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ABSTRACT

Bioactive small molecules, such as drugs or metabo-
lites, bind to proteins or other macro-molecular tar-
gets to modulate their activity, which in turn results
in the observed phenotypic effects. For this reason,
mapping the targets of bioactive small molecules is
a key step toward unraveling the molecular mecha-
nisms underlying their bioactivity and predicting po-
tential side effects or cross-reactivity. Recently, large
datasets of protein–small molecule interactions have
become available, providing a unique source of in-
formation for the development of knowledge-based
approaches to computationally identify new targets
for uncharacterized molecules or secondary targets
for known molecules. Here, we introduce SwissTar-
getPrediction, a web server to accurately predict the
targets of bioactive molecules based on a combina-
tion of 2D and 3D similarity measures with known
ligands. Predictions can be carried out in five differ-
ent organisms, and mapping predictions by homol-
ogy within and between different species is enabled
for close paralogs and orthologs. SwissTargetPre-
diction is accessible free of charge and without login
requirement at http://www.swisstargetprediction.ch.

INTRODUCTION

Molecular insight into the mode of action of bioactive small
molecules is key to understanding observed phenotypes,
predicting potential side effects or cross-reactivity and op-
timizing existing compounds (1–3). In particular, mapping
their targets is a crucial step toward providing a rational un-
derstanding of small molecule’s bioactivity. For these rea-
sons, high-throughput reverse screening of chemical com-
pounds against arrays of protein targets has become an
integral part of drug discovery pipelines (4). As a result,

for many proteins such as specific kinases or phosphatases,
hundreds of small molecule ligands have been identified.
Such large screening initiatives have also provided unique
insights into the specificity and pharmacology of protein
families (1,5). Recently, these data have been collected in
several public databases, like ChEMBL (6) or PubChem
(7) storing information on bioactivities, or ZINC (8) con-
taining information on commercially available compounds.
These can be mined automatically to retrieve specific infor-
mation for a large number of molecules.

However, molecular targets still remain unknown in sev-
eral cases. For instance, phenotypic assays indicate whether
a molecule is active or not, without necessarily providing
direct information on its actual molecular targets (9–11).
Moreover, for most molecules, experiments have been per-
formed with a limited set of targets, such as kinases or
G protein-coupled receptors, and possible off-target effects
have been rarely tested for. Finally, new molecules being de-
veloped for specific purposes may have several targets that
are typically not known in advance. For instance, a recent
study on a set of 802 drugs and interaction data assembled
from seven different databases has shown that known drugs
have on average six molecular targets on which they exhibit
activity (12). Identifying these secondary targets is crucial.
First, it can indicate possible adverse side effects that might
arise when using the molecule, thereby decreasing the attri-
tion rate in clinical trials due to toxicity (13,14). Second, it
provides ways of repositioning (or repurposing) molecules
for new applications. This has become a central theme in
pharmaceutical research in view of the difficulty to launch
new chemical entities. In particular, it is increasingly being
recognized that several compounds traditionally used for
one given application may actually show potent activity in
other therapeutic settings (2,15,16).

Computational predictions play an important role in nar-
rowing down the set of potential targets and suggesting
secondary targets for known molecules (13,15). In partic-
ular, the large amount of information collected on protein–
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small molecule interactions in the last few years has enabled
researchers to develop ligand-based approaches for target
prediction (1,17–20). With SwissTargetPrediction, our goal
is to provide a user-friendly web interface for a knowledge-
based algorithm, recently developed in our group (18),
to predict the targets of bioactive small molecules. Com-
pared to other existing approaches, SwissTargetPrediction
has several distinctive features. First, it enables combining
both 2D and 3D similarity measures with known ligands.
Second, it provides results in five different species. Third, it
allows users to map predictions between and within organ-
isms based on target homology.

