press, Cam-

bridge, Massachusetts, 2003.

[HR98] N. Heintze and J. G. Riecke. The SLam calculus: programming

with secrecy and integrity. In ACM, editor,ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL) , San

Diego, California, pages 365–377, 1998.

[HS91] S. Hunt and D. Sands. Binding time analysis: A New PERspective.

ACM SIGPLAN Notices, 26(9):154–165, September 1991.

[HS06] S. Hunt and D. Sands. On flow-sensitive security types. InProc.

Principles of Programming Languages, 33rd Annual ACM SIG-

PLAN - SIGACT Symposium (POPL’06), Charleston, South Car-

olina, USA, January 2006. ACM Press.

281

[HU79] J. E. Hopcroft and J. D. Ullman.Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley, Reading, MA,

1979.

[Hun91a] L. S. Hunt.Abstract Interpretation of Functional Languages: From

Theory to Practice. Ph.D. thesis, Department of Computing, Impe-

rial College, London, UK, 1991.

[Hun91b] S. Hunt. Pers generalise projections for strictness analysis (extended

abstract). InProc. 1990 Glasgow Workshop on Functional Program-

ming, Workshops in Computing, Ullapool, 1991. Springer-Verlag.

[JL00] R. Joshi and K. R. M. Leino. A semantic approach to secure infor-

mation flow. Science of Computer Programming, 37(1-3):113–138,

2000.

[Kah87] G. Kahn. Natural semantics. In4th Annual Symposium on Theo-

retical Aspects of Computer Sciences on STACS 87, pages 22–39,

London, UK, 1987. Springer-Verlag.

[Kle90] D. Klein. Foiling the cracker: A survey of, and improvements to,

password security. In USENIX, editor,UNIX Security II: USENIX

workshop proceedings, August 27–28, 1990, Portland, Oregon,

pages 5–14, pub-USENIX:adr, 1990. USENIX.

[Koh03] J. Kohlas.Information Algebras: Generic Structures for Inference.

Springer-Verlag, 2003.

282

[Lau01] P. Laud. Semantics and program analysis of computationally secure

information flow. In David Sands, editor,Programming Languages

and Systems, 10th European Symposium on Programming, Genova,

Italy, April 2-6, 2001, Proceedings, volume 2028 ofLecture Notes

in Computer Science, pages 77–91. Springer, 2001.

[Lau03] P. Laud. Handling encryption in an analysis for secure information

flow. In Pierpaolo Degano, editor,Programming Languages and

Systems, 12th European Symposium on Programming, ESOP 2003,

Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2618 of

Lecture Notes in Computer Science, pages 159–173. Springer, 2003.

[Ler03] X. Leroy. Java bytecode verification: Algorithms and formaliza-

tions. Journal of Automated Reasoning, 30(3/4):235–269, 2003.

[Low02] G. Lowe. Quantifying information flow. InProceedings of the 15th

IEEE Computer Security Foundations Workshop (CSFW’02), pages

18–31. IEEE Computer Society, 2002.

[LR93] J. Landauer and T. Redmond. A lattice of information. InPro-

ceedings of the Computer Security Foundations Workshop VI (CSFW

’93), pages 65–70, Washington - Brussels - Tokyo, June 1993. IEEE.

[LY99] T. Lindholm and F. Yellin.The Java Virtual Machine Specification.

Addison-Wesley, 2 edition, 1999.

[Mac03] D. MacKay. Information Theory, Inference, and Learning Algo-

rithms. Cambridge University Press, September 2003.

283

[Mal07] P. Malacaria. Assessing security threats of looping constructs. In

M. Hofmann and M. Felleisen, editors,POPL, pages 225–235.

ACM, 2007.

[Mas05] I. Mastroeni. On the Rôle of abstract non-interference in language-

based security. In Kwangkeun Yi, editor,Programming Languages

and Systems, Third Asian Symposium, APLAS 2005, Tsukuba,

Japan, November 2-5, 2005, Proceedings, volume 3780 ofLecture

Notes in Computer Science, pages 418–433. Springer, 2005.

[McL94] J. McLean. A general theory of composition for trace sets closed

under selective interleaving functions. InProc. IEEE Symposium on

Research in Security and Privacy, pages 79–93, 1994.

[MF97] G. McGraw and E. Felten.Java Security. Wiley, 1997.

[Mil99] R. Milner. Communicating and Mobile Systems: Theπ Calculus.

Cambridge University Press, Cambridge, England, 1999.

[MSZ06] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust de-

classification and qualified robustness.Journal of Computer Secu-

rity, 14(2):157–196, 2006.

[MT79] R. Morris and K. Thompson. Password security: a case history.

Communications of the ACM, 22(11):594–597, 1979.

[Muc97] S. S. Muchnick. Advanced compiler design and implementation.

Morgan Kaufmann Publishers, 2929 Campus Drive, Suite 260, San

Mateo, CA 94403, USA, 1997.

284

[MZZ+08] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-

trom. Jif: Java information flow. Software release. Located at

http://www.cs.cornell.edu/jif, July 2001–2008.

[NCH+05] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.

CCured: type-safe retrofitting of legacy software.ACM Transac-

tions on Programming Languages and Systems, 27(3):477–526, May

2005.

[NL97] G. Necula and P. Lee. Research on proof-carrying code for

untrusted-code security. InProceedings of the 1997 Conference

on Security and Privacy (S&P-97), pages 204–204, Los Alamitos,

May 4–7 1997. IEEE Press.

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program

Analysis. Springer-Verlag, 1999.

