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Abstract Genetic structure and evolutionary patterns
of the wild olive tree (Olea europaea L.) were investi-
gated with AFLP Wngerprinting data at three geo-
graphic levels: (a) phylogenetic relationships of the six
currently recognized subspecies in Eurasia and Africa;
(b) lineage identiWcation in subsp. europaea of the Med-
iterranean basin; and (c) phylogeography in the western
Mediterranean. Two statistical approaches (Bayesian
inference and analysis of molecular variance) were used

to analyse the AFLP Wngerprints. To determine the
congruency and transferability of results across studies
previous RAPD and ISSR data were analysed in a simi-
lar manner. Comparisons proved that qualitative results
were mostly congruent but quantitative values diVered,
depending on the method of analysis. Neighbour-
Joining analysis of AFLP phenotypes supported current
classiWcation of subspecies. At a Mediterranean scale
no clear cut phylogeographic pattern was recovered,
likely due to extensive gene Xow between populations
of subsp. europaea. Gene Xow estimates calculated with
conventional F-statistics showed that reproductive bar-
riers separated neither populations nor lineages of
O. europaea. Genetic divergence between eastern and
western parts of the Mediterranean basin was observed
only when geographical and population information
were incorporated into the analyses through hierarchi-
cal analysis of molecular variance (AMOVA). Within
the western Mediterranean, the highest genetic diver-
sity was found in two regions: on both sides of the Strait
of Gibraltar and in the Balearic archipelago. Additionally,
long-lasting isolation of the northern-most populations
of the Iberian Peninsula appeared to be responsible for
a signiWcant divergence.

Introduction

The genus Olea (Oleaceae) includes ca. 40 extant taxa
distributed throughout Africa, Europe, Asia and
Oceania, classiWed into three subgenera: Paniculatae,
Tetrapilus and Olea. The latter subgenus consists of
two sections, Olea and Ligustroides (Green 2002). The
olive (Olea europaea L.) is the only representative of
section Olea and is widely distributed in the Old World
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(Green and Wickens 1989). Olea europaea subsp. euro-
paea is a distinctive element of the Mediterranean Xora
and serves to characterise both natural ecosystems
(var. sylvestris Mill.) and agricultural landscapes (var.
europaea). Five more subspecies are currently recog-
nized (Green 2002): subsp. guanchica P. Vargas et al.
(Canary Islands), subsp. cerasiformis G. Kunkel and
Sundig (Madeira archipelago), subsp. maroccana
(Greut. and Burd.) P. Vargas et al. (SW Morocco),
subsp. laperrinei (Batt. and Trab.) Cif. (Sahara moun-
tains) and subsp. cuspidata (Wall. ex G. Don) Cif. (S to
NE Africa and SW Asia to China; Fig. 1). In recent
years, attempts to clarify the taxonomic limits among
the diVerent forms of O. europaea have been under-
taken, using both morphological (Green and Wickens
1989; Médail et al. 2001; Vargas et al. 2001; Green
2002) and molecular data (Angiolillo et al. 1999; Hess
et al. 2000; Lumaret et al. 2000; Baldoni et al. 2002;
Besnard et al. 2002a), but limited resolution was
obtained. Molecular tools have also been exhaustively
used to investigate the genetic diversity of cultivated
and wild forms of subsp. europaea (Baldoni et al. 2002;
Besnard et al. 2002b; Lumaret et al. 2000). As a result,
there have been several attempts to pinpoint hotspots
of present-day diversity and Pleistocene refugia around
the Mediterranean basin (Besnard et al. 2002b; Luma-
ret and Ouazzani 2001; Lumaret et al. 2004). It was
argued that phylogeographic patterns are elusive
because of limited geographic barriers, the long history
of olive cultivation (over 8,000 years; Zohary and Spie-
gel-Roy 1975) and the extensive hybridisation between
wild and crop trees. In spite of these diYculties, two
well-diVerentiated regions (eastern and western parts
of the Mediterranean basin) and several cpDNA lin-
eages were described (Besnard et al. 2002b; Lumaret
et al. 2004). The most genetically diverse region corre-
sponds to the western Mediterranean, notably the Ibe-
rian Peninsula and the Mahgreb (Besnard et al. 2002b;
Lumaret and Ouazzani 2001; Lumaret et al. 2004). In
these areas, some wild olive populations likely survived
in situ throughout glaciations in protected riparian
microenvironments (Terral et al. 2004), but precise
locations of glacial refugia remain unknown.

