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Abstract 

 
MicroRNAs are important regulators of gene expression. The vast majority of the cells in our body 

rely on hundreds of these tiny non-coding RNA molecules to precisely adjust their protein 

repertoire and faithfully accomplish their tasks. Indeed, alterations in the microRNA profile can 

lead to cellular dysfunction favoring the appearance of several diseases. A specific set of 

microRNAs plays a crucial role also in pancreatic beta-cell differentiation and is essential for the 

fine-tuning of insulin secretion and for compensatory beta-cell mass expansion  in  response  to 

insulin resistance. Recently, several independent studies reported alterations in microRNA levels in 

the islets of animal models of diabetes and in islets isolated from diabetic patients. Surprisingly, 

many of the changes in microRNA expression observed in diabetes animal models  were  not 

detected in the islets  of diabetic patients  and vice-versa. These  findings  are unlikely to merely 

reflect species differences because microRNAs are highly conserved in mammals. These puzzling 

results are most probably explained by fundamental differences in the experimental approaches that 

selectively highlight the microRNAs directly contributing to diabetes development, the microRNAs 

predisposing individuals to the disease or the  microRNAs  displaying  expression  changes 

subsequent to the instauration of diabetes conditions. Here we will highlight the pertinence of the 

different models in addressing each of these questions and propose future strategies that should 

permit to obtain a better understanding of the contribution of microRNAs to the development of 

diabetes mellitus in human. 
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MicroRNAs as regulators of beta-cell differentiation and function 
 

Type 2 diabetes is a chronic metabolic disorder characterized by major alterations in gene 

expression affecting several organs, including the islets of Langerhans. A  growing  number  of 

studies demonstrate that these changes are not only caused by deregulation of key transcription 

factors such as MafA or Pdx1 but are also driven by modifications in the level of another group of 

molecules regulating gene expression, the microRNAs [1-4]. MicroRNAs are  small  non-coding 

RNAs (typically 21-23 nucleotide long) that pair to the 3’ untranslated region of target mRNAs 

leading to translational repression and/or a decrease in messenger stability [5]. 
 

The importance of the microRNA regulatory network for proper differentiation and function 

of beta-cells is highlighted by the phenotypic traits of mice lacking Dicer1, an enzyme essential for 

the generation of most microRNAs [5]. Deletion of Dicer1 at different stages of pancreas 

development or of the pancreatic endocrine lineage results in a dramatic loss of microRNAs 

accompanied by severe defects in pancreas morphology, islet organization, beta-cell formation and 

insulin biosynthesis [6-8]. The precise role of microRNAs in insulin-secreting cells has been 

investigated by deleting Dicer1 specifically in beta-cells. RIP-Cre-Dicer1 mice exhibit normal beta- 

cell formation during fetal and neonatal life, but become progressively hyperglycemic and finally 

develop overt diabetes in the adulthood. These mice display defects in islet number, size and 

architecture, in beta-cell mass, and in insulin biosynthesis and secretion [9, 10]. Loss of Dicer1 in 

the adult does not impact on the total beta-cell mass but results in insufficient insulin biosynthesis 

and release in response to glucose, causing hyperglycemia in both fed and fasted states [11]. Taken 

together, these observations point to an essential role for the microRNA network in beta-cell 

differentiation and function. 
 

Pancreatic beta-cells express a specific set of microRNAs that are present in the cells at very 

different levels. miR-7, miR-375 and let-7 family members are among the most abundant 

microRNAs expressed in human and rodent islets and miR-7, miR-184 and miR-375 are highly 

enriched in islets compared to other tissues [12-15]. The specific role of each of these microRNAs 

in the regulation of beta-cell activities has been investigated in different in vivo and in vitro models. 

