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Résumé 

La tomodensitométrie (TDM) est une technique d’imagerie pour laquelle l’intérêt n’a cessé de croitre 
depuis son apparition au début des années 70. De nos jours, l’utilisation de cette technique est 
devenue incontournable, grâce entre autres à sa capacité à produire des images diagnostiques de 
haute qualité. Toutefois, et en dépit d’un bénéfice indiscutable sur la prise en charge des patients, 
l’augmentation importante du nombre d’examens TDM pratiqués soulève des questions sur l’effet 
potentiellement dangereux des rayonnements ionisants sur la population. Parmi ces effets néfastes, 
l’induction de cancers liés à l’exposition aux rayonnements ionisants reste l’un des risques majeurs. 
Afin que le rapport bénéfice-risques reste favorable au patient il est donc nécessaire de s’assurer que 
la dose délivrée permette de formuler le bon diagnostic tout en évitant d’avoir recours à des images 
dont la qualité est inutilement élevée. Ce processus d’optimisation, qui est une préoccupation 
importante pour les patients adultes, doit même devenir une priorité lorsque l’on examine des 
enfants ou des adolescents, en particulier lors d’études de suivi requérant plusieurs examens tout au 
long de leur vie. Enfants et jeunes adultes sont en effet beaucoup plus sensibles aux radiations du 
fait de leur métabolisme plus rapide que celui des adultes. De plus, les probabilités des évènements 
auxquels ils s’exposent sont également plus grandes du fait de leur plus longue espérance de vie. 
L’introduction des algorithmes de reconstruction itératifs, conçus pour réduire l’exposition des 
patients, est certainement l’une des plus grandes avancées en TDM, mais elle s’accompagne de 
certaines difficultés en ce qui concerne l’évaluation de la qualité des images produites. 
 
Le but de ce travail est de mettre en place une stratégie pour investiguer le potentiel des algorithmes 
itératifs vis-à-vis de la réduction de dose sans pour autant compromettre la qualité du diagnostic. La 
difficulté de cette tâche réside principalement dans le fait de disposer d’une méthode visant à 
évaluer la qualité d’image de façon pertinente d’un point de vue clinique. 
 
La première étape a consisté à caractériser la qualité d’image lors d’examen musculo-squelettique. 
Ce travail a été réalisé en étroite collaboration avec des radiologues pour s’assurer un choix 
pertinent de critères de qualité d’image. Une attention particulière a été portée au bruit et à la 
résolution des images reconstruites à l’aide d’algorithmes itératifs. L’analyse de ces paramètres a 
permis aux radiologues d’adapter leurs protocoles grâce à une possible estimation de la perte de 
qualité d’image liée à la réduction de dose. Notre travail nous a également permis d’investiguer la 
diminution de la détectabilité à bas contraste associée à une diminution de la dose ; difficulté 
majeure lorsque l’on pratique un examen dans la région abdominale. Sachant que des alternatives à 
la façon standard de caractériser la qualité d’image (métriques de l’espace Fourier) devaient être 
utilisées, nous nous sommes appuyés sur l’utilisation de modèles d’observateurs mathématiques. 
Nos paramètres expérimentaux ont ensuite permis de déterminer le type de modèle à utiliser. Les 
modèles idéaux ont été utilisés pour caractériser la qualité d’image lorsque des paramètres 
purement physiques concernant la détectabilité du signal devaient être estimés alors que les 
modèles anthropomorphes ont été utilisés dans des contextes cliniques où les résultats devaient être 
comparés à ceux d’observateurs humain, tirant profit des propriétés de ce type de modèles. 
 
Cette étude a confirmé que l’utilisation de modèles d’observateurs permettait d’évaluer la qualité 
d’image en utilisant une approche basée sur la tâche à effectuer, permettant ainsi d’établir un lien 
entre les physiciens médicaux et les radiologues. Nous avons également montré que les 
reconstructions itératives ont le potentiel de réduire la dose sans altérer la qualité du diagnostic. 
Parmi les différentes reconstructions itératives, celles de type « model-based » sont celles qui offrent 
le plus grand potentiel d’optimisation, puisque les images produites grâce à cette modalité 
conduisent à un diagnostic exact même lors d’acquisitions à très basse dose. Ce travail a également 
permis de clarifier le rôle du physicien médical en TDM: Les métriques standards restent utiles pour 
évaluer la conformité d’un appareil aux requis légaux, mais l’utilisation de modèles d’observateurs 
est inévitable pour optimiser les protocoles d’imagerie. 
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Abstract 

Computed tomography (CT) is an imaging technique in which interest has been quickly growing since 
it began to be used in the 1970s. Today, it has become an extensively used modality because of its 
ability to produce accurate diagnostic images. However, even if a direct benefit to patient healthcare 
is attributed to CT, the dramatic increase in the number of CT examinations performed has raised 
concerns about the potential negative effects of ionising radiation on the population. Among those 
negative effects, one of the major risks remaining is the development of cancers associated with 
exposure to diagnostic X-ray procedures. In order to ensure that the benefits-risk ratio still remains 
in favour of the patient, it is necessary to make sure that the delivered dose leads to the proper 
diagnosis without producing unnecessarily high-quality images. This optimisation scheme is already 
an important concern for adult patients, but it must become an even greater priority when 
examinations are performed on children or young adults, in particular with follow-up studies which 
require several CT procedures over the patient’s life. Indeed, children and young adults are more 
sensitive to radiation due to their faster metabolism. In addition, harmful consequences have a 
higher probability to occur because of a younger patient’s longer life expectancy. 
The recent introduction of iterative reconstruction algorithms, which were designed to substantially 
reduce dose, is certainly a major achievement in CT evolution, but it has also created difficulties in 
the quality assessment of the images produced using those algorithms. 
 
The goal of the present work was to propose a strategy to investigate the potential of iterative 
reconstructions to reduce dose without compromising the ability to answer the diagnostic questions. 
The major difficulty entails disposing a clinically relevant way to estimate image quality. 
 
To ensure the choice of pertinent image quality criteria this work was continuously performed in 
close collaboration with radiologists. The work began by tackling the way to characterise image 
quality when dealing with musculo-skeletal examinations. We focused, in particular, on image noise 
and spatial resolution behaviours when iterative image reconstruction was used. The analyses of the 
physical parameters allowed radiologists to adapt their image acquisition and reconstruction 
protocols while knowing what loss of image quality to expect. This work also dealt with the loss of 
low-contrast detectability associated with dose reduction, something which is a major concern when 
dealing with patient dose reduction in abdominal investigations. Knowing that alternative ways had 
to be used to assess image quality rather than classical Fourier-space metrics, we focused on the use 
of mathematical model observers. Our experimental parameters determined the type of model to 
use. Ideal model observers were applied to characterise image quality when purely objective results 
about the signal detectability were researched, whereas anthropomorphic model observers were 
used in a more clinical context, when the results had to be compared with the eye of a radiologist 
thus taking advantage of their incorporation of human visual system elements. 
 
This work confirmed that the use of model observers makes it possible to assess image quality using 
a task-based approach, which, in turn, establishes a bridge between medical physicists and 
radiologists. It also demonstrated that statistical iterative reconstructions have the potential to 
reduce the delivered dose without impairing the quality of the diagnosis. Among the different types 
of iterative reconstructions, model-based ones offer the greatest potential, since images produced 
using this modality can still lead to an accurate diagnosis even when acquired at very low dose. 
This work has clarified the role of medical physicists when dealing with CT imaging. The use of the 
standard metrics used in the field of CT imaging remains quite important when dealing with the 
assessment of unit compliance to legal requirements, but the use of a model observer is the way to 
go when dealing with the optimisation of the imaging protocols. 
 
Keywords: Computed tomography, image quality, dose reduction, iterative reconstruction, model 
observer  
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1. Introduction 

1.1 Dose reduction for CT procedures: A challenging task 
 

Computed tomography (CT) has undergone a fast technological development since its introduction in 

the early 70’s, leading to a substantial increase in the number of CT units and procedures performed. 

This imaging technique is now used so extensively that it may become a victim of its own success if 

special attention is not paid in terms of its impact on population exposure. Indeed, data show that 

the number of examinations performed over the last few decades is continuously increasing, 

reaching for example 62 million CT exams in 2008 in the US [Brenner, 2008]. In Switzerland, 

successive surveys have indicated that between 1998 and 2008, the amount of radiation delivered by 

CT went from 28% to 68% of the dose delivered for medical reasons [Aroua, 2002; Samara, 2012]. 

This number even reached 71% in 2013 [Le Coultre, 2016]. In parallel, the number of CT 

examinations in Switzerland also increased significantly over this same time period, going from 3.4% 

to 9.6% of the total radiological procedures. Despite this situation, it is important to remember that 

the increase of CT indications has also improved patient care and significantly reduced the number of 

more invasive procedures such as those involving fluoroscopy. However, to ensure that the benefits-

risk ratio still remains in favour of the patient, it is necessary to make sure that the dose delivered 

leads to the proper diagnosis without producing unnecessary high-quality images or images with 

insufficient conspicuity that could impair the diagnosis. 

 

Patient’s major risk associated with exposure to diagnostic X-ray procedures is the development of 

cancers. However, this consequence cannot currently be demonstrated for low-dose range radiation 

exposure, which makes this assertion a highly debated question and means that the principle of 

caution must be applied. One common approach to quantify the number of excess cancers due to X-

ray medical procedures involves estimating the cumulated absorbed dose in the most exposed 

organs. Then, one assesses how many of those patients developed a tumour over a given period of 

time and compares the results with a control population [Berrington de González, 2004]. Using this 

method, researchers managed to highlight that “if 10,000 children under the age of 10 each received 

one CT scan, this would be associated in a single additional patient developing a brain tumour or 

leukaemia over the next 10 years” [NHS, 2012]. Despite the fact that the results obtained are in good 

agreement with the risk factors proposed by the international commission on radiological protection 

(ICRP), several questions remain for that particular study. First, the delay between the exposures and 

the development of cancer seems quite short in comparison to the more commonly expected delays. 

Another weakness of the study is the choice of the populations. A population of children who require 

a brain CT is different, from a health status point of view, than the general child population. Finally, 

the precision with which the absorbed dose was measured was limited. This study certainly 

underscores the fact that caution should be applied with a strict justification and optimisation of the 

procedure, but a direct association between CT and cancer induction should not be made. 

At the moment there are two major trends: one that uses new elements that seem to confirm the 

validity of the linear no-threshold (LNT) model also in the low-dose range (inferior to 50 mGy) 

[Pearce 2012]. The other that claims that sparing dose “never constitutes a logical reason to avoid an 

imaging procedure that is otherwise medically indicated” [Durand, 2011]. 

 

In such a context, the most reasonable approach involves reinforcing the justification as well as the 

optimisation principle. The justification of the examination is a medical task and will be assessed in 
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the framework of clinical audits. The optimisation process is a complex task involving manufacturers, 

radiologists, radiographers and medical physicists. It relies on the fact that a radiological image is 

considered a test to help patient management and should therefore convey the maximum amount of 

useful information while minimising patient exposure. If the quantification of patient dose is 

relatively easy, it is not the case for the image quality level—the very thing upon which we rely to 

provide a successful and reliable diagnosis. The aim of this work was to investigate possible options 

when dealing with image quality within the framework of patient exposure optimisation. 

 
Manufacturers already started the first step of the optimisation process a few years ago, when they 

began to develop strategies and devices to reduce patient exposure as much as possible while 

providing an image quality level compatible with diagnostic requirements. Among the major 

technological advances worth mentioning is the introduction of the automated tube current 

modulation (ATCM) [Kaza, 2014]. This is of major importance since, unlike plain analogue film 

radiography where excessively high radiation exposures result in reduced image quality or even a 

non-readable image, digital radiography or CT image quality does not deteriorate at high exposures; 

on the contrary, images become even easier to read. Some tube current modulations can even take 

into account the fact that during the acquisition the X-ray will expose particularly radiosensitive 

organs such as the eye lenses, the thyroid, or the breast (e.g. organ based tube current modulation). 

However, if the idea seems rather enticing the optimal positioning of the sensitive organs remains a 

major issue in order to fully benefit from the technique [Taylor, 2015]. Recently, X-ray tube high-

voltage modulation (kV modulation) has been proposed as a strategy to further reduce the radiation 

dose when dealing with imaging of high Z materials, taking advantage of the benefit of the 

photoelectric effect [Suh, 2013]. Much progress has also been made concerning not only the 

efficiency of the detector, but the penumbra of the beam. Some advances in terms of the X-ray beam 

collimation have also been proposed with a real-time beam tracking during scanning in order to 

minimise the beam collimation and size and thus reduce unused patient exposure at ends of helical 

scanning (so called: adaptive collimation) [Deak, 2009]. 

The way information is extracted from the data has also been drastically improved by the 

introduction of iterative reconstruction (IR). Users are now able to produce readable images at very 

low-dose levels [den Harder, 2015; Naoum, 2015; Padole, 2015]. However, image content remains, 

up to a certain level, dose dependent and one should remember that drastic dose reduction 

particularly impairs the detection of low-contrast structures [Schindera, 2013].  

 

The next step of the optimisation process concerns the way the devices are used by radiographers. 

Indeed, if a CT unit, when it complies with international standards, is a relatively safe piece of 

equipment, the way it is used on patients might lead to undesired effects [Imanishi, 2005; Rehani, 

2015]. To limit over-exposure as much as possible, some manufacturers have proposed software that 

checks whether the settings of the protocol could lead to acute tissue reactions or present major 

errors [Howard, 2014]. On top of this, manufacturers offer training sessions to ensure that all the 

technological solutions available on the unit are optimally used. 

 

Finally, the last necessary step of the optimisation process concerns radiologists and physicists and 

should be done with the clinical applications in mind. The assessment of the unit for generic 

protocols is generally performed by medical physicists who should be involved in setting quality 
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assurance programs [EURATOM 2013, IAEA. 2014]. Compliance of the units with legal requirements 

is made with standard test objects where image quality criteria are far from clinically relevant tasks 

[Verdun 2015]. When willing to optimise actual clinical protocols, as for radiography, we should use 

task-based methodologies. This can be done by using mathematical model observers and standard 

quality assurance phantoms as shown by several groups. [Hernandez-Giron, 2011, 2014; Kofler, 

2015; Samei 2015]. To get closer to the clinical world, one can use anthropomorphic phantoms and 

either human or mathematical model observers [Yu, 2013; Tseng, 2014; Zhang, 2014; Ott, 2015 a; 

Verdun & Racine, 2015]. Finally, methods of assessing the adequacy of image quality with the 

diagnosis should be done in patient studies [Miéville, 2013; Smedby, 2013; Zarb, 2015]. In spite of 

their difficulty to implant they remain necessary when drastic changes in dose and data processing 

are introduced. 

 

Having briefly described patient dose and image quality while considering image quality at the first 

stage, other initiatives have used patient dose instead. Dose quantities are a lot easier to assess than 

image quality, which should be related to diagnostic tasks. The introduction of dose reference levels 

(DRLs) that rely on an automatic and permanent update of the recommendations for the practice has 

already improved the situation by helping to reduce the spread of the practice. But these values are 

still poorly related to a specific diagnostic task. They are often considered to be limits, which is not 

the case, and concepts like the introduction of ”target dose” values or “achievable dose” meant to 

reduce patient dose as much as possible might be counterproductive in the future. Image quality 

should remain a main priority of the optimisation process [Rehani, 2015]. Tailoring image quality to 

diagnostic requirements increases the number of CT protocols. If this process is important in the 

context of radiation protection, it introduces a serious bias because of the lack of standardisation. 

One of the first efforts to standardise CT acquisitions was applied quite successfully in the paediatric 

population by colour-coding the protocols, but there is still a way to go [Frush, 2002; Singh, 2011]. 

Nevertheless, many initiatives are focused on protocol standardisation meant to enable an optimal 

use of the software solutions and making it possible to compare between centres in terms of patient 

exposure [Kofler, 2014; Escalon, 2015; MacGregor, 2015]. This is certainly a quality criterion, but 

image information should not be forgotten. In addition, optimisation should not only consider 

radiation risk but other risks such as the one associated with the use of contrast media [Noda, 2015]. 

 

On the whole, thanks to technological breakthroughs in CT, significant progress has been achieved in 

terms of improving the optimisation process (i.e. conveying the maximum amount of useful 

information in the image while minimising patient exposure). Amongst this progress, the recent 

introduction of IR algorithms is certainly a major achievement since they helped to bring about 

substantial dose reductions. However, the difficulty of this approach remains in image quality 

assessment due to image texture modifications and signal non-linearity which are inherent to those 

algorithms. All this shows that efforts still have to be made in order to optimise image quality in CT. 

Traditionally, the role of the medical physicist was to check the compliance of the CT unit with legal 

requirements or technical characteristics claimed by manufacturers. Tools adapted from signal 

processing theory were used satisfactorily. However, this approach was limited when dealing with 

the actual image quality/patient dose optimisation in the clinical world. Our work demonstrates that 

the use of model observers enables the medical physicists to enter the clinical world. Much progress 
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remains to be made in order to improve the outcomes of model observers to clinical requirements 

but even in their present infancy stage they have enabled radiologists to adapt their practice. 

1.2 Radiation dose estimation 
 

Today, CT devices rely on two metrics in order to quantify the radiation dose delivered by the unit 

during an examination. 

 

The first is called “volume CT dose index” (CTDIvol), expressed in mGy. It is calculated using the CT 

dose index (CTDI), which corresponds to the integral of the dose profile along a line perpendicular to 

the tomographic plane divided by the product of the nominal tomographic section thickness and the 

number of tomograms produced in a single scan. CTDI measurements at the centre and the 

periphery of a standardised phantom (16- and 32-cm-diameter polymethyl methacrylate (PMMA) 

phantoms) are then averaged to produce the weighted CTDI (CTDIw). Finally, in order to take the 

effect of the pitch on the radiation dose into account, CTDIw is divided by the pitch value, yielding the 

CTDIvol. This quantity can be related to the image noise level of reconstructed slices. 

The dose-length product (DLP) which corresponds to the CTDIvol multiplied by the scan length 

expressed in mGy·cm [AAPM 96, 2008] is the other quantity used to quantify the amount of radiation 

delivered by the unit. 

 

CTDI and DLP do however only give a measure of the radiation amount delivered by the unit and do 

not correspond to the dose received by the patient. Thus, in order to represent the stochastic health 

effects of ionizing radiation on the human body, the quantity called effective dose is used. 

Effective dose itself is based on the equivalent dose, which represents the physical quantity of 

absorbed dose, and also taking into account the biological effectiveness of the radiation, which is 

dependent on the radiation type and energy. Then, the effective dose is calculated using the tissue-

weighted sum of the equivalent doses in all specified tissues and organs of the human body. [ICRP 

103, 2007] 

 

However, Monte Carlo simulations have shown that the CTDIvol concept has important limitations 

since it could lead to an underestimation of the dose for two reasons: The length of the CTDI 

phantom which is quite small (14 cm) and therefore produces less scatter than in actual patients, and 

the length of the ion chamber (10 cm) that does not collect the total amount of scattered radiation 

[Dixon, 2003]. Moreover, CTDIvol only provides information about CT radiation output without taking 

patient morphology into account. Thus, this metric can be seen as a measure of the radiation 

produced by the device, but not as a patient dose estimator. 

 

To better estimate the local exposure of patients, a new metric called “size-specific dose estimate” 

(SSDE) has been proposed [AAPM report 204]. This metric relies on the use of conversion factors that 

are based on patient size measurements.  

 

Eventually, the best way to link CT dose indicators to the organ dose is to compute an effective dose 

(E) using the tissue weighting factors [ICRP 103, 2007]. However, and despite the previously stated 

weaknesses of the CTDI, only this metric and not SSDE should be used to compute an effective dose 
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to the organs. Indeed, the tissue weighting factors were estimated for adult patients only. Also, 

effective dose is a value that is used to predict statistical risk and was not meant to be applied to a 

single individual. Thus, Monte Carlo simulations remain the best way to proceed when it’s necessary 

to perform a risk assessment of a specific organ dose on a single individual. 

1.3 A major advance in CT: Iterative reconstruction 

Analytical methods for CT reconstruction 

 

Until recently, image reconstruction in CT was performed using analytical methods. Among them, 

the filtered back projection (FBP) is the most commonly encountered. This method consists of 

resolving an inverse problem: the projections of an object are acquired under various angles 

between 0 and   radians (This step is in fact the computation of the so-called sinogram of the image) 

before being used to return the image of the investigated object. An illustration of the process is 

represented in Figure 1. 

 

 
Figure 1: Acquisition of the projections        of an object        (Extracted from [Hsieh, 2009]) 

 

It can be easily shown that the image        can then be computed using Eq. 1 (Extensive details on 

its derivation are given in annex): 

                          
              

   

           
         

          
  

  

                     
                         

  
 

 

                         
              

                                                      

 

In Eq. 1            is the Fourier Transform of the sinogram. The inner integral is the inverse 

Fourier transform of the quantity               , which corresponds to a Fourier-transformed 

projection filtered by a function whose frequency domain response is    . This function is called a 

ramp filter. Finally, using the inverse Fourier transform to go back into the spatial domain and project 

the result is what creates the desired image. This explains why this algorithm is called filtered back 

projection. The process can be summarised according to Figure 2: 
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Figure 2: Explanation of the FBP algorithm 

 

Eq. 1 is, however, only true for a parallel X-ray beam and some adjustments are made in practice to 
take the effect of the fan beam into account. Moreover, other filters beyond the classical ramp are 
also implemented in practice during the filtering step (Extensive details can be found in Chapter 3 of 
Hsieh’s book [Hsieh, 2009]). The main problem of this approach is that the Fourier plane may be well 
covered by the sampling points which are expressed in the polar coordinate system, but switching to 
the image space necessitates a resampling of the point in the Cartesian coordinates and this 
resampling step is responsible for information loss.  Also using a finite number of projections implies 
the non uniqueness of the solution, meaning that an infinite number of projections (that is to say an 
infinite number of angles  ) should be used so that Eq. 1 can be mathematically true. Also, the 
solution is highly unstable, meaning that small differences over the projections could lead to very 
different reconstructed images. Finally, FBP does not take into account the variations of the number 
of photons used to image our object; these variations are understood through Poisson distribution. 
Thus, and because of Poisson’s distribution properties, the noise in FBP reconstructed images will 
always be inversely proportional to the square root of the dose. 
 

Iterative methods for CT reconstruction 

 

In order to overcome some of these limitations, an alternative approach for CT reconstruction is also 

possible, namely the iterative methods. This approach involves a discretisation of the problem. 

Indeed, instead of resolving the problem                   
 

 
which requires strong 

mathematical hypothesis, it is possible to proceed as follows: 

 

Assuming that no scatter or beam hardening effect is encountered, the Beer-Lambert law states that 

an X-ray beam with an intensity    going through an object with an attenuation coefficient 

attenu(x,y,z) and along a path of length L will come out with an intensity     . That is to say: 
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Since the object we are trying to image is represented on a digital system, the image can be 

discretised. Applying that assumption to our problem, which is summarised in Fig. 3, Eq. 2 becomes: 

      
         

 
                                                                              

 

                                                                
  

  
            

 
                                                                   

 

  
  

  
 is the quantity measured by the detector, in other words the projection measurements of our 

object. Thus, and using matrix notation, Eq. 4 becomes: 

                                                                                            

 

The vector p contains the acquired projections. 

The vector μ contains the properties of the object we are trying to estimate. 

The matrix X is the projecting operator. Each coefficient      of this DxB size matrix represents the 

intersection length between the beam reaching the detector number d and the voxel b. It is 

therefore related to the probability that an event emitted in the pixel b be detected in the detector 

cell d. 

 

 

b  voxel object, 1 < b < B, with B the 

number of voxel composing the object 

µb  attenuation coefficient of voxel b 

xd,b  interaction length in the voxel b 

d  detector cell, 1 < d < D, with D the 

number of cell of the detector 

pd the projection measurements in the 

detector cell d 

 

 

 

 

Figure 3: X-ray Beam emitted by the source and absorbed by the detector (Extracted from [Miéville 

PhD, 2012]) 

 

Using this formulation of the problem, the image reconstruction can be done in resolving D 

equations of B unknown. However, the dimensions of the problem rapidly lead to a large size matrix. 

Therefore, performing an inversion of X to solve Eq. 5 is not possible and iterative methods have to 

be employed to reconstruct the image. Those iterative reconstruction techniques are divided into 

two kinds: algebraic methods and statistical methods. 

 

Algebraic iterative reconstructions (AIR) work by iteratively resolving the system      . They rely 

on projection methods to determine the values of the elements belonging to the vector μ [Buvat, 

2011]. While AIR have been employed in the first CT prototypes [Herman, 1980], their high 
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computational cost have led people to abandon them in favour of analytical methods like FBP 

despite its previously stated drawbacks. 

 

Statistical iterative reconstruction techniques (SIR) work by using a cost function based on statistical 

models; this function tries to obtain the most likely image using the measured projections [Fessler, 

2009]. The introduction of these new CT statistical iterative solutions made it possible to obtain CT 

images that are still usable for a diagnosis but with a substantial dose reduction [Schindera, 2011]. 

Among statistic IR, two other subsets can be determined, namely the hybrid IR algorithms and the 

fully statistical iterative reconstruction algorithms. 

 Hybrid algorithms are called this because they combine analytical and iterative 

reconstruction in different proportions. Several approaches are possible for this. The first entails 

generating the image with the FBP method before applying iterative methods in the image space to 

de-noise and improve image properties. The second approach consists of performing the iterative 

de-noising in the sinogram space before using FBP to reconstruct the image. The proportion in which 

analytical (that is to say FBP in this case) and iterative methods are combined can be selected by the 

user. Finally, it is also possible to combine image and sinogram de-noising methods for the 

reconstruction. These various approaches have facilitated remarkable advances in terms of image 

quality over the last decade, but they also have their own drawbacks, including edge blurring or 

resolution loss. 

 In opposition to hybrid algorithms, fully statistical methods rely entirely on the principle of 

maximising a cost function. In this class of IR belong the model-based iterative reconstructions 

(MBIR) which rely on a probabilistic view of CT reconstruction based on CT physics. To do this, their 

statistical cost function includes X-ray physics and a model of the CT optics. They constitute the most 

complex and advanced reconstruction methods used today since they strongly reduce noise and 

artefacts and even enhance spatial resolution [McCollough, 2012]. The following paragraph 

summarises the approach used by these algorithms to perform image reconstruction. Extensive 

details on formula derivation are voluntarily omitted since they have already been treated by 

numerous authors. The reader interested in the details of the subject will find them in Thibault’s 

work [Thibault, 2007]. 

 

The first step, as always, is to acquire the projection of the object on the CT detectors. Since X-ray 

intensity is known to follow a Poisson law, we can reasonably assume that the same is true for the 

projection measurements. Then, the ith intensity measurement on the detector will be expressed as: 

                      0~  i

i i

p

dI Poisson I e



                                               

 

    is the noiseless projection, that is to say the ideal line integral of the image along an X-ray beam. It 

is computed based on the true attenuation coefficients μ. 

 

The cost function can then be expressed using the Bayesian framework of the maximum a posteriori 

(MAP) estimate: 

'
''''''''

arg max ( | )

Attenuation values Posterior
estimate probability

P


  p                                                              
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arg max ( | ) ( )

Log likelihood Log prior probability

Ln P Ln P


 
 

  
  

  p                                         

 

Then, using Eq. 3 and adding a vector n representing the random fluctuations of the system (such as 

photon and electric noise) we can model the transformation performed by the CT unit using Eq. 9: 

 

                                                                                           

 

Substituting Eq. 9 into Eq. 8 introduces the system’s physics into the reconstruction algorithm. 

Finally, it is possible to rewrite the log-likelihood term in this new equation using a second order 

Taylor development. This yields the statistical cost function of the MBIR algorithm: 

1
arg min ( ) ( ) ( )

2

T U


 
    

 
X D X   p p                                                 

 

In this equation, X models the CT system. It embeds elements to model CT optics and X-ray physics. 

D is a diagonal matrix whose coefficients are used to model the noise. 

U(μ) is a scalar equal to the sum of log prior probability with a constant. It is called the penalty 

function because it is used to penalise local differences between voxels. Its role is basically an object 

model. 

 

Eq. 10 is then solved iteratively using approaches like iterative coordinate descent for example to 

obtain the desired image. 

 

The use of MBIR has recently been made possible mostly thanks to hardware and computer 

developments which helped to manage the huge computational cost inherent in those techniques 

[Hsieh, 2013].  

 

More details on the different IR techniques as well as their classifications and way to work can be 

found in Geyer’s work [Geyer, 2015]. Figure 4 also gives a comprehensive summary of the different 

types of reconstruction algorithms. 
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Figure 4: A summary of the classification of different reconstruction algorithm types 

 

IR strategies of the different CT vendors 

 

The very first statistical iterative reconstruction commercially available for clinical CT devices was 

introduced by General Electric Healthcare (GE, Milwaukee, WI, USA) in 2008 under the name 

adaptive statistical iterative reconstruction (ASIR(TM)). Then, in 2010, Siemens (Erlangen, Germany) 

released its algorithm called iterative reconstruction in image space (IRIS(TM)). One year later, Philips 

commercialised its own iterative method under the name iDose4 (TM). The same year, Toshiba 

(Tochigi, Japan) also released its adaptive iterative dose reduction (AIDR(TM)). 

The next big step in the field of IR happened in 2012, when GE released its second iterative 

reconstruction named VEO(TM), and which was also the first commercially available MBIR. The same 

year, Siemens introduced its first raw-data-based iterative solution, called sinogram affirmed 

iterative reconstruction (Safire(TM)), as a successor of IRIS. 

Recently, Philips and Siemens also released their own MBIR, respectively called iterative model 

reconstruction (IMR) and advanced model-based iterative reconstruction (ADMIRE). At the same 

time, GE launched its latest reconstruction algorithm called ASIR-V, whose aim is to offer image 

quality comparable to Veo but with a smaller reconstruction time. For this, this MBIR algorithm Table 

1 shows the existing reconstruction techniques of the four manufacturers and details to which type 

of reconstruction algorithm each belong. The classification of each algorithm was done using Figure 4 

and the work done by Patino et al. [Patino, 2015]. 
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Table 1: Classification of the different commercially available IR techniques 
 

Manufacturer Reconstructi
on technique 

Algorithm 
type 

Iteration 
domain 

Strength 
levels 

or 
FBP vs IR 

proportion 

Reconstruction 
time compared 

to FBP 

GE ASIR Hybrid Image and 
sinogram 
space 

Adjustable 
FBP 
percentage 
(from 0 to 
100% with 
10% intervals) 

Comparable to 
FBP 

Veo MBIR Image and 
sinogram 
space 

No strength 
level 

Substantially 
higher than 
FBP 

ASIR-V MBIR Image and 
sinogram 
space 

Adjustable 
FBP 
percentage 
(from 0 to 
100% with 
10% intervals) 

Slightly higher 
than FBP 

Philips iDose4 Hybrid Image and 
sinogram 
space 

7 strength 
levels 

Comparable to 
FBP 

IMR MBIR Image and 
sinogram 
space 

 Slightly higher 
than FBP 

Siemens IRIS Hybrid Image space No strength 
level 

Comparable to 
FBP 

Safire Hybrid Image and 
sinogram 
space 

5 strength 
levels 

Comparable to 
FBP 

ADMIRE MBIR Image and 
sinogram 
space 

5 strength 
levels 

Slightly higher 
than FBP 

Toshiba AIDR Hybrid Image and 
sinogram 
space 

3 strength 
levels 

Comparable to 
FBP 

FIRST MBIR Image and 
sinogram 
space 

Not known 
yet 

Comparable to 
FBP 
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1.4 Usual methods for image quality assessment in CT 

 

These new techniques all raised related questions regarding their potential, their benefits, and their 

use in clinical routine. This last point in particular remains critical. Indeed, IR algorithms can produce 

images that tend to have a very unusual “plastic appearance” compared to the classical FBP images 

[Hara, 2009]. Therefore, the radiological community legitimately asks itself the question to know “if 

the appearance of those images can affect the conspicuity of patient diagnostic”. Correctly answering 

the relevant clinical question is fundamental to the optimisation process, since it will guarantee 

correct patient management. 

An approach used by medical physicists to tackle this problem involves developing and using tools 

like physics metrics to determine the amount of information that can be found in the image, 

improving radiologist’s confidence. 

Otherwise, image quality assessment can also be done using a clinical approach which often entails 

asking a trained reader to use the images in order to perform a task. 

1.4.1 Clinical approach 

 
Clinical approaches, like the use of the visual grading analysis (VGA) or receiver operating 

characteristics (ROC) methods could be seen as a kind of gold standard with which to evaluate 

diagnostic image quality because they take the whole imaging chain into account. This method 

usually involves visually evaluating the appearance of image parts using a several levels scale to rate 

the visibility of the structures. 

1.4.2  Physical approach 

 

Conventional image quality metrics: use of signal processing theory 

 

Image signal and image noise are key parameters in image quality assessment. In the ideal and linear 

case, image signal (S) is directly linked to the detected number of photons N, while the noise (σ) may 

be seen as the pixel’s stochastic fluctuation around their mean value. The photons are distributed 

according to Poisson’s law, meaning that the quantity σ is equal to   . The ratio of these two 

quantities yields the signal-to-noise ratio (SNR), expressed as: 

 

                                 
 

 
 

 

  
         

 

The number of quanta       that really contribute to image formation in the device is called noise-

equivalent quanta (NEQ). We can thus write: 

 

        
 

 
                

 

In an ideal device, each quantum is counted by the detector and contributes to the image. By 

estimating the ratio between this ideal photon number and the number of photons actually 
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impinging the image detector we can compute the detective quantum efficiency (DQE) which 

characterises the efficiency of the detector as follows: 

 

     
       

 

       
  

   

     
      

 

Another global image quality index is the contrast-to-noise ratio (CNR), defined as follows:  

 

     
                   

 
 

     

 

Fourier-based image quality metrics 

 

Image quality can also be estimated in the Fourier space. In this case, the spatial resolution is 

assessed by estimating one of the three available “spread” functions and then converting it into the 

Fourier space. 

 

The point spread function (PSF) corresponds to the impulse response of a system, that is to say the 

response of the system to a Dirac input (       . It has the following interesting property: 

        which is that the image of an input object denoted by        can be expressed as the 

convolution product between this input object and the point spread function: 

 

The line spread function (LSF) is the response of the system to a straight line       . Thus, the 

relationship between the LSF and the PSF can be derived from Eq. 15, in which the input function is 

replaced by the equation of a straight line, yielding: 

                    

  

  

      

 

Besides those two metrics, it is also possible to estimate the resolution using the edge spread 

function (ESF), that is to say the response of the device to an edge. An edge can be mathematically 

approached by the Heaviside function. Injecting it into Eq. 15 and using the properties of this 

function yields: 

         
       

  
 

     

 

Hence, PSF, LSF and ESF are all related to each other and it is possible to use one of those in the 

frequency space to perform resolution estimation. 

The resulting metric is called modulation transfer function (MTF) and can be defined as: 
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Using the convolution product properties together with Eq. 15 and 18 shows that: 

 

                                                                                 

 

This last equation clearly shows that the MTF expresses the modifications of the object’s frequency 

spectrum by the system, offering an objective spatial resolution estimator (Figure 5). It also has the 

advantage of requiring a simple product to estimate the final image of the object, instead of a 

complex convolution when working with an image-space spread function. We will not discuss the 

ways to compute this metric, since lots of methods were already extensively investigated by several 

authors ([Nickoloff 1985; Boone 2001; Judy 1976; Nakaya, 2012]). 

 

 

Figure 5: Example of a 1 dimensional MTF curve 

 

As with resolution, and of equal importance for SNR transfer, image noise can also be estimated in 

the frequency space. Assuming noise stationarity, the noise power spectrum (NPS) is a frequency 

metric which gives a complete description of the noise by providing its amplitude over the entire 

frequency range of the image. 

 

In order to compute the NPS of an image, it is necessary to acquire homogeneous CT images and 

select regions of interest (ROI) in this stack. The 2D NPS can then be computed as: 
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Where       are the pixel sizes in the x and y dimension,       are the ROI’s lengths (in pixel) for 

both dimensions,      is the number of ROIs used in the average operation and            is the mean 

pixel value of the ith ROI. 

Commonly, the 2D NPS is averaged along a 1D radial frequency using the equation 

       
    

  (Figure 6). More details on NPS computing can be found in ICRU report 87 [ICRU 87, 

2012]. 

In the end, the NPS characterises the noise texture, thus giving a more complete description of noise 

than the simple pixel’s standard deviation (SD). Moreover, information about the pixel’s SD can still 

be retrieved with knowledge of the Wiener spectrum. Indeed, the Parseval theorem ensures that the 

total energy is obtained by summing the contribution of the different harmonics and that its value 

does not depend on the chosen space (image or frequency space). Since the NPS is a spectral 

decomposition of noise over frequencies, we have: 

                             

 

 
Figure 6: Example of a radially averaged NPS obtained with a standard convolution kernel 

 

As explained before, MTF shows how well the signal frequencies are transferred through an imaging 

system, that is to say it exhibits the signal response of a system at a given spatial frequency. Similar 

to the spatial domain, the ratio of signal (i.e. MTF) and noise (i.e. NPS) yields the SNR (cf. Eq. 11 and 

12). The NEQ in the frequency space can therefore be calculated as: 
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Where    is the mean pixel value squared. 

Using Eq. 13, the DQE in the frequency space can therefore be estimated by: 

        
       

    

        
    

 
       

    

               
      

   

1.4.3 Limitations of these image quality assessment methods 

 

Both methods presented above are, however, subject to important limitations. 

VGA and ROC studies exhibited in the clinical approach are very time consuming and 

repetitious for radiologists. Therefore, obtaining sufficient statistics often reveals itself to be 

complicated. Besides, reader subjectivity makes it difficult to produce a repeatable final result. 

Fourier metrics also show some limitations since the reconstructed images should respect 

the linearity and shift-invariance assumptions. The shift-invariance hypothesis entails supposing 

that the device’s response remains the same no matter where the measure is done on the image. 

The assumption of linearity entails stating that the output signal remains the same within the 

Hounsfield units (HU) response range of the imaging system (Clinical CT scanners usually have a 

linear range from -200 to +200 HU [ICRU 87, 2012]). If those assumptions are approximately satisfied 

for CT images reconstructed with FBP algorithms and a standard reconstruction kernel, the extent to 

which they hold for IR algorithms is less certain [Pineda, 2008]. 

In order for a MTF to be reliable, the linearity hypothesis needs to be fulfilled. Several authors have 

already highlighted the non-linearity properties of IR algorithms, which manifests itself as contrast 

dependency of the resolution [Richard, 2012]. Consequently, estimating the MTF with a high Z 

material that produces an impulse function can give a signal outside this range, which in practice 

often leads to a resolution overestimation [ICRU 87, 2012]. 

If image noise is not stationary, the NPS will not provide a complete description of it and the whole 

covariance matrix is needed for a full characterisation. However, if applied with care - for example 

working with small ROIs, extracted from a restricted region of the image - the NPS can be applied to 

both conventionally (i.e. FBP based) and iteratively reconstructed images. 

 

Finally, these metrics are hardly linked with the actual tasks of the radiologists that should, among 

other tasks, detect, localise and classify image abnormalities. 

These elements highlight the need to adapt existing metrics for IR algorithms. In this context, several 

authors have already dedicated many efforts to modify existing methods so that they fulfil the 

previously stated requirements [Richard, 2012; Brunner, 2013]. Those modified metrics can then be 

integrated as basic elements in the development of more complex models like model observer, 

whose role is to model the human visual system [Brunner, 2013; Ott, 2014; Solomon 2015]. This 

approach based on those models has been considered by some authors to be an efficient alternative 

to the other methods stated here [Vaishnav, 2014]. 
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1.5 Statistical decision theory using model observers 

 
Quantitative measurement methods based on statistical decision theory rely on four elements: the 

task (1), the signal and background properties (2), the observer (3) and the figure of merit (FOM) (4). 

In other words, their principle consists of measuring the performance of an observer conducting a 

task of clinical interest. The task may be the detection of a signal into a noisy background 

(classification in signal-present or signal-absent category), the observer is the person or algorithm 

performing the task (in the case where we use algorithms we will refer to them as model observers) 

and the FOM measures how well the observer performed the task. 

 

Model Observers 

 

Model observers could be classified into two different categories, which are the image 

discrimination models and the models for detection in the noise [Beutel, 2000]. 

Image discrimination models were developed in order to predict human visual detection of signals 

superimposed on a uniform or grating background. Their interest is, however, limited in the field of 

medical imaging. Indeed, they were designed to predict human detection of a signal superimposed 

on identical backgrounds, whereas radiological images display various types of backgrounds. 

Models for detection in noise constitute the second category. They typically include the calculation 

of a distribution of statistical decision variables (often referred to as λ(g)) which is a linear function of 

the image data. In the vector notation of images this can be written as an inner product of a 

template w and an image g: 

                                                                                         

 

There are different types of linear model observers which all work based on Eq. 24, with the 

difference remaining in the expression of the template. 