To gain a better resolution, a Wngerprint study was
undertaken with ampliWed fragment length polymor-
phism (AFLP) markers. This technique has recently
been found to provide the most reliable results when
compared to other Wngerprinting techniques (RAPD,
ISSR, SSR; Nybom 2004). For the cultivated olive, a
comparative study of three Wngerprinting markers
(RAPD, SSR and AFLP) has already been conducted
(Belaj et al. 2003) to evaluate the capacity of the vari-
ous techniques to discriminate cultivated genotypes.

The two dominant marker systems RAPDs and AFLPs
were found to be easily comparable, the latter being
the most eYcient (see also Owen et al. 2005).

In the present paper, we analysed AFLP data to
address the following issues: (a) inference of phylo-
genetic relationships of the six subspecies currently
recognized within the Olea europaea complex; (b)
identiWcation of major lineages in the wild olive (Olea
europaea subsp. europaea); and (c) description of phy-
logeography and population structure of the wild olive
in the W Mediterranean (Iberian Peninsula, Balearic
islands and north-western Maghreb). In addition, we
compared our AFLP data with data obtained previ-
ously from a similar sample with two other widely used
Wngerprinting techniques, RAPD (Besnard et al. 2001)
and ISSR (Vargas and Kadereit 2001).

Materials and methods

Plant material, DNA extraction and AFLP 
Wngerprinting

Plant material was collected in the Weld and total geno-
mic DNA extracted from c. 0.5 g of silica-dried leaves
using the Plant-DNeasy Minikit (QIAGEN Inc.) and the
protocols provided by the manufacturer. A total of 182
individuals of the wild olive tree was chosen, based on
previous studies (Besnard et al. 2001; Vargas and Kade-
reit 2001) to encompass high levels of taxonomic (subspe-
cies) and biogeographic (population) diversity (see Fig. 1
and Electronic Supplementary Material Table S1).The
AFLP procedure followed that of Vos et al. (1995) with
the modiWcations of Schönswetter et al. (2004) and the
primer combinations of Angiolillo et al. (1999).

Data analysis

Pairwise genetic distances among AFLP phenotypes
were computed with Dice’s coeYcient, using the
expression of Nei and Li (1979) as implemented in
PAUP 4b10* (SwoVord 2000). The same software was
used to construct Neighbour-Joining (NJ) trees, whose
branch reliability was assessed by bootstrapping (10,000
replicates). Bayesian Analysis of Population Structure
(BAPS v.3.1; Corander et al. 2003) was used to estimate
the hidden structure by clustering individuals into pan-
mictic groups. The partition with the highest log mar-
ginal likelihood was plotted onto the NJ tree.

Analyses of molecular variance AMOVA (ExcoYer
et al. 1992) were performed with ARLEQUIN, v 2.00
(Schneider et al. 2000) to hierarchically examine
genetic structure. For a complementary approach, the
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AFLP data were analysed using Bayesian Inference with
HICKORY v. 1.00 (Holsinger and Lewis 2003). HICK-
ORY was run with the default parameters except for the
burn-in period (50,000), number of generations (500,000)
and thinning (100). Gene Xow between populations and
subspecies was assessed using Wright’s (1951) equation
for the calculation of the number of migrants exchanged
per generation: Nm = 0.25 [(1/FST ) ¡ 1].

Phylogenetic relationships in the Olea europaea 
complex

Naturalness of the diVerent taxa and phylogenetic rela-
tionships in the O. europaea complex were investigated
using 47 accessions: 21 of subsp. europaea, Wve of subsp.
cerasiformis, Wve of subsp. guanchica, three of subsp. lap-
errinei, two of subsp. maroccana, six of subsp. cuspidata
and Wve samples of taxa from sect. Ligustroides. Relation-
ships among all these accessions were determined using
NJ dendrograms and BAPS clusters. Genetic relation-
ships among the diVerent subspecies were additionally
investigated using AMOVA and gene-Xow estimates, the
latter computed for every pair of subspecies.

