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Target identification for tractography studies requires solid anatomical knowledge

validated by an extensive literature review across species for each seed structure to

be studied. Manual literature review to identify targets for a given seed region is tedious

and potentially subjective. Therefore, complementary approaches would be useful. We

propose to use text-mining models to automatically suggest potential targets from the

neuroscientific literature, full-text articles and abstracts, so that they can be used for

anatomical connection studies and more specifically for tractography. We applied text-

mining models to three structures: two well-studied structures, since validated deep

brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and,

the nucleus accumbens, an exploratory target for treating psychiatric disorders. We

performed a systematic review of the literature to document the projections of the three

selected structures and compared it with the targets proposed by text-mining models,

both in rat and primate (including human). We ran probabilistic tractography on the

nucleus accumbens and compared the output with the results of the text-mining models

and literature review. Overall, text-mining the literature could find three times as many

targets as two man-weeks of curation could. The overall efficiency of the text-mining

against literature review in our study was 98% recall (at 36% precision), meaning that

over all the targets for the three selected seeds, only one target has been missed by

text-mining. We demonstrate that connectivity for a structure of interest can be extracted

from a very large amount of publications and abstracts. We believe this tool will be useful

in helping the neuroscience community to facilitate connectivity studies of particular brain

regions. The text mining tools used for the study are part of the HBP Neuroinformatics

Platform, publicly available at http://connectivity-brainer.rhcloud.com/.
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Introduction

Determining the wiring diagram of the human brain is
one of the greatest challenges in neurosciences (Sporns,
2011). In initiatives such as the Human Connectome Project
(HCP) (www.humanconnectome.org), tractography occupies
a key place in establishing the structural basis of the
human connectome. Diffusion tensor imaging (DTI) has been
introduced to document and measure in vivo anatomical
connectivity between regions (Jbabdi and Johansen-Berg, 2011).
DTI offers an overall view of brain anatomy, including the
pattern and degree of connectivity between different regions,
raising immediate hypothesis for brain function and for clinical
applications such as deep brain stimulation (DBS) (Coenen et al.,
2011, 2012a,b). DBS is a therapeutical approach for movement
(Pouratian et al., 2011; Rozanski et al., 2014; Sweet et al.,
2014a,b) and psychiatric disorders (Lujan et al., 2008; Lakhan
and Callaway, 2010; Lehman et al., 2011), targeting different basal
ganglia structures and delivering chronic stimulation to them
(Barkhoudarian et al., 2010; Sedrak et al., 2010; Traynor et al.,
2010; Taljan et al., 2011; Lambert et al., 2012; Chowdhury et al.,
2013). In combination with other technologies, DTI represents
a powerful tool providing further insight on the networks
influenced by neuromodulation (Barkhoudarian et al., 2010;
Chaturvedi et al., 2010; McIntyre and Foutz, 2013; Howell et al.,
2014) and consequently a better understanding of themechanism
of action and effects of DBS.

One of the major limitations of tractography is related to its
outputs because of, potential underestimates of the fiber tracts
when compared to other methods (Ciccarelli et al., 2003a,b;
Kinoshita et al., 2005) such as fiber pathways that are reported
in dissection and tracer studies that are absent in diffusion
tensor tractography studies (Behrens et al., 2007). Therefore,
responsible use of tractography requires careful consideration of
the scope and limitations of the different techniques (Johansen-
Berg and Behrens, 2006), knowing that observations are only
fraction of the reality. Probabilistic tractography approach, as
opposed to deterministic approach, depicts more fibers, thus
leading to a more limited underestimation, since it assumes a
distribution of orientation, as opposed to a single orientation
at each voxel. Local tractography fits pathways step by step
and is suitable for exploratory studies of connections compared
with global tractography, and is more suitable for reconstruction
of known white matter pathways. It is essential to have a
thorough previous knowledge of the connections between the
regions under investigation in order to validate the relevant fibers
depicted via tractography, to pinpoint misses and for the choice
of the method to be used. Mainly two approaches are used in
probabilistic tracking (Catani et al., 2002; Wakana et al., 2007).
In the first approach, all fiber tracts are obtained through a
single seed region of interest (ROI) such that only fibers passing
through the seed are included in the reconstructed tract. In the
second one, the knowledge-based multiple-ROI approach, all
fiber tracts are obtained through a seed to target ROIs, with
logical and concatenation of two ROIs, such that only fibers
passing through both ROIs are included in the reconstructed
tract. Obviously spurious fibers are removed from the fiber tract

by using an additional avoidance ROI (logical NOT operation)
(Wakana et al., 2007). In the first approach, we only have to
create a mask of the ROI (automatically or manually), in order
to generate a connectivity distribution from the specified region
of interest. Probabilistic tractography is performed from every
voxel with a value greater than 0 in this mask. The output file
is a single image in the space of the specified seed mask. All
brain voxels have a value (though many of these may be zero)
representing the number of samples that pass through that voxel
from the seed mask. Target identification is a further crucial
step for guided tractography from a seed region, to estimate
the probability of their interconnection. Target identification
requires solid anatomical knowledge documented by an extensive
literature review across species for each seed structure to
be studied. Existing literature in human is often conflicting
and limited. Furthermore, experiments studying connectivity
between individual brain regions are not reported in a
normalized, structured and centralized repository, but published
in plain text, scattered among individual scientific publications
(Richardet et al., 2015). Consequently, manual literature review
(LIT) to identify targets for a given seed region is tedious and
potentially subjective. Therefore, complementary approaches
would be very useful for the neuroscience community.

In this article, we propose to use text-mining (TM) models to
automatically generate potential targets from the neuroscientific
literature, so that they can be used for anatomical connection
studies and more specifically for tractography studies. These
TM models aggregate brain region connectivity from a very
large amount of published neuroscience full-text articles and
PubMed abstracts. To illustrate and evaluate the methodology,
we applied TM models to three structures: two well-studied
structures, since validated DBS targets for movement disorders,
the internal globus pallidus (GPi) and the subthalamic nucleus
(STN) and, the nucleus accumbens (NAcc), exploratory target for
treating psychiatric disorders. We performed a systematic review
of the literature to document the projections of the three selected
structures and compared it with the structures proposed by TM
models, both in rat and primate (including human). To assess the
results of the TM models, a comparison has been made between
the two methods for the well-described GPi and STN. Finally, we
ran probabilistic tractography on the NAcc and compared the
output with the results of the TM models and literature review.
The objective of this paper is to document/support the validity of
the TM models approach in helping to identify the targets to be
explored for a given seed structure in (probabilistic) tractography
projects.