THE SWISSTARGETPREDICTION METHOD AND
DATASET

SwissTargetPrediction is based on the observation that sim-
ilar bioactive molecules are more likely to share similar
targets (1,21). Therefore, the targets of a molecule can be
predicted by identifying proteins with known ligands that
are highly similar to the query molecule. In this ligand-
based strategy, a major challenge is to accurately identify
and quantify similarity between the query molecule and the
known ligands. Early approaches have focused on deter-
mining chemical similarity by using molecular fingerprints
(22) (sometimes called 2D similarity). While compounds ex-
hibiting a high similarity under these measures clearly have
an increased likelihood for interactions with similar tar-
gets, the biophysics of molecular recognition suggests that
similarity in ligand shape or electrostatic potential distri-
bution could also lead to a similar effect (23). Therefore,
3D structural similarity measures have been developed to
assess similarity between molecules (24–29). Recently, we
have shown that combining 2D and 3D similarity measures
significantly increases the target prediction accuracy, espe-
cially if the query molecule is new and does not belong to
an already well-studied chemical series (18). In SwissTarget-
Prediction, both 2D similarity and 3D similarity values are
computed against a set of known ligands. For 2D similar-
ity, we use FP2 fingerprints to describe molecules, as imple-
mented in OpenBabel version 2.2.0. The similarity between
two molecules is quantified with the Tanimoto coefficient
(which corresponds to the number of shared fingerprint
patterns divided by the total number of fingerprint pat-
terns describing the two molecules). For 3D similarity, we
first generate 20 different conformations of each molecule
(see Supplementary Materials). From these different con-
formations, 20 Electroshape vectors, which consist of 18-
dimensional real vectors (27), are computed. The Manhat-

tan distance
(

d =
18∑

s=1
|xs − ys |

)
is used to compare vectors

(x and y) describing two different molecules. The final 3D
similarity value between molecules i and j is computed as
1/

(
1 + 1

18 di j
)
, where dij is the smallest Manhattan distance

among the 20×20 distances calculated over all possible con-
formations of each molecule (see also Supplementary Ma-
terials). The final score of a target corresponds to a combi-
nation of similarity measures based on a logistic regression
of the similarity values, with the most similar ligands using
both 2D and 3D similarity measures (see Supplementary
Materials and (18)). Coefficients of the logistic regression

for each molecule size are listed in Supplementary Table
S1. Target scores range therefore between 0 and 1, with the
largest possible value being reached if the query molecule
is a known ligand of the target. These scores are used to
rank predicted targets. A probability has been derived from
this score to assess the likelihood of the predictions to be
correct. These probability values correspond to the aver-
age precision (i.e. number of true-positives divided by the
total number of predicted targets at different thresholds)
obtained in a leave-one-out cross-validation study over our
training set (see Supplementary Materials). As it is based on
cross-validation, they may suffer from internal biases in our
training data (e.g. presence of large congeneric series of sim-
ilar molecules) and if a new query molecule without related
molecules in our database is tested, they may slightly over-
estimate the prediction accuracy. For this reason, we stress
that these probabilities are primarily used to rank targets
predicted to bind to a given small molecule. In particular,
they should not be used to compare predictions obtained
with different molecules.

The set of protein–ligand interactions was retrieved from
the ChEMBL database version 16 (6) using stringent cri-
teria to remove ambiguous cases. First, only interactions
involving single proteins or protein complexes as well as
ligands with less than 80 heavy atoms were considered.
Second, selected interactions had to be annotated as di-
rect binding (‘assay type’ = ‘B’) with an activity (Ki, Kd,
IC50 or EC50) lower than 10 �M in all assays. Interactions
were retrieved in five organisms (human, mouse, rat, cow
and horse). In total, our dataset consists of 280 381 small
molecules interacting with 2686 targets, with the majority
of targets (66%) found in human (see Table 1).

THE SWISSTARGETPREDICTION WEB INTERFACE

SwissTargetPrediction provides an intuitive interface to pre-
dict small molecule protein targets (see also Supplemen-
tary Figure S1). Query molecules can be inputted either as
SMILES, or drawn in 2D using the javascript-based molec-
ular editor of ChemAxon (http://www.chemaxon.com). The
SMILES input field and the 2D interface are automatically
synchronized. The organism in which predictions should be
made can be selected. The current version of SwissTarget-
Prediction allows users to choose between five organisms:
human, mouse, rat, cow and horse, the default being human
(see Supplementary Figure S1). Once a molecule has been
provided, either by SMILES or by drawing, and an organ-
ism has been chosen, the ‘Submit’ button becomes clickable
and calculations can start. The SMILES is first checked to
ensure that it corresponds to a valid chemical structure. If
true, the similarity (both 2D and 3D) between the query
molecule and all ligands in our database is computed and
the score of each target is derived from the combined 2D
and 3D similarity values with the most similar ligands (see
Supplementary Materials).