Major lineages within O. europaea subsp. europaea

To determine major wild lineages of subsp. europaea
with AFLPs a sample of 38 plants was used, including a

subset of 16 accessions taken from the phylogeographic
analysis of W Mediterranean (one from each popula-
tion, see below) plus 22 accessions of representative
individuals across the Mediterranean. Congruence
between diVerent Wngerprinting markers was assessed
by comparing the AFLP data with RAPD (Besnard
et al. 2001) and ISSR data (Vargas and Kadereit 2001).
NJ and BAPS reconstructions, AMOVA computed
with ARLEQUIN and a Bayesian Inference analysis
performed with HICKORY were used to explore
genetic variation at a Mediterranean scale.

Phylogeography of the W Mediterranean

Phylogeographic analysis of the W Mediterranean was
undertaken with AFLP proWles of samples from six-
teen diVerent populations. A total of 140 individuals
were included in this analysis using three to ten individ-
uals from each locality (Table S1, Electronic Supple-
mentary Material). The resulting dataset was
compared with RAPD data from Besnard et al. (2001).
Population pairwise FST obtained with ARLEQUIN
were used to construct trees of populations with the NJ
algorithm and to compute gene-Xow estimates for both
AFLPs and RAPDs. Distances between pairs of popu-
lations analysed with AFLPs were estimated with Nei’s
(1978) unbiased genetic distance using POPGEN 1.32
(Yeh et al. 1998). Correlation between geographic and

Fig. 1 Geographical distribution of the six currently recognised
subspecies of Olea europaea L. and locations of the plant material
examined. Numbers correspond to samples described in Table S1.
a Distribution of subspp. europaea, laperrinei and cuspidata;

b Distribution of subspp. cerasiformis, guanchica, maroccana and
europaea (partial); c Accessions sampled in the Iberian Peninsula,
the Balearic Islands and northern Morocco
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genetic structures within the W Mediterranean was
explored by comparing the Cartesian geographic coor-
dinates of the 16 populations analysed with AFLPs
with the three-dimensional coordinate vectors
obtained for each population by multidimensional scal-
ing (PROXSCAL) of population pairwise FST. This
approach provides a rich source of information by
enabling not only the detection of concordance
between datasets but also the detection of any devia-
tion from the overall trend. Large residuals indicate
the points that do not match well in comparison to the
overall trend. In our case, a close match between geo-
graphic and genetic diVerentiation (i.e. isolation by dis-
tance) would be an indication of neutral drift.
Procrustean randomization analysis (10,000,000 ran-
domizations) with PROTEST software was used for
this comparison (Peres-Neto 2000; Peres-Neto and
Jackson 2001).

Results

Phylogenetic relationships in the Olea europaea 
complex

A total of 788 AFLP fragments was scored. The data
subset of 47 samples included representatives of all
O. europaea subspecies. The phylogenetic reconstruc-
tion obtained with the resulting matrix of 47 £ 788
(Fig. 2) revealed O. europaea as monophyletic (100%
bootstrap support, bs). All subspecies within the com-
plex were resolved as monophyletic groups. Three of
them (cerasiformis, laperrinei and maroccana) had
high support (> 90% bs), whereas subspecies cuspi-
data, europaea and guanchica displayed low support.
The partition with the highest log marginal likelihood
(¡7909.6) produced by BAPS consisted of three clus-
ters: one for the samples belonging to sect. Ligustro-
ides (outgroup), a second one for all the accessions but
one of subsp. cuspidata plus one sample of subsp.
guanchica and a third one including all other acces-
sions (Fig. 2). AMOVA results also supported genetic
diVerentiation between subspecies, although most of
the genetic variance was maintained within each of the
subspecies (FST = 20%, P < 0.001; Table 1). An estima-
tion of gene Xow among subspecies computed using
conventional F-statistics (Table S2, Electronic Supple-
mentary Material) revealed that the diVerent taxa
seem to have exchanged a considerable number of
migrants (mean Nm + 0.92). However, these results
have to be interpreted cautiously, as sampling was
unbalanced among subspecies and sample sizes were
small in every case.