Materials and Methods

Search Strategy for Identification of the Three
Seed Structures and Their Connections in Rat
and Primates, Including Humans
Relevant publications were obtained using the PubMed database
and references from the consulted articles. The PubMed database
was manually searched for articles describing connections of
the three nuclei, globus pallidus internus, subthalamic nucleus,
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and nucleus accumbens. MeSH headings used were “globus
pallidus,” “entopeduncular nucleus” (corresponding to themedial
segment of the globus pallidus in rats), “subthalamic nucleus,”
and “nucleus accumbens.” We further searched for the following
terms: “globus pallidus internus,” “pallidum internum,” “internal
globus pallidus,” “globus pallidus pars interna,” and “medial
globus pallidus.” We combined them with the following
MeSH headings for the studied species: “rats,” “primates,” and
“human” and with the following key words: “connections,”
“projections,” “afferents,” and “efferents.” Only articles written
in English were reviewed. We used Terminologia Anatomica as
reference for official nomenclature of the studied regions and
structures.

Automatic Information Extraction from the
Neuroscientific Literature
To accelerate manual literature search, we used TM methods
that distill very large amount of scientific articles in order to
extract brain regions that are potentially connected. The TM
process consist of three phases: first, identifying mentions of
brain regions in text; second, determining which of these brain
regions are connected, and third, aggregating and reporting
on potential connections in a database easily searchable by
neuroscientists. For the identification of brain regions, two
complementary named entity recognizers (NER) were developed.
The first NER uses a lexicon of all 1197 brain regions
from the Allen Mouse Brain Atlas (ABA) (http://www.brain-
map.org) that is automatically augmented with corresponding
synonyms found in several lexica (Richardet et al., 2015) of
rodent brain region: the Brain Architecture Management System
(BAMS) (Bota and Swanson, 2008), Neuronames (Bowden
and Martin, 1995; Bowden and Dubach, 2003), Paxinos and
Watson (Paxinos and Watson, 2007), Swanson (Puelles Lopez,
2000).

The second NER (BrainNER) relies on a machine-learning
model (linear chain conditional random field) trained on
WhiteText, a manually annotated corpus of 18,242 brain region
mentions (French, 2009; French et al., 2012). The advantage of
this statistical approach is that the model will match complex
brain region names, even if they are not present in a lexicon, for
example “contralateral prepositus hypoglossal nucleus” or “distal
parts of the inferior anterior cerebellar cortex.”

Once brain regions were identified, the second step was to
determine whether two brain regions mentioned in a sentence
were anatomically connected or not. To this end, three different
models were combined: (1) FILTER considers all possible brain
region co-occurrences, and subsequently applies filters to remove
unlikely ones; (2) KERNEL relies on a supervised machine-
learning classifier; (3) RULES consist of 9 manually crafted rules
of the kind “projection from the region A to the region C and the
region D.” The resulting database shows, by selecting a region of
interest, all other connected regions extracted from the literature
and the possibility to drill down to the individual sentences for
detailed analysis. The complete methodology can be found in
Richardet et al. (2015).

The database is publicly accessible through a simple and
intuitive web application. This application provides a matrix

of brain regions co-occurences displaying the top N regions
for which the most connection mentions was found (see
Supplementary Figure 1). All matrix values are linked to the
corresponding detailed list of sentences from neuroscientific
articles. For example, Supplementary Figure 3 displays the
extracted sentences between the Allen Brain Atlas regions
“Periaqueductal gray” and “Nucleus accumbens.” Each sentence
is itself linked to PubMed so that the user can go back to
the original article. Additionally, the user has the ability to
provide feedback by either validating the sentence or rejecting
it. Finally, it is possible to search for one particular brain
regions of interest, and then list all the other brain regions
potentially connected to it (for which connectivity events have
been found in the literature), see Supplementary Figure 2. The
web application also exposes a REST API to interact with the
extracted connectivity programmatically.

Guided Probabilistic Tractography of Nucleus
Accumbens
High-resolution multi-parameter quantitative MRI (MPM) and
high angular resolution diffusion imaging (HARDI) were
acquired on a 3T whole-body MRI system (Magnetom Prisma,
Siemens Medical System, Germany). The quantitative MPM
acquisitions consisted of three multi-echo 3D fast low angle shot
(FLASH) with proton density (PD), magnetization transfer (MT)
and T1 weighted contrast as described elsewhere (Helms et al.,
2008), whole brain coverage, 1mm3 resolution, FOV: (240, 176,
256) mm along A-P, L-R, H-F directions. Since previous research
demonstrated that MT saturation maps provide better contrast
in subcortical structures compared to T1w images (Helms
et al., 2008), MT saturation maps were used for delineation
of the NAcc. For the diffusion weighted acquisition we used a
HARDI protocol with 60 gradient directions at b-value = 2000
s.mm−2 and 13 interleaved b0 images. The following acquisition
parameters were set: TE/TR = 69/7400ms; 2 × 2 × 2mm
isotropic resolution with 70 axial slices; FoV read = 192mm,
FoV phase= 212mm; matrix size 96× 106; and GRAPPA factor
2. The study collecting imaging data in healthy subjects and
disease conditions was approved by the Commission cantonale
(VD) d’éthique de la recherche sur l’être humain, Switzerland
(Protocole 207/10). Informed consent was obtained from all
subjects.

HARDI preprocessing included motion correction, eddy
current and correction of the vectors using the Artifact correction
in diffusion MRI (ACID) toolbox (Mohammadi et al., 2010)
into the batch system of Statistical Parametric Mapping 8
(SPM8). We used FSL and FMRIB’s Diffusion Toolbox (FDT)
(www.fmrib.ox.ac.uk/fsl) to perform segregation of brain tissue
from non-brain tissue using the Brain Extraction Tool, local
fitting of diffusion tensors and construction of individual FA
maps using DTIFIT, and tensor estimation with BEDPOSTX
routine with the following options: Fibers (3), Weight (1), Burn
In (1000). A segregation of brain tissue from non-brain tissue
using the Brain Extraction Tool (BET) was performed on the
structural images. The left and right NAcc were segmented using
FIRST from FSL on structural images. After the segmentation,
we applied boundaries correction using first_boundary_corr
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that is used for the classification of the boundary voxels
in the volumetric output for a single structure. We applied
fast boundary correction method that used FSL’s FAST-based
tissue classification for correcting boundary voxels. The results
were visualized and checked using Freesurfer (Freeview) image
analysis suite (Version 5.1.0) (http://surfer.nmr.mgh.harvard.
edu/). The same method has been applied to extract sub-
cortical target masks. The other target masks were extracted
with Individual Brain Atlases using SPM (IBMASPM) (Aleman-
Gomez et al., 2006). The masks have been extracted using
ITK-SNAP (http://www.itksnap.org). All the masks have been
binarized. Masks have been taken by manually drawing the
region of interest, when automatic extraction results did not
reach quality expectations or when region masks were not
available within the previously mentioned tools. This was the case
for subthalamic nucleus, substantia nigra, ventral tegmental area,
hypothalamus, habenula and subcalosal cingulate (Chowdhury
et al., 2013). Registration from structural to diffusion space
was performed using FMRIB’s Linear Image Registration Tool
(FLIRT) in FSL. We performed a 3D-to-3D registration between
diffusion and structural image with the affine model, 12◦ of
Freedom and the use of the Tri-linear final interpolation method.
The resulting structural to diffusion registration was manually
checked to ensure satisfactory alignment, with particular
attention paid to the regional borders of the BG in general
and NAcc, in particular. We run tractography analysis with
probabilistic tracking (probtrackx) in FSL using the segmented
left and right NAcc seeds, the target masks and the output
matrix from the registration (structural to diffusion).We used the
following parameters: curvature threshold of 0.2 corresponding
to a minimum angle of approximately 80◦, number of samples
5000 and, loopcheck option. We developed a Matlab script in
order to extract from the probabilistic tractography outputs
the number of tracts that leave a voxel from NAcc to reach a
given target. A Python script has been developed to calculate
the number of voxels within the NAcc that have a probability
greater than 1% to be connected to a specific target. Voxels
with a connection probability of at least 0.01 were included as
voxels containing anatomically valid pathway. The 1% threshold
is a typical threshold used in probabilistic tractography (Lambert
et al., 2012; Li et al., 2013). Threshold was set to 1% (out of
the 5000 generated from each seed voxel) to reject voxels with
low probability. This means that at least 1% of the identified
fibers intersect the voxels in the valid pathway. This gave
us a matrix of “strengths” of interconnection on a scale of
0–100%.