Deletion of MiR-375 in mice results in an altered cellular composition of the pancreatic islets that 

contain less beta-cells and more alpha-cells than in wild type animals [16]. These mice display 

hyperglycemia and hyperglucagonemia and if crossed with ob/ob mice, a model of obesity and 

insulin resistance, they develop a severe diabetic state because of the  inability of  beta-cells  to 

expand and compensate for the increased insulin needs. These together with other studies [16-19] 
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highlight  the  central  role  played  by  miR-375  in  endocrine  pancreas  development  and  in  the 

regulation of insulin gene expression and release. 
 

Opposite to the absence of miR-375, the knockout of MiR-184  in  insulin-positive  cells 

results in a rise in beta-cell proliferation and an increase in their number. This is associated with 

improved insulin release in response to a glucose challenge [20]. The proliferative effect elicited by 

down-regulation of miR-184 was also observed in dispersed islet cells in an independent in vitro 

study [21]. Moreover, blockade of this microRNA in rat and human islets protected the beta-cells 

against apoptosis elicited by chronic exposure to pro-inflammatory cytokines or fatty acids 

(conditions typically associated with the diabetes state) [21]. Therefore, reduction of miR-184 levels 

favors the replication and survival of insulin-secreting cells and an expansion of the beta-cell mass. 
 

The role of miR-7 in beta-cells has also been the focus of numerous studies. The expression 

of this microRNA was positively correlated with pancreatic development and beta-cell 

differentiation in human fetus [22]. Down-regulation of miR-7 in mouse embryos results in a 

reduction in the number of beta-cells and diminished insulin production, leading to glucose 

intolerance in the post-natal period [23]. Inhibition of miR-7 using antisense oligonucleotides in 

isolated adult mouse islet cells was found to activate the mTOR pathway and to promote beta-cell 

proliferation [24]. However, beta-cell-specific MiR-7 knockout mice did not show significant 

differences in beta-cell survival or proliferation, but display enhanced insulin release due to 

increased expression of key components of the exocytotic machinery permitting an improved 

response to a glucose challenge [25]. 
 

Let-7 was the first microRNA discovered in C. elegans [26] and includes a family of 12 

closely related microRNAs sharing a common seed region (a sequence spanning from nucleotide 2 

to 8 that is important for target recognition). The members of this family are key regulators of 

embryonic development and important tumor suppressors in adult cells [27].  The  role  of  let-7 

family members in the regulation of glucose homeostasis has been investigated in an in vivo study 

using strategies permitting to overexpress or block these microRNAs [28]. Overexpression of let-7 

either in all tissues or restricted to beta-cells resulted in impaired glucose tolerance and attenuation 

of glucose-induced insulin release. Moreover, general down-regulation of let-7 in adult mice 

obtained by injection of antisense oligonucleotides prevented impaired glucose tolerance in mice 

fed on a high-fat diet [28]. 
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Overall, these and many other studies (reviewed extensively elsewhere [1-3]) have identified 

the microRNAs as essential players in beta-cell development and function and in the regulation of 

whole-body glucose homeostasis. 
 

Inappropriate islet microRNA expression as potential cause of type 2 diabetes 
 

Several research teams have used comparative profiling to identify changes in microRNA 

expression preceding or coinciding with the manifestation of diabetes and, thus, potentially 

contributing to the development of the disease. Different rodent models of type 2 diabetes 

(summarized in Table 1) were analyzed covering various aspects of this complex and multifactorial 

metabolic disease. An exhaustive list of the microRNAs identified in these studies is provided in 

Table 2. Interestingly, a group of microRNAs including miR-34a, miR-132, miR-184, miR-199a- 

5p, miR-210, miR-212, miR-338-3p and miR-383 were found to be deregulated in different type 2 

diabetes animal models by independent research groups and their expression changes were 

confirmed by real-time PCR quantification [20, 21, 29-31]. The functional role of some of these 

microRNAs in the regulation of beta-cell functions has been investigated in detail. For this purpose, 

the expression changes observed in pre-diabetic or diabetic animals was mimicked in normal beta- 

cells. This revealed that the induction of miR-34a, miR-210 and miR-383 promotes apoptosis of 

beta-cells and/or inhibits glucose-induced insulin secretion [21, 32], indicating  a  potential 

involvement of these microRNAs in beta-cell dysfunction and in the development of diabetes. 