ICRU report 54 [ICRU 54, 1996] suggests that those methods should be used to assess diagnostic 

image quality in nonlinear and non-stationary domains. Indeed, a radiologist looking at an image 

takes a decision based on the sensitivity and specificity of the diagnosis and the costs associated with 

the different outcomes. Related to this, the principle on which statistical decision theory is based 

entails making the best possible choice provided a given amount of information. In this framework, 

the question of knowing how well the system provides the observer with information related to a 

given task rises naturally. Also, if it is understood that the SNR constitutes a key component of 

assessing this parameter, the choice of which linear observer model should be used is more critical. 

Indeed, they exhibit different properties making a given model more adapted to particular tasks and 

less adapted to others. However, a simple way around this is possible if we acknowledge that the 

imaging process can be divided in two different stages: 1) the data acquisition for which the X-ray 

detector captures the radiant image and conveys the information, and 2) the processing and display 

of the image (a step in which the observer can perform an analysis) [ICRU 54, 1996]. This 

differentiation in the imaging process is fortunate since each stage of the imaging process has to be 

assessed using a different type of observer. 

 

The ideal observer utilises all statistical information available regarding the task in order to maximise 

the task performance as measured by Bayes risk or some other related measures of performance 

[He, 2013]. It corresponds to a measure of the task-related information transmitted by the system, 
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and can therefore be used to analyse the first stage of the imaging process. This kind of observer is 

usually applied in a signal-known-exactly/background-known-exactly (SKE/BKE) paradigm (signal and 

background are both completely specified and all a-priori information is known by the model). The 

only thing to determine then remains whether the analysed image has to be classified in signal-

present or signal-absent category. 

The ideal linear model observer is the Hotelling observer (HO) [Barrett, 1993]. This model works in 

two steps. The first is called prewhitening or noise decorrelation and entails removing noise 

correlations in the signal and background images using the inverse of the covariance matrix. 

Covariance matrix of signal-absent and signal-present images will be referred to as    , n being a 

value equal to 0 or 1 and referring to the signal-absent or signal present hypothesis, respectively. The 

second step involves applying a filter matched to the expected signal, allowing the model to compute 

a metric used to proceed to the image classification (signal-absent image (  ) or signal-present 

image (  )) [ICRU 54, 1996]. If the noise statistics are the same in both signal-absent and signal-

present images, then signal-present and signal-absent images have no significantly different 

correlation matrix and HO is the prewhitening matched filter (PW) model observer. If the image 

noise is white, then the prewhitening step is not required and the HO is identical to the non-

prewhitening matched filter (NPW) model observer. Detailed explanations of these correspondences 

based on their template’s expression are given in Figure 7. 

A difficulty often encountered with the implementation of the HO remains the size of the covariance 

matrix. An image with the size NxN will indeed produce a N2xN2 covariance matrix, which will be 

almost impossible to inverse (typical values for N often being around 128 pixels in our work). A 

process relying on the use of channels (which are basically frequency filters) is therefore employed to 

reduce the size of the covariance matrix. Using a set of 10 channels for example, will then produce a 

10x10 covariance matrix (which we will refer to as     ) and that can be inverted more easily. When 

using this channelization process, it is of note that the signal-absent and signal-present images we 

are using also have to be filtered through the channels (they will then be referred to as    and   ). 

The HO model observer therefore becomes the channelized Hotelling observer (CHO) [Myers, 1987]. 

Extensive details of this process are given in Volume 1 of the Handbook of Medical imaging [Beutel, 

2000] or Barrett’s work [Barrett, 2004]. 

 

The characterisation of the observer’s ability to extract the information from the image corresponds 

to the assessment of the second step of the image formation (display and processing of the image). 

This step is usually assessed with anthropomorphic model observers. These models are more likely 

to approximate the performances of human observers thanks to the incorporation of some 

anthropomorphic features. Among these models, the non-prewhitening matched with eye filter 

(NPWE) works similarly to the NPW, but also integrates a filter called the contrast sensitivity function 

(CSF) which reproduces the sensitivity of the human eye to the frequency of some patterns [Burgess, 

1994]. CHO can also belong to anthropomorphic model observers, provided an anthropomorphic set 

of channels be used, like for example the dense difference of Gaussians channel (DDoG) set [Abbey 

and Barrett, 2001]. Since our objective was to be able to tell the radiologist if the diagnostic 

information could be extracted from images produced with IR, we naturally relied on a model closely 

aligned with human observer (that is to say anthropomorphic models like NPWE or CHO) in most of 

our studies. Extensive details on NPWE and CHO models can therefore be found in the material and 

methods section of subpart 3.2.2. or in Barrett’s work [Barrett, 2004] as well as. Figure 7 provides a 

comprehensive overview of the overall classifications of all previously discussed linear model 

observers with their template. 
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Figure 7: Classifications of some linear model observers with their scalar distribution calculation. 

 

In Figure 7, the template’s expressions are given in the image space domain, but these calculations 

can also be done in the Fourier space domain. To do this, Fourier metrics like the one detailed in 

subsection 1.4.2 are traditionally used to compute a SNR (correspondences between formulas in 

image and those in the Fourier space are given in Chapter 10 of the Handbook of Medical Imaging 

[Beutel, 2000]). 

 

Human observers 

 

The gold standard for the assessment of image quality is human observer performance. Therefore, 

people often undergo alternative forced choice (AFC) tests in order to produce an indicator of their 

performance. This indicator is directly linked to the image quality level. Figure 8 provides an example 

of a 4-AFC test, in which a human observer has to select the signal-present image in a bunch of 3 

signal-absent images and one signal-present image. Human observers undergo this trial several 

times, using randomly selected signal-absent and signal-present-images and leading to a percentage 

of correct responses (PC). This PC is then compared with the FOM yielded by the model observer. 

 

 
Figure 8: Example of a 4-AFC test 
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Some usual FOM and their relationships together 

 

As we have seen, the model observers used yield a distribution of the decision variable λ(g). Using 

this statistical distribution, it is possible to construct a curve displaying the false positive fraction 

(FPF), true positive fraction (TPF), false negative fraction (FNF) and true negative fraction (TNF) (cf. 

Figure 9). Thanks to the ROC theory [Metz, 2006], a ROC curve can then be plotted by varying the 

decision threshold t. This curve displays the sensitivity versus (1-specificity), and the area under the 

curve (AUC) can then be used as an FOM. An area equal to 1 indicates a perfect detectability whereas 

an area of 0.5 would indicate a guessing observer.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Plot of the repartition of the scalar response λ(g) and the subsequent ROC curve. 
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Model observer and human results can also be expressed in terms of detectability index (often 

referred to as d’) instead of scalar values distribution (λ(g)), PC or AUC as FOM. 

Correspondences between d’, AUC and PC exist and make it possible to compare human and model 

observer results using the same FOM. Figure 10 gives an overview of the ways to perform the 

conversions. On this figure, ( )  represents the distribution of the λ and ( ) represents the 

cumulative of this distribution. Extensive details on the formula and their demonstration can be 

found in the Handbook of Medical Imaging [Beutel, 2000] as well as ICRU report 54 [ICRU 54, 1996]. 

 

 

Figure 10: Relationships between different FOM. 

 

All this shows that quantitative measurement methods based on statistical decision theory can 

overcome some problems posed by traditional image quality assessment metrics and are well 

adapted to assess how well the desired information can be extracted from the image. 
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1.6 Goals of the study 

 

CT technology recently underwent a fast evolution, including e.g. the introduction of IR algorithms. 

Since then, it is difficult for medical physicists to objectively assess image quality. Indeed, in order to 

try to understand the perceived effect of IR on clinical images (in particular some changes of image 

texture), medical physicists used NPS where signal variations remained compatible with the 

hypothesis of linear signals [Miéville, 2011]. If these kinds of metrics have revealed themselves to be 

very useful in establishing a link between a physical metric and radiologist perception, it was limited 

to a texture analysis without being able to assess the performance of structure detection.  

Our goal was therefore to propose a strategy to ensure that dose reductions applied when using the 

latest IR techniques remain compatible with radiologist requirements. In short, we wanted to 

investigate by how much one could reduce patient exposure with these new tools. We used two 

successive approaches to tackle this problem: a clinical approach followed by a more physical 

approach. 

 

The first step of our work was a continuation of the work previously performed and entailed applying 

the existing tools like Fourier metrics in the context of radiological studies. We focused in particular 

on image texture and spatial resolution. This allowed us to strengthen our communication with 

radiologists and may help them in the choice of the best option (choice of IR strength level for 

example) when dealing with the use of IR. 

 

Then, we focused on the use of special image quality tools (mathematical model observers), making 

it possible to predict the detection of simple structures in a homogeneous background. 

One of these model observers, (the NPW model observer), was applied to characterise image quality 

when dealing with the detection of high-contrast structures. Since detection per se is not of major 

concern (easy task) we focused on analysing the way spatial frequency were transferred as a function 

of image noise and image contrast using a recently introduced metric: Target Transfer Function (TTF). 

Note that the use of this TTF in a standard model observer allowed us to establish a link with clinical 

data. 

Then we investigated a more challenging problem—taking care of the low-contrast detectability 

(LCD) which requires the use of more elaborated model observers, namely anthropomorphic model 

observers. 

Eventually, we used the same tools to investigate the changes in image quality that occur when 

radiologists switch reconstruction plane. 

 

These project’s milestones are summarised in Chapter 2. 
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2. PhD thesis milestones 

The peer-review papers of Chapter 3 compose the core of this thesis, which was developed around 

two milestones:  

A “Clinical approach”, in which we investigated how the physicist could help the radiologist with the 

integration of IR techniques into the clinical routine, using the existing tools at our disposal. 

A “Physical approach”, which was exclusively based on phantoms and entailed developing and 

testing fully IR-adapted tools in order to perform an efficient optimisation scheme. 

 

2.1 Clinical approach: Applying existing methods to improve the use of IR 

in the clinic 
 

Classical Fourier and image space metrics like MTF, NPS or CNR and SNR have been recognised as 

being valuable FOM for evaluating and comparing system properties or for improving and optimising 

system performances. Since those tools were already widely used, understood and studied, we relied 

on them to help the radiologists in parameter selection when acquiring patient images with the 

different IR solutions available. 

 

2.1.1 Optimisation of IR strength levels for clinical cervical spine images 
 

The very first part of our work consisted of helping our radiologist determine the optimal IR strength 

level to use when performing a low-dose multi-detector CT (MDCT) of the cervical spine [Omoumi, 

2014]. The study was conducted on clinical CT images of the cervical spine, reconstructed using FBP 

and IR (Siemens SAFIRE, strength levels 1 to 5). Images were acquired at a dose level classically used 

in the clinic for those kinds protocols and reconstructed using both standard and bone convolution 

kernels. Our task was to measure image quality with physical metrics like NPS (Figure 11), SNR and 

contrast-to-noise ratio (CNR). Those physical parameters associated with ratings of the overall 

diagnostic image quality by radiologists allowed us to determine the strength levels needed to 

perform an accurate diagnosis in that particular clinical context. 

 

The results showed that the optimal strength level of IR in the context of low-dose cervical spine 

MDCT could be radically different depending on the anatomical structure to be analysed. Indeed, we 

witnessed that an increase of IR strength levels led to an overall noise reduction as well as an 

improvement of both SNR and CNR. This suggests at first sight, that high IR levels will produce higher 

image quality. But this trend revealed itself to be true only for some anatomical structures like 

intervertebral discs, the content of neural foramina and dural sac. The radiologist’s analysis showed 

that other structures like soft tissues were more visible when using low IR levels. 

 

With this study we were able to advise radiologists on the optimal IR strength level to use depending 

on the anatomical structure to be analysed. We also witnessed a first limitation of our image quality 

assessment method. Indeed, focusing only on noise reduction by increasing strength level of IR can 

lead to a drop in image conspicuity. This observation highlights the fact that the way spatial 
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frequencies of the signal are transferred also needs to be analysed if we are willing to fully 

understand the change of appearance of the anatomical structures. 

 

        

 
Figure 11: NPS for FBP and different IR levels, using standard (a) and bone (b) convolution kernels. A 

clear diminishment in the noise amplitude is visible when switching from FBP to IRs. 

 

2.1.2 Use of ASIR for dose reduction in hip clinical images 
 

The second part of our work aimed at assessing the effects of the ASIR algorithm on image quality in 

hip CT arthrography, as well as evaluating its potential for reducing radiation dose [Tobalem & 

Dugert, 2014]. Patients were randomised into three different protocols: one with a regular dose 

(CTDIvol 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were 

reconstructed using FBP and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). We 

measured MTF, NPS (Figure 12) and CNR in order to assess image quality objectively. At the same 

time, two radiologists independently evaluated several anatomical structures and image quality 

parameters using a VGA.  
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As expected, the reduction of patient exposure was associated with a significant increased of image 

noise and a significant decrease of CNR. At the same time, we found that increasing the percentage 

of ASIR produced a significant reduction in noise as well as an increase of the CNR. In addition, we 

noted an enhancement of overall image diagnostic quality when using higher ASIR levels (up to a 

limit of 50% ASIR). Eventually, we determined a dose reduction that maintained image quality. Our 

work showed that the use of up to 50% ASIR in hip CT arthrography helps to reduce radiation dose by 

approximately 35–60%, while maintaining diagnostic image quality. 

 

Compared to the previous one, this study incorporated several evolutions, including an estimation of 

the potential of the method in order to reduce the dose as well as the assessment of signal 

frequencies transfer in addition to noise characterisation. This step was, however, carried out using 

the MTF, and this metric should be used with caution in the context of IR, since it depends on signal 

amplitude, due to IR non-linearity. An alternative would be to measure a true MTF, for example, 

using true sine wave signals with different amplitudes. As this method is hardly achievable, 

alternative methods should be proposed, like the TTF, which is described in the next part. 

 

  

Figure 12: Strong noise reduction is observed when switching from FBP to growing levels of IR (A). No 

changes in resolution as estimated by MTF are observed when switching from FBP to IRs (B). 

 

2.1.3 Using iterative reconstruction techniques for optimising radiation dose and 
image quality in musculoskeletal CT  

 
This work [Omoumi, 2015] is a review based on the use of IR techniques in the context of 
musculoskeletal imaging. It basically summarises the progress that IR brought to the field regarding 
the dose/image quality compromise. 
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2.2 Physical approach: Going further by developing fully adapted physical 

methods in order to analyse IR images 
 

The second part of this project is composed of works relying on physical methods in order to help the 

radiologist determine whether or not diagnostic information is present when reducing the dose with 

IR algorithms. 

The physical methods we used involve a first step of adapting Fourier metrics to IR algorithm 

requirements for image quality assessment. Then, integration of those modified metrics in a Fourier 

space model observer (NPW, see Figure 7) so that high-contrast low-size detection could be 

performed. On top of that, the use of image space model observers for LCD also constitutes a reliable 

tool (CHO, see Fig. 7). 

 

2.2.1 Update of the NPW model observer: Specific assessment of ASIR and MBIR 
algorithms 

 

Our previous work showed that image quality could be well estimated with objective physical 

metrics, and that extrapolation for dose reduction could even be made based on that. However, a 

review of the literature revealed a need to use metrics which take the specificity of IR algorithms into 

account [Richard et al. 2012]. Indeed, it was shown that computing the MTF, for example, poses a 

problem when dealing with IR algorithms, such as ASIR or MBIR. Given that the TTF had already 

shown it could accurately express the system resolution even with non-linear algorithms, we decided 

to replace the standard MTF by the TTF in our characterisations [Richard, 2012; Brunner, 2013]. It 

was estimated using a custom-made phantom containing cylindrical inserts made of three different 

materials (Teflon, PMMA and Plexiglas) and surrounded by water (Figure 13). The contrast 

differences between the inserts and the water were plotted for each acquisition condition, leading to 

three different ESFs. Then, mathematical transformations as described in part 1.4.2 were performed 

on those three ESFs, leading to the TTF curves (Figure 14). 

As expected, the first results showed the image contrast and noise levels to be dependent on the TTF 

for both ASIR and MBIR, revealing their nonlinear behaviour. In order to go one step further in our 

image characterisation we chose to integrate those results into a model observer. In this study, we 

only focused on the objective assessment of the tested reconstruction techniques using adapted 

metrics and models. No subjective assessment was then performed by the radiologists in order to be 

compared to the models’ results. Given this experimental paradigm the choice of an ideal model 

observer was well adapted. Thus, we used the NPW model observer in the Fourier space to 

objectively characterise the evolution of its figure of merit in various acquisition conditions. The NPW 

model observer usually requires the use of the MTF, but since IR assessment is performed, we 

replaced it by the TTF. Our final results showed an enhancement of detectability index when 

switching from FBP to ASIR to MBIR. Also, IR algorithms greatly improved image quality in low-dose 

conditions. Based on our results, we determined that the use of MBIR could lead to further dose 

reduction in several clinical applications. 
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Figure 13: The home-made phantom and a CT image of a slice with the ROIs used for TTF 

computation. 

 
Figure 14: Resolution estimation through the TTF. Clear enhancement is observed with IR, in 

particular with MBIR. These kinds of changes could not be observed when using MTF. 

 

2.2.2 Assessment of low-contrast detectability in CT using image space model 
observers 

 

Objective physical metrics, (performed by medical physicists) as well as clinical assessments 

(performed by radiologists) represent two standard and well-described ways to assess image quality 

in CT. However, the biggest problem of those methods remains that radiologists and physicists do 

not dispose of a common method to work on the topic. Anthropomorphic model observers could 

represent an efficient solution to that problem, since one of their main properties is to attempt to 

mimic the human visual system by integrating some of their properties. The goal of these studies 

[Ott, 2015 a; Ott, 2015 b] was to find out if some selected anthropomorphic model observers (NPWE 

and CHO in this case) are adapted to match human detection in order to propose a fast and reliable 

methodology when dealing with the assessments of low-contrast structures in CT medical images. 

For that, a modified QRM chest phantom containing spheres of 5 and 8 mm at contrast levels of 

10 and 20 HU under 120 kVp will be used. Images of the phantom were acquired at several CTDIvol 

before being reconstructed using FBP, ASIR 40% and MBIR in the first study, and ADMIRE at two 

strength levels in the second one. At the same time, these images were also assessed by human 
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observers undergoing 4-AFC test, in order to establish a set of reference data. These data were 

compared with the results obtained from CHO and NPWE model observers (Figure 15). Results of 

both model observers were obtained by working in the image space, since our experimental 

paradigm (low-contrast target phantom) did not allow us to work in the Fourier space. Eventually, 

the impact of the acquisition conditions as well as reconstruction methods were investigated in the 

study, and a potential dose benefit was estimated. 

 
Figure 15: Results for the CHO model observer with the three reconstruction techniques for a target 

of 8 mm and 10 HU of contrast. (Detectability values are on the left y axis and corresponding values 

in term of probability of detection are represented on the right y axis). 

 

2.2.3 Image quality assessment in different reconstruction planes using an 
updated NPWE model observer 
 

This work [Ott, 2015 c] studies the impact of the choice of the reconstruction plane on image quality 

when using several IR types. We relied on an updated NPWE model observer in the Fourier space to 

assess image quality objectively. The updates to this model observer were similar to those already 

performed in [Ott, 2014], that is to say use of the TTF instead of MTF in order to take IR nonlinearity 

into account. However, we used a NPWE rather than an NPW model observer in this study in order 

to integrate some properties of the human visual system into our model. This was done because of 

the clinical paradigm we worked with (simulation of cartilage lesions) and could allow us to compare 

the results obtained with our model to the radiologists’ impression in the future. The choice to work 

in the Fourier space was motivated by our experimental paradigm in which we used high-contrast 

targets, allowing the computation of elements to estimate the detectability in the Fourier space. 

We observed an increase of spatial resolution and image noise in both the coronal and sagittal plane 

compared to the axial plane, at least when using an MBIR like Veo 2.0. On top of that, the Veo 3.0 

algorithm was also tested. With this new MBIR, the image model and noise model are improved to 

make the noise covariance more isotropic in all three dimensions and further increase the image 

quality. Promising results were obtained in terms of image quality were obtained in all 

reconstruction plane, since the SNR obtained with the 3.0 version surpassed those of the 2.0 version 

in all planes. 
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3. Papers 

The following papers are enclosed in this section. They are the development of the main points listed 
in Chapter 2. 
 

3.1 Clinical approach 
 

 [Omoumi, 2014] P. Omoumi, F. R. Verdun, Y. B. Salah, B. C. Berg , F. E. Lecouvet, J. Malghem, J. G. 
Ott, R. Meuli, F. Becce, 2014 Low-dose multidetector computed tomography of the cervical 
spine: optimization of iterative reconstruction strength levels. Acta Radiologica 55(3) pp. 335-
344. 
 

 [Tobalem & Dugert, 2014] F. Tobalem, E. Dugert, F. R. Verdun, V. Dunet, J. G. Ott, H. A. Rudiger, 
S. Cherix, R. Meuli, F. Becce 2014 MDCT Arthrography of the Hip: Value of the Adaptive Statistical 
Iterative Reconstruction Technique and potential for Radiation Dose Reduction. AJR 
203(6):W665-73 

 

 [Omoumi, 2015] P. Omoumi, F. R. Verdun, J. G. Ott, D. Racine, F. Becce 2015 Optimization of 
radiation dose and image quality in musculoskeletal CT: Emphasis on iterative reconstruction 
techniques (part 1). Semin Musculoskelet Radiol 19: 415-21 

 



 

 

 

 
 
 
 

Original Article 
 

 

Low-dose multidetector computed 
tomography of the cervical spine: 
optimization of iterative reconstruction 
strength levels 

 
 

Patrick Omoumi1, Francis R Verdun2, Yosr Ben Salah1, 
Bruno C Vande Berg1, Frederic E Lecouvet1, 
Jacques Malghem1, Julien G Ott2, Reto Meuli3 and Fabio Becce3

 

 
 

Acta Radiologica 

0(0) 1–10 

! The Foundation Acta Radiologica 

2013 

Reprints and permissions: 

sagepub.co.uk/journalsPermissions.nav 

DOI: 10.1177/0284185113494981 

acr.sagepub.com 

 

 
 
 

Abstract 
Background: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography 

(MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality 

nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. 

Purpose: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. 

Material and Methods: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively 

studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 

to 5) techniques. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured at C3–C4 and 

C6–C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft 

tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. 

Results: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at 
C3–C4 and C6–C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for 

the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ::: 0.03). Conversely, 

for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, 

the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001).    Conclusion: 

The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be 

analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended. 
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Introduction 
 

Multidetector computed tomography (MDCT) of the 
cervical spine is generally the first-line imaging examin- 
ation following trauma (1,2). It is also used to assess 
spondylosis and disc herniation (3–5). Although mag- 
netic resonance imaging (MRI) is the examination of 
reference to evaluate cervical myelopathy, MDCT has 
proven to be as accurate in case of neural foraminal 
stenosis, particularly for distinguishing soft disc hernia- 
tions from osteophytes (3,4). Moreover, CT can be 
performed when MRI is contraindicated, complicated 
(e.g.   due   to   claustrophobia)   and/or   inconclusive 
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(e.g. because of motion artifacts). However, it is still 
associated with a substantial radiation dose, particu- 
larly in the spine (5,6). 

Among the tools developed by CT manufacturers to 
limit or reduce radiation dose (7), iterative reconstruc- 
tion (IR) techniques have only recently been introduced 
in routine clinical practice, thanks to significant 
advances in computational power (8). Unlike traditional 
filtered back-projection (FBP) algorithms, these tech- 
niques are based on a correction loop during the image 
reconstruction process (8,9). By reducing image noise 
without altering CT attenuation values, IR methods 
can increase both signal-to-noise (SNR) and contrast- 
to-noise (CNR) ratios. Such a gain in objective image 
quality can be used to reduce radiation dose, while main- 
taining an acceptable diagnostic image quality. Dose 
reductions of approximately 50% and 40% have 
indeed been recently reported in MDCT of the lumbar 
(10) and cervical (11) spine, respectively. 

Several strength levels of IR are available for each 
technique depending on the manufacturer (8,9). The 
latter pragmatically recommend a medium strength 
level of IR so as not to confuse radiologists (used to 
read FBP-reconstructed images), since the image 
appearance becomes ‘‘smoother’’ or more ‘‘blotchy’’ 
with increasing IR strength levels (8,9,12). To our 
knowledge, the optimal strength level of IR has how- 
ever not yet been established in MDCT of the spine. 

Therefore, the goal of our study was to determine 
the optimal strength level of IR to be applied in low- 
dose cervical spine MDCT. 

 
 

Material and Methods 

Patients 
 

Over a 3-month period (October to December 2011), 31 
consecutive patients investigated by low-dose cervical 
spine MDCT for refractory cervical pain and/or cervi- 
cobrachial neuralgia were prospectively enrolled in this 
single-center study. One patient was subsequently 
excluded because of metallic artifacts related to 
implanted surgical material. Hence, the final study 
group consisted of 30 patients (19 women, 11 men; 
mean age, 56.1 years; range, 18–77 years). 

This study was approved by the institutional review 
board, with waiver of patient informed consent. 

 

 

MDCT protocol 
 

All examinations were performed using a 40-detector 
row MDCT scanner (Somatom Definition AS; Siemens 
Healthcare, Erlangen, Germany), without intravenous 
administration of iodinated contrast material. The 
patients were positioned supine, with their head first 

on the table. After obtaining CT scout views, data 
were acquired from the C3 to T1 vertebrae by applying 
the following parameters: tube voltage, 120 kVp; refer- 
ence tube current-time product, 150 mAs; effective tube 
current-time product, 120–201 mAs using CARE Dose 
4D  (Siemens  Healthcare);  detector  configuration, 
40 x 0.6 mm; pitch, 0.8; gantry rotation time, 1 s. 

The raw data were reconstructed using both a trad- 
itional FBP and an IR (sinogram-affirmed iterative 
reconstruction, SAFIRE, strength levels 1 to 5; 
Siemens Healthcare; Figs. 1 and 2) algorithm. As com- 
pared to other image domain-based techniques, 
SAFIRE uses a noise-modeling algorithm  supported 
by the raw data (i.e. sinogram data) and aiming at 
reducing noise while maintaining image sharpness 
(9,13,14). Over the course of up to five iterations, this 
model estimates the noise content in each image pixel 
by analyzing the raw data contributing to the pixel, and 
removes it from the current data-set (13). In a valid- 
ation loop, the result is compared to the initial data, 
generating an update image, and added to the previous 
data-set before the next iteration begins. Each iteration 
leads to further noise reduction. Besides, the strength 
level of SAFIRE is not related to the number of iter- 
ation loops (14). The image reconstruction parameters 
were as follows: field-of-view, 12 x 12 cm; section thick- 
ness/increment, 0.75/0.75 mm; soft tissue (B41s and 
I41s for the FBP and IR algorithms, respectively) and 
bone (B70h and I70h, respectively) convolution kernels. 
The reconstruction time varied with the strength level 
of IR, lasting up to 1 min 35 s for SAFIRE 5, compared 
to <20 s for FBP images. 

 

 

Noise power spectrum analysis 
 

In order to characterize the noise frequency bandwidth 
transferred during  image reconstruction with FBP 
(B41s and B70h convolution kernels  for soft  tissue 
and bone, respectively) and SAFIRE (I41s and I70h 
convolution  kernels,  respectively;  strength  levels  1  to 
5) algorithms, the noise power  spectra  (NPS)  of 
MDCT images of water-filled phantom were calculated 
for each reconstruction algorithm, using the same 
method as described in detail elsewhere (11). 

 

 

Radiation dose estimations 
 

This MDCT protocol yielded a mean ± standard devi- 
ation (SD) CTDIvol (expressed in the 16-cm diameter 
CTDI  phantom)  and  dose-length  product  (DLP)  of 
22.8 ± 2.6 mGy and 272.9 ± 62.2 mGy x cm, respect- 
ively. After multiplying the DLPs by the appropriate 

conversion coefficient (i.e. 0.0051 mSv x mGy-1 
x cm-1 

(15)), the mean ± SD effective dose was estimated to be 
1.39 ± 0.32 mSv. 
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Fig. 1.  A 34-year-old woman with left C7 radiculopathy. Axial unenhanced MDCT images (soft tissue convolution kernel; window 

level/width, 60/300 HU) of the cervical spine at C5–C6 level show a central-left subarticular focal disc protrusion. The images are 

reconstructed using either a (a) filtered back-projection (FBP) or (b–f) sinogram-affirmed iterative reconstruction (SAFIRE) algorithm 

with strength levels of (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5, respectively. Note the change in appearance and sharpness of the 

intervertebral disc and other anatomical structures with increasing strength level of IR. 
 
 
 
 

 
 

Fig. 2.  A 77-year-old man with chronic cervical pain and right C4 radiculopathy. Axial unenhanced MDCT images (bone convolution 

kernel; window level/width, 400/2000 HU) of the cervical spine at C3–C4 level show a right neural foraminal stenosis caused by 

hypertrophy of the facet and uncovertebral joints. The images are reconstructed using either a (a) filtered back-projection (FBP) or 

(b–f) sinogram-affirmed iterative reconstruction (SAFIRE) algorithm with strength levels of (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5, 

respectively. Note the subtle change in appearance and conspicuity of the cortical and trabecular bone of vertebrae with increasing 

strength level of IR. 
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Image analysis 
 

All examinations were independently and blindly 
reviewed by two musculoskeletal radiologists 
(Observers 1 and 2, working in two different institu- 
tions, and with 4 and 7 years of experience in spine 
imaging, respectively) on a picture archiving and com- 
munication system (PACS) workstation (Carestream 
Client version 11.3; Carestream Health, Rochester, 
NY, USA). Before the analysis and in order to  get 
used to the appearance of IR-processed MDCT 
images, the readers jointly reviewed and rated a selec- 
tion of 10 examinations performed in the same fashion 
as for the study but not included in the study group. 

 

 

Quantitative  analysis 
 

The measurements were performed by Observer 1 on 
MDCT images reconstructed using soft tissue convolu- 
tion kernels, according to the same method as described 
in detail elsewhere (11). The regions of interest (ROIs) 
were directly copied and pasted from the FBP to the 
five corresponding IR images to be exactly at the same 
position. The image noise, defined as the SD of the 
mean CT numbers (CTn, i.e. Hounsfield unit [HU]) 
within a ROI, was measured in the posterior paraspinal 
muscles. The SNR and CNR were subsequently calcu- 
lated according to the following formulas (16): 

 
– SNR ¼ mean  CTn/SD,  within  the  ROI  drawn  in 

the posterior paraspinal muscles 
– CNR ¼ � mean CTn/[(:E SD)/2], within  the two 

ROIs  drawn  in  the  intervertebral  disc  and  dural 
sac, respectively 

 
 
 

Qualitative  analysis 
 

The sharpness of several anatomical structures (the 
intervertebral  discs,  the  content  of  neural  foramina 
and dural sac, the flavum and posterior longitudinal 
ligaments, the subcutaneous tissue and paraspinal mus- 
cles, the cortical and trabecular bone of vertebrae), the 
presence of streak artifacts, and the overall diagnostic 
image quality (in terms of diagnostic acceptability) were 
assessed at both C3–C4 and C6–C7 levels, using the 
same semi-quantitative scales described in detail else- 
where (11). This image grading system was inspired by 
the European guidelines on quality criteria for CT (17). 

 

 

Statistical analysis 
 

The data were processed using a statistical software 
package (MedCalc version 11.6; MedCalc Software, 
Mariakierke, Belgium). Univariate one-way repeated 
measures analyses of variance (ANOVAs) were used 

 
to assess the impact of the  five  IR  strength  levels  on 
the quantitative and qualitative analysis. A  trend 
analysis was further performed to detect linear or non-
linear (i.e. quadratic or cubic) trends. In addition, 
pairwise comparisons were performed between image 
quality scores obtained with IR 5 and other IR strength 
levels. The Bonferroni correction for multiple compari- 
sons was applied to the P values. P values <0.05 were 
considered to be statistically significant. Inter-observer 
agreement was evaluated  by  calculating  weighted 
(linear weighting) kappa coefficients,  and  interpreted 
as  follows:  :::0,  poor;  0.01–0.20,  slight;  0.21–0.40,  fair; 
0.41–0.60, moderate; 0.61–0.80, substantial; and >0.81, 
almost perfect agreement. 

 
 

Results 

Noise power spectrum analysis 
 

(Fig. 3a) shows that the centroids of the frequency 
range obtained with soft tissue convolution kernels 
were shifted towards the low spatial frequencies when 
switching from FBP  to IR.  Moreover, the higher  the 
strength level of IR, the lower the frequency range cen- 
troid was. With our acquisition parameters, the cen- 

troid of convolution kernel B41s lied at 0.33 mm-1; it 

was slightly reduced at 0.31 mm-1 (-6%) with IR 3 and 

reached 0.27 mm-1 with IR 5 (-18%). As compared to 
FBP, the SDs were reduced from approximately 30% 
and 50% when using IR strength levels 3 and 5, 
respectively. 

(Fig. 3b) presents similar information but when deal- 
ing with bone convolution kernels. As expected, the 
centroids of the frequency range were in a higher spatial 
frequency range. With the same acquisition parameters, 
the    centroid    of    convolution    kernel    B70h    lied    at 
1.63 mm-1;   it   was   slightly   reduced   at   0.57 mm-1

 

(-10%) with IR 3 and reached 0.50 mm-1 with IR 5 (-

21%).  As  compared  to  FBP,  the  SDs  were  also 
reduced from approximately 30% and 50% when 
using IR strength levels 3 and 5, respectively. 

 

 

Quantitative  analysis 
 

The results of the quantitative analysis are illustrated in 
Fig. 4. With increasing strength level of IR, image noise 
decreased   linearly   (P < 0.001),   while    the    SNR 
(P < 0.001) and CNR (P < 0.001) both increased lin- 
early at  C3–C4 (Fig. 4a)  and C6–C7 (Fig.  4b) levels. 
The mean ± SD noise was 11.6 ± 2.4, 10.7 ± 2.2, 9.3 ± 

1.8, 8.2 ± 1.9, 6.8 ± 1.3, and 5.5 ± 1.1 HU at C3–C4 and 
21.0 ± 8.7, 18.8 ± 7.7, 16.9 ± 6.9, 14.7 ± 5.9, 13.2 ± 5.3, 
and 11.8 ± 4.7 HU at C6–C7 levels, for FBP and IR 
strength levels 1 to 5, respectively. The mean ± SD 
SNR   was   4.8 ± 1.1,   5.2 ± 1.2,   5.9 ± 1.3,   6.8 ± 1.7, 
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Fig. 3.  Line graphs illustrate the impact of filtered back-projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE, 

strength levels 1 to 5) algorithms on the noise power spectra (NPS) of MDCT images reconstructed using a (a) soft tissue and (b) bone 

convolution kernel. With increasing strength level of IR, the centroids (dotted lines) of the frequency range are shifted towards the 

low spatial frequencies. 

 
 

 
 

Fig. 4.  Bar charts illustrate the impact of filtered back-projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE, 

strength levels 1 to 5) techniques on the image noise (in Hounsfield units [HU]), the signal-to-noise (SNR) and contrast-to-noise 

(CNR) ratios, at (a) C3–C4 and (b) C6–C7 levels. With increasing strength level of IR, there is a linear decrease in noise and a 

concomitant linear increase in SNR and CNR, at both levels. Error bars represent 95% confidence intervals. 
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8.1 ± 1.8, and 10.0 ± 2.3 at C3–C4 and 3.0 ± 1.3, 3.3 ± 

1.4, 3.8 ± 1.5, 4.3 ± 1.9, 4.8 ± 2.0, and 5.2 ± 2.2 at C6– 
C7 levels; while the  mean ± SD  CNR was 5.4 ± 1.2, 
5.8 ± 1.5, 6.6 ± 1.5, 7.5 ± 1.8, 8.8 ± 1.9, and 10.5 ± 2.2 
at C3–C4 and 3.7 ± 1.1, 4.1 ± 1.2, 4.6 ± 1.3, 5.2 ± 1.7, 
5.9 ± 1.9, and 6.4 ± 2.1 at C6–C7 levels, for FBP and IR 
strength levels 1 to 5, respectively. For these three vari- 
ables, all strength levels of IR were significantly differ- 
ent from the lower levels (P < 0.001). 

Besides, there were no significant change in the mean 
CTn (within the ROIs drawn in the posterior paraspinal 
muscles) obtained with FBP and the five strength levels 
of IR (P ¼ 0.19), nor a significant difference in the pair- 
wise comparisons (P > 0.05). 

 

 

Qualitative  analysis 
 

The results of the qualitative analysis are reported in 
Table 1. With increasing strength level of IR, a linear 
trend towards an increase in image quality scores was 
found for the intervertebral discs (Fig. 5a), the content 
of neural foramina (Fig. 5b), the content of the dural sac, 
the ligaments, as well as for the overall diagnostic image 
quality  (Fig.  5e)  at  C3–C4  and  C6–C7  levels. 
Conversely, there was a linear trend towards a decrease 
in scores for the soft tissues (Fig. 5c) and trabecular bone 
(Fig. 5d) at both levels. In contrast, no trend was found 
for cortical bone either at C3–C4 or C6–C7 level. 

With regard to artifacts, no trend was noted either at 
C3–C4 (Observer 1, P ¼ 0.16; Observer 2, P ¼ 0.33) or 
C6–C7  (Observer  1,  P ¼ 0.77;  Observer  2,  P ¼ 0.07) 
level. 

Inter-observer agreements were at least moderate for 
all items, except for the content of the dural sac at C3–
C4 level with IR 3 (k ¼ 0.39) and for the soft tissues at 
C6–C7 level with FBP (k ¼ 0.36), IR 2 (k ¼ 0.32) and IR  
3  (k ¼ 0.40)  algorithms. 

The results of the pairwise comparisons are summar- 
ized in Table 2. The image quality scores obtained with 
IR strength level 5 were significantly higher than with 
IR 3 or 4 for the intervertebral discs, the content of 
neural foramina and dural sac, the ligaments, and the 
overall diagnostic image quality, except for the content 
of neural foramina at C3–C4 level (Observer 1) and the 
ligaments at C6–C7 level (Observer 2) for which they 
were only higher than with IR ::: 2. Conversely, the 
scores obtained with IR 5 were significantly lower 
than with IR 3 or 4 for the soft tissues and trabecular 
bone, except for trabecular bone at C3–C4 level 
(Observer 2) for which it was lower than with IR 2: 2. 
No significant difference in image quality scores was 
found for the content of neural foramina at C3–C4 
level (Observer 2), the content of the dural sac at C6–
C7 level (Observer 2), and cortical bone (Observers 
1 and 2). As regards artifacts, there was no 
significant difference either at C3–C4 or C6–C7 level 
(Observers 1 and 2, P > 0.99). 

 

 

Discussion 
 

Our patient-based study demonstrates that the optimal 
strength level of IR to apply in low-dose cervical spine 
MDCT depends on the anatomical structure to be ana- 
lyzed  and,  therefore,  on  the  clinical  context.  Except 

 

 
Table 1. Qualitative image quality scores for filtered back-projection (FBP) and the five strength levels of iterative reconstruction 

(IR). 
 