We built up the NAcc connectivity maps, with the
associative map corresponding to the NAcc putative core [the
prefrontal cortex including frontal superior, frontal middle
and frontal inferior opercular and triangular gyri as well
as the lateral orbitofrontal (l-OFC) cortex] and the limbic
map corresponding, to the NAcc putative shell (distribution
to medial OFC, frontal inferior orbital, frontal superior
orbital, anterior cingulate cortex, subcalosal cingulate cortex,
amygdala, hippocampus, habenula, hypothalamus, and ventral
tegmental area) (Kopell and Greenberg, 2008; Baliki et al.,
2013).

Results

Manual Literature Review (LIT)
The literature review has been performed by two of the authors
(LC and JB) and took approximately 5 working days for the three
regions. Below follows a detailed description of the three seed
structures and their connections in rat and primates, including
humans, based on a systematic review of the literature. The
summary of the systematic review is presented in Table 1.

Internal Globus Pallidus

The globus pallidus is composed by two segments, a lateral,
larger segment, the external globus pallidus (GPe) and a smaller,
medial segment, the GPi. Furthermore, according to its vertical
orientation, the subcomissural part of the globus pallidus is
known as the ventral pallidum. In rat, the internal segment is
called the entopedoncularis nucleus, the globus pallidus referring

TABLE 1 | Summary of the manual literature review.

Afferents Efferents

GLOBUS PALLIDUS INTERNUS

Subthalamic nucleus Thalamus

Substantia nigra pars compacta Lateral habenula

Ventral tegmental area Substantia nigra

Neostriatum Pedunculopontine nucleus

Cerebral cortex (rat)

Neostriatum

SUBTHALAMIC NUCLEUS

Primary motor cortex Globus Pallidus internus

Supplementary motor area Globus Pallidus externus

Frontal eye field Substantia nigra pars compacta

Somatosensory cortex Substantia nigra pars reticulata

Anterior cingulate Ventral thalamic nuclei ipsilaterally

Globus Pallidus externus Parafascicularis thalamic nucleus

contralaterally (rat)

Substantia nigra pars compacta Substantia innominata

Ventral tegmental area Ventral pallidum

Dorsal raphe nucleus Pedunculopontine nucleus

Pedunculopontine nucleus Ipsilateral cortex (rat)

Centro-median/parafascicularis complex Neostriatum (rat)

Spinal cord (rat)

NUCLEUS ACCUMBENS

Orbitofrontal cortex Ventral pallidum

Anterior cingulate Substantia nigra pars compacta

Subgenual cortex Substantia nigra pars reticulate

Pregenual cortex Ventral tegmental area

Hippocampus Hippocampus

Parahippocampal cortex Caudate

Amygdala Putamen

Substantia nigra pars compacta Medio-dorsal thalamus

Ventral tegmental area Cingulate gyrus

Substantia innominata (rat)

Lateral preoptic area (rat)

Lateral hypothalamic area (rat)
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only to the external globus pallidus. In human, the two segments
are separated by the medial medullary lamina. The GPi is further
subdivided into a medial (GPi-m) and a lateral segment (GPi-
l) by the accessory medullary lamina. Since the GPi is the DBS
target for treating movement disorders, we will further focus only
on the GPi.

In rat, the two major afferents of the entopeduncular
nucleus are the neostriatum and the STN, which have opposing
physiological effects on entopeduncular neurons. The striato-
fugal fibers project to the entopeduncular nucleus as well
as to substantia nigra, although the majority of the fibers
terminate in the globus pallidus (Wu et al., 2000). Topographical
and synaptic organization of the so-called direct (neostriatum
to entopeduncular nucleus) and indirect pathways (involving
the STN and the globus pallidus) is capable of mediating
the inhibition and excitation of output neurons in the
entopeduncular nucleus (Bevan and Bolam, 1995). Reciprocal
connections between internal and external segments have been
identified (Kincaid et al., 1991a,b) and between the pallidal
complex and the STN (Smith and Bolam, 1991). A projection
from the NAcc to the entopeduncular nucleus terminates in
its antero-ventral (subcomissural) part (Mogenson and Nielsen,
1983; Mogenson et al., 1983). The ventral pallidum receives
substantial input from the ventral tegmental area (VTA) (Napier
and Maslowski-Cobuzzi, 1994). Other afferent projections to
the globus pallidus and entopeduncular nucleus as well as to
the ventral pallidum have been described, from the cortex
(Naito and Kita, 1994), thalamus (parafascicular nucleus), dorsal
raphe nucleus (Kincaid et al., 1991a,b). The entopeduncular
nucleus projects mainly to the thalamus, the ventrolateral
(VL), ventromedial (VM), medial dorsal, and centromedian-
parafascicular complex, but also to the lateral habenula, the
pedunculopontine nucleus, and the frontal cortex (Kha et al.,
2000).

In non-human primate and human, afferents to the GPi
are constituted by the projections of the striatal medium spiny
neurons (representing the direct pathway) (Haber et al., 1990a,b)
that will converge toward the GPi and by the neurons of the
subthalamic nucleus. Both, caudate and putamen project to the
GPi. The ventral striatum that includes NAcc projects to the
ventral or limbic pallidum, including the rostral to the anterior
capsule region of the globus pallidus. The projections from
the neostriatum including NAcc use gamma-amminobutyric
acid (GABA) as neurotransmitter and are supposed to be
inhibitory. The subthalamo-pallidal projection is excitatory
and glutaminergic (Smith and Parent, 1988). Dopaminergic
projections from the substantia nigra (SN) and ventral tegmental
area (VTA) have been demonstrated and these fibers pass to
both, GPi and GPe. The major output arising exclusively from
the GPi is to the thalamus (Hazrati and Parent, 1991) and
the pedunculopontine nucleus (PPN) (Parent and Cicchetti,
1998). It has been suggested that the GPi has two distinct sites
of origin of efferent fibers: a central “motor” zone sending
axons to the thalamus, mainly the ventro-lateralis anterior
nucleus following nomenclature of Jones (Jones, 1990), to the
supplementary motor cortices and, the PPN. The second zone,
the “peripheral” limbic zone, projects to the lateral hypothalamus