However, not all the changes in microRNA levels detected in the islets of diabetic animals have 

deleterious impacts on beta-cell activities. Indeed, reduction of miR-184 and miR-338-3p or a rise 

of miR-132 were found to trigger beta-cell proliferation, improve survival and/or insulin release 

[20, 21, 31, 33]. This suggests that the modifications in the level of these microRNAs contribute to 

physiological processes that attempt to compensate for insulin resistance rather than to pathological 

events causing the appearance of diabetes. 
 

 
 
 

Can findings obtained in diabetes animal models be extrapolated to humans? 
 

Several groups have now extended this type of studies to humans and compared the level of 

microRNAs in islets obtained from healthy and type 2 diabetic donors, a type of analysis that is 

expected to become more popular in the coming years. Surprisingly, only a minor fraction of the 

microRNAs differentially expressed in animal models were also found to be modified in samples 

collected from type 2 diabetic patients. Conversely, several microRNA changes revealed by the 

screening  of  human  islets  were  not  previously  highlighted  by  the  systematic  analysis  of  islets 
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isolated from diabetes animal models. Indeed, the islets of type 2 diabetic donors were found to 

express higher levels of miR-187, miR-187*, miR-224, miR-589 and decreased levels miR-7, miR- 

369, miR-487a, miR-655 and miR-656 (see Table 3) [13] . Similar changes in the expression of 

miR-187 and miR-7a were confirmed by independent research groups [25, 34]. These data will need  

to be reproduced in additional laboratories but if these findings are confirmed what will then be the           

value of experiments carried out in rodents? Should they be abandoned in favor of experimental 

approaches focusing exclusively on the analysis of human samples? If not, would it be possible to 

design experiments in animal models and human islets permitting  to reconcile these apparently 

discrepant findings? In the following paragraphs we will attempt to answer these important and 

legitimate questions by scrutinizing the advantages and limitations of the experimental models 

currently available to study the involvement of islet microRNAs in the development of diabetes. 
 
There are several factors that should be considered to explain the differences between the results 

obtained in human and rodent samples. Human and rodent islets are known to display genetic, 

morphological and functional specificities but species differences are unlikely to be the major cause 

of the discrepant findings. Indeed, the sequence, the genomic organization and the signals 

regulating the expression of almost all microRNAs are highly conserved between  mammals. 

Several experiments carried out with rodent islets have been performed with microarray or 

quantitative PCR approaches. The use of these highly sensitive techniques may have allowed the   

detection also of differences in microRNAs expressed at very low level in the cells that may not be  

functionally relevant. However, the use of different profiling methodologies cannot explain the 

observed discrepancies. In fact, at least part of the rodent studies were performed with the same  

approaches applied for the analysis of the microRNAs in human samples. Moreover, differential 

microRNA expression in rat islet samples determined by small RNA sequencing and with the      

Agilent microarray platform yielded highly concordant results (Jacovetti, Matkovich and Regazzi, 

unpublished observation). 
 
We believe the explanations for the differences between the results obtained in rodents and humans 

should rather be searched in the peculiarities of each experimental model (summarized in Table 4). 

Animal studies offer the possibility to correlate the kinetics of the microRNA changes with the 

development of type 2 diabetes.  Infact,theonsetofthediseaseoccursatwell-definedtimepoints 

permitting to focus on microRNA changes immediately preceding the failure of beta-cells and thus         

most likely to contribute to the development of diabetes. The precise role of the identified 

microRNAs in the manifestation of the disease can then potentially be assessed by modulating the 

level of the microRNAs in vivo, for instance by transgenesis or by injection of oligonucleotide 
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derivatives that mimic or sequester the microRNAs. This is an important issue because it is often 

difficult to determine whether microRNAs differentially expressed in the islets of overtly diabetic 

individuals are a direct cause of the disease or are the consequence of the chronic exposure of islet 

cells to  elevated levels of glucose, lipids and  inflammatory mediators typically occurring under 

diabetes conditions. As mentioned above, certain modifications in islet microRNA expression may 

even have a positive impact on islet function [20, 21, 31] and be part of the physiological 

mechanisms permitting to balance the rise in insulin needs caused by insulin resistance in peripheral 

tissues encountered in obese and aging individuals. 
 