The result page lists the predicted targets with their com-
mon name together with links to GeneCards (30) (for hu-
man proteins), UniProt (31) and ChEMBL (6) databases
when available (see Figure 1). Targets are ranked accord-
ing to their score with respect to the query molecule. The
target classes are displayed in the last column. These classes

http://www.chemaxon.com
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Table 1. Number of targets in each organism

Organisms Number of targets
Number of targets including homology-based
predictions

Homo sapiens 1768 2547
Mus musculus 342 2345
Rattus norvegicus 469 2657
Bos taurus 104 2272
Equus caballus 3 2367
Total 2686 12 188

The first column shows the number of targets with experimental data. The second column shows the number of targets when including homology-based
predictions.

Figure 1. Prediction result page. This page shows the list of predicted tar-
gets for the query molecule (here chlorotrianisene). Targets are ranked ac-
cording to their scores. Links to GeneCards (under ‘Common name’ col-
umn), UniProt and ChEMBL (when available) are provided. Green bars
indicate the estimated probability of a protein to be a true target given its
score. The sixth column (# sim cmpds 3D/2D) shows the number of lig-
ands of the predicted target or its homologs that display similarity with
the query molecule based on either 2D or 3D similarity measures. These
numbers are linked to pages containing information about these ligands.
For instance, the number circled in red provides a link to the list of ligands
of ESR1 or its homologous proteins that display similarity with the query
molecule (see Figure 2A). The pie chart shows the distribution of target
classes. Predictions based on homology are indicated with ‘(by homology)’
(see the green box).

were retrieved from the ChEMBL target annotation and in
general correspond to the l1 level in the target classification
(6). Exceptions include enzymes and transcription factors
for which more detailed classification based on l2 or l3 lev-
els is sometimes shown if they occur frequently in the target
list (e.g. Tyr kinase, see Figure 1). The pie chart on the top
right of the page shows a summary of the different target

classes present among the predicted targets. All results can
be downloaded as text (.txt or .csv), images (.jpg), printable
report (.pdf), copied to the clipboard or sent to an email ad-
dress by clicking on the links following the ‘Retrieve data:’
field. The probability derived from the target scores (see
Supplementary Materials) is displayed in the fifth column
as a horizontal bar (see Figure 1).

In the example of Figure 1, the predicted tar-
gets of chlorotrianisene (CHEMBL1200761) include
Prostaglandin G/H synthase 1 (COX-1) and estrogen
receptor (ESR1). Chlorotrianisene is a known inhibitor
of COX-1 (13), although the interaction is not present
in ChEMBL. Moreover, while no direct binding between
chlorotrianisene and estrogen receptor is reported in
ChEMBL, functional assay results in this database indi-
cate that chlorotrianisene is active on estrogen receptor
(32). These results show that, in this case, several of the
predictions are true-positives.

To enable users to visually explore the ligands of the pre-
dicted targets, all ligands with a similarity (either 2D or 3D)
larger than a minimal threshold value can be examined by
following the links provided in the sixth column. Figure 2A
shows an example of the results obtained by following the
link in the red circle of Figure 1. Ligands are listed accord-
ing to their similarity with the query molecule. A threshold
for 3D similarity values has been set to 0.75 and the one
for 2D similarity values to 0.45. Below these thresholds, lig-
ands show very low similarity with the query molecule and
are not listed. A link to the ChEMBL entries is provided
for the ligands and the similarity with the query molecule is
indicated. We note that manually exploring the ligands sim-
ilar to the query molecule is strongly recommended to as-
sess how reasonable the predictions are and to see what kind
of ligands display the strongest similarity with the query
molecule.

Finally, help pages with interactive screenshots of the
website are available, an FAQ page is provided to guide
users, and some of the raw data used in the predictions can
be retrieved via the download page.