and habenula (Parent, 1979), the STN and SN (Parent and De
Bellefeuille, 1983; Parent et al., 1984) and to the prefrontal cortex
via the dorsomedial nucleus of thalamus. In humans, when
functional neurosurgery is proposed for movement disorders, the
sensorimotor GPi is targeted at the posteroventral and lateral
aspect of the nucleus (Laitinen et al., 1992; Coubes et al., 2004).
The centro-median/parafascicular (CM/Pf) complex receives a
substantial innervation from the GPi (Baron et al., 2001; Sidibe
et al., 2002). Pallidal neurones project to a lesser degree, to the
nucleus ventralis anterior. The associative and limbic areas of
the GPi also project to the PPN (Shink and Smith, 1995). The
majority of this information is derived from primate studies. The
pallido-thalamic projection ismainly inhibitory andGABA-ergic.

Subthalamic Nucleus

The STN is located within the caudal part of the diencephalon,
between the ventral part of the zona incerta and the dorsal
portion of the cerebral peduncles, ventral to the thalamus
and lateral to the hypothalamus, parallel to the internal
capsule, placed medially to the apex of globus pallidus. STN
receives direct glutaminergic cortical projections as well as from
the intralaminary thalamic nuclei (mainly ipsilateral but also
contralateral). The main afferents to the STN are the cortico-
subthalamic projections and the pallido-subthalamic pathways.

In rat, the STN receives massive cortical projections from
the primary motor, prefrontal, anterior cingulate, primary
somatosensory cortices (Kitai and Deniau, 1981). Pallido-
subthalamic fibers arise from the globus pallidus (Smith and
Bolam, 1990a,b; Kita and Kitai, 1994). The nigro-subthalamic
pathway arises from SN and retrorubal and ventral tegmental
areas (Hassani et al., 1997), providing dopaminergic innervation.
Thalamo-subthalamic projections arise from the CM/Pf complex
passing through zona incerta to reach the ipsilateral rostral STN.
This pathway is demonstrated in rat (Sugimoto and Hattori,
1983; Sugimoto et al., 1983) but its role in humans remains
uncertain. Other projections originate within the dorsal raphe
nucleus and PPN (Canteras et al., 1990; Bevan et al., 1994a,b,
1995a,b; Bevan and Bolam, 1995). STN efferent projections are
directed toward the basal ganglia nuclei. In rat, STN efferents
are directed toward the GP and the SN pars reticulata but
also pars compacta. Furthermore, STN projects to the thalamic
ventral motor nuclei ipsilaterally and to the parafascicularis
nucleus contralaterally. Further projections of the STN have
been described to substantia innominata, ventral pallidum, PPN,
neostriatum, ipsilateral cerebral cortex (Degos et al., 2008) and
the spinal cord.

In non-human primate and human, a monosynaptic cortical
connection has been described as the hyperdirect pathway
originating within the primary motor cortex, the supplementary
motor area and the frontal eye field and conveying the
information from cortex to the GPi more rapidly than via
the cortico-striato-pallidal route (Nambu et al., 2000). The
GPe projects to the subthalamic neurons using GABAergic
transmission. This projection is supposed to be inhibitory and
belongs to the indirect pathway. The nigro-subthalamic pathway
arises from SN pars compacta (Lanciego et al., 2012) retrorubal
area and VTA providing dopaminergic innervation which in
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humans may be by the way of the dopamine D1 receptors
(Augood et al., 2000). Most STN efferent neurons send axons that
simultaneously innervate the GPi, GPe, and SN pars reticulata
(Nauta and Cole, 1978; Rico et al., 2010). In addition to STN
projections to the GPi, GPe, and SN pars reticulata, efferent
STN neurons also innervate thalamic targets, ipsilateral ventral
thalamic motor nuclei (Nauta and Cole, 1978; Rico et al., 2010)
and contralateral parafascicular nucleus. Furthermore, dual
retrograde tract-tracing studies have shown that subthalamic
projections reaching the GPi and ventral thalamic nuclei arise
from different subpopulations of STN neurons (Rico et al., 2010).

Nucleus Accumbens

NAcc together with the ventral part of the caudate and of
the putamen constitute the ventral striatum. The anatomical
continuity between NAcc and the structures of the extended
amygdala, the ventral pallidum and nucleus basalis of
Meynert illustrate the strong relationship between the
ventral subcomissural part of the basal ganglia (BG) and
the subcortical limbic system, rendering precise delimitation of
them challenging. A topographic subdivision of the NAcc into
shell and core region has been described (Voorn et al., 1989;
Heimer et al., 1997; Zahm, 1999), sharply marked in rodents
(Meredith et al., 1996) but more challenging to identify and
delineate in primates and human, in whom several different
histochemical markers must be associated (Meredith et al., 1996;
Brauer et al., 2000). The shell represents the ventral and medial
part and the core the dorsal and central part of the nucleus.
Nevertheless, significant differences exist between location and
connections in rat and primates and more specifically in human.
As for the striosome/matrix subdivision for the striatum, the
core/shell subdivision is relevant for the information processing
within the BG since each of the compartments have at least
partially distinct cortical afferents. Overall, afferents to NAcc
originate in the hippocampus, and prefrontal areas such as the
orbitofrontal cortex and anterior cingulate. Other projections
originate in subcortical structures, including amygdala.

In rat, the core receives projections from the dorsal part of the
medial prefrontal cortex (corresponding to the dorsal prelimbic
and anterior cingulate cortex) and from the parahippocampal
cortex, while the shell receives projections mostly from the
ventral parts of the medial prefrontal cortex (corresponding to
the infralimbic and ventral prelimbic cortices) (Berendse et al.,
1992a,b). The major part of the amygdalar projections to the
BG is to the NAcc (McDonald, 1991), different for the core/shell
subdivisions, respectively. The core receives projections from
the anterior part of the basolateral amygdala via the ventral
amygdalo-fugal pathway while the shell receives afferences from
its posterior aspect and from the central nucleus of amygdala
via the sublenticular and supracapsular parts of the extended
amygdala (Alheid et al., 1998). The shell also receives afferences
from the hippocampus (Kelley and Domesick, 1982). The core
projects mainly to the dorsal subcomisural part of the ventral
pallidum. The shell project to the ventral and medial part of the
ventral pallidum, to the hypothalamus and the the mesencephalic
dopaminergic neurons (VTA and SNc) (Berendse et al., 1992a;
Heimer et al., 1997). Fibers from NAcc also pass to subpallidal

structures including the substantia innominata (Berendse et al.,
1992a), lateral preoptic and lateral hypothalamic area (Mogenson
et al., 1983).