FBP IR 1 IR 2 IR 3 IR 4 IR 5 P value 
 

Item Level Obs 1 Obs 2 Obs 1 Obs 2 Obs 1 Obs 2 Obs 1 Obs 2 Obs 1 Obs 2 Obs 1 Obs 2 Obs 1   Obs 2 
 

Intervertebral disc (mean) C3–C4  1.9 1.8 1.8 1.9 2.4 2.3 2.4 2.5 2.9 2.9 3.1 3.1 <0.001  <0.001 

C6–C7  1.6 1.7 2.0 2.1 1.9 2.0 2.2 2.3 2.8 2.9 3.2 3.0 <0.001  <0.001 

Content of neural foramina (mean)  C3–C4  1.6 1.8 1.6 1.8 1.7 1.8 2.0 2.0 2.1 2.1 2.1 2.1 <0.001    0.007 

C6–C7  1.3 1.5 1.6 1.7 1.6 1.8 1.7 1.7 2.0 1.9 2.3 2.1 <0.001  <0.001 

Content of the dural sac (mean) C3–C4  1.1 1.3 1.2 1.4 1.2 1.5 1.2 1.4 1.5 1.7 1.6 1.8 <0.001  <0.001 

C6–C7  1.1 1.1 1.3 1.3 1.3 1.4 1.3 1.3 1.4 1.4 1.6 1.5 0.001    0.03 

Ligaments (mean) C3–C4  2.0 2.1 2.0 2.2 2.4 2.5 2.4 2.6 2.9 2.9 3.0 3.0 <0.001  <0.001 

C6–C7  2.2 2.2 2.3 2.4 2.5 2.5 2.6 2.6 3.1 3.0 3.5 3.2 <0.001  <0.001 

Soft tissues (mean) C3–C4  3.6 3.3 3.2 3.0 2.9 3.0 2.0 2.2 1.5 1.7 1.0 1.5 <0.001  <0.001 

C6–C7  3.2 3.1 3.0 2.9 2.6 2.8 2.1 2.2 1.3 1.7 1.0 1.5 <0.001  <0.001 

Cortical bone (mean) C3–C4  3.9 3.9 3.8 3.8 3.9 3.9 3.8 3.8 3.9 3.9 3.9 3.9 0.41 0.43 

C6–C7  3.9 3.9 3.8 3.8 3.8 3.9 3.8 3.8 3.9 3.9 3.9 3.9 0.41 0.43 

Trabecular bone (mean) C3–C4  2.8 2.9 2.5 2.9 2.6 2.8 2.1 2.3 2.2 2.2 1.9 2.0 <0.001  <0.001 

C6–C7  2.7 2.6 2.3 2.4 2.3 2.5 2.2 2.3 2.0 2.0 1.5 1.7 <0.001  <0.001 

Overall diagnostic image quality (mean)  4.9 5.1 5.4 5.5 5.9 5.8 6.2 6.3 7.0 6.9 7.2 7.1 <0.001  <0.001 
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trauma (1,2,18), other regular indications for cervical 
spine MDCT include chronic cervical pain and/or cer- 
vicobrachial neuralgia; the findings to look for being 
spondylosis, herniated disc disease and/or neural for- 
aminal stenosis (3–5,18,19). In this setting, we found 
that subjective image quality scores for the interverte- 
bral discs, the content of neural foramina and dural sac, 
and for the ligaments were all significantly higher with 
increasing strength level of IR (Table 1 and Fig. 5a and 
b). However, this increase in IR strength level was also 
associated with a significant decrease in image quality 

scores for the paraspinal soft tissues and, to a lesser 
extent, trabecular bone (Table 1 and Fig. 5c and d). 
While the scores for trabecular bone remained mostly 
‘‘acceptable’’, those for the soft tissues became 
‘‘unacceptable’’ with IR strength levels >3. 
Consequently, for low-dose MDCT of  the  cervical 
spine, we would recommend combining a high strength 
level of IR for the analysis of the intervertebral discs, 
neural structures and ligaments, with a medium 
strength level of IR for the study of trabecular bone. 
In the context of trauma, we would suggest applying 

 
 
 

 
 

Fig. 5.  Bar charts illustrate the impact of filtered back-projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE, 

strength levels 1 to 5) techniques on the four-point image quality scores for (a) the intervertebral discs, (b) the content of neural 

foramina, (c) the soft tissues, (d) trabecular bone and (e) the overall diagnostic image quality, at C3–C4 and C6–C7 levels. With 

increasing strength level of IR, there is a linear trend towards an increase in scores for (a) the intervertebral discs, (b) the content of 

neural foramina and (e) the overall diagnostic image quality, while a linear trend towards a decrease in scores is noted for (c) the soft 

tissues and (d) trabecular bone, at both levels. Error bars represent 95% confidence intervals; OBS 1, Observer 1; OBS 2, Observer 2. 
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Table  2.  Summary of the pairwise comparisons in the qualitative analysis. 

 

 Observer 1   Observer 2  

Item Level Strength level of IR* P value  Strength level of IR* P value 

Intervertebral  disc C3–C4 5 vs. 4  <0.001  5 vs. 3 0.004 

 C6–C7 5 vs. 4 0.004  5 vs. 3  <0.001 

Content of neural foramina C3–C4 5 vs. 2 0.002  No significant difference 2:0.15 

 C6–C7 5 vs. 4 0.02  5 vs. 3 0.03 

Content of the dural sac C3–C4 5 vs. 3 0.002  5 vs. 3 0.003 

 C6–C7 5 vs. 4 0.01  No significant difference >0.99 

Ligaments C3–C4 5 vs. 4  <0.001  5 vs. 3 0.001 

 C6–C7 5 vs. 4 0.01  5 vs. 2 0.002 

Soft tissues C3–C4 5 vs. 4  <0.001  5 vs. 3  <0.001 

 C6–C7 5 vs. 4 0.02  5 vs. 3  <0.001 

Cortical bone C3–C4 No significant difference >0.99  No significant difference >0.99 

 C6–C7 No significant difference >0.99  No significant difference >0.99 

Trabecular bone C3–C4 5 vs. 3  <0.001  5 vs. 2  <0.001 

 C6–C7 5 vs. 4  <0.001  5 vs. 3 0.004 

Overall diagnostic image quality  5 vs. 4 0.04  5 vs. 3  <0.001 

*The IR strength level 5 is compared to other strength levels of IR. For each item, the highest strength level with a statistically significant difference is 

reported. 

IR, iterative reconstruction. 

 

SAFIRE 3 to search for vertebral fractures, and 
SAFIRE 5 to assess spinal ligament injuries. Based on 
the results of the current study, we have modified all 
spine MDCT protocols in our institution and now rou- 
tinely perform two sets of reconstruction: SAFIRE 3 
(with a bone convolution kernel) for bony structures 
and SAFIRE 5 (with a soft tissue convolution kernel) 
for all other spinal structures. 

Recently, a few different IR techniques have been 
implemented by CT manufacturers, with the common 
goal of reducing image noise while preserving spatial 
resolution (7–14). Each manufacturer has developed its 
own IR method (adaptive statistical iterative recon- 
struction, ASIR, and model-based iterative reconstruc- 
tion, MBIR, for General Electric; iterative 
reconstruction in image space, IRIS, and SAFIRE for 
Siemens; iDose for Philips; and adaptive iterative dose 
reduction, AIDR, for Toshiba) (8,9,20). These algo- 
rithms are executed either in the raw data or the 
image domain, as with SAFIRE (9,13,14). Moreover, 
most algorithms provide a set of strength levels to 
choose from, but what determines these levels also 
depends on the manufacturer. As an example, the 
strength level of IR may correspond to the number of 
iterations, or to the proportion of IR and FBP in the 
blend used to reconstruct the final MDCT images 
(8,9,12,20). With SAFIRE, the estimations and 
approximations included in the noise models are set 
up differently for each strength level: the higher the 
level  chosen,  the  stronger  the  noise  reduction  the 

model is aiming for (9,13,14,20). According to our 
quantitative analysis, increasing the strength level of 
SAFIRE by one should reduce image noise by approxi- 
mately 10% (Fig. 4). 

As expected, we found that the higher the strength 
level of IR, the lower the noise amplitude was (Fig. 3). 
Moreover, the noise amplitude was not only reduced 
but also shifted towards the low-frequency range. This 
shift might not only smoothen image noise but also 
low-contrast transitions within MDCT images. When 
dealing with high-contrast structures, such as in our 
case, it has been shown that SAFIRE does not influence 
the frequency content of MDCT images. With such 
properties, it appears that the use of SAFIRE strength 
level 5 is optimal for the diagnostic task presented here. 

To our knowledge, only two studies addressing the 
value of IR in MDCT of the spine have been performed 
so far (10,11). Gervaise et al. reported that a radiation 
dose reduction of up to 50% was achievable by using 
such techniques in lumbar spine MDCT, while preser- 
ving diagnostic image quality (10). The current study is 
the first designed to optimize the strength level of IR by 
separately assessing its impact on the various anatom- 
ical structures of the spine, comprising both soft (inter- 
vertebral discs, neural structures, ligaments, muscles 
and fat) and dense (bone) tissues. Indeed, only a few 
studies have evaluated the impact of varying IR 
strength levels on image quality (21–24), since most 
studies on IR used medium strength levels, as recom- 
mended by manufacturers (13,14,16). In chest MDCT, 
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Singh et al. found that a percentage of ASIR 30–50% 
was the optimal strength level to be applied (21). On the 
other hand, Mié ville et al. reported that a percentage 
of ASIR 20–40% was  the  optimal  setting  for  
pediatric cardiac   MDCT   (22).   In   contrast,   
Rampado  et  al. showed  in  a  phantom  study  that   
a percentage of ASIR  50–70%  was  optimal  for  
MDCT of the  chest and  upper  abdomen  (23).   
Finally, Rapalino et al. recently suggested a high  
strength level of ASIR (i.e. 2:60%) as the optimal 
setting in head MDCT, because it reduced image noise 
and improved low-contrast reso- lution without 
affecting spatial resolution (24). It is cer- tainly difficult 
to compare our findings with SAFIRE to these studies   
on ASIR because, as previously high- lighted, the  
techniques as well as the definition of IR strength 
levels vary from one manufacturer to another. 
However, our results suggest that higher strength levels 
of IR are recommended for low-dose MDCT of the 
cervical spine. It is not clear whether these discrepancies 
are due to the different anatomical structures con- 
sidered, to the fact that they were all assessed separ- 
ately, or because  our readers were trained with IR- 
processed images before the analysis. Although some 
authors mentioned that MDCT images reconstructed 
with high strength levels of IR may have an ‘‘over- 
smooth’’ appearance (8,9,12), this study demonstrates 
that when trained readers were asked to analyze specific 
anatomical structures, the gain in SNR and CNR 
obtained with IR enhanced the conspicuity of these 
structures (Tables 1 and 2, Figs. 4 and 5a and b). 

A  few  other  studies  have  focused  on  low-dose 
MDCT of the cervical region (25–28). Mulkens et al. 
demonstrated that low-dose cervical spine  MDCT in 
patients with blunt trauma allowed to substantially 
reduce radiation dose (about 65% compared to stan- 
dard-dose MDCT protocols) with a small increase in 
image noise but no difference in subjective image qual- 
ity evaluation (25). Similarly, Gnannt et al. (27) and 
Hoang et al. (28) recently showed that decreasing 
tube voltage (from 120 to 70 and 80 kVp, respectively) 
enabled to significantly reduce the dose without impair- 
ing subjective image quality, except for the lower cer- 
vical spine (27). However, none of these studies were 
performed using IR techniques. Furthermore, we did 
not use a sliding-thin-slab averaging algorithm, which 
would have improved the detectability of low-contrast 
lesions and helped to further reduce radiation dose in 
thin-collimated MDCT imaging (29,30). Therefore, 
based on our results, additional dose reductions are 
conceivable depending on the anatomical structure to 
be analyzed. Further studies are necessary to determine 
how far we could go in terms of radiation dose reduc- 
tion in MDCT of the cervical spine. 

This study has several limitations. First, the number 
of   patients   was   relatively   small.   However,   each 

 

 
examination (n ¼ 30) was associated with more than a 
hundred separate qualitative assessments by each 
reader. Second, we did not evaluate the impact of 
increasing the strength level of IR on diagnostic per- 
formance, due to the absence of a reliable non-invasive 
reference standard. Further studies (on cadavers or 
with surgical correlation) are necessary to assess this 
parameter. Third, the results obtained  with  SAFIRE 
might not be valid  with  other  IR  techniques. 
However, we still believe that general recommendations 
can be derived from the current study. Finally, we only 
assessed the optimal strength level of IR for one  low- 
dose protocol. This optimal level might be different for 
other  cervical  spine  MDCT  protocols. 

In conclusion, the optimal strength level of IR to be 
applied in low-dose MDCT of the cervical spine 
depends on the anatomical structure to be analyzed. 
Ideally, two strength levels of IR are necessary: a 
higher for the evaluation of the intervertebral  discs 
and the content of neural foramina, and a lower to 
assess trabecular bone. 
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OBJECTIVE. The purpose of this article is to assess the effect of the adaptive statistical 

iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and 

to evaluate its potential for reducing radiation dose. 

SUBJECTS AND METHODS. Thirty-seven patients examined with hip MDCT ar- 

thrography were prospectively randomized into three different protocols: one with a regular 

dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 

24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four 

increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to- 

noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated 

several anatomic structures and image quality parameters using a 4-point scale. They also 

jointly assessed acetabular labrum tears and articular cartilage lesions. 

RESULTS. With decreasing radiation dose level, image noise statistically significantly in- 

creased (p = 0.0009) and CNR statistically significantly decreased (p = 0.001). We also found 

a statistically significant reduction in noise (p = 0.0001) and increase in CNR (p ≤ 0.003) with 

increasing percentage of ASIR; in addition, we noted statistically significant increases in im- 

age quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality 

(up to 50% ASIR), and subjective noise (p ≤ 0.04), and statistically significant reductions for 

the trabecular bone and muscles (p ≤ 0.03). Regardless of the radiation dose level, there were 

no statistically significant differences in the detection and characterization of labral tears (n = 

24; p = 1) and cartilage lesions (n = 40; p ≥ 0.89) depending on the ASIR percentage. 

CONCLUSION. The use of up to 50% ASIR in hip MDCT arthrography helps to reduce 

radiation dose by approximately 35–60%, while maintaining diagnostic image quality com- 

parable to that of a regular-dose protocol using FBP. 
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T arthrography is a mature imag- 

ing technique that, over the past 2 

decades, has benefited from sev- 

eral advances in CT technology 

(e.g., the advent of the helical scan method 

and extension to MDCT systems) to provide 

submillimeter isotropic imaging of joints [1– 

3]. MDCT arthrography, with its exquisite 

spatial resolution and high intraarticular con- 

trast resolution, is a viable alternative (widely 

available, rapid, robust, and well tolerated) to 

MRI and MR arthrography in the evaluation 

of internal derangements of the hip [1, 4, 5]. 

Specific indications for MDCT arthrography 

include contraindications to MRI and MR ar- 

thrography and failed or inconclusive MRI 

examinations. It may also be considered when 

access to MRI is limited, as well as in the pre- 

operative planning of osseous and cartilage 

abnormalities [1, 2, 4–7]. However, the use of 

 

MDCT arthrography is limited by its low soft- 

tissue contrast resolution and substantial ex- 

posure to ionizing radiation [1, 2, 8]. 

Previous studies on hip MDCT arthrog- 

raphy reported relatively high radiation dos- 

es, ranging from approximately 3 to 10 mSv 

[4, 9–11]. Iterative reconstruction techniques 

have recently been successfully implement- 

ed in MDCT imaging. By reducing image 

noise, these algorithms  have  the  potential 

to reduce radiation dose while maintaining 

an acceptable diagnostic image quality [12, 

13]. In fact, their initial application in mus- 

culoskeletal imaging has helped to reduce 

the dose by approximately 40–55% in spine 

MDCT, compared with regular-dose pro- 

tocols using filtered back projection (FBP) 

[14–16]. To our knowledge, the use of itera- 

tive reconstruction techniques in MDCT ar- 

thrography has not been evaluated so far. 
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Therefore, the purpose of our study was to 

assess the impact of the adaptive statistical 

iterative reconstruction (ASIR; GE Health- 

care) technique on the objective and subjec- 

tive image quality in hip MDCT arthrogra- 

phy and to evaluate its potential for reducing 

radiation dose. 

 

Subjects and Methods 

The institutional ethics committee approved 

this single-center prospective study (Protocol 

61/13). All patients gave written informed consent 

to be enrolled. 

 
Patients 

Over an 18-month period (February 2012 to 

July 2013), 43 consecutive patients with chronic 

hip pain were examined with MDCT arthrogra- 

phy in our department. Six patients were exclud- 

ed, five because of previous total hip replacement 

surgery and one because he refused to take part in 

the study. Hence, the final study population con- 

sisted of 37 patients (28 women and nine men; 

mean age, 45 years; range, 22–73 years), whose 

weight and height were measured before MDCT 

imaging. Twenty-one patients were suspected of 

having femoroacetabular impingement,  where- 

as eight had preexisting developmental dyspla- 

sia of the hip. All patients were referred by one 

of three experienced hip surgeons. Indications for 

hip MDCT arthrography included contraindica- 

tion to MRI or MR arthrography (n = 16), MRI- 

incompatible implanted medical device (n = 7), 

orthopedic fixation device in close proximity to 

the hip joint (n = 9), failed or inconclusive MR 

arthrography (n = 11; severe claustrophobia [n = 

5], morbid obesity [n = 3], and noncooperative pa- 

tient generating substantial motion artifacts [n = 

3]), or preoperative planning of osseous and car- 

tilage abnormalities (n = 7). In addition, three pa- 

tients underwent combined MDCT and MR ar- 

thrography. For the study purposes, patients were 

then randomly assigned to one of three different 

MDCT protocols: one regular-dose and two re- 

duced-dose (intermediate- or low-dose) protocols. 

 
MDCT Arthrography Protocols 

Hip arthrography was performed under asep- 

tic conditions and fluoroscopic guidance. Patients 

were positioned supine with the leg in slight in- 

ternal rotation. The superior femoral head-neck 

junction  was  targeted  through  an  anterior  ap- 

proach using a 20-gauge needle, and 12–15 mL of 

an arthrographic blend (15 mL of iodinated con- 

trast medium [Accupaque 300, GE Healthcare], 

5 mL of bupivacaine hydrochloride [Bupivacain 

0.25%, Sintetica], and two drops of epinephrine 

hydrochloride [Adrenalin, Sintetica], mixed with 

0.1 mL of gadolinium-based contrast agent [Dota- 

rem, Guerbet] when MR arthrography was initial- 

ly requested) was injected into the joint. Patients 

were then immediately transferred to the CT (n = 

26) or MRI (n = 11) room, and all MDCT scans 

were completed within 30 minutes. 

All MDCT examinations were performed on a 

64-MDCT scanner (LightSpeed VCT, GE Health- 

care) using the helical acquisition mode. Patients 

were positioned supine with the leg in neutral po- 

sition. Scan length was set to approximately 11 

cm, covering from the acetabular roof to the less- 

er trochanter. Three different fixed tube currents 

(250, 160, and 100 mA for the regular-, interme- 

diate-, and low-dose protocols, respectively) were 

used to vary the radiation dose level of hip MDCT 

arthrograms. Although the ASIR technique is 

compatible with automatic tube current modula- 

tion, the latter was disabled in the current study 

for the same reasons as described by Singh et al. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B C 
 

 
 
 
 

Fig. 1―21-year-old man with pain in right hip and 
history of slipped capital femoral epiphysis treated by 
corrective osteotomy of proximal femur and internal 
fixation using two cannulated screws. 
A–E, Axial MDCT arthrogram images of right hip 
(low-dose protocol; section thickness, 0.6 mm; 
section interval, 0.3 mm; bone convolution kernel; 
window level, 300 HU; window width, 3000 HU) were 
reconstructed using filtered back projection (A) and 
four increasing percentages of adaptive statistical 
iterative reconstruction (ASIR): 30% (B), 50% (C), 
70% (D), and 90% (E). Note similar appearance of 
Czerny class 3B labral tear (arrow) and reduction in 
image noise with increasing percentage of ASIR. 

D E 
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[17]. The tube current for the low-dose protocol 

was selected according to the lowest-dose proto- 

cols previously reported for hip MDCT arthrogra- 

phy [6, 18]. All other scan parameters were held 

constant as follows: tube voltage, 120 kVp; gantry 

rotation time, 0.8 second; pitch, 0.516; beam colli- 

mation, 40 mm (detector configuration, 64 × 0.625 

mm); and scan FOV, 32 × 32 cm. 

MDCT raw datasets were reconstructed using 

both a conventional FBP algorithm and four in- 

creasing percentages of the ASIR technique (30%, 

50%, 70%, and 90%) (Fig. 1). ASIR is a first-gener- 

ation dose-reduction technology that extracts noise 

by photon statistics and object modeling and whose 

technical principles have been described elsewhere 

[12, 13, 19]. The forward projection and multiple it- 

erative reconstruction steps help to reduce noise in 

the image data domain, albeit with a slight increase 

in reconstruction time. To prevent an overly artifi- 

blended reconstructed image datasets). The other 

image reconstruction parameters were as follows: 

display FOV, 19 × 19 cm; section thickness, 0.6 

mm; section interval, 0.3 mm; and bone and stan- 

dard (GE Healthcare) convolution kernels. 

 
Radiation Dose Estimates 

The volume CT dose index (CTDIvol), deter- 

mined for a 32-cm-diameter polymethyl meth- 

acrylate cylindric reference phantom, and dose- 

length product were retrieved from the digital 

imaging and communications in medicine radi- 

ation-dose structured report. The effective dose 

was then calculated by multiplying the dose- 

length product by the appropriate conversion fac- 

tor (0.0129 mSv × mGy−1 × cm−1 for adult patients, 

the pelvis region, and 120 kVp) [20]. Furthermore, 

the size-specific dose estimate (SSDE) was calcu- 

lated as follows: 

tient’s effective diameter was determined from 

the maximum anteroposterior and lateral dimen- 

sions on the CT localizer radiographs, using the 

following formula [21]: 
 

Effective diameter =  anteroposterior × lateral  (2). 
 

 
Image Quality Metrics 

To investigate the differences in noise texture 

between FBP and ASIR techniques as a function 

of both radiation dose level and image reconstruc- 

tion plane, we scanned a 20-cm-diameter water 

phantom using exactly the same acquisition pa- 

rameters as for patients. Images were reconstruct- 

ed in both axial and coronal planes using FBP and 

the same four increasing percentages of ASIR (us- 

ing exactly the same reconstruction parameters as 

already described in both planes, with the bone 

convolution kernel only). Furthermore, this step 

cial appearance of MDCT images, the ASIR algo- 

rithm further offers the possibility to blend ASIR 
SSDE = ƒ32D × CTDI32D

 (1), 
was repeated by reconstructing 0.6-mm images 

with no overlap. Noise power spectra (NPS) were 

and FBP images in 10% increments (ASIR 30% 

thus represents 30% ASIR and 70% FBP in the 

where  ƒ32D   is the conversion factor as a func- 

tion of patient’s effective diameter [21]. The pa- 

then calculated using the method described by 

Miéville et al. [22]. 
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Fig. 2―Noise power spectra (NPS) for 0.6-mm (0.3-mm section interval) images. 
A–D, Axial (A and B) and coronal (C and D) MDCT images were obtained at two different radiation dose levels, 38 mGy (A and C) and 15 mGy (B and D), and were 
reconstructed using bone convolution kernel with filtered back projection (FBP) and four increasing percentages of adaptive statistical iterative reconstruction (ASIR; 
30%, 50%, 70%, and 90%). Curve shape represents noise reduction (y-axes) as function of spatial frequency (x-axes). Higher curve, higher noise is. Compared with axial 
images, noise is strongly reduced in coronal plane, and impact of ASIR on noise reduction is less pronounced. 
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To determine the impact of FBP and ASIR al- 

gorithms on spatial resolution depending on the 

radiation dose level, we subsequently scanned a 

dedicated phantom (Catphan 600, The Phantom 

Laboratory) containing a 28-μm-diameter tung- 

sten wire, using the same three MDCT protocols 

as for patients. Images were reconstructed using 

FBP and the four increasing percentages of ASIR 

(same reconstruction parameters as for patients, 

with the bone convolution kernel only). In-plane 

modulation transfer functions were then comput- 

ed as described elsewhere [22]. 

 
Image Analysis 

For the study purposes, only MDCT images 

reconstructed using the bone convolution kernel 

were analyzed. 

 
Quantitative  Analysis 

All measurements were performed by a muscu- 

loskeletal fellow on a PACS workstation (Vue, ver- 

sion 11.3, Carestream Health). Three circular ROIs 

of approximately 50, 25, and 5 mm2  were drawn 

TABLE 1: Patient Characteristics and Radiation Dose Estimates for the Three 
Different MDCT Arthrography Protocols 

 

 
Variable 

Regular-Dose 
Protocol 

Intermediate- 
Dose Protocol 

Low-Dose 
Protocol 

 
p 

Patient  characteristics 

No. of patients 

Sex 

Female 

Male 

Age (y) 

Body mass index (kg/m2) 

Effective diameter (cm) 

Radiation dose estimates 

Volume CT dose index (mGy), mean 

Size-specific dose estimate (mGy) 

Dose-length product (mGy × cm) 

Effective dose (mSv) 

 

 
11 

 
 

8 

3 

42 ± 8 

24.9 ± 4.1 

30.3 ± 3.7 
 
 

38.4 

47.1 ± 6.6 

588 ± 12 

7.6 ± 0.2 

 

 
13 

 
 

10 

3 

43 ± 13 

22.7 ± 2.2 

29.7 ± 1.8 
 
 

24.6 

30.7 ± 2.1 

392 ± 42 

5.1 ± 0.5 

 

 
13 

 
 

10 

3 

51 ± 17 

23.3 ± 4.1 

29.0 ± 2.6 
 
 

15.4 

19.7 ± 1.9 

251 ± 19 

3.3 ± 0.2 

 

 
NA 

0.96 

 

 
 

0.36 

0.20 

0.35 
 
 

0.0001 

0.0001 

0.0001 

0.0001 

Note—Except where noted otherwise, data are mean ± SD. NA = not applicable. 

into homogeneous areas of the gluteus maximus 

muscle, intraarticular contrast medium, and ace- 

tabular labrum, respectively. Measurements were 

taken on three consecutive axial  sections,  and 

the median values of the CT numbers (mean and 

SD Hounsfield units) recorded. The selected ROI 

was then copied and pasted from the FBP image 

to each of the four corresponding ASIR images 

(30%, 50%, 70%, and 90% ASIR), to be at exact- 

ly the same position. Image noise and contrast-to- 

noise ratio (CNR) were calculated as follows: 
 

Noise = SD of the mean HUmuscle (3), 
 

in the ROI drawn into the gluteus maximus 

muscle; and 

(mean HUcontrast − mean HUlabrum) 

el and width set to 300 and 3000 HU, respectively. 

First, the conspicuity of the following anatomic 

structures was assessed on axial sections using a 

4-point rating scale (4 = exemplary, 3 = diagnostic, 

2 = limited, and 1 = nondiagnostic, as described in 

the Radiologic Society of North America radiology 

lexicon [24]): acetabular labrum and articular carti- 

lage surfaces, cortical bone, subchondral bone, tra- 

becular bone, and gluteal muscles. Then, the sub- 

jective image noise, the severity of beam-hardening 

(streak) artifacts, and the subjective overall diagnos- 

tic image quality were evaluated in the same fash- 

ion. Finally, the two readers jointly assessed the ac- 

etabular labrum tears and articular cartilage lesions 

using the multiplanar reformation view mode (with 

isotropic voxels of 0.6 mm), reaching consensus 

Chi-square and Kruskal-Wallis tests were used to 

compare patients’ characteristics among the three 

study groups. Quantitative and qualitative data for 

the three different MDCT protocols and five dis- 

tinct image reconstruction techniques (ASIR per- 

centages) were compared using the Kruskal-Wal- 

lis test and Goldstein equivalence test for means. 

Intrarater reliability of measurements was evalu- 

ated using the Pearson correlation coefficient (ρ). 

For qualitative variables, interobserver agreement 

was assessed by calculating the Cohen kappa co- 

efficient. Values for both Pearson correlation and 

kappa coefficients were interpreted as follows: 0 

or less was poor, 0.01–0.20 was slight, 0.21–0.40 

was fair, 0.41–0.60 was moderate, 0.61–0.80 was 

substantial, and 0.81–1 was almost perfect agree- 

CNR = 
SD

labrum 

(4), agreement in cases of discrepancies. Labral tears 

were categorized using a slightly modified Czerny 

ment; p values less than 0.05 were considered to 

be statistically significant. 

in the ROIs drawn into the intraarticular contrast 

medium and acetabular labrum, respectively [23]. 

To assess the reproducibility of measurements, 

they were repeated by the same radiology fellow 

after a 4-week interval. 

 
Qualitative  Analysis 

After a consensus reading with three test cases 

that were not included in the study, two musculo- 

skeletal radiologists (readers 1 and 2, with 5 and 

3 years of experience, respectively) independently 

reviewed all hip MDCT arthrograms on the same 

PACS workstation as already described. MDCT 

scans were presented in random order, with both 

readers blinded to the acquisition parameters (ra- 

diation dose level) and image reconstruction tech- 

nique. Images were displayed with a window lev- 

classification system (class 0–3B lesions, excluding 

class 1 because purely intrasubstance lesions were 

not visible with MDCT arthrography) [25] and were 

localized as being in the anterior, anterosuperior, 

posterosuperior, or posterior quadrants [26]. Artic- 

ular cartilage lesions were graded as superficial par- 

tial-thickness (< 50% of total cartilage thickness) 

or deep partial- or full-thickness defects (≥ 50% of 

thickness). They were localized as being in the an- 

terior, anterosuperior, posterosuperior, or posteri- 

or quadrants of the acetabulum, and anteromedial, 

anterosuperior, posterosuperior, or posteromedial 

quadrants of the femoral head [27]. 

 
Statistical Analysis 

Data  were  analyzed  using  a  statistical  soft- 

ware  package  (Stata,  version  12.1,  StataCorp). 

 

Results 

Patient  Characteristics 

Patients’ characteristics for the three study 

groups are reported in Table 1. There were 

no statistically significant differences in sex 

(p = 0.96), age (p = 0.36), body mass index 

(p = 0.20), and effective diameter (p = 0.35) 

among patients from the regular-, intermedi- 

ate-, and low-dose MDCT protocols. 

 
Radiation Dose Estimates 

Radiation dose estimates for the three dif- 

ferent MDCT protocols are reported in Table 

1. The CTDIvol, size-specific dose estimate, 

dose-length product, and effective dose were 
all statistically significantly reduced for the 
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low-dose protocol compared with the interme- 

diate- and regular-dose protocols (p = 0.0001). 

 
Noise Power Spectrum and Modulation 

Transfer Function 

Variations in NPS as a function of the ra- 

diation dose level, image reconstruction al- 

gorithm, and plane are illustrated in Figure 

2. In the axial plane, the noise level de- 

creased statistically significantly with in- 

creasing radiation dose (Figs. 2A and 2B). It 

further depended heavily on the ASIR per- 

centage. Moreover, the centroids of the fre- 

quency ranges were shifted toward low spa- 

tial frequencies when switching from FBP to 

increasing percentages of ASIR. On coronal 

reformatted images, we noted a strong reduc- 

tion in image noise compared with the axial 

plane, due only in part to the slight smooth- 

ing performed during the interpolation to 

form coronal reformats (Figs. 2C and 2D). 

Increasing the dose also resulted in substan- 

tial noise reduction. However, the impact of 

the ASIR percentage was considerably re- 

duced. Furthermore, the curve shapes were 

different in that they reached a sort of plateau 

TABLE 2: Image Noise and Contrast-to-Noise Ratio (CNR) for the Three 
Different MDCT Arthrography Protocols as a Function of the 
Four Increasing Percentages of Adaptive Statistical Iterative 
Reconstruction (ASIR) 

 

 
Variable 

Regular-Dose 
Protocol 

Intermediate-Dose 
Protocola 

Low-Dose 
Protocolb 

 
p 

Noise 
 

 
60.4 ± 14.7 

 

 
70.7 ± 9.0 

 

 
81.0 ± 10.6 

 

 
0.0009 FBP 

ASIR 30% NA 57.8 ± 7.8 66.7 ± 8.6 0.008 

ASIR 50% NA 49.5 ± 6.6 57.4 ± 7.8 0.01 

ASIR 70% NA 42.0 ± 6.4 48.8 ± 6.7 0.01 

ASIR 90% NA 35.2 ± 5.9 40.6 ± 6.3 0.02 

CNR     
FBP 36.9 ± 6.4 25.3 ± 5.1 29.3 ± 7.9 0.001 

ASIR 30% NA 29.2 ± 6.7 35.3 ± 11.0 0.12 

ASIR 50% NA 32.4 ± 8.4 40.7 ± 13.9 0.11 

ASIR 70% NA 36.4 ± 11.1 48.9 ± 21.5 0.10 

ASIR 90% NA 41.4 ± 14.8 56.8 ± 26.1 0.12 

Note—Equivalent numbers are shown in bold, and those with in bold and italic represent the most equivalent 
ones. FBP = filtered back projection, NA = not applicable. 

ap = 0.0001 and 0.003 for noise and CNR, respectively. 
bp = 0.0001 and 0.007 for noise and CNR, respectively. 

between 0.1 and 0.8 mm−1. The shape of the 

NPS was comparable with or without overlap 

in the reconstructed images, with the excep- 

tion that all curves were shifted slightly up- 

ward when no overlap was used. 

Modulation transfer functions for FBP 

and ASIR algorithms are illustrated in Fig- 

ure 3 (low-dose protocol only). There were 

no significant changes in spatial resolution 

either depending on the radiation dose level 

or ASIR percentage. 

 
Quantitative  Analysis 

The results of the quantitative analysis are 

reported in Table 2. Image noise was statis- 

tically significantly higher for the low-dose 

 
 

1.0 

protocol compared with the intermediate- 

and regular-dose protocols, both for FBP (p = 

0.0009) and the four increasing percentages 

of ASIR (p ≤ 0.02). For both intermediate- 

and low-dose protocols, noise was statistically 

significantly lower with increasing percentage 

of ASIR (p = 0.0001). Image noise was found 

to be comparable between the regular-dose 

protocol using FBP, intermediate-dose proto- 

col using ASIR 30%, and low-dose protocol 

using ASIR 30% and 50%. Intrarater reliabil- 

ity was almost perfect (ρ = 0.83). 

In contrast, CNR was statistically signifi- 

cantly lower for the low-dose protocol using 

FBP compared with the intermediate- and 

regular-dose protocols (p = 0.001) (Table 

 
Fig. 3―Modulation 
transfer functions 

2). However, no statistically significant dif- 

ferences were found between the low- and 

intermediate-dose protocols using ASIR 

(p ≥ 0.10). For both intermediate- and low- 

dose protocols, CNR was statistically sig- 

nificantly higher with increasing percent- 

age of ASIR (p ≤ 0.003). CNR was found 

to be comparable between the regular-dose 

protocol using FBP, intermediate-dose pro- 

tocol using ASIR at 50%, 70%, and 90%, 

and low-dose protocol using ASIR at 30%, 

50%, and 70%. Intrarater reliability was 

moderate (ρ = 0.45). 

 
Qualitative  Analysis 

The major findings of the qualitative 

analysis are summarized in Table 3 (reader 

1 only). Results were comparable for both 

readers, unless specified otherwise. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

×10 FBP 
ASIR 30% 

ASIR 50% 
     ASIR 70% 

ASIR 90% 

(MTF) for 0.6-mm 
MDCT images (low- 
dose protocol, 15 mGy) 
reconstructed using 
bone convolution kernel 
with filtered back 
projection (FBP) and four 
increasing percentages 
of adaptive statistical 
iterative  reconstruction 
(ASIR; 30%, 50%, 70%, 
and 90%). Graph shows 
no significant differences 
in spatial resolution 

With decreasing radiation dose level, we 

found a statistically significant reduction in 

image quality scores for the subchondral 

bone (p < 0.03) (Table 3). Statistically non- 

significant trends toward decreased subjec- 

tive image quality were noted for the labrum 

and cartilage (p = 0.15), trabecular bone 

(reader 1, p = 0.10), as well as the overall di- 

agnostic quality (reader 2, p = 0.10). There 

were no statistically significant differences 

in scores for the cortical bone (p = 1), mus- 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 between FBP and ASIR 

Spatial Frequency (cycles/mm) images, regardless of 
ASIR percentage. 

cles (p ≥ 0.36), subjective noise (p ≥ 0.51), 

and artifacts (p = 1). 
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With increasing percentage of ASIR, we 

found a statistically significant increase in 

image quality scores for  subjective  noise 

(p ≤ 0.001) and statistically significant re- 

ductions for the trabecular bone (p = 0.0001) 

and muscles (reader 1, p ≤ 0.03), both with 

intermediate- and low-dose protocols (Table 

3). In addition, there were statistically signif- 

icant increases in scores for the labrum and 

cartilage (reader 2, low-dose protocol, p = 

0.04), subchondral bone (intermediate-dose 

protocol, p ≤ 0.03), as well as the overall di- 

agnostic quality (intermediate-dose proto- 

col, p ≤ 0.04) up to 50% ASIR, followed by 

substantial decreases with higher percent- 

ages of ASIR. No statistically significant 

changes were noted for the cortical bone (p = 

1) and artifacts (p = 1). 

Interobserver agreement ranged from 0.23 

to 1, 0.26 to 1, and 0.41 to 1 for the regu- 

lar-, intermediate- and low-dose protocols, 

respectively. It was at least moderate for all 

items, except for the subjective noise (regu- 

lar-dose protocol, κ = 0.23) and subchondral 

bone (intermediate-dose protocol, κ = 0.26). 

A  total  of  30  acetabular  labrum  tears 

were identified using FBP: 11 partial-thick- 

ness (six class 2A and five class 2B) and 19 

full-thickness (12 class 3A and seven class 

3B) tears. They were located in the anterior 

(n = 6), anterosuperior (n = 18), and postero- 

superior (n = 6) quadrants. Of those 30 labral 

tears, six lesions (four partial thickness and 

two full thickness) were found in the reg- 

ular-dose patient group, and 12 in both in- 

termediate-dose (one partial thickness and 

11 full thickness) and low-dose (six partial 

thickness and six full-thickness) groups. For 

both intermediate- and low-dose protocols, 

all labral tears were accurately detected and 

characterized regardless of the ASIR per- 

centage (p = 1) (Figs. 1 and 4). 

Overall, the readers identified  59  articu- 

lar cartilage lesions using FBP: 24 superficial 

partial-thickness and 35 deep partial-thickness 

or full-thickness defects. Thirty-one lesions 

were located on the acetabulum (four in the an- 

terior, eight in the anterosuperior, nine in the 

posterosuperior, and 10 in the posterior quad- 

rants), and 28 lesions on the femoral head (one 

in the anteromedial, seven in the anterosuperior, 

seven in the posterosuperior, and 13 in the pos- 

teromedial quadrant). Of those 59 cartilage le- 

sions, 19 were observed in the regular-dose, 24 

TABLE 3: Subjective Image Quality Scores for the Three Different MDCT 
Arthrography Protocols as a Function of the Four Increasing 
Percentages of Adaptive Statistical Iterative Reconstruction (ASIR) 
for Reader 1 Only and Selected Items 

 

 
Variable 

Regular-Dose 
Protocol 

Intermediate- 
Dose Protocola 

Low-Dose 
Protocolb 

 
p 

Labrum and cartilage 
 

 
3.4 ± 0.5 

 

 
3.4 ± 0.5 

 

 
2.9 ± 0.5 

 

 
0.15 FBP 

ASIR 30% NA 3.3 ± 0.5 3.1 ± 0.3 0.32 

ASIR 50% NA 3.4 ± 0.5 3.2 ± 0.6 0.38 

ASIR 70% NA 3.2 ± 0.6 2.8 ± 0.6 0.17 

ASIR 90% NA 3.1 ± 0.6 2.8 ± 0.4 0.27 

Subchondral bone     
FBP 3.8 ± 0.4 3.3 ± 0.5 3.2 ± 0.4 0.03 

ASIR 30% NA 3.5 ± 0.5 3.4 ± 0.5 0.74 

ASIR 50% NA 3.8 ± 0.4 3.3 ± 0.6 0.08 

ASIR 70% NA 3.6 ± 0.5 2.9 ± 0.8 0.03 

ASIR 90% NA 3.0 ± 0.4 2.6 ± 0.7 0.12 

Trabecular bone     
FBP 3.5 ± 0.5 3.5 ± 0.5 3.1 ± 0.3 0.10 

ASIR 30% NA 3.3 ± 0.5 3.1 ± 0.3 0.32 

ASIR 50% NA 3.2 ± 0.4 2.8 ± 0.4 0.22 

ASIR 70% NA 2.6 ± 0.5 2.2 ± 0.4 0.10 

ASIR 90% NA 2.2 ± 0.4 2.0 ± 0.0 0.32 

Overall diagnostic quality     
FBP 3.4 ± 0.5 3.3 ± 0.5 3.1 ± 0.3 0.43 

ASIR 30% NA 3.4 ± 0.5 3.1 ± 0.3 0.18 

ASIR 50% NA 3.6 ± 0.5 3.2 ± 0.4 0.10 

ASIR 70% NA 3.2 ± 0.4 2.8 ± 0.4 0.13 

ASIR 90% NA 2.8 ± 0.4 2.8 ± 0.4 0.74 

Note—Equivalent scores are shown in bold, and those in bold and italic represent the most equivalent ones. 
FBP = filtered back projection, NA = not applicable. 

ap = 0.80, 0.03, 0.0001, and 0.04 for the labrum and cartilage, subchondral bone, trabecular bone, and overall 
diagnostic quality, respectively. 

bp = 0.54, 0.12, 0.0001, and 0.33 for the labrum and cartilage, subchondral bone, trabecular bone, and overall 
diagnostic quality, respectively. 

 

TABLE 4: Number and Grade of Articular Cartilage Lesions for the Three 
Different MDCT Arthrography Protocols as a Function of the 
Four Increasing Percentages of Adaptive Statistical Iterative 
Reconstruction  (ASIR) 

 

Dose Protocol FBP ASIR 30% ASIR 50% ASIR 70% ASIR 90% p 

Regular 19 (4, 15) NA NA NA NA NA 

Intermediate 24 (11, 13) 25 (12, 13) 25 (11, 14) 29 (11, 18) 29 (10, 19) 0.97 

Low 16 (9, 7) 16 (9, 7) 17 (8, 9) 18 (8, 10) 22 (9, 13) 0.89 

Note—Data are no. of lesions (superficial partial-thickness, deep partial- or full-thickness). FBP = filtered back 
projection, NA = not applicable. 

in the intermediate-dose, and 16 in the low- 

dose patient groups. The number of cartilage 

lesions identified as a function of the ASIR per- 

centage is reported in Table 4. For both inter- 

mediate- and low-dose protocols, there were no 

statistically significant differences in detection 

and grading of lesions depending on the ASIR 

percentage (p ≥ 0.89). 