Major lineages within O. europaea subsp. europaea

The 38 samples used to determine lineage relationships
in the Mediterranean basin rendered a matrix of
38 £ 660. Results of the analysis of this matrix are
given in Table 1 and Fig. S1 (Electronic Supplemen-
tary Material). Apart from the ingroup, which always
appeared as monophyletic with low to moderate sup-
port, no major AFLP lineages could be established
with conWdence since signiWcant support values were
obtained only for a few tip branches in the AFLP
reconstruction (S1a), while no support > 50% is
observed neither for RAPDs (S1b) nor for ISSRs
(S1c). BAPS analyses also failed to reveal any pattern
of geographic relatedness among the analysed samples,
partitions with highest log marginal likelihood were
k = 2 (¡2033.74), k = 4 (¡933.5) and k = 4 (¡2815.9)
for AFLPs, RAPDs and ISSRs, respectively. More-
over, if BAPS was run with K (maximum number of
groups) = 2, the grouping did not correspond with a
split between the W and E Mediterranean or any other
geographical regions (results not shown). Therefore,
no unequivocal diVerentiation at a Mediterranean
scale was found with any of the three Wngerprinting
data sets. However, when RAPD data were analysed
with AMOVA, diVerences between the W and E Med-
iterranean accounted for 18.2% of the total variation
(P < 0.001). Most RAPD variation was found within
populations (67.3%) while there was less variation
among populations (14.51%). The results of this analy-
sis diVered to some extent from those obtained previ-
ously on the same data set. While Besnard et al. (2001)
estimated the degree of inter-population diVerentia-
tion in the Mediterranean to be 24% with the OPEP
software (Baradat and Labbé 1995), we obtained val-
ues of 24.6% with HICKORY (�B) and 32.7% with
ARLEQUIN (FST). Thus, the two algorithms that do
not consider Wngerprinting patterns as haplotypes
(OPEP and HICKORY) yield almost identical results,
whilst ARLEQUIN (AMOVA) gives a higher FST
value.

Phylogeography in the W Mediterranean

The AFLP data matrix used for the phylogeographic
analysis of the western Mediterranean consisted of 140
samples £ 670 fragments. The genetic structure
inferred from the analysis of this matrix is described in
Fig. S2 (Electronic Supplementary Material) and
Table 1. Major results of AFLP data were similar to
those obtained with RAPDs. In both cases population
diVerentiation appeared to be signiWcant (P < 0.001;
Deviance Information Criterion [DIC; Spiegelhalter
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et al. 2002] values of the full model more than six units
smaller than that of the �B = 0). DiVerences in DIC val-
ues in the case of AFLPs were due to the full model’s
better average Wt, but in the case of RAPD data they
were mainly due to the smaller number of estimated
parameters (Holsinger and Wallace 2004). DiVerences
due to among-population variation explained between
15% (RAPD) and 20% (AFLP) of the total variation
(Table 1). Two NJ dendrograms were constructed
based on population pairwise FST’s computed with
ARLEQUIN, one for AFLP (S2a) and one for RAPD
phenotypes (S2b). Both showed the singularity of the
Cantabrian population from northern Spain, 47 San
Antolín SP (Asturias) in the AFLP analysis and Astu-
rias SP in the RAPD analysis. According to the AFLP

tree, these Cantabrian plants formed the genetically
most distant population from any other included in the
data set (total Nei’s unbiased genetic distance = 0.096)
and were related to populations located in the vicinity
of the Strait of Gibraltar (20 Alcalá de los Gazules SP).
Two other populations from both sides of the Strait of
Gibraltar (29 Chef Chaouen MOR, 21 Almoraima SP)
were genetically diVerent from each other and from the
cluster described above. High genetic diVerentiation is
observed between any two pairs of populations situ-
ated in the vicinity of the Strait of Gibraltar except for
38 Heracles Cave MOR and 48 Tetouan MOR. The
three populations from the Balearic Islands (CAB,
MLL and MN) were also genetically distant to each
other, in spite of their geographic proximity.