A unique characteristic of the studies carried out in animal models is the use of congenic strains. 

This, combined with the possibility to standardize and precisely control the islet isolation procedure 

minimizes the variability between the biological replicates and allows the generation of highly 

reproducible data. The reproducibility of the results permits the detection of tiny differences in 

microRNA expression even when a small group of individuals is compared. Measurements of islet 

microRNA levels in human islet preparations are usually characterized by much larger inter- 

individual variations. These can be attributed to a combination of factors potentially modifying the 

microRNA profile including differences in age, sex, ethnicity, body mass index, the duration of 

diabetes and the treatment (or not) with different diabetic drugs of the islet donors [35]. In view of 

the strong inter-individual variability, relatively small changes in microRNA expression will  go 

undetected unless a large number of islet preparations are analyzed. This is a  major  obstacle 

because, at present, the availability of human islets is a limiting factor, in particular for samples 

obtained from type 2 diabetic donors. It is possible that changes in microRNA expression so far 

observed only in animal models will later be confirmed also in humans when the data of a larger 

number of diabetic individuals will become available. A representative example is the decrease of 

islet miR-184 expression observed in several independent animal studies [20, 21, 29, 30]. Changes 

in the level of this particular non-coding RNA were not detected upon global profiling of a small 

number of human samples [13, 34] but were readily confirmed by a study focusing specifically on 

miR-184 in which a large number of islet preparations were compared [20]. 
 

A major concern of diabetes animal models is that they may not faithfully recapitulate the 

conditions of the human disease. For instance, the degree of obesity associated with many 

traditional type 2 diabetes models like ob/ob and db/db mice, is exceedingly high and is not 

representative of the obesity observed in most type 2 diabetes populations [36, 37]. Diet-induced 

obese mice are probably more representative of human obesity. However, this model is 

characterized by large inter-individual differences in the response to high-fat diet and the animals 
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become glucose intolerant but usually do not develop overt type 2 diabetes. For other popular         

rodent strains such as for instance the GK rats the precise causes of the disease remain unclear [38]               

and the form of diabetes developed by these animals may be representative only of a very particular    

subgroup of type 2 diabetes cases in humans. Consequently, changes in the level of certain islet 

microRNAs identified in animal models may be observed in humans only if specific subpopulations 

of type 2 diabetic patients are selected. 
 
Finally, an important point to consider is that the differential expression of several microRNAs 

detected in the islets of type 2 diabetic donors may not be the result of changes occurring during the 

pre-diabetic phases preceding the development of the disease but may rather reflect pre-existing 

individual characteristics that predispose to the development of the disease. Indeed, most of the 

microRNAs that were found to be differentially expressed in the islets of type 2 diabetic donors 

belong to a large epigenetically controlled cluster generated from an imprinted locus on 

chromosome 14q32 [13]. As already mentioned above, the studies carried out in animal models are 

usually performed in congenic individuals. Since in this case all individuals share the same genetic 

background, the analysis of microRNA expression in the islets isolated from these experimental 

models will obviously fail in identifying phenotypic differences favoring the occurrence of diabetes. 
 