Discussion 

Owing to several technologic develop- 

ments, MDCT arthrography has  become 

an established imaging technique for eval- 
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uating various internal joint disorders [1–3, 

28]. It may further be regarded as the first- 

line cross-sectional imaging for assessing 

articular cartilage injuries [5, 10, 29, 30], as 

well as in the postoperative setting [2, 4, 28]. 

With the exception of one single study [18], 

relatively high diagnostic performances have 

been reported for the hip, with sensitivities 

of 67–94%, specificities of 82–100%, and 

accuracies of 75–90% for articular cartilage 

lesions, and sensitivities of 90–97%, speci- 

ficities of 80–100%, and accuracies of 88– 

95% for acetabular labrum tears [5, 9, 11, 29, 

31]. However, improvements in diagnostic 

image quality were achieved at the expense 

of an increased radiation burden, and MDCT 

arthrography is still associated with signif- 

icant radiation dose, particularly in the hip 

and shoulder [8, 32]. This is one reason why 

MRI or MR arthrography remains the first- 

line examination in most cases, the other be- 

ing its higher soft-tissue contrast resolution. 

In the past few years, exposure to ioniz- 

ing radiation generated by CT has become a 

growing concern [33]. MDCT arthrography 

requires thin sections and low pitch values, 

as well as high tube voltage and loading in 

the pelvic and scapular girdles, to provide 

submillimeter   isotropic   diagnostic-quali- 

ty images. Widely varying radiation dose 

levels are used in hip MDCT arthrography, 

ranging from approximately 3 to 10 mSv 

(CTDIvol, ≈ 10 to 45 mGy), thus emphasizing 

the need for protocol optimization [4, 9–11, 

18, 29–31]. The current study shows that radi- 

ation dose in hip MDCT arthrography can be 

reduced by up to 60% using 30–50% ASIR, 

while maintaining a similar diagnostic im- 

age quality compared with a regular-dose 

protocol using FBP. This is consistent with 

the results from previous studies on iterative 

reconstruction techniques, which have fo- 

cused primarily on chest and abdominal CT 

and have shown dose reductions from 23% to 

76% compared with locally used default FBP 

settings [34, 35]. It is worth mentioning, how- 

ever, that the reduction percentage strong- 

ly depends on the initial dose level, and our 

regular-dose protocol lay in the upper quar- 

ter of the previously reported doses for hip 

MDCT arthrography. Therefore, smaller re- 

ductions are to be expected for lower-dose 

protocols. Moreover, although our low-dose 

protocol (15.4 mGy) was actually higher than 

the lowest-dose protocols reported in the lit- 

erature, it was still significantly lower (−38%) 

than the diagnostic reference level proposed 

in the European guidelines for CT of the os- 

seous pelvis (25 mGy) [32, 36]. We selected 

the two decreasing dose levels (intermediate 

and low) as an initial reduction step, while 

trying to preserve an acceptable diagnostic 

confidence. At the time of writing, Simoni et 

al. [37] reported intriguing results on the op- 

timization of dose parameters in hip MDCT 

arthrography. They suggested that the combi- 

nation of 120 kVp and 50 mA (CTDIvol esti- 

mated to be as low as 4 mGy) may be the op- 

timal setting for reducing the dose, without 

adversely affecting the visibility of the artic- 

ular cartilage and subchondral bone. Howev- 

er, their preliminary findings were obtained 

using only one custom-made phantom and 

one cadaver, without applying iterative re- 

construction techniques or assessing the im- 

pact of dose parameters on the detection and 

characterization of joint damage. According- 

ly, additional dose reductions are conceiv- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B C 
 

 
 
 

Fig. 4―34-year-old woman with chronic pain  
in right hip, developmental dysplasia of hip, and 
claustrophobia. 
A–E, Coronal-reformatted MDCT arthrogram images 
of right hip (intermediate-dose protocol; section 
thickness, 0.6 mm; section interval, 0.3 mm; bone 
convolution kernel; window level, 300 HU; window 
width, 3000 HU) were reconstructed using filtered 
back projection (A) and four increasing percentages 
of adaptive statistical iterative reconstruction (ASIR): 
30% (B), 50% (C), 70% (D), and 90% (E). Note similar 
appearance of Czerny class 2B labral tear (arrow) 
and less pronounced noise reduction (compared with 
axial plane seen in Fig. 1) with increasing percentage 
of ASIR. 

D E 
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able, and further research is needed to de- 

termine how low we can go in hip MDCT 

arthrography, particularly with the use of 

second-generation iterative reconstruction 

techniques such as model-based iterative re- 

construction (MBIR; GE Healthcare). 

Iterative reconstruction techniques have 

recently been introduced in clinical routine 

as an additional effective tool for reducing 

radiation dose [12, 32, 34]. In musculoskel- 

etal MDCT imaging, a few studies on the 

cervical [15, 16] and lumbar [14] spine have 

shown significant dose reductions, ranging 

from approximately 40% to 55%, compared 

with locally used regular-dose FBP proto- 

cols. These studies were performed using 

various iterative reconstruction algorithms 

(adaptive iterative dose reduction, AIDR; 

Toshiba [14]; ASIR; GE Healthcare [15]; and 

sinogram-affirmed iterative reconstruction; 

Siemens [16]), with either smooth [14, 16] or 

sharp [15] convolution kernels. 

To our knowledge, the present investi- 

gation is the first to show the value of iter- 

ative reconstruction techniques in MDCT 

arthrography. As anticipated, reducing the 

dose resulted in increased image noise and 

decreased CNR (Table 2). Applying ASIR 

helped to decrease noise and increase CNR. 

As a result, image noise and CNR proved to 

be the most equivalent between the regular- 

dose FBP, intermediate-dose ASIR 30%, and 

low-dose ASIR 50% protocols. Interestingly, 

both readers considered that those three dif- 

ferent protocols provided comparable image 

for the trabecular bone. They reported that 

the optimal strength level of iterative recon- 

struction depended on the anatomic struc- 

ture to be analyzed, and thus recommended 

combining high strength levels of iterative re- 

construction when using smooth (soft tissue) 

convolution kernels with medium levels for 

sharp (bone) kernels. Similarly, Singh et al. 

[39] and Mueck et al. [40] both suggested that 

the optimal percentage of ASIR was between 

30% and 50% when using sharp (lung) con- 

volution kernels in chest MDCT. 

Regarding image quality metrics, spatial 

resolution (modulation transfer function) 

proved not to be affected either by the radi- 

ation dose level or ASIR percentage, when 

using the bone convolution kernel (Fig. 3). 

This is in contradiction with Singh et al. [17], 

who reported that ASIR images had higher 

spatial resolution than FBP images when a 

smooth (standard) kernel was used. On the 

other hand, NPS analysis revealed that noise 

amplitude was statistically significantly low- 

er in the coronal than in the axial plane (Fig. 

2). In the axial plane, the ASIR percentage 

influenced not only the noise amplitude but 

also the spatial frequency content of MDCT 

images (Figs. 2A and 2B). However, the stan- 

dard shape of the curves (ramp filter followed 

by apodization function) remained similar to 

the one obtained using FBP. In the coronal 

plane, we noted a difference in the spatial 

frequency content of FBP images compared 

with the axial plane (Figs. 2C and 2D). The 

standard shape of the reconstruction kernels 

sharp (bone) convolution kernel. However, 

few studies have compared all of the different 

iterative reconstruction algorithms, and only 

using phantoms [22, 41]. Furthermore, the 

impact of iterative reconstruction techniques 

on image quality when using smooth kernels 

has already been evaluated, including in pre- 

vious studies on the spine [14, 16, 38]. 

Fourth, it was not possible to measure the 

patients’ effective diameter on the recon- 

structed MDCT arthrogram images because 

a few overweight patients lay partly outside 

the scan FOV. However, measurements on 

the localizer are subject to considerable par- 

allax because of the short source-to-detector 

distance. Finally, we were not able to assess 

the impact of the ASIR algorithm on the di- 

agnostic performance because surgical cor- 

relation was unfortunately not available for 

all patients (n = 11). Nevertheless, no statis- 

tically significant differences were found in 

the detection and characterization of labral 

tears and cartilage lesions (Table 4). 

In conclusion, the use of up to 50% ASIR 

in hip MDCT arthrography helps to reduce 

radiation dose, while maintaining diagnostic 

image quality comparable to that of a regu- 

lar-dose protocol using FBP. Future studies 

will determine how low we can go in terms 

of dose reduction, without impairing diag- 

nostic accuracy. 

 

Acknowledgment 

We thank Martine Bernasconi and her 

team for help with MDCT data acquisition. 

quality in terms of overall diagnostic confi- was less apparent. Applying ASIR strength-    

dence, as well as for assessing the acetabular 

labrum and articular cartilage (Table 3). 

Moreover, no statistically significant dif- 

ferences were found regarding the detection 

and characterization of labral tears and car- 

tilage lesions as a function of the ASIR per- 

centage, for either intermediate- or low-dose 

protocols (Table 4). However, higher percent- 

ages of ASIR (> 50%) were associated with a 

decrease in image quality scores for the over- 

all diagnostic confidence, the labrum and 

cartilage, and subchondral bone. This find- 

ing might be partly explained by the strong 

noise-free oversmooth artifactual appear- 

ance of MDCT images reconstructed using 

excessively high percentages of ASIR [12, 

13]. This is also consistent with the results of 

Omoumi et al. [38], who have recently shown 

that applying exceedingly high strength lev- 

els of sinogram-affirmed iterative reconstruc- 

tion in cervical spine MDCT resulted in a sig- 

nificant decrease in subjective image quality 

ened those differences by producing spectra 

for which a wide range of spatial frequencies 

were transferred with a similar weight. This 

certainly had an impact on the appearance of 

anatomic structures, such as articular carti- 

lage, and needs to be investigated in greater 

detail in future studies. 

This study has several limitations. First, 

small numbers of patients were included in 

each of the three study groups, thus limiting 

the power of the statistical analysis. This is 

partly because we compared three radiation 

dose levels instead of two. Second, only two 

reduced-dose protocols were evaluated, there- 

by preventing us from establishing the lowest 

achievable dose level. Additional studies, such 

as the one recently performed by Simoni et 

al. [37] on cadavers, are needed to determine 

whether ultra-low-dose hip MDCT arthrogra- 

phy will be feasible in the near future. 

Third, we assessed a single iterative re- 

construction technique (ASIR) using only a 
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Computed tomography (CT) is a modality of choice for the
study of the musculoskeletal system for various indications
including the study of bone, calcifications, internal derange-
ments of joints (with CT arthrography), as well as peripros-
thetic complications.1–13

However, CTremains intrinsically limited by the fact that it
exposes patients to ionizing radiation. Although the carcino-
genic effects of medical imaging have been disputed, there
has been an increasing interest in recent years to reduce
radiation dose due to CT examinations in accordance with as
low as reasonably achievable (ALARA) principles.14–18 In the
process of optimization of scanning protocols to achieve
diagnostic image quality at the lowest radiation dose possible,

the radiologist needs to be familiar with parameters used to
quantify radiation dose and image quality.

In the first part of this review, we present the parameters
that are used for the evaluation and quantification of radia-
tion dose and image quality. In the second part, in this issue,
we discuss different strategies to optimize the radiation dose
and image quality of CT, with a focus on the musculoskeletal
system and the use of novel iterative reconstruction (IR)
techniques.19

Evaluation of Radiation Dose: Definitions

To assess the radiation dose delivered by a CT scan, as well as
the radiologic risk associated with it, several indicators exist.
The first standardized dose indicator is the volume CT dose
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Abstract Computed tomography (CT) is a modality of choice for the study of the musculoskeletal
system for various indications including the study of bone, calcifications, internal
derangements of joints (with CT arthrography), as well as periprosthetic complications.
However, CT remains intrinsically limited by the fact that it exposes patients to ionizing
radiation. Scanning protocols need to be optimized to achieve diagnostic image quality
at the lowest radiation dose possible. In this optimization process, the radiologist needs
to be familiar with the parameters used to quantify radiation dose and image quality. CT
imaging of the musculoskeletal system has certain specificities including the focus on
high-contrast objects (i.e., in CTof bone or CT arthrography). These characteristics need
to be taken into account when defining a strategy to optimize dose and when choosing
the best combination of scanning parameters. In the first part of this review, we present
the parameters used for the evaluation and quantification of radiation dose and image
quality. In the second part, we discuss different strategies to optimize radiation dose
and image quality at CT, with a focus on themusculoskeletal system and the use of novel
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index (CTDIvol), which is related to the noise level in an image
and represents the average dose in the scanned region. The
CTDIvol is the average dose delivered to a polymethyl-meth-
acrylate phantom (either a head phantom, 16 cm in diameter,
or a body phantom, 32 cm in diameter). Therefore, the CTDIvol
is the dose to a phantom and reflects the scanner radiation
output.20 Although the CTDIvol can be used to compare
different scanners or protocols, or give an idea of the noise
level in an image using a certain protocol, it does not repre-
sent the dose to a specific patient. The actual dose to a specific
patient depends on the size and shape of that patient.20 To
improve the estimation of the average dose delivered in one
slice in a certain patient from the CTDIvol, the size-specific

dose estimator (SSDE) was introduced (with SSDE ¼ CTDIvol
� fsize, where fsize depends on the effective diameter of the
patient).21 To estimate the exposure from the entire CT
examination, the dose length product (DLP) (mGy � cm) is
used (with DLP ¼ CTDIvol � scan length). However, CTDIvol,
SSDE, and DLP are only dose indicators; they cannot be used
directly to estimate the stochastic risk associated with an
exposure. Stochastic risks should be assessed using the effec-
tive dose, E (mSv), which is obtained by multiplying the DLP
by a conversion coefficient that depends on the radiosensi-
tivity of each anatomical region. Conversion coefficients for
different musculoskeletal anatomical regions have been
calculated.22–25

Fig. 1 (a–d) Effect of the dose decrease (20, 10, 5, and 2.5 mGy on the low-contrast detectability (slice thickness 1.25 mm; window level/width
180/60 HU ¼ dedicated liver parameters). The increase of the noise level clearly affects the detectability of low contrast structures.
(e) Corresponding noise power spectra graph.
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Evaluation of Image Quality: Definitions

As already discussed, there has been a renewed interest in the
last few years for the optimization of CT radiation dose. To
optimize CT protocols, it is necessary to establish a link
between image quality and patient radiation dose. Image
quality can be assessed both quantitatively and qualitatively.
Qualitative image evaluation usually consists of a subjective
evaluation of images by observers using semiquantitative
scales.26 Quantitative assessment of image quality, in con-
trast, corresponds to measuring certain physical parameters
of the image. The simplest way to quantify image quality is to
consider the output signal to be proportional to the input
signal, and spatial resolution and noise properties to be equal
in the whole image plane. When using filtered back-projec-
tion reconstruction algorithms, these conditions are general-
ly accepted, and the following objective image quality
parameters can be used:

– Image noise: This parameter assesses the fluctuation of the
pixel values in a homogeneous area of the image. It can be
estimated bymeasuring the standard deviation (SD) of the
CT numbers in a defined region of interest (ROI) over a
homogeneous area of the image. However, SD does not
give any information on the texture of noise. To assess
image noise texture, it is useful to compare signal and
noise at each spatial frequency, by decomposing the noise

variance (SD2) into its spatial frequency component, lead-
ing to the noise power spectrum (NPS). Comparedwith the
variance, the NPS is a more complete description of noise
because it takes into account texture changes introduced
by reconstruction kernels and other image processing
parameters.
Quantifying image noise is of major importance when
dealing with the detection of low-contrast structures (i.
e., with poor contrast between the structure and sur-
rounding tissues) because noise impairs their detection
(►Figs. 1 and 2). Low-contrast structures typically are
represented by focal liver lesions, and they are relatively
rare in the musculoskeletal system. For example, noise can
impair the differentiation between a protruded interver-
tebral disk and nerve roots or dural sac, which all have
similar attenuation values (►Fig. 2). For the detection of
high-contrast lesions (e.g., cortical bone fractures, calcifi-
cations, lesions at CT arthrography), higher levels of image
noise can be tolerated (►Figs. 3 and 4).

– Signal-to-noise ratio (SNR): This parameter represents the
average pixel value in a given ROI divided by SD.When SNR
increases, image quality increases.

– Contrast-to-noise ratio (CNR): As mentioned previously,
image noise impacts the detection of low-contrast struc-
tures. One way to estimate the potential detectability of a
low-contrast lesion is to calculate the CNR, representing

Fig. 2 Axial noncontrast computed tomography images (0.9 mm thickness; smooth kernel; window level/width, 60/300 HU) of the cervical spine
at C6–C7 disk level acquired on a fresh frozen cadaver using decreasing radiation doses, from 20 (a) to 4 mGy (f), respectively. Note the gradual
loss of sharp contours of the focal disk protrusion (arrows) and the progressive blurriness of the paraspinal soft tissues (asterisks), with decreasing
radiation dose and concomitant increase in image noise.
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Fig. 3 Sagittal-reformatted noncontrast computed tomography images (0.9 mm thickness; sharp kernel; window level/width, 400/2000 HU) of
the cervical spine acquired on a fresh frozen cadaver using decreasing radiation doses, from 20 (a) to 4 mGy (f), respectively. Note that although
image noise significantly increases in the lower cervical spine with decreasing radiation dose, calcium pyrophosphate dihydrate deposits remain
visible in ligaments (arrows) and the periodontoid region (asterisks) even at low dose.

Fig. 4 Coronal-reformatted computed tomography arthrogram images (0.9 mm thickness; sharp kernel; window level/width, 400/2000 HU) of
the left shoulder acquired on a fresh frozen cadaver using decreasing radiation doses, from 20 (a) to 4 mGy (f), respectively. Note that although
image noise significantly increases with decreasing radiation dose, the “high-contrast” full-thickness partial supraspinatus tendon tear (arrows)
remains clearly visible at low dose, whereas the “lower contrast” physeal line (asterisks) gradually disappears.

Seminars in Musculoskeletal Radiology Vol. 19 No. 5/2015

Iterative CT Reconstruction Techniques (Part 1) Omoumi et al.418



the contrast between the lesion and its environment (i.e.,
difference of average pixel values in each of these ROIs
divided by the average SD of the two ROIs). Because CNR,
contrary to NPS, does not take into account the variations
of noise depending on the spatial frequency, a relationship
between CNR and low-contrast detectability is only valid
for a given reconstruction kernel.

– Spatial resolution: Ideally, the image of a punctual struc-
ture should be a point. Unfortunately, the image of such a
structure will be a spot of a certain width. The poorer the
spatial resolution, the wider the spot. One way to assess
image quality is to draw a profile across that spot to get a
function called the point spread function (PSF). To charac-

terize that function, the full width at half maximum can be
measured. In the same way as the noise parameter SD, the
PSF can be decomposed into its spatial frequency, leading
to the modulation transfer function (MTF). Spatial resolu-
tion is of major importance when dealing with very fine
and high-contrast structures (when image conspicuity is
important) (►Fig. 5).

Recent advances in CT technology, including new image
reconstruction techniques such as IR algorithms, have led us
to reconsider these image quality parameters due to their
limitations.27–29 For low-contrast structures, and to ensure
that dose reduction does not impair their detectability,

Fig. 5 (a–d) Effect of the dose decrease (20, 10, 5, and 2.5 mGy) on image resolution (slice thickness 1.25 mm; window L400 W2000
HU ¼ dedicated bone parameters). The increase of the noise level has no significant effect over image resolution. (e) Corresponding modulation
transfer function graph.
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mathematical model observers that reflect the performance
of radiologists in their diagnostic tasks have been promot-
ed.30,31 For high-contrast structures, spatial resolution is key.
The standard MTF is not an appropriate parameter to be used
with IR algorithms because they are highly nonlinear. Other
parameters, such as the task-based transfer function (TTF),
have been suggested for this purpose.32

Conclusion

Different parameters are useful for the purpose of evaluating
the radiation dose in CT imaging. The CTDIvol is the main
parameter used to assess the radiation generated by scanning
protocols. The effective dose E is themain parameter to assess
the stochastic risk associated with a radiation exposure.

Scanning protocols should be optimized according to
ALARA principles to deliver the lowest radiation dose that
provides diagnostic image quality. Different parameters exist
to assess image quality objectively. For the detection of low-
contrast structures, noise, SNR, and CNR can be used, together
with NPS that is useful to assess the influence on noise texture
of image filtering and processing. For the conspicuity of high-
contrast structures, the MTF is the main parameter that is
currently used.

The implementation of new reconstruction algorithms
such as IR techniques has led us to reconsider these tradi-
tional image quality parameters. For low-contrast structures,
mathematical model observers have been promoted to assess
the impact of image processing on lesion detectability. For
high-contrast structures, conspicuity can be assessed by
nonlinear functions such as TTFs.
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Abstract
The state of the art to describe image quality in medical imaging is to assess 
the performance of an observer conducting a task of clinical interest. This 
can be done by using a model observer leading to a figure of merit such as 
the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model 
observer, we objectively characterised the evolution of its figure of merit in 
various acquisition conditions. The NPW model observer usually requires 
the use of the modulation transfer function (MTF) as well as noise power 
spectra. However, although the computation of the MTF poses no problem 
when dealing with the traditional filtered back-projection (FBP) algorithm, 
this is not the case when using iterative reconstruction (IR) algorithms, such 
as adaptive statistical iterative reconstruction (ASIR) or model-based iterative 
reconstruction (MBIR). Given that the target transfer function (TTF) had 
already shown it could accurately express the system resolution even with 
non-linear algorithms, we decided to tune the NPW model observer, replacing 
the standard MTF by the TTF. It was estimated using a custom-made phantom 
containing cylindrical inserts surrounded by water. The contrast differences 
between the inserts and water were plotted for each acquisition condition. 
Then, mathematical transformations were performed leading to the TTF. As 
expected, the first results showed a dependency of the image contrast and 
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noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved 
to be dependent of the contrast and noise when using the lung kernel. Those 
results were then introduced in the NPW model observer. We observed an 
enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR 
algorithms greatly improve image quality, especially in low-dose conditions. 
Based on our results, the use of MBIR could lead to further dose reduction in 
several clinical applications.

Keywords: computed tomography, image quality, iterative reconstruction, 
modulation transfer function, noise power spectrum, target transfer function

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the beginning of the 70s, the use of computed tomography (CT) has been steadily on the 
rise, and nowadays it has become an indispensable tool in the clinical environment. Patients cer-
tainly benefit from CT examinations; however, in the last decade its impact on the collective 
radiation dose has drastically increased. In order to ensure that the benefit of CT procedures 
continues to significantly outweigh the potential risk from radiation exposure, particular attention 
needs to be given to optimise the relationship between clinical effectiveness and radiation risks. 
Furthermore, the assessment of clinical effectiveness remains difficult to quantify, and image 
quality parameters, such as those described in ICRU 87, are generally used as a surrogate thereof.

An objective assessment of image quality relies in general on the application of the signal 
detection theory with which image quality can be quantified using the way a signal (i.e. a 
given structure), as a function of its spatial frequency, is transferred by the system via the so-
called modulation transfer function (MTF). Image noise properties can be characterised by the 
noise power spectrum (NPS). To better relate image quality performance to specific tasks, the 
use of model observers developed for simple detection tasks is an interesting approach, since 
it incorporates standard image quality criteria to provide an objective score or signal-to-noise 
ratio (SNR) (Hernandez-Giron et al 2011).

A relatively simple model observer such as the non-prewhitening (NPW) model observer 
can be expressed in the Fourier domain with the MTF and NPS by assuming that the image 
system is linear (Monnin et al 2011). While this is practically the case for the standard filtered 
back-projection (FBP) reconstruction algorithm, this is no longer valid with the various itera-
tive reconstruction (IR) algorithms currently available. IR algorithms are known to be highly 
non-linear (Hsieh et al 2013, Thibault et al 2007) and to introduce a dependency of the image 
contrast and noise on the spatial resolution properties of the reconstructed images (Richard 
et al 2012). In order to overcome this problem, we used a metric defined as the target transfer 
function (TTF) (Richard et al 2012, Brunner and Kyprianou 2013), which allows characterisa-
tion of the resolution even if it depends on noise and contrast. Those two metrics are similar 
but differ from one another in the sense that MTF only applies to a single given contrast level. 
TTF was already used by Brunner and Richard, but in this work we adapted it for IR algo-
rithms of first and second generation combined with standard and sharp kernels. Eventually, 
we wanted to compute a detectability index based on this metric.

The aim of the present study was first to further investigate the behaviour of spatial resolu-
tion as a function of the image contrast, image noise and radiation dose for various IR algo-
rithms. The TTF was plotted using three relatively high contrast levels in the presence of scatter 
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to better represent a range of clinically relevant situations. The second goal of our investigation 
was to study the evolution of the SNR estimated with the NPW model observer, replacing the 
standard MTF by the TTF. It is noteworthy that this study aimed to characterise the image qual-
ity properties of a CT system in situations where image noise is not a limiting factor.

2. Materials and methods

Images from our custom-made phantom with its three cylindrical inserts were used to compute 
the TTFs. We built our TTF phantom with a 10 cm diameter cylinder made of Teflon (polytet-
rafluoroethylene), low-density Polyethylene and Plexiglas (polymethyl methacrylate) centred 
in water (figure 1). The materials of the cylinder mimic cortical bone, fatty tissue and cartilagi-
nous tissue, respectively. The phantom also contained a homogeneous region used to calculate 
NPS. Those were then used to estimate the SNR (or the detectability index) according to the 
NPW model. The images were acquired at the Lausanne University Hospital (CHUV) with a 
Discovery HD 750 CT scanner (GE Healthcare, USA). We used the GE software installed on 
the machine for our acquisitions. Next, we acquired several image sets of the phantom; each 
set was composed of 93 image slices and corresponded to a particular scanning condition. We 
performed all the acquisitions at 120 kVp, with a 260 mm field-of-view (DFOV), a 512 × 512 
matrix size, a slice thickness of 2.5 mm, a small focal spot, and using the helical mode with a 
pitch close to one. Four different tube loads were used: 5 mAs (10 mA and 0.5 s rotation time), 
35 mAs (35 mA and 1 s rotation time), 170 mAs (170 mA and 1 s rotation time) and finally 
450 mAs (450 mA and 1 s rotation time). These tube outputs led to 0.4, 3, 15 and 40 mGy 
of CTDIvol, respectively. Those values were calculated as described in the IEC 60601-2-44. 
We used the classic FBP reconstruction algorithm as well as the adaptive statistical iterative 
reconstruction (ASIR) at a percentage of 40%, with both the GE smooth ‘standard’ and sharp 
‘lung’ kernels. The last-generation model-based iterative reconstruction (MBIR) developed by 
GE, the ‘VEO’ algorithm, was also used, but it was only compatible with the standard kernel. 
We made a comparison between those different categories of algorithms as already suggested 
in the literature (Kaza et al 2014). A total of 24 different acquisition conditions were obtained.

The image noise was investigated within a 6 cm-long uniform region of our TTF water 
phantom. NPS were calculated with a home-made Matlab® routine (The MathWorks, 
Natick, MA, USA) based on 25 image slices of the homogeneous water region containing 
regions of interests (ROIs) of 128 × 128 pixels. A radial-averaged NPS was obtained based 

Figure 1. Custom-made TTF phantom: a 10 cm-diameter cylinder made of Teflon, low-
density Polyethylene and Plexiglas.
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on the guidelines described in the ICRU report 54. The methodology we used was similar 
to the one used by Miéville (Miéville et al 2011a, b). Resolution was investigated through 
an object-specific MTF, which we referred to as the TTF. It allowed us to take into account 
noise and contrast effect when characterising image resolution in different acquisition con-
ditions. Common methods to compute MTF (and therefore also TTF) consist of using an 
edge spread function (ESF) (Judy 1976), a line spread function (LSF) (Boone 2001), a 
point spread function (PSF) (Nickoloff and Riley 1985) or methods like the ones proposed 
by Droege (Droege and Morin 1982), Friedman (Friedman et al 2013) and Nakaya (Nakaya 
et al 2012). Extensive work has already been done to compare and choose the metric 
(either ESF or LSF or even PSF) the most adapted to our experimental conditions when 
computing the MTF (Miéville et al 2010, Samei et al 2006). Based on those elements and 
on the geometry of our phantom we computed the TTF starting from the ESF. The main 
mathematical steps of this process are described below, but extensive details can be found 
in the ICRU report 41.

We fitted the ESF and used the curve equation in order to compute the TTF, performing 
only analytical calculation. This method allowed us to diminish noise in the TTF curves 
as already investigated by Boone and Maidment (Boone and Seibert 1994, Maidment and 
Albert 2002). Several fitting models have already been tested in the literature (Schneiders 
and Bushong 1978, Schneiders and Bushong 1980, Yin et al 1990) but they all appear to fail 
when dealing with non-monotonic ESFs. To overcome this problem we used a fitting model 
developed by Brunner which is based on a combination of Gaussian and Boltzmann func-
tions (Brunner and Kyprianou 2013). All the fitting techniques and image processing steps 
were performed using Matlab®. We began by generating a ROI to select only the cylinder 
and the water background. Then, two ROIs of 40 × 40 pixels, one in the background made of 
water, the other in the cylinder (either Teflon, or low-density Polyethylene or Plexiglas) were 
generated and used to produce a binary image. The mean value of those two ROIs was calcu-
lated. The pixels were set to white if they were closer to the mean value of the cylinder and 
to black if they were closer to the mean background. This transformation allowed us to deter-
mine the geometrical centre of the cylinder by computing the centre of gravity of the white 
pixels. This point was then used as the origin of coordinates on the acquired image (figure 2). 
The raw ESF was obtained by plotting the grayscale value of each pixel (in Hounsfield Units 
(HU)) as a function of its distance from the coordinate centre. Then, we performed rebin-
ning on the data set points obtained by averaging the HU value of all the pixels in 0.01 mm 
bins. This value was chosen in order to find a good compromise between a short time for 
the convergence of the fit while maintaining a good precision. In the meantime, processing 
was performed on the raw ESF, i.e. background subtraction and normalisation. Moreover, 
Brunner et al (Brunner and Kyprianou 2013) already underlined that the ESF obtained this 
way is asymmetric because the scatter from the background is different from the scatter from 
the cylinder. Since the TTF characterises the diffusion in the direction from the cylinder to 
the background, only the background part of the processed ESF is relevant. Thus, we per-
formed a central symmetry at the centre of the slope of our normalised and resampled ESF 
and kept only the background part.
The obtained symmetric ESF was then fitted by the following function:

=
+

+ −−
− + − −r CESF( )
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The first term of the sum corresponds to a normalised sigmoid and the second term adds 
two Gaussians in order to take into account the effects of the edge enhancement filter (EEF) 
when using sharp kernels (such as a lung kernel, for example). This EEF results in bumps on 
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each side of the ESF slope (figure 3(b)). Before performing the fit, the resampled ESF was 
displayed on the screen and the user had to visually check if an edge enhancement was per-
formed by checking for bumps on each side of the sigmoid (figure 3). If there were none, s was 
set equal to zero in equation (1), otherwise no modification was done. In order to produce the 
LSF, equation (1) is analytically differentiated.
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Finally, performing the Fourier transform (FT) of the LSF we can obtain the TTF normal-
ised at one for f = 0:
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To produce this formula, the calculation was performed analytically. Since the calculation 
of the FT of (2) was not trivial, a formal calculus software was used (Mathematica, Wolfram 
research, Champaign, IL, USA) to yield (3) (figure 4).

The goodness of our fitting model for the ESF was assessed using the sum square method. 
The sum square error (SSE) is defined by ̂∑= −

= ( )y ySSE ,
i

n
i i1

2  where yi is the result of 

Figure 2. Regions of interest in the phantom: red, analysed ROI; blue, background 
ROI; green, ROI in the analysed material.
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the measurement of the ith variable and  ̂yi is the value predicted by the fit. In the mean-
time the sum square residual (SSR) was calculated using ̂∑= −

= ( )y ySSR ,
i

n
i1

2  where 
y  is the mean of the measured values. Thus we can define the total sum of square (SST): 

∑= + = −
=

y ySST SSE SSR ( )
i

n
i1

2. In the end, the coefficient R2 was used to assess the good-

ness of the fit: = = −R SSR / SST 1 SSE / SST2 . A R2 equal to one shows a perfect fit whereas 
a result close to zero indicates a poorly fitted curve.

The error on the TTF was evaluated by computing the TTF curve ten times using different 
images under the same conditions. The extreme values provided the amplitudes of the error 
bars.

The SNR was evaluated based on the work of Monnin et al (Monnin et al 2011) and adapt-
ing it to CT:
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where SNR is the signal-to-noise ratio, fNy is the Nyquist frequency and S(f) is the FT of the 
input signal. For a disc of radius R we have:

π  =    S f
R

f
J Rf( ) (2 )1 (5)

J1 being the first-order Bessel function of the first kind.

3. Results

The ESF was computed for each acquisition protocol and each material of the cylinder. 
Figures 3 and 5 show examples of some ESFs as well as the corresponding LSFs. The regres-
sion coefficient (R2) accounting for the goodness of the fit was checked for all the curves we 
obtained. Its value indicated that some acquisition protocols presented a low R2 (inferior to 
0.90000). We chose to exclude them from the study, making the mean value of R2 equal to 

Figure 3. Two ESFs, (a) without and (b) with EEF.
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0.99875 for the remaining cases. A low R2 was observed for most acquisitions at 5 mAs as 
well as 35 mAs in the Polyethylene and Plexiglas with the lung kernel and the FBP algorithm. 
High noise levels in the images acquired under those protocols are responsible for these low 
values of R2.

Figures 6(a)–(c) summarise the TTFs acquired at the highest dose level with the stand-
ard kernel for (a) FBP, (b) ASIR and (c) MBIR in the three materials. For the FBP algo-
rithm, the results in Polyethylene were slightly inferior to those obtained with Teflon and 
Plexiglas, but this can be explained by the low contrast difference between Polyethylene 
and water ( ± 80 HU) resulting in a less precise fit than with Teflon or Plexiglas ( ± 1000 HU 
and  ± 125 HU). In the end, the error bars allow the curves to overlay each other, meaning that 
when using the FBP algorithm, the TTFs for the different materials can be considered similar. 
This result is not surprising since spatial resolution is supposed to be independent of contrast. 
When focusing on ASIR results, we observed a drop in the spatial resolution of low-contrast 
materials (Polyethylene and Plexiglas) and an enhancement in the spatial resolution for high-
contrast material (Teflon) compared to FBP. The error bars do not allow TTFs to overlay one 

Figure 4. Two TTFs, resulting from ESFs (a) without and (b) with EEF.

Figure 5. Line spread functions for (a) standard kernel, ASIR, Teflon and 450 mAs; 
and (b) lung kernel, ASIR, Teflon and 450 mAs.
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another, indicating that spatial resolution depends on contrast for the ASIR algorithm. This 
trend is even more pronounced for the MBIR algorithm, with large differences between the 
three materials. The TTF of Teflon is strongly increased, whereas the TTF of Polyethylene is 
comparable to the results of the FBP algorithm, and Plexiglas lies in between. When switching 
from FBP to IR algorithms such as ASIR or MBIR, we observe that signal transfer is depend-
ent on the contrast level.

Figures 6(d) and (e) show the TTFs under the same conditions as in (a–c) but using the 
lung kernel. MBIR is not represented here since it does not provide a lung mode. With the 
lung kernel and the FBP algorithm, we observe that the TTF depends on the material. This 
trend was not observed with the standard kernel. The lung kernel is non-linear as it empha-
sises high spatial frequencies, which accounts for our observations on the TTF, even though 
the FBP algorithm was thought to be linear. ASIR follows the same trend as FBP even 
though, in this case, the result was more predictable given its behaviour with the standard 
kernel (figure 6).

Figure 6. Comparison of TTFs at 450 mAs in different materials with the standard ker-
nel using (a) FBP, (b) ASIR and (c) MBIR algorithms; and with the lung kernel using 
(d) FBP and (e) ASIR.
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Figure 7 shows the TTFs with the standard kernel in Teflon for different tube loads and 
reconstruction with (a) FBP, (b) ASIR and (c) MBIR. For the FBP reconstruction, there is no 
dependence on tube load. Indeed, when using a classical linear reconstruction algorithm such 
as FBP with the standard kernel, tube load only modifies the amount of noise in the image. 
Therefore, when dropping the tube load the quality is lowered because of the increase of noise 
in the image. However, provided the amount of noise does not prevent the signal transfer, the 
resolution still remains the same when increasing noise. Therefore, no change is observed in 
TTF. Using the ASIR reconstruction, a slight tube load dependence is visible (the TTF tends to 
increase with the tube load). Furthermore, when switching from FBP to ASIR and MBIR the 
greater noise reduction allowed for the computation of the TTF at 5 mAs, illustrating one of 
the benefits of IR algorithms. Indeed, when trying to calculate the TTF at 5 mAs with the FBP 
algorithm, the high noise level did not allow us to produce a reliable fit for the ESF. Finally, 
when reconstructing the images using the MBIR algorithm, we observed that the TTF depends 
strongly on tube load. It is interesting to note that images acquired at 5 mAs and reconstructed 

Figure 7. Comparison of TTFs at different tube loads in Teflon, using the standard 
kernel with (a) FBP, (b) ASIR and (c) MBIR algorithms; and the lung kernel with (d) 
FBP and (e) ASIR algorithms.
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with MBIR yielded a higher TTF than those acquired at 450 mAs and reconstructed with 
ASIR. Moreover, we observed that at one point a strong increase in mAs produces only a 
small increase in TTF. For high mAs values, a high-contrast object reconstructed with MBIR 
yields a much better spatial resolution than expected. Figures 7(d) and (e) show the TTFs 
with the lung kernel for Teflon at three different tube loads. For the FBP algorithm (d), the 
curves acquired with 170 and 450 mAs tube loads are identical. The TTF at 35 mAs is slightly 
lower but the error bars show that the curves overlap. The additional noise due to the low flux 
explains the difference between the TTF measured at 35 mAs and the other curves. When 
switching to ASIR (e), an increase in the tube load produces a noticeable increase in the TTFs.

Figure 8. Comparison of the TTFs acquired with the standard kernel at 450 mAs in the 
different materials and with the three different algorithms.
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Figure 8 plots the TTFs acquired with the standard kernel at 450 mAs for (a) Teflon, 
(b) Polyethylene and (c) Plexiglas for the three different reconstruction algorithms. The 
TTFs are higher for the high-contrast object (Teflon) and lower for the low-contrast object 
(Polyethylene). We also observed that MBIR produces the highest TTF enhancement in every 
material: the higher the contrast of the material, the stronger the TTF enhancement with 
MBIR. In low-contrast material (Plexiglas and Polyethylene), the TTF was higher for FBP 
than for ASIR, indicating that a reduction in contrast is likely to produce a decrease in spatial 
resolution in ASIR-reconstructed images.

Figure 9 shows the NPS at different tube loads for (a) FBP, (b) ASIR and (c) MBIR algo-
rithms using the standard kernel. As expected, the noise decreases with increasing tube load. 

Figure 9. Noise power spectra at different tube loads and with the standard kernel for 
(a) FBP, (b) ASIR and (c) MBIR algorithms.
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Increasing the dose also leads to a shift in the mean frequency toward higher frequencies. 
When using the lung kernel (figure 10), we observe an increase in the noise amplitude as well 
as a shift of the frequencies toward higher frequencies compared to the standard kernel for 
both (a) FBP and (b) ASIR algorithms. Indeed, lung kernels are designed to reinforce high 
frequencies. Finally, at a fixed dose level, when comparing FBP, ASIR and MBIR (figure 9), 
we observed a strong reduction of the noise amplitude as well as a shift toward low frequen-
cies. Indeed, switching from FBP to ASIR to MBIR induces a variation of the mean frequency 
from 0.334 mm − 1 to 0.292 mm − 1 to 0.193 mm − 1. This highlights the modification of image 
texture that occurs when using IR algorithms.

Finally, the SNR was calculated accordingly (4) for a 1 mm-radius disc in order to simu-
late a clinical lesion. The results are summarised in Figure  11. The SNR is always much 
higher in Teflon than in the other two materials. It is also slightly higher in Plexiglas than in 
Polyethylene. This is due to the contrast values, which are 925,  − 80 and 125 HU for Teflon, 
Polyethylene and Plexiglas, respectively. Moreover, an SNR increase is observed with increas-
ing tube load. For all materials and acquisition protocols, the SNR also tends to reach a plateau 
for high tube loads. We also noticed that the lung kernel always yields a worse SNR than the 
standard kernel.