[OCC06] K. R. O’Neill, M. R. Clarkson, and S. Chong. Information-flow

security for interactive programs. InCSFW ’06: Proceedings of

the 19th IEEE workshop on Computer Security Foundations, pages

190–201, Washington, DC, USA, 2006. IEEE Computer Society.

[PAK02] S. Prasad and S. Arun-Kumar. Introduction to operational seman-

tics. InThe Compiler Design Handbook, pages 841–890. CRC Press,

2002.

[PHW02] A. D. Pierro, C. Hankin, and H. Wiklicky. Approximate non-

interference. In15th IEEE Computer Security Foundations Work-

285

shop (CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia,

Canada, pages 3–17. IEEE Computer Society, 2002.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Re-

port DAIMI FN–19, Aarhus University, September 1981.

[PS02] B. Pinkas and T. Sander. Securing passwords against dictionary at-

tacks. InCCS ’02: Proceedings of the 9th ACM conference on Com-

puter and communications security, pages 161–170, New York, NY,

USA, 2002. ACM Press.

[RMMG01] P. Ryan, J. McLean, J. Millen, and V. Gligor. Non-interference, who

needs it? In14th IEEE Computer Security Foundations Workshop

(CSFW ’01), pages 237–240, Washington - Brussels - Tokyo, June

2001. IEEE.

[Ros06] S. Ross.A first course in probability. Prentice Hall, New Jersey, 7

edition, 2006.

[Sab01] A. Sabelfeld.Semantic Models for the Security of Sequential and

Concurrent Programs. PhD thesis, Chalmers University of Technol-

ogy and Göteborg University, Göteborg, Sweden, May 2001.

[Sch00] F. B. Schneider. Enforceable security policies.ACM Transaction of

Information and System Security, 3(1):30–50, 2000.

[Sha48] C. E. Shannon. A mathematical theory of communication.The Bell

System Technical Journal, 27(3):379–423, 1948.

286

[SM03a] A. Sabelfeld and A. C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications,

21(1):5–19, January 2003.

[SM03b] A. Sabelfeld and A. C. Myers. A model for delimited information re-

lease. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki,

editors,ISSS, volume 3233 ofLecture Notes in Computer Science,

pages 174–191. Springer, 2003.

[Smi01] G. Smith. A new type system for secure information flow. In14th

IEEE Computer Security Foundations Workshop (CSFW ’01), pages

115–125, Washington - Brussels - Tokyo, June 2001. IEEE.

[Smi03] G. Smith. Probabilistic noninterference through weak probabilistic

bisimulation. InCSFW, pages 3–13. IEEE Computer Society, 2003.

[Smi06] G. Smith. Improved typings for probabilistic noninterference in a

multi-threaded language.Journal of Computer Security, 14(6):591–

623, 2006.

[Smi07] G. Smith. Adversaries and Information Leaks (Tutorial). In Gilles

Barthe and Cédric Fournet, editors,Trustworthy Global Computing,

Third Symposium, TGC 2007, Sophia-Antipolis, France, November

5-6, 2007, Revised Selected Papers, volume 4912 ofLecture Notes

in Computer Science, pages 383–400. Springer, 2007.

[SS01] A. Sabelfeld and D. Sands. A per model of secure information flow

in sequential programs.Higher-Order and Symbolic Computation,

14(1):59–91, March 2001.

287

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles ofdeclas-

sification. InCSFW ’05: Proceedings of the 18th IEEE Computer

Security Foundations Workshop (CSFW’05), pages 255–269, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[SS07] A. Sabelfeld and D. Sands. Declassification: Dimensions and prin-

ciples.Journal of Computer Security, 2007.

[SST07] P. Shroff, S. F. Smith, and M. Thober. Dynamic dependency moni-

toring to secure information flow. In20th IEEE Computer Security

Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy,

pages 203–217, 2007.

[SV98] G. Smith and D. Volpano. Secure information flow in a multi-

threaded imperative language. InConference Record of POPL ’98:

The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, pages 355–364, San Diego, California, 19–21

January 1998.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5(2):285–309, June 1955.

[Vol99a] D. Volpano. Formalization and proof of secrecy properties. InPro-

ceedings of the 12th IEEE Computer Security Foundations Work-

shop (CSFW ’99), pages 92–97, Washington - Brussels - Tokyo, June

1999. IEEE.

288

[Vol99b] D. M. Volpano. Safety versus secrecy. InSAS ’99: Proceedings of

the 6th International Symposium on Static Analysis, pages 303–311,

London, UK, 1999. Springer-Verlag.

[VS97] D. M. Volpano and G. Smith. A type-based approach to program

security. InTAPSOFT ’97: Proceedings of the 7th International

Joint Conference CAAP/FASE on Theory and Practice of Software

Development, pages 607–621, London, UK, 1997. Springer-Verlag.

[VS00] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In

POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 268–276,

New York, NY, USA, 2000. ACM Press.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure

flow analysis.Journal of Computer Security, 4(3):167–187, Decem-

ber 1996.

[Win93] G. Winskel.The Formal Semantics of Programming Languages. The

MIT Press, Cambridge, Massachusetts, 1993.

[Zda04a] S. Zdancewic. Challenges for information-flow security. InPro-

ceedings of Programming Language Interference and Dependence

(PLID), August 2004.

[Zda04b] S. Zdancewic. A type system for robust declassification. In Stephen

Brookes and Prakash Panangaden, editors,Electronic Notes in The-

oretical Computer Science, volume 83. Elsevier, 2004.

289

[ZM01] S. Zdancewic and A. C. Myers. Robust declassification. In 14th

IEEE Computer Security Foundations Workshop, pages 15–23. IEEE

Computer Society Press, June 2001.

290