Future perspectives 

 
As discussed, there are fundamental differences between the studies focusing on diabetes animal 

models and on the analysis of islets collected from human donors. These two approaches are more 

likely to highlight either candidate microRNAs showing expression changes that coincide with the 

development of diabetes or pre-existing microRNA differences that predispose to the manifestation 

of the disease. Therefore, it is not too surprising that human and rodent studies led so far to the 

identification of distinct sets of microRNAs. Animal studies are more appropriate to discover a 

causal link between changes in microRNA expression and the manifestation of diabetes. Thus, these 

experiments should continue to guide the quest for the microRNAs contributing to beta-cell 

dysfunction and failure. Confirmation of the relevance of the findings obtained in rodents for the 

determination of the causes of diabetes in humans will be essential and will be facilitated by a better 

understanding of the impact on islet microRNA profile of confounding factors such as age, sex and 

treatment with anti-diabetic drugs. In principle, it should not be too difficult to evaluate the effect of 

these parameters on islet microRNA expression in animal models. In view of the increasing number 

of groups entering the field and of the rapid dissemination of platforms offering solutions for the 
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global assessment of microRNA expression, we are confident that this information will  soon 

become available. 
 

The analysis of the microRNA profile in human islets obtained from healthy and type 2 diabetic 

donors offers the unique possibility to identify inter-individual characteristics that predispose to the 

manifestation of the disease. This important information cannot be obtained with commonly used 

animal models and will complement the knowledge about the role of specific microRNAs acquired 

in rodents. So far, a  major obstacle to the  studies performed with human islets from cadaveric 

donors is represented by the fact that it is not possible to correlate the appearance of the alterations 

in microRNA expression with the manifestation and progression of diabetes. An interesting 

approach to partially overcome this limitation would be the generation of so-called “humanized” 

animal models. This strategy consists in getting rid of the endogenous beta-cells by injecting the 

animals with streptozotocin [39]. The rodent insulin-secreting cells are then replaced by human 

islets that are transplanted under the renal capsule and insure the metabolic control. By carefully 

selecting the recipient animal model, it would be possible to expose the transplanted human islets to 

diabetogenic conditions such as, for example, obesity or high fat diet feeding and to analyze then 

the impact on microRNA expression. This approach would permit to directly assess whether human 

islets exposed in vivo to adverse environmental conditions display the same changes in the 

microRNA profile observed in the islets of the corresponding animal model. 
 

Conclusion 
 

The discovery of microRNAs has opened new perspectives in the understanding of the mechanisms 

responsible for the failure of beta-cells and the development of type 2 diabetes. This has attracted a 

lot of interest on these small non-coding RNA molecules and has promoted an exponential increase 

in the number of studies aiming at identifying the microRNAs involved in this disease. The 

determination of the relevance for human diabetes of candidate microRNAs identified through 

experiments carried out in animal models still needs to be demonstrated and will occupy scientists 

in the coming years. We are only beginning to appreciate the importance of these tiny  RNA 

molecules in islet physiology but their discovery has provided new hope to elucidate the causes of 

beta-cell dysfunction and of the development of diabetes. MicroRNAs are now entered the limelight 

and, no matter which experimental model will be used to study them, they will probably not leave 

the front stage of diabetes research for a while. 
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Table 1   Main characteristics of common rodent models of type2 diabetes (T2D) 
 
 

Species Models Main characteristics Ref. 
 

Rat Goto-Kakizaki 
(GK) 

- Spontaneously develop T2D unrelated to obesity. 
- Animals are insulin resistant, moderately 

hyperglycemic and have impaired insulin secretion 
in response to glucose. 

Limitations: The precise cause of the development of 
T2D remains unclear. Poorly representative of most 
human T2D populations. 

[40] 

 

Mouse  Diet-Induced 
Obesity (DIO) 

- Mice are fed a high-fat diet to induce obesity and 
insulin resistance. 

- Model of pre-diabetes or early phases of T2D. 
Limitations: Large inter-individual differences. Most 

of the animals become glucose intolerant but never 
develop overt T2D. 

[41] 

 

db/db - Leptin receptor deficiency leading to T2D. 
- Animals are severely obese, insulin resistant, 

hyperglycemic and hyperinsulinemic. 
Limitations: Model of extreme obesity that is poorly 

representative of most human T2D populations. 