4. Discussion

The goal of our study was to investigate a CT task-based image quality metric, applicable 
when switching from FBP to different generations of non-linear IR algorithms. This was 
accomplished by investigating the use of TTF for a specific object instead of the classical 
MTF system for computing the SNR in the NPW model observer. It was observed that the 
classical MTF system was well adapted for linear reconstruction algorithms such as FBP 
with the standard kernel, with our results indicating that spatial resolution is independent of 
the contrast level. However, the results also indicated that spatial resolution was dependent 
on the contrast level for IR algorithms, and for FBP as well when using the lung kernel. This 
clearly shows the need to adapt the guidelines for spatial resolution measurement: the noise 
and contrast levels at which the resolution is measured have to be mentioned. This also has to 
be taken into account when comparing two CT systems and protocols. Moreover, the method 
we proposed also presents some advantages compared to the classic point source method usu-
ally used to compute the MTF. Indeed, when using the point source method, a small DFOV 
has to be used in order to obtain a reliable PSF. We could eliminate this problem by using a 

Figure 10. Comparison between NPS of standard and lung kernels for (a) FBP and (b) 
ASIR algorithms at 35 mAs.
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10 cm-diameter cylinder to compute the ESF. In addition, using a circular phantom leads to 
natural oversampling.

The SNRs were calculated for a 1 mm-radius disc made of the three materials of our cyl-
inder and under all acquisition protocols. Coherent results were obtained since they showed 
an increase of the detectability with the dose as well as the contrast level. With a mean R2 
value of 0.99875, the fit could be considered reliable and even very strong for high dose and 
high contrast. The R2 values indicated that fits for low contrast, low dose, sharp filter and FBP 
algorithms were less reliable. This was due to the high image noise generated under those 
conditions. Consequently, the error on TTFs was very small for low noise data and relatively 
higher for noisy data. In the end, we were able to estimate a reliable SNR for almost every 

Figure 11. SNR for all acquisition conditions and in all materials.
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acquisition protocol. Those which generated too much noise and that we were unable to fit 
were not investigated for the calculation of SNR.

When analysing the results, the lung filter was found to lead to a lower SNR than the stand-
ard filter for all materials and tube loads. This is due to the fact that the lung kernel is designed 
to enhance high frequencies, and that noise appears stronger than the TTF, thus leading to a 
reduction in SNR. Regarding the contribution of the IR algorithms, we observed that in the 
three materials the same trends seemed to occur, showing that the SNR increases when switch-
ing from the FBP lung kernel to ASIR lung kernel, FBP standard kernel, ASIR standard kernel 
and MBIR. However, an exception to this trend can be seen for Plexiglas and Polyethylene 
at 450 mAs, where ASIR with the standard kernel yields a slightly better SNR than MBIR. 
This is due to the fact that at these contrast and dose levels, both algorithms provide a very 
high and similar signal value. However, at this dose level, ASIR reduces noise slightly more 
than MBIR, which explains the value of the SNR under those conditions. For the other cases, 
results showed that ASIR led to a significant noise reduction while maintaining the TTF at the 
same level as FBP. All this explains the better results of ASIR compared to FBP in terms of 
detectability. Finally, the improvement enabled by MBIR algorithms is clearly visible at low 
doses. Indeed, the more the dose decreases, the larger the gap between the SNR of MBIR and 
that of the other algorithms. This is due to the fact that MBIR not only leads to a drastic noise 
reduction, but also to an enhancement of the TTF. MBIR also happens to be the only algorithm 
for which we were able to estimate the SNR at 5 mAs in all materials.

The results of this study may also have clinical implications. Indeed, the three materials 
used in the phantom mimic the contrast levels of cortical bone, fatty tissues and cartilaginous 
structures. Moreover, the CTDIvol range (3–40 mGy) corresponds to the range of CTDIvol val-
ues for the majority of clinical CT examinations.

We conclude that the more the material is contrasted, the stronger the TTF enhancement 
produced by MBIR. These results are especially promising for CT urography, at present per-
formed daily for the detection of urinary calculi. Indeed, highly contrasted structures, in par-
ticular urinary stones, despite their small size, may benefit the most from the application of 
MBIR, thus allowing an important reduction in radiation dose to the patient. Since the patients 
undergoing these kinds of examinations are often young, they may particularly benefit from 
a radiation dose reduction. Moreover, our study revealed that for small lesions (1 mm-radius 
disc in our case), MBIR outperformed ASIR (and FBP) in detecting and characterising struc-
tures mimicking cortical bone (Teflon), fat (Polyethylene), and cartilage (Plexiglas), respec-
tively. This could be particularly helpful when performing low-dose CT imaging of the thorax 
and abdomen (figure 12) or the whole spine (e.g. evaluation of scoliosis in children and young 
adults; Kalra et al 2013). It could also be useful to accurately assess fat-containing lesions 
such as adrenal adenomas, soft-tissue lipomas, vertebral haemangiomas or even fatty infiltra-
tion of the muscles (e.g. in rotator cuff tears). At an ultra-low dose, MBIR was found to be the 
only technique able to identify all three structures. This could be interesting for young can-
cer patients undergoing regular follow-ups with CT. It may also be useful to further develop 
dynamic/functional CT imaging of the joints, which is currently limited by substantial radia-
tion dose (Kalia et al 2009, Leng et al 2011).

However, the long reconstruction times of MBIR still limit its widespread use in emergency 
CT imaging. While the first-generation IR algorithms have been shown not to substantially 
delay image reconstruction in an emergency setting (Willemink et al 2013), this is currently 
not the case for the second-generation IR algorithms such as MBIR. The application of ASIR 
in cervical spine CT has recently allowed reducing the radiation dose to a level comparable 
to plain radiography with no loss of subjective image quality (Geyer et al 2013, Becce et al 
2013). Nevertheless, in the future, additional dose reductions will certainly be achievable in 
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emergency CT imaging of the spine. Indeed, reconstruction delay will certainly be shortened 
thanks to the evolution of hardware and computational techniques, and it is probably only a 
matter of time until the requirements for use in an emergency setting are fulfilled.

Even though our study allowed us to fully answer our research questions, some limita-
tions need to be mentioned. First, the results of our NPW model have not been compared 
to human observer models. Our study focused more on image quality comparisons based 
on physical metrics (such as objectively measured noise and output signal) allowing the 

Figure 12. Follow-up axial CT images of the thorax in a 59 year-old woman with pneu-
monia of the right lower lobe acquired with a CTDIvol of 3 mGy, and reconstructed us-
ing the (a–c) standard, and (d and e) lung kernels. Note the changes in appearance of the 
right lower lobe opacity (arrows) when the image is reconstructed using the (a and d)  
FBP, (b and e) ASIR 40%, and (c) MBIR algorithms.
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benchmarking of CT units, for example. The measured SNR reached very high values, 
particularly for high-contrast materials (Teflon). Such values will almost never be reached 
by a human observer, even though human SNR will still be very high for those kinds of 
objects. In order to reach results more comparable to human observers, the introduction of 
the NPW with the eye model (NPWE) would be necessary (Hernandez et al 2011). Similar 
work has already been done by Monnin for mammography (Monnin et al 2011) and Richard 
in CT (Richard et al 2011), but more work needs to be done on this subject for the IR 
algorithms in CT. However, it was already demonstrated that the NPW model observer in 
the spatial-frequency domain correctly predicts the detection by human observers of well-
defined signals in homogeneous backgrounds, and this allowed us to estimate the detectabil-
ity behaviour with it. The second limitation we were confronted to was that, even if SNR is a 
key parameter to detection, the clinical results we extrapolated based on our physics metrics 
cannot be used directly. Indeed, the behaviour of the SNR shows that using IR would allow 
maintaining the detectability while reducing the dose, but more work has to be done on the 
subject in order to quantify the dose reduction we could achieve in real practice. In order 
to estimate the exact dose that could be spared, this work needs to be backed up with stud-
ies made on anatomical images and interpreted by radiologists. The third limitation is the 
fact that we did not investigate the impact of the object’s form and size on its detectability. 
A simple modification of the object’s transfer function would provide the results. We can 
observe that similar investigations were already done on the subject by Brunner (Brunner et 
al 2012) and seem to indicate an influence on the signal form on the SNR values. However, 
this was beyond the scope of this work. Another limitation is that we assumed noise to be 
stationary when computing our NPS. The ESF was also rotationally averaged assuming 
rotational symmetry of the acquired images. Finally, the study was performed on a single 
CT system onto which we could only investigate a single version of a first-generation IR 
algorithm (ASIR) and a second-generation IR algorithm (MBIR). More work needs to be 
done to include different CT vendors and the latest generations of reconstruction algorithms 
in future studies.

5. Conclusion

In this work, we built a robust and reliable tool to investigate the behaviour of the TTF metric 
for different reconstruction algorithms and kernels. We used a custom-made CT phantom with 
a three-material cylinder in water to generate an ESF using a circular edge technique. The ESF 
was fitted and analytically modified to yield the TTF, which provides spatial resolution perfor-
mance for objects of different contrasts. Using the TTF and the NPS, we were able to compute 
the SNR under all acquisition conditions and thus compare image quality performance. We 
found that, when using IR algorithms, the resolution varied with contrast and noise, which 
highlights the importance of using a measurement technique such as the TTF. The TTF was 
used to compute the SNR, which was our final indicator of image quality. In the end, the 
calculation of the SNR through the NPW model was made based on physics metrics (TTF 
and NPS), making it well-suited to comparing CT systems based on purely objective image 
quality. The results provided by those SNR calculations make it clear that IR significantly 
improves image quality, especially for low doses. In terms of detectability, ASIR always out-
performs FBP, and MBIR almost always outperforms ASIR. This is particularly true for low 
doses where the noise is high and the signal is weak. In conclusion, the calculation of the SNR 
through the NPW model observer using the TTF could be a useful tool to assess image quality 
and benchmark CT systems.
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Abstract: 

Purpose: This study aims to assess CT image quality in a way that would meet specific requirements of 

clinical practice. Classic physics metrics like Fourier metrics were traditionally employed for that. 

However, assessment methods through a detection task have also developed quite extensively lately, and 

we chose here to rely on this modality for image quality assessment. Our goal was to develop a tool adapted 

for a fast and reliable CT image quality assessment in order to pave the way for new CT benchmarking 

techniques in a clinical context. Additionally, we also used this method to estimate the benefits brought by 

some IR algorithms. 

Material and Methods: A modified QRM chest phantom containing spheres of 5 and 8 mm at contrast 

levels of 10 and 20 HU at 120 kVp was used. Images of the phantom were acquired at CTDIvol of 0.8, 3.6, 

8.2 and 14.5 mGy, before being reconstructed using FBP, ASIR 40 and MBIR. They were then assessed by 

eight human observers undergoing a 4-AFC test. After that, these data were compared with the results 

obtained from two different model observers (NPWE and CHO with DDoG channels). The study 

investigated impacts of the acquisition conditions as well as reconstruction methods. 

Results: NPWE and CHO models both gave coherent results and were also in accordance with human 

observer. Moreover, the reconstruction technique used to retrieve the images had a clear impact on the PC 

values. Both models suggest that switching from FBP to ASIR 40 and particularly to MBIR produces an 

increase of the low contrast detection, provided a minimum level of exposure is reached. 

Conclusion: Our work showed that both CHO with DDoG channels and NPWE models provided responses 

similar to humans when performing a detection task. Both models also suggest that the use of IR goes along 

with an increase of the PCs, indicating that further dose reduction is still possible when using those 

techniques. Eventually, the CHO model associated to the protocol we described in this study happened to 

be an efficient way to assess CT images in a clinical environment. In the future, this method could represent 

a sound basis to benchmark clinical practice and CT devices. 

 

 

Keywords: Computed Tomography (CT), model observer, image quality, dose reduction, iterative 

reconstruction (IR) 



2 
 

1. Introduction 

Since the beginning of the 1980’s, the radiation dose delivered to patients via diagnostic X-ray 

imaging has continuously increased and now contributes to 25% of the total (man-made plus natural) dose. 

Among that 25%, the amount for which Computed Tomography (CT) is responsible raises a particular 

concern. Indeed, this modality’s impact on the population’s collective dose increased so much (NCRP 

report 160, 2009) that it has now become the largest single source of X-rays, representing in Switzerland 

for example, 8% of examinations yet 68% of the collective dose (Samara et al 2012). Patients certainly 

benefit from this kind of exam, but many efforts still have to be made in order to ensure that the benefits-

risk ratio remains acceptable. Thus, the ongoing challenge in radiology is to ensure diagnostic image 

quality while minimizing delivered dose. An efficient way to perform this optimisation scheme is to use an 

objective, task-related image quality assessment method. 

 Characterisation of image quality in CT has been done successfully by using Fourier metrics 

(Samei et al 2006 and Torfeh et al 2007). Among those metrics, noise power spectrum (NPS) or 

modulation transfer function (MTF) have been used extensively (details on their computation can be found 

in ICRU report 87). However, it is necessary to be careful when applying those metrics on non-stationary 

images or on images produced by nonlinear IR algorithms or by FBP when nonlinear filters are used 

(Vaishnav et al 2014). In order to overcome those limitations, several authors have successfully adapted the 

above-mentioned Fourier metrics. Mieville for example averaged several NPS calculated at different radial 

positions on the slices to deal with the non stationarity problem (Mieville et al 2010). Richard and Brunner 

(Richard et al 2012, Brunner and Kyprianou 2013) developed an alternative to the MTF called target 

transfer function that uses an object at different contrasts in order to take the non linearity into account 

when estimating the resolution. Concomitantly, quantitative measurements methods based on statistical 

decision theory and designed to assess diagnostic image quality in non linear and non stationary domains 

have emerged (ICRU report 54). Extensive details on those task-based methods can also be found in 

Barrett’s work (Barrett H H and Myers K J 2004).  Several groups decided to use or develop those methods 

in order to investigate image quality in general radiography (Beutel, Kundel and Van Metter 2000, He and 

Park 2013 and Tseng et al 2014), mammography (Hill et al 2010), nuclear medicine (He X et al 2010, 

Brankov J G 2013 and Gifford H C et al 2013) and also for CT (Abbey et al 2002 and Wunderlich et al 

2010). These methods are used to assess how well the desired information can be extracted from the image, 

using four elements: the task, the signal and the background properties, the observer and the figure of merit 

(FOM). In other words, the principle consists of measuring the performance of an observer conducting a 

task of clinical interest. The task may be the detection of a signal into a noisy background, the observer is 

the person or algorithm performing the task and the FOM measures how well the observer performed the 
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task. Other studies characterising IR algorithms and relying on the radiologist’s perception can already be 

found in the literature (Schindera et al 2013, Goenka et al 2014). They are however time-consuming. In our 

study, we used model observer to assess image quality of FBP and IR images. This approach has already 

been successfully used by several groups for CT modality (Chen et al 2014, Tseng et al 2014 and Samei et 

al 2015). 

 Our first goal in this work was to present a robust method to investigate the image quality yielded 

by CT devices used in clinical routine. These elements introduced several constraints for our tool and for 

the acquisition conditions to be tested, namely the implementation of clinical settings in the experiment. 

This approach is also part of the current guidelines of the HERCA committee (Heads of European 

Radiological protection Competent Authorities) whose first objective was to find a unified criterion for the 

benchmarking of image quality in CT (http://www.herca.org/WGs.asp?WGnr=3 visited on March 3
rd

 

2015). The second objective of our work was to conduct investigations using this tool, in order to estimate 

the progress driven by some first and second generation of IR (Tseng et al 2014). In our work, 

performances of GE (GE Healthcare, USA) filtered back projection (FBP) algorithm were compared to 

those of adaptive statistical iterative reconstruction (ASIR), and model based iterative reconstruction 

(MBIR). Thus, the framework of this experiment would enable us to determine up to what point does the 

dose reduction remain acceptable in terms of low contrast detectability. 

For this, a chest phantom containing spheres of different sizes and contrast levels was scanned at 

several doses and reconstructed using three algorithms: FBP, ASIR and MBIR. Next, a group of human 

observers assessed the images obtained. A four-alternative forced-choice (4-AFC) experiment together with 

a Kappa statistical analysis were performed in order to define the low contrast resolution level of the 

images. After that, two model observers, the Non-Prewhitening with Eye-filter (NPWE) model (Burgess et 

al 1994) and the Channelized Hotelling Observers (CHO) model (Barrett et al 1993), were applied to the 

images. We used these models on 4-alternative-forced-choice (4-AFC) tests and computed a percentage of 

correct responses (PC) in order to quantify their performance. In the end, the results from the human 

observers and the model observers were compared in order to predict the detection of low contrast lesions 

(Barrett et al 1993, Leng et al 2013 and Yu et al 2013). 

2. Materials and Methods 

2.1 Phantom and Data acquisition 

We used a commercially available chest phantom (QRM, Moehrendorf, Germany) in the size of an 

adult’s chest (30 cm wide and 20 thick) that mimicked the attenuation produced by a patient (CF Figure 1). 

http://www.herca.org/WGs.asp?WGnr=3
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It included a removable module in its middle. For this study, two different modules were used. The first one 

was a uniform module, whereas the other contained 48 low contrast spherical targets. Targets of 3, 4, 5, 6 

and 8 mm in diameter at two contrast levels (10 and 20 HU at 120 kVp) could be found inside the low 

contrast module. Using spheres implied a careful selection of the images in order to ensure that the central 

part of the sphere was used and processed by the model observer. Despite this difficulty, we think that a 

sphere is closer to a clinical lesion and allow us to take the partial volume effect into account. 

 

 

Figure 1: The QRM phantom with the module containing the signals (a) and the uniform module (b) 

Data acquisition was performed at the Lausanne University Hospital (CHUV) on a Discovery HD 

750 CT (GE Healthcare, USA). We performed all acquisitions at a tube tension of 120 kVp, using a 

500 mm scan field of view (SFOV), a 300 mm display field-of-view (DFOV), a 512×512 matrix size, a 

small focal spot and a reconstructed slice thickness of 2.5 mm associated to an interval of 1.25 mm (As Veo 

only support 0.625 mm reconstruction thickness, a post reconstruction reformatting was performed on the 

MBIR data sets to obtain the values previously mentioned). We used the helical mode with a pitch of 0.9 

and a 40 mm X-ray beam collimation. CTDIvol values were calculated as described in the IEC 60601-2-44. 

Reconstructions were performed using the classic FBP algorithm, as well as ASIR at a percentage of 40% 

and a commercial implementation of the MBIR (Veo, GE Healthcare), all together with the smooth 

“standard” kernel. In the end, a total of 48 different categories were obtained: four dose levels, three 

reconstruction techniques, two target sizes and two contrasts (in this work we only investigated the 5 mm 

and 8 mm targets at 10 and 20 HU). From these sets of acquisitions, regions of interest (ROIs) of 41x41 

pixels containing the centred targets were extracted. For each dose level (0.8, 3.6, 8.2 and 14.5 mGy 
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expressed in a CTDIvol phantom of 32 cm in diameter), the phantom was scanned 20 times. Thus, we 

obtained 100 images containing a signal (20 scans x 5 targets with identical size and contrast in the 

phantom (cf. figure 1)) and 1000 images with only noise for each category. The noise-only ROIs were 

extracted from the uniform module, whereas the signals came from the low contrast module. This way, the 

same position on the       plane was ensured for both signal and noise ROIs, thus solving the noise 

stationarity problem. Eventually, this allowed us to estimate image quality and also to make a comparison 

between the performances of different reconstruction algorithms as already suggested in the literature (Kaza 

et al 2014). 

2.2 Tasks and human observers 

In our study, eight human observers -namely eight medical physicists- with five years of experience 

regarding image quality assessment using M-AFC tests were blinded to the CT acquisitions and 

reconstruction conditions submitted to a 4-AFC experiment. After having undergone a training session, 

they had to select the signal-present image in a batch of three signal-absent images and one signal-present 

image, which were presented together in a randomized order. In each image of the 4-AFC test, the signal 

was centred in the “location known exactly” paradigm. We displayed the images on a DICOM calibrated 

screen (EIZO RadiForce MX210, Eizo, Hakusan, Japan) using cues to indicate the centre of the images in 

order to minimize location uncertainty (Figure 2). The tests were performed with an ambient light level of 

about 50 lux in a radiology reading room. Observers were asked to maintain a fixed distance of 50 cm 

between the monitor and their eyes and make a decision for all 48 different categories we acquired. Thus, 

for each category, signal-present images as well as signal-absent images were chosen at random among our 

100 signal-present images and 1000 signal-absent images. The correct answer for each trial was stored in a 

database in order to be compared to the observers’ answer and thus yield a PC for each category. 

 

 

 

 

 

 

Figure 2: Example of a 4-AFC test 
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In order to characterize the repeatability, each observer took the test three times. Then, a Kappa 

statistical analysis was used to compare two tests from the same observer and to rule on their correlation. 

This statistical test relies on the number of times the observer agreed on having seen a signal twice (denoted 

by a1), disagreed on having seen a signal twice (denoted by b1) and when the observer once agreed and 

then disagreed on having seen a signal and inversely (respectively denoted by a2 and b2) (Ker 1991). 

The observed agreement (OA) and the chance agreement (CA) were calculated as follow: 

   
     

           
 

   
     

           
 

Where AF is the agreement fraction and DF the disagreement fraction. 

   
              

           
 

   
              

           
 

Finally, the kappa factors κ were calculated using the formula: 

   
     

    
     (1) 

2.3 Model observers 

Two model observers were tested: the NPWE model and the CHO model, both of which make it 

possible to predict the detection of low contrast signals. 

 For each category, extracted ROIs of 41x41 pixels were used to calculate a scalar response. The 

application of a linear model observer enabled the computation of this decision variable denoted by λi, 

which is given by the dot product between a template of the model w and the image of the analysed ROI    

(i = 0 or i=1 respectively represents signal-absent or signal-present hypothesis): 

               (2) 

The NPWE, which is an anthropomorphic model observer, is also one of the simplest models. In 

order to take limitations of the visual properties of a human observer into account, the original template is 

filtered in the spatial frequencies domain by the eye contrast sensitivity function, which represents the 
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sensitivity of the human eye at different contrast level and spatial frequencies (Barten 1992, Beutel, Kundel 

and Van Metter 2000 and Monnin et al 2010). Its functional form in the frequency domain at a viewing 

distance of 50 cm can be modelled by the Eq. (3) (Castella et al 2007): 

           
 
                 

With ρ the frequency in cycles/deg, n=1.3 and c=0.041 (values from Burgess 1994). 

Then, the calculation of the template is achieved using the following equation: 

                             (4) 

Where       and        are vectors corresponding to the data of the means of the signal-present and noise-only 

images, and E is a matrix containing the eye filter, which is based on Eq. (3). 

The template       can then be used in (2), in order to estimate the decision variable λ. 

 The CHO also belongs to the family of anthropomorphic models, and includes pre-processing of 

the image by a set of channels that are tuned to respond to specific spatial frequencies (Myers and Barrett 

1987 and Gallas and Barrett 2003). The template      of this model observer is obtained by performing 

the following calculations (Extensive details can be found in Beutel, Kundel and Van Metter 2000, Castella 

et al 2007, Yu et al 2013 and Tseng et al 2014): 

      
 

 
          

  

                                

Where:                                                         

Kn and Ks are the covariance matrix calculated respectively from the signal-absent and signal-present data 

and U is the matrix representation of the channel filters, which are described more extensively below. 

In (5),          and          are the means of the channel outputs under a signal-present and signal-absent 

hypothesis and can be estimated according Eq. (7): 

                                                    

The set of channels used for this study includes ten channels and is represented in Figure 3. This model was 

described by Abbey and Barrett in 2001 (Abbey and Barrett 2001) and is called dense difference of 

Gaussian (DDoG) channels. The radial frequency profile of the j
th
 channel is given by: 



8 
 

           
 

 
 

 

   
 

 

       
 

 
 
 

  
 

 

            

Where ρ is the spatial-frequency, W=1.67 defines the bandwidth of the channel and    is the standard 

deviation of the j
th
 channel. Each    value is defined starting from          by       

  with       

(Values from Abbey and Barrett 2001). 

 

Figure 3: Profile of the signal and DDoG channels 

Eventually, the decision variable can be calculated by injecting (5) into (2). Note, however, that care must 

be taken because in this case the decision variable is calculated using the channel output of the ROI 

(denoted by    ) instead of simply the analysed ROI   . Eventually we obtain: 

       
             (9) 

2.4 Figure of merit 

 In order to obtain a PC from the model observer, we performed 4-AFC tests on the acquired images 

with our two model observers. The value of the decision variable λ was used to determine which of the four 

images of the test was recognised as the signal-present by the model observers (the highest value of λ is 

supposed to be the signal-present image). Then, the correct answers which were stored in a database were 

compared to those results, enabling the computation of PCs for the model observers. 

 We chose the PC rather than the detectability as FOM in this study, because no assumptions on the 

statistical properties of the model responses are necessary. In other studies, detectability is frequently 
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computed in order to compare human and model results. In an earlier work, Bochud described in detail how 

to proceed (Bochud et al 2000). The method consists of converting the PC values obtained by humans into 

detectability values. However, this requires the distribution of the λ values to be Gaussian in order to 

function. If this requirement is satisfied when dealing with large amount of images, it may not be the case 

when the number of images is limited. 

 In our case, we dealt with 100 signal-present images per category. This number was chosen 

because it facilitated a good compromise between the amount of images acquired and the time the device is 

used (which has to be reasonable when using a clinical device). However, even if 100 images remains 

similar to what was done in previous work (Yi et al 2014), this amount may still be seen as insufficient to 

ensure the Gaussian distribution of λ values. As a consequence, we chose to rely on PC (which requires no 

particular distribution of the responses) rather than detectability for the calculation of our FOM. 

2.5 Uncertainty estimation and adequacy of the models with humans 

The uncertainties on the PC values produced by the models were estimated by performing bootstrap 

(Efron and Tbishirani 1993). In our experiment, the 4-AFC tests were made using 100 trials for each 

category. Thus, in order to estimate the error on the PCs for one particular category, we performed 100 

draws with replacement on the signal-present images of this chosen category, as well as 100 draws with 

replacement of three signal-absent images. In the end, a PC value was calculated based on the results of this 

4-AFC test. This process was repeated 150 times, leading to 150 values of PC. Computing the mean and 

standard deviation of those 150 values enabled us to determine the final PC value as well as its standard 

deviation for each acquisition condition. We used this to estimate a 95% confidence interval. 

The PCs and uncertainties of the human observers were calculated using the different results of the 

eight observers who scored the images. For each category, the mean PC value of the eight observers and its 

standard error were calculated. The error bars correspond to a 95% confidence interval. 

Finally, the adequacy of the models with humans was estimated using a Pearson correlation 

coefficient: 

    
        

    
           

Where          is the covariance between two vector data sets X and Y, and    and    are their standard 

deviations. 

3. Results 
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3.1 Human observer results 

 Table 1 presents the Kappa test results of one human observer for all investigated conditions as 

well as for each individual dose (mixing twelve parameters: two sizes, two contrast levels and three 

reconstruction algorithms). 

 

Table 1: Agreement between three repetitions of the same experiment for one observer using a Kappa analysis 

 

 

 

 

 

On the Kappa scale, a value between 0.2 and 0.4 indicates a weak agreement. A value between 0.4 and 0.6 

indicates a moderate agreement, and a value between 0.6 and 0.8 indicates a strong agreement. 

3.2 Impact of IR reconstruction on human and model observer performance 

 In this section, the qualities of the images obtained from FBP, ASIR 40 and MBIR algorithms are 

compared using the performances of model observers (NPWE in Figure 4 and CHO in Figure 5) as well as 

human observers (in Figure 6). Note that the results for the 8 mm 20 HU signals are not presented because 

they were close to 100% for all observers and doses. 

 Taking the uncertainties into account, we see that both observers exhibited the same tendency with 

the lowest performance for the FBP algorithm, the best for MBIR and in-between for ASIR 40. The 

performance of the NPWE observer did not differ between FBP and ASIR 40 with the smallest signal, the 

lowest contrast, and the lowest dose (0.8 mGy). In this case, given the acquisition conditions, the detection 

task was too complicated and remained barely better than random (PC equal to 35%) with both FBP and 

ASIR 40. 

 Results of the CHO model with the DDoG channels also suggest an improvement of the PCs when 

switching from FBP to ASIR 40, but it is much less pronounced than with the NPWE model observer since 

an increase of only a few percent was observed on the PCs depending on the signal and dose range 

investigated. Oppositely, switching from FBP to MBIR did provide a more visible improvement on the 

 1
st
 & 2

nd
 test 1

st
 & 3

rd
 test 

0.8 mGy 0.27 0.24 

3.6 mGy 0.35 0.29 

8.2 mGy 0.53 0.50 

14.5 mGy 0.62 0.60 

Entire test 0.61 0.58 
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PCs. This is particularly true for the 5 mm 10 HU signal under all CTDIs and also for the 8 mm 10 HU and 

5 mm 20 HU signals at 0.8 and 3.6 mGy. For the remaining conditions, the detection task yielded high and 

identical PC values for all algorithms. 

 Human observer results suggest that switching from FBP to ASIR 40 leads to an improvement in 

the PC for every condition except those were the signal was already highly visible (that is to say in this case 

5 mm 20 HU at 8.2 mGy or more and 8 mm 10 HU at 14.5 mGy). In those cases, the PC remained 

equivalent regardless whether FBP or ASIR 40 was used. When using the MBIR algorithm, strong PC 

enhancements were generally observed for the 10 HU signals. Nevertheless, there were also several cases 

where MBIR was outperformed by ASIR 40, especially at the lowest dose level for the 5 mm signals. The 

5 mm 10 HU signal at 0.8 mGy with ASIR 40 yielded a PC of 42% whereas only 34% were reached with 

MBIR. Similarly, the 5 mm 20 HU signal yielded 64% correct responses with ASIR 40 and 47% with 

MBIR. These results were surprising since a first generation algorithm seemed to outperform a second 

generation in this particular case. 

We observed that there was no improvement in the detection when switching from FBP to ASIR 40 

or MBIR when the signal is acquired under conditions making it difficult to detect. This is because the 

signal was too noisy to be properly detected whatever the type of reconstruction we used. However, once a 

sufficient dose amount was reached (often around 3 mGy according our measurements), the use of IR is a 

real help to detect the signals, and it brings a significant improvement of PCs compared to what was 

observed when using FBP. This behaviour was observed for both human and model observers. We also 

witnessed that the PC increases with the given dose until it reaches an asymptote and that this asymptote is 

reached faster when using IR. All those results are true for both IR types, but a stronger increase of the PCs 

was almost always observed with MBIR than with ASIR 40. 
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Figure 4: PC results obtained by performing 4-AFC tests on the NPWE model with the three 

reconstruction techniques 
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Figure 5: PC results obtained by performing 4-AFC tests on the CHO model with the three reconstruction 

techniques 
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Figure 6: PC results obtained by performing 4-AFC tests on the human observers with the three 

reconstruction techniques 

3.3 Correlation between human and model observer 

  The CHO and NPWE models were compared to human observer responses in order to investigate if 

they were reliable for predicting low contrast detection. Both models and humans reported an increase of 

target visibility with the delivered dose up to a plateau, as well as an improvement with the size and the 

contrasts of the targets. The NPWE induced a bigger increase in the PC than the CHO when switching from 
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FBP to IR, but they both displayed a similar trend when looking at the behaviour of the PC. These results 

express the coherence of the models we tested. 

 The Pearson correlation coefficient was calculated for all reconstruction algorithms and all signals 

in order to estimate the correlation between humans and each model observer. Results are presented in 

Table 2. They show an excellent agreement between humans and the two models, since they are all far 

higher than 0.9 except the 5 mm 10 HU reconstructed with FBP. Moreover, note that the correlation 

between humans and models increases when switching from FBP to first and to second generation of IR. 

Table 2: Pearson coefficient between humans and the two model observers for all signals and reconstruction 

algorithms 

    
NPWE-Humans FBP ASIR 40% MBIR 

    5 mm 10 HU 0.845     0.985 0.992 

5 mm 20 HU 0.951     0.994 0.985 

8 mm 10 HU 0.904     0.991 0.977 

    

            CHO-Humans FBP ASIR 40% MBIR 

5 mm 10 HU 0.792     0.951 0.995 

5 mm 20 HU 0.942     0.996 0.992 

8 mm 10 HU 0.782     0.918 0.936 

 

4. Discussion 

Traditionally, frequency metrics like MTF or NPS are used to determine if the devices are in 

compliance with the acceptable tolerances. This approach based on Fourier metrics for image quality 

assessment has been done successfully in previous studies (Mieville et al 2012 and Friedman et al 2013). 

Yet, other groups have used other approaches based on task based assessment (Ott et al 2014, Solomon et 

al 2015). Moreover, as radiation protection has become a major concern, there has been a parallel tendency 

to lower doses. This results in a loss of the low contrast resolution in the clinical images. This information 

loss could affect the radiologist’s diagnosis and means that it is essential now to find ways to characterise 

these new low dose images. Thus, our first goal was to provide a reliable and easy-to-implement method to 

evaluate the whole image chain with one figure of merit. Choices had to be made in the implementation so 

that this technique would be adapted to a clinical practice. 

 The kappa test performed on the observers indicated that our experiment was reliable and that the 

signal visibility was clearly linked to the amount of dose given. Indeed, its results showed a good 
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agreement between the three intra observer tests, meaning that our experiment was reproducible (Table 1). 

Analysing the four categories, the agreement between the observers was better for the higher dose level (the 

quasi-totality of the targets is detected by each observer). When the dose decreased, the agreement between 

the tests became a random occurrence. 

When analysing the outcomes of the models, we found out that the NPWE model gave good results 

since it reproduced the behaviour of humans under a wide range of conditions and signal types. This is 

particularly true for low contrast and small size signals. Analysis of the Pearson coefficients also suggests 

that the model fits a human’s response for every algorithm and all signal types. These results are in 

accordance with previous studies on low contrast detection in CT with the NPWE model (Hernandez-Giron 

et al 2011). 

Similarly, the results showed that the CHO model with DDoG channels works well for a large dose 

range (from 0.8 to 14.5 mGy) and for all reconstruction algorithms. It seems to be very efficient in low 

contrast detection even if it sometimes tends to overestimate human results in those particular conditions. 

This trend is also revealed when looking at the Pearson coefficients which indicate a drop for 10 HU signal 

reconstructed with FBP. Otherwise, very good accordance with humans was observed. These results are 

coherent with what can be found in the literature since recent studies from Leng and Yu (Leng et al 2012 

and Yu et al 2013) showed the efficiency of the CHO model for the low contrast detection. 

The second goal of our investigation was to determine if the use of MBIR and ASIR instead of FBP 

could lead to an improvement of the task-based detection performance and therefore also to a further dose 

reduction. 

Our results indicate that using ASIR at 40% systematically led to PC improvement for NPWE and 

CHO models. Humans witnessed the same trend for every parameter. 

 Considering our results, we conclude that the second generation of IR offers a superior image 

quality at an equivalent dose level compared to FBP. Indeed, both models and humans reported a slightly to 

significant (depending on the parameters we were investigating) improvement in the low contrast detection 

when switching from FBP to MBIR. Taking FBP as a reference point, these results also suggest that PC 

improvement is better when using MBIR compared to ASIR 40. This observation is always verified for 

model observers and remains true for a lot of conditions tested by humans. Some exceptions can be found, 

for example when considering the 5 mm targets at 0.8 mGy. In these cases the humans’ PC is superior with 

ASIR 40 than with MBIR. This is because at such low doses and low size signals the image contains a lot 

of noise, making the detection by the observer more or less arbitrary. This observation is confirmed by the 
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low values of the PCs as well as the consequent size of the error bars. In the end, the use of MBIR makes it 

possible to diminish the dose (even more than with ASIR at 40%) without losing the information which was 

in the FBP image. 

However, no significant image quality improvement could be obtained for either the first or second 

generation of IR algorithms at very low dose (0.8 mGy in our work). This could be due to the high noise 

level encountered at those CTDIvol levels, making the signal very hard to see no matter which algorithm we 

used. We also noticed that the PCs for the higher CTDIvol (14.5 mGy) tends to be close to perfect with all 

three algorithms, leading to no benefits when using IR instead of FBP in this dose range. In the end, these 

elements explain that the benefits involved when using IR are greater for the two intermediate doses we 

investigated (that is to say 3.6 and 8.2 mGy). 

 The first limitation of our study concerns the number of image acquisitions we made. Indeed, a 

larger number of images would allow us to separate the data into two sets. The first would be used for the 

computation of the covariance matrix (and therefore the template of the CHO model) whereas the second 

would be the one we use to compute the detectabilities. In our case we did not dispose of enough images to 

make two different sets, forcing us to compute both the template and the detectabilities with the same 

images. It is however interesting to note that the number of images acquired is not sufficient to separate the 

data in the above-mentioned two sets, but this allows us to work under a reasonable acquisition time, which 

is adapted to a clinical environment. 

 The second limitation of our study is that we had to focus on a very simple detection task (when the 

signal, location and background are exactly known), a situation that is far from true clinical conditions. A 

study done in more complex conditions, like with an anatomical background and a location unknown 

paradigm would be more realistic, but this was outside the scope of this work. 

The last limitation of this work is that no internal noise was added to the model observers we 

tested. Indeed, the models sometimes overestimate humans’ results, requiring the use of this feature in 

order to improve the coherence with humans. Elaborated work has been done on both NPWE and CHO 

models in order to include internal noise (Zhang et al 2007, Richard and Siewerdsen 2008 and Brankov 

2013) and therefore managed to obtain a response even more similar to humans. However, we voluntarily 

chose not to include this feature. Indeed, our main goal was to create a reliable tool dedicated for use in 

clinical conditions which would remain simple and the easiest possible to apply. It is also possible to 

change the set of channel used with the CHO model in order to produce responses more close to humans 

(Park et al 2007), but we only tested one set of channels because they were well adapted to our selected 

detection-task, and trying to test other sets would have been outside the scope of this work. 
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5. Conclusion 

 The assessment of image quality can be done according to different methods. Among them, Fourier 

metrics have been widely used and been adapted in order to be compatible with images produced by IR 

algorithms. In this study, we used a task-based approach with model observers in order to build a tool 

usable in clinical routine. The model observers matched human detection results’ in our experiment for 

both FBP and IR algorithms, confirming that this approach is certainly well suited to perform an efficient 

assessment of CT image quality. 

The method we have described here should be an efficient way to benchmark clinical CT devices 

and therefore improve our optimisation procedure between image quality and patient exposure. Eventually, 

both model observers we tested produced excellent results in terms of mimicking human behaviour for low 

contrast detection. 

Results also showed that using IR, especially MBIR, clearly had benefits compared to FBP in terms 

of image quality in the 3 to 10 mGy CTDIvol range. Therefore, using MBIR at the same time as keeping the 

image quality previously obtained with FBP would enable a significant dose reduction. Our study also 

indicated that the use of ASIR at a percentage of 40% would enable a dose reduction too, but not to the 

same extent as MBIR. 

Finally, this work made it possible for us to create the basis for a tool we can then use to perform an 

automatic benchmark of CT devices and clinical protocols. It has also demonstrated that the tool is adapted 

to image quality assessment with IR. 

Acknowledgements 

This work was partly supported by a grant from the Swiss National Science Foundation (SNSF) [No. 

320030-140995]. 

The author would also like to thank Christel Elandoy for her active participation in acquisitions, as well as 

Georg Kropat for his statistics advice and all the readers for their help in detection studies. 

 

 

 

 

 

 



19 
 

References 

Abbey C K and Barrett H H 2001 Human- and model-observer performance in ramp-spectrum noise: 

 effects of regularization and object variability J. Opt. Soc. Am. 18(3):473-88 

Abbey C K, Eckstein M P, Shimozaki S S, Baydush A H, Catarious D M and Floyd C E 2002 Human-

 observer templates for detection of a simulated lesion in mammographic images Proc. SPIE 4686 

Barrett H H, Yao J, Rolland J P and Myers K J 1993 Model observer for assessment of image quality 

 Proc. Natl. Acad. Sci. 90 9758-65 

Barrett H H and Myers K J 2004 Foundations of Image Science (Hoboken, NJ: Wiley) 

Barten P G 1992 Physical model for the contrast sensitivity of the human eye Proc. SPIE 1666 Human 

 Vision Visual Processing, and Digital Display III 

Beutel J, Kundel H L and Van Metter R L 2000 Handbook of medical imaging Vol 1. Physics and 

 psychophysics SPIE press 

Bochud F O Abbey C K Eckstein M P 2000 Visual signal detection in structured backgrounds. III. 

 Calculation of figures of merit for model observers in statistically non stationary backgrounds 

 JOSA A 17(2):193-205 

Boone J M 2001 Determination of the presampled MTF in computed tomography Med. Phys. 28 356-60 

Brankov J G 2013 Evaluation of the channelized Hotelling observer with an internal-noise model in a 

 train-test paradigm for cardiac SPECT defect detection Phys. Med. Biol. 58(20):7159-82 

Brunner C C and Kyprianou I S 2013 Material-specific transfer function model and SNR in CT Phys. 