In primate and human, the literature reporting on NAcc
connections is poorer and subjective, since it is based mainly
on data from rodents and non-primate mammalians. The
equivalent of the shell would receive predominant afferences
from the subgenual cortices in comparison to the orbitofrontal
cortex, while the core would receive similar projections from
these different regions (Haber et al., 2000). NAcc, especially
the putative shell region, receives a strong dopaminergic input
from the VTA and from the dorsal tier of the substantia
nigra (mainly the putative core) (Haber et al., 2000; Haber,
2003). Based on rodent studies, one can hypothesize that
NAcc afferents are provided by the baso-lateral amygdala
and most probably also the central and medial amygdalar
nuclei. NAcc main efferents innervate the pallidum, striatum,
mediodorsal thalamus, prefrontal, including cingulate cortex
and the mesolimbic dopaminergic areas (Baliki et al., 2013).
The putative core projects mainly to the dorsal subcomisural
part of the ventral pallidum. The core also projects to the
ventromedial SN pars compacta but also to more lateral aspects
of the substantia nigra. The shell would project to the ventral and
medial part of the ventral pallidum, to the hypothalamus and the
VTA, as well as to the SN pars reticulata.

Text-Mining (TM)
TMmodels were evaluated at different levels. First, the two NERs
and three extractors are evaluated against a manually annotated
corpus. Second, the complete system is evaluated against in-
vivo connectivity from ABA. The TM models were then applied
on two large corpora, and the extracted brain regions and
connections are discussed. Last, we compared and analyzed the
results between TM and LIT for the three structures.

The precision of both NERs was estimated on the WhiteText
annotation corpus and is 84.6% (BraiNER), meaning that 85 out
of 100 brain regions are correctly identified. The performance of
all three extractors was evaluated on 3097 manually annotated
connectivity relations, reaching a precision of 45, 60, and 72%,
respectively. The resulting database contains over 4 million
(lexical) and 4.5 million (machine learning) brain region
mentions, and over 100,000 (lexical) and 460,000 (machine-
learning) potential brain region connections. The complete
system was evaluated against in vivo connectivity data from
ABA with an estimated precision of 78% for the brain region
connections that were found in the literature (recall could not
be evaluated). This means that almost 8 out of 10 connections
predicted by the TM system have also been experimentally
measured in vivo. Table 2 provides the statistics of the corpora
used, extracted brain regions and connections (Richardet et al.,
2015).

Table 3 lists potential targets for the GPi and STN, as provided
by the TM models. The potential targets are ranked by their
decreasing score, the score representing the rounded number of
connection mentions, normalized by the confidence1 that each

1Confidence (precision) has been evaluated for each extractor.
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TABLE 2 | Statistics about corpus, extracted brain regions and connections (reproduced from Richardet et al., 2015).

Corpus Documents (words) Brain regions mentions Connections mentions

Lexical Machine-learning Lexical Machine-learning

All PubMed abstracts 13,293,649 1,705,549 1,992,747 41,965 188,994

(2.1× 109)

Full text neuroscience articles 630,216 2,327,586 2,751,952 62,095 279,100

(6.1× 109)

TABLE 3 | Brain regions for which connections have been found in the literature for the globus pallidus, internal segment and the subthalamic nucleus

using text-mining models.

Globus pallidus internus Subthalamic nucleus

Region Score Region Score

Caudoputamen 143 Globus pallidus, external segment 105

Globus pallidus, external segment 117 Caudoputamen 74

Pallidum 23 Cerebral cortex 43

Substantia nigra, reticular part 21 Pallidum 34

Subthalamic nucleus 20 Pedunculopontine nucleus 16

Lateral habenula 12 Thalamus 16

Thalamus 10 Globus pallidus, internal segment 15

internal capsule 7 Primary motor area 11

Cerebral cortex 4 Somatomotor areas 9

Hypothalamus 3 Substantia nigra, reticular part 9

Substantia nigra, compact part 3 Parafascicular nucleus 7

Pedunculopontine nucleus 2 Zona incerta 5

Cerebellar nuclei 2 Substantia nigra, compact part 5

Midbrain 2 Ventral tegmental area 3

Parafascicular nucleus 2 Midbrain 2

Lateral preoptic area 2 Lateral hypothalamic area 2

Cerebellum 1 Hypothalamus 2

Reticular nucleus of the thalamus 1 Brain stem 2

internal medullary lamina of the thalamus 1 Pons 1

Striatum-like amygdalar nuclei 1 internal medullary lamina of the thalamus 1

Zona incerta 1 Red nucleus 1

stria medullaris 1 striatonigral pathway 1

Fields of Forel 1 Isocortex 1

Magnocellular nucleus 1 Dentate nucleus 1

Central lateral nucleus of the thalamus 1 Substantia innominata 1

Claustrum 1 Bed nuclei of the stria terminalis 1

Substantia innominata 1 Islands of Calleja 1

Brain stem 1 Dorsal nucleus raphe 1

nigrostriatal tract 1 Cerebral nuclei 1

Interbrain 1 Olfactory tubercle 1

optic tract 1 Auditory areas 1

Ammon’s horn 1

connection has been extracted correctly. Therefore, a high score
means that many articles have been found. We stress the fact
that the frequency of a brain region connection reported in the
scientific literature does not necessarily reflect the physiological
intensity of a connection; the former reflecting the interest for
the region.

All the results including suggested articles, nucleus and scores
can be found in http://connectivity-brainer.rhcloud.com.

For the “Globus pallidus, internal segment,” all LIT targets
have been correctly suggested by the TM algorithm using
ABA lexicon, except for one, ventral tegmental area, VTA.
However, VTA is correctly proposed while searching using

Frontiers in Neuroanatomy | www.frontiersin.org 7 May 2015 | Volume 9 | Article 66

http://connectivity-brainer.rhcloud.com
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Vasques et al. Neuroscientific literature mining for tractography

ABA or BraiNER for “Pallidum” or “Pallidum, ventral region”
instead of globus pallidus, internal segment. The result can
be checked in http://connectivity-brainer.rhcloud.com/static/br/
search.html.

TM proposes more targets for the GPi than the manual
literature review, including connections with hypothalamus (3
publications), cerebellar nuclei (2), midbrain (2), parafascicular
nucleus (2), and lateral preoptic area (2). The majority of the
suggested targets includes or belongs to targets resulted from the
manual literature review: midbrain includes SN; parafascicular
nucleus relates to thalamus. However some of the targets
proposed by TM were not found by LIT. Analyzing one such
abstract suggested by TM, globus pallidus connection to the
hypothalamus, the parafascicular nucleus and the lateral preoptic
area are explicitely reported. TM found confirmatory sentences
for the previously mentioned connections: ≪ On the other
hand, the dense substance P-positive wooly-fiber plexus filling
the internal pallidal segment (entopeduncular nucleus) expands
medialward into the lateral hypothalamic region. ≫ or ≪ The
entopeduncular nucleus invades the hypothalamus also with
a loose plexus of enkephalin-positive wooly fibers ≫ (Haber
and Nauta, 1983). For connections with the cerebellar nuclei,
TM suggests papers that were not found by LIT, but these
papers do not contain evidence of a connection. For illustration,
we found three sentences that do not contain evidence of a
connection with the cerebellar nuclei and all of them concern
the cat. One example is ≪ Seventy seven thalamic neurons in
the VA-VL nuclear complex of the cat which projected to the
anterior sigmoid gyrus (ASG) were studied extracellularly, and
their responses to stimulation of both the cerebellar nuclei (CN)
and the entopeduncular nucleus (ENT) were examined.≫ (Jinnai
et al., 1987). This sentence is an example of a coordinating
conjunction (e.g.,≪ Region A and Region B were examined.≫).
It was suggested by the simplest TM model that is not capable
of filtering out coordinating conjunctions (even though they very
rarely represent a connection).