[37] 

 

ob/ob - Leptin deficiency. 
- Severely obese, insulin resistant and 

hyperinsulinemic 
- Beta-cell hyperplasia and compensation for insulin 

resistance. 
Limitations: Model poorly representative of human 

obesity. The animals do not develop T2D. 

[36] 

 

B6 strain - Resistant to obesity-induced diabetes. 
- B6-ob/ob are hyperinsulinemic and transiently 

hyperglycemic. 
- Beta-cell hyperplasia and increase in insulin 

secretion. 
Limitations: Need to be crossed with ob/ob mice to 

obtain a phenotype. Not well characterized. 

[30, 42] 

 

BTBR strain - Susceptible to obesity-induced diabetes 
- BTBR-ob/ob display severe hyperglycemia. 
- Failure of beta-cells to proliferate and to increase 

insulin secretion. 
Limitations: Need to be crossed with ob/ob mice to 

obtain a phenotype. Not well characterized. 

[30, 42] 
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Table 2 Overview of microRNAs reported to be differently expressed in pancreatic islets of 
different type 2 diabetes animal models. 

 

Animal 
models 

Detection 

method microRNA changes Ref. 
 

 
GK rats 

 
microarray 

 
Up 

 
let-7i*, miR-7b, -124, -127, -130a, -132, 

-136*, -142-3p, -142-5p, -152, -199a*-3p, 

 
[29] 

   
 
 
 

Down 

-199a-5p, -212, -335, -369-3p, -376a, -376a*, 
-376b-3p, -376c, -409-3p, -410, -411, -433, 

-434 
miR28*, -216, -217, -493, -503, -708 

 

 

DIO mice 
 

microarray 
 

Up 
 

let-7d*, miR-7a-1*, -34c, -101b, -125a-3p, 
-130b*, -132, -152, -182, -193, -200c*, -205, 

-211, -216b, -221, -322, -323-3p, -337-3p, 
-362-5p, -380-3p, -433, -455*, -484, -485*, 
-494, -540-3p, -615-3p, -670, -671-5p, -680, 

 

[21] 

   

 
 

Down 

-702, -705, -714, -770-3p, -802, -1224, 
-1894-5p, -1897-5p, -1904, -1906 

let-7b*, miR-10a, -24-1*, -28, -29a*, -30b*, 
-30c-1*, -31*, -32, -33, -100, -148a*, -181d, 
-184, -199a-3p, -202-3p, -203, -210, -215, 

-218, -223, -301b, -328, -335-5p, -344b, -378, 
-383, -384-5p, -539-5p, -541, -543, -676, 
-690, -697, -700, -1187, -1198-5p, -1892 

 

 qPCR Up 
Down 

miR-132, -375 
miR-7a, 184, -203, -210, -383 

[20, 21, 
25] 

 

db/db mice 
Young 

 
 

microarray 

 
 

Up 

 
 

miR-22, -132, -139-5p, -141*, -142-3p, -146a , 

 
 

[21] 
(6 wks)   -146b, -150, -152, -182, -193, -212, -301b, 

-337-3p, -337-5p, -433, -452, -455, -455*, 
-483, -582-5p, -676, -721 

 

  Down miR-23b, -24-1*, -27b, -31*, -100, -184, -194, 
-201, -203, -216a, -218, -338-3p, -378, 

-671-5p, -762, -802 

 

 qPCR Up 
Down 

miR-132 
miR-184, -203, -210, -383 

[21] 

 

Adult 
(16-20 wks) 

 

microarray 
 

Up 
 
 
 
 
 

Down 

 

miR-10a, -10b, -21, -22*, -34a,  -34b-5p, -34c, 
-99a, -100, -126-3p, -132, -139-5p, -143, -146a, 
-146b, -152, -181c, -195, -199a-3p, -199a-5p, 

-199b*, -212, -320, -322, -337-5p, -365, -455*, 
-497, -676, -721, -802, -1224 

miR-23b, -26a, -27b, -30e, -30e*, -30d, -31, 
-103, -129-3p, -129-5p, -184, -203, -204, -210, 