 Med. Biol. 58 7447-61 

Burgess A E 1994 Statistically defined backgrounds: performance of a modified non prewhitening observer 

 model JOSA A 11(4):1237-42 

Burgess A E 1999 The Rose model, revisited J. Opt. Soc. Am. 16 633-646 

Castella C, Abbey C K, Eckstein M P, Verdun F R, Kinkel K and Bochud F O 2007 Human linear 

 template with mammographic backgrounds estimated with a genetic algorithm J. Opt. Soc. Am. 

 24(12):B1-12 

Chen B, Ramirez Giraldo J C, Solomon J and Samei E 2014 Evaluating iterative reconstruction 

 performance in computed tomography Med. Phys. 41(12):121913 

Efron B and Tbishirani R J 1994 An introduction to the bootstrap: Monograph on statistics and applied 

 probability CRC Press 

Friedman S N, Fung G K, Siewerdsen J H, and Tsui B W 2013 A standardized approach to measure 

 computed tomography (CT) modulation transfer function (MTF) and noise power spectrum 

 (NPS) using the American College of Radiology (ACR) accreditation phantom Med. Phys. 40(5): 

 051907-1-9 



20 
 

Gallas B D and Barrett H H 2003 Validating the use of channels to estimate the linear model observer J. 

 Opt. Soc. Am. 20(9):1725-38 

Hernandez-Giron I, Geleijns J, Calzado A and Veldkamp W J 2011 Automated assessment of low contrast 

 sensitivity for CT systems using a model observer Med. Phys. 38 (7) 

Hill M L, Mainprize J G, YaffeAn M J 2010 Observer Model for Lesion Detectability in Contrast-

 Enhanced Digital Mammography Lecture Notes in Computer Science 6136: 720-7 

Gifford H C, King M A, de Vries D J and Soares E J 2000 Channelized hotelling and human observer 

 correlation for lesion detection in hepatic SPECT imaging J. Nucl. Med. 41(3):514-21 

Goenka A H, Herts B R, Obuchowski N A, Primak A N, Dong F, Karim W and Baker M E 2014 Effect of 

 reduced radiation exposure and IR on detection of low contrast low attenuation lesions in an 

 anthropomorphic liver phantom Radiology 272(1) 154-63 

He X, Links JM, Frey E C 2010 An investigation of the trade-off between the count level and image 

 quality in myocardial perfusion SPECT using simulated images: the effects of static noise and 

 object variability on defect detectability Phys. Med. Biol. 55 4949-61 

He X and Park S 2013 Model observer in medical imaging research Theranostics 3(10) 774–86 

Hernandez-Giron I, Geleijns J, Calzado A, Veldkamp W J 2011 Automated assessment of low contrast 

 sensitivity for CT systems using a model observer Med. Phys. 38 Suppl 1:S25 

IEC 2009 ‘60601-2-44:2009 – Part 2-44: Particular requirements for the basic safety and essential 

 performance of X-ray equipment for computed tomography 

International Commission on Radiation Units and Measurements (2008) Radiation dose and image-

 quality assessment in computed tomography. Report 79 

Kaza R K, Platt J F, Goodsitt M M, Al-Hawary M M, Maturen K E, Wasnik A P and Pandya A 2014 

 Emerging Techniques for Dose Optimization in Abdominal CT RadioGraphics 34 

Ker M 1991 Issues in the use of kappa Invest. Radiol. 26(1):78-83 

Leng S, Yu L, Chen L, Ramirez Giraldo J C and McCollough C H 2013 Correlation between model 

 observer and human observer performance in CT imaging when lesion location is uncertain Med. 

 Phys. 40(8):081908 

Miéville F A, Ayestaran P, Argaud C, Rizzo E, Ou P, Brunelle F, Gudinchet F, Bochud F and Verdun F R 

 2010 Potential benefit of the CT adaptive statistical iterative reconstruction method for pediatric 

 cardiac diagnosis Proc. SPIE 7622, Medical Imaging 2010: Physics of Medical Imaging 

 

Miéville F A, Gudinchet F, Brunelle F, Bochud F O and Verdun F R 2013 Iterative reconstruction methods 

 in two different MDCT scanners: Physical metrics and 4-alternative forced-choice detectability 

 experiments– A phantom approach Phys. Med. 29 99–110 

 



21 
 

Monnin P, Marshall N W, Bosmans H, Bochud F O and Verdun F R 2011 Image quality assessment in 

 digital mammography: part II. NPWE as a validated alternative for contrast detail analysis Phys. 

 Med. Biol. 56 4221-38 

Myers K J and Barrett H H 1987 Addition of a channel mechanism to the ideal-observer model J. Opt. Soc. 

 Am. 4(12):2447-57 

National Council on Radiation Protection and Measurements 2009 Ionizing radiation exposure of the 

 population of the United States. Report 160 

Ott J G, Becce F, Monnin P, Schmidt S, Bochud
 
F O and Verdun F R 2014 An update on the 

 non-prewhitening model observer in computed tomography for the assessment of the adaptive 

 statistical and model-based iterative reconstruction algorithms Phys. Med. Biol. 59 4047-64 

Park S, Barrett H H, Clarkson E, Kupinski M A and Myers K J 2007 Channelized-ideal observer using 

 Laguerre–Gauss channels in detection tasks involving non-Gaussian distributed lumpy 

 backgrounds and a Gaussian signal JOSA A 24(12):136-50 

Richard S and Siewerdsen J H 2008 Comparison of model and human observer performance for detection 

 and discrimination tasks using dual-energy x-ray images Med. Phys. 35(11):5043–5053 

Richard S, Husarik D B, Yadava G, Murphy S N and Samei E 2012 Towards task-based assessment of 

 CT performance: System and object MTF across different reconstruction algorithms Med. Phys.

 39 4115-22 

Solomon J, Mileto A, Ramirez-Giraldo JC and Samei E 2015 Diagnostic Performance of an Advanced 

 Modeled Iterative Reconstruction Algorithm for Low-Contrast Detectability with a Third-

 Generation Dual-Source Multidetector CT Scanner: Potential for Radiation Dose Reduction in a 

 Multireader Study Radiology 275(3):735-45 

Samara E T, Aroua A, Bochud F O, Ott B, Theiler T, Treier R, Trueb P R, Vader J P and Verdun F R 

 2012 Exposure of the Swiss population by medical x-rays: 2008 review Health Phys. 102(3) 263-

 70 

Samei E, Ranger N T, Dobbins J T III and Chen T 2006 Intercomparison of methods for image quality 

 characterization. I. Modulation transfer function Med. Phys. 33 1454-65 

Samei E and Samuel R 2015 Assessment of the dose reduction potential of a model-based iterative 

 reconstruction algorithm using a task-based performance metrology Med. Phys. 42(1):314-23 

Schindera S T, Odedra D, Raza S A, Kim T K, Jang H J, Szucs-Farkas Z and Rogalla P 2013 Iterative 

 reconstruction algorithm for CT: can radiation dose be decreased while low-contrast detectability  is 

 preserved? Radiology 269(2) 511-8 

Torfeh T, Beaumont S, Guédron J P and Denis E 2007 Evaluation of two Software Tools Dedicated for an 

 Automatic Analysis of the CT Scanner Image Spatial Resolution IEEE Eng. Biol. Soc. conference 

 2007:3910-3 



22 
 

Tseng H W, Fan J, Kupinski M A, Sainath P and Hsieh J 2014 Assessing image quality and dose  reduction 

 of a new x-ray computed tomography iterative reconstruction algorithm using model observers 

 Med. Phys. 41(7):071910 

Vaishnav J Y, Jung W C, Popescu L M, Zeng R, Myers K J 2014 Objective assessment of image quality 

 and dose reduction in CT iterative reconstruction Med. Phys. 41(7):071904 

Wunderlich A and Noo F 2010 Image Covariance and Lesion Detectability in Direct Fan-Beam X-Ray 

 Computed Tomography Phys. Med. Biol. 53(10):2471–93 

Yu L, Leng S, Chen L, Kofler M, Carter R E and McCollough C H 2013 Prediction of human observer 

 performance in a 2-alternative forced choice low-contrast detection task using channelized 

 Hotelling observer: impact of radiation dose and reconstruction algorithms Med. Phys. 40(4) 

Zhang Y, Pham B T and Eckstein M P 2007 Evaluation of internal noise methods for Hotelling observer 

 models  Med. Phys. 34:3312 

Zhang Y, Leng S, Yu L, Carter RE and McCollough CH 2014 Correlation between human and  model 

observer performance for discrimination task in CT Phys. Med. Biol. 59:3389 

International Commission on Radiation Units and Measurements (1996) Medical Imaging–The assessment 

of image quality. Report 54 

International Commission on Radiation Units and Measurements (2012) Radiation dose and image-

 quality assessment in computed tomography. Report 87 



1 

PATIENT EXPOSURE OPTIMISATION THROUGH TASK-BASED 
ASSESSMENT OF A NEW MODEL-BASED ITERATIVE 
RECONSTRUCTION TECHNIQUE 
Julien G Ott1,*, Alexandre Ba1, Damien Racine1, Nick Ryckx1, François O Bochud1, Hatem Alkadhi2 and Francis 
R Verdun1 

1Institute of Radiation Physics, CHUV, Lausanne, Switzerland 
2Institute of diagnostic and interventional radiology, USZ, Zürich, Switzerland 

Received month date year, amended month date year, accepted month date year 

Our goal is to report and investigate the performances of a new iterative reconstruction algorithm, using a model 

observer. For that, a dedicated low contrast phantom containing different targets was scanned at four CTDIvol levels on a 

Siemens SOMATOM Force CT. The acquired images were reconstructed using the ADMIRE algorithm and were then 

assessed by three human observers who performed alternative forced choice experiments. Next, a channelized hotelling 

observer model was applied on the same set of images. The comparison between the two was performed using the 

percentage correct as a figure of merit. Our results indicated a strong agreement between human and model observer as 

well as an improvement in the low contrast detection when switching from an ADMIRE strength of 1 to 3. Good results 

were also observed even in situations where the target was hard to detect, suggesting that patient dose could be further 

reduced and optimised. 

INTRODUCTION 

Over the last decade, the radiation dose delivered to 
patients via diagnostic X-ray imaging has continuously 
increased until today, where it reaches 25 of the 
accumulated man-made and natural radiation. Among 
that 25%, computed tomography (CT) raises a 
particular concern, since this imaging modality 
represents in Switzerland for example 68% of the 
collective dose, yet 8% of the examinations only [1]. In 
this context, CT manufacturers have developed new 
strategies like iterative reconstruction (IR) algorithms 
in order to ensure that the benefits-risk ratio remains in 
favour of the patient. This new technology certainly 
improved the clinical practice [2], but it has also led to 
drastic changes in image perception. Thus, ensuring an 
adequate level of image quality while keeping patient’s 
exposure as low as reasonably achievable constitutes a 
new challenge to be addressed. The use of task-based 
image quality assessment method could represent an 
efficient way to perform this optimisation scheme. 
Therefore, our goal in this study is to report and 
investigate the performances of a new IR technique 
using a model observer that mimics human detection of 
low contrast targets: the channelized hotelling observer 
(CHO) model. 

MATERIAL AND METHODS 

Data acquisition 

We used a dedicated low contrast phantom (QRM, 
Moehrendorf, Germany) mimicking the attenuation 

produced by a patient’s chest. The phantom could 
embed two different custom-made modules in its 
middle: a homogeneous modulus and another 
containing low contrast spherical targets of 6 and 8 mm 
in diameter with contrast levels of 10 and 20 HU at 120 
kVp. 
Data acquisition was performed at the University 
Hospital Zurich on a third-generation dual-source 192-
slice CT scanner (SOMATOM Force, Siemens 
Healthcare, Erlangen, Germany). We used a tube 
voltage of 120 kVp, a 300 mm field-of-view (DFOV), 
a 512×512 matrix size and 2.0 mm thick slices, which 
were reconstructed every 1.0 mm. Acquisitions were 
performed in the helical mode with a pitch of 0.98. We 
investigated four doses levels (1.0, 3.5, 8.0 and 15.0 
mGy expressed in a CTDIvol phantom of 32 cm in 
diameter), using the procedure described in the IEC 
60601-2-44 to measure the CTDIvol. The phantom was 
scanned 20 times for each condition. Reconstructions 
were performed using the Siemens advanced model 
iterative reconstruction (ADMIRE) with the strength 
levels 1 and 3. On the machine, users can choose 
ADMIRE levels ranging from 1 to 5, with level 1 being 
closest to the image impression of traditional, filtered 
back projection, and level 5 showing the strongest 
noise reduction. In the end, 32 different categories were 
obtained (four dose levels, two ADMIRE levels, two 
contrast levels and two target sizes). From these sets of 
acquisitions, regions of interest (ROIs) of 41x41 pixels 
(0.59 mm pixel size) containing the centred targets 
were extracted. For each category we extracted 100 
images containing a signal (20 scans x 5 targets with 
identical size and contrast in the phantom) and 1000 
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images with only noise. The ROIs which contain noise 
only were extracted from the homogeneous modulus, 
whereas the ROIs containing the signals came from the 
low contrast modulus. This methodology enabled us to 
hold the same position on the (x,y) plane for both 
signal and noise ROIs, enabling us to solve the noise 
stationarity problem. 

Human observer 

In our experiment, three human observers (medical 
physicists) took part in four alternative forced choice 
(4- AFC) experiments in order to yield a percentage of 
correct responses (PC) indicating how well they 
managed to detect the signals. This 4-AFC experiment 
consisted in selecting the signal-present image in a 
batch of three signal-absent images and one signal-
present image, which were presented together in a 
randomized order. All observers were blinded to the 
CT acquisition and reconstruction conditions and began 
their test with a training session which was made of 
images acquired at high dose level. They were then 
asked to make decisions for all 32 categories we 
acquired. Our previously made acquisitions provided 
us with 100 signal-present ROIs and 1000 signal-
absent ROIs for each category. ROIs among those data 
were selected randomly and used for the 4-AFC tests. 
For each observer and category, every answer to the 
100 trials was stored and compared to the correct 
response, allowing the computation of the PC. 

CHO model observer 

A model observer enables to predict the detection of 

low contrast signals by calculating a scalar response 

called the decision variable and denoted by λi. This 

parameter is given by: 

   
T

i . 
i

w g        (1) 

With w the template of the model observer and gi the 

analysed ROI (i=n or i=s represents signal-absent, 

respectively signal-present hypothesis). 

The CHO model used in this study is an 

anthropomorphic model observer also including pre-

processing of the image by a set of channels that 

enhance some spatial frequencies [3] [4]. The template 

wCHO of this model is obtained as explained in the 

following part (Extensive details can be found in [5] 

[6] [7] [8]): 
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Where:                 T Tand cn n cs sK U K U K U K U        (3) 

Kn and Ks are the covariance matrix calculated 

respectively from the signal-absent and signal-present 

data and U is the matrix representation of the channel 

filters described more extensively below. 

In (2), cs
g and cn

g are the means of the channel 

outputs under a signal-present and signal-absent 

hypothesis and can be estimated according Eq. (4): 

          T Tand 
cs s cn n

g U g g U g       (4) 

The employed set of channels is called dense difference 

of Gaussian (DDoG) channels and was described by 

Abbey and Barrett in 2001 [9]. It includes ten channels 

for which the radial frequency profile of the jth channel 

is given by: 
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Where ρ is the spatial-frequency, W=1.67 defines the 

bandwidth of the channel and σj is the standard 

deviation of the jth channel. Each σj value is defined by 

the equation j

j o    with σo = 0.005 and α = 1.4 (Cf. 

[9]). 

 

The decision variable can then be calculated by 

injecting the channel output of the ROI (denoted by gci) 

and the template wCHO in Eq. (1): 

  .T

i CHO 
ci

w g           (6) 

The PC was obtained by using the CHO model to 

perform 4-AFC tests on the acquired images. The value 

of the decision variable was used to determine which of 

the four images contained the signal (the highest value 

of λ is supposed to be the signal-present image). Then, 

the results of the model observers, were compared to 

the truth in order to enabling the computation of PCs. 

Uncertainty estimation 

The uncertainties on the models’ results were estimated 
by performing bootstrap [10]. We performed the 4-
AFC test 150 times for each category, leading to 150 
values of PC. Then, we computed the mean and 
standard deviation of the 150 values we obtained in 
order to determine the final mean PC value as well as 
its standard deviation for each acquisition condition. 
This allowed us to estimate a 95% confidence interval. 
The uncertainties for the human observers were 
calculated using the results of the three different 
observers. For each category, the mean PC value of the 
observers and its standard error were calculated in 
order to display a 95% confidence interval. 

 

*Corresponding author: Julien.Ott@chuv.ch 
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RESULTS 

In this section, the qualities of the images obtained 
using the ADMIRE algorithm with the strength levels 1 
and 3 are assessed through the performances of model 
(Figure 1) and human observers (Figure 2).  
Results of the CHO model with the DDoG channels 
suggest that both strength levels exhibited PCs in the 
same range with an increase of few percentages in the 
results when switching from a strength level 1 to 3. 
This trend was however only observed for certain 
signals and dose range, namely the lowest contrast (10 
HU) associated to low dose levels (1.0 and 3.5 mGy). 

 Figure 1: Results of the CHO model observer (in PC, 
obtained by performing 4-AFC tests)  

Human observers exhibit results very similar to the 
ones obtained with the CHO model in terms of PC 

values. The results also suggest that the use of higher 
ADMIRE strength level is useful to improve the 
detection of small size and low contrast signal under 
low CTDIvol. On top of that, we observed that the 
largest signal size (8 mm) with the highest contrast (20 
HU) corresponded to a trivially easy task with PC 
always equal to 100% no matter which dose and 
ADMIRE level was employed. Those results remained 
true for both human and model observers and are 
therefore not represented on figure 1 and 2. 

 Figure 2: Results of the three human observers (in PC, 

obtained by performing 4-AFC tests) 

Model and human observers exhibit a great adequacy 
in their results, both of them indicating that the use of a 
higher ADMIRE level enhances the detection when 
working under conditions where the signal is hard to 
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detect. We also witnessed that the PC increases with 
the given dose until it reaches an asymptote and that 
this asymptote is reached faster when using higher 
ADMIRE strength level. Furthermore, the results 
enlighten that no more dose increase is needed once an 
amount of approximately 4 mGy is reached because the 
performance of the human observer is already almost 
maximal at this point. 

DISCUSSION 

The goal of our investigation was to determine if the 
use of the ADMIRE algorithm at different strength 
could lead to a high detection performance, therefore 
allowing a further dose reduction in the clinical 
practice. 
The results showed that the CHO model with DDoG 
channels gave coherent results since it reproduced the 
behaviour of humans very well and under a wide range 
of conditions and signal contrasts. The model seems to 
be very efficient in low contrast detection and even 
sometimes overestimates human results for low 
contrast and low doses. These results are coherent with 
recent studies from Leng and Yu [11] which showed 
the efficiency of the CHO model for the low contrast 
detection. Also, both model and human observers 
reported a visible improvement in the low contrast 
detection when increasing the ADMIRE strength. This 
trend was observed when working at low dose levels 
(less than 4 mGy) for all signal types. Indeed, when 
working at higher dose levels, the PCs always reached 
100%, letting no room for improvement. In the end, the 
use of ADMIRE makes it possible to diminish the dose 
without losing information in the image. Indeed, the PC 
results obtained in the study reach very high or perfect 
values for almost every acquisition condition and 
signal, indicating that a dose reduction without 
impacting the detection performance would be 
possible. 
Some limitations of our study have however to be 
underlined. First among them, the number of images 
we acquired may be considered as low since we did not 
dispose of enough ROIs to separate them in two 
exploitable data sets. Usually, a first set is used for the 
computation of the covariance matrix in the 
determination of the template of the CHO model, while 
the second data set is used for the computation of the 
PCs. However, it is worth to underline that Barrett and 
Myers [12] who studied this problem concluded that 
using one single set of data remained a reliable way to 
proceed. Moreover, performing a limited number of 
acquisitions (20 scans for each acquisition condition in 
our case) allowed to reduce the operating time of the 
device, which is appreciable when working in a clinical 
environment. 
The second limitation we faced is that the paradigm we 
worked with (when the signal, location and background 
are exactly known) was simplified and therefore 

different from real anatomical conditions. Our results 
could nevertheless be used in order to assess the 
performances of the tested IR algorithms, but it is 
worth to mention that there is room for a more complex 
study on the subject. 

CONCLUSION 

Nowadays, assessing CT image quality cannot be done 
with image space metrics anymore. Moreover, 
evidence indicates that frequency metrics should not be 
used either when working with IR. However, the task-
based tool used in this investigation (CHO model 
observer associated to the DDoG channels) 
successfully demonstrated its ability to reproduce the 
human’s response in a low contrast detection task, thus 
establishing its reliability for image quality assessment.  
Our results obtained with this tool revealed that the 
ADMIRE algorithm led to high PCs even in situations 
where the target was harder to detect (i.e. low CTDIvol 
and contrast level). Also, using higher ADMIRE 
strength, led to PC improvement, particularly in the 
low CTDIvol range. Therefore, using those benefits to 
keep the image quality equivalent to what was 
previously obtained would enable to spare some 
delivered dose. 
All those elements suggest that the patient dose could 
be further optimised and reduced thanks to the use of 
the ADMIRE algorithm and this new CT unit. 
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Introduction 

Computed tomography (CT) images are traditionally acquired, reconstructed and analyzed in the axial 

plane. However, in several clinical situations, CT images need to be analyzed in the coronal and/or 

sagittal planes, particularly in cardiovascular, thoracic and musculoskeletal imaging [Fang et al 2015]. 

With the arrival of CT 3D imaging it has become possible today to acquire and reconstruct CT images in 

all reconstruction planes [Dalrymple et al 2007]. Several authors [Long 2010 et al; Rydberg et al 2007; 

Von Falck et al 2011] already investigated the impact of sagittal and coronal reformatting for various 

clinical CT acquisition conditions. Most of the work conducted so far was however only done for 

classical filtered-back projection (FBP) algorithms and using subjective image quality assessment 

methods like visual grading analysis made by human observers. 

The recent implementation of iterative reconstruction (IR) techniques in clinical CT protocols has helped 

to significantly reduce radiation dose, but with a potential change in image quality. The impact of the 

various manufacturer-specific IR techniques on CT image quality has already been extensively studied in 

the axial plane using both visual grading analysis and physics methods fully adapted to IR [Schindera et 

al 2011, Mieville et al 2012; Ott et al 2014]. However, IR impact on the coronal and sagittal 

reconstruction planes has not yet been done using objective and fully IR adapted methods.  

Our work will focus on comparing image quality in all three reconstruction planes using objective 

assessment methods adapted to IR. We focus on a great variety of algorithms designed by a single 

manufacturer. 

 

Material and Methods 

Phantom 

 
 In order to evaluate key CT image quality parameters like image noise or spatial resolution, we 

built our own phantom, containing a 10-cm-diameter cylinder made of Teflon® (polytetrafluoroethylene), 

low-density Polyethylene and Plexiglas® (polymethyl methacrylate) and centered in the middle of a 

solution made of diluted (dilution at 25%) iodinated contrast material and saline (figure 1). Among those 
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materials, Plexiglas® revealed itself to be particularly useful since its contrast with background was close 

to the one of articular cartilage (120 HU). The solution was diluted at 25% rather than 50% (usual clinical 

value) because no resorption by the synovial tissue occurred in the phantom contrary to clinical cases. 

This experimental paradigm enabled us to produce phantom images similar to clinical CT arthrogram 

images (figure 1 b). Analyzing the Hounsfield units (HU) transition between the contrast medium and the 

Plexiglas® insert allowed us to obtain a resolution estimate based on the computation of a metric called 

target transfer function (TTF) [Richard et al 2012]. The phantom also contained a homogeneous region 

where only diluted contrast material was present. This region was used to calculate the noise power 

spectrum (NPS) which is a good estimate of the noise texture within an image. Those noise and spatial 

resolution assessment tools were employed in order to estimate the quality of the images regarding the 

modality which was used to perform their reconstruction and the plane in which they were acquired and 

displayed. 

 

Figure 1: a) Custom-made CT image quality phantom containing a 10-cm-diameter cylinder made of 

Teflon®, low-density Polyethylene and Plexiglas® (from left to right). b) Comparison between a slice of 

our custom made phantom and a clinical CT arthrogram image (Axial plane, FBP algorithm, ). 
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Protocol 

 Our custom-made image quality phantom was scanned in all three reconstruction planes on a GE 

HD 750 CT scanner (GE Healthcare, USA). The acquisitions were performed with a protocol similar to 

the one used in clinical routine for patients undergoing CT arthrography, that is to say with a CTDIvol of 

7.3 mGy, a tube voltage of 120 kVp, a pitch equal to 0.97 and a field of view of 200 mm with a matrix 

size of 512x512 pixels. The acquired data sets were then reconstructed in the axial, sagittal and coronal 

planes, using a nominal slice thickness of 0.625 mm, and three different manufacturer-specific 

reconstruction algorithms: the classical filtered-back projection (FBP), the adaptive statistical iterative 

reconstruction (ASIR) at a percentage of 40 and 80% (both with the GE bone kernel) as well as two 

versions of GE model-based iterative reconstruction (MBIR), the “VEO” algorithm. The oldest version of 

VEO used in our study (VEO 2.0) was only compatible with the standard kernel. However, new presets 

are provided in the VEO 3.0 version, including different noise preference (NR**) and resolution 

preference (RP**). The preset index exactly describes the expected noise reduction or resolution 

improvement as measured on a GE performance phantom. For example, NR05 implies 5% noise 

reduction over standard preset. Similarly RP05 implies 5% higher resolution compared to standard preset. 

Also, the image model and noise model of the algorithm were improved to make the noise covariance 

more isotropic in all three dimensions. 

 

First, we used those acquisitions to compare the quality of the images in a given reconstruction plane 

depending on the reconstruction algorithm which was used. Then, we compared the differences in term of 

image quality in the different reconstruction planes. Comparisons were based on objective physical 

metrics which will be detailed in the next part. Our approach consisted in integrating those metrics in a 

customized model observer to estimate the signal-to-noise ratio (SNR) of simulated articular cartilage 

lesions of several sizes surrounded by contrast material. 

 

Physics Metrics 

The image noise was investigated within a 6-cm-long uniform region of our phantom. NPS were 

calculated with a home-made Matlab® routine (The MathWorks, Natick, MA, USA) based on 25 image 

slices of the homogenous contrast-media region containing regions of interests (ROIs) of 128×128 pixels. 

A radial-averaged NPS was obtained based on the guidelines described in the ICRU report 54 [ICRU 54]. 

Extensive details on the NPS metric as well as elements to perform its computation can be found in 

Miéville’s work [Miéville et al 2011]. 
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 Iterative reconstruction (IR) algorithms are known to be highly non-linear and therefore to 

introduce a dependency of the image contrast and noise over the spatial resolution of the image [Thibault 

et al 2007; Richard et al 2012]. In order to overcome those problems, spatial resolution was investigated 

through an object-specific modulation transfer function (MTF), which we referred to as TTF. It allowed 

us to take into account noise and contrast effect when characterizing image resolution in different 

acquisition conditions. A common method to compute this TTF consist in using an edge spread function 

(ESF) [Judy 1976], before deriving the result and switching to the Fourier space. In our case, this object 

specific metric was obtained using the contrast variation between the circular edge of the Plexiglas® 

cylinder and the contrast product around it. Eventually, computations of TTF for resolution estimation 

allowed us to overcome IR specific problems. Main mathematical steps, as well as extensive details and 

explanations on the methodology can be found in the paper of Ott et al. [Ott et al, 2014]. 

 Eventually, we integrated those two metrics into a model observer in order to yield an objective 

assessment of the image quality in the three reconstruction planes when using different reconstruction 

algorithms. Model observers rely on the concept of task-based assessment in order to assess how well the 

desired information can be extracted from the image [Barrett and Meyers 2004]. The principle of such 

models consists of measuring the performance of an observer conducting a task of clinical interest. The 

task may be the detection of a signal into a noisy background, the observer is the person or algorithm 

performing the task and the figure of merit (FOM) measures how well the observer performed the task. In 

our case, we used an updated non-prewhitening with eye (NPWE) model observer to compute the SNR of 

a simulated lesion of the articular cartilage. The NPWE is a mathematical model observer developed by 

Burgess [Burgess 1994] and which can be used to perform task-based assessment. Some authors [Brunner 

and Kyprianou 2011; Ott et al 2014] successfully integrated some modifications to this model, like the 

use of the TTF instead of the MTF in order to meet the requirements due to the use of IR algorithms. 

Based on those works we were able to compute SNR values for our simulated cartilaginous lesion using 

Equation 1: 

                                       
                                 

   

 

              
   

 
                 

                                                       

    is the Nyquist frequency,     is the contrast difference,        is the visual transfer function of the 

human eye [Burgess 1994] and      is the Fourier transform of the input signal (in our case,      

 

 
             being a Bessel function of the first kind). 
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Results 
 

 

Figure 2: NPS curves computed for FBP, ASIR, VEO 2.0 and VEO 3.0 reconstruction 

algorithms in the three reconstruction planes. 
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Figure 3: TTF curves computed for FBP, ASIR, VEO 2.0 and VEO 3.0 reconstruction 

algorithms in the three reconstruction planes. 
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overall image texture. Coronal and sagittal reformatted images thus display a higher proportion of low 

range frequencies, accounting for their smoother aspect compared to axial images. 

In the axial plane, and compared to FBP, no changes in the noise level were observed when using 

ASIR 40 or 80. Switching from FBP to VEO 2.0 did however yield to a consequent noise decrease, 

especially in the low frequencies range. On coronal and sagittal-reformatted images, we noted an increase 

in image noise compared with the axial plane. This trend was even slightly more pronounced in the 

sagittal plane. Moreover, the impact of both ASIR and the VEO 2.0 algorithm on noise level was 

considerably different in those two planes. Indeed, no difference between NPS curves of ASIR 40, ASIR 

80 and FBP images could be observed, while VEO 2.0 happened to lead to higher noise levels than FBP 

and both ASIR, especially in the low frequency range (inferior to 0.2 mm
-1

). 

TTF curves (figure 3) in the axial plane indicated that no improvement of the spatial resolution 

was perceived when using ASIR at both 40% and 80% instead of FBP. On the contrary, the use of VEO 

2.0 produced an increase of the resolution for the whole frequency range of the image. A similar behavior 

was observed in the coronal and sagittal planes for all algorithms. Eventually, the TTFs curves suggest 

that, for a given algorithm, an increase of the spatial resolution happens when switching from axial to 

coronal or sagittal reconstruction planes. This resolution increase happened to be of the same magnitude 

in both sagittal and coronal planes, leading to very similar TTF curves in those two planes. 

Our results suggest no major changes in the detectability as estimated by the NPWE model 

observer in the sagittal and particularly the coronal plane compared with the axial plane (figure 4). Those 

observations are in accordance with the noise and resolution changes which were reported above using 

TTF and NPS. However, we observed a noticeable enhancement of detectability in all reconstruction 

planes when using VEO 2.0 instead of FBP or ASIR, demonstrating that the use of this MBIR algorithm 

could help to increase SNR even when switching reconstruction planes. 
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Figure 4: SNR computed for FBP, ASIR and VEO 2.0 reconstruction algorithms in the three 
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influenced by the type of reconstruction kernel being used. Indeed, when looking at NPS of images 

reconstructed in the axial plane, we observed that the noise level slightly increases when switching from 

the standard kernel, to the RP05 kernel to the RP20 kernel. Those results also remain true in the coronal 

and sagittal plane, in addition of changes observed in the magnitude of the NPS curves. Indeed, we 

observe that the amplitude of the noise is gradually increased when switching from axial to coronal to 

sagittal plane. 

TTF curves in the axial plane allow us to witness an increase of the resolution when switching the 

kernels from standard to RP05 to RP20. In our case we measured an 8% and 19% increase of the 

frequencies at 50% of the TTF height. The same kind of behavior was also observed for TTF curves in the 

coronal and sagittal planes. In addition, our results also suggest that the resolution as estimated by the 

TTF increases when switching from axial to coronal to sagittal planes. 

Results regarding the detectability of simulated cartilaginous lesions using the VEO 3.0 algorithm 

are summarized in figure 5. They globally suggest that using a standard kernel yields a higher SNR than 

the RP05, which itself produces higher SNR than the RP20 kernel. This trend is due to a higher noise 

level when using sharper resolution kernels and which is not fully compensated by the signal increase 

those kernels also generate. Also, the resolution increase we measured when switching from axial to 

sagittal and coronal planes allows to compensate the noise increase that occur in the same time, leading to 

an stable SNR in the three planes for a given reconstruction kernel. 
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Figure 5: SNR computed for VEO 3.0 in the three reconstruction planes for simulated 

cartilaginous lesion of 0.5 mm 1.0 mm and 2.0 mm. 
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values. In the axial plane, a consequent noise reduction was indeed observed with VEO 2.0 compared to 

FBP, whereas an increase of the noise was observed in the coronal and sagittal planes when switching 

from FBP to VEO 2.0. In the mean time, resolution found out to be improved with VEO 2.0 when 

switching from the axial to the other planes. Eventually, using VEO 2.0 instead of FBP led to a significant 

SNR increase in all reconstruction planes. The previously stated results regarding noise and resolution 

behavior remained true and even reinforced when switching from FBP to VEO 3.0. Results suggest that 

the 3.0 version leads to a higher SNR in all three reconstruction planes than the 2.0. In the end, switching 

reconstruction planes and algorithms has repercussions on image quality, so that lesion detection and 

characterization by the radiologist are therefore modified. 

Image quality depending on the reconstruction plane was already investigated by several authors 

[Rydberg et al 2007; Singla Long et al 2010] who successfully demonstrated that multi-planar 

reconstructions could improve diagnostic accuracy and interpretation speed. Those studies were however 

conducted relying on subjective image quality assessment methods, i.e. scoring of the images by human 

observers in this case. If this kind of methods has already demonstrated its great potential to assess the 

quality of CT images, there is also a need for objective methods to perform this task. Thus, other authors 

chose to adopt those objective methods in order to study the impact of the reconstruction plane over the 

image quality [Von Falck et al 2011] and to conclude on the usefulness of the multi-planar 

reconstructions. Most of the objective methods used to characterize image quality however often consist 

in the computation of pixels’ standard deviation, or of contrast-to-noise ratio. The study therefore 

provided useful and novel results regarding the quality of images reconstructed in different planes, but the 

outcome of these simple metrics is systematically improved when working with IR, because those 

algorithms integrate the knowledge of the noise statistics to penalise pixel variations and reduce noise.  

This therefore enlightens the need to develop more elaborated tools, which are in compliance with 

the requirements of IR techniques, and we believe that methods such as task-based assessment could 

represent an efficient way out of the problem. Some authors like Guggenberger [Guggenberger et al 

2013] already tackled the problematic of the multi-planar reconstruction using this kind of method. The 

study in question was however limited to FBP algorithms and we believe that IR algorithms, now that 

they are widely used in clinical routine should also be assessed this way. Our study was therefore 

conducted in order to objectively assess several types of IR, including some recently released MBIR 

algorithm, in different planes and using a task-based assessment method.  

There are however some limitations to our work that have to be mentioned, the first one being 

that no image quality assessment was performed in our experimental paradigm. Indeed, if it is true that 

this kind of assessment is subject to some drawback like the subjectivity of the observer, they still 
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represent the gold standard and comparing our objective results to human observers could be interesting. 

The second limitation comes from the fact that image quality assessment was performed but the 

diagnostic accuracy was not evaluated. To date, most of the published literature on IR techniques has 

reported reduction in radiation dose while maintaining diagnostic image quality, but very few have 

evaluated the impact of IR techniques on the diagnostic performance. 

The results we obtained show that MBIR are indubitably the reconstruction algorithms leading to 

the highest SNR level in every reconstruction planes. The 3.0 version even surpasses the 2.0 version 

thanks to its possibility to change the reconstruction kernel and its results leading to higher SNR values. 
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A B S T R A C T

Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic
questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably
possible. The assessment of individual aspects of IQ is already a key component of routine quality control
of medical x-ray devices. These values together with standard dose indicators can be used to give rise
to ‘figures of merit’ (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes.
The demand for clinically relevant IQ characterisation has naturally increased with the development of
CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation
and evolution of assessment methods. The purpose of this review is to present the spectrum of various
methods that have been used to characterise image quality in CT: from objective measurements of phys-
ical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure
human observer approach. When combined together with a dose indicator, a generalised dose efficien-
cy index can be explored in a framework of system and patient dose optimisation. We will focus on the
IQ methodologies that are required for dealing with standard reconstruction, but also for iterative re-
construction algorithms. With this concept the previously used FOM will be presented with a proposal
to update them in order to make them relevant and up to date with technological progress. The MO that
objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of
radiologist sensitivity performance and therefore of most relevance in the clinical environment.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Diagnostic x-rays contribute to nearly 50% of the total annual
collective effective dose of radiations from man-made and natural
sources to the general population in western countries; computed
tomography (CT) is the largest single source of this medical exposure.

The contribution of CT to collective dose has significantly in-
creased in recent years and a considerable effort is required to control
this trend and ensure that the benefits from the use of this tech-
nology outweigh the risks [1]. For example, in 2007–2008 the average

dose per inhabitant, due to CT, was about 0.8 mSv in France and Swit-
zerland, and about 0.7 mSv in Germany (as part of an average for
all x-ray imaging of about 1.2 mSv and 1.7 mSv, respectively) [2–4].
An update of the French and German data showed that in 2012 the
contribution of CT exposure had increased to approximately 1.15 mSv,
with a similar increase shown in the last Swiss survey performed
for 2013 [5].

In this context the radiation protection requirements in diag-
nostic radiology (justification of the examination and optimisation
of the imaging protocol) need to be re-enforced. Justifying a CT scan
is a clinical consideration and therefore will not be addressed in this
work. However, the optimisation of a CT examination is achieved
when image quality enables the clinical question to be answered
whilst keeping patient radiation dose as low as reasonably possi-
ble. For this purpose the clinical question needs to be formulated
as concretely as possible to enable a clear description of the image
quality level required. To achieve this, appropriate and clinically
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relevant image quality parameters and radiation dose indices must
be defined, described, and used. This paper concentrates on image
quality parameters.

The first step of the optimisation process should ensure that x-ray
conversion into image information is performed as efficiently as pos-
sible. In projection radiology such as radiology or mammography
one can use the DQE (Detective Quantum Efficiency as described
in IEC 62220-1/2) as a global figure of merit. Unfortunately, due to
the geometry and data processing required for CT, the use of such
a quantity is not feasible. In general, one will assess the amount of
radiation required to achieve a certain level of image quality. As a
surrogate of the radiation received by the detector one uses the stan-
dardised CT dose index (CTDIvol). This quantity represents the average
dose delivered in PMMA phantoms of 16 and 32 cm in diameter and
is related to the amount of noise present in an image. According
to its definition CTDIvol is different from the actual average dose de-
livered in a slice of a patient, and the latter should be estimated
using the Size Specific Dose Estimator (SSDE) proposed by the AAPM
(American Association of Physics in Medicine) [6]. For a given CTDIvol

level, image quality parameters are generally assessed using the
signal detection theory that considers the imaging system linear and
shift invariant.

The next step of the optimisation process should be done with
the clinical applications in mind. Direct determination of clinical
performance is, however, difficult, expensive, and time-consuming.
Furthermore, the results in these studies can be strongly depen-
dent on the patient sample and on the radiologists involved. As an
alternative, one can assess image quality using task-oriented image
quality criteria. They will necessarily be simplistic in comparison
to the clinical situations but make it possible to predict the per-
ception of simple structures within an image. The phantoms available
for this type of study remain quite simple whilst trying to mimic
important disease-related structures in actual patients. It is likely
that 3D printing techniques will improve phantom and task realism
in the future [7–9]. To seek optimisation, task-oriented image quality
metrics could be studied as a function of CTDIvol or SSDE. Figure 1
summarises this optimisation process.

Part 1 of this review focuses on signal detection theory and
summarises the methods used to assess image quality in an objec-
tive way. When CT images are reconstructed using the standard
filtered back-projection (FBP), these methods are commonly used
to characterise a CT unit. The objective image quality metrics assess
separate aspects of the features of the image, and therefore need
to be combined to give an overall representation of the image quality.

To synthesise the information, and balance image quality with
radiation doses, several figures of merit have been developed by com-
bining image quality parameters such as the standard deviation in
a region of interest (ROI) and the modulation transfer function (MTF).
They were applied for specific clinical protocols to enable appro-
priate comparison of systems. This approach was quite useful during
the development of CT technology, where performances between
different units could vary drastically. These figures of merit can be
based on simplified assumptions requiring caution in their inter-
pretation. However it appears that the sensitivity of such methods
is quite limited for newer systems, and, in addition, the effect of it-
erative reconstruction on the standard image quality parameters
would mean that this approach would be difficult to implement.