Fig. 2 Neighbour Joining analysis of 47 individuals based on Nei
and Li’s (1979) genetic distances. Numbers next to nodes indicate
bootstrap support after 10,000 replicates. Every subspecies is rep-
resented by at least two individuals. The 21 individuals of subsp.
europaea are a subset of samples displayed in Fig. S1 of Elec-
tronic Supplementary Material. Shaded rectangles to the right of
the tree indicate the clustering with the highest log marginal like-

lihood according to the Bayesian analysis of population structure
performed with BAPS v.3.1 (Corander et al. 2003) to estimate
hidden structure by clustering individuals into panmictic groups
(K = 3; log marginal likelihood = ¡17,909.6). The six samples
marked in boldface are common to the three analyses. (a) Sam-
ples common only to AFLP and RAPD analysis
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Procrustean randomization tests revealed a strong
correlation between geographic and genetic structures
within W Mediterranean (m2 = 0.923; P < 0.001). The
residuals for the three dimensions of the analysis
(Table S3 included in the Electronic supplementary
material) revealed that the populations that show a
higher deviation from geographic patterns and thus
from neutral drift are 29 Chef Chaouen MOR (0.484),
44 Cala Grande MLL (0.437) and 38 Heracles Cave
MOR (0.419). Nei’s unbiased genetic distances and pop-
ulation pairwise Nm computed with conventional F-sta-
tistics are also displayed in Table S3. The estimated
number of migrants (Nm) exchanged between pairs of
populations indicated a high degree of gene Xow among
populations, with values ranging from 0.3 (47 San Anto-
lín SP and 29 Chef Chaouen) to 8.5 (38 Heracles Cave
MOR and 48 Tetouan MOR), with a mean Nm of 1.372.

Discussion

Congruency of major AFLP lineages and taxonomy

Phylogenetic reconstruction based on AFLP data sup-
ported current taxonomic treatment of the Olea euro-
paea complex and its monophyly (Green 2002; Fig. 2).
Genetic uniqueness, geographic remoteness and mor-
phological diVerentiation of subsp. cerasiformis suggest a
single, ancient colonization of the Madeiran archipelago.
Phylogeographic relationships between the populations
of the two islands of the Madeiran archipelago (Fig. 2)

indicate young-to-old inter-island dispersal from
Madeira to Porto Santo in spite of the remarkable time
diVerences between island formation (Madeira, 5 Ma;
Porto Santo 18 Ma). The low support in the NJ recon-
struction coupled with distinct BAPS clusters and heter-
ogeneity in plastid haplotypes (Besnard, Rubio de Casas
and Vargas, submitted) seems to reXect a more complex
pattern within the Canarian subsp. guanchica, as it had
been previously hypothesized (Hess et al. 2000).

The two north-African endemics (subsp. laperrinei
and maroccana) were resolved as sister taxa in the NJ
tree (75% bs) in accordance with previous Wngerprint-
ing data (Angiolillo et al. 1999; Hess et al. 2000; Bes-
nard et al. 2001) and ITS sequences (Besnard, Rubio
de Casas and Vargas, submitted). Conversely, mito-
chondria and plastid haplotypes place the two Saharan
taxa in independent lineages (Besnard et al. 2002b):
subsp. maroccana with subsp. guanchica, and subsp.
laperrinei with E Mediterranean populations of subsp.
europaea. The incongruence between nuclear and
organelle DNA might be due to hybridisation during
waning and waxing of African lineages following cli-
matic Xuctuations. This hypothesis is supported by
present-day geographic distribution in an east-to-west
sequence (europaea – laperrinei - maroccana - guan-
chica) and by palaeobotanical records (Médail et al.
2001). We hypothesize that hybridisation was more
likely to occur in the past within the taxa pairs euro-
paea – laperrinei and guanchica – maroccana than
across them. Morphological characters are also incon-
clusive, although certain diVerences are observed.

Table 1 Analysis of the Olea europaea subsp. europaea variation for RAPD phenotypes at a Mediterranean scale and for AFLP and
RAPD phenotypes in the W Mediterranean. The number of populations and individuals analysed with each technique is given in brack-
ets. These analyses were performed on 3–20 individuals per population. All results in % and P values < 0.001