HOMOLOGY-BASED PREDICTIONS

Proteins originating from a common ancestor in general
display a high degree of sequence and structure similarity.
From a computational point of view, this similarity has been
widely used in protein structure and function prediction, for
instance (33,34). Recently, it has been shown that the bind-
ing of small molecules is also often conserved between ho-
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Figure 2. (A) List of ligands of ESR1 or its homologous proteins display-
ing 3D similarity with a query molecule (here chlorotrianisene). This page
is obtained by following the link in the red circle in Figure 1. Molecules
are ordered based on their 3D similarity with the query molecule. (B) List
of ligands of ESR2 or its homologous proteins displaying similarity with
a query molecule (here chlorotrianisene) obtained by following the link
in the green circle in Figure 1. If a molecule is a ligand of a homologous
protein of the predicted target, the actual target as well as its organism is
indicated (see the green box). When the most similar molecule is a ligand
of a homologous protein, the prediction is labeled as ‘by homology’ in the
result page (Figure 1). A link to the ChEMBL entry is provided for each
compound.

mologs (35–37). In particular, orthologous proteins in close
species such as human and rat often share most of their lig-
ands (36). The same holds for paralogs, although the de-
gree of similarity between ligands of paralogous proteins is
slightly lower than between orthologous proteins (36).

In SwissTargetPrediction, we provide the possibility to
map predictions based on protein homology, both within
and between organisms. Orthologs and paralogs were re-
trieved from Ensembl Compara (38), Treefam (39) and
orthoDB (40), using the union of all three datasets.
Homology-based predictions were carried out as follows:
the query molecule is compared to all molecules that bind to
targets that have homology with a protein in the selected or-
ganism. Predictions are then carried out as if the ligands of
these proteins were actual ligands of their homologs in the
selected organism. If the ligand most similar to the query
molecule is only observed to bind to a homologous protein,
predictions are listed as ‘by homology’ on the SwissTar-
getPrediction result page (see Figure 1, green box). More-

over, in the list of ligands similar to the query molecule,
those binding only to homologous targets are also desig-
nated with ‘By Homology’ and the actual target is indicated
(Figure 2B, green box). For instance, in Figure 1 chloro-
trianisene (CHEMBL1200761) is predicted to bind ESR2
mainly because it shows similarity with ligands of ESR1
(see Figure 2A). The predicted target ESR2 is therefore an-
notated with ‘by homology’ (green box, Figure 1). Figure
2B shows the list of most similar ligands obtained by fol-
lowing the link in the green circle of Figure 1. As the most
similar molecule is a ligand of ESR1, it is labeled with ‘By
homology’ and both the actual target and the organism are
displayed. We note that for organisms with less data (e.g.
horse, cow), many predictions might be based on homology
with targets in other species.

Including homology-based predictions allowed us to ex-
pand the list of predicted targets from 2686 to over 12 188
in all five organisms studied here (see Table 1). As some of
these proteins do not have reported bioactivity data directly
associated with them, they may not be in the ChEMBL
database. This is the reason why for instance KCNH6 and
KCNH7 do not have ChEMBL IDs in Figure 1. Homol-
ogy relationships between all targets can be downloaded at
http://www.swisstargetprediction.ch/download.php.

VALIDATION DATASET

Extensive cross-validation of the SwissTargetPrediction
algorithm has been published previously (18). To comple-
ment these data, we also tested our method against a new
set of molecules that are not present in the training set. In
particular, we used molecules from version 17 of ChEMBL
(6) that were not present in version 16 (i.e. not present in
the training set). We further required that each molecule
be involved in at least one positive (<2 �M) and one
negative (>50 �M) interaction. This resulted in a set of 213
molecules with 346 positive and 278 negative interactions.
To obtain a more balanced dataset that better reflects the
much larger number of non-interacting protein–ligand
pairs, we included additional negative interactions by link-
ing the molecules in our test set to randomly chosen targets
present in ChEMBL (version 16) so as to have five times
more negative than positive interactions for each molecule.
The full benchmark dataset can be downloaded on our web-
site (http://www.swisstargetprediction.ch/download.php).
We then ran the SwissTargetPrediction algorithm as
implemented on the website to assess how accurate the
predictions are. This resulted in an average AUC value of
0.87 on this external test set of both positive and negative
interactions. We also assessed how often the known targets
fall into the top predicted ones in the SwissTargetPredic-
tion general output (see Figure 1). For 70% of the ligands,
at least one of the known targets is found among the
first 15 top predicted ones and for 31% of the ligands in
our test set, the best predicted target is a true-positive.
For instance, molecule CHEMBL2325087 (SMILES:
NC(=S)N1N=C(CC1c1ccc2ccccc2c1)c1ccc(Cl)c(Cl)c1)
binds to EGFR and ERBB2 with sub-micromolar activity
(41) and these two targets are accurately predicted by
SwissTargetPrediction (see Supplementary Figure S2).
Although we cannot exclude that some molecules in our
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test set were actually developed based on their similarity
with known ligands, our results strongly indicate that
SwissTargetPrediction provides reliable predictions that
can be used in follow-up experiments.