For the STN, all the LIT targets have been found by TM, except
for specific subdivisions of a given, such as ipsilateral ventral
thalamic nuclei, ventral pallidum or the anterior cingulate.
However, less specific regions (thalamus, pallidum) are correctly
proposed. In addition, when using the machine learning named
entity recognizer, the connection between STN and the ventral
pallidum, anterior cingulate and ventral lateral thalamus are
found as shown in: http://connectivity-brainer.rhcloud.com/
static/br/region.html?db=20140522_brainer&br=1922.

For NAcc, Table 4 (left) lists brain regions for which
connections have been found in the literature based on the
ABAlex named entity recognizer. Additionally, Table 4 (right)
also includes results from BraiNER (machine learning named
entity recognizer). As discussed in Section Text-Mining,
BraiNER is not constrained on a list of brain regions (like
ABAlex) and is able to identify complex brain region names,
even if they are not present in a lexicon. However, the
regions returned by BraiNER have to be manually identified
and curated as provided by the following link http://connectivity-
brainer.rhcloud.com/static/br/region.html?br=912&db=2014052
2_brainer.

All the LIT targets, except the subgenual and pregenual cortex,
have been found by the TM with the exact terminology. The two
exceptions are explained by the fact that they are subdivisions of
the anterior cingulate that figures as target.

Overall, TM has a precision of 36%, meaning that it proposed
three times as many targets as could be identified with LIT.
Such a low precision is acceptable for the task at hand, since
the priority is to suggest all targets (high recall), even if that
requires manual curation of search results (since precision is only
36%) The overall recall of TM against LIT in our study was 98%,
meaning that over all the targets for the three selected seeds, only
one target have beenmissed by TM (Frontal eye field for the STN)
(Table 5).

Species Differentiation

Table 6 lists the number of publications found by text mining,
ordered by species. Species were identified using Linnaeus, a
machine-learning model to identify species in biomedical text
and resolve it to the NCBI taxonomy (Gerner et al., 2010). One
interesting observation is the difference between the number of
studies on NAcc in rat and in primates, demonstrating the little
available information on NAcc connectivity coming from studies
in primates including human

Probabilistic Tractography
The targets for NAcc found during LIT and TM were used to
perform tractography.

We selected one subject to illustrate the results of the DTI in
the current manuscript.

Figure 1 shows the strength of connectivity of NAcc to its
targets by depicting the number of voxels within the NAcc that
has a probability superior to 1% to be connected to a specific
target.

Cortical targets such as the anterior and subcalosal cingulate,
medial and lateral orbitofrontal cortex, ventrolateral prefrontal
cortex, insula, gyrus rectus, olfactory cortex all exhibited
connection to NAcc. Conversely, hippocampus and amygdala
exhibited a lower probability of connection to NAcc than
expected. Hypothalamus and thalamus and basal ganglia
including caudate, putamen and pallidum well as STN
exhibited a strong probability of connection. In agreement
with previous knowledge, midbrain dopaminergic structures,
SN and VTA exhibited high probability of connections with
NAcc.

Figure 2 shows the probabilistic tractography output from
FSL for the nucleus accumbens, based on the pattern of
connectivity. We built up the NAcc connectivity maps with
the associative map corresponding to the NAcc putative core

(probabilistic connectivity to the prefrontal cortex, including
frontal superior, frontal middle and frontal inferior-pars
opercularis, -pars triangularis) and, the lateral orbitofrontal
(l-OFC) cortex) and the limbic map corresponding to the
NAcc putative shell (with distribution to medial-orbitofrontal
cortex (m-OFC), anterior cingulate cortex, subcalosal area
(Brodman area 25), amygdala, hippocampus, habenula,
hypothalamus and ventral tegmental area (Baliki et al.,
2013).
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TABLE 4 | The 25 brain regions with highest scores for which connections have been found in the literature for the nucleus accumbens based on ABA

and braiNER lexicons.

Nucleus accumbens

ABA Brainer

Region Score Region Score

Ventral tegmental area 454 ventral tegmental area 238

Caudoputamen 412 Striatum 95

Cerebral cortex 295 prefrontal cortex 68

Striatum-like amygdalar nuclei 175 Amygdala 54

Hippocampal region 122 medial prefrontal cortex 52

Ammon’s horn 93 Hippocampus 47

Hippocampal formation 70 Hippocampal 41

Pallidum 61 basolateral amygdala 40

Midbrain 53 caudate-putamen 39

Subiculum 38 Cortical 35

Thalamus 28 Mesolimbic 31

Hypothalamus 28 hippocampal formation 29

Periaqueductal gray 23 ventral pallidum 26

Olfactory tubercle 22 ventral striatum 20

Basolateral amygdalar nucleus 19 caudate putamen 16

Fimbria 18 Thalamus 14

Nucleus raphe pontis 18 Neostriatum 13

Entorhinal area 18 Septum 13

Dorsal nucleus raphe 13 caudate nucleus 13

Globus pallidus, external segment 12 Mesencephalic 13

medial forebrain bundle 11 Amygdaloid 12

Paraventricular nucleus of the thalamus 11 Limbic 12

Lateral preoptic area 9 dorsal raphe nucleus 11

Nucleus of the solitary tract 8 paraventricular of the thalamus 11

stria terminalis 8 corpus striatum 11

The complete results can be found in http://connectivity-brainer.rhcloud.com.

TABLE 5 | Overall performance of TM against LIT.

Found Proposed Missed Precision Recall

by LIT by TM by TM

GPi 10 32 0 0.31 1.00

STN 23 31 1 0.76 0.96

Nucleus Accumbens 21 85 0 0.24 1.00

Overall 54 148 1 0.36 0.98

Discussion

An exponentially growing amount of data is being produced
and published in neuroscience, propelled by improvements in
existing and new measurement recording technologies (Brown,
2007; Schierwagen, 2008). This staggering growth represents
a major challenge to identify useful information and do not
lack valuable information (Balan et al., 2014). Much legacy
information about neural connections is inaccurate or is
misleading because it is vastly oversimplified and must be

evaluated critically since brain circuitry has been examined with
a succession of increasingly reliable methods Already available
BAMS (Bota et al., 2003) have been designed and implemented
for storing and manipulating structural data about the nervous
system in text- and table-based format allowing searching by
region name, species and references (author, source, year) (Bota
and Arbib, 2004).