a Results of the AMOVA performed with ARLEQUIN v. 2.00 (Schneider et al. 2000)
b Results of the Bayesian Inference procedure (full model analysis) implemented in HICKORY v. 1.00 (Holsinger and Lewis 2003).
�B: Bayesian inference estimate of FST under a random-eVect model of population sampling Parameters for model choice in the Bayes-
ian Inference analysis for the whole Mediterranean RAPD analysis: full model, DIC = 3,645.1190; Dbar = 3,039.4433; Dhat = 2,433.7676;
pD = 605.6757; �B = 0 model, DIC = 39,194.4586; Dbar = 33,549.1247; Dhat = 32,903.3908; pD = 645.7339. Parameters for the W Mediter-
ranean AFLP analysis: full model, DIC = 25,269.1069; Dbar = 21304.2847; Dhat = 17,339.4626; pD = 3,964.8221; �B = 0 model, DIC =
39,194.4586; Dbar = 33,549.1247; Dhat = 32,903.3908; pD = 645.7339. Parameters for the W Mediterranean RAPD analysis: full model,
DIC = 2,153.9551; Dbar = 1,831.4994; Dhat = 1,509.0437; pD = 322.4557; �B = 0 model, DIC = 2,172.9863; Dbar = 1,831.5258; Dhat =
1,490.0652; pD = 341.4605

Repartition of the 
genetic variation 

Whole 
Mediterranean

W 
Mediterranean

RAPD 
(25, 352)

AFLP 
(16, 140)

RAPD 
(20, 297)

AMOVA
Among regionsa 18.19 — —
Among populations 

within regionsa
14.51
FST = 32.7

19.31
FST = 19.3

15.24
FST = 15.2

Within populationsa 67.30 80.69 84.76
Bayesian Inference
�B b 24.61 (22.29, 27.05) 18.61 (17.75, 19.50) 15.42 (12.76, 18.19)
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While leaf morphology of subspp. laperrinei and
maroccana overlaps considerably (Green 2002),
width of endocarp walls discriminates both taxa:
individuals of subsp. laperrinei have thinner endocarp
walls (0.24–0.78 mm) than those of subsp. maroccana
(0.70–2.13 mm), europaea (0.69–1.83 mm), cuspidata
(0.52–2.64 mm), cerasiformis (1.20–2.31 mm), and
guanchica (0.82–2.31 mm) (authors’ unpublished data).

Topological resolution of the NJ dendrogram and
BAPS clustering of AFLP data revealed that the most
widespread subspecies of O. europaea (subsp. cuspi-
data) is distinct from the other Wve subspecies and con-
tains divergent lineages (Fig. 2). It had already been
suggested that Asian and African populations may in
fact represent diVerent taxa (Green and Wickens 1989,
but see Green 2002). However, lineages shown by our
reconstructions do not clearly correspond to geo-
graphic regions, and African plants are intermingled
with Asian ones. This may be due to the small sample
size but it can also be related to gene-Xow blurring the
limits between diVerent areas (Besnard et al. 2002b).

When the number of migrants exchanged per gener-
ation (Nm) between the subspecies was estimated
using F-statistics, results proved that gene Xow is
taking place (Electronic Supplementary Material
Table S2) as anticipated by several authors (Besnard
et al. 2002b; Lumaret et al. 2004). The method emp-
loyed for Nm computations has drawbacks (Whitlock
and McCauley 1999) but we nevertheless consider that
our estimates provide reliable support to the hypothesis
that there is little genetic isolation between O. europaea
taxa. Genetic barriers do not appear to be signiWcant,
neither between cultivated (var. europaea) and wild
forms (var. sylvestris) (Contento et al. 2002) nor
between subspecies, since fertile hybrids are observed
in the wild (authors’ personal. observation.) and
obtained in cultivation (Besnard et al. 2001). Geographic
isolation rather than fertility barriers appears to be
responsible for the diVerentiation patterns deduced in
O. europaea.

Weak phylogeographic structure in the olive tree 
across the Mediterranean

The diVerent data sources (ISSR, RAPD and AFLP)
used to investigate the existence of independent lin-
eages in the wild olive across the Mediterranean basin
failed to reveal any clear-cut pattern. Although it has
been suggested that E and W areas of the Mediterra-
nean harbour disparate olive tree lineages (Besnard
et al. 2001; 2002b; Lumaret et al. 2004), NJ and BAPS
clustering of AFLP, RAPD and ISSR phenotypes ren-
dered limited resolution and support (Fig. S1). This is

not a surprising result since the cultivation of the olive
has been widespread across the Mediterranean for sev-
eral thousands of years (Zohary and Spiegel-Roy 1975)
and, additionally, any gap between populations may be
bridged by long distance gene Xow. The olive tree has
been proved to be predominantly self-incompatible,
sometimes as a consequence of male sterility (Besnard
et al. 2000), which promotes outcrossing between wild
and cultivated individuals. Olive fruits are very widely
eaten by birds and other animals (Rey and Alcántara
2000) enabling long distance-dispersal and making
exchange of migrants common even between distant
regions. Pollen circulation in O. europaea can also occur
over long distances (Damialis et al. 2005) enhancing
lineage admixture. Indeed, our gene Xow estimations
(Table S3) demonstrated that reproductive isolation is
highly improbable and that genetic material seems to
be exchanged frequently among populations.