Both clinical and phantom images can be assessed using the ROC
paradigm or one of its derivatives (Localisation ROC, Free-response
ROC). These methods give an accurate estimate of clinical image
quality but, although carefully controlled measurements, they are
still subjective because human observers are involved. These methods
are time consuming and require large samples to obtain precise
results. In spite of these limitations these methods can be used either
by radiologists (when dealing with clinical images) or naïve ob-
servers when dealing with phantom images. To avoid the burden
associated with ROC methods more simplified methods have been
developed; for example, VGA (Visual Grading Analysis) in which
image quality criteria can be used to give a relatively quick image
quality assessment, without the explicit need for pathology or a task.
Alternatively, phantom images can be assessed using the 2-AFC (two-
alternative forced-choice) or M-AFC (multiple-alternative forced-
choice) methods. Part 2 of this review discusses these methodologies,
and these methods are used to validate the results produced by
model observers presented in Part 3.

The introduction of iterative reconstruction in CT poses a new
challenge in image quality assessment since most of the standard
metrics presented in Part 1 cannot be used directly. In order to es-
tablish a bridge between radiologists and medical physicists, and
therefore between clinical and physical image qualities, task related
metrics can be used (even if the tasks are simplified versions of actual
clinical tasks). Mathematical model observers are particularly suited
to the routine image quality measurement of clinical protocols, with
the results indicated to the user together with the standard dose
report. Part 3 summarises the concepts behind these model ob-
servers, focusing on the anthropomorphic model observers that
mimic human detection of simple targets in images, since the aim
is to present tools for practical applications. The theory and de-
scription of the ideal observer can be found in the literature and a
brief introduction to this model is done at the beginning of Part 3.
Note that model observers can also be used when images are re-
constructed with FBP. The inconvenience associated with the use
of model observers is that they all lead to an overall outcome without
the separation of the image quality parameters as with signal de-
tection theory.

This paper is structured into three separate sections that provide
an overview of the most common approaches taken when dealing
with image quality in CT imaging. This structure is described in Fig. 2.

Traditional objective metrics

CT is a 3D imaging technique in which image quality assess-
ment must be approached with some caution. Objective assessment
of parameters that influence image quality is often made using phys-
ical metrics specified in either the spatial or spatial frequency
domain. This duality is due to the fact that some features will
produce overall responses which are independent of the location
in the image, whereas other features will produce responses that
are spatially correlated.

Generic protocols
-- Simple phantom of one size
-- One spectral condition (kV)

Clinical protocols
-- Anthropomorphic phantoms
-- Several sizes per anatomical region
-- Several spectral conditions (kV)

Step 1 of the optimization process
CTDIvol

Image quality 
Signal detection theory

Step 2 of the optimization process

CTDIvol or
SSE 

Task- based image 
quality assessment

Figure 1. CT optimisation process in two steps: generic acquisition optimisation and
clinical protocol optimisation.
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Objective metrics in spatial domain

Image signal and image noise are key parameters in image quality
assessment. In the ideal and linear case, image signal (S) is direct-
ly linked to the detected number of photons N, whilst the noise (σ)
may be seen as the pixel’s stochastic fluctuation around their mean
value. The photons are distributed according to Poisson’s law,
meaning that the quantity σ is equal to N . The ratio of these two
quantities yields the signal-to-noise ratio (SNR), expressed as:

SNR
S N

N
N∝ = =

σ
(1)

In an ideal device, each quantum could be counted by the de-
tector and contributes towards the image. We could thus transpose
Eq. (1) as:

SNR
N
N

NIdeal
Ideal

Ideal
Ideal∝ = (2)

However, due to the properties of the detector and its limited
efficiency, a real measurement of the SNR would give the follow-
ing result:

SNR
N
N

N NReal
Real

Real
Real Ideal= = < (3)

In Eq. (3), NReal gives the number of quanta that contribute to
the image for the real device and is also called noise-equivalent
quanta (NEQ). Thus:

SNR N NEQReal Real
2 = = (4)

Based on those parameters, we can eventually estimate the ef-
ficiency of a device by making the ratio between the number of
photons actually used for the imaging and the incoming number
of photons to the detector. This quantity is called detective quantum
efficiency (DQE) and is defined as:

DQE
SNR
SNR

NEQ
N

Real

Ideal Ideal

= =
2

2
(5)

In Eq. (5), the NEQ can be measured in a straightforward manner,
but some care must be taken when estimating quantity SNRIdeal

2 .
Indeed, when considering a monochromatic beam, SNRIdeal

2 is simply
the number of photons produced. However, for a polychromatic
beam, SNRIdeal

2 should be the summed variance of the number of
photons in each energy bin. In fact, some authors prefer to use an
energy weighted variance because most detectors integrate energy
[10] to form an image.

Another commonly used global image quality index is the signal
difference-to-noise ratio (SDNR), defined for an object as the in-
tensity difference from the background divided by the standard
deviation:

SDNR
I Iobject Background=

−
σ

(6)

These metrics are extended to the spatial frequency domain in
the following section.

PC, d’, AUC, dA

Figure of Merit

detectability/CTDIvol

MTF questionable 
with IR

TTF

NPS 3D

Objective metrics 
in Fourier and 
image spaces
(SNR, NEQ, 
MTF,NPS...)

Figures of Merit
DQE

Brooks DiChiro
Q

Objective metrics
Physical Approach

FBP Algorithm

FBP/ Iterative 
Algorithms

Objective metrics 
not appropriate to 
function with IR

Visual assessment 
by human 
observers

Visual 
assessment

(ROC, 
LROC,FROC, m-

AFC)

Clinical studies 

VGA

Ideal Model 
Observer*

Model Observer
Task Based 
Approach

Anthropomorphic 
model observer 
(NPWE, CHO)

Figure 2. Summary of the content of the review (*this part will not be presented).

825F.R. Verdun et al./Physica Medica 31 (2015) 823–843



Objective metrics in Fourier domain

Spatial resolution can be defined as the ability to distinguish two
separate objects and is directly linked to the pixel size, the recon-
struction kernel as well as the hardware properties of the imaging
device. In order to derive an expression for image resolution, it is
necessary to describe the imaging process generating a CT slice. Our
analysis will be restricted to the axial plane. I x y,( ), which is the
image slice of an input object denoted by f x y,( ), can be mathe-
matically expressed as:

I x y f x x y y PSF x y dx dy, , ,( ) = − ′ − ′( ) ′ ′( ) ′ ′∫∫ (7)

with PSF x y,( ) being the point spread function in the axial plane
and describing resolution properties of the device. It corresponds
to the impulse response of a system, the response of the system to
a Dirac input ( δ x y,( )).

Resolution can also be estimated through the line spread func-
tion (LSF), which is the response of the system to a straight line. Thus,
the relationship between the LSF and the PSF can be derived from
Eq. (7) in which the input function is replaced by the equation of
a straight line in the axial plane (that is to say replacing f x y,( ) by
δ x( ) in Eq. (7)), yielding:

LSF x x x PSF x y dx dy( ) = − ′( ) ′ ′( ) ′ ′∫∫δ ,

leading to:

LSF x PSF x y dy( ) = ( )
−∞

+∞

∫ , (8)

The point spread function needs to be similar at each location
in the image (shift invariance) in order to ensure that the LSF will
remain the same at every localisation. However, isotropy of the axial
plane is a hypothesis which is not always true, especially when
dealing with CT. In this case, the LSF will depend on the direction
of the straight line in the axial plane. Assuming the straight line is
positioned tilted with an angle θ the expression of the LSF will
become:

LSF x y PSF x y x x y y dx dyθ δ θ θ, , cos sin( ) = ′ ′( ) − ′( ) + − ′( )( ) ′ ′
−∞

+∞

−∞

+

∫
∞∞

∫ (9)

Besides those two metrics, it is also possible to estimate the res-
olution using the edge spread function (ESF), that is to say the
response of the device to an edge. An edge can be mathematically

approached by the Heaviside function H x y
if x
if x
if x

,( ) =
>
=
<

⎧
⎨
⎪

⎩⎪

1 0
1 2 0
0 0

. This

function has the property:
dH x

dx
x

( ) = ( )δ .

Using this property, injecting f x y H x,( ) = ( ) in Eq. (7) and using
Eq. (8) we obtain:

LSF x
ESF x

x
( ) = ∂ ( )

∂
(10)

Hence, PSF, LSF and ESF are all related to each other and it is pos-
sible to use their representation in the frequency space thanks to
the Fourier transform.

The Fourier representation of the PSF is the optical transfer func-
tion (OTF), which is defined as following:

OTF u v FT PSF x y, ,( ) = ( ){ }def (11)

What is commonly used in order to estimate the resolution is
the modulation transfer function (MTF), defined as the modulus of
the OTF normalised by its zero-frequency value:

MTF u v
OTF u v
OTF

,
,
,

( ) = ( )
( )

def

0 0
(12)

Using Eqs. (8), (11) and (12) together with the Fourier slice
theorem and assuming shift-invariance in the axial plane, we can
state that a normalised radial MTF of the system is given by:

MTF f
FT LSF x

LSF x dx
D1 ( ) = ( ){ }

( )
−∞

+∞

∫
(13)

This metric describes how well frequencies are transferred
through the system and is therefore used to make objective reso-
lution estimation (Fig. 3).

Practically, the MTF can be computed from the image of a point
(~PSF), a line (~LSF) or an edge (~ESF) [11–13]. In calculating MTF
from the image of a point source (effectively from the PSF), a metal
bead or taut wire fixed within a dedicated phantom is used to gen-
erate the signal [14]. Boone [12] used a tilted aluminium foil of
thickness 50 μm to generate an oversampled LSF; the MTF is then
computed using Eq. (13). Judy [13] was the first to describe calcu-
lation of MTF from an edge method in which the ESF was
differentiated to give the LSF. This method has been developed over
the years by various authors to include the use of spheres from which
the oversampled ESF is built [15–17]. An older method was pro-
posed by Droege and Morin, in which MTF is estimated from line
pair test object images using the Coltman formula. Extensive details
on the practical implementation of these techniques are given in
ICRU Report 87 [18]. Several of these methods have been investi-
gated by Miéville et al. in order to compare and contrast the
advantages and drawbacks [19].

As with resolution, and of equal importance for SNR transfer,
image noise can also be estimated in the frequency space. There are
different sources of noise within the CT system, such as the elec-
tronic noise caused by the detector readout circuits (amplifiers) and
the primary quantum noise which is inherent to the statistics of the
limited quanta building the image. In a stationary system, the Wiener
spectrum or noise power spectrum (NPS) gives a complete descrip-
tion of the noise by providing its amplitude over the entire frequency
range of the image [20]. If the image noise is not stationary, the
Wiener spectrum is not a complete description and the whole co-
variance matrix would be needed for complete description. However,
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Figure 3. Example of a 1 dimension MTF curve of a GE VCT system with a 0.40 mm
pixel size.
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if applied with care – for example working with small ROIs, ex-
tracted from a restricted region of the image – the NPS can be applied
to both conventionally (i.e. FBP based) and iteratively recon-
structed images. For NPS calculation, the assumption of ‘small signal
linearity’ has to be made in order to apply Fourier analysis, which
requires system linearity in order to be valid. This is the case for
the logarithmic step applied to all reconstruction processes and also
to the explicitly non-linear iterative methods.

In order to compute the NPS of an image, it is necessary to acquire
homogeneous CT images and select region of interests (ROI) in this
stack. The 2D NPS can then be computed as:

NPS f f
L L N

FT ROI x y ROID x y
x y

x y ROI
D i i

i

NROI

2 2
2

1

1
, ,( ) = ( ) −{ }

=
∑Δ Δ

(14)

where Δ Δx y, are the pixel sizes in the x and y dimension, L Lx y are
the ROI’s lengths (in pixel) for both dimensions, NROI is the number
of ROIs used in the average operation and ROIi is the mean pixel
value of the ith ROI.

In practice, the NPS is largely affected by the detector dose, the
hardware properties and the reconstruction kernel and algorithm.
From each image of the stack a ROI is extracted and a custom com-
puter program is generally used to compute the NPS according to
Eq. (14). It is of common use to average the 2D NPS along a 1D radial

frequency using the equation f f fr x y= +2 2 (Fig. 4). More details on

the NPS computing can be found in ICRU Report 87 [18]. In the end,
the NPS characterises the noise texture, thus giving a better and more
complete description of noise than the simple pixel’s standard de-
viation. Moreover, information about the pixel’s standard deviation
can still be retrieved with knowledge of the Wiener spectrum.
Indeed, the Parseval theorem ensures that the total energy is ob-
tained by summing the contribution of the different harmonics and
that its value does not depend on the chosen space (image or fre-
quency space). Since the NPS is a spectral decomposition of noise
over frequencies, we have:

σ 2
2= ( )∫∫NPS f f df dfD x y x y, (15)

As explained before, MTF shows how well the signal frequen-
cies are transferred through an imaging system, that is to say it
exhibits the signal response of a system at a given spatial frequen-
cy. As for the spatial domain, the ratio of signal (i.e. MTF) and noise
(i.e. NPS) yields the output signal to noise ratio (the NEQ) and there-
fore the frequency dependent NEQ can be calculated as:

NEQ f SNR f
a MTF f

NPS f
Real

D

D

( ) = ( ) = ( )
( )

2
2

1
2

1

(16)

where a2 is the mean pixel value squared.
The DQE in the frequency space can therefore be estimated by:

DQE f
SNR f
SNR f

a MTF f
N NPS f

Real

Ideal

D

Ideal D

( ) = = ( )
( )

( )
( )

2

2

2
1
2

1

(17)

Limitations of conventional and Fourier-based image quality metrics
for the assessment of IR images

In order to compute an MTF that represents the spatial resolu-
tion of the entire image, the assumption of shift-invariance has to
be made. That is to say that the device’s response has to remain the
same, whether measured at the image centre or periphery. If this
assumption is not fulfilled it is necessary to make the measure-
ments at the same location in different images to obtain an MTF that
can be used to compare the resolution of different devices. Fur-
thermore, the linearity hypothesis also needs to be fulfilled for the
MTF to be reliable. That is to say, the output signal has to remain
within the optimal range of response of the imaging system in terms
of Hounsfield units (HU), usually in the range from −200 to +200 HU
for clinical CT scanners [18]. Consequently, estimating the MTF with
a high Z material can give a signal outside this range, yielding an
incorrect assessment of resolution. In practice, estimating the MTF
with high Z materials generally leads to a resolution overestima-
tion because of the high SNR they generate [18].

Those two assumptions are approximately satisfied for CT images
reconstructed with filtered back projection (FBP) algorithms and a
standard reconstruction kernel, but the introduction of iterative re-
construction (IR) has changed the game [21]. Indeed, IR images
exhibit stronger non-linear and non-stationary properties that force
a change in the MTF measurement paradigm. Several authors have
already highlighted the non-linearity problem of these algo-
rithms, which manifests itself as contrast dependency of the
resolution [21–23]. Also, investigations on how Fourier-based metrics
are influenced by the characteristics of IR images have been de-
scribed [24,25]. They showed, for example, that the shape of the
NPS for some IR algorithms also depends on the dose level and that
the resolution not only depends on the contrast but also on the ra-
diation dose levels. These elements have highlighted the need to
adapt the existing metrics to IR algorithms.

Adaption of Fourier metrics
These difficulties in estimating resolution can be overcome by

using an adapted metric, such as the target transfer function (TTF),
which makes it possible to characterise the resolution even in the
presence of noise and contrast dependency [24,26]. MTF and TTF
are similar but differ from one another in the sense that MTF only
applies to a single given contrast level, whereas a TTF will exhibit
three different curves at three different contrasts (corresponding to
three different materials) for one measurement (Fig. 5). This enables
a characterisation of the resolution when dealing with non linear
algorithms for which contrast influences the resolution. As already
demonstrated by several authors this will make full characterisa-
tion of the resolution possible when dealing with IR [24,27].

The technological evolution of CTs has also led to changes in the
way NPS must be computed. The 2D axial NPS was well suited for
the first generations of devices where only one CT image per axial
scan could be acquired without noise correlation between slices.
Now that the acquisitions are also made in helical mode and that
the number of detectors along the z-axis is higher, a 3D NPS is re-
quired to fully characterise the noise (Fig. 6) [12,28]. 3D NPS can
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Figure 4. Example of a radially averaged NPS obtained on a GE revolution system
with a standard convolution kernel.

827F.R. Verdun et al./Physica Medica 31 (2015) 823–843



be measured in a similar manner to the 2D NPS, but working with
volumes of interests (VOI) instead of ROIs:

NPS f f f
L L L N

FT VOI x y z VOID x y z
x y z

x y z VOI
D i i

i
3 3

21
, , , ,( ) = ( ) −{ }

=

Δ Δ Δ

11

NVOI

∑ (18)

For this case, the units of NPS are HU2mm3.
In this particular paradigm, Eq. (15) becomes:

σ 2
3= ( )∫∫∫NPS f f f df df dfD x y z x y z, , (19)

How to synthesise the information towards a figure of merit

Combining image quality and dose
In the clinical setting the focus for optimisation is balancing image

quality and radiation dose in the context of the clinical question.
Statistical noise, spatial resolution and imaged slice width are the
fundamental parameters which describe the amount of object in-
formation retrievable from an image, and give rise to the perceived
image quality. X-ray dose can be regarded as the cost of this infor-
mation. It is meaningless to quote any of these image quality
quantities without reference to the others, or to the radiation cost.
The ‘holy grail’ is to try to find a way to combine the relevant pa-
rameters objectively and appropriately in a dose efficiency factor.

A dose efficiency factor, or figure of merit, can take a number
of forms depending on how the various parameters are measured
and quoted. Correctly developed and applied it can be used as a tool
to compare scanner models, or simply different scan settings to
optimise the balance of image quality and radiation dose.

How these parameters, resolution and noise in particular, are bal-
anced is dependent on the clinical question and examination type.
An important aspect that must be addressed is the influence of scan
and protocol parameters that can be adjusted by the operator and
how they affect image quality and radiation dose performance.

Clinical scanner settings – scan and protocol parameters
Any consideration of a theoretical approach to investigate a dose

efficiency value needs to be in the scenario of the clinical ques-
tion and the parameters used to create the image (Fig. 1).

Image quality and dose can be affected by the scanner design
and also by the scan settings in the selected protocol (Table 1). The
effect of the scan parameters, which form the examination proto-
col for the clinical question, can be seen in Table 2.
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Figure 5. Resolution estimation through the TTF on a GE HD 750 system with a
0.4 mm pixel size and three different materials (Teflon polyethylene and plexiglass).
Differences are observed on the resolution depending on the material. Such changes
could not be observed when using the MTF.

Figure 6. (a) The 3D homogeneous volume from which the 3D NPS is extracted. (b) The 3D NPS and the NPS sectioned in the (c) x–y (axial) and (d) the x–z (sagittal) planes.
Figures extracted from Reference 22.
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Combining image quality and dose metrics – theoretical background
The basic starting premise for a figure of merit for a dose effi-

ciency parameter is that a dose efficient scanner will produce good
resolution at minimum dose and noise.

There are a number of mathematical relationships that can be
found in the scientific literature, both in terms of general imaging
theory and for CT in particular [30–32]. The two of interest for CT
are Brooks and Di Chiro [33] and Riederer et al. [34]. These were
used in the development of the ImPACT Q value which became a
useful, and relatively widely known, approach for comparing CT
systems in the 1990s [35,36]. It was also explored by Fuchs and
Kalender [37], more recently Kalender devoted a section to this
subject in his book Computed Tomography: Fundamentals, System
Technology, Image Quality, Applications [37,38]. However the fun-
damental relationship can also be found in standard textbooks on
imaging with radiation [39,40]. The core of all these approaches is
that the noise squared is inversely proportional to dose, and also
inversely (in real or image space) proportional to the spatial reso-
lution to the power 4. This encompasses spatial resolution in the
x,y (to power 3) plane and also the z plane and quoted either as a
size or frequency. In some equations the resolution is separated out
into frequency for the x and y plane resolution, and the image thick-
ness for the z-axis (z,x and z,y planes).

The relationship can be explored in more detail using the Brooks
and Di Chiro equation [33]:

σ μ π βγ μ
ω

α
2

2

31200
( ) = ( )E e E

hD
en (20)

Here σ 2 is the statistical error in the reconstructed image (i.e.
the image noise); β is a beam spreading factor (non-parallel rays),
γ E( ) is the average depth dose factor for photon energy (E), eα is
the logarithmic attenuation, μen is the energy absorption coeffi-
cient, E is the photon energy, ω is the detector aperture, h is the
slice width, and D is the radiation dose.

For the purposes in this chapter, this can be simplified to:

σ
ω

2
3

1∝
hD

(21)

Similarly the Reiderer, Pelc and Chesler relationship is given as
[33]:

σ π φ
π

2

0

2 2

0

= ( )∫ ∫
∞

mN
d kdk

G k
kp

(22)

where m is the number of projections, Np is the number of photons
per projection, and G k( ) is the convolution function with frequen-
cy. The product mNp could be regarded as a measure of radiation
dose.

This essentially becomes σ 2 3∝ kc mNp (where kc is the cut-off
frequency, i.e. the limiting resolution). Or, indeed as the paper states;
‘for all valid correction filters … σ2 varies with the cube of the
resolution’.

This is, in effect, the relationship of:

σ σ2 21 1∝ ∝
N D

i e. . (23)

where N is the number of photons and D is a measure of radiation
dose for a fixed value of tube voltage. This can also be seen as a direct
result from Eq. (1), assuming Poisson noise and without additive
electronics noise.

Combining image quality and dose metrics – a practical approach
The discussion that follows is the approach taken by the UK CT

scanner evaluation facility ImPACT [36]. It is a pragmatic solution
to a complicated scenario of practical and computational effects
on resultant image quality and dose for the operational CT scanner.
This approach was reasonably successful for a number of years,
and many scanner comparison reports were produced using this
factor [32]. There is no other known work in this area covering a
number of decades of scanner development. All measurements
were undertaken according to a procedure with strict criteria, and
in consultation with manufacturers as to the nature of their scan
protocols, scanner features and reconstruction parameters. Mea-
surements and analysis were carried out using typical clinical
protocols, using the same image quality and dose assessment and
calculation methods, and the same team of people. As scanners
developed it became harder to apply such strict criteria, and with
the development of adaptive filtration, and iterative reconstruc-
tion methods, it became very difficult to minimise the effects of
other variables on ascertaining a dose efficiency value for a
typical scan protocol.

Q
f
zD

α
σ

3

2
(24)

Table 1
Scanner design and scanner settings which can affect image quality and dose on
scanner settings (courtesy of ImPACT [29]).

Scanner design factors Scan protocol factors

Detectors material
Detector configuration
Numbers of detectors, rows
Data acquisition rates
Software corrections
Filtration
Focal spot size
Geometry (i.e. focus–axis,

focus–detector distances)

Clinical application
Tube current, tube voltage, focal spot size
Image reconstruction algorithms
X ray Collimation width, detector
acquisition width
Reconstructed image slice thickness
Helical pitch
Interpolation algorithms

Table 2
Dependence of image quality and dose parameters on scanner settings (courtesy of ImPACT, adapted from Reference 29).

Noise Slice width Scan plane resolution Dose

kV
Effective mA (mA/pitch)
Focal spot selection
Pitch
X-ray beam collimation
Detector configuration (e.g. 16 × 1.25 versus 32 × 0.62)
Scan time (for a given mAs)
Interpolation algorithm
Convolution kernel
Reconstructed slice thickness
Use of iterative reconstruction

The dark blue represents a major dependence of image quality and dose on scanner settings and the soft blue represents a minor dependence.
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where σ is the image noise, f is a measure of the in-plane spatial
resolution (in frequency space), z is a measure of the spatial reso-
lution along the z-axis (in image space, and a measure of the
z-sensitivity), and D, as indicated above, a is measure of the radi-
ation dose. This is the approach used by the ImPACT CT scanner
evaluation facility [32,36] and first proposed in 1978 by Atkinson
[35]. Initially one form of the generic equation was used, and then
altered some of the definitions of the parameters involved, to create
what became known as Q2 [31,41] as shown in Eq. (25).

The Q-factor (Q2 factor) is in part empirical, it was used with
caution and with strict adherence to the calculation procedure, which
included standardising certain scan and protocol variables. Since it
is not an absolute figure, it cannot be applied to the overall scanner,
only to the examination protocol. Each set of image quality and dose
parameters was therefore focussed on a typical clinical type of ex-
amination; for example a standard brain or standard abdomen.

The first step in the process was to ascertain this scan protocol
in conjunction with the manufacturer. Consideration of the effects
of the scanner settings, as shown in Table 1, required some adjust-
ment of the protocol. This was in order to minimise the effects of
scan parameters whose effects confounded the aim of comparison
of image quality and dose, in the context of dose efficiency of the
system. The associated challenge was to maintain the integrity of
the suggested protocol for that type of examination. The second step
was to undertake the various image quality and dose measure-
ments and calculations, and then finally to apply the Q2 relationship.

Q
f

z CTDI
av

vol
2

3

2
1

=
σ

(25)

The specific parameters used in calculating this value were mea-
sured using standard techniques and quoted parameters, such as
would be used for quality control or acceptance testing:

σ = the image noise, the standard deviation from the CT numbers
of a specified sized region of interest (5 cm2), expressed as a per-
centage (for water, standard deviation in HU divided by 10),
measured at the centre of the field of view in a standard water
phantom.
fav = spatial resolution, given as (MTF50 + MTF10)/2, where MTF50

and MTF10 are the spatial frequencies corresponding to the 50%
and 10% modulation transfer function values respectively (in line
pairs per cm).
z1 = the full width at half maximum (FWHM), (mm), of the imaged
slice profile (z-sensitivity). This is measured using the inclined
high contrast plates method (mm).
CTDIvol = volume weighted CT dose index (mGy).

To understand the dose efficiency relationship further in a prac-
tical manner, it can be helpful to consider the basic equation (Eq. 24)
to be formed of three components:

σ σ σ2 2 2 31 1∝ ∝ ∝
D z

f, and (26)

which, in the Q2 relationship, translate to:

σ σ σ2 2

1

2 31 1∝ ∝ ∝
CTDI z

f
vol

av, and (27)

Each of these relationships will be addressed more fully in the
following sub-sections.

Dose value. The dose value in an earlier formulation of Q was the
surface dose to a phantom, measured using thermoluminescent do-
simeters. This was changed for Q2 with the introduction of the

standardised CTDIvol parameter. The cross-sectional averaging that
contributes to the creation of the CTDIvol is more representative of
the overall dose to the phantom and therefore a more appropriate
value to be used.

The inverse relationship of dose with σ 2, σ 2 1∝⎛
⎝⎜

⎞
⎠⎟CTDIvol

has to

be carefully considered with multi-slice CT beams. In CT it is gen-
erally acknowledged that the CTDIvol is a suitable dosimetry
parameter; however the proportionality breaks down in MSCT since
the penumbra contribution to the beam width is a constant value,
and as such is a factor that affects the relative dose, and is not ac-
counted for in the relationship. Therefore to accommodate this, the
beam width needs to be kept as a constant when comparing one
scanner to another, or to take it into account separately with a beam
width correction factor.

Image slice width (z1) – z-axis resolution. The effect on noise from
the thickness of the slice (z1) is from the imaged, as opposed to the
nominal, slice width, with a dependence on the inverse propor-
tionality of photons contributing to the image. For testing purposes
the full width at half maximum (FWHM) of the imaged slice profile
is a suitable parameter to use. However this does not fully de-
scribe the imaged slice profile, in terms of the photon distribution
contributing to the reconstructed image. For ease of application the
FWHM is used, even though a fuller description of this sensitivity
profile would be better.

Spatial resolution (fav). A similar approach is taken with the spatial
resolution parameter. Rather than using a single value from the mod-
ulation transfer curve, a more complete description of the resolution
takes into account the full function over all frequencies, and a res-
olution value based on an average of the 50% and the 10% values
of the modulation transfer function is therefore used. These values,
averaged, do not completely describe the spatial resolution func-
tion, however they are common values automatically extracted from
MTF curves as part of a standard testing process, and together were
deemed to provide a better indication of the compromise between
high and low spatial resolutions, compared to only one of the pa-
rameters alone.

The derivation of the cubed relationship of noise with spatial res-
olution ( σ 2 3∝ fav ) relies on assumptions of the shape of the
convolution filter used (for example in Brooks and Di Chiro [33],
the convolution filter is a ramp filter). In this way comparisons
between scanners are likely to be more reliable when comparing
images reconstructed with similar convolution filters and, in par-
ticular, algorithms that best represent ramp filters. These are in
general, the filtered back projection filters named for ‘standard’ ap-
plications, providing reasonably low spatial resolution in order to
preserve the contrast detectability in an image. Filters that are slightly
smoothed or slightly enhanced would be considered as close;
however those with strong smoothing or strong edge enhancing
would not be suitable. Reconstruction filters with ‘standard’ spatial
resolution values were therefore chosen to minimise the depen-
dency of Q2 upon non-ramp like reconstruction filters. Fortunately,
or appropriately, these were also the algorithms usually used in the
standard clinical protocols under investigation. This aspect of the
Q2 equation is a pragmatic solution for the complexity of modern
reconstruction algorithms. The reconstruction filter with MTF50 and
MTF10 values as close as possible to 3.4 lp/cm and 6.0 lp/cm was used.

When investigating the empirical relationship with actual re-
construction filters, which range from ramp-like standard filters with
conventional apodisation functions, to edge-enhancing high spatial
resolution filters, it was found that the relationship was closer to
a power of 4 or 5 [29,42].
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σ α2
4 5f
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≈ −
(28)

This is illustrated in the following graph (Fig. 7a), for the body
scans. The different points on the graph relate to different recon-
struction algorithms. This reinforces the need to compare the ‘Q’
for scanners with image quality parameters measured using standard

algorithms only, as the cubed power relationship is not valid across
the whole range of spatial resolutions.

However, with modern scanners and reconstruction algo-
rithms, even with a ‘standard’ algorithm there can be anomalies in
the expected relationships. With adaptive filtration and special re-
construction techniques, even selecting the lower spatial resolution
algorithms, inconsistencies in the ‘straight line’ relationship can

Figure 7. (a) Example for body algorithms, of logarithmic image noise against spatial resolution, with normalised dose (CTDI), demonstrating the deviation from the ex-
pected relationship. (The ‘power’ is the power to which fav is raised against σ2) (courtesy of ImPACT). (b) Head algorithms showing associated image noise against spatial
resolution, with normalised dose (CTDI), demonstrating, particularly for scanner4, how small changes in spatial resolution give rise to large changes in measured noise [from
data in Reference 41].
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appear, where a small increase in spatial resolution may not bring
the expected associated increase in image noise, as shown in Fig. 7b
[41,43].

The uncertainty in the Q value was estimated to be about 15%,
and therefore, even once the confounding variables are standard-
ised, it cannot be used to look for fine differences in the image quality
and dose relationship [36,41,43], as shown for a set of 16-slice scan-
ners in Fig. 8 [41].

However, it can demonstrate larger differences – such as with
the difference between the dose efficiency of xenon gas and solid
state detectors. Figure 9 shows data from the original ‘Q’ value, where
surface phantom dose measurements were used (giving the surface
multiple scan average dose (MSAD)). By normalising for the spatial
resolution both in the z-axis (the image slice thickness) and the scan
plane, this can be shown graphically as a relative dose.

Alternative method for combining parameters. Another approach to
define CT dose efficiency was suggested by Nagel [44]. This ap-
proach for image quality determination is based on a statistical
method of determining low contrast detectability (LCD) as previ-
ously suggested by Chao et al. [45]. In this method, a uniform
phantom is scanned with specified dose and parameter settings. An
array of square regions of interest (ROIs) is defined on the uniform
image that is covering approximately a third of the central image
area. By measuring the distribution of mean CT numbers of the ROIs
and assuming a normal distribution, a prediction can be made of

the CT number threshold of a low contrast detail having the same
size as the ROIs in order to detect it at a 95% confidence level. This
threshold contrast C is 3.29 times the standard deviation σ. This pa-
rameter is obtained by measuring the mean CT numbers of the ROIs
before calculating their standard deviations. There is a 95% prob-
ability that a low contrast object of the same size as the ROIs is
missed if the contrast is within the normal variation in the ROI
means, i.e. if C < 3.29 σ. Similarly, with a probability of 5%, a ran-
domly high fluctuation of some ROI numbers could be mistaken for
an actual low contrast object if the contrast of interest is suffi-
ciently small. According to the Nyquist theorem, the ROI size limits
the noise power spectrum (NPS) at a relatively low spatial frequen-
cy (here, approximately 1 lp/cm). Therefore, a measure of the
detectability of low contrast objects having the same size as the ROIs
suppresses spectral noise components at high spatial frequencies
that are strongly affected by the detector and reconstruction
algorithm.

The CT dose efficiency value (CTDEV) puts all parameters that
are relevant for the specification of LCD into a single number that
is based on the fundamental theory of Rose [46]:
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with the diameter d of the low contrast detail (here, d = 5 mm), the
slice thickness hrec (in mm), the volume CT dose index CTDIvol,H for
the 16 cm head phantom, the PMMA-equivalent phantom diame-
ter (in cm) Deq, and the detail contrast (in %, with 1% = 10 HU)
C = 3.29 σ.

The method of Chao et al. can be easily implemented by apply-
ing customary CT phantoms and reduces the variability in LCD
visually specified by human observers in conventional image quality
assessments [45]. Chao’s method has been applied by two CT manu-
facturers for the assessment of low contrast specifications [47]. The
result of the method, however, depends on the size of the pre-
defined ROI, the location of the CT image slice within the cone beam,
and the filter used for image reconstruction [48]. As with other
figures of merit, such as the Q2 value, to apply the CTDEV for CT
benchmarking, certain features must be standardised in detail. These
are the protocol parameter set, reconstruction filter, phantom and
method used.

Measures of diagnostic performance

Visual grading analysis (VGA)

Complementing the physical measurements of image quality, the
assessment by observers is a subjective way to evaluate the image
quality. Several general principles apply to all subjective observer
studies: patients should be selected to have a wide range of body
habitus, they should involve as many observers as possible, and they
should cover the range of expected competencies in the field [49].
When these assumptions are verified, the visual grading analysis
(VGA) based on observer scorings can be used to assess image quality.

VGA provides two types of information [50]:

Firstly, this subjective analysis provides information on the ac-
ceptability of the appearance (i.e. image noise level) of the clinical
images and how the anatomical structures are visualised. For
example the VGA grades the visibility of important structures
for different noise levels, because the detectability of low con-
trast structures is affected by noise, decreasing as the noise level
increases.
Secondly, the subjective evaluation provides a context to
interpret the physical metrics (i.e. MTF, NPS). Human
observer evaluation is subject to change depending on context

Figure 8. Q2 values for several 16-slice scanners for standard head scans (courte-
sy of ImPACT).

Figure 9. The use of a pervious version of Q to illustrate the relative dose, normalised
by the other factors (courtesy of ImPACT) [slide 36 from Reference 29].
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(i.e. brightness, tiredness), so the variability is not negligible and
it is important to have a sufficient number of observers. For in-
stance if a CT has 40% better MTF at high frequencies than another,
but both CTs are rated by a single observer the difference between
both systems will not become significant.

The VGA paradigm is split into two categories: relative grading
and absolute grading.

Relative grading: The observer grades the image quality com-
pared to a reference image or to the other images. The images should
be displayed in random order to avoid any bias (i.e. first image read
bias) and the viewing conditions should reproduce the darkened
environment of the reading diagnosis room [51]. The parameter
studied should be as specific as possible, but it is possible to ask
more than one question in order to evaluate several specifica-
tions. The rating scale used in relative grading can have 3, 5, or more
steps/ranks. The scale with 3 steps is not ideal because it is impos-
sible to differentiate sufficiently. But when the degree of difference
is small, a two step scale can be a possibility. The quality of the test
is dependent on the reference image.

For instance, a scale with 5 steps can be represented by:

−2: A is much better than B
−1: A is slightly better than B
0: A and B are equal
+1: B is slightly better than A
+2: B is much better than A

Absolute grading: The observers do not have any references and
the images are displayed one by one. The evaluation is performed
for one image at a time unlike the relative grading. To avoid bias
from observer learning, the reading sessions must be separated in
time. The grading scale should be numerical (i.e. from 1 to 10) or
adjectival. With the adjectival scale, the descriptor should be ex-
pressive in order to create a difference between the worst and best
cases. For instance, the Likert scale is a non-comparative ordinal scale
used especially in psychometric studies where the participants
express their level of agreement with a given statement. Note that
reproducibility is low with this type of study [52–54].

The results of a VGA study can be summarised with the VGA Score
(VGAS):

VGAS
S

N N

co i
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where Sc = the given individual scores for observer (o) and image
(i), Ni = total number of images, and No = total number of observ-
ers. In a VGA study to analyse the statistical difference, the analysis
of variance (ANOVA) is calculated, associated with procedures for
multiple comparisons.

For VGA, clinical images are required, which increases the im-
plementation difficulties and also forces the avoidance of naïve
observers. Indeed, to assess image quality in the VGA paradigm, the
observer experience is very important if we want the obtained results
to be as little distorted as possible. Nonetheless, VGA results are sub-
jective and the analysis may be influenced by the experience of the
radiologist, for instance in visualising different noise textures.

Decision theory: the statistical approach

It is common practice to specify the performance of diagnostic
systems in physical terms as described in Part 1. However, it is com-
plicated to translate these results to clinical performance. For
instance, in detection tasks, certainty is rarely present. When an ob-
server is asked to detect a signal on a medical image g, the result
is a degree of belief that the signal is present. This degree of belief

is commonly called the response λ(g) of the observer: a low value
denotes a confidence that the signal is absent, whereas a high value
corresponds to the conviction that the signal is present. As shown
in Fig. 10, the probability of obtaining a response can be plotted over
all possible responses for two categories of images: those that do
not contain a signal (top) and those that do contain a signal (bottom).
These two curves are called probability density functions (pdf): re-
spectively P(λ|H0) and P(λ|H1), where H0 is the null-hypothesis
corresponding to signal absent and H1 is the alternative hypothe-
sis corresponding to signal present. In radiology, the observer is
forced to make a decision. In the present framework, this means
that the observer chooses a threshold λc above which a positive de-
cision is made. Below λc the observer makes a negative decision.

The integral of the distribution P(λ|H0) that is below the thresh-
old is called the true negative fraction (TNF), or specificity. On the
other hand, the integral of the distribution P(λ|H1) that is above the
threshold is called the true positive fraction (TPF), or sensitivity. If
the detection strategy is good, one expects both specificity and sen-
sitivity to be as high as possible. However, Fig. 10 shows that
changing the threshold changes the balance between specificity and
sensitivity: increasing one parameter leads to a decrease of the other.

There are mainly two ways to quantify the effectiveness of the
strategy. The first is the signal to noise ratio defined as follows:

SNRλ
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where μ0 and μ1 are the means of P(λ|H0) and P(λ|H1), respective-
ly, and σ0 and σ1 are the corresponding standard deviations. SNRλ

is a global figure of merit that broadly describes how two distri-
butions are separated. This equation is similar to Eq. (6) about SDNR
and its purpose is to compare two situations (with and without
noise). However, Eq. (31) characterises the response of an observ-
er and not a signal or a noise directly measurable on an image.

SNRλ = 0 corresponds to the situation where the two pdfs have
the same mean. If their shapes are the same, the decision based on
such a strategy will be just guessing, and therefore the image does
not transfer any information about the presence of the signal. A large
SNRt corresponds to well-separated pdfs. If the threshold is chosen
between the distributions, then a large number of correct re-
sponses are expected.

A second way to quantify the effectiveness of the strategy is the
receiver operating characteristics (ROC) curve, which displays all the
possible combinations of sensitivity and specificity obtainable whilst
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Figure 10. Probability density function of the observer response λ when pre-
sented with signal-absent images (top) or signal-present images (bottom). The vertical
line λc indicates the threshold response above which the observer gives a positive
response. TNF: true negative fraction; FPF: false positive fraction; FNF: false nega-
tive fraction; TPF: true positive fraction.
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we vary the threshold from the lowest to the highest possible values
[55].

For historical reasons, the ROC curve displays the TPF versus the
FPF, which is the sensitivity versus the (1 – specificity). If the pdfs
are superimposed, the ROC curve is the straight line TPF = FPF. If the
pdfs are well separated then the ROC curve has a square shape that
passes close to the perfect point defined by sensitivity = 1 and speci-
ficity = 1. If pdfs are Gaussian with equal variances (this is often
assumed in practice), the ROC curve is symmetrical and its inter-
cept with the secondary diagonal corresponds to SNRλ (Fig. 11). The
value computed from the intercept between the ROC curve and SNRλ

is called the detectability index and usually represented with the
symbol d′.

In practice, the observer (e.g. the radiologist) chooses a given
threshold that corresponds to an operating point on the ROC curve.
An objective way to define an optimal combination of sensitivity
and specificity consists of computing the mean cost associated with
all possible combinations of decision (negative or positive) and reality
(signal absent or present):

C C P D H P H C P D H P H
C P D H P H C P D H

= ( ) ( ) + ( ) ( )
+ ( ) ( ) +

00 0 0 0 01 0 1 1

10 1 0 0 11 1 1(( ) ( )P H1
(32)

where Cij is the cost associated with decision Di and reality Hj, P(Di|Hj)
is the pdf to make a decision Di when the reality is Hj, and P(H1) is
the probability to have a signal present. The latter is called preva-
lence in the case of the disease present in a population. By taking
into account the basic properties of probabilities (e.g.
P(H1) = 1 − P(H0)), Eq. (31) can be easily rewritten in terms of the
four costs, sensitivity, specificity and prevalence.