In this article, we proposed to assess text-mining (TM)
models to automatically suggest targets from the neuroscientific
literature for tractography studies. Many publications deal with
DTI limitations (Hilgetag et al., 2000; Lin et al., 2001; Mori
and van Zijl, 2002; Parker et al., 2002; Ciccarelli et al., 2003a,b;
Kinoshita et al., 2005; Johansen-Berg and Behrens, 2006; Behrens
et al., 2007; Jbabdi and Johansen-Berg, 2011; Campbell and Pike,
2014; Thomas et al., 2014). One of them is related to DTI
outputs that are not yet fully validated, inaccurate (Thomas et al.,
2014) and difficult to quantify with a potential underestimate
of the fiber tracts, as mentioned previously, when compared to
electrophysiological tests (Lin et al., 2001; Parker et al., 2002;
Ciccarelli et al., 2003a,b; Kinoshita et al., 2005). Other limitations
of tractography are related to resolution, termination criteria,
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TABLE 6 | Number of publications and percentage for which connections have been found for the 3 nuclei by species using text-mining.

NAcc STN GPi

Species Number of publications Percentage Number of publications Percentage Number of publications Percentage

Rattus 1572 45.1 198 29.7 260 41.9

Mus 133 3.8 14 2.1 10 1.6

Homo Sapiens 83 2.4 34 5.1 13 2.1

Simiiformes 23 0.7 12 1.8 2 0.3

Chordata 72 2.1 12 1.8 15 2.4

Felidae 36 1.0 21 3.2 54 8.7

Canis 17 05 3 0.5 20 3.2

No species found 1550 44.5 372 55.9 247 39.8

FIGURE 1 | Number of voxels within the nucleus accumbens that

have a probability of more than 1% to be connected to a

specific target in one subject (healthy control, right handed

male, age 42). Left nucleus accumbens (in blue) has a total of 712

voxels and the right nucleus accumbens (in red) has a total of 559

voxels.

the effect of noise on the accuracy of the tracking and partial
volume effects (Mori and van Zijl, 2002). The termination criteria
correspond to the inability from tractography to determine
the precise origin/termination of connections in the cortex
(Jbabdi and Johansen-Berg, 2011) and to detect synapses.
Accuracy quantification and error detection are also limitations
of tractography, unable to provide any confidence scores on
the output results even if efforts are being made to improve
imaging techniques and algorithms (Hilgetag et al., 2000; Behrens
et al., 2007). Tractography is unable to tell whether an axon is
afferent or efferent (Jbabdi and Johansen-Berg, 2011). However,
although current tractography methods have limitations, the
ability to localize fiber bundles is of great help to understand
connections and structural organization of the human brain.
Anatomical knowledge can be used to impose constraint in the
tract reconstruction, thereby effectively reducing the likelihood
of the occurrence of erroneous results. Even if this approach is
applied to anatomically well-documented tracts (Mori and van
Zijl, 2002), it is essential to validate probabilistic results and in

particular in DBS, to explore a specific seed by studying patterns
of connectivity, sub-parcellation and confirmation of functional
zones (Parker et al., 2002; Ciccarelli et al., 2003b; Kinoshita
et al., 2005; Johansen-Berg and Behrens, 2006; Barkhoudarian
et al., 2010; Lakhan and Callaway, 2010; Sedrak et al., 2010;
Traynor et al., 2010; Coenen et al., 2011, 2012a; Pouratian et al.,
2011; Taljan et al., 2011; Lambert et al., 2012; Chowdhury et al.,
2013; Rozanski et al., 2014; Sweet et al., 2014a). Brain structures
as nucleus accumbens, are less documented in human. We
believe that TM approaches can help neuroscientist to use the
provided information to identify targets for tractography and
document them in human. Two well-established DBS targets
for movement disorders have been studied (GPi and STN) and,
NAcc, an exploratory DBS target for psychiatric disorders. The
output of the TM method was compared with the output of
a manual, systematic review of the literature and the output
of the probabilistic tractography using NAcc as seed structure.
The concordance with data from manual search is significant
and robust. The overall performance of the TM algorithm
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FIGURE 2 | At the top left, the probabilistic tractography output of FSL

with the left and right accumbens (in blue) on sagittal, axial and frontal

slices (healthy control, right handed male, age 42). Tracking the fibers

passing through the nucleus accumbens with multi-fiber (3) tractography. A

sagittal, axial and coronal maximum intensity projection is shown

(yellow-orange). Bottom left: 3D view of the probabilistic tractography output.

A 3D maximum intensity projection is shown in cyan with an axial MRI. On the

right side, at the top, the identification of the left and right accumbens (blue) on

coronal slice and at the bottom, the identification of the left and right

accumbens in 3D (blue).

against manual literature review (LIT) in our study was 98%
recall, meaning that almost all regions found with LIT were
also proposed by TM. In particular, when compared with the
systematic search of the literature, for the “Globus pallidus,
internal segment,” all LIT targets but one (VTA) have been
correctly suggested when using the restricted ABA lexicon. This
missing target could be recovered when using the machine
learning named entity recognizer (BraiNER). For the STN, all
the targets identified by manual literature review have been
found with TM, except for subsequent divisions of a given
target, identified (again) when using BraiNER. For NAcc, all
the targets, except for the subdivisions of the anterior cingulate
cortex have been identified. Overall and as expected, TM returns
and proposes more targets than manual literature review, but
also provides indication for the plausibility of a given connection
between two regions. As an example, the connection between
GPi and the Caudoputamen has a score of 143, making the
connection highly probable. In contrast, only one single article
has been found for the connection between GPi and Ammon’s
horn (Hippocampus).

The key advantage of TM is the ability to screen millions
of documents and billion of words in a matter of hours. This
way, the complete available biomedical literature can be processed
and analyzed. Another advantage is the possibility to search

within results, and order them according to relevance. It is also
possible to provide feedback to the models and subsequently
retrain them with that additional data in order to improve
results. However, TM has several shortcomings and manual
post-processing of results is mandatory. For example, complex
sentences are tedious to analyze and often yield incorrect or
empty results. In fact, one has to keep in mind that the estimated
precision of the proposed target regions by TM is 36%. TM
is not yet able to extract the directionality of the connection,
nor metadata like neurotransmitter type or if the connection is
inhibitory or excitatory. Additionally, TM lacks the ability to
clearly differentiate between facts and hypothesis and is not yet
able to trace the source of a connectivity statement (e.g., when an
articles cites another reference).

When compared to the TM models, the manual, systematic
search of the literature has the major advantage to select and
interpret data in the light of the known anatomy, resulting in a
deep and thorough analysis of the available literature. Researchers
are able to filter, synthetize and aggregate very disparate and
complex information into a consistent knowledge base. They are
capable of interpreting every connectivity statement, of replacing
it in its specific context (including experimental setting, field
of expertize of the authors), and therefore of judging the exact
pertinence of a connectivity statement. This detailed manual
analysis comes at the cost of scaling, meaning that only a fraction
of the published data will be considered.