DISCUSSION

SwissTargetPrediction has been primarily developed for
identifying targets of molecules known to be bioactive. Nev-
ertheless, users can upload any small molecule, real or vir-
tual, even without prior knowledge of its potential effects.
In this case, the predicted targets may be relevant, especially
if the similarity with known ligands is high. The predictions
may also provide hints on how a compound or a scaffold
might be chemically modified in order to increase its activ-
ity on a given target by comparing with known ligands that
share some similarity (see also (42)). However, we point out
that prediction accuracy is expected to be significantly lower
for molecules with unknown bioactivity. This can be un-
derstood by noting that SwissTargetPrediction will always
suggest some target, based on the assumption that if the
molecule is active, it will likely bind to some protein. For
molecules with unknown bioactivity, this assumption is not
valid per se and the molecule may not bind to any protein, in
which case all predicted targets are false-positives. In partic-
ular, inactive compounds can sometimes exhibit good sim-
ilarity with active molecules if they have been obtained by
modifying an active compound at some key position that
was crucial for its interactions. This is a known limitation
of ligand-based approaches when applied to any kind of
compounds and therefore target predictions should be in-
terpreted with care in the absence of indication of bioactiv-
ity.

Homology-based mapping of target predictions is in-
creasingly being recognized as a powerful approach to
translate results obtained in model organisms to human
(35,36,43). In this work, we have considered homology re-
lationships between and within five vertebrate species, for
which most homologous proteins display a very high se-
quence identity and similar functions. Therefore, we did
not filter out any homology relationship. For more dis-
tant organisms (e.g. worm or yeast), greater care should
be taken, for instance by allowing only mapping between
orthologous proteins that have conserved binding sites or
high overall sequence identity. Another possible issue with
homology-based mapping arises with molecules that are
specifically designed to target some members of a protein
family and not others. Our algorithm, as most other ligand-
based methods, will likely fail to detect these subtle differ-
ences. For instance, in Supplementary Figure S2, molecule
CHEMBL2325087 is also predicted to bind to ERBB3 with
equal probability, although the experimental activity (51
�M) is much lower than for EGFR and ERBB2(41). To ad-
dress such issues, one possibility is to use other orthogonal
computational approaches, such as structure-based analy-
ses or molecular docking (44,45), to refine the predictions
by considering small changes in protein binding sites that
could confer specificity to some targets.

In SwissTargetPrediction, we use a probability derived
from our cross-validation analysis to rank the targets and
estimate the accuracy of the predictions. Other approaches

have been proposed to assess the confidence of predictions.
For instance, in Keiser et al. (1), an E-value is computed
from the 2D similarity with the set of ligands of a target.
This E-value is derived from the statistics of similarity val-
ues with all ligands (above a certain threshold), while in our
case only the most similar ligand according to each simi-
larity measure is considered. Our probabilities can be inter-
preted in terms of precision (i.e. number of true-positives di-
vided by the number of predicted targets), while E-values in-
dicate how likely it would be to find a molecule with a given
average similarity to the set of ligands of a target. In prac-
tice, the most similar ligands are those contributing most to
the E-value, so the two approaches are not necessarily fun-
damentally different. Also, predictions with very low prob-
ability in our approach correspond to low similarity values,
and therefore would result in high E-values. Importantly,
we point out that, by combining different kinds of chemical
similarity measures, our approach can explore more diverse
regions of the chemical space (18).

CONCLUSION AND OUTLOOK

SwissTargetPrediction is part of an important initiative of
the Swiss Institute of Bioinformatics to provide online tools
for computer-aided drug design, many of which are already
available (42,44,46–48). In future developments, SwissTar-
getPrediction will be further integrated with these tools, for
instance by predicting potential binding modes with Swiss-
Dock (44). Moreover, as large screening campaigns are in-
creasingly being carried out in different organisms both in
industry and academia (49,50), SwissTargetPrediction will
be regularly updated and new organisms added to it. This
will enable users to efficiently harness the wealth of publicly
available data to accurately predict new targets for bioactive
small molecules in diverse species.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online, includ-
ing references [1–6].
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