All measures of clinical image quality using the decision theory
are based on the truth. This truth can either be the ground truth
(the truth is known exactly) or a gold standard (based on for in-
stance the pathology outcome or experts opinion). Human observer
studies are valuable as they are able to directly measure clinical
image quality. Unfortunately, these methods are time consuming,
expensive, and the inter- and intra-observer variability is often large.
As a result assessment of clinical image quality is only applied in-
cidentally. These limitations, together with the growing awareness
of the importance of the evaluation of clinical image quality, make
it more relevant to investigate whether model observers can be
used as an objective alternative to human observers. This section
is however limited to the discussion of rating scale experiments

and m-AFC experiments using human observers. Part 3 provides
an in-depth discussion about the use of model observers for this
purpose. To gain insight into the decision making process rating
scale experiments where observers are asked about their decision
confidence can be performed. By varying variation in the decision
threshold ROC curves can be drawn. The section “Rating Scale Ex-
periments” provides more in-depth background of rating scale
experiments. Another way to deal with observer decision criteria
is by using multiple-alternative forced choice (m-AFC) experi-
ments. In m-AFC experiments multiple alternatives are shown to
the observer who is asked (forced) to choose the m-alternative which
is most likely to contain the signal. This type of experiment will
be discussed in detail in the section “Alternative Forced Choice
Experiments.”

Rating scale experiments

ROC analysis is a quantitative method applicable to a binary de-
cision task. The method results in a graphical plot, the so-called ROC
curve (Fig. 11), that illustrates the performance of observers (either
humans or computer models) in the detection or classification tasks
[50,56–58]. In this chapter we focus on the use of ROC analysis with
respect to diagnostic imaging. In diagnostic imaging ROC studies,
observers are asked to evaluate different cases and give a confi-
dence about the presence or absence of an abnormality in each case.
The TPF and the FPF depend on the choice of the confidence level
which results in a positive decision (threshold). Generally, the ROC
curve will be determined from the continuous confidence scale by
varying the discrimination threshold. However, discrete binary con-
fidence intervals can also be used in ROC analysis. An example of
a continuous data experiment could be the assessment of the average
CT number of pulmonary nodules from CT images to classify benign
from malignant nodules (nodules with higher CT numbers are more
likely to be calcified which is a sign of benignity; the average CT
number will generate the continuous data). Discrete data could be
obtained, for example, in a study with radiologists providing a five-
point discrete confidence rating of abnormality concerning a set of
normal and abnormal diagnostic images. For examples of ROC anal-
ysis used in computed tomography see References 59–61.

Theoretically, ROC curves are continuous and smooth. Unfortu-
nately, the empirically derived ROC curves are most often jagged.
Fitting algorithms can aim to create the smoothest curve accord-
ing to the available data points. A wide range of algorithms is
available for this purpose [56]. Often the area under the ROC curve
(AUC or Az) is determined as figure of merit for ROC studies. This
AUC provides a summary measure of the accuracy of the diagnos-
tic test that is independent of class prevalence (in contrast to accuracy
measures mentioned earlier). The AUC would be 1.0 for a per-
fectly performed test. A test performance that is equal to chance
results in an AUC value of 0.5. Sometimes it can be more useful to
look at a specific region of the ROC curve rather than at the whole
curve. In these scenarios, it is possible to compute partial AUC. For
example, one could focus on the region of the curve with a low false
positive rate, which could be relevant for population screening tests
[56]. The detectability, dA, related to a rating scale experiment can
be derived from the AUC:

d AUCA = ( )−2 1Φ (33)

where, Φ = ( )
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If the decision variable distribution is Gaussian under both hy-
potheses (signal present and signal absent), and their variances are
equal, then dA is equivalent to d′.
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Figure 11. The ROC curve displays the true positive fraction versus the false posi-
tive fraction. If both response distributions are Gaussian with the same variances,
then the intercept between the ROC curve and the second diagonal corresponds to
SNRλ.
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Several advantages of ROC analysis can be considered. Among
these is for instance the fact that the ROC approach provides a
simple graphical plot that facilitates visual interpretation of data.
Furthermore, depending on the implications of false positive and
false negative results, and the prevalence of the condition, one
can choose the optimal cut-off for a test from this graph, as the
method provides a description of diagnostic accuracy for the full
range of sensitivity and specificity. Moreover, two or more tests
(for instance radiologists and a Computer Aided Diagnosis (CAD)
system) can be compared, for example, analysing the area under
each curve (where the better test has the largest AUC) [62].
Shortcomings of ROC analysis are related to its need for special-
ised computer software (regarding the curve fitting, AUC value
calculation and confidence analysis on the ROC curve). Also, large
sample sizes may be needed to generate reliable ROC curves.
Finally, the ROC methodology does not optimally take the localisation
task or the option of multiple abnormalities into account. For this
purpose the so-called localisation ROC (LROC) and free response
ROC (FROC) have been introduced. Figure 12 gives a graphical
impression of the different methods and their concepts. Figure 13
gives a decision tree that illustrates the application of the differ-
ent methods.

In LROC studies the observers’ task is to mark a single location
of a suspicious region in each case with a confidence level regard-
ing the observed suspiciousness [56,57,63]. If the marked region is
“close enough” to the true abnormal location, the observers’ mark
is considered a correct localisation. The definition of closeness is
not uniformly defined and changes from study to study. Images with
no targets (controls, benign, or negative cases) are also scored by
marking a “most suspicious” area in the image and by giving this
suspicious area a rating (forced localisation choice). To create an LROC
curve, the TPF of decisions with correct localisation versus the FPF
are plotted. It should be noted that the LROC curve does not nec-
essarily pass the point (1, 1). Unlike the ROC methodology, in LROC
the TPF of decisions with correct localisation may well be less than
1.0 at FPF = 1.0 because of incorrect localisations. Similar to the ROC

methodology, the area under the LROC curve is considered to be a
figure of merit for task performance.

To account for both the localisation and detection of abnormali-
ties in images containing an arbitrary number of them, the free-
response ROC (FROC) methodology can be used [56,57,63]. If the
localisation mark is within a tolerance range around the true lo-
cation and the rating of this mark is above a threshold, then a TP
is realised. Otherwise a FP decision occurs. The free-response ROC
curves are plotted by plotting the TPF (y-axis) versus the number
of FP detections per image (x-axis) [64,65].

Figure 12. Related methodologies: ROC, LROC, FROC. The task in each of the methods is to give a confidence level concerning the presence of a true target (ROC) eventually
in combination with the perceived location (LROC/FROC). In these examples the confidence level scale runs from 1 to 5. A rating of 4 on this scale is given as 4/5 (4 out of
5). Arrows indicate the perceived location.

Figure 13. Decision tree illustrating the application of the different methods. The
figure is a simplification of a figure provided by Wunderlich and Abbey [63]. Alter-
native methods (*) concern so-called Alternative FROC (AFROC) methods [54].
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Alternative forced choice experiments

In forced choice experiments the observer has to make the de-
cision ‘signal present’ between alternatives which are offered, even
if this means that he has to guess. Compared to ROC studies, m-AFC
experiments are faster and easier to perform [66]. However, m-AFC
experiments do not provide insight into the underlying distribu-
tion functions and the trade-off between sensitivity and specificity
[56]. Therefore, m-AFC is sometimes referred to as a poor measure
of sensitivity [67].

The natural outcome of m-AFC experiments is a proportion of
correct (PC) response. In m-AFC experiments and under assump-
tion of Gaussian distribution of the decision variables (λ), d′ and
PCm of a m-AFC task are related by:
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This formula can be solved using tabulated values or numeri-

cal analysis (standard root finding methods) [69–72]. In the 2AFC
experiment, this can be rewritten to:

′ = ( )−d PC2 1
2Φ (35)

For 2-AFC experiments, the PC is equal to the AUC but with
human observers, the detectability obtained with the alternative
forced-choice paradigm is larger than the detectability obtained with
the ROC paradigm [50].

An example of setting for 2-AFC Signal Known Exactly/
Background Known Exactly detection experiments is depicted in
Fig. 14, where samples with signal present or absent are dis-
played together with a template of the target.

A detailed comparison and discussion about the use of ROC and
AFC experiments as well as the optimum selection of m has been
presented by Burgess [66]. This paper concludes that depending on
the research question, a deliberate choice between ROC – m-AFC

experiments and the value of m is possible. In general m-AFC ex-
periments are chosen if the study goal is to determine how well a
certain task can be performed and when there is full control over
both the ground truth and the SNR associated with the task. Most
commonly m has a value of 2 or 4 but any scalar number larger than
two is possible [73]. Burgess has demonstrated that a higher value
of m will result in a smaller coefficient of variance. Besides this, he
has shown that if d′, for experiments with different values of m, is
plotted against the signal to noise ratio (SNR) of the task they will
fall on a the same line, independent of m [74]. From this it can be
concluded that the choice of m depends essentially on the SNR range
for the experiments and the accuracy needed. The SNR range which
can be used for an experiment is dictated by the SNR related to the
lower threshold (halfway between chance and 1) and 0.95–0.98. This
upper level is advised to avoid issues due to observer inattention
and their impact on d′ [66,75]. This means that in a 2-AFC exper-
iment, the SNR range should be chosen to result in d′ values between
0.95 and 2.33, whilst this should be between 1.23 and 2.92 for 4-AFC
(Fig. 15).

m-AFC experiments can be designed with m independent image
combinations or single images which are divided into m areas in which
the task can either be signal detection (present-absent) or classifi-
cation (benign–malignant) [76,77]. Sample sizes for m-AFC
experiments are based on the comparison of the expected differ-
ence between the PCs of the settings under evaluation for which
standard statistical approaches can be followed. m-AFC experi-
ments are based on the signal-known-exactly (SKE) paradigm, which
implies that clues should be provided regarding the signal and its po-
sition. Therefore, a template of the signal should be visualised together
with the m alternatives and an indication of the possible position of
the lesion should be indicated. Failure to provide clues on the signal
position will result in non-linearity between SNR and observer d′ [66].
Finally, when designing m-AFC experiments care should be taken to
avoid bias. For this purpose, the signal should be randomly assigned
to one of the m alternatives and the observer PCs should be inves-
tigated for the tendencies to favour certain alternatives (e.g. the observer
tends to choose left when he is unsure) [66].

Simulated and phantom images are generally well suited to
conduct m-AFC experiments because of the full control of ground
truth and SNR related to the task [66]. Phantom studies with the
m-AFC paradigm are used to evaluate image quality of CT with both
human and model observers [77–79]. But also for other modali-
ties m-AFC methodologies are adapted into phantoms for quality
control procedures like the CDMAM test object in mammography
[80] or the CDRAD for general radiology [81,82].

Yes–no detectability experiments

In yes–no experiments observers only need to decide about the
presence of an abnormality. Since yes–no experiments do not provideFigure 14. Interface of a 2-AFC human observer SKE/BKE detection experiment.

Figure 15. Selecting SNR range for a 2-AFC experiment (dotted black line) and a 4-AFC
experiment (solid grey line).
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insight into the decision-making process of the observer they are
not often used for measuring clinical performance very often. In the
yes–no experiment the observer inspects one displayed image at
a time and must indicate if the signal is present or absent. For a
model observer, the yes–no performance is computed by compar-
ing the decision variable to a threshold [50]. If the decision variable
is higher than a threshold, the decision is: the signal is present. If
the decision variable is less than the same threshold, the decision
is: the signal is absent. In this test we assume that the case where
the decision variable is equal to a threshold is negligible. With this
performance it is possible to obtain four outcomes: true positive
(the signal is present and the observer outcome is present), false
positive (the signal is absent and the observer outcome is present),
true negative (the signal is absent and the observer outcome is
absent) and finally false negative (the signal is present and the ob-
server outcome is absent). In the yes–no experiment the detectability
index is given by:

d TPF FPFYN = ( )− ( )− −Φ Φ1 1 (36)

The TPF represents the True Positive Fraction, and it means the
probability given that the signal is truly present in the image. The
False Positive Fraction represents the probability that when the signal
is absent the observer indicates that the signal is present.

Model observers

ICRU Report 54 suggests that methodologies based on statisti-
cal decision theory should be used in medical imaging [58]. Under
this framework it is understood that the imaging performance
depends on various factors: (1) measures describing the image con-
trast, image sharpness and the quantity and character of noise; (2)
the detailed nature of the diagnostic task, including the clinically
important details and the figure of the patient, and the complexi-
ties arising from variability between patients; and (3) the degree
to which information provided in the image is perceived by the cli-
nician. Points (1) and (2) above are related to the information that
is being recorded in the image data, but the ability of the human
observer to extract the image information (Point 3 above) may also
be an important or even the single limiting factor affecting diag-
nostic outcome.

Related to this, to simplify image quality assessment, the imaging
process is often divided into two separate stages: the first stage con-
sists of the image data acquisition and image formation stage; the
second stage consists of the further processing of these data and
their actual display to the human observer [58,83]. The first stage
can be analysed rigorously by using the concept of the ideal ob-
server, at least in principle and also in practice in simple cases. The
ideal observer uses all available information in an optimal way for
its decision; the performance of the ideal observer in a given imaging
task can then be taken as a measure of the image information related
to this task. The ability of the human observer to extract this image
information can be measured separately; if the human observer is
not able to use the recorded image information this implies leeway
–and a need– to improve the image processing or display stage to
be better suited to the human observer. This chapter will mainly
concentrate on the imaging stage and leave the display stage largely
outside the scope; the main aim of this paper is to review methods
for evaluating CT scanners and their performance and not the quality
of display equipment and display conditions. However, some
methods which try to include features of human observers are
shortly presented.

The performance of the ideal observer can usually be evalu-
ated only for simplified classification tasks, such as the signal-
known-exactly/background-known-exactly case, denoted as SKE/
BKE. In this case the ideal observer has all a-priori information of

the task, and its performance for classifying images to signal-
present and signal-absent cases depends only on the amount of
information in the image [58]. The performance of the ideal ob-
server can therefore be taken as a measure of the task-related image
information. Other tasks, involving uncertainty of the signal and the
background, would be better related to clinical image quality as-
sessment than the SKE/BKE. In such tasks the performance of the
observer is not just dependent on the information in the image. The
amount of a-priori information about the task that the observer has
needs to be taken into account and will affect the performance. It
may then sometimes be difficult to quantify the actual effect that
this a-priori image information has in the task performance.

Relying on stylised imaging tasks based on the SKE/BKE para-
digm may not always be reasonable; see, e.g., Myers et al., where
the problem of aperture-size optimisation in emission imaging was
considered and it was shown that the optimal aperture would be
highly different for the detection of a simple signal in a known back-
ground and in a lumpy background [84]. Often, however, it may be
considered plausible that the performance of an imaging system in
tasks involving incomplete a-priori information could be mono-
tonically related to the outcome in similar detection tasks in the
case of full a-priori information (SKE/BKE) [85–88]. This appears to
be the case in the paper of Brown et al., where the ideal obser-
ver’s performance was studied for the signal position unknown case
[89]. However, we are still far from completely understanding how
a-priori information and the actual image information interact in
medical imaging.

In phantom measurements the variability and non-uniformity
of real patient images are not usually present. In the SKE/BKE par-
adigm any background structure is treated as being a deterministic
known structure, which does not impair detail detectability. This
may not always be realistic for a human observer, whose detec-
tion performance may in some cases be more impaired because of
background variability than because of actual stochastic noise
[90–94], but is certainly applicable to the ideal observer. Human ob-
servers seem to operate somewhere between two interpretations:
background variability appears to function as a mixture of noise and
deterministic masking components. For a more detailed discus-
sion on this matter, see, e.g. Burgess and the references therein [91].

For a thorough presentation of modern image science, see the
book by Barrett and Myers [57] and by Samei and Krupinski [56].
Another useful handbook on imaging systems, image quality and
measurements has been published by the International Society for
Optical Engineering [50]. Also, a discussion and review of task-
based methods for assessing the quality of iteratively reconstructed
CT images have been published recently [25]. They conclude that
Fourier-based metrics of image quality are convenient and useful
in many contexts, e.g., in quality assurance, but the assessment of
iteratively reconstructed CT images requires more sophisticated
methods which do not rely on assumptions of system linearity and
noise stationarity; these assumptions are prerequisites in the Fourier-
based methods [95–97].

Linear observers

Mathematical theory
A linear observer can be described with a decision statistic λ(g)

which is a linear function of the image data, instead of being a more
general function. In the vector notation of images this can be written
as an inner product of a template w and the image g

λ g w g( ) = T (37)

The non-zero elements of the template correspond to image lo-
cations where the pixel value needs to be taken into account, and
by what weight. The weight can be either positive or negative. Pixels
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with the value zero in the template do not influence the decision
statistic at all, and the observer considers the data in those pixels
to be irrelevant for the decision.

The importance and frequent use of linear observers stems mainly
from their manageability and ease of use. Further, as was seen in
the preceding chapter, the ideal observer of many cases may be ob-
tained in a linear form. This is not the case for all detectability tasks,
however. For example, the ideal detection in the case involving un-
certainty of the signal position will result in a non-linear test statistic
(see, e.g., Brown et al. [89]). A linear observer for this task would
consist just of a template which is obtained as the convolution of
the pdf of the signal position and shape. Therefore, essentially, this
observer would measure only the mean brightness of the image and
it seems clear that it would be much less efficient than a human
observer, for example.

In order to compute the SNR of a linear observer, we first need
to express the mean response under hypothesis Hj as well as its as-
sociated variance:

λ λ

σ

j j
T

j

j
T T

j
T

j

H H

H

= ( ) =

= −( ) =

g w g

w g w g H w wj
2 2 K

(38)

This allows us to easily express the signal to noise ratio of a linear
observer by injecting Eq. (38) into Eq. (31):

SNR
H HT

Tλ
2 1 0

2

1
2 0 1

=
−( )( )
+( )

w g g
w K K w

(39)

Here, it is important to recall the assumptions required for Eq. (39)
to be meaningful. First, this requires that the conditional distribu-
tions of λ are normal. This is the case at least when the noise in
the images is multivariate normal. Secondly, if the covariance ma-
trices for the signal and background cases are different, the SNR does
not define the entire ROC curve, but the area under the ROC curve
and the percentage of correct answers in a two-alternative forced-
choice test using the same images are still specified by the SNR. An
inequality of covariance matrices K0 and K1 would also infer that
a linear observer is not ideal, and may fall far beyond the true ideal
observer [98]; however, if measured covariance data are used, it is
useful to improve the precision of the K-estimate by including both
measured covariance, K0 and K1.

By inserting the w-templates of the PWMF and the NPWMF
to Eq. (39) we obtain the well-known expressions for their
SNR

SNR PWMF
T T2 1 1= =− −s K s S W S (40)

and

SNR NPWMF
T T T T2 2 2= ==( ) ( )s s s Ks S S S WS (41)

where we have denoted the Fourier transform of s by S and that
of matrix K by W. If the noise is stationary, W is a diagonal matrix
and its diagonal values represent the NPS. Then, decomposing the
SNR2 to components: each frequency k contributes by amount

SNR I S WPWMF k k k
2 2

, = (42)

to the total SNR2
PWMF. This simplicity is lost if W is not diagonal.

The best possible linear observer is called the Hotelling observ-
er. The Hotelling observer is equal to the PWMF in the case of
signal-independent (additive), normally distributed noise and both
of these reduce to the NPWMF, when the noise is white. As
discussed above, the Hotelling observer may also fall far below
ideal performance, for example, in the signal position unknown

case, where the ideal decision statistic is not a linear function of
image data [89].

The strategy of the ideal observer may be complicated by K not
being diagonal. However, in the case of uncorrelated image noise
the strategy is self-evident: the ideal observer then just looks more
keenly to image pixels where the presence of the signal is known
to have a strong effect and where the uncertainty of the measure-
ment (noise) is small. Image areas that are not affected by signal
presence need not be observed at all. This same interpretation applies
to the case of coloured, stationary noise as well; then the Fourier
transformed data will have a diagonal covariance matrix, where the
diagonal elements constitute the noise power spectrum. In this case
the ideal observer puts more emphasis on spatial frequencies where
the signal presence makes a large contribution and less emphasis
on frequencies which contain more noise.

If the image noise is not white, the NPWMF observer is sub-
optimal because it does not take into account the noise correlations
between pixels, or equivalently, the different noise power at various
spatial frequencies. Therefore, in this case, the observer is not tuned
against the noise similarly as the ideal observer and it shows a penalty
of this in its performance. However, if the frequency spectrum of the
signal is concentrated on a relatively narrow band of frequencies where
the frequency dependence of the NPS is modest, one can expect the
NPWMF observer to perform nearly as well as the ideal PWMF does.
This may happen, for example, when the signal to be detected does
not have sharp details and is of a relatively large size.

However, note that by definition, the NPWMF believes that the
background level is equal in all images and therefore needs not be
observed. The NPWMF measures the image intensity only in the
pixels that belong to the expected signal position and discards the
data in all other pixels. For a disk signal this would be equivalent
to observing just the total image intensity of the signal disk area
and masking away all other image areas: no reference to the con-
trast between the signal and the background is made. If in fact, there
is any – even small – variation in the background level from image
to image, or if there is any low-frequency background variability
(e.g., variable lumpy background structures) which in reality can
have an effect on the image intensity in the signal detail area, the
NPWMF can be considered as being a misled observer, which will
perform extremely poorly and often performs worse than human
observers. This was the case, for example, in a paper that consid-
ered signal detection in added low-pass correlated noise and found
that the NPWMF observer was very inefficient and even humans
significantly outperformed it [99]. This and other similar results
greatly diminished the interest in the NPWMF observer.

To improve this situation, Tapiovaara and Wagner [98] intro-
duced the DC-suppressing observer, which leaves the average
brightness of the image (or the zero-frequency channel) outside of
the decision.1 This observer is achieved by subtracting the mean pixel
value of the NPWMF-template from every pixel of the template

λDCS k
TN s= − ( )[ ]−s g1Σ 1 (43)

Here, N is the number of pixels in the analysed image area and
1 denotes a vector with all elements equal to unity. In the Fourier
domain this observer is:

λDCS
TS= − =[ ] =

−∑S e G0
0 S Gk k*

k

N

1

1 (44)

1 In practical imaging measurements one often does not analyse the whole image
area, but considers only a relatively small sub-area containing the signal and a rea-
sonable surround of it. Then the image vector g corresponds to this sub-area, and
the zero-frequency of this image data includes contributions from very low-
frequencies in addition to the strict zero-frequency of the whole image data.
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This modification of the NPWMF-observer turned out to be crucial
for the performance of the observer in measurements of fluoro-
scopic imaging, where excess noise in the mean image brightness
strongly and variably impaired the performance of the NPWMF [100].
This zero-frequency variability can be assumed to be common in
other fields of radiology as well: the exact mean image brightness
is not probably an important diagnostic feature in any imaging mo-
dality, and, on the other hand, if there is excess variability in the
brightness, including it – as the NPWMF does – will result in a
notable performance penalty. Such a variability in average bright-
ness can be seen as a delta spike at the origin of the NPS and can
be properly weighted by the PWMF, of course. However, in many
recipes for measuring the NPS, the DC-component is normalised out
and therefore equals zero in the NPS results (e.g. Boedeker et al.
[101]). Whilst noiseless data in real systems are not realistic, it is
then important not to include the zero frequency signal compo-
nent in the SNR calculation either.

Non-prewhitening with eye filter
Another modification of the NPWMF includes filtering of the

image with an eye-filter, intended to obtain a better agreement of
the performance of this model observer and human observers. The
observer is often denoted as NPWE [102] (a similar observer model
has been presented earlier by Loo et al. [103]). This observer is usually
expressed in the spatial frequency domain and the eye filter E mimics
the visual spatial frequency response function (or the contrast sen-
sitivity function) of the human eye. The application of E requires
knowing the dimension of the image and the viewing distance. The
decision function of this observer is then:

λNPWE
T T T= =[ ]ES EG S E EG (45)

It is noted here that the eye filter also suppresses the zero-
frequency, like the DCS-observer above, but the NPWE observer also
takes very low frequencies into account with a low weighting. This
is the main factor for the NPWE observer performing much better
than the NPWMF in studies involving excess noise in very low fre-
quencies [25,102]. This means that the usefulness of this observer
model may actually be more related to its suppressing of low-
frequency noise than in its attempt to mimic human vision.

As an example of NPWE performance, Fig. 16 shows the detect-
ability index (d′) or SNR as a function of object diameter for the 0.5%
contrast group of the Catphan and three mAs levels acquired in a
Toshiba Aquilion ONE 320 detector-row CT scanner. The NPWE de-
tectability improved with increasing mAs, as the noise level of the
images decreased, for all the objects [50].

The detectability index is given when two assumptions are veri-
fied [73]. Firstly the template responses must be Gaussian and
secondly the template responses are statistically independent [90].
This performance is given in terms of distance in standard devia-
tion units between the signal distribution and the noise distribution.

′ = 〈 〉 − 〈 〉
d s nλ λ

σλ
(46)

where λs is the mean model response to the signal, and λn is the
mean model response to the background. σλ is the standard devi-
ation of the model response.

The advantage of this metric is that it computes directly from
the image statistic.

Model observers can also be otherwise modified in order to mimic
human performance better, for example, by including internal noise
[104,105]. Internal noise degrades the model’s performance, and
takes into account the fact that human observers have “noise” by
not giving necessarily the same answer when a certain image is pre-
sented twice or more to be scored [106]. Many approaches can be
used to decrease the model’s performance, and each has pros and
cons [105,107]. Such models are of interest in efforts to reproduce
the efficiency of the visual detection performance of humans, but
are not explained in this review. In Fig. 17 the PC values were trans-
lated into d′ and an efficiency (η) was calculated to normalise the
model observer results, fitting d′ human as a function of d′NPWE,
both squared. As the curve representing d′ as a function of PC satu-
rates above 3 (PC ≈ 0.98) for 2-AFC experiments, only the values
below this threshold were taken into account [108].

Channelised Hotelling Observer
Another type of linear observer models is the Channelised

Hotelling Observer [109] (CHO) either with or without internal noise;
only the latter model is considered here. A thorough treatment of
both can be found in Abbey and Barrett [110]. The motivation for
this observer results both from its effect in reducing the image data
from a large number of pixels to a much lower number of scalars,
called channel responses and by the ability of such models to mimic
the detectability results of human observers. If the channels in the
model are selected such that they help in the tuning against the noisy
frequencies without losing too much of the signal energy they may
also provide an improvement over the non-prewhitening observ-
er types and a useful approximation for the ideal observer. The
reduction of dimensionality especially simplifies computing and
inversing the covariance matrix.
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Figure 16. Detectability index (d′) as a function of object diameter for the differ-
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The CHO does not have access directly to the pixel values (or the
Fourier transform) of the image. Instead, first the image data (g) are
linearly combined to a small number of channelised data (u) by mul-
tiplication with a matrix T:

u T= Tg (47)

Here the column vectors of T represent the spatial profiles of the
channels. These channelised data are then combined with a weight-
ing template v to a linear decision function:

λ = v uT (48)

If the noise in the image data g is Gaussian, it is also Gaussian
in the channel u, and we already know that the ideal observer
(which, however, has access only to the channelised data) is ob-
tained with weighting vT = (u1 − u0)TKu

−1, and the decision function
of this observer is:

λCHO T
T

u
T

u
T

, = =−( ) −( )− −u u K u u u K T g1 0
1

1 0
1 (49)

Above, the channels were presented in the image domain. Usually,
however, the channels are specified in the frequency domain, and
may be either non-overlapping frequency intervals or overlapping
functions of various forms, such as sparse or dense difference-of
Gaussians, Laguerre–Gauss polynomials or other functions [109,111].

Note that in the case of stationary image noise the non-
overlapping channel models result also to a diagonal covariance
matrix, because the frequency channels remain independent,
whereas the overlapping channels cause correlations in the noise.
If one prefers working in the image domain, one can obtain the
spatial representations of the frequency selective channels by taking
the inverse Fourier transforms of the latter.

In image quality assessment when using these channelised
models it is important to note that the channelised Hotelling ob-
server can adapt to the signal and the image covariance only after
they have passed through T. Then, for example, the observer is sen-
sitive only to signals that cause a change in the channelised signal
TTs (or, equivalently, in the frequency domain representation). For
sparse channel models with just a few channels, a significant loss
of information may occur in the formation of the channel re-
sponses [110].

Also, these observers are typically zero-frequency suppressing,
although, being tuned against the noise in the different channels,
they could also otherwise handle variability in the average image
brightness better than the NPWMF. This would require, however,
that if zero-frequency is included in the lowest frequency channel,
not much of the important signal energy shall be included in this
channel.

Usually, in applications related to medical imaging, the chan-
nels are defined to be cylindrically symmetric and are specified in
terms of the radial frequency. The use of such models is usually re-
stricted to image signals that are also cylinder-symmetric.
Channelised Hotelling observers have been used with good success
to predict the performance of human observers in detection tests.

As an example, Fig. 18 shows the CHO performance (detectabil-
ity index (d′)) with dense of difference of Gaussian for an 8 mm
sphere at 20 HU of the QRM 401 phantom and three CTDIvol levels
acquired in GE HD 750 CT scanner.

Agreement between observers

The first step to compare model observers and model/human ob-
servers is to have the same metrics to measure their performance.
For a specific task, background, signal and model the investigator
must choose between the area under the curve (AUC), sensitivity/

specificity pairs, the percent correct (PC), the signal to noise ratio
(SNR) or the detectability index (d′), then a comparison is possible.

Kappa test
To measure the agreement between observers it is common to

use the Kappa coefficient. When observers are two or more the inter-
observer variation can be computed. The Kappa test is based on the
difference between the observer agreement (percentage where ob-
servers agree among themselves) and the expected agreement
(agreement obtain just by chance). The formula for the Kappa test
is then as follows:

κ =
−
−p p
p

e

e

0

1
(50)

where p0 is the relative observed agreement among reviewers, and
pe is the probability of chance agreement.

The Kappa scale ranges from −1 to 1. 1 represents a perfect agree-
ment; 0, the agreement is obtained just by chance; and −1 represents
a systematic disagreement. A generic scale proposed by Landis and
Koch is used to help the investigator to interpret the Kappa coef-
ficient (Table 3) [112].

The Kappa coefficient estimated itself could be obtained just by
chance, so a P value can be calculated to interpret the result of the
Kappa test. The P value is sensitive to sample size, so another Kappa
test can be used to interpret the result, the weighted Kappa assigns
weighting more or less important to different categories, to focus
on categories where the difference is significant. But the weight-
ing is defined by the investigator, and the expert can disagree on
the tuning of the weighted Kappa. The Kappa test is used to inter-
pret the agreement, but this test is affected by the prevalence of the
disease [50] (Fig. 19); in rare cases a low Kappa test does not reflect
a low agreement. Moreover, the Kappa test can give strange results
when the observers have a high degree of agreement and when they
are close to PC = 1.
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Figure 18. Detectability index (dA) as a function of CTDIvol for the different algo-
rithms for a sphere of Ø 8 mm and a contrast with background of 20 HU in the QRM
401 Abdomen Phantom (QRM, Moehrendorf, Germany).

Table 3
Genetic scale investigator to interpret the Kappa
coefficient.

0.01–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement
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Bland–Altman test
A Bland–Altman plot is often used to compare results between

model observers and human observers [113]. When both observ-
ers measure the same parameter (i.e. d′ or PC) with the same images,
most of the time the correlation is good [57,108]. A good correla-
tion for two observers that measure the same parameter does not
imply a good agreement between the two observers.

A Bland–Altman plot shows the mean of the two observers in
the abscissa, and the difference between the two observers in the
ordinate. The limits of agreement are defined by the mean of the
difference and the standard deviation of the difference. If a method
is the gold standard then d represents the bias, whereas if any
methods are standard, d represents only systematic differences.
Figure 20 shows an example comparing the performance of the
NPWE model and human observers for a given detection task.

Conclusion and perspectives

Since the introduction of CT many efforts have been made to
balance image quality with patient exposure. Image quality was first
assessed using signal detection theory, and basic parameters such
as image noise and spatial resolution, which made it possible to eval-
uate the strengths and weaknesses of acquisition protocols. With
the technological developments of CT it became necessary to assess
units in order to objectively enhance the benefit of new techno-
logical solutions. Global figures of merit of image quality were

derived, still using signal theory functions, normalising the result
by a standardised dose indicator: the CTDIvol. If this approach seems
enticing one has to remember that the use of one number to judge
image quality is a simplified solution that can lead to false conclu-
sions. Moreover, image quality assessment methods based on signal
theory only do not include a clinically relevant task. With this kind
of approach one could optimise aiming at getting the best theo-
retical image quality, rather than ensuring that images convey the
relevant clinical information to make a correct diagnosis. In such
a context, image quality assessment in the field of medical imaging
should be task oriented and clinically relevant.

The use of mathematical model observers may be an appropri-
ate solution, opening a way forward, even if the tasks investigated
remain very simple and far from clinical reality. As shown in the
review, there are several types of model observers, and the choice
of a single solution might not be optimal. The disadvantage of model
observers is that they are defined for simple situations, like the de-
tection of a representative signal in a given phantom, and surely
do not cover the whole range of characteristics that define image
quality at the clinical level. This drawback can nonetheless become
an advantage because their calculation can be kept relatively simple;
they are objective and compatible with new image reconstruction
techniques such as iterative reconstruction. They also lead to re-
producible results which can be representative of human perception
whilst avoiding the burden of actual studies with human observ-
ers. They could be used to compare clinical protocols in terms of
image quality and dose levels to initiate an optimisation process.
Nevertheless, more studies should be performed in the future on
correlations between model observer outcomes and human diag-
nostic accuracy.
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4. Conclusions and perspectives 

SIR algorithms were released a few years ago onto the CT market. They are now widely used in 

clinical routines in order to reduce the dose delivered to patients during CT examinations and/or 

improve image quality. By investigating image quality using both a clinical and physical approach, this 

work has shown that SIR are efficient solutions to reduce dose in CT procedures while maintaining 

the information necessary to perform an accurate diagnosis. 

 

Previous work already showed that simple scalar metrics based on noise measurements in the spatial 

domain (like SD, CNR or SNR) was not sufficient to optimise CT protocols when dealing with IR 

algorithms [Miéville PhD, 2012]. Indeed, the outcome of these simple metrics is systematically 

improved with IR, because they integrate knowledge of the noise statistics to penalise pixel 

variations and reduce noise. Miéville’s work [Miéville PhD, 2012] therefore suggests relying on 

Fourier-based metrics to get more information, especially about the way the texture of the noise is 

modified when using SIR. In this context, our clinical studies showed that Fourier-space tools (mostly 

NPS and MTF for the respective assessment of noise and spatial resolution) are useful for helping 

radiologists select the best option when performing a clinical examination. However, these studies 

also highlight the need for developing more elaborate tools, which are in compliance with the 

requirements of IR techniques. If only small adaptations are necessary regarding the noise estimation 

using the NPS (like using small ROIs or focusing the measurement on particular regions of the image 

in order to overcome noise stationarity problems), things are different for the spatial resolution 

estimation using the MTF since this parameter might also be signal dependent. 

 

Therefore, we developed and tested the TTF metric, the new spatial resolution metric resulting from 

the above-mentioned considerations, in the second part of our study (i.e. physical approach). It 

managed to overcome the linearity problems of images reconstructed using IR algorithms and to 

yield reliable resolution measurements. In spite of the complexity of the detection processes 

performed by radiologists, the use of the TTF enabled us to better understand radiologist 

impressions when dealing with the examination of relatively high-contrast structures. This metric 

was in particular quite useful to investigate the spatial resolution reduction that could be associated 

to multi-plane image reformatting (MPR). 

 

Having investigated the problem of spatial resolution characterisation when dealing with IR, we then 

focused on the detection of low-contrast structures, a task that is strongly dependent on the noise 

aspect of the image. If the use of NPS makes it possible to explain certain changes in image texture, it 

cannot be directly linked with the detection of structures on radiological images. To get some 

information concerning the detectability of structures one needs to use task-based type metrics. In 

this context, model observers are particularly appealing and can be seen as a reliable solution for 

objective image quality assessment in relation to a radiologist’s task. In this work we were able to 

optimise CT protocols by establishing links between an objective image quality parameter measured 

by model observers on phantoms and the actual detection of simple structures by human observers. 

Several types of model observers were used regarding their properties in relation to our 

experimental paradigm. In a clinical paradigm where model and human findings on image quality had 

to be compared, we relied on an anthropomorphic model observer, whereas a more physical 
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paradigm in which only purely physical image quality parameters had to be estimated meant the use 

of ideal model observers. Similarly, our method also relied on the use of model observers in the 

Fourier space for high-contrast lesions, whereas the detectability of low-contrast lesions was 

assessed using image space model observers. Using this methodology, we were able to demonstrate 

that among the different SIR, MBIR constitutes an efficient type of reconstruction algorithm, since its 

use enables a drastic dose reduction while preserving the detectability of low-contrast structures. As 

a matter of fact, some of our results indicate that in certain conditions, a dose level between 1 and 5 

mGy would still allow for an accurate diagnosis [Ott, 2015 a; Ott, 2015 b]. 

 

Although this work has led to several answers regarding the use of SIR algorithms in the clinic and 

their potential dose benefits without impacting image quality, there are still several open questions 

on the topic. Some work remains to be done in order to ensure that the outcome of the model 

observer matches human detection. To get a reasonable match between the CHO and human 

observers it is necessary to introduce a noise function into the mathematical model observer. One 

should ensure that the noise function introduced into the model is robust enough to the change of 

reconstruction algorithm. Current model observers produce reasonable results when dealing with 

the detection of simple structures in homogeneous backgrounds. This is obviously an 

oversimplification of the actual radiological problem. Thus, a great amount of work remains to be 

done by medical physicists to better understand the reliability of the model observer approach. 

Furthermore, we need to know the type of signals that are very important to transfer to the image to 

ensure an adequate diagnosis. This information is the basis of the optimisation process. This work 

has shown that a close collaboration between the world of medical physics and radiology is 

necessary to take full advantage of the tools offered by manufacturers. In this sense, we suggest that 

the work here helps open a new type of collaboration between medical physicists and radiologists. 

 

Lastly, if all patients undergoing CT examinations could take advantage of the above-described 

optimisation scheme, we believe that children and young adults could nevertheless retrieve an even 

bigger benefit out of it. Indeed, those populations are particularly sensitive to radiations effects and 

should therefore be handled cautiously regarding the dose amount they receive when undergoing 

medical examinations. 
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Appendix: Details of FBP reconstruction 

This appendix presents the main steps for the derivation of the filtered back projection formula. 

Developments are based on [Hsieh, 2009]. 

 

First step entails the demonstration of the Fourier slice theorem (FST). 

This theorem stats that, considering a 2D function f(x,y): the Fourier transform of a parallel 

projection of        done at an angle θ is equivalent to the 2D Fourier transform of        along a 

line going through the origin and taken at the same angle θ in the Fourier space. 

This situation can be summarised according to Figure A1: 

 

 
Figure 1A: Illustration of the Fourier slice theorem. 

 

The transformations between the two reference systems      
 
       can be summarised as: 

 
             
             

                      

  

  

  

  
  

  

  

  

  

       
 

       
 

                                    

 

The projection of        at an angle θ, along the s axis can be written as: 

                 

  

  

                                                              

The Fourier transform of        over r can then be written as: 
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Using the elements stated in Eq. A.1 to perform the coordinate changing      
 
      in Eq. A.3 we 

obtain: 

                                       

  

  

                                   

  

  

 

 

On the other hands, the 2D Fourier transform of        can be calculated as: 

                           

  

  

                                             

  

  

 

If we let:                     in Eq. A.5, then the right hand side of Eq. A.4 and A.5 are the 

same and we have: 

                                                                             

 

 
Since                     also define a straight line tilted from   regarding the u axis in the 
Fourier space, then Eq. A.6 demonstrates the FST. 
 
From there, we can determine the formula of the filtered back projection (that is to say Eq. 1). 
 
Starting from the identity: 

                          

  

  

                                                     

  

  

 

The transformations between the two reference systems      
 
       can be summarised as: 

 
       
       

                      

  

  

  

  
  

  

  

  

  

       
   

       
 

                                          

Using those elements to perform a coordinate changing in Eq. A.7 yields: 

                           
                              

 

  

   

                                        

  

   

 

 
Using the FST on Eq. A.9 and using the properties of the projection in polar coordinates (        
        ) yields: 

                        

  

    

                                                      

 

   

 

With        the Fourier transform of the projection acquired at an angle θ. 
 
This therefore demonstrates Eq. 1. 

 

NB: Assuming                and using the properties of the convolution product Eq. A.10 could 

also be written as: 
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