Obviously, both approaches have compelling advantages.
However, we found that the winning strategy is to combine
and leverage the strength of both approaches. Indeed: TM
can be deployed as a first step to screen and aggregate the
scientific literature, capable of ingesting millions of documents.
Thereafter comes the time for a manual and meticulous analysis
and verification of the suggested connectivity statements, with
the possibility to drill down to the original source (published
article). The manual effort can be directed on intelligent tasks
like validating and searching proposed connectivity statement,
instead of their painstakingly identification from within millions
of publications. Using this dual strategy (TM prior to manual
review), it took less than 2 h to have proposed a set of 25
potential targets for NAcc. In comparison, it took approximately
a week for a user trained in neuroanatomy to conduct the
isolated literature review of NAcc as presented in Section
Manual Literature Review. Therefore, the connectivity database
significantly accelerates the manual search of metascale brain
region connectivity, by providing a centralized repository of
connectivity data for neuroscientists. Another advantage of this
dual approach is the possibility for neuroscientist to collectively
curate a knowledge base and therefore improve it.

Regarding the distinction of connectivity statements from
different species: as demonstrated by the review for the NAcc,
the majority of the available data comes from rodent studies
(Berendse et al., 1992a; Zahm, 1999; Van Kuyck et al., 2007).
There is a striking need to disentangle human data from
non-human primate data (Brauer et al., 2000). Frequently,
information reported in humans is inferred from animal studies
without further notice (Meredith et al., 1996). As provided by the
results section, there is no sharp correspondence for the nomina
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between species for a given structure (e.g., globus pallidus,
internal segment) rendering inferences from specie to another
highly risky.

Furthermore, the pattern of connectivity for a given structure
may differ between species (Ramnani et al., 2006; Bohland
et al., 2009). Whether significant connections are reported
between NAcc, hippocampus and amygdala through the available
literature as identified via manual search and suggested by
TM, the strength of connections between the aforementioned
structures as output of the probabilistic tractography in healthy
controls is not confirmatory of this result. A similar observation
was reported for the subthalamic nucleus by Accolla et al.
(2014). However, there are many examples of fiber pathways
that are reported in dissection and tracer studies that are
lacking in diffusion tensor tractography studies (Behrens et al.,
2007), highlighting the importance of the selected tractography
technique, its limitations and the potential role of the TM
in validating connectivity information and support further
investigations.

The design of an integrated platform where neuroscientist
can access and curate proposed connectivity statements and
share knowledge, using a standardized approach will provide
significant new insights to neuroscience research. Early
understanding on how to shape the TM can inform the design
of future tools for neuroscience. The mining of large volumes
of data and existing publications to identify patterns of and
relationships between data from different levels of biological
organization could help to predict parameters for experimental
data to test and calibrate model implementations. Data curation
and standardization is critically important to answer to brain
modeling efforts as targeted by the Human Brain Project
(Markram, 2012). One of the HBP objectives is to make it
easier for neuroscientists to organize and access the massive
volumes of heterogeneous data, knowledge and tools produced
by the international neuroscience community. There is a need
to bring together data from the literature, and from on-going
research, and to provide a single source of annotated, high quality
data.

Neuroscience is an incredibly diverse field with researcher
coming frommany disciplines. The cognitive psychologist might
refer to Brodmann area 4, while the behavioral neuroscientist
might refer to the primary motor cortex (Buitelaar et al., 2005). A
researcher would not be disturbed by the different terminologies
but a computer is. Furthermore, a researcher needs to have
an overview of the existing difficulties posed by text before
deciding on how to deal with. This is why curation process and
standardization is crucial to fine-tune the TM outputs.

Which ontologies are used is also of major importance to
ensure semantic heterogeneity when extracting information from
various text sources. As we have seen, different instances of
a region name can be used in publications which make the
processing more complicated (Buitelaar et al., 2005; Ambert
and Cohen, 2012). Several initiatives are trying to standardize
neurosciences such as the International Neuroinformatics
Coordinating Facility (INCF; http://www.incf.org/) with a global
approach and more specifically Neuronames (Bowden and
Martin, 1995; Bowden and Dubach, 2003) or the Neuroscience

Information Framework (http://www.neuinfo.org) to fulfilling
the need for standardized terminologies in neurosciences.

These techniques will provide predictions of fundamental
importance for brain modeling in the operational phase of the
project (Markram, 2012).

In the current study, we focused on the target identification
using TM for tractography studies. TM improvements are
also needed for the specificity of tractography applications, to
visualize and explore projections extracted from the literature on
a 3D atlas, to better evaluate topology, and speed up evaluation of
results.

We believe that the TM approach could be useful for
neuroscientists exploring specific DBS targets. DBS is one
application but we also think that the text mining approach
should be useful in helping the neuroscience community
to facilitate global connectivity studies and in particular
brain regions (Jbabdi and Johansen-Berg, 2011; Sporns, 2011).
The applications of TM can be numerous in computational
anatomy studies and in functional imaging in healthy and
diseased brain. TM has also wide variety of applications in
neuroscience (Tirupattur et al., 2011). The identification of
biological entities such as protein and genes names as well as
chemical compounds and drugs in free text, the association
of gene clusters by microarray experiments with the biological
context provided by the literature, automatic extraction of
protein interactions and associations of proteins to functional
concepts.

In conclusion, we demonstrate that connectivity for a
structure of interest can be extracted from a very large amount
of publications and abstracts. We believe this kind of approach
will be useful in helping neuroscience community to facilitate
connectivity studies of particular brain regions. The text mining
tools used for the present study are indeed part of the HBP
Neuroinformatics Platform and are freely available for the
neuroscience community.
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Supplementary Figure 1 | Brain regions co-occurrences matrix

displaying the top 20 regions for which the most connection mentions

was found. Matrix values represent the number of connectivity events,

normalized by the confidence that each event has been extracted correctly

(precision). All matrix values are linked to the corresponding detailed list of

article sentences (see Supplementary Figure 3). The corresponding url for

that figure is http://connectivity-brainer.rhcloud.com/static/br/matrix.html?db=

20140226_aba&size=20.
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Supplementary Figure 2 | Listing of brain regions potentially

connected to Nucleus accumbens, for which connectivity events

have been found in the literature. The score represents the number

of connectivity events, normalized by the confidence that each event has

been extracted correctly (precision). All regions are linked to the

corresponding detailed list of article sentences (see

Supplementary Figure 3). The corresponding url for that figure is

http://connectivity-brainer.rhcloud.com/static/br/region.html?br=56&db=

20140226_aba.

Supplementary Figure 3 | Detailed list of sentences from neuroscientific

articles, in this case between “Periaqueductal gray” and “Nucleus

accumbens” (list truncated for readability). Each sentence is linked to the

original article on PubMed. Additionaly, the user has the ability to provide

feedback: clicking on the red icon (thumbs down) will remove that sentence, and

log it into the database. Similarly, clicking on the green icon (thumbs up) will

confirm that sentence and log it in the database. The corresponding url for that

figure is http://connectivity-brainer.rhcloud.com/static/br/details.html?br1=795&

br2=56&db=20140226_aba/.
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