Analysis of genetic structure of W Mediterranean 
populations

In order to pinpoint wild olive populations from the
Iberian Peninsula, northern Morocco and the Balearic
Islands harbouring high genetic diversity, we used
AFLP data and re-analyzed the RAPD data from Bes-
nard et al. (2001). Analysis of molecular variance and
FST dendrograms (Table 1, Tables S2 and Fig. S2)
showed signiWcant genetic diVerentiation between pop-
ulations of O. europaea. We tested the transferability
of results between studies based on diVerent dominant
markers by comparing AFLP and RAPD data. FST
estimates provided by HICKORY and ARLEQUIN
are similar for each technique, albeit somewhat lower
for RAPD analysis. Population diVerentiation revealed
by AFLPs and RAPDs is stronger than that indicated
by allozyme analysis (Lumaret et al. 2004), which
appears to be a common pattern (Chung et al. 2004).

The AFLP results revealed two areas of high genetic
diversity. One is located nearby the Strait of Gibraltar
and the second one within the Balearic archipelago. In
these two areas, O. europaea populations show a
degree of genetic diVerentiation that is not propor-
tional to geographic distances among them (Table S3,
Figs. 1 and S2). Genetic diVerences among populations
from the three Balearic islands included in our analysis
may reXect the existence of a centre of genetic diversity
for O. europaea in this archipelago, as already reported
for Quercus (López de Heredia et al. 2005).

One population from the Cantabrian coast in north-
ern Spain (48 San Antolín, Asturias) is particularly dis-
tinct from all other investigated populations according
to both AFLP and RAPD data. The northern third of
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the Iberian Peninsula does not form part of the Medi-
terranean Xoristic region but belongs to the Eurosibe-
rian region, where the occurrence of the olive tree
is exceptional (Vargas and Kadereit 2001; Rubio de
Casas et al. 2002). The NJ dendrogram of population
pairwise FST (Fig. S2) and Nei’s unbiased genetic dis-
tances (Table S3) for both AFLP and RAPD data
show no close phylogeographic relationships between
the Cantabrian plants and any other Iberian popula-
tion. Ecological and phylogeographic singularity make
Cantabrian populations of O. europaea a stock worthy
of further genetic investigation.

Conclusions

Reproductive characteristics of O. europaea account
for extensive gene Xow among lineages. Recurrent
genetic exchange, however, has not blurred a phyloge-
netic pattern resulting in a highly diverse group with
multiple monophyletic taxa. Our results indicate
monophyly of the O. europaea complex and moderate
to high congruence between AFLP lineages and
taxonomic circumscription of the six subspecies cur-
rently recognized: cuspidata, cerasiformis, europaea,
guanchica, laperrinei and maroccana. However, the
phylogenetic relationships between these taxa are not
completely clear. Moreover, subsp. cuspidata appears
to comprise divergent lineages displaying limited mor-
phological and geographical diVerentiation.

In contrast to the phylogenetic signal obtained,
extensive gene Xow makes reconstruction of phylogeo-
graphic patterns diYcult, although signiWcant diVer-
ences between E and W areas of the Mediterranean
were retrieved by hierarchical AMOVA of RAPD
data (Table 1). Within W Mediterranean, the highest
diversity is found in two regions, the Strait of Gibraltar
and the Balearic archipelago. Additionally, we con-
Wrmed the occurrence of singular olive genotypes in
the Eurosiberian region of the Iberian Peninsula along
the Cantabrian coast.

Comparison of results obtained with diVerent Wnger-
printing techniques proved that, even if major conclu-
sions are qualitatively similar, quantitative values
might diVer depending on genetic assumptions and the
mathematical methods used to compute population
structure parameters. We consider that this should be a
call for cautiousness when contrasting results across
studies.
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