 

[21] 

  -301a, -324-3p, -324-5p, -325, -328, -331-3p,   
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-338-3p, -341, -374, -378, -381, -383, 
-384-5p, -434-3p, -652, -872 

 
 
 
 
 
 

qPCR Up 
 

Down 

miR-21, -34a, -132, -146, -199a-3p, -199a-5p, 
-802 

miR-7a, -184, -203, -210, -338-3p, -383 

[20, 21, 
25, 31, 

43] 
 

in situ 
hybridization 

 
Up 

Down 

 
let-7b 

miR-30d 

 
[44] 

 

 
ob/ob mice 
B6 strain microarray Up 

 
Down 

RNA seq Up 
 
 
 

Down 
 
 
 

qPCR Up 
Down 

 
 

miR-132, -133a, -152, -185, -199a-5p, -199b, 
-206, -202, -302b, -422a 

miR-184, -383 
miR-22, -99b, -132, -152, -181d, -183, -212, 

-337, -433, -455, -494, -574, -666, -671, -708, 
-1957, -5115 

miR-1a, -23b, -27b, -92b, -99a, -100, -125b, 
-137, -149, -181a,  -181b, -184, -203,  -210, 

-215, -221, -222, -335, -338, -378, -383, -672 
miR-204, -375 
miR-7a, -184 

 
 

[30] 
 
 
 

[20] 
 

 
 
 
 
 
 

[16, 20, 
25, 45] 

 

BTBR strain microarray Up 
Down 

miR-34a, -34b, -132, -199a-5p, -212, -379 
miR-1, -7b, -17-3p, -27b, -31, -124a, -133a, 
-147, -184, -187, -198, -203, -204, -207, 

-210, -211, -294, -302a*, -302b, -302c, 
-324-3p, -338, -371, -378, -383, -384, -422b 

[30] 

qPCR Up miR-204 [45] 
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Table 3   Overview of microRNAs reported to be differentially expressed in pancreatic islets of 
human diabetic vs non-diabetic donors. 

 
 
Human models Detection method microRNA changes Ref. 

 
 

Type 2 
diabetes 

Global profiling 
+ qPCR 

Up 
Down 

miR-187, -187*, -224 and -589 
miR-7, -369, -487a, -655 and -656 [13, 34] 

 
 

qPCR only Down miR-7a, miR-184 [20, 25] 
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Table 4 Advantages and disadvantages of using diabetes rodent models versus human islet 
preparations to study the involvement of microRNAs in pancreatic beta-cell dysfunction and in type 
2 diabetes (T2D) development. 

 
 
 

Diabetes animal models 
 

Advantages: 
- Possibility to correlate the kinetics of the microRNA changes with the development of 

T2D 
- Possibility to study the role of microRNAs in vivo 
- No restriction in the number of samples 
- Inter-individual differences can be minimized by the use of congenic strains 
- Islet isolation is standardized and highly reproducible 

 
Disadvantages 

- Potential differences between humans and rodents (microRNAs levels, cell composition) 
- The available animal models match only in part the phenotype of human patients 
- Difficult to estimate the influence of the genetic background to diabetes susceptibility 

 

 
 

Human islets from T2D patients 
 

Advantages: 
- The detected differences in microRNA levels are reflecting the situation in human patients 
- Possibility to correlate the level of islet microRNAs and genetic predisposition to diabetes 

 
Disadvantages: 

- The number of available islet preparations is limited (in particular for preparations from 
T2D donors) 

- microRNA levels are likely to be influenced by age, sex, ethnicity, treatment etc. of the 
donor 

- Major inter-individual differences 
- Islet preparations are difficult to standardize, resulting in important variability in purity, 

cell viability etc. 
- Difficult to correlate the changes in microRNA levels with the development of diabetes 
- Difficult to distinguish between causes and consequences of diabetes 
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